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Abstract

STATISTICAL INTERFERENCE MODELING AND COEXISTENCE STRATEGIES IN
COGNITIVE WIRELESS NETWORKS

Alireza Babaei, PhD

George Mason University, 2009

Dissertation Director: Dr. Bijan Jabbari

Cognitive radio is a novel approach for better utilization of the scarce, already packed but

highly underutilized radio spectrum. To this end, environment-aware unlicensed secondary

wireless devices are envisioned to share the spectrum with the primary licensed network,

provided that their operation does not impose unmanageable interference on the primary

nodes.

To achieve this coexistence goal, interference modeling is of great significance. Interfer-

ence, in general, has a stochastic nature not only due to randomness in the propagation

channel, but also due to the random geographic dispersion of nodes. A statistical repre-

sentation for interference, in which the power levels of the secondary nodes influence the

parameters of the model, is, thus, of considerable interest in analysis and design of cognitive

wireless network.

Stochastic geometry and spatial point processes are used for modeling the coexisting

primary and secondary networks. In particular, we model these networks using spatial

bivariate Poisson processes. We obtain statistical properties of the distances in these



processes and use them for modeling the interference from secondary network on the primary

nodes. We first consider an approximate Gaussian model for interference assuming that

Central Limit Theorem (C.L.T) can be applied. We, then, show that a more accurate

model for interference is the sum of a Normal and a Log-normal random variables. The

power levels of secondary nodes can be adjusted to obtain desirable values for the parameters

in both of these models.

Having this characterization of interference, we propose power control strategies for the

secondary network which assure the satisfaction of interference constraint at the primary

nodes. We show that these strategies are very easy to implement with little coordina-

tion requirement. Nodes either need to know where they are located in the sequence of

nodes ordered according to their Euclidean distance to a primary node or need no location

information, based on which strategy is being used.

Given that secondary nodes have imposed power control strategies to coexist with the

primary nodes, we find the lower bound of achievable throughput for the secondary nodes.

We use the statistical properties of distances between secondary nodes and find an upper

bound for the interference of secondary network on an arbitrary secondary node and thereby

a lower bound for its throughput. We show that the approach is applicable to finding the

throughput in a general power-constrained random network.



Chapter 1: Introduction and Motivation

1.1 Spectrum Scarcity or Shortage of Tolerance?

Today, we are witnessing an unprecedented growth in demand for wireless technology. Sev-

eral novel applications requiring high bandwidth are increasing the demand for radio spec-

trum. The radio frequencies, once perceived as an abundant resource, has turned into a

seemingly diminishing commodity. A brief look at the domestic and international frequency

allocation charts may lead to the conclusion that we are actually approaching the capacity

of radio spectrum.

As of late, the trend to increase spectral efficiency, has been at the system level. This

means that, for an allocated frequency band to a particular system, the communications

engineers try to take the most out of it, e.g., by closing the gap to Shannon capacity

as much as possible. Despite tremendous advances in physical layer techniques for more

efficient use of radio spectrum, the problem still remains intact: how can the emerging

wireless applications be integrated in the current overly crowded radio spectrum? This

necessitates, as a sine qua non, a new paradigm and a fundamental revision in approaching

the spectrum scarcity problem.

According to the Federal Communication Commission (FCC), at a given geographic

location, spectrum remains idle for a large portion of time [1]. This brings the following

questions: 1) Is the problem really the physical shortage of spectrum, or the outdated spec-

trum policies that prevent the coexistence? and 2) Can the efficiency of spectrum access

be increased by allowing several systems coexist in the same frequency band?

In the traditional divide and set aside approach [2], service providers are granted blocks

of spectrum along with licenses with which they can have exclusive access to the spectrum.
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When licensees are not transmitting, the spectrum remains idle. These policies were de-

vised considering the 1920’s technology [3]. Current technology seems to be mature enough

to allow spectrum sharing and coexistence among multiple systems. This, of course, re-

quires more tolerance and altruism for a side-by-side coexistence. On the other hand, strict

spectrum policies are required to resolve possible conflicts of interest among systems.

1.2 Dynamic Spectrum Access and Cognitive Radios

The inefficiency of current static spectrum utilization is reminiscent of the inefficiency of

static TDMA for bursty traffic, or in general, the inefficiency of static versus dynamic

techniques. A variety of ideas have been proposed to bring about the required spectrum

reform and improve the efficiency of its usage, which are all categorized under the general

term Dynamic Spectrum Access (DSA) [4].

In this dissertation, we consider a hierarchical model. This model consists of two classes

of spectrum users called primary and secondary. The first class, the primary users, are the

more favored ones since they possess the license, and therefore the right to use the spectrum

without any restriction and when and where they need it. On the other hand, the spectrum

is open for the use of secondary unlicensed users, as long as their interference perceived by

a primary user is less than some threshold. That is required so that their presence goes

unnoticed for the primary users.

This responsibility to be vigilant and have an open eye on their operation to limit their

interference to the primary users, requires that secondary nodes to be more intelligent and

cognitive compared to the conventional wireless devices. In parallel to this recognition,

new ideas have been proposed for an intelligent device called Cognitive Radio (CR)[5]. The

idea is that CRs have the capability of learning from their surrounding environment and

adapting to the statistical variations of the input stimuli. In other words, these radios

basically mimic the learning process of human brain.

The concept of CR is an extension of the original idea of Software Defined Radio (SDR)

[6]. A basic definition of SDR is: a radio in which some or all of the physical layer functions

2



are software defined [7]. CRs can be considered SDRs equipped with artificial intelligence,

which make them capable of sensing and reacting to their environment.

Various methods have been proposed to employ this cognition capability and make the

coexistence possible, which seek to underlay, overlay or interweave the secondary users’

signals with those of the primary users [8]. In the underlay approach, concurrent primary

and secondary transmissions are allowed, while power constraints are imposed on the sec-

ondary users so that their aggregate interference is below the noise floor of primary users

[9]. An example is UWB system where signals with very high bandwidth and very low

power spectral density are used. The low power spectral density tends to minimize the

interference to primary users.

In the overlay scenario, the secondary nodes can decode the primary message and use

techniques like dirty paper coding [10] or employ cooperative methods to cancel interference

at both primary and secondary nodes. Reference [11] considers a two-sender two-receiver

interference channel model, in which sender 2 obtains the encoded message from user 1 in a

causal or noncausal manner. Achievable rate regions are found by using ideas from Gel’fand

and Pinsker’s coding scheme [12]. Reference [13] discusses that cooperation between sec-

ondary nodes for transmission of their own data or cooperative transmission of primary

traffic (cognitive relaying) can greatly benefit the implementation of cognitive radio.

In the interweave approach, secondary nodes try to detect void space-time-frequency

holes and exploit them for their own transmission. Opportunistic Spectrum Access (OSA)

is an alternative name used for this method. In [14], a two-switch model is developed that

captures the spectral activity estimates at the cognitive transmitter and receiver. Upper

and lower bounds are obtained for the capacity of the cognitive radio channel.

1.3 Interference: The Achilles’ Heel

In this dissertation, we are mostly concerned with the underlay approach. On the premise

that they do not harmfully interfere with their primary counterparts, secondary nodes
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are allowed to operate concurrently with the primary. Interference can be considered as

the point of vulnerability in the cognitive wireless networks and interference avoidance is,

therefore, the most important step toward the implementation of such networks.

In [15], a resource allocation framework is presented for spectrum underlay in cognitive

radio networks. Joint admission and power control algorithms are proposed to satisfy both

the interference constraint for primary users and Quality of Service (QoS) constraint (in

terms of a minimum SINR) for secondary users.

Reference [16] develops an analytical framework for opportunistic spectrum access based

on the theory of Partially Observable Markov Decision Processes (POMDP). Under this

framework, cognitive MAC protocols are proposed that optimize the performance of sec-

ondary users while limiting the interference perceived by primary users.

In [17], a spectrum sharing problem is considered in an unlicensed band where multiple

systems coexist and interfere with each other. The authors use a repeated game framework

to model the interaction of the coexisting systems assuming that they work for a long period

of time. The outcome of this repeated game is shown to be self-enforcing, efficient and fair.

Reference [18] studies the problem of joint power control and beamforming with the

objective of minimizing the total transmit power of the cognitive network, such that the

received interference at the primary users remain below a threshold level and a minimum

SINR is guaranteed at the secondary users who are admitted in the system.

To minimize the interference from secondary network to primary nodes, power control

strategies have been proposed for secondary nodes. In [19], considering an interference

temperature constraint and assuming that channel gains are common knowledge among the

secondary nodes, the optimal power control is modeled as a concave minimization problem

and an improved branch and bound algorithm is used to address it. Reference [20] proposes

transmit power control using a fuzzy logic system to address the coexistence problem. The

distances between secondary nodes and a primary node is estimated based on empirical

propagation formulas for the path loss. In [21], the power control problem for a cognitive

radio ad hoc network, coexisting with the legacy TV system, is formulated and centralized
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and distributed algorithms are derived. In [22], a noncooperative power control model is

proposed for the secondary network using game theory and exponential pricing.

1.4 Interference Modeling

To achieve the coexistence goal, interference modeling is of great significance. Interference,

in general, has a stochastic nature not only due to randomness in the propagation channel,

but also due to the random geographic dispersion of nodes. A statistical representation

for interference, in which the power levels of the secondary nodes influence the parameters

of the model, is, thus, of considerable interest in analysis and design of cognitive wireless

network.

There are few prior work for characterizing interference in cognitive radio networks.

Reference [23] considers a victim receiver subject to a Poisson field of Continuous Wave

(CW) interferers1, in an unlicensed band. The authors discuss the impact of the density of

interferers on the average Bit Error Rate (BER).

In [25], a model is proposed for cognitive wireless networks which is based on spatial

bivariate Poisson processes. Assuming a simple Gaussian model for interference, power

control strategies are devised for secondary network to avoid interference on the primary

nodes.

Reference [26] considers the characterization of the aggregated interference, ignoring

how individual nodes can contribute in the total interference, i.e., no indexing is considered

among the secondary nodes. The author finds closed-form expressions for the cumulants

of aggregated interference and proposes that the interference can be approximated using a

Shifted Log-normal (SLN) random variable.

In [27], the authors propose a model for aggregate interference based on the sum of

a Normal and Log-normal random variables in which the parameters of the model are

influenced by the power levels in the secondary network. Power control strategies are

proposed for interference avoidance on the primary node.
1The authors in [23] borrow the notion of Poisson field of interferers from [24].
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1.4.1 Modeling of Cognitive Wireless Networks

An integral part to developing a realistic model of interference in cognitive wireless networks,

is to have a model for the coexisting primary and secondary networks.

Most of the models considered in the literature so far, are based on some simplifying as-

sumptions. Primary and secondary nodes are considered to be deterministic finite networks

in which nodes have perfect knowledge of secondary-secondary and secondary-primary path

gains. Usually a single primary Base Station (BS) is considered and the goal is to optimize

some objective function in the secondary network (e.g., maximizing throughput or mini-

mizing transmit power) while ensuring that the interference to the primary BS is less than

some threshold.

The location of nodes in a network, due to factors like mobility, unplanned placement

of the nodes (e.g., in mesh and sensor networks), etc, may be considered as realizations of

spatial point processes. In this dissertation, we consider primary and secondary networks

as two intertwined random wireless networks.

Except in some special cases, these processes are often difficult to deal with and closed-

form solutions are hard to find [28]. The Poisson point process has been an attractive

candidate for modeling these random structures as it often leads to closed-form solutions

[29].

1.4.2 Stochastic Geometry for Modeling the Coexisting Networks

In reference [30], considering a spatial Poisson model for a random wireless network, the

internodal distances are found to have a generalized Gamma distribution. Consequently,

considering a finite version of the above model (i.e., using spatial Binomial processes), the

distribution of internodal distances are shown to have a generalized Beta distribution in

[31].

In [25] and [32], using a spatial bivariate Poisson model, the results found in [30] are

extended to consider the case that each node belongs to one of the two distinguishable

types (e.g., in networks with heterogeneous node types), and the number of nodes of each
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type in a given region are marginally Poisson distributed and correlated. The distribution

of distances between pairs of nodes of dissimilar types and some useful statistics of these

distances are found. An immediate application of the spatial bivariate Poisson process

is in modeling the heterogeneous two-type wireless networks. One typical example is the

cognitive wireless networks.

1.5 Outline and Contribution of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2, considers the distances

in spatial bivariate Poisson point processes. The chapter is based, in part, on the results

obtained in [25], [32] and [33]. This model will be later used to characterize the coexisting

wireless networks, and the results obtained will be used to characterize the interference from

secondary network to primary nodes and from secondary nodes to a given secondary node.

In Chapter 3, by using the analytical results obtained in Chapter 2, the interference from

secondary neighbors of a primary node to the primary node is characterized. Two different

models are developed for modeling the interference. In each model, the parameters are

shown to be adjustable by changing the power levels in the secondary network. Furthermore,

the interference constraint and the models’ parameters are modified in case a statistical

model is considered for secondary transmission and primary reception.

In Chapter 4, considering the interference models developed in Chapter 3, power control

strategies are devised to satisfy the interference constraint. Chapters 3 and 4 are based on

the results obtained in [25] and [27].

In Chapter 5, analytical results are obtained for the lower bound of achievable through-

put in the power-constrained secondary network. We consider different forwarding strategies

(nearest neighbor forwarding and forwarding based on a probability distribution) and com-

pare the achievable throughput in each case. The analytical results obtained in Chapter 2

for the real moments of distances are used in the derivations. This chapter is based on the

results found in [33].

In Chapter 6, a summary of the contributions of this dissertation is presented and some

7



remarks are made for possible future research.
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Chapter 2: Distances in Spatial Point Processes

Points are the basic constituents in geometry. In the context of stochastic geometry, point

processes (or point patterns in statistical terminology) are of interest. These processes are

suitable mathematical tools for modeling data in a variety of scientific disciplines: ecology,

seismology, spatial epidemiology, etc. Stochastic geometry has also been used in modeling

the architecture of communication networks [34]. In this chapter, first, we explain two

spatial point processes with applications in modeling random networks, i.e., Poisson and

Binomial processes. We discuss the distances in these processes in which points are of

non-distinguishable type. We extend the results for the case of spatial bivariate or two-

type Poisson processes and derive some statistical properties of distances in these processes.

These properties will be used in the following chapters for interference modeling, devising

power control strategies for interference avoidance, and obtaining theoretical limits for the

achievable throughput in cognitive wireless networks.

2.1 Spatial Point Processes With Single-Type Points

Most of the existing work on spatial point processes are for processes in which points are of

a single type. The implication of this property is that they can be used only for modeling

networks with nodes of homogeneous type. In this section we describe two point processes

which have found applications in modeling random homogeneous networks.

9



2.1.1 Spatial Poisson Point Processes

Consider a homogeneous m-dimensional Poisson process with intensity λ and assume that

A ⊂ Rm is a bounded Borel set 1. Then, the probability that k points exist in A is

Pr{k points exist in A} = e−λν(A) (λΩ(A))k

k!
, k = 0, 1, . . . (2.1)

where Ω(A) is the Lebesgue measure of A 2. For A∩B = ∅, the number of points in A and B

are independent. This property makes the Poisson process suitable for modeling uniformly

random networks. In Figure 2-1, we have plotted a sample two-dimensional spatial Poisson

point process with intensity λ = 1.

The distances between an arbitrary point and its neighboring points are of particular

mathematical and practical interest. Following theorem is due to Haengi [30]:

Theorem 2.1. For a Poisson point process in Rm with intensity λ, the Euclidean distance

between a point and its nth nearest neighbor, Rn, is distributed according to the generalized

Gamma distribution:

fRn(r) = e−λcmrm m(λcmrm)n

rΓ(n)
, r > 0, (2.2)

where cmrm is the volume of the m-dimensional ball of radius r and cm is given by

cm =





πm/2

(m
2

)! , even m

π
m−1

2 2m(m−1
2

)

m! odd m

(2.3)

1Roughly speaking, Borel sets are the sets that can be constructed from open or closed sets by repeatedly
taking countable unions and intersections. For more rigorous definition see [28].

2The Lebesgue measure can be considered an extension of the classical notions of length and area to
higher dimensional sets [28].
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and Γ(n) is the gamma function,

Γ(z) =
∫ ∞

0
tz−1e−t dt, (2.4)

evaluated at3 n.

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 2.1: A sample 2-D spatial Poisson process with intensity λ = 1 where points are
distributed in a disc of radius 5.

2.1.2 Spatial Binomial Point Processes

Consider an m-dimensional Binomial point process where N points are distributed in the

Borel set A ⊂ Rm. For any Borel subset B of A, the probability that k points exist in B is

Pr{k points exist in B} =




N

k


 pk(1− p)N−k (2.5)

3Note that for n, a positive integer, Γ(n) = (n− 1)!
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where p = Ω(B)
Ω(A) . In a similar fashion, number of points in more than two disjoint sets are

related through a multinomial distribution. Following theorem is due to [31]:

Theorem 2.2. In a Binomial point process with N points distributed in a m-dimensional

ball of radius R centered at the origin, the Euclidean distance between origin and its nth

nearest point Rn, is distributed as a generalized Beta distribution:

fRn(r) =
m

R

B(n + 1− 1/m, N − n + 1)
B(N − n + 1, n)

β

(( r

R

)m
; n + 1− 1

m
, N − n + 1

)
, r ∈ [0, R],

(2.6)

where β(x; a, b) = 1
B(a,b)x

a−1(1− x)b−1 is the beta density function and B(a, b) = Γ(a)Γ(b)
Γ(a+b) .

Reference [31], considers the above model for a system with N nodes distributed ran-

domly and the BS at origin, and discusses applications of this result in issues like energy

efficiency, localization, connectivity and computing the outage probability.

2.2 Spatial Bivariate Poisson Processes

We consider a spatial point process, in which, each point is tagged with one of the two

possible labels. These processes are called bivariate or two-type spatial point processes [35].

The points of each type is marginally distributed according to a specific spatial Poisson

point process. We distinguish between these points as type-A and type-B.

A general model in which the number of type-A and type-B points in an area are

correlated is considered. So, points of each type having marginal Poisson distribution, also

have some sort of association. This association can be formally represented by considering

a spatial bivariate Poisson point process.

Unlike bivariate Poisson processes defined on the real line, there have been little work

on the definition of spatial bivariate Poisson distribution (e.g., [35], [36]). In this chapter,

we use an approach similar to [36] for the construction of these processes.
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We consider three possible events: A, B, and AB (implying joint occurrence of both

types), with the intensities λ, µ and ν, respectively. Unlike the one-dimensional bivariate

Poisson case, in which joint occurrence implies the two events occur at exactly the same time

instant, the occurrence of both types A and B at the same spatial point is not meaningful

from a practical perspective as it implies the existence of two different objects at exactly the

same location. To overcome this problem, a reference spatial Poisson process with intensity

λ + µ + ν is defined in [36]. Given that an event of this process has occurred at the spatial

point y, with probability λ
λ+µ+ν , there is a point of type A at y, with probability µ

λ+µ+ν ,

the point at y is of type B and with probability ν
λ+µ+ν there is a type-A point at x1 and a

type-B point at x2. The locations of x1 and x2 are such that ‖x1 − y‖ and ‖x2 − y‖ 4 are

independent random variables with probability density functions respectively f(‖x1 − y‖)
and g(‖x2 − y‖).

We classify a point as either single (corresponding to events A or B) or double (i.e.,

being double with a point of the other type, corresponding to event AB). Then, we have

the following probabilities:

Pr{a single type-A point at dx1} = λdx1,

Pr{a single type-B point at dx2} = µdx2.

where dx1 and dx2 are respectively infinitesimally small areas at points x1 and x2.

To find probability of double points, we need to consider all possible y’s of the reference
4The distance metric is Euclidean.
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Poisson process.

Pr{a double point with A at dx1 and B at dx2}

= ν

∫

y
f(‖x1 − y‖)g(‖x2 − y‖)dy (2.7)

= νh(x1,x2)dx1dx2,

where h(x1,x2) is defined as

h(x1,x2) ,
∫

y
f(‖x1 − y‖)g(‖x2 − y‖)dy. (2.8)

Note that integration of h(x1,x2) on either x1 or x2 equals 1. So we have:

Pr{a double point at dx1} = ν

∫

x2

h(x1,x2)dx1dx2

= ν

∫

x2

h(x2,x1)dx1dx2

= νdx1.

Using the above equation, we have

Pr{a type-A point at dx1} = λdx1 + νdx1

= (λ + ν)dx1.

Similarly,

Pr{a type-B point at dx2} = (µ + ν)dx2.

So, the number of type-A and type-B points in the two-dimensional regionR with area S
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are each marginally Poisson distributed with parameters respectively (λ+ν)S and (µ+ν)S.

The covariance of number of type-A points N(A) and type-B points N(B) in R is given in

[36] as

Cov{N(A), N(B)} = ν

∫

x1,x2∈R
h(x1,x2) dx1dx2. (2.9)

2.2.1 Distance to nth Nearest Neighbor Distribution

In this subsection we seek to find the pdf of the distance from a point of one particular type

to its nth nearest neighbor of the other type. In the absence of correlation between the

two types, the existence of a point does not have any influence on the points of the other

type. On the other hand, if the two types are correlated, each point has an impact on the

distribution of the other type points. The distance of a point to its nth neighbor (of the

same type) was shown in the previous section to have generalized Gamma distribution (see

Theorem 1). The question still remains: what is the distribution of the distance of a type

A (B) point to its nth nearest neighbor of type B (A)? Let us denote these distances as

RAB,n and RBA,n respectively (see Figure 2-2). Define the following events:

E1 = {There is a type-A point at dx1}

and

E2 = {There is a type-B point at dx2}.

A type-A point at dx1 and a type-B point at dx2 can be:

• single points with probability λdx1µdx2,

• together as double points with probability νh(x1,x2)dx1dx2,

• A single but B double with probability λdx1νdx2,

• A double but B single with probability νdx1µdx2.
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Then we have:

Pr{E2|E1} =
Pr{E1

⋂ E2}
Pr{E1}

=
λdx1µdx2 + νh(x1,x2)dx1dx2 + λdx1νdx2 + νdx1µdx2

(λ + ν)dx1

= [µ +
ν

λ + ν
(λ + h(x1,x2))]dx2. (2.10)

Figure 2.2: node i is the ith nearest type-B neighbor of a type-A point. node jk is the kth
nearest type-B neighbor of node j.

From (2.10), we see that given a type-A point exists at dx1, the intensity of type-B points

is nonhomogeneous due to the h(x1,x2) term. In other words, the conditional intensity of

a type-B point at x2 will be

Λ(x2) = µ +
ν

λ + ν
(λ + h(x1,x2)). (2.11)

The expected number of type-B events in an area would then be the integral of the above

intensity function in that area. For example, let us denote the ring with the type-A point
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as center and inner and outer radii of respectively r0 and r (r0 ¿ r) as C. The expected

number of type-B points in C is

χ(r) =
∫

x2∈C
Λ(x2)dx2. (2.12)

Lemma 1. The pdf of the distance to the nth type-B neighbor of a type-A point is

fRAB,n
(r) = e−χ(r) dχ(r)

dr

χ(r)n−1

(n− 1)!
. (2.13)

Proof. The Complementary Cumulative Distribution Function (CCDF) of RAB,n can be

calculated as

Fc,RAB,n
(r) = Pr{RAB,n > r}

= Pr{There are less than n type-B points in C}

=
n−1∑

k=0

e−χ(r) χ(r)k

k!
. (2.14)

The pdf of RAB,n can be found as

fRAB,n
(r) = −dFc,RAB,n

(r)
dr

= e−χ(r) dχ(r)
dr

[
n−1∑

k=0

χ(r)k

k!
−

n−1∑

k=1

χ(r)k−1

(k − 1)!
]

= e−χ(r) dχ(r)
dr

χ(r)n−1

(n− 1)!
.
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Corollary 1. The expected value of the distance to the nth type-B neighbor is

E{RAB,n} =
∫ ∞

0
Fc,RAB,n

(r) dr =
n−1∑

k=0

∫ ∞

0
e−χ(r) χ(r)k

k!
dr (2.15)

In particular, defining rAB , RAB,1 as the distance of a type-A point from its nearest

neighbor of type B, we have

E{rAB} =
∫ ∞

0
e−χ(r) dr (2.16)

and from (2.13)

frAB(r) = e−χ(r) dχ(r)
dr

. (2.17)

From (2.9), we see that the choice of ν and h(x1,x2) influences the correlation between

number of type-A and type-B points. In [36], h(x1,x2) is calculated when f(x) and g(x)

are zero-mean isotropic Gaussian distributions with variances σ2
1 and σ2

2, respectively:

h(x1,x2) = h(x1 − x2,0) = h(x,0) =
1

2πσ2
e
−‖x‖2
2σ2 , (2.18)

where x = x1 − x2 and σ2 = σ2
1 + σ2

2.

The parameter σ impacts on the correlation between primary and secondary nodes.

Given a primary node exists at origin, and for a fixed region of integration and a fixed value

of ν, a high value of σ implies a narrow Gaussian function and therefore a high correlation

(see (2.9) and (2.18)) and vice versa. In Figure 2-3, using (2.11) and (2.18), the conditional

intensity of type-B points at point x, given a type-A point exists at the origin is shown

for different values of ν and for the given parameters. When ν = 0, due to the lack of

correlation between type-A and type-B points, we can see that the existence of the type-A

point at origin does not have any influence on type-B points as their intensity will remain
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fixed (i.e., µ = 2). As ν increases, there will be a higher chance that type-B points exist

near the origin.

0 0.5 1 1.5 2 2.5 3
1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

||x||

Λ
(x

)

ν= 0

ν= 0.2

ν= 0.4

ν= 0.6

ν= 0.8

ν= 1

Figure 2.3: Conditional intensity of type-B points given a type-A point exists at the origin
(λ = 1, µ = 2, and σ2 = 0.5).

For the h(x1,x2) in (2.18), χ(r) can be found using (2.12) as

χ(r) = (µ +
νλ

ν + λ
)π(r2 − r2

0) +
ν

ν + λ
(e

−r2
0

2σ2 − e
−r2

2σ2 ). (2.19)

In Figure 2-4, we have sketched the pdf of rAB, the distance of the type-A point to its

nearest type-B neighbor, for various values of ν and assuming r0 = 0. For ν = 0 the pdf is

that of generalized Gamma distribution (see Theorem 1). As ν increases the distribution is

tilted toward left, which means, with a higher probability, the nearest neighbor is located

in a closer distance to the type-A point.

In Figure 2-4, E{rAB} is plotted versus ν and as expected its value decreases as ν

increases.

We can rewrite equation (2.19) as

χ(r) = a(r2 − r2
0) + b(e−cr2

0 − e−cr2
),
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Figure 2.4: frAB (r) (λ = 1, µ = 2, and σ2 = 0.1).

with a = (µ + νλ
ν+λ)π, b = ν

λ+ν , and c = 1
2σ2 . For σ À 1, e−cr2 ≈ 1− cr2, and we have

χ(r) ≈ (a + bc)(r2 − r2
0) ≈ (a + bc)r2. (2.20)

where the second approximation is based on the assumption r0 ¿ r.

Lemma 2. The expected value of Rα
PS,n, for α a real number and σ2 À 1, is

E{Rα
PS,n} =

Γ(n + α/2)
(a + bc)α/2(n− 1)!

, n ≥ −bα/2c. (2.21)

where bxc is, by definition, the largest integer, smaller than or equal to x. For n < −bα/2c,

defining fn(x) = xn+α/2−1, and for M large enough, we have

E{Rα
PS,n} ≈

1
(a + bc)α/2(n− 1)!

M∑

i=1

wifn(xi), n < −bα/2c, (2.22)

where xi and wi are the abscissas and the weights for Gauss-Laguerre quadrature of order

M .
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Figure 2.5: E{rAB} (λ = 1, µ = 2, and σ2 = 0.1).

Proof. Expected value of Rα
PS,n is found as

E{Rα
PS,n} =

∫ ∞

0
rαfRPS,n(r)dr =

∫ ∞

0
rαe−χ(r) χ(r)n−1

(n− 1)!
dχ(r).

Using integration by substitution with u = χ(r) and r = χ−1(u) = g(u), we will have

E{Rα
PS,n} =

∫ ∞

0
gα(u)

un−1

(n− 1)!
e−udu.

When σ2 À 1, χ(r) ≈ (a + bc)r2, g(u) '
√

u
a+bc and we have

E{Rα
PS,n} =

1
(a + bc)α/2(n− 1)!

∫ ∞

0
un+α/2−1e−udu. (2.23)

Using (2.23) and noting that

∫ ∞

0
xqe−xdx = Γ(q + 1), q > −1
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we will get the result in (2.21). The integral in (2.23) dose not have closed form solution for

n < −bα/2c. In this case, with fn(x) = xn+α/2−1, we use the Gauss-Laguerre quadrature

rule

∫ ∞

0
e−xfn(x)dx =

M∑

i=1

wifn(xi) + RM . (2.24)

Here, M is the number of sample points used for integration. The larger the value of M ,

the closer the approximation:

∫ ∞

0
e−xfn(x)dx ≈

M∑

i=1

wifn(xi). (2.25)

The abscissa xi is the ith root of Laguerre polynomial LM (x) [37] (i = 1, 2, · · ·M), and the

weights are

wi =
(M !)2xi

(M + 1)2[LM+1(xi)]2
. (2.26)

xi and wi for different values of M are tabulated in [37].

This is a general result and can be applied in case of primary and secondary nodes being

independently distributed as well, in which case we will have ν = 0, b = 0, and a = µπ.

It can be seen from (2.20) that conditioned on a single primary node, the secondary nodes

are distributed according to a homogeneous Poisson process with conditional intensity of

(a+bc)/π. Defining λc , a+bc, in following lemma, we show that Zn = R2
AB,n is distributed

according to an Erlang distribution with mean n/λc.

Lemma 3. :Defining Zn , R2
AB,n, Zn has an Erlang distribution with mean n/λc.
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Proof. For Zn , R2
AB,n, the pdf of Zn can be found using the transformation formula as

fZn(z) =
1

2
√

z
fRAB,n

(
√

z), z > 0, (2.27)

The pdf of RAB,n is given in equation (2.13). Using that in (2.27), with χ(r) = λcr
2, we

find

fZn(z) = λce
−λcz (λcz)n−1

(n− 1)!
, z > 0, (2.28)

which is the pdf of an Erlang distribution with mean n/λc.

Interestingly, Zn has the distribution of the distance to nth arrival in a Poisson process

on real line.

2.2.2 Distance between type-B neighbors of a type-A point

In Figure 2-2, ϕij is the difference between two uniform random variables in [0, 2π]. In the

following lemma, we find the cdf and pdf of ϕij .

Lemma 4. The cdf and pdf of ϕij are respectively as follow:

Fϕij (ϕ) =





0, ϕ < 0

ϕ
π − ϕ2

4π2 0 ≤ ϕ < 2π

1, ϕ ≥ 2π

(2.29)

and

fϕij (ϕ) =





2π−ϕ
2π2 0 ≤ ϕ ≤ 2π

0, otherwise
(2.30)

Proof. We have ϕij = |ϕj − ϕi| where ϕi and ϕj are the angles associated with the polar
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coordinates of the ith and jth nearest type-B neighbors of the type-A point and are uniform

random variables in [0, 2π]. So we can write

Fϕij (ϕ) = Pr{|ϕj − ϕi| ≤ ϕ} =
∫ 2π

0
Pr{|ϕj − ϕi| ≤ ϕ|ϕi = α}fϕi(α)dα (2.31)

Assuming the independence of ϕi and ϕj ,

Fϕij (ϕ) =
1
2π

∫ 2π

0
Pr{|ϕj − α| ≤ ϕ}dα. (2.32)

For a fixed 0 ≤ ϕ ≤ 2π, it can be verified that

Pr{|ϕj − α| ≤ ϕ} =





ϕ+α
2π2 0 ≤ α < ϕ

ϕ
π , ϕ ≤ α < 2π − ϕ

2π−α+ϕ
2π , 2π − ϕ ≤ α ≤ 2π

(2.33)

using (2.33) in (2.32) and taking the derivative, the cdf and pdf will be found as given in

(2.29) and (2.30).

Lemma 5. Defining

a , E{RAB,i} and b , E{RAB,j}, (2.34)

we have,

E{Rα
ij} ≈

∫ b+a

b−a

2rα+1

√
(r2 − (b− a)2)((b + a)2 − r2)

[
2
π
− 1

π2
arccos

(
a2 + b2 − r2

2ab

)]
dr

(2.35)

Proof. We use the shorthand notation of Ri for RAB,i and define θ = arccos
(

R2
i +R2

j−r2

2RiRj

)
.

24



It follows that

FRij |Ri,Rj
(r) = 2Pr{0 ≤ ϕij ≤ θ} =





0, 0 < r ≤ Rj −Ri

2
(

θ
π − θ2

4π2

)
, Rj −Ri < r ≤ Rj + Ri

1, r > Rj + Ri

(2.36)

and

fRij |Ri,Rj
(r) =

d FRij |Ri,Rj
(r)

dr
=





dθ
dr

(
2
π − θ

π2

)
, Rj −Ri < r ≤ Rj + Ri

0, otherwise.
(2.37)

where dθ
dr = 2r√

[r2−(Rj−Ri)2][(Rj+Ri)2−r2]
. Using the conditional pdf, we have

E{Rα
ij} = E{E{Rα

ij |Ri, Rj}}

= E

{∫ Rj+Ri

Rj−Ri

rαfRij |Ri,Rj
(r) dr

}

Defining

G(Ri, Rj) ,
∫ Rj+Ri

Rj−Ri

rαfRij |Ri,Rj
(r) dr (2.38)

we have

E{Rα
ij} = E{G(Ri, Rj)} ≈ G(E{Ri}, E{Rj}). (2.39)

where the approximation is due to interchanging the expectation and function evaluation.

Using the definition of a and b, we find the result. Simulation results show that (2.39) is a

close approximation (see Figure 2-9).

Lemma 6. Assume θijk is a uniform random variable in [0, π]. Simulation results show
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that this is a valid assumption (see Figure 2-7). Also, define

c = |E{Rij} − E{rjk}|,

d = E{Rij}+ E{rjk}. (2.40)

We have,

E{dα
ijk} =

2
π

∫ d

c

δα+1

√
(δ2 − c2)(d2 − δ2)

dδ (2.41)

Proof. Since θijk is uniform in [0, π], it follows that

Fdijk|Rij ,rjk
(δ) =





0, δ < |Rij − rjk|
1
π arccos

(
R2

ij+r2
jk−δ2

2Rijrjk

)
, |Rij − rjk| ≤ δ ≤ Rij + rjk

1, δ > Rij + rjk

(2.42)

and

fdijk|Rij ,rjk
(δ) =





2δ
π

1√
[(Rij+rjk)2−δ2][δ2−(Rij−rjk)2]

, |Rij − rjk| ≤ δ ≤ Rij + rjk

0, otherwise
(2.43)

So, we have

E{dα
ijk} = E{E{dα

ijk|Rij , rjk}} = E

{∫ Rij+rjk

|Rij−rjk|
δαfdijk|Rij ,rjk

(δ)dδ

}
(2.44)

Defining

H(Rij , rjk) =
∫ Rij+rjk

|Rij−rjk|
δαfdijk|Rij ,rjk

(δ)dδ (2.45)
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we have

E{dα
ijkj} = E{H(Rij , rjk)} ≈ H(E{Rij}, E{rjk}) (2.46)

Using the definition of c and d, we find the result. Simulation results show that (2.46) is a

close approximation (see Figure 2-10).

Consider a bivariate spatial Poisson process with parameters λ = 0.005, µ = 0.001, and

ν = 0.0025 and a disc with radius R = 1000 units is considered as the underlying area in

which points are present (i.e., r0 = 0). Assume σ2 = 10 to satisfy the condition σ2 À 1.

Given that a type-A point exists in the origin, the number of type-B points in the area, m,

will be a Poisson random variable with mean m̄ = λcR
2 = (a + bc)R2 = 25044.

To simulate a sample realization of this spatial bivariate Poisson process, each random

type-B point at the polar coordinates (r, θ) is found using following formulas [28]

r =
√

R2z1 (2.47)

θ = 2πz2, (2.48)

where z1 and z2 are uniform random numbers in [0, 1], and this is done for as many as m

points.

In Figure 2-5, we have plotted the normalized histogram of ϕij (for 10000 realization

of the process) and the pdf obtained in (2.21) for i = 10 and j = 20. In Figure 2-6, the

normalized histogram of θijk along with uniform pdf is plotted. The result shows that the

uniformity assumption is a reasonable assumption.

In Figure 2-7, we have obtained simulation results for the statistical mean of Rα
AB,n for

different values of n (4 and 10). We have also plotted, alongside, the analytical results for

E{Rα
AB,n}. To obtain the statistical means, we have considered 2000 different realizations

of the process and have averaged the results. The results show that analytical results follow
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Figure 2.6: Normalized histogram and analytical pdf of ϕij (i = 10 and j = 20).

the simulations very closely.

In Figure 2-8, simulation and analytical results for E{Rα
ij} (obtained in (2.26)) are

plotted together, where we have assumed i = 10 and j = 20. We use one of the numerical

integration methods available in MATLAB to find the definite integral in (2.26). The result

shows that the assumption in (2.30) results in a good approximation.

In Figure 2-8, simulation and analytical results for E{dα
ijk} (obtained in (2.32)) are

plotted together, where we have assumed i = 10, j = 20 and k = 5. We again use numerical

integration to find the definite integral in (2.32). The result shows that the assumption in

(2.37) results in a good approximation.
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Chapter 3: Interference Modeling in Cognitive Wireless

Networks

In cognitive wireless networks, the secondary nodes are required to limit their aggregate

interference on the primary nodes. Interference, in general, has a stochastic nature, not

only due to randomness in the propagation channel, but also due to the random geographic

dispersion of the nodes. In this chapter, we assume primary and secondary nodes in a

cognitive radio network form a spatial bivariate Poisson point process. We use the statistical

properties of distances in these processes obtained in previous chapter, and seek a statistical

representation of interference, in which power levels of the secondary nodes influence the

parameters of the model.

3.1 System Model

We consider the deployment of wireless nodes of two qualitatively distinguishable types.

The nodes of each type is marginally distributed according to a specific spatial Poisson

point process. We distinguish between these nodes as type-P, for primary, and type-S, for

secondary (We use the letters P and S, instead of A and B used in Chapter 2).

A general model in which the number of primary and secondary nodes in an area are

assumed to be correlated is considered. This assumption is generally valid if the same

mechanism that leads to topology formation of the primary network is also involved in the

secondary network. This leads to the conclusion that primary and secondary nodes, each

having marginal Poisson distribution, are distributed jointly as a bivariate spatial Poisson

process.

We consider a single primary node located at the origin. The secondary nodes are then

distributed according to a homogeneous Poisson process with conditional intensity of λc/π

31



Figure 3.1: Aggregated interference from secondary network to a primary node.

(see the discussion following Lemma 2 in Chapter 2).

3.2 Interference Characterization

Consider a single primary node receiving data on an arbitrary channel. We introduce the

following notations:

RPS,l: The distance of lth nearest secondary node to the primary node.

PS,l: The transmitted power of lth nearest secondary node on the channel.

IP : The interference due to the nodes of the primary network only.

ξl: A σs dB log-normal shadow fading component between lth nearest secondary node and

the primary node. The first and second moments of ξ are found as

E{ξ} = eσ2
S/2,

E{ξ2} = e2σ2
S ,

where, σS = σs
ln 10
10 [38] and {ξl} are assumed to be i.i.d. random variables.
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We consider the following average path loss model:

PR = PT rα, (3.1)

where PR is the average received power, PT is the transmitted power, r is the distance be-

tween transmitter and receiver, and α is a negative real number which represents exponential

decaying of power. −α is usually called path loss exponent. This model can be further ex-

tended to account for a fading component. In this chapter, we consider Log-normal shadow

fading. So we have,

PR = ξPT rα. (3.2)

Using the above model, ξlPS,lR
α
PS,l is the received interference from the l-th nearest sec-

ondary transmitter. Defining

I ,
∞∑

l=1

ξlPS,lR
α
PS,l, (3.3)

(see Figure 3.1) the total interference at the primary node can be written as

Itot = IP + I. (3.4)

The aggregate interference is obviously a random variable. The interference constraint at

the primary node can be written as:

Pr{Itot > IP,max} ≤ ε (3.5)

where (IP,max, ε) are system-defined values.
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(3.5) can be rewritten as

Pexc , Pr{I > η} ≤ ε (3.6)

where Pexc is defined as the probability of excess interference at the primary node. η is

the maximum aggregated interference that secondary network can inflict on a primary node

(η = IP,max − IP ).

Note that I, defined in (3.3), is an infinite random series. One may wonder: what

conditions should hold in order the summation for I to converge 1 and also the interference

constraint be satisfied? In following sections, we seek to model/approximate I as a random

variable. In order to satisfy the interference constraint in (3.6), we also need to obtain closed

form solution/bounds for its Complementary Cumulative Distribution Function (CCDF) of

I.

3.3 Approximation as a Normal Random Variable

We assume that ξl is independent from ξk (for l 6= k) and also from RPS,k. Considering

the aggregation process in (3.3), the first easy and fast solution for modeling I, seems to be

using the central limit theorem and modeling I as a Normal random variable.

If we assume that the Normal assumption for I is correct, then it can be completely

characterized by its mean and variance. The mean and variance of I are readily found as

E{I} = E{ξ}
∞∑

l=1

PS,l E{Rα
PS,l},

var{I} =
∞∑

l=1

∞∑

k=1

PS,lPS,k cov{ξlR
α
PS,l, ξkR

α
PS,k}. (3.7)

1Note that, by convergence, we mean the convergence of a random variable.
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With I, having a Normal distribution, we have

Pexc =
1
2
erfc

(
η −E{I}√
2V ar{I}

)
. (3.8)

While E{I} can be derived using the E{Rα
PS,l} found in Chapter 2, for var{I}, the covari-

ance can not be found in closed form as we need to have the joint statistics of RPS,l and

RPS,k. So, we need to resort to the bounds.

Lemma 7. : For E{I} upper bounded by E and var{I}, upper bounded by V , we have

Pexc ≤ ε if E + h
√

2V ≤ η, where erfc(h) = 2ε.

Proof. For Pexc ≤ ε to hold, using (3.8), we need to have η−E{I}√
2var{I} ≥ erfc−1(2ε). If E{I} <

E and var{I} ≤ V , it is sufficient that E + h
√

2V ≤ η (erfc(h) = 2ε) in order to have

Pexc ≤ ε.

3.3.1 Upper bound for var{I}

Using the Cauchy-Schwartz inequality,

Cov{A,B} ≤
√

V ar{A}V ar{B}, (3.9)

we can upper-bound the var{I} in (3.7) as

var{I} ≤
[ ∞∑

l=1

PS,l

√
var{ξl Rα

PS,l}
]2

. (3.10)

We also have,

var{ξl Rα
PS,l} = E{ξ2}E{R2α

PS,l} − E2{ξ}E2{Rα
PS,l}. (3.11)
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For practical values for the parameter, second term above is much smaller than the first

term. So,

var{ξl Rα
PS,l} ≤ E{ξ2}E{R2α

PS,l}, (3.12)

is a tight bound. Using (3.12) in (3.10), we have

var{I} ≤ E{ξ2}
[ ∞∑

l=1

PS,l

√
E{R2α

PS,l}
]2

. (3.13)

Using the results for E{Rα
PS,l} obtained in Chapter 2, we can find the upper bound of

var{I} (i.e., V ).

3.4 Approximation as the Sum of a Normal and Log-normal

Random Variables

The Gaussian assumption for I, makes it easy to characterize the interference, as it suffices

to find the first and second moments only. Although, the use of central limit theorem

for the sum of an infinite number of random variables is quite common, nevertheless, to be

mathematically precise, the application of CLT is not completely justifiable in this particular

problem. The reason is that the variables RPS,n are not independent (i.e., the condition

RPS,i ⊥⊥ RPS,j , i 6= j do not hold).

We rewrite I as

I =
∞∑

i=1

ξiPS,iy
α/2
i , (3.14)

where yi = R2
PS,i. From Lemma 3 in Chapter 2, we have , y1 and yi − yi−1, i > 1 are i.i.d.
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exponential random variables with parameter λc, and, therefore

yi = y1 + y2 − y1 + · · · yi − yi−1,

is sum of i i.i.d. exponential random variables. Therefore, it has an Erlang distribution

with mean i
λc

. Since yi is sum of i i.i.d. exponential random variables we can use the law

of large numbers (LLN). Using LLN, we have, for large i, yi → i
λc

almost surely. This can

also be seen from

√
V ar{yi}
E{yi} =

√
i/λ2

c

i/λc

=
1√
i
→ 0 for large i (3.15)

Note that mean and variance of yi are i/λc and i/λ2
c respectively. For large i, yi acts like a

constant and can be replaced by its mean. So, for N large enough, we can write

I →
N∑

i=1

ξiPS,iR
α
PS,i +

∞∑

i=N+1

ξiPS,i

(
i

λc

)α/2

. (3.16)

By defining I1 =
∑N

i=1 ξiPS,iR
α
PS,i and I2 =

∑∞
i=N+1 ξiPS,i

(
i

λc

)α/2
, we can invoke central

limit theorem to approximate I2 as a Normal random variable as it is sum of infinite

independent log-normal random variables (i.e., I2 → Ĩ2 ∼ N (µ2, σ2)). The mean and

variance of Ĩ2 can be readily found as

µ2 = E{Ĩ2} =
E{ξ}
λ

α/2
c

∞∑

i=N+1

PS,i.i
α/2, (3.17)

σ2
2 = var{Ĩ2} =

var{ξ}
λα

c

∞∑

i=N+1

P 2
S,i.i

α. (3.18)
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It is shown in [39] that linear combination of log-normal random variables of the form

∑N
i=1 Aiξi, where Ai’s are positive and independent random variables can be approximated

by another log-normal random variable. In the summation for I1, {RPS,i} are not indepen-

dent. Nevertheless, our simulation results show that log-normal is still a good approximation

(see Figure 3.4). So, we can write I1 ∼ LN (µ1, σ1). µ1 and σ2
1 are related to m1 = E{I1}

and s2
1 = var{I1} [38] as

µ1 = ln

(
m2

1√
m2

1 + s2
1

)
, (3.19)

σ2
1 = ln

((
s1

m1

)2

+ 1

)
. (3.20)

m1 and s2
1 can be readily found as

m1 = E{ξ}
N∑

i=1

PS,iE{Rα
PS,i}, (3.21)

s2
1 =

N∑

i=1

N∑

j=1

PS,iPS,jcov{ξiR
α
PS,i, ξjR

α
PS,j}. (3.22)

We assume that PS,i = p1, 1 ≤ i ≤ N . In other words, the first N secondary nodes send

a fixed power level (i.e., p1). This will simplify the derivations. Then we have,

m1 = p1E{ξ}
N∑

i=1

E{Rα
PS,i}. (3.23)

To find s2
1, we need the joint pdf of RPS,i and RPS,j which is hard to find, so we resort to

finding the bounds.
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3.4.1 The bounds for s2
1

Here, we obtain the bounds for s2
1 as s2

1,l ≤ s2
1 ≤ s2

1,u.

s2
1 =

N∑

i=1

N∑

j=1

PS,iPS,jcov{ξiR
α
PS,i, ξjR

α
PS,j}

= p2
1





N∑

i=1

var{ξiR
α
PS,i}+

N∑

i=1

N∑

j=1,j 6=i

cov{ξiR
α
PS,i, ξjR

α
PS,j}



 (3.24)

After simplification, we will have

s2
1 = p2

1C + p2
1E

2{ξ}
N∑

i=1

N∑

j=1,j 6=i

E{Rα
PS,iR

α
PS,j}, (3.25)

where

C = E{ξ2}
N∑

i=1

E{R2α
PS,i} − E2{ξ}

{
N∑

i=1

E{Rα
PS,i}

}2

. (3.26)

So, to find the bounds for s2
1, it suffices to find the bounds for E{Rα

PS,iR
α
PS,j}. We can use

Cauchy-Schwartz inequality to find an upper bound as

E{Rα
PS,iR

α
PS,j} ≤

√
E{R2α

PS,i}E{R2α
PS,j}. (3.27)

The lower bound can also be found using the Jensen’s inequality (note that f(X) = Xα is

a convex function for α < 0) as

E{Rα
PS,iR

α
PS,j} = E{yα/2

i y
α/2
j } > [E{yiyj}]α/2 (3.28)
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For j > i, we have

E{yiyj} = E{yi(yi + yi+1 − yi + yi+2 − yi+1 + · · ·+ yj − yj−1)}

= E{y2
i }+ E{yi(yi+1 − yi)}+ · · ·+ E{yi(yj − yj−1)}

= E{R4
PS,i}+ (j − i)E{yi}E{yi+1 − yi}

=
i(i + 1)

λ2
c

+
(j − i)i

λ2
c

=
i(j + 1)

λ2
c

, (3.29)

which is found using the fact that yi is Erlang distributed with mean i/λc and yi ⊥⊥ (yk −
yk−1), k > i (See the discussion after Lemma 3 in Chapter 2). For j < i, using symmetry,

we will have

E{yiyj} =
j(i + 1)

λ2
c

. (3.30)

Using the above results in (3.25), we find

s2
1,l = p2

1C + p2
1E

2{ξ}
N∑

i=1





i−1∑

j=1

[i(j + 1)]α/2

λα
c

+
N∑

j=i+1

[j(i + 1)]α/2

λα
c



 , (3.31)

s2
1,u = p2

1C + p2
1E

2{ξ}
N∑

i=1

N∑

j=1,j 6=i

√
E{R2α

PS,i}E{R2α
PS,j} (3.32)

3.4.2 The CCDF of I

Using these bounds, and replacing s2
1,l in (3.19) and (3.20), we can find (µ1,u, σ2

1,u), upper

bounds for µ1 and σ2
1. The lower bounds (µ1,l, σ

2
1,l) can also be found by replacing s2

1,u in

(3.19) and (3.20).
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We have found I → I1 + Ĩ2, with I1 ∼ LN (µ1, σ1), and Ĩ2 ∼ N (µ2, σ2) and I1 ⊥⊥ Ĩ2.

Using these distributions, we have 2

Pr{I > η} =
∫ ∞

0
Pr{I1 + Ĩ2 > η|I1 = x}fI1(x) dx

=
∫ ∞

0
Pr{Ĩ2 > η − x}fI1(x) dx

=
∫ ∞

0
Q

(
η − x− µ2

σ2

)
fI1(x) dx

= E

{
Q

(
η − I1 − µ2

σ2

)}
. (3.33)

The expectation of the above Q function dose not have a closed form solution and we need

to use numerical integration or resort to bounds and satisfy the interference constraint (see

equation (3.6)), by keeping the upper bound less than the threshold (i.e., ε).

3.4.3 Approach one

Using integration by substitution in (3.33) with u = ln x−µ1√
2σ1

, after simplification, we will

have

Pr{I > η} =
∫ ∞

−∞

1√
π

Q

(
η − µ2 − eµ1+

√
2σ1u

σ2

)
e−u2

du

≈
M∑

i=1

wif
∗(ui) (3.34)

2Note that, here, we use an extended version of Q function, the range of which also includes negative
values. For x > 0, Q(x) is the tail probability of N (0, 1) and for x < 0, Q(x) = 1 − Q(−x). We use this

extended version because for x > η − µ2, the argument of Q
(

η−x−µ2
σ2

)
is negative.
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where,

f∗(u) , 1√
π

Q

(
η − µ2 − eµ1+

√
2σ1u

σ2

)
(3.35)

and we have used the Gauss-Hermite quadrature method. In numerical analysis, we have

∫ ∞

−∞
e−x2

f(x) dx =
M∑

i=1

wif(xi) + RM , (3.36)

where M is the number of sample points used for integration. The larger the value of

M , the closer will be the approximation. The abscissa (xi) is the ith zero of the Hermite

polynomial HM (x) (i = 1, 2, ..., M) and the weights (wi) are given by

wi =
2M−1M !

√
π

M2[HM−1(xi)]2
. (3.37)

xi and wi for different values of M are tabulated in [37].

If we define

f∗u(x) , 1√
π

Q

(
η − µ2 − eµ1,u+

√
2σ1,ux

σ2

)
, (3.38)

we have f∗(x) < f∗u(x), for every x. So, we can write

Pr{I > η} <
M∑

i=1

wif
∗
u(xi). (3.39)
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3.4.4 Approach two

We have

Q

(
η − µ2 − x

σ2

)
≤ Q

(
η − µ2

σ2

)
+

0.5−Q
(

η−µ2

σ2

)

η − µ2
x, 0 ≤ x ≤ η − µ2, (3.40)

which is the line connecting the points (0, Q
(

η−µ2

σ2

)
) and (η − µ2, 0.5) (see Figure 3.2).

Figure 3.2: Convexity of Q(η−µ2−x
σ2

)

So we can write

Pr{I > η} <

∫ η−µ2

0
(A + Bx)fI1(x) dx +

∫ ∞

η−µ2

Q

(
η − µ2 − x

σ2

)
fI1(x) dx (3.41)

where A = Q
(

η−µ2

σ2

)
and B =

0.5−Q
(

η−µ2
σ2

)

η−µ2
.

Lemma 8. : Q
(

η−µ2−x
σ2

)
is concave for x ≥ η − µ2 and convex for x < η − µ2.
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Proof. Defining

G(x) = Q

(
η − µ2 − x

σ2

)
=

∫ ∞

η−µ2−x
σ2

1√
2π

e−y2/2 dy, (3.42)

the first and second derivative will be

G′(x) =
1√

2πσ2

e−
(η−µ2−x)2

2σ2 ,

G′′(x) =
1√
2π

η − µ2 − x

σ2
e−

(η−µ2−x)2

2σ2 . (3.43)

So, we have G′′(x) > 0 for x < η − µ2 and G′′(x) < 0 for x > η − µ2.

If we define the random variable Ǐ1 such that

fǏ1
(x) ,





fI1
(x)

Fc,I1
(η−µ2) , x > η − µ2

0, o.w.

then we have,

∫ ∞

η−µ2

Q

(
η − µ2 − x

σ2

)
fI1(x) dx = Fc,I1(η − µ2)

∫ ∞

η−µ2

Q

(
η − µ2 − x

σ2

)
fǏ1

(x) dx

= Q

(
ln(η − µ)− µ1

σ2

)
E

{
Q

(
η − µ2 − Ǐ1

σ2

)}

≤ Q

(
ln(η − µ)− µ1

σ2

)
Q

(
η − µ2 − E{Ǐ1}

σ2

)
(3.44)

The inequality above is found from Jensen’s inequality, using the fact that Q
(

η−µ2−x
σ2

)
is
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concave for x ≥ η − µ2. E{Ǐ1} can be readily found as

E{Ǐ1} = eµ1+
σ2
1
2 .

Q
(

ln(η−µ2)−(µ1+σ2
1)

σ1

)

Q
(

ln(η−µ2)−µ1

σ1

) . (3.45)

The first integral can also be found as

∫ η−µ2

0
(A + Bx)fI1(x) dx =A

(
1−Q

(
ln(η − µ2)− µ1

σ1

))

+ Beµ1+σ2
1/2

(
1−Q

(
ln(η − µ2)− (µ1 + σ2

1)
σ1

))
(3.46)

Putting together equations (38)-(41) and using appropriate bounds for µ1 and σ1, we find

following upper bound for Pr{I > η}

Pr{I > η} <Q

(
η − µ2

σ2

)(
1−Q

(
ln(η − µ2)− µ1,l

σ1,l

))

+
0.5−Q

(
η−µ2

σ2

)

η − µ2
.eµ1,u+

σ2
1,u
2

(
1−Q

(
ln(η − µ2)− (µ1,l + σ2

1,l)
σ1,l

))

+ Q

(
ln(η − µ2)− µ1,u

σ1,u

)
.Q

(
η − µ2 −Eu{Ǐ1}

σ2

)
. (3.47)

Here, Eu{Ǐ1} is an upper bound for E{Ǐ1} (to maximize the Q function) and is found from

(3.45) as

Eu{Ǐ1} = eµ1,u+
σ2
1,u
2 .

Q

(
ln(η−µ2)−(µ1,u+σ2

1,u)

σ1,u

)

Q
(

ln(η−µ2)−µ1,l

σ1,l

) . (3.48)
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3.5 Interference Modeling with Traffic Considerations

In previous sections, we have implicitly assumed that the secondary nodes always have

some data to transmit and the primary node is always in the receiving mode. In practice,

however, the statistical properties of interference are influenced by the traffic statistics.

In this section, we consider a simple traffic model based on the M/M/1/1 queueing

model. We define the random processes

φl(t) ,





1, if lth nearest secondary node is busy at time t

0, if lth nearest secondary node is idle at time t
(3.49)

We assume that the probabilities of a node being busy and idle are ∆ and 1 − ∆

respectively. Assuming that nodes operate as M/M/1/1 queues, φl(t) is a stationary ergodic

continuous-time Markov process and in the steady state, ∆ = ρ
1+ρ , where ρ is the traffic

intensity (i.e., the ratio of arrival rate to service rate). The aggregated interference in (3.3),

will then be time-dependent (i.e., a random process) and is written as,

I(t) =
∞∑

l=1

φl(t)PS,lξlR
α
PS,l. (3.50)

Note that the effective transmitted power by lth nearest secondary node is φl(t)PS,l. φl(t)

is assumed to be independent from ξk and RPS,n.

Similar to φl(t), we can define

ϕ(t) ,





1, if the primary node is receiving data at time t

0, if the primary node is not receiving data at time t
(3.51)

and assume that the probability of the primary node being in the receiving mode is Π. Π

is dependent on the topology, routing method and traffic statistics in the primary network,
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among other factors. We also assume that ϕ(t) is a stationary process.

The interference constraint defined in (3.6) can be modified to account for the traffic

statistics. We define the probability of collision, Pc(t), as the probability of aggregated

interference from secondary network being larger than η while the primary node being in

the receiving mode. The interference constraint can then be written as,

Pc(t) ≤ ε. (3.52)

Pc(t) can be found as

Pc(t) = Pr{collision|ϕ(t) = 0}Pr{ϕ(t) = 0}+ Pr{collision|ϕ(t) = 1}Pr{ϕ(t) = 1}

= ΠPr{I(t) ≥ η} (3.53)

Similar to the previous sections, we consider two different models for interference.

3.5.1 Interference as a Normal Random Process

Again, we first assume that central limit theorem can be applied and I(t) can be approxi-

mated as a Gaussian random process. It is easy to see that

E{I(t)} = ∆E{I} (3.54)

var{I(t)} =
∞∑

i=1

∞∑

j=1

PS,iPS,jcov{φi(t)ξiR
α
PS,i, φj(t)ξjR

α
PS,j} (3.55)

Following the same approach in Subsection 3.3.1, we have

var{I(t)} ≤
[ ∞∑

l=1

PS,l

√
E{φ2(t)}E{ξ2}E{R2α

PS,l}
]2

= ∆E{ξ2}
[ ∞∑

l=1

PS,l

√
E{R2α

PS,l}
]2

(3.56)
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Lemma 9. : For E{I(t)} and var{I(t)} upper-bounded by E′ and V ′ respectively, we have

Pc(t) ≤ ε if E′ + h′
√

2V ′ ≤ η where erfc(h′) = 2 ε
Π .

Proof. From (3.53), we need to have Pr{I(t) ≥ η} ≤ ε
Π or η−E{I(t)}√

2var{I(t)} ≥ erfc−1(2 ε
Π). If

E{I(t)} ≤ E′ and var{I(t)} ≤ V ′, it is sufficient that E′ + h′
√

2V ≤ η (erfc(h′) = 2 ε
Π) in

order to have Pexc ≤ ε.

3.5.2 Sum of Normal and Log-normal Assumption

Using the same approach as in Section 3.4, we can split the aggregate interference and use

the law of large numbers to write

I(t) →
N∑

i=1

φi(t)ξiPS,iR
α
PS,i +

∞∑

i=N+1

φi(t)ξiPS,i

(
i

λc

)α/2

. (3.57)

We can again approximate the first summation as a Log-normal and the second one as a

Normal random variable. Denoting the mean and variance of the Normal random variable

as µ́2 and σ́2
2, we have

µ́2 =
E{φ(t)ξ}

λ
α/2
c

∞∑

i=N+1

PS,i.i
α/2

=
∆E{ξ}
λ

α/2
c

∞∑

i=N+1

PS,i.i
α/2, (3.58)

and,

σ́2
2 =

var{φ(t)ξ}
λα

c

∞∑

i=N+1

P 2
S,i.i

α

=
E{ξ2}∆−E2{ξ}∆2

λα
c

∞∑

i=N+1

P 2
S,i.i

α. (3.59)
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Denoting the mean and variance of the Log-normal random variable as ḿ1 and ś2
1

respectively, and with PS,i = p1, 1 ≤ i ≤ N , we have

ḿ1 = p1E{ξ}E{φ(t)}
N∑

i=1

E{Rα
PS,i}

= p1∆E{ξ}
N∑

i=1

E{Rα
PS,i} (3.60)

and,

ś2
1 = p2

1

N∑

i=1

N∑

j=1

cov{ξiφi(t)Rα
PS,i, ξjφj(t)Rα

PS,j}. (3.61)

Using the same approach as in Section 3.4.1, we can find bounds for ś2
1 as ś2

1,l < ś2
1 < ś2

1,u,

where

ś2
1,l = p2

1Ć + p2
1E

2{ξ}∆2
N∑

i=1





i−1∑

j=1

[i(j + 1)]α/2

λα
c

+
N∑

j=i+1

[j(i + 1)]α/2

λα
c



 , (3.62)

ś2
1,u = p2

1Ć + p2
1E

2{ξ}
N∑

i=1

N∑

j=1,j 6=i

√
E{R2α

PS,i}E{R2α
PS,j}, (3.63)

Ć = ∆E{ξ2}
N∑

i=1

E{R2α
PS,i} −∆2E2{ξ}

{
N∑

i=1

E{Rα
PS,i}

}2

. (3.64)

Using these bounds for ś2
1, lower and upper bounds can be obtained for the parameters of

the Log-normal random variable (i.e., (µ́1,l, σ́
2
1,l) and (µ́1,u, σ́2

1,u)).
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3.6 Simulation Results

We consider a bivariate spatial Poisson process with parameters λ = 0.005, µ = 0.001, and

ν = 0.0025 as we did in Chapter 2. We assume that the secondary nodes have a perfect

estimate of these values and thereby λc. A disc with radius R = 1000 units is considered

as the underlying area in which primary and secondary nodes are present. We consider

σ2 = 10 to satisfy the condition σ2 À 1. We assume a primary node exists in the origin so

that the number of secondary nodes in the area, m, will be a Poisson random variable with

mean m̄ = λcR
2 = (a + bc)R2 = 25044.

A σs = 6 dB log-normal shadowing is considered in our simulations, for which we have

σS ' 1.38.

In Figure 3.3, we examine the accuracy of the Normal assumption in Section 3.3. For

simplicity we assume PS,i = 1. For α = −3.2, we have plotted the normalized histogram

and the Normal distribution with mean E{I} = E{ξ}∑∞
l=1 E{Rα

PS,l} and the upper bound

of variance V = E{ξ2}
[∑∞

l=1

√
E{R2α

PS,l}
]2

(using (3.13)). It is clear from this figure that

the histogram is more right tailed and there is a positive skewness which is not observed in

the Normal pdf.

In Figure 3.4, we have plotted the normalized histogram of I1 =
∑N

i=1 ξiPS,iR
α
PS,i for

PS,i = p1 = 1, 1 ≤ i ≤ N , N = 1000 and α = −3.2. Alongside, The pdfs of LN (µ1,l, σ1,l)

and LN (µ1,u, σ1,u) are plotted. The pdfs are practically the same. This shows that the

obtained bounds for s2
1 (see equations (3.31) and (3.32)) are very close. Also the Log-

normal assumption for I1 is a close approximation.

In Figure 3.5, the normalized histogram of I2 =
∑∞

i=N+1 ξiPS,iR
α
PS,i for PS,i = 1, i > N ,

N = 1000 and α = −3.2 is plotted. This shows that the Normal assumption for I2 is a close

approximation.
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Figure 3.4: The normalized histogram of I1 =
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i=1 ξiPS,iR
α
PS,i for PS,i = p1 = 1, N = 1000

and α = −3.2 and the pdfs of LN (µ1,l, σ1,l) and LN (µ1,u, σ1,u).
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Chapter 4: Power Control for Interference Avoidance in

Cognitive Wireless Networks

In Chapter 3, assuming the primary and secondary nodes in a cognitive wireless network

form a spatial bivariate Poisson point process, we obtained two different models for char-

acterizing the aggregate interference on a primary node. The first model is based on the

Normal assumption of interference assuming that central limit theorem can be applied. The

second model is more sophisticated and is based on the sum of a Normal and Log-normal

random variables. While the total interference originated from the close neighbors con-

tribute to the Log-normal part, the rest of the nodes are responsible for the Normal random

variable. The Log-normal part leads to the distribution of interference being more right-

tailed and positively skewed. This observation is also reported in [26] using the cumulants

of the aggregate interference.

In both of these models, the parameters depend on the power levels of the secondary

neighbors of a primary node. So the power levels of the secondary nodes act as the degrees of

freedom, by control of which, the parameters of the models can be adjusted and thereby the

interference constraint can be satisfied. In this chapter, we consider each of the developed

models separately, and devise power control strategies that ensure interference constraint

is satisfied.

4.1 Aggregate interference as a Normal Random Variable

In Section 3.3, Lemma 7, we found that with interference modeled as a Normal random

variable, and with the mean and variance of interference upper-bounded by E and V re-

spectively, it is sufficient to have E + h
√

2V ≤ η (erfc(h) = 2ε) in order to have Pexc ≤ ε
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(i.e., interference constraint satisfied). Furthermore, we found

E{I} = E{ξ}
∞∑

l=1

PS,l E{Rα
PS,l}, (4.1)

and an upper-bound for var{I} (i.e., V ) as

V = E{ξ2}
[ ∞∑

l=1

PS,l

√
E{R2α

PS,l}
]2

. (4.2)

The following upper bound exist for gamma function from [40]:

Γ(l + δ) < (l − 1)!lδ, 0 < δ < 1, l = 1, 2, . . . (4.3)

Using this bound, we have

Γ(l + α) = Γ(l + bαc+ α− bαc) < (l + bαc − 1)!(l + bαc)α−bαc, l = −bαc+ 1, . . .

and for α < 0

Γ(l + α)
(l − 1)!

<
1

(l + bαc) · · · (l − 1)
(l + bαc)α−bαc <

(l + bαc)α−bαc

(l + bαc)−bαc = (l + bαc)α, l = −bαc+ 1, . . .

(4.4)

Using this, we have

E{Rα
PS,n} =

Γ(l + α/2)

(l − 1)!λα/2
c

<
(l + bα/2c)α/2

λ
α/2
c

, l = −bα/2c+ 1, . . . . (4.5)
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Using the above result in (4.1), we obtain

E{I} = E{ξ}


−bαc∑

l=1

PS,lE{Rα
PS,l}+

∞∑

l=−bαc+1

PS,l
Γ(l + α/2)

(l − 1)!λα/2
c




< E{ξ}


−bαc∑

l=1

PS,lE{Rα
PS,l}+

∞∑

l=−bαc+1

PS,l
(l + bα/2c)α/2

λ
α/2
c


 . (4.6)

For α < 0, bαc < bα/2c and the last summation can be further upper bounded to find

E = E{ξ}


−bαc∑

l=1

PS,lE{Rα
PS,l}+

∞∑

l=−bαc+1

PS,l
(l + bαc)α/2

λ
α/2
c


 . (4.7)

We also find, using (4.5) with α replaced by 2α in (4.2),

V = E{ξ2}


−bαc∑

l=1

PS,l

√
E{R2α

PS,l}+
∞∑

l=−bαc+1

PS,l
(l + bαc)α/2

λ
α/2
c




2

. (4.8)

Power levels chosen by secondary neighboring nodes determine whether the infinite series

in (4.7) and (4.8) converge. We introduce two power control strategies which lead to the

convergence of these summations and also satisfy the constraint of Lemma 3.

4.1.1 Power Control with Constant Power Levels

For α < −2 (i.e., path loss exponent (−α) larger than 2 which is practically the case), the

infinite series in (4.7) and (4.8) converge for constant power levels. Assume that

PS,l = C1, l = 1, 2, . . . (4.9)
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From (4.7) and (4.8), we have E = K1C1 and V = K2C
2
1 , where K1 and K2 are as

K1 = E{ξ}


−bαc∑

l=1

E{Rα
PS,l}+

1

λ
α/2
c

∞∑

l=1

lα/2




= E{ξ}


−bαc∑

l=1

E{Rα
PS,l}+

1

λ
α/2
c

ζ(−α/2)


 (4.10)

and

K2 = E{ξ2}


−bαc∑

l=1

√
E{R2α

PS,l}+
1

λ
α/2
c

∞∑

l=1

lα/2




2

= E{ξ2}


−bαc∑

l=1

√
E{R2α

PS,l}+
1

λ
α/2
c

ζ(−α/2)




2

(4.11)

where ζ(.) is the Riemann-Zeta function which is convergent when its argument is larger than

1 1 [41]. From Lemma 7 in Chapter 3, C1 needs to satisfy the inequality C1 < η
K1+h

√
2K2

.

4.1.2 Power Control with Distance-dependent Power Levels

A typical PS,l that assures the convergence of the infinite series in (4.7) and (4.8) is

PS,l =





k(l + bαc)β, l = −bαc+ 1, . . .

C2, l = 1, . . . ,−bαc,
(4.12)

where k, β and C2 are constants.
1When defined in the complex domain, we should have R(s) > 1 for ζ(s) to converge to an analytic

function.
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Using this power control strategy, we will have

E = E{ξ}
−bαc∑

l=1

E{Rα
PS,l}C2 +

E{ξ}ζ(−α/2− β)

λ
α/2
c

k = K ′
1C2 + K ′

2k,

V = E{ξ2}


−bαc∑

l=1

√
E{RPS,l2α}C2 +

ζ(−α/2− β)

λ
α/2
c

k




2

= K ′
3C

2
2 + K ′

4k
2 + K ′

5C2k. (4.13)

where,

K ′
1 = E{ξ}

−bαc∑

l=1

E{Rα
PS,l},

K ′
2 =

E{ξ}ζ(−α/2− β)

λ
α/2
c

,

K ′
3 = E{ξ2}



−bαc∑

l=1

√
E{R2α

PS,l}



2

,

K ′
4 = E{ξ2}ζ2(−α/2− β)

λα
c

,

K ′
5 =

2
∑−bαc

l=1 E{R2α
PS,l}ζ(−α/2− β)

λ
α/2
c

. (4.14)

For the convergence of Zeta function, we need to have −α/2 − β > 1. Note that for

α < −2, −α/2 − 1 > 0 and we can choose β = −α/2 − 1 − ε and set ε small enough to

make β positive. This will make the power levels steadily increase for l ≥ −bαc + 1. On

the other hand, we may have β < 0, in which case, the power levels will steadily decrease

for l ≥ −bαc+ 1.

It is clear that there is not a unique (C2, k) pair that satisfy the constraint in Lemma 7

in Chapter 3. Any (C2, k) in the dashed area of Figure 4.1 satisfies this constraint.

For C2 = 0, the interference constraint reduces to k ≤ η

h
√

2K′
4+K′

2

. The constant k =
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Figure 4.1: The acceptable values for (C2,k) in (4.12) to satisfy the interference constraint
in Lemma 7 in Chapter 3.

η

h
√

2K′
4+K′

2

has been plotted for different values of path loss exponent and for the given

parameters in Figure 4.2. It can be seen from this figure that, for the given values of

parameters, and to reach Pexc of around 0.1, the values of k equal to 4× 10−7, 1.5× 10−7

and 0.5× 10−7 works fine for path loss exponents of 2, 3, and 4, respectively.

Note that all of the above power control strategies work fine to satisfy the interference

constraint at the primary receiving node with the given ε. The difference between these

strategies is that which of the nodes (nodes closer to or further from the primary node

or all of them equally) take the responsibility to suppress their power levels more. The

second strategy, with power levels increasing with distance, makes more sense, as the further

secondary nodes are supposed to be more immune and have more relaxed power constraints.

A secondary node either needs no information of its location with respect to the primary

node (the first strategy), or only needs to know where it is located in the sequence of

neighboring nodes ordered according to the Euclidean distance to the primary node (second

strategy). In other words, it needs to find n if it is the nth nearest neighbor to the primary

node. This can be obtained if secondary nodes exchange information on their relative
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Figure 4.2: Constant k in (4.12), when C2 = 0, β = −α/2− 1.1 and for different values of
path loss exponent (λ = 1, µ = 2, ν = 0.5, η = 0 dBm, and σ2 À 1).

position to the primary node.

4.2 Aggregate Interference as Sum of a Normal and Log-

normal Random Variables

In Section 3.4., we found a more accurate approximation for the aggregate interference to

be the sum of a Normal and a Log-normal random variables. With this assumption, we

found two upper bounds for the CCDf of this random variable (i.e., probability of excess

interference). The expressions are dependent on µ2, σ2, and upper and lower bounds of µ1

and σ1 (i.e., (µ1,l, σ1,l) and (µ1,u, σ1,u)). (µ1,l, σ1,l) and (µ1,u, σ1,u) are determined by the

choice of p1, as we assumed PS,i = p1, 1 ≥ i ≤ N (see (3.23), (3.31) and (3.32)). On the

other hand µ2 and σ2 are infinite summations which depend on the choice of PS,i, i ≥ N +1.

In the following Subsections, we consider two different power control strategies which make

these summations converge and the interference constraint satisfied.
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4.2.1 Fixed Power Levels

For fixed power levels, (i.e., PS,i = p2, i ≥ N + 1), the equations (3.17) and (3.18) can be

written as

µ2 =
E{ξ}p2

λ
α/2
c

∞∑

i=N+1

iα/2

=
E{ξ}p2

λ
α/2
c

(
ζ(−α/2)−

N∑

i=1

iα/2

)
, (4.15)

σ2
2 =

var{ξ}p2
2

λα
c

∞∑

i=N+1

iα

=
var{ξ}p2

2

λα
c

(
ζ(−α)−

N∑

i=1

iα

)
. (4.16)

In a practical path loss models, we always have α ≤ −2 with equality for the free space

model. So, µ2 and σ2
2 are convergent even with fixed power levels. In this case, the degrees

of freedom are the parameters p1 and p2. Based on which upper bound we use for Pexc,

(3.39) or (3,47), p1 and p2 are determined such that the interference constraint is satisfied.

4.2.2 Distance-dependent Power Levels

A typical PS,i, that assures the convergence of the series in (3.17) and (3.18) is

PS,i = kiβ, i ≥ N + 1 (4.17)
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where k and β are constant and β < −α/2− 1. In this case,

µ2 =
E{ξ}k
λ

α/2
c

∞∑

i=N+1

iα/2+β

=
E{ξ}k
λ

α/2
c

(
ζ(−α/2− β)−

N∑

i=1

iα/2+β

)
, (4.18)

σ2
2 =

k2var{ξ}
λα

c

∞∑

i=N+1

iα+2β

=
k2var{ξ}

λα
c

(
ζ(−α/2− β)−

N∑

i=1

iα+2β

)
. (4.19)

Note that for α < −2, −α/2− 1 > 0 and β can be chosen either positive or negative, which

correspond to power levels steadily increasing or decreasing for i ≥ N + 1. In this case,

the degrees of freedom are p1, k and β, which should be adjusted such that the interference

constraint is satisfied using the upper bound (3.39) or (3,47).

4.3 Power Control with Traffic Considerations

4.3.1 Interference as a Normal Random Process

In Subsection 3.5, Lemma 9, we found that with interference, I(t), modeled as a Normal

random process, and with the mean and variance of I(t) upper-bounded by E′ and V ′

respectively, it is sufficient to have E′ + h′
√

2V ′ ≤ η (erfc(h′) = 2 ε
Π) in order to have

Pexc ≤ ε where Π is the probability of the primary node being in receiving mode.

Comparing (3.54) and (3.56), with (4.1) and (4.2), we can see that

E′ = ∆E,

V ′ = ∆V. (4.20)
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The results found in Subsections 4.1.1 and 4.1.3, for constant and distance-dependent power

control strategies can then be applied with K1,K2,K
′
1, · · · ,K ′

5 multiplied by ∆.

4.3.2 Sum of Normal and Log-normal Assumption

Comparing equations (3.58) and (3.59) with (3.17) and (3.18), we can see that the same

fixed and distance-dependent power control strategies work for this case as well. We can

still set PS,i = p1, 1 ≤ i ≤ N .

For power control with fixed power levels (i.e., PS,i = p2, i ≥ N + 1), using (3.58), we

have

µ́2 =
∆E{ξ}p2

λ
α/2
c

(ζ(−α/2)−
N∑

i=1

iα/2)

= ∆µ2, (4.21)

and

σ́2
2 =

E{ξ2}∆− E2{ξ}∆2

λα
c

(ζ(−α)−
N∑

i=1

iα). (4.22)

Similarly, for power control with distance-dependent power levels (i.e., PS,i = kiβ), we have

µ́2 = ∆µ2,

σ́2
2 =

E{ξ2}∆− E2{ξ}∆2

λα
c

(ζ(−α/2− β)−
N∑

i=1

iα+2β) (4.23)

4.4 Simulation Results

We consider the same simulation model and parameters as the one used in Chapter 3. In

Figure 4.3, the power levels of the first 50 secondary neighbors of the primary node are

found for an arbitrary realization of the node locations for α = −3. Two different values
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of β = −α/2 − 1.4 and β = −α/2 − 1.6 are considered. They both satisfy the condition

β < −α/2− 1 and respectively correspond to cases where the power levels are respectively

increasing/ Decreasing for n ≥ −bαc+ 1.

In Figure 4.4, using the power control strategy with constant power levels (denoted by

PCcons in the Figure), we have obtained the simulation results for aggregated interference

from the secondary network on the primary node versus path loss exponent and for different

values of probability of excess interference (Pexc = 0.01, 0.1 and 0.2).

Figure 4.5 shows the performance of the second power control strategy with distance-

dependent power levels. We have considered β in (4.12) to be −α/2− 1.1.

The aggregated interference is always less than η, the maximum acceptable interference

in both of the strategies, while the first strategy seems to fluctuate more rapidly versus

path loss exponent.

In Figure 4.6, the power levels chosen for the 10000 nearest secondary neighbors of the

primary node using distance-dependent power control strategy with traffic consideration

has been depicted. As ∆ or Π (i.e., the percentage of time that secondary nodes are in

transmission mode or the primary node is in reception mod) is decreased, more relaxed

power levels will work fine to satisfy the interference constraint.

In Figure 4.7, probability of excess interference (Pexc) is plotted versus path loss expo-

nent for power control strategy with fixed power levels. We have set p1 = p2 and chose its

value such that either bound 1 (equation (3.39)) or bound 2 (equation (3.47)) are satisfied.

The (η, ε) pair is set to be (1, 0.01). The results show that the interference constrained is

always satisfied and probability of excess interference never exceeds the required 0.01 value.

In Figure 4.8, probability of excess interference (Pexc) is plotted versus path loss expo-

nent for the power control strategy with distance-dependent power levels. We have assumed

β = −α/2− 1.05 to satisfy the β < −α/2− 1 convergence condition. This leads to increas-

ing power levels for −α > 2.1 which includes the range of our simulations. To simplify, we

have set k = p1N
−β which leads to the continuity of power levels. p1 is chosen such that

either bound 1 (equation (3.39)) or bound 2 (equation (3.47)) are satisfied. The (η, ε) pair
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is again set to be (1, 0.01). The results show that the interference constrained is almost

always satisfied.

In Figure 4.9, the transmitted power levels are plotted versus path loss exponent. There

is a fairly constant gap between the power levels chosen based on bound 1 and those chosen

based of bound 2. This implies that the second obtained bound is looser compared to the

first one.
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Chapter 5: Achievable Throughput in Power-Constrained

Cognitive Wireless Networks

In Chapter 4, we proposed power control strategies for the secondary network for its safe op-

eration alongside with the primary network. For this purpose, the secondary neighbors of a

primary receiver impose constraints on their transmit power levels such that the probability

that the aggregated interference from secondary network is more that some threshold is less

that some given value. In this chapter, we answer the question: Given that the secondary

nodes have imposed upper limits on their transmit power levels, what is the lower bound of

achievable throughput by secondary nodes? Although we answer this question in the con-

text of a cognitive wireless network, the way we have approach the problem, by using the

statistical properties of distances, obtained in Chapter 2, to characterize the interference is

also applicable to an ordinary power-constrained uniformly random wireless network and

has not been used in the literature, to the best of our knowledge.

5.1 Achievable Throughput

The throughput attained by jth nearest secondary neighbor of the primary node when it

forwards data to its kth nearest secondary neighbor is:

Cjk = log2(1 +
ξjkPS,jr

α
jk∑∞

i=1,i 6=j ξijkPS,idα
ijk + IPS

), (5.1)

where following notations apply:

PS,i: Transmitted power level for the ith nearest secondary neighbor of a primary node.

IPS : Interference from the primary network
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dijk and rjk are as defined in Figure 2-1, and ξijk and ξjk are the corresponding shadow

fading components. We assume that they are σs dB log-normal shadowing and all have the

same statistics. We also assume that shadowing components are independent from each

other and from dijk and rjk.

We rewrite (4.1) as

Cjk = log2(1 +
x2

a + x1
) = log2(1 +

1
a+x1

x2

), (5.2)

where

a , IPS , x2 , ξjjkPS,jr
α
jk, x1 ,

∑

i=1,i6=j

ξijkPS,id
α
ijk.

The function f(X) = log2(1 + 1
X ) is convex for X > 0 and, therefore, Cjk is convex in

a+x1
x2

. We can use Jensen’s inequality to write

E{Cjk} ≥ log2(1 +
1

E{a+x1
x2

}). (5.3)

We have

E{a + x1

x2
} = aE{x−1

2 }+ E{x1x
−1
2 }. (5.4)

Using Cauchy-Schwartz inequality,

E{a + x1

x2
} ≤ aE{x−1

2 }+
√

E{x2
1}E{x−2

2 }.

So (5.3) can be written as

E{Cjk} ≥ log2(1 +
1

aE{x−1
2 }+

√
E{x2

1}E{x−2
2 }

). (5.5)
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We have

E{x−1
2 } =

1
Pj

E{ξ−1}E{r−α
jk }

E{x−2
2 } =

1
P 2

j

E{ξ−2}E{r−2α
jk }

and

E{x2
1} =

∞∑

i=1,i6=j

∑

l=1,l 6=j

E{ξijkξljk}PiPlE{dα
ijkd

α
ljk}

=
∞∑

i=1,i6=j

E{ξ2
ijk}P 2

i E{d2α
ijk}+

∞∑

i=1,i 6=j

∞∑

l=1,l 6=j,i

E{ξijkξljk}PiPlE{d2α
ijkd

2α
ljk} (5.6)

Using Cauchy-Schwartz inequality we have

E{dα
ijkd

α
ljk} ≤

√
E{d2α

ijk}E{d2α
ljk}, (5.7)

and

E{x2
1} ≤

∞∑

i=1,i6=j

E{ξ2
ijk}P 2

i E{d2α
ijk}+ E2{ξ}




∞∑

i=1,i6=j

Pi

√
E{d2α

ijk}



2

. (5.8)

Using above equalities and inequalities

E{Cjk} ≥ log2(1 +
Pj

Qjk
) (5.9)
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where

Qjk , IPSE{ξ−1}E{r−α
jk }

+ E{ξ}
√

E{ξ−2}
√

E{r−2α
jk }


E{ξ2}

∞∑

i=1,i6=j

P 2
S,iE{d2α

ijk}+ E2{ξ}



∞∑

i=1,i 6=j

PS,i

√
E{d2α

ijk}



2


1/2

.

(5.10)

For a zero-mean log-normal distribution, we have

E{ξ−1} = E{ξ} = eσ2
S/2 and E{ξ−2} = E{ξ2} = e2σ2

S ,

where σS = σs
ln 10
10 . E{rα

jk} and E{dα
ijk} were found in Lemmas 4 and 5 in Chapter 2

respectively.

5.2 Forwarding Strategy in the Secondary Network

In (5.1), we defined the throughput of jth nearest secondary neighbor of a primary neighbor,

assuming that it forwards its data to its kth nearest secondary neighbor. The choice of k,

depends on what kind of forwarding strategy is used in the secondary network. In this

section, we consider different forwarding strategies for the secondary nodes and find the

achievable throughput by employing each strategy.

5.2.1 Nearest Neighbor Forwarding

In this case, each secondary node is assumed to forward its data to its nearest secondary

neighbor, in other words, we have k = 1, and

Cj = Cj1 (5.11)
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5.2.2 Forwarding based on a distribution

In this case, a secondary node forwards its data to one of its Kth nearest neighbors with

probability p(k) given by a probability distribution. We can consider distributions tilted

toward right or left or uniform distribution, which correspond to the cases that further or

closer nodes or all of them equally are more likely to be the next-hop node respectively. So

we have

E{Cj} =
K∑

j=1

E{Cjk}p(k) (5.12)

Uniform Forwarding

In a large network, we can assume that it is equally likely that a secondary node forwards

its data to any of its first K nearest neighbors. So, uniform forwarding is a good model and

we will have

E{Cj} =
1
K

K∑

j=1

E{Cjk}. (5.13)

5.3 Further Remarks

Although we obtained the achievable throughput for a power-controlled secondary network,

the approach can be used for obtaining the capacity in power-constrained random networks.

There have been few attempts in obtaining the throughput capacity of power-constrained

random ad hoc networks (for example see [42] and [43]). Previous attempts do not consider

interference characterization using the statistical properties of distances. Furthermore, a

uniform power constraint is imposed upon nodes, whereas in our analysis, we have consid-

ered both constant and distance-dependent power levels.
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5.4 Simulation Results

In Figure 5.1 we have plotted the lower bounds for E{Cj} for j = 50. We assume that

IPS = −30 dBm and K = 10 in the uniform routing. We have plotted the achievable

throughput for both nearest-neighbor and uniform forwarding. We are considering the

secondary network to use the constant or distance-dependent power control strategies. For

the distance-dependent case, we are considering β = −α/2−1.1. In both cases, we have set

the probability of excess interference, ε, equal to 0.01. The dashed lines are for the nearest

neighbor forwarding and the solid lines are for uniform forwarding. As we mentioned earlier

the result for uniform forwarding is more realistic in a large wireless network. It can be seen

in the figure that the achievable throughput behaves like a convex function with respect to

the −α (i.e., path loss exponent) with the minimum in all of the cases at around −α = 3

and for −α > 3, the achievable throughput is monotonically increasing.

In Figure 5.2 we have plotted the achievable throughput versus the index of the sec-

ondary neighbors. We again assume that IPS = −30 dBm and K = 10 in the uniform

forwarding and we have plotted for both nearest-neighbor and uniform forwarding while

the secondary network uses the constant or distance-dependent power control strategies.

We consider a path loss exponent of 3.1. The results show that for constant power con-

trol strategy, the achievable throughput is relatively constant with respect to node index,

whereas for distance-dependent strategy (in this case, for α = −3.1 and β = −α/2 − 1.1,

the power levels will be increasing with distance, see (4.12)), the achievable throughput

will increase with node index. The nodes farther from the primary node (i.e., nodes with

higher index), are prone to receive more interference as they are closer to nodes with higher

allowable power levels. On the other hand, they can transmit at higher power levels. The

results show that the effect of higher transmit power is dominant and has more effect than

the higher received interference, and the achievable throughput increases with the node

index.

74



Chapter 6: Summary, Conclusions, and Future Work

6.1 Summary

Coexistence of wireless networks seems to be the way out of the current spectrum scarcity

dilemma. Advances in wireless communications and the introduction of concepts like cogni-

tive radio and cognitive wireless networks, has turned the spectrum sharing among multiple

systems from an idea into a possibility.

Interference protection has always been the major issue in a multi-user communications

scenario. In the context of coexisting wireless networks, strict policies are required to protect

the primary licensed network against the interference coming from secondary unlicensed

network. Therefore, the situation is more critical, as the unlicensed wireless network carries

all the responsibility to avoid the interference on the primary licensed users.

In such networks, a new type of interference, i.e., inter-system interference comes into the

picture. The regulatory policy can be expressed in terms of a constraint on the aggregate

interference from secondary network on the primary users. Implementation of cognitive

wireless networks requires a model translating the regulatory constraint on the aggregate

interference to the system- and device-level design parameters.

In this direction, we need a model for interference whose parameters can be adjusted by

tuning the degrees of freedom available for individual devices. In Chapter 2, we consider

a spatial bivariate Poisson model for the coexisting wireless networks. To obtain a model

for interference, we first need to have a characterization of internodal distances in such

processes. We obtain analytical results for the real moments of these distances and find

some useful results for the properties of such distances.

Using the results obtained in Chapter 2, we consider two different models for the aggre-

gate interference on a primary node. The first model is found assuming that central limit

75



theorem can be applied to model the interference as a Gaussian random variable. Upper

bounds are obtained for mean and variance of interference. The second model is found by

considering the interference as sum of a Normal and Log-normal random variables. Two

upper bounds are obtained for the CCDF of interference. In both cases, the parameters of

the models are shown to be adjustable by the power levels chosen by secondary users. Using

these models, power control strategies are obtained in Chapter 4 to satisfy the interference

constraint at the primary node.

In Chapter 5, considering the power-controlled secondary network, and using the statis-

tical properties of distances found in Chapter 2, a lower bound is found for the throughput

of secondary nodes which depends on the forwarding strategy used in secondary network.

6.2 Conclusions

Stochastic geometry and spatial point processes are powerful mathematical tools for mod-

eling random networks. While Poisson model is long known to be a simple mathematically

tractable approach, the use of bivariate version of this process is shown to be a suitable

model for two-type correlated random networks, e.g., cognitive wireless networks.

Due to the random locations of nodes as well as the random propagation channel, the

aggregate secondary interference at a primary node has a statistical nature and a statistical

model is required to be able to characterize the interference and subsequently satisfy the

interference constraint at the primary nodes.

The achievable throughput in power-constrained random networks has been considered

in the literature recently. We use the statistical properties of distances to characterize the

interference and thereby the achievable throughput in secondary networks. This approach

has not been considered in the literature to the best of our knowledge.
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6.3 Future Work

The model considered for the cognitive wireless network in this dissertation is based on the

underlay approach. To model the aggregate secondary interference, it is either considered

that the primary receiver and secondary transmitter are always active (i.e., in transmission

and reception modes respectively) or a statistical model for primary and secondary traffic

is considered. The model does not consider spectrum sensing and detection of the activity

of primary receiver. This can be considered as an extension, where sensing can be done

using primary beacon signals and can be performed either individually by secondary nodes

or using cooperative sensing [44].

In Chapter 3, we considered a simple M/M/1/1 traffic model. As another future work,

we might consider more sophisticated and perhaps non-stationary traffic models. Since the

traffic is stochastic and time-varying, we might consider that power levels also be determined

dynamically and as a reaction to traffic levels.

In Chapter 5, we obtained the achievable throughout in the power constrained secondary

network. Recently, some work is done to find the scaling laws of the throughput in secondary

wireless networks (i.e., how the achievable throughput of a network scales with the number of

nodes)[45]. As an extension, we can consider the throughput in the primary and secondary

networks jointly to obtain analytical results as how the throughput in these networks relate

and find tradeoffs and design benchmarks.
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