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Abstract

This paper describes results from applying various AQ learning programs to the Monks'
problems. The Monks' problems are concerned with learning concept descriptions from
examples, and were developed by Sebastian Thrun and John Cheng at the 1991 European
Summer School on Machine Learning at the Priory Corsendonk in Oud Turnhout,
Belgium, All examples come from the same event space, which spans 6 multiple-valued
attributes, giving a total of 432 possible events.

The problems differ in terms of the type of the target concept to be learned, and in the
amount of noise in the data. The target concept in the first problem includes a condition of
whether or not two of the attributes have equal values. The target concept in the second
problem is based on the number of attributes that have a designated value. The third
problem presented a simple concept in which 10% of the training examples were noise.

The rules produced by the AQ programs for classifying the testing examples on these
problems had error rates of no more than 13.2%, and for each of the three problems, at
least one of the AQ programs achieved 100% correct classification.

1. INTRODUCTION

There have been a number of learning methods and approaches developed for inductive
concept learning from examples. These methods can be divided into symbolic and
subsymbolic, based on whether or not their representations of attributes and concepts
consist of simple symbolic structures {e.g. logical descriptions) that can be related directly
to the objects they represent. Typical symbolic representations include decision trees or
rules, while subsymbolic methods include genetic algorithms and neural networks.

Given the many machine learning programs that have been developed for the purpose of
concept learning, an important theoretical and practical problem is to determine the areas of
best applicability of the various methods. One of the efforts in this direction was an
international competition in which attendees at the 1991 European Summer School on
Machine Learning were challenged with three problems developed by Thrun and Cheng
(Thrun et al, 1991). Given that the School was being held on the grounds of a converted
priory, the problems became known as the “Monks’ Problems.”

This paper describes the results from applying various AQ learning programs to these
problems. The results of the application of other programs to these problems and a more
brief presentation of the results using the AQ programs were documented by Thrun et al.
(1991).
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2. DATA FORMAT AND PROBLEM DEFINITIONS

The domain of the Monks' problems was an abstraction of a robots domain previously
used in a comparison of learning methods’ performance [Wnek et al, 1990]. The problems
were presented in a way such that physical attributes and values were replaced by generic
attributes and numerical values,for example, xI is 2 instead of head_shape is square. In
this paper, we will often revert to the latter notation or hybrid notation (such as head_shape
is 2) when it makes the presentation more understandable. A complete listing of the
attributes and values in both formats is shown in Table 1. All examples come from this
event space, which spans 6 multiple-valued attributes (it has a total of 432 possible
examples). The sizes of the value sets of the attributes, x1, x2, ..., x6, are 3, 3, 2, 3, 4,
and 2, respectively.

Attribute x1 X2 x3 x4 x5 X6
Robot Att.  head shape  body shape  is_smiling holding jacket_color has_tie
Value

1 round round yes sword red yes
2 square square no balloon yellow no
3 octagon octagon flag green
4 blue

Table 1. Attributes and values in the robots domain

Problem 1.

There were 124 training examples, which represented 30% of the total event space (62
positive and 62 negative). The testing examples were all possible examples (216 positive
and 216 negative). The goal concept was as follows:

(head _shape = body_shape) or (jacket color = red)

This problem represented a straightforward concept in which the values of two attributes
had to be compared, either implicitly or explicitly.

A diagrammatic visualization of this problem is shown in Figure 1. The dark area in this
figure represents the positive concept, and the white area represents the concept negation,
or the set of all possible counterexamples. Positive and negative training examples are
represented by + and - respectively.

Problem 2.

There were 169 training examples, which represented 40% of the total event space (1035
positive and 64 negative). The testing examples were all possible examples (190 positive
and 242 negative). The goal concept was as follows:

Exactly two of the six attributes have their first value
In other words, exactly two of the x; have values of 1. This concept does not have a

simple representation in Disjunctive Normal Form, and therefore poses a problem for many
symbolic learning methods.



A diagrammatic visualization of this problem is shown in Figure 2.

Problem 3.

There were 122 training examples, which represented 30% of the total event space (62
positive and 60 negative). The testing examples were all possible examples (204 positive
and 228 negative). Noise was inserted into the example set so that 5% of the examples
were misclassified. The goal concept was as follows:

(jacket_color is green and holding is sword) or
(Jacket color is not blue and body_shape is not octagon)

The goal of this problem was to test learning programs’ adaptation to noisy environments.

A diagrammatic visualization of this problem is shown in Figure 3. The plus in the white
area and the minuses in the black area represent the noisy training examples.

Figure 1. The first Monk's Problem



3. A BRIEF DESCRIPTION OF THE PROGRAMS AND ALGORITHMS

The following AQ programs were used in the experiments:

AQ17-DCI (a version of AQ program with data-driven constructive induction)

AQ15-FCLS (a version of AQ program oriented toward learning flexible concepts)

AQI17-HCI (a version of AQ program with hypothesis-driven constructive induction)

AQI14-NT (a version of AQ program oriented toward learning from noisy data)

AQ15-GA (a version of AQ program combined with a genetic algorithm)

Below is a brief description of the algorithm AQ underlying all the problems, and then a
description of each program.
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Figure 2. The second Monk's Problem



3.1. AQ Algorithm

All the above programs use AQ as the basic induction algorithm (Michalski, 1969; 1983).
Here is a brief description of the AQ algorithm:

1. Select a seed example from the set of training examples for a given decision class.

2. Using the extend against operator (Michalski, 1983), generate a set of alternative most
general rules (a star) that cover the seed example, but do not cover any negative exarmnples

of the class.

3. Select the "best” rule from the star according to a multi-criteria rule quality function
(called LEF - the lexicographical evaluation function), and remove the examples covered by
this rule from from the set of positive examples yet to be covered.

4. If this set is not empty, select a new seed from it and go to step 2. Otherwise, if another
decision class still requires rules to be learned, return to step 1, and perform it for the other

decision class.

Figure 3. The third Monk's Problem



3.2. AQ17-DCI (Data-driven constructive induction)

This program is based on the classical AQ algorithm (Section 3.1), but it includes an
algorithm for constructive induction that generates a number of new attributes. The quality
of any generated attribute is evaluated according to a special Quality Function for attributes.
If the Quality Function exceeds a certain threshold value, then the attribute is selected. A
brief description of the algorithm for data-driven constructive induction (Bloedorn and
Michalski, 1991) is given below. The program works in two phases.

Phase 1.
1. Identify all numeric-valued attributes.

2. Repeat steps 3 through 5 for each possible combination of these attributes, starting with
the pairs of attributes, and extending them if their quality was found acceptable
according to the attribute Quality Function (QF).

3. Repeat steps 4 and 5 for each constructive induction operator. The current operators
include addition, subtraction, multiplication, integer division and logical comparison of
attributes (Bloedorn and Michalski, 1991).

4. Calculate the values of the given attribute pair for the given constructive induction
operator. |

5. Evaluate the discriminatory power of this newly constructed attribute using the attribute
Quality Function, described by Bloedorn and Michalski (1991). If the QF for an
attribute is above an assumed threshold, then the attribute is stored, else it is discarded.

6. Repeat steps 4 and 5 for each available function operator that takes as argument an
entire event (example), and calculate various global functions (properties) of it.

The program has a default list of global functions, but allows the user to modify the list to
fit the problem at hand. The default list of functions include MAX (the maximum of the
values of the numerical attributes in an event), MIN (the minimum value), AVE (the
average value), MF (the most-frequent value), LF (least-frequent), and #VarEQ(x), which
measures the number of variables (attributes) that take the value x in an example of a given
class.

Phase 2.
1. Identify in the data all atributes that are binary.

2. Search for pairwise symmetry among the attributes and then for larger symmetry or
approximate symmetry groups, based on the ideas described in (Michalski, 1969a;
Jensen, 1975).

3. For each candidate symmetry group, create a new attribute that is the arithmetic sum of
the attributes in the group.



4. Determine the quality function of the newly created attributes, and select the best
attribute.

5. Enhance the dataset with values of this attribute, and induce new decision rules.

The method described above allows the system to express simply symmetric or partially
symmetric Boolean functions and k-of-n functions, as well as more complex functions that
depend on the presence of a certain number of attribute values in the data. Such functions
are among the most difficult functions to express in terms of conventional logic operators.

3.3. AQI5-FCLS (Flexible concept learning)

This method (Zhang and Michalski, 1991) combines both symbolic and numeric
representations in generating a concept description. The program is oriented toward
learning flexible concepts, i.e, imprecise and context-dependent. To describe such concepts
it creates two-tiered descriptions, which consist of a Basic Concept Representation (BCR)
and an Inferential Concept Interpretation {ICI) to handle exceptions. In the program, the
BCR is in the form of rules, and the ICI is in the form of a weighted evaluation function
which sums up the contributions of individual conditions in a rule, and compares it with a
THRESHOLD. The learning program leams both the rules and an appropriate value for the
THRESHOLD.

Each rule of a concept description is learned in two steps, the first step is similar to the
STAR algorithm in AQ that generates a general rule, and the second step optimizes the rule
by specializing it and adjusting the accuracy threshold.

3.4. AQ17-HCI (Hypothesis-driven constructive induction)

AQ17-HCI (Hypothesis-Driven Constructive Induction) represents a module employed in
the AQ17 attribute-based multistrategy constructive learning system. This module
implements a new iterative constructive induction capability in which new attributes are
generated based on the analysis of the hypotheses produced in the previous iteration (Wnek
and Michalski, 1991). Input to the HCI module consists of the example set and a set of
rules, in this case generated by the AQ15 program (Michalski et al, 1986). The rules are
then evaluated according to a rule quality criterion, and the rules that score the best for each
decision class are combined into new attributes. These attributes are incorporated into the
set of training examples, and the learning process is repeated. The process continues untl
a termination criterion is satisfied. The method is a special implementation of the idea of
the “survival of the fittest,” and therefore can be viewed as a combination of symbolic
learning with a form of genetic algorithm-based learning.

A brief description of the HCI algorithm follows:
1. Induce rules for each decision class using a standard AQ algorithm (as implemented in
AQ15) from a subset of the available training examples.

2. Identify variables from the original set that are not present in the rules, and classify
them as irrelevant.



3. For each decision class, generate a new attribute that represents the disjunction of of the
highest quality rules.

4. Modify the training examples by adding the newly constructed attributes and removing
the ones found to be irrelevant.

5. Induce rules from this modified training set.

6. Test these rules against the remainder of the training set. If the performance is not
satisfactpry, return to step 1. Otherwise, extend the initial complete set of training
examples with the attributes from the obtained rules. Induce the final set of rules from
this set of examples.

In these examples, the induction in steps 1, 5 and 6 used the learning algorithm
implemented in the AQ15 program.

3.5. AQI14 - NT (poise-tolerant learning from engineering data)

The program implements an algorithm specially designed for learning from noisy
engineering data (Pachowicz and Bala, 1991a and 1991b). The acquisition of concept
descriptions (in the form of a set of decision rules) is performed in the following two
phases:

« Phase 1:
Concept-driven closed-loop filtration of training data, where a single loop of
gradual noise removal from the training dataset is composed of the following
three stages:

1. Induce decision rules from a given dataset using the AQ14 (NEWGEM)
inductive learning program,

2. Truncation of concept descriptions by removing “least significant” rules,
that is, rules that cover only a small portion of the training data (this step
is performed using the so-called TRUNC procedure).

3. Create a new training dataset that includes only training examples that are
covered by the truncated concept descriptions.

4. If the size of the dataset falls below an assumed percentage of the training
data (that reflects an assumed error rate in the data), then go to Phase 2.
Otherwise, return to step 1.

« Phase 2:
Acquire concept descriptions from the improved training dataset using the AQ14

learning program.

A justification for Phase 1 is that the noise in the data is unlikely to constitute any strong
patterns in the data, and therefore will require separate rules to account for it. Thus, the
examples covered by the “light rules” are likely to represent noise, and therefore are
removed from the dataset. Experiments with AQ14-NT applied to a variety of engineering
and computer vision problems have shown that it systematically produces classification
rules that both perform better and also are much simpler.



3.6. AQI15-GA (AQ15 with attribute selection by a genetic algorithm)

In this approach (Vafaie and De Jong, 1991), genetic algorithms are used in conjunction
with AQ15. Genetic algorithms are used to explore the space of all subsets of a given
attribute set. Each of the selected attribute subsets is evaluated (its fitness measured) by
invoking AQ15 and measuring the recognition rate of the rules produced.

The evaluation procedure as shown is divided into three main steps. After an attribute
subset is selected, the initial training data, consisting of the entire set of attribute vectors
and class assignments corresponding to examples from each of the given classes, is
reduced. This is done by removing the values for attributes that were eliminated from the
original attribute vector. The second step 1s to apply a classification process (AQ13S) to the
new reduced training data. The decision rules that AQ1S5 generates for each of the given
classes in the training data are then used for classification. The last step is to use the rules
produced by the AQ algorithm in order to evaluate the classification and hence, recognition
with respect to the test data.

In order to use genetic algorithms as the search procedure, it is necessary to define a fitness
function which properly assesses the decision rules generated by the AQ algorithm. The
fitness function takes as an input a set of attribute or attribute definitions, a set of decision
rules created by the AQ algorithm, and a collection of testing examples defining the attribute
values for each example. The fitness function then views the AQ-generated rules as a form
of class description that, when applied to a vector of attribute or attribute values, will
evaluate to a number. It is evaluated for every attribute subset by applying the following
steps: For every testing example a match score is evaluated for all the classification rules
generated by the AQ algorithm, in order to find the rule(s) with the highest or best match.
At the end of this process, if there is more than one rule having the highest match score,
one rule will be selected based on the chosen conflict resolution process. This rule then
represents the classification for the given testing example. If this is the appropriate
classification, then the testing example has been recognized correctly. After all the testing
examples have been classified, the overall fitness function will be evaluated by adding the
weighted sum of the match score of all of the correct recognitions and subtracting the
weighted sum of the match score of all of the incorrect recognitions.

4, RESULTS OF THE AQ PROGRAMS APPLIED TO THE MONKS’
PROBLEMS

Below is a listing of the rules obtained by the various AQ programs (AQ17-DCI, AQ17-
HCI, AQ15-GA, AQ15-FCLS or AQ14-NT), and the results of testing them on the testing
examples. A listing of all the data, both training and testing sets, as provided by the
creators of the problems, is in the Appendix.

Rules generated by different programs were tested using the ATEST program that
computes a confusion matrix (Reinke, 1984). The program computes the so-called
consonance degree between an unknown example and the rules for each decision class.
The output from this program includes numerical evaluations of the the accuracy of the
rules based on the percentage of the testing examples correctly classified (by choosing the
rule that best fits the example), and the percentage of examples precisely matched by the
correct decision rule. These percentages are output by ATEST as OVERALL %
CORRECT-FLEX-MATCH and OVERALL % CORRECT-100% MATCH, respectively.



Details of the different programs, and of the AQ algorithm underlying these programs are
given in Section 3. It should be noted that results are not always presented for each of
these programs as applied to each of the three problems. As indicated above, these
programs derive from the same basic method, each adding features appropriate to specific
types of problems. The different programs derived basically the same rule for the first
problem; the ones shown here are the ones whose knowledge representation schema
allowed for the most elegant presentation of the output. We felt that for the sake of brevity
and emphasis on the matching of the programs’ different features with the types of
problems to be solved, we should present only the results of the programs better suited for
the given type of problem. For example, we felt that there was no reason to apply AQ14-
NT, a program with special features to cope with noisy data to Problem 2, a problem in
which data were without noise, and the testing events were 100% correctly classified by the
rules obtained by other programs. For the same reason, we do not emphasize the results of
the application of the data-driven constructive induction program AQ17-DCI to Problem 3;
its algorithm is strictly data-driven, and as such is less suitable for learning from noisy data
than other AQ programs. -

The results of applying the five AQ programs to the three Monks' problems are
summarized in Table 2. The percentages represent the correct classification percentages as
calculated by ATEST.

PROGRAM #1 #2 43 |
AQ17-DCI 100% | 100% | 97.2%
AQ17-HCI 100% | 93.6% | 100%
AQI5-FCLS 100% | 92.6% | 97.2%
AQ14-NT 100% | NJA | 100%
AQ15-GA 100% | 86.8% | 100%

Table 2. Summary of AQ programs' correct classification percentages

4.1. Results for the 1st problem
4.1.1. Rules obtained by AQ17-DCI
These are the rules obtained by AQ17-DCI, a version of the AQ program that employs data-
driven constructive induction. The results include 1 rule for Class 0 (that represents
positive examples of the concept), and 2 rules for Class 1 (that represents the negative
examples):
Class 0:

Rule 1 [jacket_color # red] & [head_shape <> body_shape] (total:62, unique:62)
Class 1:

Rule 1 [head_shape=body_shape] (total:41, unique:33)



Rule 2 [jacket_color=red] (total:29, unique:21)

In the above rules, expressions in [] denote individual conditions in a rule, “total” means
the total number of training examples of the given class covered by the rule, and "unique”
means the number of training examples covered by that rule only, and not by any other

rules.

There is only one rule for Class 0, and there two rules for Class 1. The latter means that if
either of the rules is matched by a given instance, then that instance is classified to Class 1.
A set of such rules is logically equivalent to a disjuction of conjunctions, The syntax of the
rules is defined formally according to the variable-valued logic calculus VL1. Individual
rules corespond to “complexes” in VL.

The results of applying the rules to the testing examples were:

RESULTS

OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 100.00

where:

% FLEX MATCH means the percentage of the correctly classified examples within the total
set of testing examples, using a flexible matching function (see Reinke, 1984), and %
100% MATCH means that the percentage of correctly classified examples that matched the
rules exactly.

The number of testing events satisfying individual rules in the correct class description is
given in the table below:

RULES

R1 R2
CLASS O 215
CLASS 1 144 108

4.1.2. Rules obtained by AQ17-HCI
These are the rules obtained by AQ17-HCI, a version of the AQ program that employs
hypothesis-driven constructive induction (see section 3.4. The results include one rule for

Class 0 that represents positive examples of the concept, and one rule for Class 1 that
represents the negative examples:

Class 0:
Rule 1 [Neg=false] (total:62, unique:62)

Class 1:



Rule 1 [Pos=false] (total:62, unique:62)

where Neg and Pos are attributes constructed from the original ones, or intermediate ones,
as defined below (these rules, as one can check,.are logically equivalent to the AQ17-DCI

generated rules)

¢01 <:: [head_shape=round] & [body_shape#round] & [jacket_color#red]
c05 <:: [head_shape=square] & [body_shape#square] & [jacket_color#red]
c08 <:: [head_shape=octagon] & [body_shape=octagon] & [jacket_colorzred]
¢10 <:: [head_shape=round] & [body_shape=round]

c12 <:: [jacket_color=red]

c13 <:: [head_shape=square] & [body_shape=square]

c15 <:: [head_shape=octagon] & [body_shape=octagon]

Pos <:; [c10=false] & [c12=false] & [c13=false] & [c15=false]

Neg <:: [cO1=false] & [c05=false] & [c08=false]

TEST RESULTS - SUMMARY

OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 100.00

Number of testing events satisfying individual rules in the correct class description:

RULES

R1
CLASS O 215
CLASS 1 216

Other programs either were either not used on this problem, or generated similar results.

4.2. Results for the 2nd problem
4.2.1. Rules obtained by AQ17-DCI

The rules below were obtained by AQ17-DCI, which is capable of generating all kinds of
new attributes from the original attributes. For the problem at hand, the program found that
a new attribute that expresses the number of variables in the learning examples that have
some specific value is highly relevant to this problem. Such an attribute is assigned by the
program the name #VarEQ(x), which means “the number of variables with value of rank £
(in their domain)” in an example. The lowest value in the domain has rank 1, the next
lowest has rank 2, etc. In this case, the relevant attribute was #VarEQ(1). Based on this
attribute, the program constructed appropriate decision rules. There were two one-
condition rules for Class 0, representing the positive examples of the concept, and one rule
for Class 1 that represents the negative examples. The rule for Class 1 is logically
equivalent to the negation of the union (disjunction) of the rules for Class Q.

Class 0:

Rule 1 [#VarEQ(1)>=3]
Rule 2 [#VarEQ(1)<=1]



Class 1:
Rule 1 [#VarEQ(1)=2]

The results of applying the rules to the testing examples were:

RESULTS

OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 100.00

4.2.2. Rules obtained by AQ17-HCI

There are 4 top level rules for Class O (positive examples), and 6 top level rules for Class 1
(negative examples):

Class 0:

Rule 1 [Pos73=true] (total:90, unique:49)

Rule 2 [c14=false] & [c26=false] & [c53=false] & [c67=false] & [c72=false] &
[Neg74=false] (total:38, unique:6)

Rule 3 [holding=2,3] & [c6=false] & [c20=false] & [Neg74=false]
(total:22, unique:3d) |

Rule 4 [head_shape=2] & [has_tie=2] & [c44=false] & [c50=false] &
[Neg74=false] (total:6, unique:2)

Rule 1 [Neg74=true] (total:43, unique:30)

Rule 2 [jacket_colorzred] & [has_tie=true] & [c60=true] & [Pos73=false]
(total: 17, unique:4) |

Rule 3 [head_shape=#round] & [body_shape=square] & [c28=false] &
[Pos73=false] (total:16, unique:7)

Rule 4 body_shape=octagon] & [c48=true] & [c66=true] (total:4, unique:2)

Rule § [jacket_color=green} & [c43=true] & [c52=false] & [c53=false] &
[c55=false] & [c69=true] & [Pos73=false] (total:4, unique:2)

Rule 6 [body_shape=octagon] & [c9=false] & [c10=true] & [c23=true] &
[c32=true] (total:3, unique:l)

Attributes "cj, i=1..72" "Pos73," and "Neg74" were constructed during the learning
process. The following were relevant to the discovered rules:

c¢2 <::[jacket_color=red or blue]

c4 <:: [body_shapezround] & [is_smiling=false]
c5 <:: [head_shapez#round] & [is_smiling=false]
¢6 <::[head_shape#round] & [body_shape+round]



c7 <:: [holding#flag] & [jacket_color#yellow]
c9 <::lhead_shapessquare] & [jacket_color#red]
c10 <:: [holdingzflag] & [jacket_colorstred]

c14 <:: [jacket_colorzred] & [has_tie=false]

cl5 <:: [is_smiling=true] & [jacket_color#red]
c16 <:: [holding#sword] & [has_tie=false]

c17 <:: [holding#sword] & [jacket_color#red]
c18 <:; [is_smiling=false] & [jacket_color#red]
c20 <:: [jacket_color#red] & [has_tie=true]
c21 <:: [body_shape#round] & [holding#sword]
c22 <:: [is_smiling=false] & [holding=flag]

c23 <:: [holding=balloon] & [jacket_colorsred]
c26 <:: [head_shape#round] & [jacket_color#red]
c28 <:: [body_shape#square] & [jacket_colorzred]
¢32 <:: [head_shape#round] & [jacket_colorsblue]
¢33 <:: [head_shape#round] & [has_tie=false]
c37 <:: [is_smiling=~false] & [holding#sword]
c38 < [c21=false] & [c37=false]

c39 <:: [cHh=true] & [c17=true]

c40 <:: [c5=true] & [c17=true]

c41l <:: [c15=false] & [c28=false]

c42 <:: [holding#sword] & [c39=false]

c43 <:: [body_shapestround] & [c39=false]

c44 <:: [holding=2,3] & [jacket_colorzred]

c46 <:: [c15=false] & [c39=false]

c47 <:: [cT=false] & [c39=false]

c48 <:: [jacket_color#green] & [c7=false]

c49 <:: [cl7=false] & [c33=true]

¢30 <:: [body_shape#round] & [c22=false]

c52 <:: [jacket_color#red] & [c14=false]

¢33 <:: [jacket_color#red] & [c21=true]

¢35 <:: [holding=flag] & [c14=false]

c56 <:: [holdingstballoon] & [cl4=false]

c39 <:: [jacket_color=yellow or blue]

c60 <:: [c38=false] & [c49=false]

c61 <:: [body_shape=round] & [jacket_colorred]
c65 <:: [c20=false] & [c39=false]

c66 <:: [jacket color#blue] & [c46=true}

c67 <:: [c38=false] & [c49=true]

c68 <:: [c40=false] & [c55=false]

c69 <:: [cl6=false] & [cS5=false]

¢70 <:: [jacket_colorzred] & [c18=false)

c72 <:: [jacket_color#blue] & [c37=true]

Pos73 <:: [c4=false] & [c16=false] & [c33=false] & [c39=false] & [c40=false] or
[c15=false] & [c43=false] & [c47=false] & [c68=false] or
[body_shape#octagon] & [c21=false] & [c41=true] & [c44=false] & [c6H5=true] &
[c67=false] or
[c33=true] & [c60=true]

Neg74 <:: [c4=false] & [c42=true] & [c56=false] & [c65=true] & [c68=true] or
[c2=false] & [c4=false] & [c16=false] & [c17=true] & [c26=true] or
[1s_smiling=false] & [holding#sword] & [c14=false] & [c41=true] & [c43=true] &



[c59=false] & [c69=Ffalse] & [c70=false] or
[has_tie=false] & [c5=true] & [c44=false] & [c61=false]

TEST RESULTS - SUMMARY

OVERALL % CORRECT FLEX MATCH: 93.06
OVERALL % CORRECT 100% MATCH: 86.57

The above summary of the results shows that the rules generated by AQ17-HCI
approximate quite well the concept in Problem 2 although they use only logical operators.
This result is quite interesting because concepts such as the one in Problem 2 are among the
most difficult to learn using solely logic-based inductive learners (classical rule learning or
decision tree learning programs). This result demonstrates the power of hypothesis-driven
constructive induction.

Number of testing events satisfying individual complexes in the correct class description:

RULES

R1R2R3 R4R5R6
CLASS O 232 84 54 12
CLASS 1 77 44 32 10 5 4

4.2.3, Rules obtained by AQ17-FCLS

These are the rules obtained by AQ17-FCLS, a version of the AQ program that learns
flexible concepts by generating rules that permit partial matching. The threshold parameter
indicates the minimum percentage of the individual conditions in the rule that must be
satisfied for the rule to apply. The results include two rules for Class 0 that represent
positive examples of the concept, and 18 rules for Class 1 that represent the negative
examples. The discovered rules fully encompass Class 0, but they failed to get a complete
grasp of the concept of Class 1:

Class 0:

Rule 1 [head_shape = round] & [body_shape = round] & [is_smiling = true] &
[holding = sword] & [jacket_color = red] & [has_tie = true]
with THRESHOLD =50 %
(Total positive examples covered: 64)

This rule says that three or more variables must have rank equal to 1.

Rule 2 [head_shape # round] & [body_shape # round] & [is_smiling = false] &
[holding # sword] & [jacket_color # red] & [has_tie = false]
with THRESHOLD = 83 % (5/6)
(Total positive examples covered: 41)



This rule says that five or six out of six variables must not have their first values, or
equivalently, that at most one variable may have its first value. Thus the disjunction of
these two rules above indicates that the number of variables which have their first value

cannot be equal 1o 2.

These rules classified correctly 100% of the examples of Class 0.

Since the current program does not have the ability to express the negation of the above
two rules for Class 0, to program generated many “light-weight” rules to cover all
examples of Class 1. The overail performance using the flexible match was not 100%
beacuse in some cases when an example matched equally well the rules for both classes, an
incorrect class was chosen. In the next version of the program, we will include the missing

negation operator.

Rule 1 [is_smiling = true] & [holding # sword] & [jacket_color = yellow] &
[has_tie = false] -
with THRESHOLD = 100 %
(Total positive examples covered: 8)

Rule 2 [head_shape # round] & [body_shape s round] & [is_smiling = true] &
[holding #sword] & [jacket_color # red] & [has_tie = true]
with THRESHOLD = 100 %
(Total positive examples covered: 9)

Rule 3 [head_shape # round] & [body_shape # round] & [is_smiling = false] &
| [holding #sword] & [jacket color = yellow] & [has_tie = false]
with THRESHOLD = 100 %
(Total positive examples covered: 7)

Rule 4 [head_shape = octagon] & [body_shape = round] & [is_smiling = true] &
[holding = sword] & [jacket_color = green] & [has_tie = false]
with THRESHOLD =83 %
(Total positive examples covered: 3)

Rule § [head_shape = round] & [is_smiling = true] & [holding # sword] &
[jacket_color = red or yellow] & [has_tie = false]
with THRESHOLD = 100 %
(Total positive examples covered: 3)

Rule 6 [head_ shape # round] & {body_shape = round] & [is_smiling = false] &
[holding # flag] & [jacket_color = yellow]
with THRESHOLD = 100 %
(Total positive examples covered: 4)

Rule 7 [head_shape = round] & [body_shape # round] & [is_smiling = false] &
[holding # sword] & [jacket_color # red] & [has_tie = true]
with THRESHOLD = 100 %
(Total positive examples covered: 5)



Rule 8

Rule 9

Rule 10

Rule 11

Rule 12

Rule 13

Rule 14

Rule 15

Rule 16

Rule 17

Rule 18

[head_shape # round] & [is_smiling = false] & [jacket_color =red} &
[has_tie = false]
with THRESHOLD = 100 %

(Total positive examples covered: 3)

[head_shape # round] & [body_shape # round] & [is_smiling = false] &
(holding = sword] & [jacket_color #red] & [has_tie = true]
with THRESHOLD = 100 %

(Total positive examples covered: 4)

[head_shape # square] & [body_shape = round] & [holding # flag] &
[jacket_color = blue] & [has_tie = false]
with THRESHOLD = 100 %

(Total positive examples covered: 3)

[head_shape = square] & [body_shape = square] & [is_smiling = true] &
[holding = sword] & [jacket_color # red] & [has_tie = false]
with THRESHOLD = 100 %

(Total positive examples covered: 5)

[head_shape # octagon] & [body_shape = octagon] & [holding # sword] &
[jacket_color =red] & [has_tie = false]
with THRESHOLD = 100 %

(Total positive examples covered: 2)

[head_shape = round] & [body_shape =round] & [is_smiling = false] &
[holding = flag] & [jacket_color = yellow] & [has_tie = false]
with THRESHOLD = 100 %

(Total positive examples covered: 1)

[head_shape = round] & [body_shape = octagon] & [is_smiling = false] &
[holding = sword] & [jacket_color = red or green] & [has_tie = false]
with THRESHOLD = 100 %

(Total positive examples covered: 1)

[head_shape =round] & [body_shape = square] & [is_smiling = false] &
[holding # sword] & [jacket_color = red] & [has_tie = false]
with THRESHOLD = 100 %

(Total positive examples covered: 1)

[head_shape = square] & [body_shape =round] & [is_smiling = true] &
[holding = flag] & [jacket_color = yellow or green]
with THRESHOLD = 100 %

(Total positive examples covered: 2)

[head_shape = octagon] & [body_shape = square] & [is_smiling = true] &
[holding = balloon] & [ jacket_color = red or yellow]
with THRESHOLD = 100 %

(Total positive examples covered: 2)

[head_shape # round] & [body_shape = round] & [is_smiling = false] &
[holding # sword] & [jacket_color # red] & [has_tie = true]
with THRESHOLD = 100 %



(Total positive examples covered: 3)

TEST RESULTS - SUMMARY

The percentage of correctly classified testing events: 92.6%
The percentage of correctly classified testing events in Class 0:  100.0%
The percentage of correctly classified testing events in Class 1:  85.2%

The total number of rules in the descriptions: 2 for Class 0
18 for Class 1
The total number of conditions in the descriptions: 110

4.3. Results for the 3rd probiem
4.3.1. Rules obtained by AQ17-HCI

Below are the rules obtained by the hypothesis-driven constructive induction method:

Class 0;

Rule 1 [Posl=true] (total:49, unique:49)

Rule 2 [body_shape#round] & [holdingzsword] & [jacket_color=green]
(total:11, unique:11) '

Rule 3 [body_shape=round] & [holding=sword] & [jacket_color=green]
(total: 1, unique:1)

Rule 4 [body_shape=square] & [holding=balloon} & [jacket_color=yellow]
(total:1, unique:1)

Class 1:
Rule 1 [Neg2=true] (total:57, unique:57)

Rule 2 body_shape=octagon] & [holding=sword] & [jacket_color=green or blue]
(total:3, unique:3)

where Pos1 and Neg?2 are attributes constructed from the original ones (Wnek & Michalski,
1991)

Posl <:: [jacket_color=blue] or
[body_shape=octagon] & [jacket_color#green]

Neg2 <:: [body_shape=octagon] & [jacket color#blue]

TEST RESULTS - SUMMARY

OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 86.11




Since this problem involves noisy data, the flexible match should always be used. The
results from 100% match are shown just for comparison.

Number of testing events satisfying individual rules in the correct class description:

RULES

R1 R2R3 R4
CLASS 0O 180 24 0 O
CLASS 1 216 12

4.3.2. Rules obtained by AQI14-NT

These are the rules obtained by AQ14-NT, a version of the AQ program that employs a
noise-filtration technique. The results include one rule for Class 0 that represents positive
examples of the concept, and one rule for Class 1 that represents negative examples.

After only two loops of concept-driven filtration of training dataset (with truncation
parameter equal to 10%) and repeated learning, we received the following set of rules:

Class 0:

Rule 1 [jacket_color=blue]
Rule 2 [body_shape=octagon] & [holding#sword]
Rule 3 [body_shape=octagon] & [jacket_color=red or yellow]

Class 1:

Rule 1 [body_shapezoctagon] & [jacket_color#blue]
Rule 2 {holding=sword] & [jacket_color=green]

These rules recognized all test data correctly, i.e., on the 100% level.

Since there was supposed to be noise in the data, we are somewhat surprised by such a
high degree of recognition.

4.3.3. Rules obtained by AQ17-FCLS

These are the rules obtained by AQ17-FCLS. The results include two rules for Class O that
represent positive examples of the concept, and one rule for Class 1 that represents the
negative examples. The threshold parameter indicates the minimum percentage of selectors
in the rule that must be true for the rule to apply. This set of rules is intentionally
incomplete and inconsistent with the training set since it was generated with a 10% error
tolerance. This produced better results than other tolerances that were tried.

Rule 1 [head_shape # round] & [body_shape = octagon] & [jacket_color = blue]
with THRESHOLD = 67 %



(Total positive examples covered: 42)

Rule 2 {head_shape = round] & [body_shape = octagon] & [jacket_color = blue]
with THRESHOLD =67 %
(Total positive examples covered: 26)
Rule 1 {body_shape = red or yellow] & {jacket color s blue]
with THRESHOLD = 100 %
(Total positive examples covered: 57)
| TEST RESULTS - SUMMARY
The percentage of correctly classified testing events: 97.2%

The percentage of correctly classified testing events in Class 0: 100.0%
The percentage of correctly classified testing events in Class 1: 94.7%
The total number of rules in the descriptions: 2 for Class 0

The total number of conditions in the descriptions: 8

1 for Class 1

4.3.4. Rules obtained by AQI15-GA

Below are the rules obtained by AQ15-GA, a program that uses a genetic algorithm in
conjunction with the AQ rule-generation algorithm. The first rule is for the positive
examples of the concept, Class (0, and the second for the negative examples, Class 1. A
genetic algorithm determined that 3 attributes (body_shape, holding, and jacket_color) were
the most meaningful. Using these, the rules discovered were as follows:

Class 0:

Rule 1
Rule 2
Rule 3
Rule 4
Rule 5§

Class 1:

Rule 1
Rule 2

[jacket_color=blue]

[body_shape=octagon] & [jacket_color=red or yellow}
[body_shape=round] & [holding=sword] & [jacket_color=green]
[body_shape=round] & [holding=sword] & [jacket_color=green]
[body_shape=square] & [holding=2] & [jacket_color=yellow]

- [body_shapestoctagon) & [jacket_colorsblue]

[body_shape=octagon] & [holding=sword] & [jacket_color=green or blue]

Results on testing the rules on testing events using program ATEST:

TEST RESULTS - SUMMARY

OVERALL % CORRECT FLEX MATCH.: 100.00
OVERALL % CORRECT 100% MATCH: 100.00




5. COMPARISON OF AQ WITH OTHER PROGRAMS

In the Thrun study (Thrun et al, 1991), the AQ programs performed very favorably in
comparison with the other programs examined (Table 3). Programs and algorithms that
were tested on these problems included Assistant Professional (Cestnik, Kononenko and
Bratko); mFOIL (Dzeroski); IDSR, IDL, ID5R-hat and TDIDT (Van de Velde); ID3 (with
and without windowing), ID5R, AQR, CN2 and CILASSWEB (Kreuziger, Hamman and
Wenzel); PRISM (Keller); ECOBWEB (Reich and Fisher); Backpropagation (Thrun) and
Cascade Correlation (Fahlman).

PROGRAM #1 #2 #3
AQ17-DCI 100% | 100% | 94.2%
AQ17-HCI 100% 03.1% 100%
AQI15-FCLS 092.6% 97.2%
AQI14-NT 100%
AQ15-GA 100% 86.8% 100%
Assistant Professional 100% 81.3% 100%
mFOIL, 100% 69.2% | 100%
ID5R 81.7% 61.8%

IDL 97.2% 66.2%

ID5SR-hat 90.3% 65.7%

TDIDT 757 % | 66.7%

D3 98.6% 67.9% 94.4%
ID3, no windowing 83.2% 69.1% 95.6%
ID5R 79.7% 69.2% 95.2%
AQR 95.9% 79.7% 87.0%
CN2 100% 69.0% 89.1%
CLASSWEB 0.10 71.8% 64.8% 80.8%
CLASSWEB 0.15 65.7% 61.6% 85.4%
CLASSWEB 0.20 63.0% 57.2% 75.2%
PRISM 86.3% 72.7% 90.3%
ECOBWEB leaf prediction 718% | 67.4% | 68.2%
ECOBWERB lLp. & information utility 82.7% 71.3% 68.0%
Backpropagation 100% 100% 93.1%
Backprop. with weight decay 100% 100% 97.2%
Cascade Correlation 100% 100% 97.2%

Table 3. Summary of classification results reported by Thrun




These results include an earlier result from AQ17-DCI for problem 3 that has since been
improved upon. While the results do not guarantee either that all the programs were
employed with optimal parameter settings or that these results can be extended to other
concept learning problems, it is interesting to note that only the rule-based AQ programs
were able to come up with 100% classification rates on both the k-of-n concept and the
noisy concept. In addition, the lower bounds on the classification rates of the AQ
programs were very respectable in comparison with the other programs, indicating that
these programs can generate reasonable results, even when the optimal tool is not being

used.

An earlier study by. Wnek, Sarma, Wahab and Michalski (1990) compared the standard
version of AQ15, a backpropagation neural net, the CES classifier system and the C4.5
decision tree learning program by testing their ability to learn five concepts created by
human subjects. Their results indicated that the symbolic algorithms were better suited
toward these symbolic-oriented problems, both in terms of error rate and knowledge

complexity.

Spears and Gordon (1991) compared NEWGEM (a predecessor to AQ135), C4.5, and
GABIL, a genetic algorithm-based system, on an artificial disjuncts-and-conjuncts domain
and on breast cancer case data. They found comparable error rates among the systems and
proposed a multistrategy system that would improve the GABIL results by incorporating
elements of other systems in the form of genetic operators.

Bergadano, Matwin, Michalski and Zhang (1990) compared three AQ-based systems with
ASSISTANT and with an exemplar-based method on two real world domains,
congressional voting and labor negotiations. The AQ programs generated simpler and
more accurate rules, particularly when flexible concept learning (such as in AQ15-FCLS)
was employed.

6. CONCLUSION

When tested on the Monks' problems, the AQ-based programs were able to generate rules
that closely approximated or exactly matched the target concepts. By choosing the proper
program, users could generate a simple and accurate concept representation.

Researchers have been turning more frequently to comparisons of different learning
paradigms. No single set of test problems will generate results that will hold true
universally. Nonetheless, by performing different comparisons, and by establishing
diverse sets of benchmark problems, we can begin to discover details of the suitability of
different learning methods to different types of problems.

By combining some of the specialized techniques and modules, a more powerful and
versatile module can be created. For example, an ongoing project involves the integration
of the DCI and HCI modules of AQ17 into a single unit. An important topic of this
research (and of many other multistrategy projects) is the development of a unified control
system that can integrate smoothly the capabilities of the different techniques.
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APPENDIX: INPUT DATA FOR THE THREE MONKS’ PROBLEMS
Below are the training and testing data sets that were presented to us for the Monks’
Problems. In each of the problems, the testing set consisted of the entire event space, and
as such was a superset of the training set. This has an effect on some of the numeric
results of the ATEST analyses of the rules discovered by the various programs,

The examples are presented in the following format:

Ex. #: x1x2x3x4x5x¢6 -> C

where # is the position of the example in the lexicographic ordering of the event space, xj
represents the value of the ith variable, and C is the class to which the example is assigned.

Training Data Set #1

The training set of examples for the first problem:
(head_shape = body_shape) or (jacket color = red)

Ex.5: 111131 ->1 Ex. 119; 131341 -> 0 Ex.210;: 221312 > 1
Ex.6;: 111132 > 1 Ex.120: 131342 -> 0 Ex.212: 221322 > 1
Ex.19: 111321 > 1 Ex.124: 132122 > 0 Ex.214: 221332 > 1
Ex.22: 111332 > 1 Ex.130: 132212 > 1 Ex.216: 221342 > 1
Ex.27: 112121 > 1 Ex.132: 132222 >0 Ex. 217: 222111 > 1
Ex.28: 112122 > 1 Ex.134: 132232 -> 0 Ex, 222: 222132 > 1
Ex.37: 112231 > 1 Ex.135: 132241 > 0 Ex,223;: 222141 > 1
Ex.39: 112241 > 1 Ex.136: 132242 > 0 Ex. 224: 222142 > 1
Ex.42: 112312 > 1 Ex.137: 132311 > 1 Ex.227: 222221 > 1
Ex.50: 121112 -> 1 Ex.139: 132321 >0 Ex.239;: 222341 > 1
Ex.51: 121121 >0 Ex.143: 132341 > 0 Ex.241: 231111 -> 1
Ex.53: 121131 >0 Ex.144: 132342 >0 Ex. 249: 231211 > 1
Ex.56: 121142 >0 Ex.149: 211131 >0 Ex.253: 231231 >0
Ex.57: 121211 > 1 Ex.150: 211132 >0 Ex.258: 231312 > 1
Ex.61; 121231 > 0 Ex.153: 211211 -> 1 Ex.261: 231331 >0
Ex.62: 121232 >0 Ex.154: 211212 > 1 Ex.264: 231342 -> 0
Ex.64: 121242 >0 Ex.156: 211222 >0 Ex.270: 232132 >0
Ex. 67: 121321 >0 Ex.157: 211231 >0 Ex. 273: 232211 > 1
Ex.72: 121342 >0 Ex.159: 211241 -> 0 Ex.274: 232212 > 1
Ex.76: 122122 >0 Ex.160: 211242 > 0 Ex. 275: 232221 >0
Ex.86: 122232 >0 Ex.167: 211341 > 0 Ex.286: 232332 > 0
Ex.87: 122241 -> 0 Ex.172: 212122 > 0 Ex.289: 311111 ->1
Ex.88: 122242 -> 0 Ex.173: 212131 >0 Ex.290: 311112 > 1
Ex.92: 122322 >0 Ex.176: 212142 > 0 Ex.297: 311211 -> 1
Ex.93: 122331 -> 0 Ex.181: 212231 > 0 Ex.300: 311222 >0
Ex.94: 122332 -> 0 Ex.184: 212242 -> 0 Ex.308: 311322 >0
Ex.99: 131121 >0 Ex.188: 212322 -> 0 Ex.313: 312111 > 1
Ex.103: 131141 -> 0O Ex.191: 212341 > 0 Ex.316: 312122 -> (
Ex.107: 131221 -> 0O Ex.195: 221121 > 1 Ex.324: 312222 > (0
Ex.111: 131241 -> 0 Ex. 196: 221122 -> 1 Ex.326: 312232 >0
Ex.114;: 131312 >1 Ex. 197: 221131 ->1 Ex.332: 312322 >0
Ex.116;: 131322 > 0 Ex.206: 221232 > 1 Ex.337: 321111 > 1
Ex.117: 131331 >0 Ex.200: 221311 -> 1 Ex.344: 321142 > 0
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Training Data Set #2

Exactly two of the six attributes have their first value

The training set of examples for the second problem:
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Testing Data Set #2
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shape is not octagon)

Training Data Set #3

reen and holding is sword) or
lor is not blue and body

color is g

The training set of examples for the third problem with noisy data:
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