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Abstract

TOWARDS EFFICIENT AND SCALABLE SDN-BASED DATA CENTER
MONITORING AND MANAGEMENT

Zili Zha, PhD

George Mason University, 2021

Dissertation Director: Dr. Songqing Chen

Recent years have witnessed the great success of cloud computing that is powered by

data center systems. As an essential building block for many of our cyber infrastructures,

the monitoring, security, and management of data center traffic is of ultimate importance.

However, the ever-increasing scale and speed of data center networks (DCNs) pose various

challenges to data center traffic monitoring and management. The traditional monitoring

approaches are neither flexible nor efficient to meet the security and performance needs of

DCNs. With the flexibility and programmability of Software-Defined Networking (SDN)

technology, this dissertation presents efficient solutions to address DCNs monitoring and

management challenges.

First, we investigate the feasibility and efficiency of building software-defined monitor-

ing (SDM) functionalities into network edges. For this purpose, We design and implement

four measurement schemes in Open vSwitch (OVS), by either integrating forwarding and

measurement functions into a pipeline, or decoupling them into parallel operations. We

further include another eBPF-based approach in our comparative study. Then, we quanti-

tatively show the various trade-offs among network performance and system overhead that

different schemes strike to balance, and demonstrate the feasibility of instrumenting OVS



with monitoring capabilities.

Second, we leverage the flexibility and efficiency offered by SDM to enhance the security

of DCNs. Accordingly, we design BotSifter, an SDN-based scalable, accurate and runtime

bot detection framework for DCNs. To improve the detection scalability, BotSifter utilizes

centralized learning with distributed detection by distributing detection tasks across the

network edges. Furthermore, it employs multiple novel mechanisms for parallel detection of

Command and Control (C&C) channels and botnet activities, which greatly enhances the

detection robustness.

Third, the traffic surges in DCNs are common, due to the attacking (e.g., via botnets)

traffic or the increase of legitimate traffic. They can easily degrade the performance of con-

tainerized clouds these days. To address this challenge, we further propose to adaptively

offload the DCNs traffic and optimize the network virtualization performance in DCNs. For

this purpose, we propose EZPath, a novel system that can seamlessly expedite container

traffic by leveraging the programmable Top-of-Rack (ToR) switches in clouds. EZPath

dynamically offloads selected (e.g., performance-critical) network flows to the in-network

programmable hardware, which not only optimizes the network performance, but also ef-

fectively mitigates the negative impact of attack traffic.



Chapter 1: Introduction

With the great success of cloud computing, more and more traditional services have been

migrated to or deployed on various cloud platforms. Naturally, cloud platforms become a

critical cyber infrastructure these days. As an essential building block of a cloud computing

platform, the data centers are of ultimate importance.

To respond to the ever-increasing demand, these days most data centers have adopted

the modern networking technology, i.e., Software Defined Networking (SDN), in the data

center networks (DCNs). Traffic monitoring has been playing a crucial role in a wide

range of DCNs management tasks, such as traffic engineering, network diagnosis and trou-

bleshooting, accounting, and anomaly detection. An ideal monitoring scheme would collect

fine-grained per-flow statistics (i.e., packet/byte count for each measurement epoch). How-

ever, with the ever increasing network scales and network speeds of contemporary DCNs,

the total number of traffic flows (5-tuples) could easily surpass the memory and processing

capacity of traditional network devices. With these inherent hardware resource constraints,

traditional commercial monitoring solutions (e.g., NetFlow, sFlow) only provide highly ag-

gregated or sampled statistics that are insufficient to meet the monitoring needs of various

management applications. Worse yet, low-rate flows that are missed by sampling based

monitoring poses great threats to DCNs security.

With the increasing adoption of SDNs, nowadays software switches are gaining widespread

deployment in the data centers and clouds, which opens up a new avenue for the develop-

ment of network measurement frameworks. In SDN, the control plane and the data plane

are decoupled to enable flexible and programmable network management. Typically the

control plane is a logically centralized entity that maintains high level policies and commu-

nicates with the data plane using standard protocols such as OpenFlow [1]. The data plane

consists of either software based or hardware based switches and routes traffic according

1



to the forwarding decisions configured by the control plane. Since software switches nor-

mally reside within the servers with abundant processing power and memory resources, it

creates an enormous opportunity for developing flexible, efficient and scalable measurement

frameworks.

1.1 Challenges in Data Center Networks

In this dissertation, we aim to address these challenges centering around the monitoring

and management in DCNs, with the aid of programmable and flexible control enabled by

SDNs.

Incorporating traffic monitoring capability into OVSes offers the opportunity to share

the key functionalities required by monitoring that have been implemented in the switches.

However, the design of such an integration faces a multitude of challenges in order to

achieve minimal forwarding-monitoring function interference, optimal code sharing, and ef-

ficient CPU/memory resource usage. First, to guarantee easy deployability and minimal

disruption to the normal service, the performance overhead, CPU utilization and memory

usage introduced by the integrated monitoring functionalities should be acceptable. Second,

the measurement results should be sufficiently accurate so as to allow accurate detection

of a variety of network anomalies, such as heavy hitters, change detection, superspreader

detection, port scans and other applications including flow distribution and entropy esti-

mation. Lastly, how to enable efficient packet processing within the tight time budget in

order to keep up with the ever increasing line speed remains to be an unsolved challenge.

An in-depth investigation into various design options could provide valuable insights into

building highly efficient and scalable DCNs management frameworks in general.

The success of cloud computing attracted not only various applications/services being

deployed, but also attacks, such as those via botnets. Nonetheless, existing botnet detec-

tion schemes often fail to meet the requirements of accurate and expeditious detection in

data centers due to their high resource demands. They often deploy a centralized network

monitoring facility at the network gateway or firewall to capture incoming and outgoing

2



traffic. These solutions are hardly scalable considering the enormous traffic volumes in con-

tempory DCNs. Moreover, earlier works are more focused on detection of malicious flows

rather than identification of the bots, which is much more imperative for attack mitigation

purposes. Only after the bots are identified, compromised nodes could be shut down or

blocked to prevent future attacks. However, building a scalable and runtime bot detection

and identification system is non-trivial and poses several challenges we need to address.

First, the placement of the traffic capturing facilities is a key factor in building a scalable

system given the network scales and traffic volumes. Second, bot identification in their

earlier stages before any attacks are initiated requires a deep understanding of different

phases in botnet lifecycles and dedicated designs of the runtime detection system. Guided

by the monitoring options we explored, we aim to build a runtime, scalable and accurate bot

detection framework for DCNs, by incorporating state-of-the-art deep learning techniques

into our system design.

In addition to the adoption of SDN, the virtualization technology in cloud platforms also

constantly evolves. Allured by its flexibility and low management overhead, many cloud

platforms also start to deploy containers, in addition to the traditional virtual machines

(VMs). In containerized clouds, applications are often deployed in VMs or containers as

microservices, where software switches such as OVSes are employed for network virtual-

ization. When they are under heavy load, caused by either attacking or legitimate traffic

surges, the application performance would suffer from dramatic degradation. To deal with

this challenge, we aim to optimize DCNs performance upon high traffic load. More specifi-

cally, we target a multi-tenant containerized environment, where OVS is leveraged to enable

network virtualization and tenant isolation. We thoroughly investigate the network perfor-

mance bottlenecks in container overlay networks and propose a novel design, EZPath, which

aims to offload performance-critical network flows to the in-network programmable switch-

ing hardware to optimize the overall network performance. Nonetheless, migrating network

functions and traffic to hardware raises several new challenges in a containerized environ-

ment. First, simply offloading all container traffic is clearly impractical considering the
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sheer scale and density of container deployment. Hardware resources are highly constrained

and could not accommodate all the metadata required by performing offloading network

functions. Second, containers are much more short-lived than VMs. Constant updates of

offloading selections could undesirably degrade the performance. Therefore, designing an

adaptive offloading scheme in order to strike a balanced trade-off between resource utiliza-

tion and network performance necessitates careful considerations.

In addition, our offloading design could also benefit network security scenarios, by of-

floading high rate application traffic to the fast path and minimizing the negative impacts

that are introduced by the attacking traffic. In order to evade detection, nowadays network

attacks have become much more sophisticated and per-flow attack traffic features a much

lower rate, which is hard to contain by using conventional rate limiting. With hardware

offloading, since high rate application traffic follows the fast path, the adverse effects could

be effectively minimized.

1.2 Dissertation Contributions

This dissertation consists of the following contributions. First, we present a systematic study

of software defined measurement with OVSes and provide various solutions for different sce-

narios. Network measurement is critical for various network operations and management

but has been often constrained by the available resources in the traditional network devices.

Recent advances in SDN have enabled flexible and programmable network measurement,

which is referred to as SDM. A promising trend for SDM is to conduct network traffic mea-

surement on widely deployed OVS in data centers. However, little attention has been paid

to the design options for conducting traffic measurement on the OVS. In this study, we set to

explore different design choices and investigate the corresponding trade-offs among resource

consumption, measurement accuracy, implementation complexity, and impact on switching

speed. For this purpose, we explore the design space and empirically design and implement

four different measurement schemes in OVS, by either closely integrating forwarding and

4



measurement functions into a pipeline, or decoupling them into parallel operations. We fur-

ther implement emerging eBPF-based monitoring approach that is independent from OVS

and include in our comparative study. Through extensive experiments and comparisons,

we quantitatively show the various trade-offs (e.g., among the metrics of throughput, la-

tency, CPU overhead, memory overhead) that the different schemes strike to balance, and

demonstrate the feasibility of instrumenting OVS with monitoring capabilities. These re-

sults provide valuable insights into which design will best serve different measurement and

monitoring needs.

Second, to respond to attacks from botnets, we design and implement BotSifer, an

SDN-based online bot detection framework. Botnets continue to be one of the most severe

security threats plaguing the Internet. Recent years have witnessed the emergence of cloud-

hosted botnets along with the increasing popularity of cloud platforms, which attracted not

only various applications/services, but also botnets. However, even the latest botnet de-

tection mechanisms (e.g., machine learning based) fail to meet the requirement of accurate

and expeditious detection in data centers, because they often demand intensive resources to

support traffic monitoring and collection, which is hardly practical considering the traffic

volume in data centers. Furthermore, they provide little understanding on different phases

of the bot activities, which is essential for identifying the malicious intent of bots in their

early stages. In this work, we propose BotSifter, an SDN based scalable, accurate and run-

time bot detection framework for data centers. To achieve detection scalability, BotSifter

utilizes centralized learning with distributed detection by distributing detection tasks across

the network edges in SDN. Furthermore, it employs a variety of novel mechanisms for par-

allel detection of C&C channels and botnet activities, which greatly enhance the detection

robustness. Evaluations demonstrate that BotSifter can achieve highly accurate detection

for a large variety of botnet variants with diverse C&C protocols.

Third, we develop EZPath to expedite container network traffic via programmable

switches. Containerization, while getting popular in data centers, faces practical chal-

lenges due to the sharing nature of cloud networks among tens of thousands containers
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simultaneously and dynamically. While the typical overlay approach enables network vir-

tualization to facilitate multi-tenant isolation and container portability, this approach often

suffers from degraded performance. Other proposed schemes addressing this performance

bottleneck require either specialized hardware support, or customized software and extra

maintenance. In this work, we propose EZPath, a novel approach that can seamlessly ex-

pedite the container traffic by leveraging the programmable Top-of-Rack (ToR) switches in

clouds. By utilizing the underlying programmable switch’s data plane capabilities, EZPath

can adaptively offload heavy traffic directly from the container to the ToR switches, thus

creating a fast and easy path to mitigate the network bottleneck. Such a ToR switches

based solution is transparent to user applications, and does not require the change of OS

kernel or the support of additional hardware. Using typical container workloads, we evalu-

ate the performance of EZPath, and the results show that EZPath can significantly improve

the application performance over the default overlay networking, e.g., a 35% throughput

increase and a 42% tail latency reduction for Memcached.

1.3 Dissertation Organization

The remainder of the dissertation is organized as follows. Chapter 2 performs an in-depth

investigation on the challenges of developing various software defined measurement frame-

works in data center networks. Chapter 3 focuses on the design and implementation of

accurate, scalable and runtime detection of cloud based botnet. Chapter 4 presents EZ-

Path, a novel system that seamlessly expedite container overlay traffic by leveraging ToR

programmable hardware switches in the clouds. Chapter 5 concludes this dissertation and

proposes future works.
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Chapter 2: Towards Software Defined Measurement with

Open vSwitches: Designs, Implementation, and Evaluation

2.1 Introduction

Network measurement has been playing an essential role in a wide variety of network man-

agement tasks, ranging from traffic engineering, anomaly detection, to QoS provisioning,

etc. Traditional monitoring tools, e.g., Netflow, sFlow, IPFIX, are usually deployed across

in-network hardware devices to collect real-time traffic statistics. Nonetheless, due to the

underlying hardware resource constraints, they only provide coarse-grained statistics that

could not meet the monitoring demands of the diversified network applications. With the

advancement of SDN and network function virtualization (NFV) [2] techniques, a series of

research [3–6] have been proposed to enhance the existing measurement schemes. However,

they are either not generic by requiring to implement multiple sketches for each measure-

ment task [3–5], or too expensive to deploy in hardware devices [6]. In recent years, the

emerging programmable dataplanes have spawned great opportunities for innovation in in-

tegrating monitoring solutions into the switching hardware. This trend enables SDM where

users can flexibly program the monitoring rules. However, due to the hardware constraints

of the switching ASICs, such as fixed hardware stages, limited per-stage actions and re-

stricted stateful memory (e.g., Registers, Counters), collecting per-flow traffic statistics is

not a trivial task. Instead of per-flow measurement, some prior work [7–9] focused on

monitoring only heavy hitter flows.

The hardware-based monitoring frameworks all utilize sketch streaming algorithms aim-

ing to minimize the memory consumption, since memory is the primary concern in hardware

devices. In recent years, there is an increasing trend to build monitoring functionalities into

end hosts as inspired by the following observations [10–12]. First, commodity servers are
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in possession of plentiful CPU and memory resources. Compared to the hardware routers

that often have limited computing and memory resources, data centers and clouds often

have redundant resources in terms of computing power and memory capacity that are not

fully utilized or idle.

Second, monitoring on the end hosts, i.e., the edge-based monitoring design, is much

more scalable since each end host only needs to process much smaller amount of traffic as

opposed to that of in-network hardware devices. This sheds light on SDM by using OVS. As

an example, UMON [10] proposed a user-defined programmable traffic monitoring interface

on OVS. Despite of the abundant hardware resources in commodity servers, building efficient

monitoring frameworks into data center end hosts remains unexplored.

Incorporating traffic monitoring capability into a software switch offers the opportunity

to share the key functionalities required by monitoring that have been implemented in a soft-

ware switch. However, the design of such an integration is challenging in order to achieve

minimal forwarding-monitoring function interference, optimal code sharing, and efficient

CPU/memory resource usage. In this study, we set to empirically investigate the different

design trade-offs using OVS [13] as a representative software switch. OVS has now become

widely adopted for use as host-machine edge-routers in data centers. We start with an in-

tuitive design, called FCAP (Flow CAPture scheme), where the forwarding and monitoring

forms a pipeline in the OVS kernel. In FCAP, a packet traverses through the forwarding

module before going through the monitoring module. The flow stats of interested traffic

flows are first collected in the OVS kernel and then transferred to the user space for further

processing. To reduce the memory consumption, we further design SMON, a Sketch [14]

based MONitoring scheme that compresses the flow stats using sketches. Sketches are proba-

bilistic data structures that trade off query accuracy for space efficiency and widely employed

in a multitude of various applications. Since flow identifiers and per-flow traffic stats both

need to be collected, we use an advanced sketch design, namely, invertible bloom lookup

tables [14], in SMON, which allows us to easily recover the complete flow details in upper

layer applications.
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Since both FCAP and SMON work in a pipeline of forwarding and monitoring, mon-

itoring could significantly impact the switch’s forwarding throughput. To decouple the

monitoring from the forwarding so as to minimize such impact, we propose to design off-

path counterparts of FCAP and SMON by introducing a ring buffer in the kernel. The

ring buffer temporally caches the packet headers of the interested traffic flows, which can

then be processed independently by the monitoring module. In this way, the ring buffer

effectively decouples the monitoring from the packet forwarding at the kernel data path.

FCAP/SMON designs all require extensive instrumentation into the OVS code base,

which is not backwards-compatible. For practical deployment, we either need extra patches

or re-install a modified version of OVS with the customized monitoring functionalities.

Moreover, the SMON/FCAP monitoring modules are implemented within the kernel data

path in order to achieve full visibility and minimize the impact on the forwarding perfor-

mance. However, a single software flaw could crash the entire system. From this observation,

we further propose an eBPF (extended Berkeley Packet Filter) enhanced [15] monitoring de-

sign. While its ancestor BPF is mostly used for in-kernel packet filtering, eBPF extends its

architecture by integrating more features to support more types of events and actions other

than filtering. eBPF offers the possibility to dynamically generate, load and execute code

into the kernel using the bpf() system call, thus obviating the need to install customized

kernel modules. Many eBPF-based tools are developed for performance debugging and

troubleshooting, e.g., tracing the TCP sessions lifespan and the block device I/O latency,

etc. Furthermore, BPF maps provide an asynchronous communication channel for sharing

data between the userspace/kernel and across multiple runs of the kernel program. In our

work, to gain full visibility of both inbound/outbound traffic, our monitoring programs are

attached onto the Linux Traffic Control layer, while the monitoring filter and flow stats

table are both implemented using eBPF maps.

In addition, we revisit UMON, a monitoring approach proposed in [10] that is largely

implemented in the user space of OVS. We conduct extensive experiments to explore the
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various trade-offs under the metrics of throughput, latency, CPU overhead, memory over-

head etc. The results show that (1) compared to the on-path counterparts and eBPF,

off-path approaches can significantly reduce the measurement delay introduced to the for-

warding path, due to the decoupling enabled via the ring buffer; the off-path designs can

also achieve the same measurement accuracy at the cost of higher memory consumption;

(2) FCAP and eBPF can both achieve full measurement accuracy, by leveraging linked

lists to resolve collisions in the underlying hash table implementations; while sketch based

SMON can also achieve over 99% accuracy with less amount of memory consumption, it

consumes more CPU cycles for sketch decoding compared to FCAP and eBPF; (3) on-path

FCAP and eBPF are both built upon hash tables, with slight deviation in their perfor-

mance due to the difference in underlying implementation; (4) UMON consumes a similar

amount of memory as those of off-path schemes at the moderate packet rate, but consumes

much more memory at the high packet rate; (5) compared to OVS kernel based schemes,

UMON is most flexible and requires the least implementation efforts with no modifications

to the Open vSwitch kernel code base. However, it derives fine-grained forwarding rules by

combining the forwarding and monitoring functionality, which leads to the heaviest CPU

load in the user space; (6) instrumenting OVS with monitoring capability is feasible without

affecting the overall switching speed significantly; and (7) compared to the OVS-embedded

designs, eBPF requires minimal maintenance efforts, since the monitoring module operates

in parallel with and independently of OVS.

The reminder of the chapter is organized as follows. Section 2.2 describes some related

work. We present our new designs and implementations in Section 2.3. We evaluate the

proposed designs in Section 2.4 with more discussions in Section 2.5. Finally, we make

concluding remarks in Section 2.6.

10



2.2 Related Work

Traditional Monitoring. Different network measurement frameworks have been investi-

gated both in software and hardware switches. Traditional hardware-based solutions utilize

tools such as Netflow [16], sFlow [17] and IPFIX [18], to collect IP Nework traffic. Other

similar solutions include Jflow [19], Cflowd [20] and NetStream [21] etc. The drawbacks

of these solutions are twofold: they are more expensive to deploy and they do not provide

enough programmability for network management tasks.

SDN-enabled Monitoring. One of the earliest efforts is proposed by Yu et al. [3] called

OpenSketch. In OpenSketch, different types of sketches are utilized to achieve different

measurement goals. Furthermore, the controller optimizes the sketch allocation to balance

the accuracy and the memory consumption. A followup prototype called DREAM [4] is

proposed to dynamically assign TCAM counters to different measurement tasks across mul-

tiple hardware switches in the network. But the users could not customize measurement

tasks other than the counter-based ones. In these earlier works, sketches are designed and

implemented for specific monitoring tasks, which means that the monitoring devices must

instantiate multiple sketches in order to support a variety of concurrent monitoring tasks.

This places enormous burden on resource-constrained hardware devices and drastically de-

grades the network performance. To address this limitation, UnivMon [22] proposes a single

universal sketch to support multiple measurement tasks simultaneously. Nonetheless, it re-

quires to update multiple components for each packet, which also introduces noticeable

overhead. Yu et al. also proposed FlowRadar [6] to improve the NetFlow based network

measurement by encoding and decoding counters with the invertible bloom filter lookup

table (IBLT). In this way, the communication overhead could be reduced. However, ex-

tra components are necessary to implement on hardware devices. Also, the decoding may

introduce redundant overhead to the controller.

Monitoring within Programmable Dataplanes. Space Saving [23] is a widely known

top-k algorithm to identify the first top-k frequent items in data streams. Compared to other

counter-based streaming algorithms, Space Saving is much more resource efficient since it
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only needs to maintain O(k) counters. Despite of its memory efficiency, Space Saving is not

readily applicable for heavy flow detection within the emerging programmable hardware

due to the underlying complexities in its data structure and algorithm design. Upon each

new flow, the algorithm requires to find and replace the hash table entry with the minimum

packet count, which cannot be easily implemented considering the hardware constraints of

the hardware programming model. To adapt the classical algorithm into a hardware-friendly

design, HashParallel and HashPipe [7] refactor the algorithm into a pipeline of hash tables

that can fit in the programmable switches. This pipelined design helps to ensure that each

stage only incurs a limited amount of processing in order to keep up with the line-rate

switching throughput. Nonetheless, Precision [8] re-examines the problem and concludes

that HashPipe is challenging to realize in the Reconfigurable Match Tables (RMT) [24]

switch programming model since it does not satisfy the limited branching rule and single

stage memory access rule imposed by the RMT model. To overcome the hardware limita-

tions, Precision further improves the design by recirculating a small fraction of the packets

at the cost of packet forwarding performance. Orthogonal to this direction, Memento [9] ex-

amines the problem from a different perspective by proposing a sliding window based heavy

hitter detection model. It argues that sliding window models are more accurate and more

efficient in terms of detection delay compared to the traditional interval based detection

solutions. Further, it extends the algorithm to detect hierarchical heavy hitter (HHH) and

network-wide scenarios. Sliding window based models have also been extensively studied in

many earlier works [25,26]. Marple [27] and Sonata [28] tackle the problem from a different

perspective. Instead of designing new sketches to minimize the memory consumption in the

hardware devices, Marple proposes a performance query language and designs new switch

hardware primitives to support the language, which allows network operators to program

their performance queries that collects customized fine-grained traffic statistics at a low

processing overhead. Different from Sonata, it performs aggregations directly in the switch

hardware, further reducing the data volume streamed to collection servers.
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Edge-based Software Monitoring. Over the past few years, with the data center net-

works evolving to larger scales and the ever increasing line speeds, the resource constraints

of hardware devices have become considerably more stringent. Comparatively, the edge

servers are typically equipped with much more powerful hardware resources, e.g., CPU and

memory. Motivated by this, there has been continuous efforts aiming to migrate monitoring

functionalities from hardware devices to edge servers. Generally, existing software-based so-

lutions can be broadly classified into two categories: passive monitoring system [12, 29, 30]

and active monitoring system [10,11]. The former category strives to collect traffic stats for

all flows with minimal memory consumption and provable accuracy guarantees, by designing

sophisticated sketches and algorithms. However, in order to keep up with high line-rates,

they focus more on the accuracy of heavy flows while sacrificing that of the small flows, con-

sidering that heavy flows are usually more important than small flows in typical monitoring

tasks. In contrast, active monitoring systems provide programmability that allows users to

define their own monitoring tasks and only monitoring the traffic the network operators are

interested in. This efficiently lessens the monitoring workload, further minimizing resource

usage and impacts on the forwarding performance.

SketchVisor [12] focuses on accurate and timely network measurement under high traffic

load. It proposes to combine a sketch based normal path and a top-k based fast path

to achieve both high throughput and high accuracy. Under high traffic load, the fast

path is activated to absorb the excessive traffic overflowed from the fast path with slight

accuracy degradation. Further, it employs compressive sensing [31] to recover the flow

stats information that serves as input for higher level monitoring applications. Following

this work, Elastic Sketch [29] enhances SketchVisor by designing an elastic sketch with

two components, a heavy part and a light part where the former maintains elephant flows

and the latter records the mouse flows. Under heavy traffic load, only the heavy part is

updated and the mouse flow information is lost. Compared to SketchVisor, Elastic Sketch

achieves much higher performance since only one memory access is needed at high packet

rate. In NitroSketch [30], it is pointed out that Elastic Sketch falls short in performance and
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accuracy when the number of flows increases to a certain point. In comparison, NitroSketch

proposes a generic sketching framework that addresses the bottlenecks of existing sketched

designs and minimizes per-packet CPU and memory overhead. HeavyKeeper [32] further

improves heavy hitter detection accuracy of Elastic Sketch via a new strategy, count-with-

exponential-decay, to actively evict small flows through decaying. It reduces the error by

3 orders of magnitude compared to the state-of-the-art detection schemes. However, in

certain applications, such as anomaly detection, small flows play an equally important role

as heavy flows but cannot be captured by existing passive monitoring systems that focus

on heavy flows.

Following this trend, Trumpet [11] is proposed to collect data from end-host machines

to detect network-wide events. Though Trumpet is optimized to run on hardware network

devices, it is independent of the existing network management framework.

2.3 Design and Implementation

Although existing software based measurement designs all function well under particular

circumstances, an in-depth investigation about the resource-accuracy trade-offs is still lack-

ing in the literature. We aim to fill this void by looking into the various software-based

monitoring designs from a systematic view.

To empirically explore the various design trade-offs among multiple factors, including

server resource consumption, monitoring overhead, and implementation complexities, in this

section, we propose five novel monitoring designs, namely, on/off-path FCAP/SMON [33]

and eBPF. Among them, four are incorporated into OVS, a widely deployed software switch

in data centers, and an eBPF-based monitoring framework in parallel with OVS. Following

a brief discussion about the design challenges arising from building monitoring logic into

OVS, we walk through the design and implementation details of each monitoring framework.
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2.3.1 OVS and Design Challenges

OVS consists of two major components: a userspace daemon (ovs-vswitchd), and a kernel

datapath [34]. They work together to forward packets, with the userspace daemon as a full

but slow path while the kernel datapath serving as a forwarding cache. Such a design aims

to optimize the forwarding performance of the switch. More specifically, incoming packets

are firstly matched against the flow table in the kernel datapath. The first packet of each

new flow will encounter a flow miss in the kernel and is forwarded to the userspace by

injecting a upcall. In the userspace, upcalls are handled by the handler threads, and a flow

rule is generated and installed into the kernel flow cache. As a result, subsequent packets

belonging to the same flow do not need to make detours through the userspace. Finer-

grained kernel flow rules undoubtedly result in a larger number of flow misses and upcalls.

This not only undermines the switch performance, but also introduces heavier workloads,

thus higher CPU overhead for handlers. Fortunately, due to the locality of the network

traffic, most packets are processed in the fast path.

The entries in the kernel flow cache and userspace flow tables contain fields such as packet

and byte counts that provide built-in monitoring capabilities. These counters record the

total packets processed by the corresponding flow entry. As aforementioned, the userspace

does not have full visibility into all packets, since most packets are directly forwarded fol-

lowing the kernel cache. Thereby, the packet/byte counts in the userspace table entries need

to be updated by polling the kernel cache entries. These are managed by the revalidator

threads, which periodically poll the kernel cache for each flow’s packet and byte counts and

aggregates them into the userspace flow table. In addition, revalidators are also responsi-

ble for maintaining the kernel cache entries. Similarly as handlers, a larger kernel cache

introduces heavier workloads for revalidators.

Nevertheless, this built-in feature in OVS flow tables is neither flexible nor sufficient for

the dynamic monitoring needs, since flows that are relevant for monitoring and forwarding

might not be overlapped. For example, the flow rule might specify the forwarding actions

for packets with a specific destination IP address, while the monitoring applications need
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fine grained flow statistics for each 5-tuple subflow. Relying only on packet and byte counts

of the flow rule could not achieve the desired monitoring granularity. To cope with this

limitation, some works propose to dynamically install flow forwarding rules for each subflow

into OVS. As a consequence, the first packet of each subflow has to be sent to the centralized

controller for further handling. This drastically degrades the forwarding performance of the

dataplane and a more efficient programmable monitoring solution is needed. UMON is one

of the earliest efforts in this direction.

The fundamental idea of UMON is to decouple monitoring from forwarding logic in the

userspace, while the kernel datapath remains intact. To achieve this, the cached entries in

the kernel need to be much more fine-grained than the native OVS, which is elaborated in

Section 2.3.2. As explained earlier, this inevitably decreases the switching performance and

incurs heavier consumption of system resources. Inspired by this, our work investigates the

monitoring design from a variety of aspects: monitoring accuracy, resource consumption,

switching performance, and portability.

Overall, to build monitoring capabilities into OVS, there are a number of challenges we

need to address: (1) The added monitoring logic should introduce minimal interference to

the forwarding path in OVS to guarantee the forwarding and monitoring efficiency; (2) Due

to the resource constraints, it is necessary to strike a balance among efficiency, resource

consumption, and monitoring accuracy; (3) To maximize feasibility and compatibility, the

monitoring function should be as portable as possible so that minimal effort would be

required to accommodate the monitoring function.

Taking these into consideration, the monitoring function is decoupled from the forward-

ing function by maintaining an additional monitoring table, as illustrated in Figure 2.1.

The default forwarding process is performed by OVS, while the additional monitoring ta-

ble supports the added monitoring functionalities. Contrarily, in the kernel datapath, four

monitoring designs are proposed, which differ in multiple aspects, including interaction be-

tween the monitoring and forwarding functions, the placement of the monitoring module

(Challenge 1), the stats collection data structures and algorithms (Challenge 2). Beyond
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Figure 2.1: The OVS architecture

these, we also develop an eBPF-based monitoring framework that runs in parallel and in-

dependently with OVS (Challenge 3). In the following sections, we delve into the details of

each specific design following a brief overview of UMON.

2.3.2 Recap of UMON

Figure 2.2: UMON architecture

As introduced in Section 2.3.1, the monitoring programmability of UMON is facilitated
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through the introduction of an independent monitoring table in the userspace daemon.

The overall architecture of UMON is depicted in Figure 2.2. Comparing this figure with

Fig. 2.1, we can observe that UMON preserves the original architecture of OVS. It simpli-

fies the monitoring design by only instrumenting the OVS userspace module, leaving the

kernel datapath untouched. Specifically, the monitoring table maintains rules that monitor

specific TCP traffic, such as TCP SYN packets, or/and collects subflows in the subflow

tables. Besides, the monitoring table provides APIs for the controller to install and up-

date monitoring rules via an extended OpenFlow protocol. UMON performs monitoring

functions by chaining the monitoring table with the forwarding pipeline in the userspace.

To support the user-defined monitoring granularities, the forwarding and monitoring flow

rules are compiled together to generate cache entries in the kernel. For example, a flow rule

forwards packets destined to host B to port 1 while the monitoring rule needs to collect

the packet/byte counts originated from host A. UMON combines the two rules to generate

a more fine-grained rule that forwards packets with source IP of A and destination IP of

B to port 1 instead. Following this design, an incoming packet with (srcIP=C, dstIP=B)

cannot find a match in the kernel cache and will raise a flow miss that needs to be sent

to the userspace for further processing. As aforementioned, due to the lack of visibility in

the userspace, flow statistics need to be properly populated from the kernel space to the

userspace flow table. In the meanwhile, the flow stats in the monitoring table should also

be updated. In UMON, this credit logic is piggybacked in the revalidator thread of OVS

because it maintains the flow statistics periodically. As in the above example, the reval-

idator threads polls the kernel space for packet/byte counts in the cached flow entries and

aggregates the micro-flows by different fields, e.g., dstIP for the flow table and srcIP for the

monitoring table.

The downside of UMON is that the kernel flow table might get inflated with a vast

amount of fine-grained flows during peak traffic. Furthermore, a significantly larger amount

of flow misses are generated, thereby, both handler and revalidator threads will potentially

experience much heavier workloads. On the other hand, in UMON, the monitoring packets
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are reactively collected instead of proactively investigated in the kernel space. Therefore,

the latency caused by monitoring interruptions will be reduced. Moreover, UMON does not

require any modifications in the kernel, thus it could be easily ported to other edge devices

and platforms, such as DPDK and NetFPGA. More details are discussed in [10].

In this study, we only use UMON as a comparison against the other designs. These de-

signs, including UMON, embody different trade-offs between resource (e.g., CPU, memory)

consumption, monitoring efficiency, forwarding efficiency (throughput and latency). One

has to strike a balance among these considerations. In the following, we discuss the specific

design considerations in greater detail.

2.3.3 Design of Flow Capture (FCAP)

The added monitoring capability inevitably introduces some workload to the OVS and can

affect the forwarding performance. Such effect depends primarily on where the monitoring

functions are placed. Intuitively, a separate monitoring function in the userspace provides

better isolation. However, (1) the userspace agent does not have enough visibility of the

flows in the fast path since only certain packets will traverse the userspace pipeline; (2)

the collection of monitoring stats should be prompt to preserve accuracy. Based on these

considerations, we propose to build a separate monitoring phase in the kernel datapath in

OVS.

To guarantee the accuracy of monitoring tasks, we need to maintain statistics of all the

related packets efficiently. The micro-flow information is more preferable than the mega-

flow information because monitoring tasks often have dynamic granularity requirements and

micro-flows simplify the aggregation operations. Thus, we first design two different schemes,

FCAP (Flow CAPture) and SMON (Sketch based MONitoring), to collect micro-flows. In

our current designs, we use 6-tuples (source/destination IP addresses, source/destination

ports, protocol and TCP flags) to represent each micro-flow.

Fig. 2.3 shows the architecture of FCAP and SMON. In this figure, since userspace

pipeline is similar as UMON, the forwarding pipeline in the userspace is omitted here for
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Figure 2.3: FCAP/SMON architecture

clarity. For both FCAP and SMON, we introduce an additional kernel filter table that

classifies packets based on the user-defined monitoring tasks. The workflow of FCAP is

described in Algorithm 1. Once the packet is determined to be relevant to a monitoring

task (line 1), the 6-tuple information will be stripped off and kept in the custom 6-tuple

flow stats tables (line 5-8).

However, the way for FCAP and SMON to store such information is different. FCAP

employs a straightforward mechanism by storing the 6-tuple flow stats in a hash table.

Linked lists are used to resolve hash collisions, in order to maintain full accuracy. With the

hash index, the monitoring thread scans through the linked list to find the flow entry with

the same 6-tuple identifier as the incoming packet(line 4). Due to its ability to preserve the

complete 6-tuple information, the aggregation operations required by monitoring tasks are

simplified. Furthermore, the collected statistics are accurate without any loss.

As illustrated in Fig. 2.3, the monitoring pipeline consists of two stages, including a

kernel filter table and a 6-tuple table. Only packets finding a match in the filter table are

counted towards the latter. The entries in the kernel filter table are populated from the

userspace monitoring table. Note that the kernel table differs from the userspace table

from two aspects. First, the kernel table employs longest prefix matching to find any rule

that matches against the header. Instead, the monitoring rules in the userspace table are
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matched against one by one since the monitoring rules may overlap. Secondly, it is not

necessary to maintain stats of the headers in this table.

To aggregate the collected 6-tuple flows, we implement a thread that employs similar

mechanism with that of the revalidator thread in OVS [34]. The thread retrieves the flow

stats from the 6-tuple stats table at fixed time intervals and updates the counters associated

with the rules in the userspace monitoring table. The credit function is implemented in a

similar way as UMON, which credits both flow stats and subflows to the monitoring table.

To enhance the efficiency, we further cache the matching results of the 6-tuple information

with an extra hash table, where entries expire with the default timeout ofproto max idle

value.

Algorithm 1. Input: FlowStatsTable,flowTuple

1: isMonitored ← LookupMonitorFilter(flowTuple)

2: if isMonitored = True then

3: hash ← Hash(flowTuple)

4: bucket ← FindBucket(FlowStatsTable, hash,flowTuple)

5: if bucket 6= null then

6: UpdateFlowStats(FlowStatsTable, bucket ,flowTuple)

7: else

8: InsertFlowTuple(FlowStatsTable, hash,flowTuple)

9: end if

10: end if

2.3.4 Design of Sketch based Monitoring (SMON)

However, highly accurate statistic is not always affordable and also sometimes may not

be necessary. Inspired by previous work, sketches have great potential in reducing memory

consumption on end hosts. Sketches are space-efficient probabilistic data structures that are

extensively used in streaming applications to process and store summary information. Ex-

amples include bitmaps, bloom filters, and count-min sketch, which serve diverse purposes.

They provide provable guarantees on the storage usage and error bounds. In previous work,
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sketches have been used for traffic monitoring in hardware network devices, where memory

is a primary concern. Nonetheless, the performance of sketch monitoring built into soft-

ware entities remains unexplored. Intuitively, to achieve higher memory efficiency, sketches

involve more complex computation logic, e.g., more hash computations, to compress the

memory. To investigate the trade-offs between memory/CPU consumption and monitoring

accuracy, we propose SMON, a sketch-based mechanism to maintain the compressed 6-tuple

flow information. As just mentioned, many research works have focused on utilizing various

sketch mechanisms to perform monitoring [35–38]. Among all existing solutions, the bloom

filter has a strong space advantage over other data structures. However, the primary draw-

back of bloom filter is that it does not store the data elements themselves. Therefore, we

cannot retrieve the item based on its key, which limits the capability to collect subflows.

Goodrich et al. proposed invertible bloom lookup tables (IBLT), which consists of three

components in each bucket to store a key/value pair and the corresponding count [14]. In

this way, the 6-tuple flow IDs that are hashed into the same bucket are XORed and stored

in a single bucket, as depicted in Algorithm 2. Instead of using linked lists as in FCAP,

flows that fall into the same bucket are compressed in order to save memory space (line

4-6). In the user space, a customized thread periodically retrieves the bloom filter from

the kernel datapath via Netlink socket interface and recovers all flows from the sketch.

The size of the sketch structure is adjusted according to the estimated number of flows in

each time interval to guarantee successful decoding of flows at a high rate while ensuring a

minimum amount of memory usage. The detailed decoding process is explained as follows.

It iteratively finds the elements in the bloom filter that contain a single flow and remove

its stats from all the other encoded cells that the flow is hashed to, until all the buckets

are decoded. Ideally, if the size of the bloom filter is sufficiently large, and exported to the

user space at a high frequency, all flows could be successfully recovered. In a cloud setting,

where OVSes are deployed at the network edge, each switch only sees a moderate amount

of flows, indicating that we can achieve a high decoding rate with a moderate amount of

memory. Apparently, the flow decoding time grows with the size of the sketch and the
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number of flows in each measurement epoch. Similarly with FCAP, the decoded flows are

aggregated into in the user space monitoring table. Besides, the filter table in SMON has

the same designs as FCAP. Later we will show in Section 2.4 that with a small amount of

memory consumption, we manage to preserve highly accurate statistics.

Algorithm 2. Input: IBLT ,flowTuple

1: isMonitored ← LookupMonitorFilter(flowTuple)

2: if isMonitored = True then

3: foreach k ∈ [1 ..H ] do

4: hk ← Hashk(flowTuple)

5: if IsNewFlow(flowTupe) then

6: CompressFlowID(IBLT , hk ,flowTuple)

7: end if

8: UpdateFlowStats(IBLT , hk ,flowTuple)

9: end for

10: end if

2.3.5 Off-path Designs of FCAP/SMON

Figure 2.4: Off-path FCAP/SMON architecture

The intuitive designs of FCAP and SMON integrate monitoring logic into the normal
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packet forwarding path in OVS kernel datapath, thereby are called on-path designs. Such

on-path designs introduce extra processing delay to the OVS forwarding, since monitoring

usually requires more complicated processing logic than forwarding, which may further

reduce the forwarding throughput.

Figure 2.5: Lock-free single-producer single-consumer circular buffer.

To reduce the negative impact, we further embrace a buffering mechanism in order to

take the monitoring function off the forwarding path. By using a ring buffer, we aim to

decouple the monitoring functions from the forwarding path. We consider this mechanism

for both FCAP and SMON, and thus design off-path FCAP and off-path SMON.

The overall architecture of off-path designs is demonstrated in Fig. 2.4. The ring buffer is

conceptually a circular FIFO queue with pre-defined size. The ring buffer has two pointers,

head pointer for the producer thread and tail pointer for the consumer thread, as depicted

in Fig. 2.5. As long as the distance between the two pointers does not shrink to zero nor

expand to the full buffer size, both the producer and the consumer could operate on the

data in the queue. In our case, the forwarding process is the producer by making a copy of

the incoming packet header and storing it to the buffer, while the monitoring thread, as the

consumer, fetches the headers for further processing. Therefore, the ring buffer provides a

communication channel for the asynchronous interactions between the two functions.
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In our implementation, to minimize the performance overhead, we employ a lock-free

mechanism to write to the ring buffer with a small probability of overwriting unprocessed

data. In this way, forwarding will not be delayed if the monitoring thread cannot keep

up with the forwarding process. While reading will be blocked if the buffer is empty, this

aims to guarantee the high performance of the forwarding function by making constant-time

operations. The lock-free nature helps to ensure that no waiting is involved in adding or

deleting data in the buffer. Since we employ overwriting to handle full queues, the collected

statistics might not be highly accurate. In order to achieve exactly accurate measurement

results, the ring buffer has to be sufficiently large in order to keep up with the ever-increasing

packet rates and flow bursts. These will be evaluated in our experiments.

In practice, with the built-in support for cpuset in Linux kernel, one can confine processes

to certain processors and memory node subsets so that the monitoring thread and the

forwarding thread do not compete for CPU resources. Such optimizations are feasible and

practical for data center edge devices where abundant computing resources are available.

2.3.6 eBPF-based Monitoring

eBPF was originated from BPF, the Berkeley Packet Filter. BPF allows to capture and filter

network packets that match specific rules, where filters can be implemented as programs

and run on a register-based virtual machine. eBPF extends the support to 64-bit registers,

among others, and represents an effort to make programmable Linux kernel. That is, one

can run sandboxed programs in the Linux kernel without changing kernel source code or

loading kernel modules, and thus can be leveraged for monitoring and security, etc.

The eBPF code is executed in an in-kernel virtual machine using a custom 64-bit RISC

instruction set, with 11 64-bit registers, a program counter and a 512-byte stack space.

eBPF supports running the code as Just-in-Time compiled bytecode, which is verified by

an in-kernel verifier to guarantee security (e.g., forbidding loops to ensure program ter-

mination and type checks) before loading the code into the kernel. Internally, various

mechanisms enable communication between in-kernel eBPF code and user space processes

25



asynchronously, such as eBPF maps and perf events (FIFO queues). eBPF maps are effi-

cient key-value stores that allow data to be shared within the kernel (i.e., among multiple

eBPF programs) or between the kernel and user space.

TC
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Figure 2.6: Locations of eBPF hooks where monitoring programs can be attached
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Figure 2.7: Design of eBPF-based monitoring framework.

Figure 2.6 illustrates how eBPF can be used for network traffic monitoring. Specifically,

eBPF programs can be attached to different hook points in the networking data path, such as

Traffic Control (TC) or eXpress DataPath (XDP) [39], thereby enabling flexible processing

26



on the intercepted packets. As shown in the figure, ingress traffic can be intercepted in

XDP or TC ingress hooks, while the egress traffic can only be intercepted at the TC egress

hook, as XDP is not available in egress. Furthermore, eBPF programs can also be attached

in the socket layer. Unfortunately, this does not meet the need of monitoring both local

and non-local traffic. Therefore, for our purpose the best hook point is the TC layer, where

we are able to investigate both ingress and egress traffic. In the following, we discuss the

specific design details of our eBPF-based monitoring framework.

eBPF-based Monitoring Framework. As illustrated in Figure 2.7, the framework

consists of multiple components, including a monitoring pipeline in the kernel space and

a monitoring application in the userspace. The communication between the kernel and

user applications is facilitated through a shared eBPF map that maintains the real time

traffic statistics. The userspace application retrieves the flow stats from the map and clears

the entries at fixed time intervals. Similar to the FCAP/SMON designs, the interval is

determined based on the users monitoring demands.

As discussed above, our tc program is attached at the ingress and the egress of a network

interface, with full visibility of all inbound/outbound traffic. The eBPF program is executed

and the flow stats are updated for each incoming packet. The monitoring workload varies

along with the number of hosts to be monitored. For each monitored host, we need to

track the number of packets for each 6-tuple flow associated with it. To filter out the hosts,

each incoming packet has to go through a monitoring filter before it is counted towards the

flow status hash table. More specifically, the monitoring filter examines the destination IP

address of the packet and filters out packets that are not monitored (line 12). Only packets

that find a match in the filter will be counted towards the following flow stats hash table

(line 13-14). The workflow of eBPF monitoring is outlined in Algorithm 3. Intuitively,

such processing may introduce extra performance penalty, which comes in the form of

map lookups and updates. In this work, we will conduct in-depth investigation about the

performance of the eBPF-based monitoring module and compare it to the aforementioned

monitoring alternatives.
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Algorithm 3. 1: procedure eBPF Userspace Component

2: LoadBPFProgram()

3: PopulateMonitorTable()

4: while true do

5: Sleep(T )

6: flowStats ← BPFMapRead()

7: BPFMapClear()

8: end while

9: end procedure

10: procedure eBPF Kernel Monitoring

11: flowTuple ← ParseHeaders(packet))

12: isMonitored ← BPFMapLookup(monitorTable,flowTuple)

13: if isMonitored = True then

14: BPFMapUpdate(flowStatsTable,flowTuple)

15: end if

16: end procedure

To understand the root cause of the processing overhead, we first examine the underlying

implementation of the eBPF maps. Currently, eBPF is featured with fifteen types of maps

to maintain the states across the invocations of the eBPF program and share data among

multiple programs or between the kernel and the user space. Two of the most commonly

used types are hash maps and arrays, while the other variants serve more complex purposes.

As aforementioned, our eBPF-based monitoring design involves multiple data structures,

including a monitoring filter and a key-value store for recording flow stats. The design of

the data structures for each functional component is critical since our eBPF kernel program

lies in the packet processing path and the incurred overhead directly affects the network

throughput/latency. In the following, we discuss the designs in more details.

Similar to FCAP/SMON, the monitoring workload is specified in terms of the set of

the destination IP addresses of the monitored hosts. BPF ARRAY and BPF HASH can

both be used for this purpose, while BPF HASH achieves better performance due to its

hash-based design. Therefore, our monitoring filter is implemented based on BPF HASH,
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which can be populated with the host IP addresses from the user space. Furthermore,

it can be updated at runtime in accordance with changes in the monitoring workloads.

Specifically, in our userspace program, the hash map is initialized with the IP addresses as

keys whereas the value is set to 1, before it is loaded into kernel. For each incoming packet,

if the destination IP address is present in the hash table, the corresponding flow stats will

be updated; otherwise, control flow will follow the original packet processing path. In this

way, the host filtering stage can be performed in O(1) time.

On the other hand, to maintain the 6-tuple flow stats information, a hash map (BPF HASH)

is used to store the key/value pairs, where a key represents the flow identifier (e.g., 6-tuple)

and a value refers to the packet/byte counts per flow. Since eBPF maps are instantiated

inside the kernel, it is critical to keep the size within a reasonable limit to avoid the ex-

haustion of kernel memory. In the meanwhile, to achieve the desired monitoring accuracy,

the actually requested size should be determined based on an sensible estimation of the

total number of flows in the monitored network. By default, BPF HASH has 10240 entries.

Since in our monitoring workload, the total number of flows far exceeds this value, the table

size has to be explicitly specified during initialization. Unfortunately, eBPF map cannot

be resized after it is created. In the latest kernel implementation, eBPF hash maps use

pre-allocation by default. The maximum memory size is bounded by the max entries de-

fined by the userspace program during map initialization. Once the map is full, insertions

of new keys will fail in order to make sure that the eBPF programs will not exhaust kernel

memory. In other words, an underestimated flow count will result in inaccurate measure-

ment results. Therefore, max entries must be carefully chosen in order to accommodate all

6-tuple flows. The actual parameter setting is workload-dependant and will be discussed in

detail in Section 2.4.

As a consequence, the performance penalty is mostly incurred by the hash map related

operations, including hash computation and hash map updates. Moreover, the exact amount

of overhead introduced by our monitoring module should be directly correlated with the

actual monitoring workload. A closer scrutinization of the underlying implementation of
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the eBPF hashmap APIs further reveals that the kernel hash table is consistently reused.

In the eBPF hashmap implementation, linked lists are used to resolve hash collision. Due

to this design, the measurement results of the flow stats are accurate as long as there is no

packet loss. In the meanwhile, the underlying implementation is optimized for lookup speed.

Given the max entries, the hashmap size is always set to the next power of 2. The total

memory allocation is n buckets * bucket size + max entries * element size, where n bucket

is actual hashmap size and max entries is the maximum number of entries estimated by the

user. We will conduct experiments to measure and compare the throughput/latency under

various monitoring workloads. A detailed analysis and comparison with other monitoring

designs will be presented in our evaluations.

2.4 Performance Evaluation

Our test-bed consists of three Lenovo ThinkServer machines equipped with Intel Xeon 4-

Core 3.20GHz CPU and 4GB memory that run Ubuntu 14.04. One machine is dedicated to

run the instrumented Open vSwitch (OVS). The second machine serves both as the packet

generator and the data sink that receives the data from the OVS. These two machines are

connected with two 10Gbps Ethernet cables. As shown in [40], the native OVS can achieve

∼3Gbps switching speed. Thus 10G NIC is sufficient to make it not the bottleneck. We

host the packet generator and the data sink on the same machine to facilitate the delay

and throughput measurement. The third machine serves as the SDN controller running

Ryu [41]. We perform the trace driven evaluation using a CAIDA trace [42] that contains

about 30 million packets. The packet trace is replayed using TCPReplay [43] and is fed into

the instrumented OVS. The packets are routed and measured by the OVS, and received by

the data sink.

2.4.1 FCAP vs. SMON vs. eBPF

In this section we compare the performance of all the monitoring designs. For FCAP and

SMON, both on-path and off-path versions are considered. This measurement is conducted
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under a packet rate of 160 Kpps with 1400 hosts being monitored. We examine the perfor-

mance in terms of forwarding latency incurred in the kernel data forwarding path, kernel

memory usage, and measurement accuracy. The results are averaged over 10 runs and

reported in Table 2.1.

Table 2.1: Comparison of different monitoring designs.

Kernel Monitoring Design eBPF
On-Path Off-Path

SMON FCAP SMON FCAP

Forwarding Latency 344ns 848ns 515ns 182ns 182ns

Measurement Accuracy 100% > 99% 100% > 99% 100%

Memory Usage 396KB 96.97KB 149.58KB 2.116MB 2.168MB

The kernel data-path forwarding latency measures the extra delay introduced by the

monitoring modules in the kernel datapath. For off-path FCAP and SMON, we only mea-

sure the delay introduced by the ring buffer. The processing delay of the actual stats

collection by the monitoring module is ignored since they work off-path. We also measure

the overall performance in Section 2.4.3 which shall reflect off-path modules’ impact.

As shown in Table 2.1, in general, on-path FCAP/SMON incur longer delays than their

off-path counterparts. It takes 182ns to put each packet into the ring buffer for off-path

monitoring, while on-path SMON and on-path FCAP incur 848ns and 515ns of delay,

respectively. In addition, the eBPF processing takes 344ns for each packet. Apparently,

the off-path design is the most efficient among all since it only involves a single memory

copy operation. Comparatively, on-path designs consume a significantly amount of CPU

cycles from hash computation and counter updates, resulting in much longer processing

delays. Among the three on-path designs, eBPF outperforms the other two due to its highly

performant underlying implementation. As discussed in Section 2.3.6, eBPF hashmap size

is kept sufficiently large in order to minimize the length of the linked lists. Thereby, the

average per-packet latency is considerably smaller than FCAP. Compared to eBPF and

FCAP, on-path SMON incurs much long processing delay since sketch encoding requires

31



multiple hash computations and memory access to multiple counters for each incoming

packet.

In terms of memory consumption, on-path SMON consumes less memory (96.97KB)

than on-path FCAP (149.58KB) and eBPF (396KB). By utilizing sketches, SMON is

the most memory-efficient by compressing multiple flow information into a single sketch

counter at the cost of slight accuracy degradation. Between FCAP and eBPF, the latter

requires more memory usage due to its large hash table size and the memory pre-allocation

mechanism. Compared to the on-path designs, off-path FCAP and SMON consume the

largest amount of memory since they require a ring buffer to store all incoming packets.

We next examine if the use of ring buffer and sketch reduces the measurement accuracy.

As shown in Table 2.1, the results show that the off-path measurements achieve comparable

accuracy as the on-path measurements as long as the ring buffer is sufficiently large to

accommodate incoming packets. We find that in order to avoid packet losses, for a packet

rate of 160 Kpps, the memory allocated for the ring buffer must be over 2MB. The size of the

ring buffer can be configured from the user space through the Netlink interface according to

the estimated packet rate and the desired accuracy. The measurement accuracy of SMON is

over 99%, which suggests the use of sketches does not lead to large accuracy loss. Moreover,

on-path/off-path FCAP and eBPF provide fully accurate measurement results since they

both employ linked lists to resolve hash collisions in their implementation.

2.4.2 Impact of Monitoring Workloads

Here we examine the impact of monitoring workloads on the CPU utilization and memory

usage of instrumented OVSes. We vary the number of monitored hosts, i.e. IP addresses,

which directly leads to a varying number of monitored micro-flows, as listed in Table 2.2

and Table 2.3. We also experiment with two different packets rates, 80 Kpps and 160 Kpps,

replayed by TCPReplay to represent different OVS switching workloads.

Figure 2.8 and Figure 2.9 depict the CPU utilization overhead caused by the monitoring

activities against the number of monitored hosts at two packet rates. The reported results
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Table 2.2: Memory usage (MB)(packet rate = 160 Kpps).

#hosts 200 400 600 800 1000 1200 1400 1600

#flows 346 703 1067 1402 1698 2082 2550 3043

off-path SMON 2.039 2.049 2.063 2.079 2.087 2.100 2.116 2.132

off-path FCAP 2.075 2.091 2.107 2.118 2.133 2.149 2.168 2.191

eBPF 0.105 0.105 0.160 0.211 0.262 0.324 0.387 0.449

UMON 4.556

Table 2.3: Memory usage (MB)(packet rate = 80 Kpps).

#hosts 200 400 600 800 1000 1200 1400 1600

#flows 217 487 641 811 980 1219 1456 1712

off-path SMON 1.347 1.358 1.360 1.366 1.371 1.379 1.387 1.395

off-path FCAP 1.386 1.393 1.402 1.410 1.418 1.426 1.438 1.469

eBPF 0.043 0.063 0.121 0.152 0.184 0.215 0.246 0.281

UMON 1.589

represent the total CPU utilization of all related threads including handlers, revalidators,

and new threads created for monitoring purposes. In FCAP and SMON, we create a user-

space thread called collector to collect the flow stats from the data structures exported from

the kernel datapath at fixed time intervals. Moreover, for off-path FCAP/SMON, there is

a kernel thread that retrieves packets from the ring buffer. Differently, eBPF monitoring

threads are not incorporated into OVS, so we measured their CPU usage separately. In all

experiments, the stats collection interval is set to 0.5 second.

In UMON, the flow aggregation functionality is integrated into the existing revalidator

threads. CPU utilization of the two on-path designs is not shown in the figure since the

implementation of the monitoring modules is similar to their off-path counterparts, resulting

in similar CPU utilization.

As illustrated in Figure 2.8 and Figure 2.9, the CPU utilization overhead increases as
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Figure 2.8: CPU overhead under various monitoring workloads with packet rate 160 Kpps.

the number of monitored hosts and the packet rate increase. In addition, off-path FCAP

incurs the least amount of CPU utilization overhead, while eBPF incurs comparable but

slightly larger CPU utilization overhead in the average case. The difference between the

two is attributed to the different underlying implementation schemes for the communication

between kernel and userspace. As discussed in Section 2.3, in FCAP and SMON, the

kernel/userspace communication is facilitated via the Netlink socket interface, following the

same communication mechanism as OVS. Comparatively, with eBPF, at fixed time intervals,

the entries are accessed and cleared from the userspace via system calls. Compared to

FCAP and eBPF, SMON requires complex sketch decoding operations performed by the

collector thread, resulting higher CPU utilization. The overhead introduced by UMON is

significantly larger than those of off-path FCAP/SMON, which is mainly due to two reasons.

First, since UMON installs fine-grained forwarding rules in the kernel flow table, there are

more frequent packet misses such that its userspace handler threads are busy with handling
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Figure 2.9: CPU overhead under various monitoring workloads with packet rate 80 Kpps.

upcalls. Second, with a large kernel flow table, the revalidator threads in UMON are also

heavily loaded with updating the flow stats into the userspace monitoring table. On the

contrary, in off-path FCAP/SMON, the kernel flow table only contains two flow rules in

our experimental setup, thus imposing negligible CPU overhead to the userspace handler

and revalidator threads. The CPU utilization in these two cases is mainly attributed to the

flow stats aggregation performed by our custom collector thread.

We next evaluate the memory overhead for monitoring. Since on-path FCAP/SMON

use less memory than their off-path counterparts, we focus on the two off-path schemes and

compare them to UMON.

The results are shown in Table 2.2 and Table 2.3 for two different packet rates. The

memory size in the table is the amount of memory used in the kernel for the monitoring

purpose. As the memory usage dynamically changes with incoming flows for all schemes, we

take the peak usage in comparison. The memory consumption in the off-path FCAP/SMON
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is caused by two data structures: a kernel ring buffer that caches incoming packets, and

the actual data structures (i.e., hash table in FCAP and sketch in SMON) to maintain the

flow stats. As previously mentioned, sufficient amount of memory needs to be allocated

to the ring buffer in order to avoid packet losses. The experimental results show that

off-path FCAP consumes about 3% more memory than off-path SMON. For eBPF, the

memory consumption is mostly incurred by the BPF map to record flow statistics. For

the sake of memory pre-allocation, the userspace program needs to specify the approximate

maximum number of flows in each time interval at map initialization. Since this number

varies across workloads and packet rates, the memory consumption of eBPF also varies

accordingly. In Table 2.1, it indicates that eBPF requires more memory than on-path

FCAP, largely due to the underlying eBPF hashmap implementation. UMON uses much

larger amount of memory than all other monitoring designs. This is because in order to

support comparable measurement accuracy, the kernel flow table in UMON has to maintain

an individual forwarding entry for each 6-tuple flow. Consequently, the memory usage

greatly exceeds the other solutions.

2.4.3 Switching Throughput and Latency

To study the throughput and latency of our designs under high packet rates, we use DPDK

based packet generator MoonGen for traffic generation and measure the maximum achiev-

able throughput for each measurement framework when there is no packet loss and the

monitoring stats are highly accurate. Since only those packets with a match in the moni-

toring table will be counted towards the hash table/sketch, the ratio of monitored packets

to the total number of packets directly affects the throughput of the entire system. To

study this impact, we conduct experiment by varying the number of hosts in the kernel

space monitoring table. The throughput and latency results under different workloads are

shown in Figure 2.10 and Figure 2.11, respectively.

First and foremost, the switching throughput of UMON is the lowest among all monitor-

ing designs, as can be seen in Figure 2.10. This could be explained by the fact that UMON
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Figure 2.10: Throughput(Mpps) of different schemes under various monitoring workloads.

follows the traditional design of OVS kernel datapath, which requires the first packet of

each new flow to traverse the slow path through the userspace. The userspace of UMON

introduces an extra monitoring table in the forwarding pipeline. The forwarding rule and

monitoring rule are combined to generate a more fine-grained flow that would be installed

into the kernel cache table. Due to this design, an enormous amount of flow cache misses

are introduced when we need to collect the flow statistics for each 6-tuple flow. On-path

FCAP/SMON both outperform UMON but lag behind compared with eBPF and their

off-path counterparts. As explained previously, this is because the monitoring modules (fil-

tering, stats collection) are placed in the switch forwarding path. Regarding the on-path

versions, FCAP achieves higher throughput than SMON, since the latter requires complex

sketch encoding operations, while the former implements more light-weight hash tables.

On the other hand, off-path FCAP/SMON achieves higher throughput because monitoring

logic is decoupled from forwarding and the overhead only involves the memcpy from the
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Figure 2.11: Average latency(ns) of different schemes under various monitoring workloads.

ring buffer. This also explains why FCAP and SMON achieve the same throughput in the

off-path paradigm. Finally yet importantly, despite the fact that eBPF and on-path FCAP

both are on-path and implemented based on hash tables, eBPF achieves slightly better

performance than on-path FCAP as a result of its optimized hash table implementation

within the Linux kernel. Due to the large size of the hash table, it has a shorter linked

list for each bucket in the hash table in the average case, resulting in higher efficiency

for hash lookups/updates. Overall, from the network performance perspective, off-path

FCAP/SMON is a preferable solution among all the designs.

Following the same experimental methodology, we also measured the average switch-

ing latency and investigated the impact from various monitoring workloads. Figure 2.11

reveals that off-path designs incur minimum delay, while UMON significantly degrades the

forwarding efficiency. Further, the switching performance worsens along the increase of

the workloads. Likewise, eBPF yields smaller latency than on-path FCAP/SMON for the
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same reason as throughput. Off-path options outperform all other alternatives with more

memory consumption. More specifically, the memory required (15MB ring buffer) scaled

linearly (7.5x) with the increase in throughput to 1.2 Mpps from our earlier experiments at

160 Kpps. We conclude roughly one MB is needed for each 80 Kpps of throughput.

2.5 Discussion

Table 2.4: Comparison of different frameworks.

Designs eBPF
On-Path Off-Path

UMON
SMON FCAP SMON FCAP

CPU Overhead low moderate low moderate low high

Memory Consumption low low low moderate moderate high

Measurement Accuracy precise high precise high precise precise

Forwarding Latency high high high low low high

Implementation Complexity low high high high high low

Based on the evaluation results, it is clear that building monitoring capabilities into

software entities on the edge servers, either software routers or independent monitoring

modules, is feasible without sacrificing significant performance overhead. Nevertheless, each

design bears its own pros and cons. Although it is a seemingly daunting task to determine

which design achieves the overall best performance, we have attained several insights, as

sketched in Table 2.4, into the design of software-based measurement framework.

First, UMON requires the least implementation efforts with no modifications to the

OVS kernel datapath. However, it derives fine-grained forwarding rules by combining the

forwarding and monitoring functionality, which leads to the heaviest CPU load in the user

space. In addition, it necessitates significantly more memory consumption.

Second, FCAP outperforms both SMON and eBPF in all aspects except that it needs

to instrument OVS kernel code. Particularly, on servers with sufficient memory resources,

off-path FCAP is better suited than its on-path version, since it introduces minimal impact
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on OVS throughput and latency, among all other alternatives.

Third, SMON is the most memory-efficient option, owing to the strong space-efficiency of

bloom filter sketches. Although sketches have proved to be efficient in memory-constrained

hardware devices, it turns out concerns have shifted away for building monitoring logic into

the end hosts. Because of its high CPU utilization, it is not ideally suited for commodity

servers with abundant memory resources.

Fourth, eBPF-based monitoring design achieves comparable performance with on-path

FCAP from the perspective of CPU utilization, measurement accuracy and switching per-

formance. In the meantime, it requires minimal maintenance efforts since it executes in-

dependently of OVS and can be configured and updated without interrupting the system

operations. It necessitates more memory than on-path FCAP due to the difference in the

underlying hash table implementation. Nevertheless, its overall performance falls behind

the off-path designs since the eBPF program lies in the packet processing path.

Since all these schemes are designed for software defined measurement, we can see that:

In terms of the switching throughput and latency, off-path designs offer the best per-

formance, regardless of the monitoring algorithms, since throughput and latency are only

affected by the ring buffer write operations. Without ring buffers, on-path FCAP/eBPF

achieve comparable throughput/latency, which demonstrate that hash tables could suffice

in a software monitoring system;

In terms of implementation complexity and portability, eBPF is the best bet since

monitoring programs could be loaded and updated at runtime, while OVS-embedded designs

require to recompile and reinstall the OVS binary whenever there is an update.

By comparing the results across all the experiments, we observe that

• by decoupling the monitoring functionality from the kernel forwarding path, off-path

schemes can achieve better switching performance than on-path schemes in terms of

network throughput latency, while achieving the same measurement accuracy at the

cost of higher memory consumption.

• in the design of flow stats collection module, our results demonstrate that hash table
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is a more efficient solution compared to sketch due to its lower computational cost,

which is a major factor in the evaluation of CPU utilization.

While there is no scheme that outperforms in all aspects, building monitoring frame-

works into edge servers requires us to carefully examine the interplay of multiple key fac-

tors, including memory and CPU consumption, measurement accuracy, impact on switch-

ing throughput and latency, maintenance complexity, and so on so forth. Our empirical

study demonstrates that hash tables are a better fit than sketches in a software monitoring

framework despite of the strong memory-efficiency and wide utilisation of the sketches in

hardware environment. The difference lies in the fact that hardware devices have much

tighter memory constraints than commodity servers. In terms of the placement with re-

spect to the forwarding pipeline, off-path outperforms on-path since the latter introduces

noticeable latency to the traditional packet forwarding pipeline. Such impact becomes even

more evident under high packet rate.

2.6 Chapter Summary

Software defined networking has provided more flexibility for network measurement and

monitoring, and enabled software defined measurement. In this work, we have investigated

various design options to implement software based measurement using Open vSwitches.

However, enabling monitoring capability on the widely deployed OVSes in data centers

has to take into a number of factors into consideration, including resource consumption,

impact on the forwarding, measurement accuracy, implementation complexity, portability

etc. We have empirically explored the various trade-offs among these factors by designing,

implementing, and evaluating four different monitoring schemes and quantitatively shown

their advantages and disadvantages. These results provide insightful guidelines for conduct-

ing network traffic measurement on the OVS as well as software defined measurement in

general.
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Chapter 3: BotSifter: A SDN-based Online Bot Detection

Framework in Data Centers

3.1 Introduction

Driven by the great success of cloud computing, the last decade have seen the continuous

migration of various services and applications to different cloud platforms. With the flexible

pay-per-use model, more and more end users also rely more and more on the cloud platforms

for their personal storage and computing need [44]. Under this trend, bots and botnets-

as-a-service [45] are no exception: bots and botnets have been one of the most severe

Internet threats underpinned by the economic motive, and recent years have witnessed the

emergence of cloud-hosted botnets [46] largely due to its cost effectiveness and the long-

term availability of the machines in the data centers. Compared to traditional bot machines

which get switched on/off frequently by the end-users, data center hosted bot machines

usually stay online for longer periods of time [46] and generate more attack traffic (and

profit). It was previously reported [47] that cybercriminals have managed to install DDoS

botnets in AWS by exploiting a vulnerability in Elasticsearch [48], an open source search

engine that is often deployed in cloud environments such as Amazon EC2, Microsoft Azure,

Google’s Compute Engine. Likewise, botnet command and control software has previously

been found to be hosted in Dropbox [49]. Apart from these particular cases, they show

that cybercriminals are now breaching commodity data centers, seeking the values of cloud

infrastructures to host the botnets.

Cloud-hosted bots (and thus truly botnets-as-a-service) are more harmful than their

traditional counterpart, yet accurate and expeditious botnet detection schemes on cloud

platforms are not on the horizon yet because of the following challenges. First, since the
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cloud is a multi-tenant environment, the detection of bots should be fast (e.g., at runtime to

prevent further damage) and as non-intrusive as possible so that the detection would have

no or trivial impact on the normal data center applications. Second, given the large traffic

volume in a data center, such a detection scheme must be scalable, capable of handling tens

or hundred gigbit line rate. Third, the detection must be very accurate, since compared

to the end user environment, the cost of misclassifying a bot process or connection (and

subsequently closing/blocking the connection) in a data center could be much larger or even

disastrous.

Some of the early-day bot detection schemes [50] [51] rely on deep packet inspection,

which suffer from high resource demands and ineffectiveness against encrypted botnet traf-

fic. Some others [52–56] focused on host traffic and bot behavior analysis. These schemes

became less and less effective since contemporary botnets are constantly evolving to circum-

vent the advanced detection mechanisms [57–61]. For example, most botnets abondoned

the traditional IRC based Command and Control (C&C) channels and embrace HTTP or

P2P for communications.

To deal with such challenges, lately more schemes have been built by taking advantage

of the machine learning (ML) techniques for detecting bot activity and/or command-and-

control (C&C) channels [52,53,55,56,61,62]. Such schemes often demand intensive resources

to capture the incoming and outgoing traffic information, e.g., a centralized traffic moni-

toring facility at the network gateway or the firewall, and then run the detection after the

traffic features are extracted. These schemes may work for a small network with medium or

low traffic volume, but they are hardly effective in detecting the cloud-based bots because

(1) they demand a lot of extra resources for effective traffic monitoring, which is hardly

scalable considering the huge traffic volume in data centers, (2) their accuracy varies with

the used machine learning model and the chosen features, and they are often incapable

of identifying unseen bots without understanding bot invariant characteristics (e.g., C&C

channels), and (3) they provide little understanding on different phases of bot activities,

which is essential for identifying the malicious intent of bots in their early stages. This is
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however very desirable for data centers in order to prevent further damage.

More importantly, existing ML-based approaches focus on the detection of botnet flows [55,

56]. However, in the detection of cloud-hosted bots, accurate identification of the bots is

more imperative compared to the detection of individual malicious flows. Only after the

bots are identified, the infected VMs could be shut down to prevent future attacks. To our

best knowledge, no prior works focused on the detection of VM-based bots in the cloud.

To this end, we propose to build BotSifter towards a scalable and accurate runtime bot

detection framework in data centers. To be scalable, BotSifter integrates centralized learning

(thus to have a global view of the traffic and centralized intelligence) with distributed

edge-assisted detection by leveraging the software switches in data centers. Due to their

widespread deployment in data centers, software switches (e.g., Open vSwitch) are being

increasingly employed as monitoring devices as they typically reside in commodity servers

with abundant hardware resources. Since they are usually deployed at the edge of the

monitored network and located within close proximity to the end hosts, only relatively

a small amount of traffic flows traverse the switch, rendering it a more scalable solution

for anomaly detection in data centers. Implementing detection at the edge also enables

our system to observe both directions of the traffic, which is an essential prerequisite for

connection based anomaly detection. Moreover, our edge-based detection framework has

the inherent capability of observing the internal attack traffic and the C&C traffic within

the data center network.

To achieve high accuracy, BotSifter not only conducts neural network (NN) based bot

activity detection, but also conducts the detection of C&C channels in parallel. These de-

tections are further enhanced with local and network wide correlations to minimize false

alarms. Not only detecting the existence of C&C channels, BotSifter is also able to differen-

tiate different communication protocols (i.e., IRC, HTTP, P2P) utilized by the bots so that

custom mitigation mechanisms could be quickly deployed to defend against specific types

of bots. Since the majority of the detection operations in BotSifter are conducted within

the software switches that are instrumented to collect connection features and states on
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the fly, BotSifter is highly efficient in identifying bots without interrupting other network

functions, thus making it a practical solution for the cloud and data center systems. A

prototype of BotSifter is implemented, and the evaluations based on the real-world traces

show BotSifter is highly accurate and efficient in detecting bots utilizing known protocols,

but also bots with customized protocols.

The highlights of BotSifter lies in

• The design naturally utilizes the SDN’s centralized structure to have a global visibility

while distributing most of the detecting load to the network edge to be scalable.

• It builds the monitoring capability in the OVS via an off-path traffic collection design

to minimize the intrusion of traffic monitoring to normal applications.

• It utilizes neural network to detect bot activities, and employs newly designed protocol

specific mechanisms (e.g., self-correlation for P2P) to detect and differentiate different

C&C protocols. The local and network wide correlations further enhance the accuracy

and robustness of the detection.

The remainder of this chapter is organized as follows. Section 3.3 describes the Bot-

Sifter design and section 3.4 sketches its implementation. The evaluation is presented in

section 3.5. We make concluding remarks in section 3.6.

3.2 Background

Open vSwitch Open vSwitch is software implementation of a multi-layer virtual switch

designed to support networking in virtual environments, which are widely deployed in data

centers nowadays. Its major components include a kernel space module and a userspace

daemon. The userspace daemon serves as a full but slow path of forwarding while the

kernel module acts as a forwarding cache. Incoming packets are firstly matched against

the kernel forwarding cache before they traverse the userspace forwarding pipeline. Only

packets without matches in the kernel forwarding table are forwarded to userspace.
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Botnet Lifecycle Generaly, a botnet involves three parties: botmasters (or botherders),

C&C servers, and bots. Botmasters are cybercriminals who are largely driven by economic

profits to infect and recruit compromised hosts by exploiting known vulnerabilities of target

systems. C&C servers are in charge of issuing commands to the compromised machines to

coordinate their activities and receive reports back from them. Typically, the topology of

botnets can be categorized into two types: centralized and decentralized. In centralized

botnets, C&C severs are centralized computers while in decentralized botnets, the compro-

mised machines serve as both bots and C&C servers. According to [63], the lifecycle of a

botnet can be classified into four phases, including formation, C&C, attack and post-attack.

In the formation phase, the botmaster infects the target machine, gains complete access to

the system, runs scripts to install malicious binaries. In the C&C phase, bots communi-

cate with C&C servers to retrieve new instructions. In attack phase, they launch attacks

according to the instructions received from C&C servers. Post-attack phase is mainly for

botnet maintainence. For example, they may download and update their software for more

advanced evasion techniques.

The communication between bots and C&C servers are facilitated by a large variety of

protocols. Among them, the most prominent ones include IRC, P2P and HTTP. Besides,

it is also not a rare case that botnet developers customize their own protocols to leverage

their capabilities of control, which will also be discussed in our work. IRC is the primary

method for botnet control when botnets started emerging a few decades ago mostly because

they are easy to deploy and they allow interactive control of the bots. Along with these

advantages, IRC C&C becomes quite outdated nowadays since it is much easier to detect

and taken down than web-based C&C as well as decentralized protocols. In more recent

botnets, they are more likely to employ HTTP/HTTPS based C&C mostly because there

are more potential methods to hide they command and control messages while traditional

IDS systems are likely to regardd them as normal web traffic. Even worse, modern fast flux

techniques make it even more difficult to track. In a nutshell, HTTP based C&C becomes

much more prevalent for botnet control than the ealier IRC based C&C. Our analysis will
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certainly not skip the IRC based botnet for completeness.

Compared to the above mentioned centralized control schemes, peer-to-peer botnets are

hard to develop but they can provide more stable and robust control network. Our work

mainly focuses on these three types of control protocols. Since the botnets are evolving

and take advantage of stealthy communication techniques in order to evade detection, the

detection of the C&C channels becomes really challenging nowadays.

Cloud-based Botnets. Cloud services refers to services made available to users by cloud

service providers (CSP), ranging from software services, such as databases, to raw compute

resources, such as storage and processing power. Cloud services provide numerous benefits,

including reduced costs for hardware resources, enhanced security for users’ data, simplified

management and maintenance, and so on. Some of the most widely known CSP include

Microsoft, Google, Amazon Web Services(AWS). Along with the benefits, much attention

has been turned to the security of cloud services in recent years. Nonetheless, most of

the research mainly focuses on how to protect the legitimate cloud users from external

attackers. Until recently, there is continuous reports about botnets gradually stepping into

the cloud due to the same reason of how Cloud provides benefits for normal applications.

Compared to traditional botnets, Cloud-based botnets are a lot more cost-efficient and

robust due to the high reliability as well as scalability of the cloud. Particularly, our work

mainly concentrates on the detection of cloud-based botnets by incorporating edge-assisted

detection enabled by the inherent distributed structure of the data centers.

3.3 BotSifter Design

The design of a cloud botnet detection framework that is capable of monitoring thousands of

servers, tens of thousands of Virtual Machines (VMs) running on these servers, and terabit

per second communication among these entities and between the data center and the outside

Internet is extremely challenging. In this work, we explore a machine learning based dis-

tributed online cloud bot detection framework, called BotSifter, that monitors and detects

the bots within a data center. BotSifter takes advantage of Software Defined Networking
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(SDN) architecture widely adopted by the data center, and integrates the centralized Ma-

chine Learning (ML) training with distributed monitoring and detection. The ML based

bot detector is trained at the central controller, and runs distributedly at the cloud servers

with the ML configurations acquired from the central controller. SDN software switches,

e.g., Open vSwitch (OVS), are instrumented with traffic monitoring capability. Both bot

activity detector and bot C&C communication detector are implemented at servers using lo-

cally collected traffic stats. If necessary, the central detector is invoked to detect data-center

wide botnets.

Botnet	  Traffic	  

Data	  Center	  

OpenFlow	  

SDN	  Controller	  
Centralized	  
	  	  Learning	  

Network-‐wide	  
	  	  Correla<on	  
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Deployment	  

Distributed	  	  
	  	  Detec<on	  

OVS	  

VM	  
VM	   VM	  VM	   VM	  

VM	   VM	  VM	   VM	  
VM	   VM	  VM	   VM	  

VM	   VM	  VM	   VM	  
VM	   VM	  VM	   VM	  

VM	   VM	  VM	  

OVS	   OVS	  OVS	   OVS	  OVS	  

Server	   Server	  

Figure 3.1: Overall architecture of BotSifter

The key feature of our design is to leverage the data-center servers and the software

switches running on these servers. The contemporary servers have abundant computational

and memory resources, and the software switches have the full access to the traffic originated

from and destined to the end hosts residing on the servers. Our design philosophy is to

place as many monitoring and detection functionality at the edge servers as possible, while

judiciously utilize the central controller for data-center wide tasks when necessary.

48



The BotSifter architecture is depicted in Fig. 3.1. The central controller is responsible for

ML training, network wide bot detection, and bot mitigation. At individual servers, traffic

features are extracted and recorded by the instrumented software switches, which are then

used by C&C channel detection modules and ML based bot activity detection module.

Below we describe local traffic monitoring, C&C bot detection, ML based bot detection,

and network wide bot detection and mitigation, respectively. The major components to

accomplish these tasks are sketched in Figure 3.2.
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Figure 3.2: BotSifter design: major components

3.3.1 Local OVS Traffic Monitoring

To lessen the impact on software switch’s forwarding speed while efficiently capturing the

traffic stats required by ML bot detection module and C&C detection modules is the main
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design challenge for local OVS based traffic monitoring. OVS maintains a user-space for-

warding pipeline and a kernel space forwarding cache. The majority of the incoming packets

are forwarded by the kernel module, with few packets that does not have the matches in the

kernel being redirected to the user-space. To decouple the monitoring from the forward-

ing, a ring buffer cache, as shown in the bottom of Fig. 3.2, is introduced. Such a design

significantly reduces the monitoring interference to the forwarding.

ML detection module and different C&C detection modules requires different traffic

stats. For instance, ML module uses a traffic feature vector, while P2P C&C detection

keeps track of DNS transactions for each source/destination pair. Multiple hash tables are

employed for efficient lookup and update.

3.3.2 Parallel C&C and Bot Activity Detection

At edge server, BotSifter implements one ML based bot detection module and three C&C

detection modules: HTTP C&C detection module, P2P C&C detection module, and IRC

C&C detection module, respectively. We have the design choice of implementing them inside

the software switch OVS, or on the server but outside the OVS. In addition, if a module

is placed inside the OVS, we need to decide whether the module resides in the kernel or

at user-space. Since P2P and HTTP C&C modules use the connection stats rather than

individual packet info, placing them in the user-space at OVS is the right choice. In contrast,

IRC based C&C module conducts keyword search over a packet, thus is impleneted in OVS

kernel. ML based bot detector uses TensorFlow ML libraries, thus is implemented in the

user-space outside OVS. We also place the local parallel correlation module in the OVS, as

shown in Fig. 3.2.

3.3.3 C&C Detection

P2P C&C detection

Distinguishing P2P traffic used by bots from normal P2P traffic is not trivial. The study

in [54] made the discovery that the sets of peers contacted by two different bots within the
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same botnet typically have a much larger overlap compared to the peer sets contacted by

two legitimate P2P clients within the same network. In practice, there is the possibility

that only one bot resides in the data center.

We develop a client self-correlation approach to detect P2P bots. Specifically, the peer

set of a P2P bot is more likely to remain stable over the time, while that of a normal

P2P client is more likely to change due to the changing user behavior (e.g., downloading

of disparate resources over time). We conduct extensive empirical experiments, and the

results show that P2P bots do exhibit strong self-overlap patterns while normal P2P hosts

do not. The new approach is more flexible and robust than the approach in [54].

HTTP C&C detection

Bots tend to communicate with the server periodically over the HTTP channel [64].

HTTP C&C detection module makes the detection using such periodic traffic pattern. The

timing information of HTTP connections between a pair of end hosts is collected by the

monitoring module. The number of HTTP connections within each time slot is counted.

The time series of connection counts is fed into a Discrete Fourier Transform (DFT). If

periodic pattern is discovered, the host becomes a bot candidate.

IRC based C&C detection

Although IRC based botnets are diminishing nowadays, we include the IRC C&C detec-

tion for the sake of completeness. To minimize system overhead, a combination of keyword

matching and port numbers is leveraged to identify IRC connections. Furthermore, to de-

termine whether they are IRC C&C channels, our detection relies on inspection of packet

payloads by searching for attack relevant commands in IRC response messages. We imple-

ment the detection module at the kernel space of OVS.

We mainly focus on the systematic design of the detection framework rather than dis-

covering every possible C&C communication pattern to detect all existing botnet variants.

There are certainly cases where sophisticated botnet variants disguise their communica-

tion pattern through stealthy C&C to evade detection. Correspondingly, our detection

framework is extensible in integrating new detection modules to account for such novel

51



C&C patterns. Alternatively, for botnets with unrevealed patterns, we can resort to large

scale network wide correlation for detection. For example, for P2P C&C without sufficient

self-overlap, flow stats for all P2P hosts can be exported to perform off-line network-wide

clustering. This relies on the fact that normal users tend to have divergent usage patterns,

resulting in non-overlapped peer sets among different users.

Runtime ML based bot detection

In parallel to the C&C channel detection, BotSifter also conducts bot activity detection

using a deep learning Neural Network (NN). For each connection, NN is able to detect if it

is potentially a bot activity connection. Instead of integrating this function into switches,

it runs as a separate process on the sharing host of OVS. The motivations of such a design

are two-folds: 1. Including non-standard library into OVS for composing such function

diminishes portability of BotSifter. 2. Updating the model from the centralized controller

becomes effortless without interrupting network functions of OVS.

In order to detect if a host is compromised and becomes a bot, BotSifter keeps track of

the percentage of connections initiated by this host that are identified by the NN as the bot

activity connections. If the percentage surpasses a preset threshold, the host is identified

as a bot.

Algorithm 4. Input: listp2p, listhttp, listirc, listml

Output: BlackList,GreyListhttp, GreyListml

1: BlackList← ∅

2: GreyListhttp ← ∅

3: GreyListml ← ∅

4: listc&c ← listp2p ∪ listhttp ∪ listirc

5: foreach h ∈ (listc&c ∪ listml) do

6: if h ∈ listc&c ∩ listml then

7: BlackList← BlackList ∪ h

8: else
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9: if h ∈ (listp2p ∪ listirc) then

10: BlackList← BlackList ∪ h

11: else

12: if h ∈ listhttp then

13: GreyListhttp ← GreyListhttp ∪ h

14: else

15: GreyListml ← Greylistml ∪ h

16: end if

17: end if

18: end if

19: end for
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Output	  
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Figure 3.3: BotSifter system implementation
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Local parallel correlation

While C&C based detection detects bots via monitoring C&C communication, ML based

detection detects the bots via monitoring bot activity traffic. BotSifter introduces a local

detection correlation module that combines the results from these two types of detection

modules. The consistent detection by both C&C modules and ML based module is a strong

indication that a host has been compromised and will be placed on a blacklist. On the

other hand, a single positive identification may not be conclusive. For example, the P2P

C&C detection module detects that a host may potentially be a bot. However, the bot may

still be dormant and have not launched any attacks yet. As another example, if a host is

identified by the online ML module as an attacker, it is not clear if the identified host is a

bot with a customized C&C protocol that is not recognized by our C&C detection modules,

or an ordinary attacker without any C&C channels. In any case, such bots are placed on a

so-called local grey list and will be under persistent monitoring/scrutiny. The blacklists and

grey lists are sent to the central controller for network-wide correlation and identification.

Algorithm 5. 1: global blacklist, greylisthttp, greylistml . Global blacklist and greylist

2: procedure NetworkWideCorrelation(BlackList, GreyListhttp, GreyListml)

3: foreach h ∈ BlackList do

4: UpdateBlacklist(blacklist, h)

5: InstallRule(h) . Block traffic from host h

6: end for

7: foreach h ∈ GreyListhttp do

8: g = FindHttpGroup(h) . Find the group based on destination IP address

9: if ∃h′ ∈ g and IsHttpBot(blacklist, h′) then

10: UpdateBlacklist(blacklist, h)

11: else

12: if h ∈ greylisthttp and GetElapsedTime(h) > timeout then

13: greylisthttp ← greylisthttp − h
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14: else

15: if h /∈ greylisthttp then

16: UpdateHttpGreylist(greylisthttp, h)

17: end if

18: end if

19: end if

20: end for

21: foreach h ∈ GreyListml do

22: if h ∈ greylisthttp then

23: UpdateBlacklist(blacklist, h)

24: InstallRule(h)

25: else

26: UpdateMLGreylist(greylistml, h)

27: ContinueMonitor(h)

28: end if

29: end for

30: end procedure

3.3.4 Network-wide Correlation and Mitigation

While local detection is beneficial for the system scalability, the lack of global view can

deter the bot detection. Hence BotSifter introduces a centralized correlation module that

examines the blacklists and greylists received from the edge servers, and performs network-

wide correlation to detect bots. In addition, a mitigation module is implemented to mitigate

bots’ damages. For each bot on the blacklist, the controller installs flow rules into the OVS

to block C&C traffic and/or attacking traffic.

For hosts on a local C&C greylist, the controller performs network-wide grouping analy-

sis to determine if it is a bot. Each group consists of the hosts on blacklists or C&C greylists

communicating with the same destination host. If any host in the same group has already
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been positively identified as a bot, the greylist hosts in the same group are marked as a

bot and will be placed on the blacklist. Otherwise, the controller places the host on the

global C&C greylist, and continues to monitor the host until a timeout occurs. For hosts

on the local ML greylist, the controller looks up the global C&C greylist to check if there is

a match. If so, this host is included in the global blacklist. Otherwise, it is placed onto the

global ML greylist and continues to be monitored for future signs of C&C communication.

3.4 BotSifter Implementation

We implement a prototype BotSifter following the design as laid out in the Section 3.3.

Fig. 3.3 highlights the major parts implemented for BotSifter. More implementation details

are described as below.

3.4.1 Local OVS Traffic Collection Implementation

The local traffic monitoring function is implemented in a kernel thread called kernel collector.

We also modify the kernel forwarding thread so that the packet headers are pushed into

the ring buffer cache upon arrival. The kernel collector thread takes the packet headers off

the ring buffer, and process them to generate the required stats that are stored in hash

tables. The hash tables with connection stats are periodically pulled by the user-level stats

collection thread stats collector, as shown in Fig. 3.3.

A more involved task is to detect P2P connections required by the P2P C&C detection

module. To identify a P2P connection, the kernel thread intercepts the DNS requests, parses

them, and records the hosts who have conducted look-up for a specific IP address. For each

new connection between any two hosts src ip and dst ip, we check whether the src ip host

has conducted a DNS lookup for the destination dst ip. If yes, it is a normal connection.

If not, this new connection is marked as a P2P connection, which will be further examined

by the P2P C&C detection module.
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3.4.2 Parallel C&C and Bot Activity Detection Module Implementation

Three threads, irc c&c detector, p2p c&c detector and http c&c detector are implemented

to realize the IRC C&C detection, P2P C&C detection, and HTTP C&C detection, respec-

tively. Thread irc c&c detector runs in the kernel, as discussed in the Section 3.3, while

p2p c&c detector and http c&c detector run in the user space, as in Fig. 3.3.

To identify IRC connections, irc c&c detector performs lightweight payload inspection

against connections associated with standard IRC ports (6660-6669). The first few packets

of an IRC connection typically contain certain keywords, such as “JOIN”,“USER”, “NICK”

and “PRIVMSG”. To further identify IRC C&C channels, irc c&c detector examines the

IRC messages by searching for attack relevant commands (e.g., “scan”, “flood”). If such

commands are recognized, the irc flag for the connections will be set and exported to the

userspace.

As mentioned in Section 3.3, the differentiation of P2P C&C traffic and normal P2P

traffic relies on self-correlation behavior of peer sets. For the self-correlation, we conduct

overlap analysis over multiple time windows of each P2P connection. Time window is a

fixed length period of time during the connection. For each time window, we calculate

the per-host peer sets in the current and N subsequent time windows. Then, we calculate

the number of re-appearing peers in both the current time window and the ith(i ≤ N)

time window. We use the average of the N overlap values to represent how the peer sets

evolve over time. For runtime botnet detection, we calculate the moving average overlaps

to differentiate the P2P bots from the normal hosts.

Thread online ml detector implements a NN based bot detection module. The NN model

is implemented using TensorFlow 1.8.0 [65], an open source NN library. Since the thread

runs outside of the OVS, a user-space thread inside OVS, called flow exporter, is created to

allow online ml detector to retrieve the connection feature vectors collected by OVS using

Linux IPC calls, as depicted in Fig. 3.3.

Table 3.1 summarizes the features used in our NN model. Notably, different from

previous flow based machine learning models, src/dst IP addresses are excluded from our
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Table 3.1: Description of connection features.

Feature Description

Source Port Source port.
Destination Port Destination port.

Protocol IP protocol.
Forward packet count Total number of packets in the forward direction.

Backward packet count Total number of packets in the backward direction.
Forward byte count Total number of bytes in the forward direction.

Backward byte count Total number of bytes in the backward direction.
Duration Connection duration.

Forward packet rate Packet rate in the forward direction.
Backward packet rate Packet rate in the backward direction.

Connection State whether the connection is successfully established.

Forward inter-arrival time
Packet inter-arrival time in the for-
ward direction

.

Backward inter-arrival time Packet inter-arrival time in the backward direction.
Forward average packet size Average packet size in the forward direction.

Backward average packet size Average packet size in the backward direction.
Forward byte rate Byte rate in the forward direction.

Backward byte rate Byte rate in the backward direction.

feature set. We believe the src/dst IP address are unique to specific data centers and

thus shall be excluded. More importantly, the exclusion can avoid over-fitting the NN

model. Other features are chosen so that they can help distinguish botnet activity traffic

from legitimate traffic. We experimented with different features and incorporate the most

discriminative ones in our feature set. For example, forwardbackward average packet size

of normal flows tend to be larger than botnet traffic since they contain realistic payloads.

Meanwhile, we introduce a novel feature, i.e., conn stat to represent whether the connection

has been successfully established. Since bots usually maintain a large number of half open

connections, this feature is effective in identifying malicious botnet traffic such as direct

DoS flooding attack and the amplification attack traffic.

The online ml detector thread fetches NN configuration parameters from the central

controller, and initiates the NN model. The flow-exporter thread in the OVS continuously

exports connection feature vectors to the NN model, as shown in Fig. 3.3. To facilitate

the communication between flow exporter and online ml detector, a shared memory pool is

created. Linux semaphores are used to synchronize the access to the shared memory.
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3.4.3 Network-wide Correlation and Mitigation Implementation

Bot detection applications are programmed at the central controller to perform network-

wide correlation analysis. Once a bot is detected, the controller installs customized flow

rules into the corresponding OVS switch to prevent future attacks. To facilitate the com-

munication between the threads at servers and controller, traditional OpenFlow protocol is

extended to facilitate the collection of detection results from edge servers.

3.5 Evaluation

Our testbed consists of three Lenovo ThinkServer machines running Ubuntu 14.04. Each

machine is equipped with Intel Xeon 4-Core 3.20GHz CPU and 4GB RAM. One machine

is installed with Open vSwitch 2.3.90. Another machine runs the Ryu SDN controller. A

third machine serves as both packet generator and data sink, which is connected to the OVS

machine via two 10Gbps Ethernet cables. Packet traces are replayed using TCPReplay at

the original speed.

3.5.1 Datasets

Table 3.2: Description of botnet datasets for training and testing.

Datasets
Underlying C&C Protocol

HTTP P2P IRC Custom

Training Dataset Neris, Virut Storm, Waledac Rbot -
Testing Dataset Neris, Virut, Sogou Storm, Waledac, NSIS Rbot Menti

For our experiments, we are able to obtain several third-party traces, including a variety

of botnet traces composed of different botnet types and normal network traces. CTU-13

dataset [66] contains traffic of botnet samples which were captured in the CTU University,

Czech Republic, in 2011. In each botnet sample, bots use specific protocols for C&C
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Figure 3.4: CPU utilization of detection related threads.

communication and perform diverse malicious tasks, including SPAM, port scanning, DDoS,

click fraud, etc. Due to the diversity of botnet samples, this dataset is appropriate for

evaluating the performance of our framework. For the normal network traces, we use

the UNB ISCX IDS 2012 dataset [67] containing normal traces with full packet payloads.

This dataset captures typical user daily activities (e.g., HTTP, DNS, SSH, FTP) at UNB

university and was made public for scientific research.

As previously discussed, our runtime bot activity detection relies on a pre-trained model.

Table 3.2 summarizes the composition of the botnets in the training and testing datasets.

For the training dataset, we merged several traces, including P2P botnets (Storm, Waledac),

IRC Botnets (Rbot) and HTTP botnets (Neris, Virut). For runtime detection, we include

not only the same types of botnets as the training dataset, but also novel botnet variants,

such as NSIS (P2P C&C), Menti (Proprietary C&C) and Sogou (HTTP C&C). Among

them, Menti uses a custom protocol for C&C communication. By evaluating how BotSifter

performs when facing novel botnet variants, this experimental strategy aims to demonstrate
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the effectiveness of our design in real-world bot detection.

3.5.2 Impact on Normal Applications

Since the botnet detection accuracy of our system strongly relies on the accurate timing

information of the packet sequences, the botnet traces are replayed at the original speed.

To evaluate the overall system performance, we perform a stress test using a CAIDA trace

and replay the trace towards our monitoring system at the highest achievable rate.

Considering that no modification is made for native OVS threads (e.g., handlers and

revalidators), the CPU usage of these threads is not shown here. We only report the CPU

utilizations of the customized threads in Fig. 3.4, which shows the peak CPU usage of each

detection-related thread under various detection tasks.

We can see that the stats collector in the userspace incurs the highest CPU utilization

while the threads regarding C&C detection and flow exportation to the online machine

learning detector only introduce negligible overhead. Since stats collector mainly manages

the collection of connection stats from the kernel space through Netlink and the maintenance

of the connection hash table in the userspace, we infer that its CPU utilization is mainly

attributed to the Netlink communications.

In realistic scenarios, these overheads are acceptable as OVS typically resides in com-

modity servers with abundant CPU resources. The detector threads could be pinned to

different CPUs to avoid interfering with CPUs dedicated to the forwarding functions in

OVS.

To estimate the network overhead, we use DPDK based packet generator MoonGen to

generate high speed traffic and measure the maximally achievable throughput such that no

packet loss occurs on the forwarding path. The experiment is repeated 10 times. Com-

pared to the throughput of the native OVS (1.44Mpps), BotSifter could achieve 1.15Mpps

throughput. This overhead is acceptable and further analysis shows this overhead is mainly

incurred by the memcpy operations on the ring buffer cache.
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3.5.3 Detection Performance

Table 3.3: Detection results for 8 botnet variants and normal trace.

Botnet C&C #Bots or Duration P2P HTTP IRC C&C ML Detection Local Parallel
Variant Protocol #Hosts Overlap Periodicity C&C Accuracy Accuracy Accuracy

Neris HTTP 1 4.8h - Strong - 1/1 1/1(99.2%) 1/1
Virut HTTP 1 16.36h - Strong - 1/1 1/1(99.7%) 1/1
Sogou HTTP 1 0.38h - Weak - 1/1 1/1(95.5%) 1/1
Storm P2P 13 3.1h Yes - - 13/13 13/13(90.1%) 13/13

Waledac P2P 3 3.45h Yes - - 3/3 0/3(50.5%) 3/3
NSIS P2P 3 1.21h - - - 0/3 1/1(93.7%) 3/3
Rbot IRC 1 5h - - Yes 1/1 1/1(99%) 1/1
Menti Custom 1 2.18h - - - 0/1 1/1(99.4%) 1/1

Normal n/a 36 10h - Yes(4/36) - 4/36 on greylist FPR:0/36(See Fig. 3.6) FPR: 0/36

Evaluation metrics

To evaluate the performance of Botsifter, we use three metrics. C&C Accuracy is calculated

as the ratio between the number of hosts which have triggered alarms of C&C detectors and

the total number of hosts. ML Accuracy represents the detection rate of the bots based on

suspicious ratios predicted by the runtime NN model. Since our final detection result relies

on a parallel correlation between C&C detection and runtime ML detection, we define a

novel metric Local Parallel Accuracy to represent the overall accuracy.

As discussed in Section 3.3, the hosts triggering alarms from both http c&c detector

and irc c&c detector will be put onto a greylist instead of blacklist since they need further

network-wide correlation. In contrast, alarms from p2p c&c detector indicate the associated

hosts must be bots and thus they are included in a blacklist. Therefore, we claim that if the

host appears on either the C&C blacklist or the ML greylist (e.g., is an attacker, but needs

further monitoring to find out C&C channels), it is regarded as a true positive , which also

implies that it has been successfully detected by BotSifter. This design principle further

demonstrates the robustness of BotSifter compared to methods solely based on single stage

detection (either C&C or machine learning).
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Detection Accuracy

The measurement results are shown in the C&C accuracy column in Table 3.3. Note that,

in ML Accuracy, the percentage values in the brackets represent the suspicious ratios for

the bots in the current trace. We can see that, parallel detection scheme in BotSifter

successfully detects all bots with zero false positives, although some bots trigger alerts from

only one stage (either C&C or NN model), such as NSIS and Menti. In the normal trace,

there are no false positives due to the following two reasons. First, the hosts are included in

HTTP greylist instead of the blacklist, due to the periodicity patterns of software updates.

Besides, the suspicious ratios of all hosts are far below the threshold. In a nutshell, BotSifter

is able to detect all bots which may get missed by any single stage of detection. Since local

detection accomplishes the tasks, no computation is needed from the central controller,

which demonstrates that BotSifter is a distributed scalable solution. In the following, we

analyze the results in more detail.

HTTP C&C detection. Based on our empirical experiments, we find that the C&C

connections of certain HTTP botnets may not exhibit periodicity patterns as strong as other

botnets. This may be due to unknown factors such as network delay and congestion which

introduce noises to the connection timing. We use strong and weak to represent whether

strong periodicity is observed in each botnet trace. Among the used HTTP botnet samples,

Neris and Virut exhibit strong periodicity since the bots connect to the HTTP C&C server

at regular intervals with negligible timing variations. Since periodicity patterns are observed

for each 3-tuple (src ip, dst ip, dst port), the suspicious client and server associated with the

3-tuple could be accurately pinpointed and placed onto a greylist for further examination.

Aside from this, we also observed that certain botnets contain more than one HTTP C&C

channels, some of which exhibit no periodical pattern. These C&C communications are not

typical and cannot represent the botnet C&C behaviors. For those C&C channels exhibiting

periodical connection patterns, our online http c&c detector can accurately identify the C&C

channels.
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Table 3.4: Description of P2P traces.

Trace
Normal Botnet

Emule FrostWire uTorrent Storm Waledac

Number of Packets 3.6M 1.35M 6.5M 6M 2.5M
Duration 3.25h 10h 8h 3.16h 8.23h

During the test for the normal trace, the http c&c detector triggers an alert unexpect-

edly, which implies that periodic http connections are observed between two normal hosts.

Further examination reveals that those hosts are running legitimate applications with peri-

odic HTTP connections.

P2P C&C detection. The detection results for the three P2P based botnets are also

quite promising. Storm and Waledac both show strong self-overlap in their C&C communi-

cations. One exceptional case is NSIS, for which no P2P overlap pattern is observed. This is

reasonable as the trace is reported to be incomplete with only one P2P C&C channel, which

is insufficient for P2P C&C analysis. In the following, we demonstrate that our detection

scheme allows to accurately distinguish P2P botnet C&C traffic from normal P2P traffic.

As previously discussed, the key characteristic differentiating botnet P2P C&C traffic

from normal P2P traffic is that the peer sets of a P2P bot have large overlaps across

consecutive time windows; while the overlaps for a normal P2P host are noticeably smaller.

To verify this, we use several third-party P2P traces [68] of both normal P2P applications

and P2P botnets. Table 3.4 gives a brief summary of our P2P traces. The Storm and

Waldec P2P botnet contain 13 and 3 P2P bots respectively. Our experiments show that

the online p2p c&c detector could successfully detect all bots.

In our experiment, the average overlap values are calculated across 5 consecutive time

windows with respect to the current time window. The length of the time window is set to be

10 minutes. We have tested with various window parameters and acquired similar detection

results. However, choosing a relatively small window and short window sequence results
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in more prompt detection. Otherwise, it causes longer detection delay if more subsequent

time windows are used to calculate the average overlaps. To demonstrate the effectiveness

of the self-correlation scheme, the moving average overlaps for 10 initial time windows for

each P2P host in the trace are shown in Figure 3.5. For each trace, the result for only one

P2P host is depicted in the figure. Other hosts in the same trace all demonstrate similar

patterns as the one reported here.
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Figure 3.5: Peer overlaps for botnet/normal P2P applications.

From Figure 3.5, we can find that there is significant difference between the peer overlap

for P2P bots and normal P2P hosts. In real world detection, a straightforward threshold

based measure (e.g., 0.6) would suffice to distinguish between P2P bots or normal hosts.

Based on the reported overlaps, our p2p c&c detector manages to identify all P2P bots in

both traces. This demonstrates the effectiveness of the self-correlation scheme for detecting

P2P C&C channels.

IRC C&C detection. In the Rbot botnet, the bot communicates with the C&C
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server through an established IRC channel. Via this channel the server commands the bot

to perform port scanning against certain IPs in the network and the bot continuously reports

scanning results back to the C&C server. Our irc c&c detector can accurately detect the

IRC C&C channel using keyword matching.

Different from other botnets, Menti adopts a custom protocol for an unencrypted C&C

channel and performs port scans. Since its C&C communication does not rely on the three

well-known C&C protocols, the c&c detector discovers no suspicious C&C pattern. How-

ever, our experiment shows that online ml detector raises an alert since suspicious activities

are discovered in the trace, which will be further explained in the following analysis.

Runtime ML based bot detection. From Table 3.3, we can see that the suspicious

ratios for the majority bots fall between 95% to 99%. For the remaining bots, the ratios

still exceed 90%. The result for Waledac is relatively low since the majority of its traffic is

C&C related. Since the goal of ML detection module is to detect suspicious bots instead

of individual connections, the online ml detector raises alerts based on the suspicious ratio

for each individual host. As defined in Section 3.3, it represents the ratio of the number of

suspicious connections with respect to the total number of connections for each host. If the

ratio exceeds a pre-specified threshold, the host will be included in a greylist. Obviously, the

choice of this threshold has a direct impact on the detection accuracy. A higher threshold

leads to more false negatives while a lower threshold incurs more false positives. With a

threshold of 10%, in the normal trace, 4 out of 36 are false positives. Instead, with a higher

threshold, for example, 85%, all bots are accurately identified, with zero false positives. By

excluding those hosts with a limited number of connections, the ratios of all other hosts are

shown in Figure 3.6.

For novel botnets, such as Menti, no C&C patterns are discovered since it uses a custom

C&C protocol. However, as shown in Table 3.3 the online ml detector reports high suspi-

cious ratio for the bot in this trace and raises alarms for further correlation. This parallel

design is extremely effective in detecting bots in real-world, since it increases the difficulty

of novel botnet variants evading both stages of detection.
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Figure 3.6: Suspicious ratios for hosts in the normal trace.

Performance comparisons.

We compare our approach to previous works by evaluating them using the same datasets

in our experiment. Since our detection relies on parallel correlation of C&C detection and

bot activity detection, the comparison is two-fold. First, we compare our ML detection

accuracy to a recent ML based approach [56]. Different from ours, their ML model is based

on per-flow feature vectors and only achieves an overall accuracy of 75% on a testing dataset

containing multiple novel botnet variants not embraced in the training dataset. By contrast,

in our evaluation for Menti (a variant with a custom C&C protocol), the ML model reports a

fairly high accuracy (∼99.4%). Indeed our detection method achieves satisfactory accuracy

for a majority of the test traces.

Moreover, another similar work [54] focuses on the detection of stealthy P2P botnets

based on cross-bot overlap analysis, which shows that the P2P bots could be identified
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based on cross-bot correlation. Our experiments also evaluate the detection accuracy on

the same P2P botnets. As shown in Table 3.3, all P2P bots are detected without any false

negatives, which indicates that Botsifter can achieve comparable detection performance by

solely using single-bot patterns. However, our approach is more robust in the scenario of a

small number of bots.

3.6 Chapter Summary

The cloud-based bots pose an imperative threat to the applications and services running on

various cloud platforms, yet highly accurate and scalable detection solutions are not avail-

able. In this study, we have designed and implemented BotSifter, a SDN based scalable and

accurate runtime bot detection framework in data centers. BotSifter utilizes a centralized

learning and distributed detection model that is effectively supported by SDN. Further-

more, BotSifter adopts parallel detection of both the botnet C&C communication patterns

and the machine learning based attack activities. The evaluations show the effectiveness of

BotSifter based on real-world traces.
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Chapter 4: EZPath: Expediting Container Network Traffic

via Programmable Switches in Data Centers

4.1 Introduction

In recent years, containerization has been increasingly adopted to deploy large-scale dis-

tributed applications (e.g., content providers [69, 70], eCommerce [71, 72], and in-memory

key-value stores [73]) in clouds, such as AWS Lambda [74], Google Compute Platform [75],

and Microsoft Azure [76]. However, container networking has been suffering in such a multi-

tenant environment, particular with the increasing deployment scale due to the following

reasons. First, the sharing nature of multi-tenant cloud networks requires tenant isolation

and quality of service (QoS) through the enforcement of thousands of control plane poli-

cies (e.g., access control) and data plane policies (e.g., tunneling, QoS and rate limiting),

resulting in significant host computing resource consumption. The sheer density of the con-

tainer deployment and its short-livedness further exacerbate the problem [77, 78]. Second,

the container networking should be able to provide portability and flexibility for container

placement and migration, obviating the need for the application developers to coordinate

the assignment of port and IP addresses.

Existing container orchestration solutions mostly employ virtual overlay networks to

achieve portability and flexibility. Essentially, overlays employ various tunneling technolo-

gies, e.g., VXLAN, GRE, to implement virtual networking among the containers owned

by a single tenant, providing tenant isolation and network virtualization. One example of

such software entities is Open vSwitch [79], which is widely deployed in data center servers

to enable network virtualization on end hosts [80–83]. However, as shown in previous

works [84–86], implementing the tunneling and other network virtualization functionalities

in the software switch causes significant networking performance degradation.
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In practice, the poor performance of overlay networking solutions has remained to be

a pressing issue ever since virtualization came into play. In VM-based virtualization envi-

ronments, Single Root I/O Virtualization (SR-IOV) has proved to be an effective technique

to improve the networking performance [84]. Nonetheless, the number of VMs that can be

accommodated on a commodity server is far less than that of containers in contemporary

containerized data centers. More recently, some other designs [77, 85, 87] have been pro-

posed to improve container network performance, while aiming to preserve its portability.

However, they are difficult to deploy due to the requirement of customized software and

extra maintenance [85], or specialized hardware support [77,84].

In this work, we propose to develop an efficient and application-transparent framework,

called EZPath, to expedite the container network traffic, by leveraging the programmable

data planes of the prevalent Software Defined Networking (SDN) switches in data centers.

We achieve this goal by offloading heavy-weight network traffic to in-network programmable

switches to relieve the system resource pressure on the servers. The performance of the

containerized applications is significantly improved in benefit of the programmability and

line rate processing speed of modern switches (e.g., P4).

Nonetheless, due to the specific requirements and constraints in the containerized en-

vironment, migrating network functions and traffic to the programmable hardware poses

several challenges. First, due to the sheer scale and density of containers in deployment,

the amount of memory for accommodating the metadata (i.e., the tunnelling mappings)

required by performing the container tunnelling functions can be substantial. Therefore,

simply offloading the tunnelling operations for all container traffic is not practical, given

the resource constraints imposed by programmable switch ASICs.

Second, containers usually have much shorter lifespans than virtual machines in many

application scenarios, such as microservice deployment and serverless computing. Blindly

offloading all traffic may cause constant update of offloading selections and tunnel mappings,

which could potentially degrade the overall network performance. Therefore, we need an
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optimal strategy that strikes the balance between network performance and resource con-

sumption.

To address these challenges, we develop EZPath, a holistic framework that optimizes

the performance of container network virtualization through hardware-assisted acceleration.

EZPath is featured with a software-hardware codesign that incorporates the control plane

software and the dataplane hardware. The control plane determines the offloading strategies

in an adaptive manner based on the monitoring results from the data plane. The offloading

strategy is then translated into P4 instructions executed in the programmable switches. By

seamlessly integrating heavy flow monitoring with adaptive offloading, EZPath can flexibly

migrate the network virtualization functionalities of the most performance-critical flows to

the ToR (Top-of-Rack) switches.

To evaluate EZPath, we conduct extensive experiments with some typical container

workloads, e.g., containerized key-value stores, web servers, and message queuing appli-

cations. While details are to be presented later in the chapter, the highlights of EZPath

include:

• We quantitatively evaluate the overhead of the overlay approach for container net-

working, and show such overhead contributes significantly to the network bottleneck.

• Taking a software-hardware co-design approach, we design and implement EZPath

that can adaptively monitor and offload heavy network traffic by leveraging the pro-

grammable data planes of modern SDN switches.

• EZPath is application transparent, preserving compatibility with legacy containerized

applications. It does not require changes in host kernel, making it compatible with

all existing monitoring tools. The evaluation results show that EZPath can expedite

container traffic significantly, e.g., with a 35% improvement on throughput and a 42%

tail latency reduction for Memcached.

The reminder of this chapter is organized as follows. We present the background of

container networking in section 4.2. Via experiments, we reveals the breakdowns of the
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network performance in section 4.3. The design and implementation of EZPath are presented

in section 4.4 and section 4.5, respectively. EZPath is evaluated in section 4.6. We discuss

related works in section 4.7 and make concluding remarks in section 4.8.

4.2 Background

To understand the packet processing overhead in the network stack, in this section, we first

present the generic background on how Linux networking stack processes packets. We then

introduce the principles of the container overlay networking and analyze the corresponding

packet process path. Finally, we quantify the overhead of container overlay network and

provide a detailed root cause analysis.

4.2.1 Linux Packet Processing
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Figure 4.1: Packet ingress path in container overlay network.
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As shown in Figure 4.1, Linux kernel packet processing generally consists of two phases:

a top half for hardware interrupts and a bottom half for software interrupts. The top half

quickly services the hardware IRQ and schedules the bottom half to service the software

interrupts. Most of the packet processing actions are deferred into the bottom half. When

a packet is received by the NIC from the network, the NIC uses DMA to copy the data

to the ring buffer in kernel memory and raises an IRQ to the CPU. The top half exe-

cutes the interrupt handler registered by the device driver to serve the IRQ and raise the

NET RX SOFTIRQ softirq. A per-CPU ksoftirqd kernel thread is responsible for the bot-

tom half processing, which runs the corresponding softirq handler to pass the data frame

through the kernel network protocol stack and finally to the user space process. Thus, the

majority of the packet processing is executed in the softirq context. In Section 4.3, we will

analyze and break down the packet’s processing overhead in a container’s overlay network

by following the packet processing procedure in the Linux kernel.

4.2.2 Container Overlay Networking

The most popular way to virtualize container networks is through overlay networks, which

provide Layer 2 connectivity among distributed multi-host containers. Container overlay

networks typically employ a tunneling technique (e.g., VXLAN) to transport the overlay

container frames through the underlay network. For instance, VXLAN performs a MAC-in-

UDP encapsulation that encapsulates container Layer 2 frames inside an underlay IP/UDP

header. The overlay consists of stateless VXLAN tunnels among the participating hosts,

while the host IP/UDP header provides the connectivity between hosts on the underlay

network. Since each container overlay network has its own IP address space and network

configuration, the overlay is independent of the underlay topology, thus making the appli-

cations portable.

To provision an overlay network, a virtual switch (e.g., Open vSwitch [79]) in the kernel

is leveraged to perform tunneling-related packet transformations. Specifically, the container

is attached to the virtual switch through a pair of virtual Ethernet (veth) devices, and the
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virtual switch bridges the containers on the same host. To provide external connectivity, the

virtual switch creates a VXLAN interface for tunneling packets through encapsulation and

decapsulation. Compared to the native host network, a container overlay network involves

more complex packet processing and prolonged data path. The packet has to traverse the

overlay/host kernel stack in different network namespaces and additional devices such as

the virtual switch, the tunneling interface, and the veth interfaces. Even worse, the extra

traversal of these virtual devices incurs a high rate of softirqs. Given that software interrupts

run in the process context, this inevitably leads to high packet processing overhead and

interference with the performance of userspace processes [88].

4.3 Motivation

In this section, we first investigate the overhead of the overlay networking approach, and

discuss other alternative options for improvement, which motivates the design of EZPath.

4.3.1 Overhead of Overlay Networking

To understand the performance issues of virtual switch based network virtualization, we

perform an overhead breakdown analysis of a popular container network solution: Docker

Overlay [89]. Docker overlay utilizes a VXLAN data plane that decouples the container

network from the physical underlay network. A virtual Linux bridge is created per overlay

along with its associated VXLAN interfaces. As depicted in Figure 4.2, our testbed consists

of two KVM virtual machines (VMs) on a single physical host. The VMs are used to

simulate two physical hosts. Each VM is configured with 2 vCPUs, 2 GB memory and a

virtio NIC. The overhead remains the same in a physical machine environment as long as

the underlay host network is not the bottleneck. We create a Docker container inside each

VM, which runs network performance benchmarks Netperf [90] and iperf3 [91]. We then

deploy a Swarm mode overlay network to connect the containers. To quantify the overhead,

we compare the performance of the container overlay to the host mode network, where

the container network stack is not isolated from the host stack and the host IP is directly
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allocated to the container. We measure the TCP/UDP throughput when sending data as

fast as possible from the client to the server.
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Figure 4.2: Experiment setup
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Figure 4.3 shows the results. The performance of iperf3 is shown on the left half while

those of NetPerf is shown on the right half. Each experiment is repeated five times and the

average results are reported here. As shown in Figure 4.3, the TCP throughput of the con-

tainer overlay network is only 26.4% and 36.2%, respectively, when compared to the native

host networking for iperf3 and Netperf. The trend of overhead for the UDP throughput

is similar. UDP does not have congestion control, which results in lower throughput than

TCP in iperf.

Table 4.1: Packet Latency

Networking Mode Latency (µs)

Host mode 26.19

Overlay mode 38.48
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We further use NPtcp [92] to measure the latency of TCP packets. As shown in Table 4.3,

the virtual switch based tunneling incurs 46.7% more latency on average (26.19 µs and 38.48

µs for the host and overlay modes, respectively).
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Figure 4.4: CPU utilization: host mode vs.
overlay mode
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Figure 4.5: Per-CPU utilization in overlay
mode

To understand the bottleneck of the tunneling handling, we use mpstat [93] to measure

the CPU utilization of the system when stress testing the overlay network using iperf3.

Specifically, we run iperf3 to generate traffic from the client container for 100 seconds.

Figure 4.4 shows a breakdown of the average CPU utilization on the iperf3 server. For the

host mode networking, 38.15% of CPU utilization is due to executing the kernel code (sys);

while only 11.7% of CPU is spent on servicing softirqs (soft). For the container overlay

networking, the softirq processing accounts for 42.48% of CPU utilization and the kernel

code execution takes 19.14%.

To quantify where CPU cycles are spent among the software interrupts, we use ebpf [94]

to collect the timing statistics of the softirq events. Specifically, it works by probing the

softirq tracepoints softirq entry and softirq exit, which are called immediately before the

softirq handler and after the handler returns. We use iperf to transmit 100GB of data

through TCP in this measurement. Table 4.2 summarizes the CPU cycles (in µs) spent
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on each type of softirq on both the iperf client and the server. As shown in the table,

we can see that over 99.8% of the softirq processing is devoted to the networking softirqs

NET RX SOFTIRQ and NET TX SOFTIRQ.

Table 4.2: Softirq event processing time breakdown

Softirq
Total time (µs)

iperf client iperf server

tasklet 35 16

block 23439 18911

rcu 103120 72321

timer 132485 117597

net tx 30256505 560

net rx 117351671 185016254

The experiment results show that the degradation of the overlay network performance

is attributed to the execution of extra kernel code (for tunneling-related packet transfor-

mations) and the servicing of an increased number of softirqs. The overlay network entails

the traversal of additional virtual network devices (i.e., the virtual bridge and the VXLAN

interface), which leads to an explosive growth of softirqs. We further look into the per-CPU

utilization for the overlay networking. As shown in Figure 4.5, the majority of the softirqs

is served by the ksoftirqd thread on vCPU1. This concentration of softirqs is determined by

the IRQ affinity configuration of the system, which pins a type of interrupts to a particular

set of CPU cores. This further confirms our analysis.

4.3.2 Alternatives for Container Networking

To optimize the container network performance, we first discuss different implementation

strategies, ranging from hardware based acceleration to pure software solution. Pros and
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cons of different solutions are discussed in detail, which sheds light on the design consider-

ations adopted by EZPath.

Hardware Accelerations.

Since overlay networking requires packets to traverse both the guest network stack and host

network stack, it introduces significant performance overhead to containerized applications.

One natural solution is to assign physical network devices to selected containers and grant

them exclusive access. Macvlan [95] and SR-IOV [96] are two such solutions.

With Macvlan, virtual interfaces are created, configured with host routable IP address,

and assigned into the container namespaces. In contrast, SR-IOV requires hardware support

that simulates a single PCI NIC as multiple virtual functions (VF), each with its own MAC

address and functions as a physical NIC from the view of containers. However, the number

of VFs supported by the hardware is quite limited (e.g., 64) and does not keep up with

container network scales. Furthermore, to build applications that span across multiple

hosts, both technologies require configuration of routable IP addresses on the host network.

This may be a feasible solution in VM-based virtualization environment, but it is not well

suited for container networks. Different from VMs, containers are often short-lived and may

be migrated in real time, making frequent network reconfiguration a nightmare. In addition,

for intra-host communication where containers reside on the same physical host, SR-IOV

imposes significantly higher overhead than Macvlan, since packets from one container must

be sent through PCIe bus to the NIC before being forwarded to the other container [97].

Compared to above networking modes, the overlay networking aims to build a virtual

logical L2 network over an existing L3 host network. This provides much greater flexibility

for multi-host networking in terms of easier configuration and management. Production

container applications often span multiple hosts or even across multiple Data Center (DC)

clusters to guarantee service scalability and reliability. For example, in a real world multi-

tier web service, multiple fleets of containers would be deployed for web servers and backend

services, respectively. Both the web tier and backend service tier are highly replicated so
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that it could elastically scale and also cope with infrastructure failures. However, it is quite

challenging for the hardware-based solutions (i.e., Macvlan and SR-IOV) to configure and

manage such large scale production networks, especially considering the volatile nature of

container applications. For this purpose, popular container orchestration frameworks (e.g.,

Docker Overlay and Flannel for Kubernetes) or in-house built management solutions usually

adopt overlay as their networking solution in real-world production management.

SmartNIC offloading. To cope with above concerns, hardware offloading is a viable

solution with great potential to retain both the flexibilities of overlays and the perfor-

mance of bare-metal. Intelligent or smart NICs have emerged recently to bridge the gap

between the constantly increased network speed and the limited CPU processing power at

the host machine. They are equipped with a variety of functional blocks (storage, security,

networking, etc) to perform computation tasks on behalf of server CPUs, which not only

accelerates network application performance, but also frees up CPU cycles for application

workloads. Nonetheless, hardware offloading in virtualized setups with OVS (e.g., VxLAN,

connection tracking) is realized through SR-IOV or virtio that are not suitable for con-

tainer environments. The aforementioned scalability limitation of SR-IOV remains in the

container environment. Further, SR-IOV necessitates the installations of dedicated NIC

drivers within the containers, and the installation of SmartNIC cards at individual host

machines incurs extra cost and management overhead. Finally, as in the context of VM

migration, SR-IOV makes the container live migration infeasible.

Software Accelerations.

Slim [85] proposed a pure software-based optimization approach to improve the container

overlay network performance. It relies on extra pieces of software, including a shim layer

to intercept socket related system calls, and a userspace router that creates connections on

behalf of containers and maps host namespace file descriptors to the container namespace.

This effectively shortens the packet path and improves the container network performance.

However, Slim is not transparent to containers, which is a major limitation. Application
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binaries are required to dynamically linked to the shim layer and extra care needs to be

taken in the deployment and maintenance of the software components. Moreover, after

connections are established, Slim allows local containers to directly talk to the remote

containers via the host namespace file descriptors, bypassing the container network interface

and the virtual switch. As a consequence, it lacks support for conventional low-level network

monitoring and debugging tools, such as tcpdump, as packets are not going through the

virtual network interface and thus cannot be captured.

4.4 EZPath Design

To overcome the aforementioned limitations of current container networking designs, in

this section, we propose the design of EZPath, to improve the performance of container

networking by leveraging recent advances in programmable hardware.

At a high level, EZPath takes a software and hardware codesign approach. Specifically,

it leverages the software for centralized controller while utilizing the programmable data

planes in modern switches for traffic offloading. As an example, Figure 4.7 shows the change

of ingress traffic path with EZPath, when compared to the default overlay approach 4.6.

From this figure, we can clearly see that an overlay network is realized by creating multiple

virtual network devices that are connected through OVS. These include a VXLAN port,

and a veth pair with one end assigned to the container namespace while the other end

attached to OVS. Overlay packets follow this prolonged processing path, incurring much

more software interrupts and corresponding context switches. Comparatively, in figure 4.7,

EZPath reduces the number of network devices that a packet has to traverse in the overlay.

EZPath not only shortens the transmission path that a packet has to traverse, but also

saves a lot of system processing overhead caused by explosive interrupt handling.
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Figure 4.8: Network stack view: Overlay vs. EZPath offloading. Ingress data path of (a)
host virtual bridge based overlay tunneling and (b) EZPath offloading tunneling to ToR
switch. Through EZPath offloading, the in-host packet data path is shortened, the number
of traversed network devices is reduced, the kernel processing for softirq is saved.

4.4.1 Key Principles and Challenges

Resource Constraints While EZPath can offload all traffic through the hardware in an

ideal situation and thus completely eliminate the network bottleneck in the container net-

work, this is not feasible in practice, mostly due to the constraint of limited hardware

resources. Despite the high-speed forwarding performance, switching hardware has highly

constrained on-chip memory. For example, in a typical Tofino switch, there is only 528 Kb

TCAM and 10 Mb SRAM per Match-Action Unit (MAU) used for various purposes. The

TCAM memory can be used to implement ternary matches, longest prefix matching and

range matches. The SRAM is typically for storing exact match tables, action data and
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stateful externs, such as counters, register arrays and meters. Since the overlay operations

require the mapping information for the tunnel endpoints, the naive offloading strategy that

offloads all container traffic is clearly impractical considering the extensive scale and short

lifespans of containers.

Transparency Requirement EZPath is designed for multi-tenant environments, aiming

to be application and kernel transparent so that it can work with existing systems and

applications. EZPath does not require any modifications to user applications or the host

kernel, including the virtual switches. This brings additional challenges to the system

design. For example, in a containerized cloud shared by multiple tenants, the IP addresses

of containers in different tenant networks are assigned locally and independently and thus

can be overlapped or even the same, e.g., all of the IP addresses of different containers can

be assigned in the range of 10.0.0.1/24. If EZPath decides to offload flows from different

container networks with overlapped IP addresses, the ToR switch must be able to distinguish

them.

Adaptive and Transparent Offloading As discussed earlier, the amount of entries

needed for tunneling depends upon the total number of tunnels used by containers in the

rack. If the total number is less than the number of available entries at ToR switch, no

adaptive offloading is needed and the performance can be maximized. In EZPath, we aim

to minimize the occupation of SRAM in P4 switches in order to leave sufficient space for

accommodating other networking functions. Therefore, we choose to selectively offload the

tunneling operations of performance critical flows, e.g., heavy flows and long term flows.

That is, we design EZPath to adaptively offload resource intensive overlay network oper-

ations to the programmable switches at the DC network edge, so that we can effectively

relieve the performance bottleneck in the host network stack.

4.4.2 Overview of EZPath Design

To this end, Figure 4.9 depicts the major components of EZPath. As shown in the fig-

ure, it mainly consists of the centralized controller, the in-host software switch and the
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Figure 4.9: EZPath design: major components.

programmable ToR switch. The centralized controller monitors the traffic communications

between containers and collects the heavy flow information from the ToR switch in real time.

Moreover, it is responsible for coordinating the offloading operations between the software

switches and the ToR switch. In particular, on the end host, we leverage the widely used

OVS in our design. Unoffloaded flows follow the traditional path and are tunneled through

the host network stack while ToR switches support heavy flow monitoring and perform the

heavy-lifting tunneling operations for offloaded flows. In EZPath we use P4 switch as the

ToR switch, which provides programmable control for packet monitoring and forwarding.

To maintain application and kernel transparency, ToR switches must be able to distin-

guish the flows from different tenants. For this purpose, in our design, OVSes leverages

the VLAN headers to carry tenant information to ToR switches. For an outgoing packet,

the directly attached ToR switch would first strip off the VLAN header, look up tunnelling

related information in match-action tables, and perform packet encapsulations. On the

other hand, for an incoming packet, the ToR switch would examine if it is the end of the

tunnel. If it is the case, it would decapsulate the packet, re-tag the packet with VLAN

header and forward it to the connected OVS. Otherwise, the packet is processed similarly

as in normal case. VLAN only involves L2 processing and the logic is much simpler by
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following a shortened processing path, which greatly reduces the CPU cycles on the end

hosts. The detailed steps and data structures involved will be discussed in Section 4.5.

To facilitate heavy flow detection for adaptive offloading, EZPath relies on a flow moni-

toring module. In EZPath, we integrate this flow monitoring module within the P4 pipeline.

This design choice will be further discussed in Section 4.4.3. The monitoring module keeps

track of heavy flow information (i.e., 3-tuple flow identifiers) in stateful P4 object, e.g., Reg-

ister Externs, which will be retrieved by the control plane through P4Runtime interface.

The control plane makes real-time offloading decisions based on multiple factors (subsec-

tion 4.4.3). In correspondence to the updated set of offloaded flows, the controller modifies

flow rules in the OVSes on the end hosts where the containers reside on and updates the

tunnelling mappings in the P4 switches. Furthermore, the controller monitors the hardware

resource utilization in real-time and fine-tunes the heavy flow thresholds to maximize the

number of offloaded flows within the resource constraint.

Another key design option worth noting is that, in Figure 4.9, although a centralized

controller is shown to take full control of the entire DC network or even across the DCs,

this is not a hard requirement. Instead, to make EZPath more scalable, we can use local

controllers, which only manage the software/hardware entities in a single rack. In this way,

the ToR P4 switches only serve as overlay proxies that emulate the host virtual tunnel

endpoints. To realize this, P4 switches use the L2/L3 addresses of host virtual tunnel

endpoints to encapsulate/decapsulate the traffic. On the remote end of the connection,

no matter whether the flow is offloaded or not, traffic can still get through and reach the

destination containers. With this design, we would anticipate slightly less performance

gains than double-end offloading. For realistic deployment, we need to achieve a balanced

trade-off between scalability and performance.

4.4.3 Adaptive Offloading Strategy

As the core of the EZPath, next we discuss the details of our adaptive offloading strategy

that is optimized under the resource constraints of the hardware.
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Application-aware offloading

The containerized environment presents unique characteristics due to the diversity of both

the deployed applications and the specific usage scenarios in containerized clouds. This

inevitably results in more complicated traffic patterns in container data center network.

Despite the research advances, monitoring all flows to identify heavy flows in such an en-

vironment is very resource consuming. Therefore, we want to minimize such overhead by

narrowing down our target flows.

For this purpose, we aim to exclude short flows first. As the previous report [98] shows,

containers usually have much shorter lifespans than traditional virtual machines. In par-

ticular, around 74% of the containers in production have lifespan shorter than an hour,

while 85% live less than a day. Furthermore, containers are also widely used in dev/test

environment (e.g., when developing microservice applications), where they only stay up for

a really short period of time of up to the order of seconds. Given this observation, we do

not foresee significant gains by offloading those flows associated with such short-lived con-

tainers. First, it is unusual for these containers to generate heavy/long-lived flows. Second,

offloading flows of short-lived containers cause frequent mutation of tunnel mappings and

waste switch hardware memory.

To identify such short flows, we turn to the orchestration system. Currently, the deploy-

ment and scheduling of containers is managed by specialized container orchestrators (e.g.,

Kubernetes, Amazon ECS, Mesos and Marathon), which can provide relevant information

about container lifespans (e.g., in its configuration file). Therefore, to efficiently leverage

the constrained hardware resources, we design an application-aware offloading strategy that

considers various factors including real-time packet rate, the projected container lifespans

and latency sensitivity of the applications. Following this strategy, the control plane coop-

erates with the container orchestration tools and makes holistic offloading decisions.
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Monitoring placement and optimization

As explained above, a critical part of EZPath is adaptive heavy flow monitoring. In EZPath,

the monitoring module monitors the traffic demands and flow statistics of the containers in

the overlay networking. To collect the flow statistics, we can integrate the traffic monitoring

capability into OVS on the end hosts, which operates as the host machine edge-router in

the virtualized data center. With edge-based monitoring, there are essentially two design

options: (1) the SDN controller proactively polls the vSwitch for the flow statistics using

the dedicated OpenFlow API; (2) The vSwitch periodically exports specific flow records

to the user space using sFlow [17], Netflow [16] or IPFIX [99]. While conducting traffic

measurement at OVS is possible, it incurs significant computational overhead and delay.

For example, OVS flow forwarding rules may specify that packets are forwarded based

on Layer-3 destination address, while the heavy hitters are defined as more fine-grained

flows. The discrepancy between the forwarding and monitoring requirements forces us to

install much more fine-grained flow rules in OVS that negatively affect the OVS forwarding

performance [33]. To capitalize the VxLAN offloading benefits, we keep the local OVS

unchanged and place all offloading related functionalities at ToR switch. By leveraging its

programmability and line-rate monitoring/forwarding capability, we expect such an option

can significantly reduce the overhead incurred by monitoring.

Furthermore, constrained by the limited resource available on the hardware switches,

it is infeasible to monitor the flow statistics of all 6-tuple flows (srcIP, dstIP, srcPort,

dstPort, protocol, tenant ID) considering the scale of a DC network, the request volume

and the variety of container applications. As a workaround, in EZPath, we choose to

capture only the heavy flows that may vary with the creation, destruction, and migration of

containers. As aforementioned, with offloading, Virtual Tunnel End Point (VTEP) mapping

information needs to be stored into highly constrained SRAM on the hardware switch.

Different from virtual machines, containers are usually lightweight and provisioned as single

purpose services. In our monitoring design, a network flow is instead defined as a 3-tuple,

including the source and destination container IP address, and VXLAN Network Identifier
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(VNI). VNI represents a 24 bit segment ID, which can uniquely identify a single overlay

segment. This design further reduces the SRAM space for storing heavy flow information.

Monitoring algorithm

By excluding the short-lived flows and using the 3-tuple for monitoring, we have narrowed

down the candidate heavy flows for more efficient usage of the switch memory. For heavy

flow detection, we develop a monitoring scheme based on the classical coupon-collector

algorithm, a variant of BeauCoup [100] that handles measurement queries using limited

hardware resources in the dataplane. Our heavy flow detection can be considered as a

distinct counting problem by treating the 3-tuple flow ID as the key and packet timestamp

as attribute. The algorithm is depicted in Algorithm 6.

Algorithm 6. 1: procedure FlowOffloadingModule . ControlPlane

2: CandidateFlows ← dict()

3: FlowHashTable ← dict()

4: OffloadedFlows ← dict()

5: epoch ← 0

6: while true do

7: Sleep(T )

8: epoch ← epoch + 1

9: HHKeys ← SendRegisterReadRequest(P4Switch)

10: foreach key ∈ HHKeys do

11: if key ∈ OffloadedFlows then

12: OffloadedFlows[key]← clock()

13: else

14: UpdateFlowHashTable(key, epoch,FlowHashTable)

15: if IsLongLivedHeavyFlow(key,FlowHashTable) then

16: AssignPriorityAndAddCandidate(key, priority,CandidateFlows)

17: end if

18: end if

19: end for
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20: while CheckP4Unitilization() do

21: NextKey ← GetHighestPriorityFlow(CandidateFlows)

22: OffloadedFlows[NextKey]← clock()

23: SendTunnelOffloadingRequest(P4Switch,NextKey)

24: UpdateOvsRules(OVS ,NextKey)

25: end while

26: end while

27: end procedure

28: procedure HeavyHitterDetection . Dataplane

29: key ← ExtractKey(packet)

30: timestamp ← GetTimestamp(packet)

31: hash ← Hash1(timestamp)

32: coupon ← FindCoupon(hash)

33: index ← Hash2(key)

34: UpdateCouponRegister(index , coupon)

35: if Count(coupon) > m then . m is derived from BeauCoup

36: report key

37: end if

38: end procedure

During each polling epoch (T), the controller retrieves the registers from the dataplane

where heavy flow IDs are recorded. Besides, it maintains a hash table that records all

epochs at which each flow is labelled as a heavy flow (line 14). To determine the long-

livedness of the heavy flows, we propose a heuristic approach, which labels a flow and adds

it into the candidate flow set if it stays heavy for N consecutive polling intervals (line 15).

Meanwhile, the configuration parameters relevant to container lifespans and QoS require-

ments are fetched from the orchestration tools. Collectively, it assigns higher priorities to

those heavy flows with stricter latency requirements in order to be application-aware (line

16), as described in Algorithm 6. In addition, another custom thread periodically scans

and finds out all inactive offloaded flows, which will be migrated back to host. Details are

omitted in the algorithm due to limited space. Meanwhile, the controller monitors real-time
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SRAM utilization in P4 switches and offloads the flows based on the assigned priorities(line

20-26). We design this adaptive priority-based offloading strategy due to the following rea-

sons. First, considering the scale and density of containers in microservice deployment,

the amount of traffic can be substantial. Even worse, it is normal for containers within

a local rack to have both intra-DC and across-DC communications. Simply offloading all

flows demands immense switch memory to accommodate the metadata (i.e., the tunnelling

mappings). Moreover, realistic network virtualization setup requires switch SRAM for other

functions (e.g., security ACL enforcement).

Seamless offloading

Real-time migration is another key component of EZPath, which aims to seamlessly offload

the flows from the host to P4 switch without disrupting the existing connections. Once the

candidate flows for offloading are determined, the controller updates tables on both OVSes

and P4 switches according to the following steps: (1) It installs the tunnel mapping for

the offloaded containers into the P4 tables on both ToR switches; (2) It modifies OVS flow

rules on both end hosts to bypass the host network stack (line 23-24). This is a critical

step to guarantee that there is no interruption to the existing connections. Reversing the

steps could cause packet drop since there is no tunnel mapping entries in P4 to handle the

offloaded packets. On the contrary, flows that become inactive should be migrated back

to the host. On the control plane, EZPath keeps track of the latest timestamp when each

flow stays active. Specifically, in each polling interval, the timestamps in the data structure

are updated to reflect the current time when the heavy flows have been detected as active.

Flows that have been identified as inactive for a specified duration would be migrated back

to host. The implementation details are discussed in Section 4.5.
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4.5 Implementation

We have implemented a prototype of EZPath. The implementation is about 1000 LOC of

P4 in the dataplane and 350 LOC in the control plane. Since the packet processing in the

dataplane involves multiple entities along the path between each pair of containers, in the

section, we present their implementation details.

In EZPath, the OVSes communicate with the controller through OpenFlow protocol,

whereas the P4 devices are managed through the P4Runtime interface with gRPC [101]

as the underlying communication protocol. Each container is connected to OVS through

a veth pair as in the traditional architecture. Traffic originated from or sent to containers

goes through the traditional path by following OVS rules that direct traffic through the

VXLAN port. The outgoing/incoming packets are encapsulated/decapsulated within the

host kernel. For offloaded flows, the rules are updated to add VLAN headers and redi-

rect packets out of the physical interface. The P4 switches maintain an exact match table

with tunnelling mapping entries. Specifically, each entry maps the VNI and the destination

MAC address to the IP address of the remote VTEP. Each VTEP represents an endpoint

of the logical tunnel between the communicating containers. These are managed by the

centralized controller in a unified manner. In the P4 switches, for outgoing packets, if the

associated flow is offloaded, the switch first maps VLAN ID to VNI and looks up the tun-

nelling mapping table using the combination of VNI and destination MAC. The offloaded

packets are encapsulated and forwarded to the next hop. For incoming packets, the switch

performs the decapsulation if the tunnel terminates, by examining the destination L3 ad-

dresses. Otherwise, packets are treated and processed as normal. In the meanwhile, flow

IDs, (srcIP, dstIP, V NI), are extracted as packets go through the switch pipeline. In EZ-

Path, flows are bi-directional since the topology is symmetrical in terms of the tunnelling

endpoints. Besides, the associated registers for heavy flow detection are updated accord-

ingly. Once an incoming packet triggers heavy flow detector, it will be injected into control

plane via a packet-in message by forwarding the packet to the CPU port (e.g., 64) in the P4

program. In our implementation, we record the heavy flow IDs in a separate set of Register
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externs, which can be proactively retrieved by the control plane. The information we record

includes the IP addresses of the two communicating endpoints and their tenant ID.

Our control plane is built upon Barefoot Runtime Interface (BRI) that comes with

Barefoot SDE (9.1.1). It provides APIs for the control plane to configure and manipulate

the dataplane pipeline and objects, such as the match-action tables and stateful objects.

On each P4 target, a gRPC server runs and listens for the requests from the control plane,

which will be further parsed into target-specific actions. The controller periodically sends

a Register read request to ToR P4 switches every T seconds, defined as a polling interval.

The collected heavy flows in each interval are constructed into time-series and are analyzed

as discussed in Section 4.4.3. Besides, a list is used to record the latest timestamp of each

identified heavy flow. We create another custom thread that periodically scans the list to

find out flows that have become inactive. For flows that have triggered migration, the rules

are updated according to the algorithm discussed in Section 4.4.3.

4.6 Evaluation

In this section, we present our evaluation of EZPath following the experiment setup. To

quantify the performance improvement, we first use microbenchmarks to study the per-

formance of EZPath for tunnel offloading with respect to the normal container overlay

networking. Then we evaluate the performance of some typical real-world containerized

applications, including an in-memory key value store Memcached [102], ZeroMQ [103] for

large scale distributed message library, Nginx [104] for web servers, when adopting EZPath.

4.6.1 Experiment Setup

Our testbed consists of two STORDIS BF2556X-1T tofino switches with P4 programma-

bility support and two host servers. Each server is equipped with an Intel Xeon Silver 4110

2.10 GHz CPU, 32 GB DDR4 RAM and NetXtreme-E RDMA 25 Gbps NICs. They are

both running Ubuntu Bionic 18.04 LTS OS with Linux kernel 4.15.0. On each host, we

leverage Docker 19.03 to create/manage containers and deploy containerized applications.
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The switches and servers are directly connected through 25 Gbps cables.

4.6.2 Network Throughput and Latency

First, we compare the performance of different networking modes, i.e., with and without

offloading. The former means the default overlay networking, while the latter represents

EZPath. Specifically, we measure the network performance in terms of both throughput and

latency. As we discussed earlier, in offloading mode in EZPath the traffic egressing from

the containers is directly forwarded to the physical NIC on the host server. The tunnelling-

related operations (e.g., packet encapsulation and decapsulation) are performed by the P4

switches. In contrast, in non-offloading mode, the container traffic follows the normal path

by traversing both the container and host kernel network stacks.

We use iperf3 to measure the network throughput of a TCP flow in both modes. Each

run takes 90 seconds with the messages sizes varied across 128B, 256B, 512B, 1024B and

1440B. The results averaged out of 5 runs under each setting are shown in Figure 4.10.
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Figure 4.10: Network throughput comparison
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Table 4.3: Packet Latency

Networking Mode RTT (µs)

Overlay 45.0

EZPath 32.8

As we can see, by offloading to the hardware P4 switches, we can significantly improve

the throughput performance of the container overlay networking. On average, we see 68%

throughput improvement. When the message size is 1440B, the throughput is improved by

80%.

We use sockperf-3.6 to measure the packet latency. The tests are performed in its ping-

pong mode, where the latency of single packet is measured without waiting for the reply

before sending the subsequent packet on time. As shown in Table 4.3, Without offloading,

the measured round trip latency, averaged on 5 runs, is approximately 45 µs for a packet of

moderate size 350B. In contrast, with EZPath offloading the latency is significantly reduced

to 32.8 µs, an improvement of 27%. Similar results are observed in other tests.

4.6.3 Application Performance

In this section, we evaluate the improvement to application performance brought by EZPath.

For this purpose, we evaluate the performance with popular containerized applications.

Considering that there is a wide range of overlay networking solutions, we choose the host

networking mode as the baseline in our evaluation. In the host mode, all containers on the

same host share the host network namespace. Therefore, they have direct access to all the

host’s network interfaces. In real-world applications, the host mode is rarely employed due

to its inflexibility in supporting multi-tenant cloud applications. In particular, the ports

cannot be reused by the same type of applications co-located on the same physical host. For

example, once port 80 is assigned to one containerized web server, the other containers would
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have to use different ports for their web services to avoid conflicts. Nonetheless, compared

to the other networking solutions, the host mode achieves the highest performance despite

its inflexibility. Our evaluation adopts similar comparison approaches as used in the existing

work by comparing EZPath to the baseline host mode and the legacy overlay mode. The

relative numbers of the performance improvements can demonstrate how EZPath compares

with other approaches that are evaluated in different hardware setups.

Memcached Benchmarking

Memcached has been widely used to deploy distributed key-value services in commodity

data centers (e.g., Facebook, Google, AWS, Netflix) to improve web service performance.
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Figure 4.11: Memcached: throughput & latency

94



Overlay EZPath Host
0.0

2.5

5.0

7.5

10.0

C
P

U
U

ti
liz

at
io

n(
%

)

usr sys soft

Figure 4.12: Memcached: CPU utilization

In our experiments, we create one Docker container on each physical server. The Mem-

cached server is deployed in one container, and the Memcached benchmarking client runs in

the other container. We measure the throughput and latency of the Memcached service in

the host mode (baseline), the overlay mode (common practice), and EZPath, respectively.

The benchmark tool we use is memtier benchmark [105] developed by Redis Labs. In

our experiments, we use the default settings with four client threads and 50 connections.

Each experiment sends 100000 requests and the SET:GET request ratio is set to 10. We

repeat the same set of experiments under different modes. The results are averaged over

five runs.

Figure 4.11 shows the throughput results in the number of total completed Memcached

operations per-second. As we can see, the offloading mode by EZPath achieves the through-

put comparable to the host mode, and outperforms the overlay mode by 35% on average.

EZPath also reduces Memcached request latency. Figure 4.11 also shows the 99.9th

percentile latency to complete a Memcached request. We find the latency through the

EZPath’s offloading mode is the same as the host mode. Compared to the overlay mode,
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EZPath reduces the latency by 42%.

ZeroMQ Benchmarking

ZeroMQ is an asynchronous network messaging library widely deployed in large scale

distributed/concurrent systems. Different from brokered message queues (e.g., Apache

Kafka [106], ActiveMQ [107], RabbitMQ [108]), ZeroMQ does not rely on brokers and

thus achieves much higher throughput. In our experiments, we again measure two key

performance metrics, throughput and latency, of ZeroMQ under different modes as before.

Each measurement is performed across a wide range of message sizes. On each host, we

create a Docker container with ZeroMQ-4.2.2 installed. One container serves as the sender

and the other processes the requests as the receiver. The throughput is measured in terms

of the number of messages per second; while the latency is measured as the average time

it takes to transfer a single message between the two endpoints. The message size varies

from 64B to 128KB. For each measurement, the experiment is repeated three times and the

average is reported.
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Figure 4.13: ZeroMQ: throughput
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Figure 4.14: ZeroMQ: latency
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Figure 4.15: ZeroMQ: CPU utilization

Figure 4.13 and Figure 4.14 depict the resulted throughput and latency, respectively.

From the figures, we can observe that in all settings, EZPath offloading greatly outperforms
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the non-offloading counterpart in the overlay mode. Moreover, the improvement becomes

more pronounced with the increase of the message size. In particular, for larger message

sizes, e.g., 128KB, the throughput is increased by around 42% from 13K msg/sec to 18.5K

msg/sec (which is not clearly visible due to the large scale of y-axis in Figure 4.13), while the

latency is reduced by 30%. When compared to the host mode, EZPath offloading achieves

comparable performance with merely slight degradation in both throughput and latency.

We believe that this result is acceptable considering the various advantages of offloading

over the host mode.

In addition to the application performance, we also examine the variation in the compo-

sition of CPU consumption under various modes, mainly including sys, usr, and soft, which

represent CPU utilization for executing at user level, system level and service software in-

terrupts, respectively. In our testbed, each server has 16 physical cores with hyperthreading

enabled (equally, 32 virtual cores). Therefore, when measuring the CPU overhead break-

down, the CPU utilization can be conveniently converted to the amount of virtual cores.

The result are shown in Figure 4.15. As clearly shown in the figure, EZPath offloading

also reduces CPU cycles significantly. In particular, the CPU cycles spent on serving the

software interrupts are reduced by 73%.

Web Server Benchmarking

To study how various networking modes could affect the performance of popular web ap-

plications, we run a Nginx container on one host and a client container on the other host.

The benchmark software we used is wrk2 [109], which takes throughput as an input argu-

ment. The throughput is specified in terms of the total requests per second combined across

all connections. Specifically, we create 2 threads in wrk2 and each thread establishes 100

HTTP connections concurrently to the Nginx server. For test purpose, we also randomly

generate files with sizes 1KB and 1MB on the web server. In our experiment, the request

throughput is set to 10000 and 2500 per second for 1KB and 1MB, respectively. In this way,

we can keep the average latency within the order of milliseconds. We measure the average
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latency and report the result with its standard deviations computed across multiple runs.

Figure 4.16 and Figure 4.17 show the results. As shown in the figure, when requesting 1KB

files with 10K requests/sec throughput, the average latency in EZPath offloading mode is

1.09ms, which is noticeably smaller than the latency in non-offloading mode (1.16ms). The

difference is even larger when requesting 1MB files with 2.5K requests/sec throughput. The

average latency in EZPath offloading mode is 9.92ms, while the latency in non-offloading

mode is 21.68ms, an improvement more than 54%. In both cases, the request processing

latency in the offloading mode roughly amounts to that in the host mode.
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Figure 4.18: Nginx CPU utilization under various modes.

Figure 4.18 further shows that the CPU cycles resulted from serving software IRQs are

significantly reduced by approximately 50% in the EZPath offloading mode. On the other

hand, we observe negligible difference between the CPU cycles incurred in the EZPath of-

floading mode and the host mode. Therefore, the offloading in EZPath to the programmable

hardware achieves substantially better web performance, with low CPU overhead similar

to that of the native host mode. This potentially preserves server resources and opens up

further opportunities for overall performance improvement.

4.6.4 Adaptive Offloading Strategy Evaluation

The setup to examine EZPath’s adaptive offloading performance is as follows. On host A,

we run a Memcached server and a Nginx server in two separate containers. On host B,

we create eleven Docker containers, among which one runs memtier benchmark tool that

generates high volume traffic and the other ten containers serve as HTTP clients to generate

low-rate background web traffic. In the memtier benchmark container, we create 4 threads

which establish 50 connections with the Memcached server on host A. All HTTP clients
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request a 1KB randomly generated file from the Nginx server every 5 seconds. All traffic

traverses the ToR switches and is monitored by the dataplane HH (heavy hitter) detection

module. We aim to evaluate the performance of our real-time heavy flow identification

and offloading. Ideally, our monitoring module should be able to detect the flow between

Memcached containers and seamlessly offload the flow to the in-network hardware. In the

experiment, the HH detection time interval is set to 100ms and the controller retrieves the

heavy flows in each polling interval, which is adjustable and set to 0.5s to avoid too much

communication cost. These parameters only affect the delay in offloading the flows.
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Figure 4.19: Heavy flow identification and seamless offloading for Memcached.
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Figure 4.20: Application-aware offloading: multiple applications + background traffic.

At the beginning, flow rules are installed into both OVSes that direct all traffic through

the normal path (e.g., the host kernel stack). All HTTP clients start to send background

traffic simultaneously before memtier benchmark is launched. In the first 0.5 second, the

controller detects the flow between Memcached and memtier benchmark container as a HH

flow. The controller starts the offloading after the flow remains as a HH flow for 10 polling

intervals, which amounts to 5s in our current threshold configuration. In the 6th second, the

offloading is triggered. The controller adds tunnelling mapping entries into ToR switches

and updates the OVS rules following the process discussed in Section 4.5. Figure 4.19 shows

that the Memcached traffic is seamlessly offloaded without any interruption. Furthermore,

as also shown in Figure 4.19, in the 7th second after the offloading is completed, the through-

put of Memcached is increased by 30%, from around 225Kops to 300Kops (operations per

second), which further demonstrates the performance enhancement of EZPath.

To demonstrate the application-awareness of EZPath offloading strategy, we examine

the performance of EZPath in-depth with multiple high-rate benchmarking applications

executing concurrently, namely Memcached and iperf3, mixed with ten low-rate background

HTTP flows. Background traffic is injected similarly as before. Another pair of containers
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are added to run iperf3 server and client separately on the two hosts, with packet size of

1024B. Besides, iperf3 server and client are launched 2 seconds before Memcached server

and memtier benchmark threads are launched. In memtier benchmark, we create 4 thread,

50 connections per thread with 50000 requests per client. In the controller, Memcached is

assigned a higher priority according to Kubernetes. During the experiment, we observed

that both high-rate flows (Memcached and iperf3) can be captured by our HH detection

module and controller. With the priorities, the controller only migrates the Memcached flow,

leaving the iperf3 flow untouched. The dynamics of the throughput for both Memcached

and iperf3 are illustrated in Figure 4.20. As is shown in the figure, with Memcached

traffic started at the 2nd second, iperf3 throughput suffers from moderate drops, competing

the bandwidth with the other flow. In the 8th second, the Memcached flow is stealthily

migrated to the P4 hardware, with the throughput increased from around 210Kops to

285Kops or so. Starting from 2nd second, due to the newly joined Memcached flow, iperf3

goes through TCP congestion control stage. Around 8th second, it reaches the stable state.

This efficaciously demonstrates EZPath is application-aware and could significantly improve

the average network performance.

As aforementioned, the major constraint for offloading is the available amount of SRAM

in the switch. In our implementation, each tunnel mapping entry takes up 104 bits (48b

MAC + 24b vni + 32b IP) of switch memory. In the switch we used for the experiments,

there are 10Mb SRAM per MAU. If 30% SRAM is used for offloading, it can accommodate

approximately 30K entries. Thus, depending on the application context, it may necessitate

the offloading priority as we discussed in section 4.4 and demonstrated here.

4.6.5 Discussion

To achieve full optimization, EZPath requires a centralized control plane, which controls

and manages the software/hardware network devices over the entire DC and across DCs. If

containers are deployed and replicated across data centers (e.g., to enhance service reliability

and availability), it will place burden on the centralized control plane to manage such large
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scaled networks. One workaround to mitigate this is to use local controllers that make

offloading decisions on their own, without coordination between the endpoints. As pointed

out in Section 4.4, this may not fully optimize the application performance due to in-network

resource under-utilization. We plan to study this in our future research.

On the other hand, the offloading function offered by EZPath does not have to be tied to

any particular offloading algorithm. The adaptive offloading strategy we have demonstrated

can be replaced based on the application’s need. Essentially, regardless of how the target

flow is identified, EZPath can offload that seamlessly.

4.7 Related Work

Efficiently and flexibly managing containerized clouds poses a myriad of challenges from

different aspects [77,84,85,87,88,110]. Among them, the network performance degradation

due to the software based overlay networking has attracted a lot of attention [84–86]. This

is mainly due to the overhead when implementing the tunneling and other network virtu-

alization functionalities in the software switch, such as Open vSwitch, a key component in

Weave [80], one of the most widely used container network interface (CNI) plugins for pro-

duction container orchestration platforms such as Kubernetes [81], Apache Mesos [82], and

Amazon ECS [83]. Approaches like SR-IOV [84] and Macvlan [95] aim to assign physical

network devices to selected containers, but they are not suitable for containerized clouds.

For example, SR-IOV is limited by the simulated 64 virtual functions (VF) while container

networks often have massive scales [111, 112], and is also incurs extra overhead [113] in

networking among intra-host containers as discussed in section 4.3.2.

Recent designs [77, 85, 87], on the other hand, either demand hardware support or fail

to support legacy monitoring and debugging tools in data centers. For example, Slim [85]

can achieve promising performance boosts by redesigning container overlay networks with a

dedicated user-space router to reduce the packet traversal of OS-kernel network stack. But it

is impractical for real world deployment due to the customized software demand. Compared

to them, EZPath is both application and system kernel transparent, and is compatible with
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any existing tools, thus offering a transparent alternative.

Due to resource constraints, EZPath adaptively monitors and offload heavy flows. Heavy

hitter detection algorithms have been extensively studied [114], [23], [115]. However, they

do not work well in highly resource constrained hardware switches. To address the resource

constraint, some recent work has re-designed the algorithms and implementation in order

to work around the limitations, such as HashPipe [7] and Precision [8]. However, it has

been demonstrated that HashPipe is hard to realize in RMT hardware models [24] because

the implementation requires consecutive pipeline stages to access the same stateful memory

block. Precison eliminates the requirement by recirculating a small portion of packets so

that recirculated packet only accesses the same memory in different passes. This inevitably

degrades the performance and complicates the system design. Therefore, in EZPath, we use

multiple heuristics to improve the detection efficiency while reducing the runtime overhead.

4.8 Chapter Summary

Cloud computing is increasingly adopting containers, evidenced by the popularity of mi-

croservices offered by all major cloud service providers. However, containerized applications

often suffer from the degraded networking performance in the common practice due to the

extra processing overhead induced by the container overlay. Previous solutions addressing

this problem are either not compatible with the legacy monitoring and debugging tools,

or demanding customized hardware support. In this work, we have instead designed and

implemented EZPath to expedite the container traffic, by leveraging the high speed of the

programmable switches in data centers. EZPath is transparent to applications or the under-

lying system kernel, compatible with all existing tools. Considering the resource constraints

in the hardware switches, EZPath can carefully identify heavy-hitters and adaptively offload

them. Our evaluation shows it can significantly expedite container traffic by improving the

throughput and reducing the latency of typical containerized applications.
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Chapter 5: Conclusion and Future Work

Cloud computing platforms heavily rely on the underlying data center systems. Among

various components, the data center networks (DCNs) play a critical role in response to

the ever-increasing demand of applications and attacks. Therefore, efficient monitoring and

management of data center traffic is essential.

5.1 Conclusion

In this dissertation, we investigate novel solutions to address several challenges posed to the

data center networks with the support of modern networking technology, e.g., SDN. First,

we design and implement flexible and efficient solutions to address DCN monitoring and

management challenges. For this, we have empirically explored the various trade-offs among

these factors by designing, implementing, and evaluating five different monitoring schemes.

Among them, four are built into the OVS kernel datapath, while the other one is based on

eBPF that leaves OVS intact. They differ in various aspects, including the placement of

monitoring modules, the data structures for maintaining traffic statistics, and the interaction

with OVS. Based on extensive experiments, we have quantitatively showed their advantages

and disadvantages. These results provide insightful guidelines for conducting network traffic

measurement on the OVS as well as software defined measurement in general.

With these insights on how to conduct efficient and accurate measurement at the network

edge, e.g., edge-based software switches, we have further delved into how to leverage edge

assisted measurement to enhance data center security. Accordingly, we proposed BotSifter,

an accurate, scalable and runtime framework for bot detection in data centers by incorpo-

rating state-of-the-art machine learning techniques. Particularly, we focused on edge-based

detection since it is inherently scalable through distributing the monitoring load across the
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edge nodes. In the meantime, it enables more expeditious detection due to the feasibility

of migrating the security applications to the edge, which not only supports more timely

detection but also reduces the communication bandwidth between the monitoring nodes

and the centralized monitoring server (e.g., the SDN controller).

Contemporary DCNs are often faced with performance bottlenecks with the increasing

network scales and traffic speeds, due to legitimate or attacking traffic. To mitigate such

bottlenecks, we have designed EZPath, which focuses on the performance optimization of

container overlay networks by leveraging the emerging programmable dataplanes. EZPath

requires no modifications to either the applications or the system kernel and thus easy to

maintain. Besides, EZPath identifies performance-critical flows and intelligently offloads

them, making the best use out of the limited resources within the hardware devices. Our

evaluations based on a wide range of microbenchmarks and application benchmarks have

demonstrated that EZPath can significantly expedite container traffic by improving the

throughput and reducing the latency of typical containerized applications.

5.2 Future Work

BotSifter takes the first step towards automating DC network security defenses by applying

ML models to perform runtime botnet detection. However, since it relies on supervised

ML models to learn from past traffic samples, it becomes less effective against new forms

of attacks. Furthermore, upon detection, it still requires non-trivial human interventions

to deploy corresponding security policies. In recent years, reinforcement learning (RL)

techniques have been studied to learn control policies that automatically map environment

states to actions. Examples include data center traffic optimization [116], cache replacement

in storage systems [117], TCP congestion control [118] and packet classification [119].

In the future, we will explore how RL could be leveraged to build a fully automated

DCN defense system. Our system consists of several key building blocks, including a scalable

data collection module to collect fine-grained information from the end hosts and in-network

devices and a RL enabled learning agent that interacts with the network environment to

107



optimize the RL model in an online manner. More specifically, the DCN defense system

will be formulated as a RL model, where the collected information is defined as the network

environment state and the defense strategies as the actions. Our goal is to automate the

defense policies by learning the optimized mapping between the network state and the

defense actions.
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