

Optimal Allocation and Splitting Among Designs in Rare Event Simulation

A Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Ben W. Crain

Director: John F. Shortle, Professor
Department of Systems Engineering and Operations Research

Summer Semester 2013
George Mason University

Fairfax, VA

Table of Contents

 Page
List of Tables………....…………………………………………………………………..iv
List of Figures…………………………………………………………………………......v
Abstract...……..….vii
1. Introduction……………………………………………………………………………1

1.1 Examples of Rare Events………………………………………………...…….1
1.2 Estimating Rare Events………………………………………………...…….…2
1.3 The Contribution of This Dissertation…………………………………...….….4
1.4 Organization of This Dissertation………………………………………...…….6
1.5 Chapter Summaries………………………………………………………...…...6

2. The Probability of Correct Selection: Choosing the Bes………………………...….…9
2.1 The Rare Event of a Stochastic Process…………………………………...……9
2.2 The Test Model……………………………………………………………..…10
2.3 Multiple Designs……………………………………………………...……….16
2.4 PCS and the Test Model…………………………………………...……….....17
2.5 Pseudo Simulation………………………………………………………….....21
2.6 MC on the Test Model.………………………………………………...……...23

3. OCBA…………….……….………………...………………………….………….…26
3.1 OCBA Theory………………………………………………………………....28
3.2 Bonferroni Approximation………………………………………………….....30
3.3 OCBA Implementation………..……………………………………………... 34
3.4 False Leads…………………………………………………………………….35
3.5 Asymptotic Approximations……………………………………………...…...39
3.6 OCBA and Rare Events…………………………………………...…………..40

4. Splitting……………….…………………………………………………...…………45
4.1 Estimating Level Probabilities……………………………………...………....55
4.2 Fixed Splitting………………………………………..…………….….......…..58
4.3 Fixed Effort Splitting………………………………………………….………60
4.4 The Design Estimator is Unbiased……………………………………...……..65
4.5 Distribution of the Level Estimators………………………..………...….……65
4.6 The Importance Function………………………………………...…...….……67
4.7 Splitting vs OCBA……………………………………………………...…..…70

5. OSTRE…………………………………………………………...………………..….72
5.1 OSTRE’s Major Assumption………………………………………...………..74
5.2 The OSTRE Assumption on the Test Model……………………………….…75

ii

5.3 OSTRE Derivation…………………………………………………..…………76
5.4 OSTRE Implementation……………………………………………….…...….78
5.5 OSTRE and Multiple Designs: OSTRE vs Splitting…………………….…...80

6. Single Optimization……………………………………………………………….….85
6.1 Normal Distribution of the Design Estimators…………………………….…..87
6.2 The Single Optimization Problem…………………………………….….……95
6.3 Simplification of the Variance………………………………………..……….97
6.4 Optimality Equations……………………………………...……..…….……..104
6.5 Implementing Single Optimization…………………………………..……….108
6.6 Computational Complexity……………………………………………..…….117
6.7 Single Optimization vs Splitting………………………………………..…….119
6.8 Single Optimization vs OSTRE………………………………………..……..122

7. OCBA+OSTRE………………………………………………………………..……126
7.1 The OCBA Step………………………………………………………..……..130
7.2 The OSTRE Step……………………………………………...….…..……….134
7.3 OCBA+OSTRE Implementation………………………………...…..……….135
7.4 Complexity Analysis………………………………………………….....……138

8. OCBA+OSTRE vs Single Optimization: Mathematical Equivalence………..…......141
8.1 OSTRE Holds Within Design 1 of Single Optimization..……………..……..142
8.2 OSTRE Holds Within All Other Designs of Single Optimization..…..…..….144
8.3 Cross Design Links, Designs Other Than 1…….………………………..…..145
8.4 Cross Design Equivalence, Design 1 With Any Other Design…...……...…..150
8.5 Equivalence……………………………………………………………..….....153

9. OCBA+OSTRE vs Single Optimization: Implementation………………….......…..154
10. Conclusion………………………………………………………………..……...…157
Appendix 1. The Exact Probabilities of the Test Model……………………..…….….164
Appendix 2. OCBA Literature………………………………………………..……... .166
Appendix 3. Splitting Literature………………………………………………..……...167
Appendix 4. Truncation of the Variance in OSTRE……………………...…........…....168
Appendix 5. PCS = 1 Implies Infinite Runs…………………………….……..……....170
Appendix 6. Convergence of Higher Order Terms in the Design Estimators……..…..171
Appendix 7. Single Optimization Optimality Equations for 4 Designs, 3 Levels…......173
Appendix 8. In Single Optimization Each Optimality Term Converges to 0……...….174
References.…………………………………………………………………...…...……175

iii

List of Tables

Table Page
1. MC vs OCBA Allocations………………………………………………….……..… 42
2. OSTRE Assumption Variance vs Sample Variance…………………………..……...75
3. Splitting Allocations vs Single Optimization Allocations…………………….....….122
4. Design Parameters……………………………………………….………………….164
5. Design Probabilities…………………………………………...……………….……165

iv

List of Figures

Figure Page
1. Two Server Tandem Queue.…………………………………………………………10
2. Test Model, with Transitions…………………………………………………..…….12
3. MC Sample Path Terminating at (0, 0)……………………………………..………..14
4. MC Sample Path Terminating at (50, 3)….………………………………………….15
5. MC on the Test Model: Real Time Simulation…….…………………………...……20
6. Simple MC, Large Budget…………………………………….……………………..23
7. Simple MC, Small Budget…………………………………………………………...24
8. OCBA vs MC, 20 Minute Budget……………………………………………….…..40
9. OCBA vs MC, 2 Hour Budget……………………………………………… ……...41
10. OCBA vs MC, Non-Rare Probabilities…...……………………………….……..…44
11. Splitting of Test Model into 4 Levels………………………………………….…….47
12. Sample Run in L1, Terminating in L1.……………………………………………...49
13. Sample Run in L2, Terminating at the Origin…………….…………………………50
14. Sample Run in L2, Terminating in L2…………………….………………………...51
15. Sample Run in L3, Terminating at the Origin…………….…………………………52
16. Sample Run in L3, Terminating in L3………………………………………………53
17. Sample Run in L4, Terminating in L4………………………………………..……..54
18. Splitting vs OCBA, 8 Designs…………………………………………………….…72
19. OSTRE vs Splitting, 6 Designs……………………………………….……………...82
20. OSTRE vs Splitting, 8 Designs………………………………………...……………83
21. OSTRE vs Splitting, 10 Designs……………………………………………….….…84
21. Normal Approximation: 100 Runs…………………………………………………..94
22. Normal Approximation: 10,000 Runs………………………………………...……..95
23. Relative Variance Error: 10,000 Runs……………………………………………....99
24. Relative Variance Error: 100,000 Runs……………………………...……………..100
25. Log[Error]: 10 to 1000……………………………………………………………102
26. Log[Error]: 10,000 to 100,000………………………………………….……..…103
27. MaxDiff: 1 to 20 Updates…………………………………………….………….114
28. MaxDiff: 1 to 100 Updates…………………………………………………………114
29. Single Optimization vs Splitting, 6 Designs………………………………….……120
30. Single Optimization vs Splitting, 8 Designs…………………………………...…..120
31. Single Optimization vs Splitting, 10 Designs……………………………………...121
32. Single Optimization vs OSTRE, 6 Designs………………………….………….…124

v

33. Single Optimization vs OSTRE, 8 Designs………………………………..………124
34. Single Optimization vs OSTRE, 10 Designs…………………………….………....125
35. Single Optimization vs OCBA+OSTRE, 6 Designs……………………………….154
36. Single Optimization vs OCBA+OSTRE, 8 Designs……………………………….155
37. Single Optimization vs OCBA+OSTRE, 10 Designs……..……………………….155
38. All Methods, 10 Designs…………………………………..……………………….161
39. OCBA+OSTRE vs Single Optimization vs OSTRE vs Splitting………………….162

vi

Abstract

OPTIMAL ALLOCATION AND SPLITTING AMONG DESIGNS IN RARE EVENT
SIMULATION

Ben W. Crain, Ph.D.

George Mason University, 2013

Dissertation Director: Prof. John F. Shortle

This dissertation develops efficient algorithms, in theory and in implementation,

for selecting, via simulation, the best design, or system, from a set of designs, where

“best” is the design with the smallest probability of some (generally undesirable)

outcome. Compared to standard techniques these algorithms improve the efficiency of

simulation when the (undesirable) outcomes have very small probabilities, on the order of

1.0E-6, or smaller. Such outcomes are “rare events”. The algorithms could also be used

to estimate non-rare probabilities, although, in that case, their advantages over techniques

not geared toward rare events diminish.

The designs in question differ in construction, or in the values of their

parameters, but are such that their operations can be simulated as stochastic processes

which terminate in a non-rare event (a set of non-rare outcomes), or a rare event (a set of

rare outcomes). The task is to estimate, efficiently, the probabilities of the rare events, in

order to select the design with the smallest one. Efficient algorithms are those which

produce estimators of the rare event probabilities with acceptable variances, within

acceptable computational times. I do not define “acceptable variances”. The focus is on

algorithms which achieve better results, compared to standard methods, for a given

amount of computational time (a given computing budget constraint). Better results are

achieved by (approximately) maximizing the Probability of Correct Selection (PCS) of an

algorithm, subject to a computing budget constraint. PCS is the probability that the

algorithm will correctly identify the best design.

Simulation algorithms against which the new algorithms are compared include

simple Monte Carlo (MC), Optimal Computing Budget Allocation (OCBA), fixed-effort

Splitting, and the Optimal Splitting Technique for Rare-Event Simulation (OSTRE).

These algorithms are reviewed, prior to the development of the two new algorithms:

Single Optimization and OCBA+OSTRE.

The major contribution of this dissertation is the theoretical development and

practical implementation of these new algorithms. The mathematical equivalence of

these two new methods (in the sense that they attain, in theory, the same maximum PCS)

is proven, and their computational complexities are compared. Numerical testing

illustrates that they can out-perform standard techniques, and suggests that

OCBA+OSTRE is better, in practice, than Single Optimization.

1. Introduction

This dissertation answers the question: How should simulations be conducted in

order to optimize the probability of selecting the best system, or design, from a set of

designs, when “best” is defined as the design with the smallest probability of the

occurrence of a rare event?

1.1 Examples of Rare Events

A rare event is the occurrence of an event, generally undesirable, of very small

probability. Small is not precisely defined, but typically means on the order of 1.0E-6, or

smaller. Rare events can occur in many kinds of systems, throughout science,

engineering, and socio-economic processes. See Rubino & Tuffin (2009) for a survey of

some of these areas.

An early application of rare event estimation arose in nuclear physics.1 Booth

(2009) discusses the current need to estimate the probability, on the order of 1.0E-8 to

1.0E-10, of nuclear particles penetrating protective shields in nuclear reactors.

Transportation systems provide other examples. Civil aircraft regulations require very

low failure probabilities. Small probabilities must be estimated in telecommunication

systems which operate by sending message units through network nodes. Node

overflows should be rare events. Financial systems may be modeled as stochastic

1 See Kahn & Harris, 1951, and Hammersley & Handscomb, 1964.
1

processes in which undesirable events (bank run, catastrophic loss of capital) should be

rare. Cascading failures across a power grid can also be modeled as a stochastic process,

with blackout as a terminating rare event.

1.2 Estimating Rare Events

Estimating the probability of a rare event is difficult. The difficulty is

compounded when several such probabilities must be estimated, one for each of several

(perhaps many) designs, in order to select the best design. Simple Monte Carlo2

simulation is generally too inefficient for that task. Inefficient in the sense that

generating estimates with acceptably small variances will often require excessive

amounts of computing time. Bucklew (2004) calculates that, if the rare event probability

is on the order of 1.0E-6, with 95% confidence that the error is no greater than 5%, the

number of required simulation runs would be on the order of 1.6E+9. A computer

capable of doing 1000 runs a second would require about 18 days to complete the

simulation.

Shortle and L’Ecuyer (2010) also present calculations illustrating how impractical

simple Monte Carlo estimation can be. If the probability to be estimated is 1.0E-9 and

the computer can do 1000 runs per second, achieving a relative error of 10% (defined as

the standard deviation of the estimator divided by the true probability) would require

about 3 years of continuous computation.

2 Monte Carlo is a general term that may, depending on the context, signify a broad range
of simulation techniques. It could mean simulation per se. By Monte Carlo I mean the
simple method of conducting a number of “runs” (realizations, or sample paths, of the
process) and estimating probabilities by counting outcomes.

2

Rare event probabilities less than 1.0E-6 are not uncommon. Bucklew notes that

the problems arising from simulations of this magnitude may go beyond the required

computing time. Such a large number of runs “will impose severe demands on the

random number generator. Unfortunately (for the simulation designer) error probabilities

of this order are typical in digital communications systems and many other systems of

engineering and scientific interest.”

For rare event estimation special simulation techniques are usually required,

techniques that are much more efficient that Monte Carlo. The two main approaches to

rare event estimation are called importance sampling and splitting. Importance sampling3

works by appropriately changing the sampling distribution to make the rare event more

probable, and thus easier to estimate, then re-scaling the result to recover the correct

probability. It is not pursued in this research, which focuses on the occurrence of rare

events in the evolution of stochastic processes. Importance sampling can be applied to

processes such as Markov chains, by making the importance sampling change of measure

depend on the underlying process. But that is considerably more difficult to implement

than the splitting technique, on which this research focuses.

 Splitting is the general name of a corpus of techniques, all of which involve

partitioning the sample space of the stochastic process in a manner that permits the

efficient estimation of probability estimators for subsets (called “levels”) of the sample

space. An unbiased estimate of the rare event probability can then be constructed from

3 See Heidelberger, 1993, or Glynn, 1994.
3

these level estimators, as described in chapter 4. For an overview of splitting techniques

see L’Ecuyer et. al., 2006, and L’Ecuyer et al., 2009.

Splitting techniques can work well (can be quite efficient) when applied to a

single rare event probability. They can also be applied to the problem of selecting the

best among several designs, though efficiency suffers when the computational effort must

be spread across several designs. This dissertation offers new methods for attaining

greater efficiency in the selection of the best of several designs by optimizing the

allocation of computational effort across designs and within designs. Exactly what it

means to optimize “across” and “within” designs will be made clear in the course of this

research.

1.3 The Contribution of This Dissertation

 There is, in the current literature, a good method for selecting, via simulation, the

best design when the probabilities in question are not rare. This method --- based on the

theory of the Optimal Computing Budget Allocation (OCBA) – optimizes the allocation

of computing effort across designs. (See Chen & Lee, 2011).

There is, in the current literature, a good method for estimating a single rare event

probability (for a single design). This method – the Optimal Splitting Technique for Rare

Event (OSTRE) simulation – optimizes the allocation of computing effort “within” a

design, among the levels of a single design4. (See Shortle, Chen, et al, 2012.)

4 The technique of splitting a single design into “levels” will be clarified in chapter 4.

4

But there is, in the current literature, no method, no algorithm, for simultaneously

optimizing computing effort across and within an arbitrary number of designs, in order to

select the best design. None is needed when the probabilities are not rare. For that task

OCBA works well. But OCBA will not suffice when the probabilities are rare.

 This dissertation provides the theory, and the algorithms, for extending efficient

rare event estimation to an arbitrary number of designs, by optimizing computing effort

across and within designs. It is an extension of OCBA, which optimizes across but not

within designs, and of OSTRE, which optimizes within but not across designs. (The

basic framework from which OSTRE is derived permits a straightforward extension to

two designs, but not beyond two.) This research develops new theory and techniques to

extend the optimization of computational effort across and within designs to an arbitrary

number of designs and levels. It develops two new methods, called Single Optimization

and OCBA+OSTRE, and proves that they are mathematically equivalent.5 It shows that

OCBA+OSTRE is more appealing than Single Optimization, in that it is easier to

implement and requires less computational overhead. It tests the new methods, on a

specific test model, and shows that, in these tests, they outperform standard splitting

(including OSTRE) in selecting the best design. The two methods are also tested against

each other. OCBA+OSTRE is shown to be better, on the test model, than Single

Optimization.

5 An earlier version of this research developed these two methods, and showed their
equivalence, for the simplest case of two designs, two levels for each design. See Crain
et.al, 2011.

5

I conclude this research with a conjecture as to why OCBA+OSTRE appears to

work better than Single Optimization, despite their mathematical equivalence.

1.4 Organization of This Dissertation

 Chapters 2 through 5 set the stage for the new methods I develop by reviewing

existing methods, discussing their strengths and weaknesses, and testing them on the test

model. There is nothing novel in this review. It draws on existing literature, referenced

in the successive chapters. These chapters provide, for readers unfamiliar with this

terrain, the essential background for understanding the contributions of this dissertation.

Those contributions are developed in chapters 6 through 9.

1.5 Chapter Summaries

Chapter 2, The Probability of Correct Selection: Choosing the Best, defines the

problem, explains rare events and stochastic processes, introduces Monte Carlo methods,

introduces the model on which tests throughout the research are conducted, and illustrates

the poor performance of Monte Carlo in estimating rare events.

Chapter 3, Review of OCBA, addresses the Optimal Computing Budget

Allocation theory and algorithm, reviews its derivation, and discusses its application to

rare event estimation. OCBA is tested against Monte Carlo. See Appendix 2 for a review

of relevant literature on OCBA.

Chapter 4, Review of Splitting, explains the splitting method for estimating rare

event probabilities, and discusses its application to the selection of the best design.

Splitting is tested against OCBA. See Appendix 3 for a review of relevant literature on

Splitting.

6

Chapter 5, Review of OSTRE, presents the derivation of the Optimal Splitting

Technique for Rare-Event Simulation, the assumptions it requires, and its application to

the selection of the best design. OSTRE is tested against Splitting.

Chapter 6, Single Optimization, develops the theory and implementation of an

algorithm designed to maximize the Probability of Correct Selection by optimizing, in a

single set of calculations, the allocation of computing effort across all the splitting levels

of all the designs. The assumptions and approximations underlying this algorithm are

clarified and justified. The implementation is treated in some detail, and a complexity

analysis of the algorithm is undertaken. Single Optimization is tested against Splitting

and against OSTRE.

Chapter 7, OCBA+OSTRE, proposes the major innovation of the dissertation.

Single Optimization, developed in chapter 6, is an application of standard optimizing

techniques to a new problem, the selection of the best design. OCBA+OSTRE is a new

technique applied to this new problem. It combines the OCBA algorithm with the

OSTRE algorithm in a novel two-step technique (an OCBA step followed by an OSTRE

step). This combination requires more than a simple adjoining of the two approaches.

New theory and new implementation must be developed to make the OCBA and OSTRE

steps consistent with each other, and to make OCBA+OSTRE mathematically equivalent

to Single Optimization. A complexity analysis of OCBA+OSTRE is conducted.

Chapter 8, OCBA+OSTRE vs Single Optimization: Mathematical Equivalence,

proves that the two methods are mathematically equivalent in the sense that, in theory,

7

their solutions attain the same optimum allocation of computing effort among all levels of

all designs.

Chapter 9, OCBA+OSTRE vs Single Optimization: Implementation, tests

OCBA+OSTRE against Single Optimization. Though chapter 8 proved them to be

mathematically equivalent, these tests suggest that OCBA+OSTRE may be better in

practice. I conjecture that OCBA+OSTRE is superior to Single Optimization not only

because it is easier to implement and faster in execution, as a comparison of their

complexity analyses suggests, but also because it can be implemented more “accurately”.

Exactly what this means, and why OCBA+OSTRE may be more accurate, is clarified in

chapter 9.

 Chapter 10, Conclusions, summarizes the main characteristics of the various

simulation techniques reviewed and developed in this research. A final graph plots the

competitive techniques – Splitting, OSTRE, Single Optimization, and OCBA+OSTRE –

showing their relative performance in maximizing PCS over a common budget constraint.

8

2. The Probability of Correct Selection: Choosing the Best

2.1 The Rare Event of a Stochastic Process

Consider a stochastic process that commences in an initial set (a set of possible

initial states) and terminates in a set of states S (which could include the initial set), or in

a set of states R. Let the probability of the process terminating in R be very small. R is a

rare event. The probability of terminating in S is not small. The task is to estimate,

efficiently, via simulation, the probability of termination in R.

In theory stochastic processes can be infinite, never terminating. But in practice

we are generally interested in finite processes. We can only simulate in finite time. I

consider only processes which terminate the first time they enter R, though the algorithms

developed could be adapted to processes which terminate in R (or S) after transiting R (or

S) a finite number of times.

The task is to estimate, efficiently, the probability of termination in R. It could be

estimated by simple Monte Carlo, which can be quite effective when the probability is

not rare. If the process terminates in the rare event a “hit” has occurred. If not there is no

hit. The estimator of the probability of the rare event is the number of hits divided by the

number of runs.

9

It is useful to illustrate an abstract concept, such as a stochastic process, with a

concrete example. Throughout this dissertation I employ a specific model of a stochastic

process, for illustration and for testing algorithms. I introduce it here.

2.2 The Test Model

The model is a queue with two tandem servers.

Figure 1: Two Server Tandem Queue

If queue 1 is empty arriving customers go directly to server 1. Otherwise they add to the

customers in queue 1. Upon finishing server 1 they enter server 2, if empty. Otherwise

they add to the customers in queue 2. Upon finishing server 2 they exit the system. The

queues increase or decrease as customers arrive and as they complete service, on a first-

in-first-out basis. At any point the system could be in any of these states:

--- System empty, no one in either server or queue.

--- A customer in one or both servers, both queues empty.

--- A customer in one or both servers, one or both queues not empty.

The system can be completely defined by two state variables. Designate queue 1

and server 1 as subsystem 1, queue 2 and server 2 as subsystem 2. Variables S1 and S2

are the numbers of customers in subsystems 1 and 2. If S1 = 0, subsystem 1 is empty. If

10

S1 = 1, there is a customer in server 1, none in queue 1. (Queue 1 is empty because a

customer facing an empty server instantly enters the server.) If S1 = n > 1, there is 1

customer in server 1, n-1 customers in queue 1. These characterizations apply equally to

subsystem 2.

(S1, S2) designates the current state of the system. From any (S1, S2) the process

has three possible transitions (moves): to (S1+1, S2) if the next event is an arrival; to

(S1-1, S2+1) if the next event is completion of service in server 1; to (S1, S2-1) if the

next event is completion of service in server 2.

The system could be unbounded in S1 or S2 , or both. To create a terminating

rare event I bound it at 50, in both variables. The process terminates at the rare event if

S1 = 50 or S2 = 50. It terminates at the non-rare event if it returns to (0, 0). The system,

with S1 on the horizontal axis, S2 on the vertical axis, may be depicted as:

11

 Figure 2: Test Model, with Transitions

When the process is on the horizontal or vertical axis (S1 = 0 or S2 = 0) only two

transitions are possible, since neither S1 nor S2 can be -1. If the process is at (0, 0) only

one move is possible, to (1, 0).

Conceptually the origin of a run (sample path of the process) is (0, 0). But, since

the only move possible from (0, 0) is to (1, 0), in practice the run starts at (1,0), it being

pointless to code a deterministic move. If a run returns to (1, 0) it continues. It

terminates only at (0, 0) or in the rare event (the S1=50 or S2=50 boundary).
12

Examination of the possible transitions reveals that the process can never reach

(49, 50) or (50, 50). It could reach (49, 50) only from (48, 50) or (50, 49), but those are

terminating states. Similar reasoning implies it cannot reach (50, 50).

This system is an absorbing Markov chain, with absorbing states (0, 0) and any

state with S1 = 50 or S2 = 50, except (49, 50) and (50, 50). As an absorbing Markov

chain it can be solved exactly. Its exact probabilities (and more) can be calculated

analytically. Probabilities can be calculated not just for the entire design (the design

probabilities), but also for the level probabilities that arise under splitting. (See chapter 4

on splitting for an explanation of levels and level probabilities.) In addition, the average

number of transitions from the origin to absorption (termination of a run) can be

calculated. Winston (2004, p. 945) explains how these calculations are made. (See

Appendix 1 for the exact probabilities for all designs.)

The interplay of three random variables determines the transitions: the time until

the next arrival and the times until completion of service in the servers. They are

distributed exponentially, with rates 1 2, ,λ µ µ , respectively, and expected values:

E [time until next arrival] = 1
λ

 , E [time until completion of service k] =
1

kµ
.

The parameters 1 2, ,λ µ µ can be set so that termination on the boundaries is a rare event,
termination at the origin a non-rare event. Sample paths of the stochastic process can be

depicted on the two-dimensional graph. After wandering around a bit this path
terminates back at (0,0):

13

 Figure 3: MC Sample Path Terminating at (0, 0)

This path takes a long time but finally terminates at (50, 3):

14

Figure 4: MC Sample Path Terminating at (50, 3)

Simple Monte Carlo simulation of this process yields an unbiased estimator of the

rare event probability. But MC is inefficient. Its variance can be made arbitrarily small

by making the number of runs sufficiently large. But attaining an acceptably small

variance is often not feasible in practice. With MC the number of runs required for an

15

acceptably small variance can be prohibitively large.

 2.3 Multiple Designs

Consider a “design” as a system, of virtually any kind, whose behavior, or

performance, can be simulated by computer models. A common problem is to compare

several systems which differ in some pertinent design characteristics or parameters, in

order to select the best such system, according to criteria defining the “best”. Simulation

of these systems may be the only feasible approach to choosing the best. Common

terminology refers to these systems as “designs”. They differ in some design

characteristics important for system performance.

If there is no (or very little) randomness in the system a single simulation run can

suffice to analyze system performance. In general, however, some non-negligible

randomness is inherent in the systems. It must be modeled by appropriate probability

distributions. Several, generally many, runs of the simulation are then required to

generate output adequate for statistical analysis.

The task is to design the simulation to enhance the probability of making the best

choice. That is known, formally, as the Probability of Correct Selection, or PCS. The

task is to maximize the PCS.

Assuming the simulation is well designed and its randomness adequately

modeled, the main tool for maximizing PCS is the number of runs, or replications, of the

simulation. The more runs, the higher the PCS. The PCS could, mathematically, be

driven to 1 (absolute certainty) by an infinite number of runs. In practice there is some

16

computational limit, which may be expressed directly in terms of the number of runs, or,

more generally, in the computational time available for simulation. PCS is maximized

subject to some constraint on computational effort, generally called a “computing

budget”. Mathematically it is a constrained optimization (maximization) problem.

The decision variable in this optimization problem is not the total number of runs.

It is clear that the budget constraint should be exhausted. One should do as many runs as

possible within that constraint. The decision variables are the allocations of those runs

among designs. (And even, as will be seen below, within designs.) If the budget

constraint permits 1000 runs, how should they be divided among, say, 4 designs?

The simple, naïve, answer is: equally. Simulate each design with 250 runs. That

allocation is almost certainly wrong, in the sense that it almost certainly fails to maximize

PCS. Absent extreme luck, any arbitrary allocation will so fail. The optimization

problem requires explicit analysis, not luck.

2.4 PCS and the Test Model

Any simulation technique subject to a budget constraint will perform better as that

constraint expands. The test model illustrates how much better, how much faster. It has

10 designs. A test can be run on 4, 6, 8, or 10 of them. (See Appendix 1 for the

parameters and probabilities of these designs.) The test is to choose the best from a set of

4, 6, 8, or 10. The designs differ in terms of their parameters. The arrival rate, λ , is the

same for all, set at 1. The two service rates, 1µ and 2µ , are given differing values, such

that the probabilities of the rare event differ among designs.

17

Design 1 has the smallest rare event probability, designs 2-10 increasingly larger

probabilities. Since the test model can be solved exactly, analytically, the real

probabilities are known. We thus know whether or not each simulation gets it right, i.e.,

estimates design 1 to have the smallest probability.

The test simulations start with a small amount of time, T (in seconds) , called the

initialization. For instance, let T = 20. A simulation is done, consisting of as many runs

as possible within those 20 seconds. Based on that simulation, at that point, the best is

chosen. Since we know the correct answer we can grade the choice: right or wrong. The

time, T, is then increased by a fixed amount, the time increment. The simulation is

continued, by the amount of the time increment. (It is not a new simulation, starting over

from 0, but a continuation of the existing simulation.) At the new T (initial T + time

increment) the best of the estimated rare event probabilities is again selected, that

selection again scored as correct or incorrect. T is then increased by another time

increment, the simulation continued to the new T, the estimated smallest probability, at

that new T, again scored as correct or incorrect. This process is continued through a

fixed number of time increments. The initialization plus all the time increments

consumes the total computing budget.

The program that implements this test model counts “time” only as the time

consumed by the actual simulation runs. That makes it more comparable to practical

applications, in which simulation time typically dwarfs computational overhead.

18

We thus have, at each new T throughout the expanding budget constraint, a record

of whether or not the simulation “got it right” at that point. We then repeat the entire

simulation, from T = 0 to T = total budget, recording, at each increment, whether or not

the estimated smallest probability at that point is the correct smallest probability. Each

repetition of the entire simulation is called an Experiment. After many experiments we

have, at each time increment (including the initialization) an estimated PCS: the number

of correct selections at that point as a percentage of the number of experiments. This

estimated PCS is plotted, on the vertical axis, against the time points (initialization and

increments), on the horizontal axis. The resulting plot is a curve displaying an estimated

PCS over an increasing computing budget constraint. It should, in principle, increase

monotonically: you can, in theory, always do better with more budget. In practice it is

but an estimate, subject to randomness, so it need not always increase at each increment.

But the estimate, over many experiments, should show an overall steady increase, with

but minor jaggedness.

One facet of these tests requires clarification. I impose this rule: if, at any

increment, including initialization, the estimated probability of any design is 0, the

algorithm is judged to have made an incorrect selection at that point. This rule will be

necessary for the optimizing algorithms, which will require strictly positive estimated

probabilities. Though not necessary for non-optimizing algorithms, such as simple MC, I

impose the rule on them in order to make valid comparisons with optimizing algorithms.

Consequently, plots of MC generally show it with a 0% PCS over the first few time

19

increments – a result of the fact that, at those early points in the simulation, one or more

of the designs had recorded no hits, and thus returned an estimated probability of 0.

The following plot illustrates this test. It shows the estimated PCS for simple

MC, over 6 designs. The initialization period is 10 sec, then 238 increments of 5 sec., for

a total computing budget of 1200 sec. This is repeated 100 times (100 experiments),

requiring 33 hours of actual computing time.

 Figure 5. MC on the Test Model: Real Time Simulation

20

These types of plots will be most useful for comparing competing algorithms.

The estimated PCS for two algorithms plotted on the same chart illustrate which

technique is better, for that particular test. Estimated PCS for better techniques should

increase more quickly than for poorer techniques. Though such tests prove nothing, a

putative superiority of one technique over another should be re-examined if it clearly fails

this comparison test.

2.5 Pseudo Simulation

As noted, the test model can be solved, analytically, for the rare event

probabilities. It can also be solved, analytically, for the average number of transitions in

a sample path (run). With an estimate, based on numerous experiments on the computer

on which these tests were performed, of the average time-per-transition, it is possible to

construct a good estimate of the average time-per-run in each of the ten designs.6 The

accuracy of these estimates is quite good, based on a large sample of runs, but also

somewhat irrelevant. Any plausible estimates would do just as well, since they are

employed only for comparative purposes, for which the only requirement is to use the

same estimates across all comparisons. Alternatively, they could be thought of as the

results produced by a computer whose speed produces exactly the estimated time-per-

transition.

With these data in hand it is possible to conduct tests relatively quickly. Consider

the MC plot above (Figure 1). It required 33 hours of actual computing time to perform

6 Average time-per-run estimates can also be constructed for splitting levels, which are
explained in chapter 4.

21

only 100 experiments. An alternative, statistically equivalent method, which I call

“pseudo simulation”, can be carried out in seconds. To understand pseudo simulation,

consider the following method for estimating Monte Carlo’s PCS:

A simple MC run produces a “hit” (the rare event occurs) or a “miss” (the run

returns to the origin before hitting the rare event). The probability of a hit is the same on

each run. The distribution of the hits is binomial:

 Hits ~ Binomial (p, N)

where p = probability of a hit, N = number of runs.

With a given budget constraint, T, and a given average time-per-run, the average

number of runs is easily calculated: N = T / (average time-per-run), rounded. An entire

simulation can thus be mimicked by drawing from the binomial distribution with

parameters p and N. That is Pseudo Simulation. The real time test (Figure 4) required

33 hours for 100 experiments. Under pseudo simulation 10,000 experiments can be

carried out in but a few seconds.

Pseudo simulation of more complicated techniques is not as quick as MC pseudo

simulation, because they contain computational overhead absent in MC. Moreover, in

more complicated techniques the probability distributions from which drawings are made

are not known distributions, such as the binomial. They must be empirically constructed,

from the probabilities that can be calculated for the absorbing Markov chain. This is a

laborious task, but, once the distributions are constructed and coded into the program

running the test model, sampling from them is quick and straightforward.

22

Pseudo simulation, even on the most complex algorithms, dramatically reduces

the real computer time required to make comparisons on the test model. I greedily

exploit it. All tests in this research (except Figure 4) employ pseudo simulation.

2.6 MC on the Test Model

I illustrate pseudo simulation with simple MC, i.e., equal allocation of computing

time across designs. Consider a large computational budget: a 1 hour initiation, 22 half-

hour increments, a total of 12 hours per experiment. Simulating across 6 designs, with

equal allocation (2 hours per design.), over 10,000 experiments, yields:

 Figure 6: Simple MC, Large Budget

23

At the initial budget of one hour the PCS was about 32% . It made the correct

selection only about one-third of the time. After 12 hours it was only 57%.

This budget constraint (12 hours total) is massively larger than the constraint

against which I test other simulation techniques, namely, a 10 sec. initiation, with 238

time increments of 5 sec. each, for a total budget of 20 minutes. Simulating MC for this

budget, over 6 designs, with 2000 experiments, yields:

Figure 7: Simple MC, Small Budget

24

This is the same test as the real time test in Figure 4, which had 100 experiments.

This test utilizes pseudo simulation, permitting 2000 experiments to be conducted very

quickly. The results are essentially the same, allowing for the greater effect of

randomness in 100 experiments, compared to 2000. MC does not reach even a 1% PCS

until about 120 sec. (To understand why it starts at 0, recall the rule, explained above,

that the algorithm is deemed to have made an incorrect selection if, at any point, the

estimated probability for any design at that point is 0.) At termination it has attained only

35% PCS. Randomly choosing a design would generate about 17% (1 in 6). Testing MC

across 8 or 10 designs would produce even worse results, probabilistically, for the same

budget constraint.

This chapter has introduced the Probability of Correct Selection, the test model,

and simple Monte Carlo simulation of rare event. It has demonstrated that MC is not, in

general, up to the task of estimating rare event probabilities

What next? A review of techniques designed to maximize PCS across multiple

designs, but not specialized for rare events. A review of techniques specialized for rare

events, but not designed to maximize PCS across multiple designs. Then, finally, the

purpose of this dissertation: the development of efficient techniques to maximize PCS

across multiple designs.

25

3. OCBA7

Constants
D = number of designs
T = computing budget (in time)

ip = probability of the rare event in design i (the design probability)

ib = average time per run in design i

Random Variables
ˆ ip = estimator of ip (the design estimator)

Functions

()2
ii Nσ = variance of ˆip

Decision Variables

iN = number of simulation runs in design i

How should computational effort, or time, be allocated among designs? The

Optimal Computing Budget Allocation, or OCBA, developed in Chen & Lee (2011),

answers this question. OCBA allocates the computing budget to maximize

(approximately) the Probability of Correct Selection (PCS). See Appendix 2 for a review

of relevant literature on OCBA.

OCBA is based, intuitively, on a simple insight. The probability of selecting the

best design would be enhanced if the simulation concentrated on the most competitive

designs (the best and its close competitors). If some designs are far from the best, some

7 A short summary of OCBA literature is provided in Appendix 2.
26

close to the best, it is best to spend more computational effort on the best and those close

to the best, less on those far from the best. Relatively poor estimates for uncompetitive

designs will generally do no harm, since the simulation would have to be very wrong

about an uncompetitive design to make it appear to be the best. If the probabilities of

designs 1 and 3 are 0.1 and 0.9, respectively, it will hardly matter if the estimate of

design 3 is off by a half. An estimated 0.45 for design 3 will, with very high probability,

still be larger than the estimate for design 1. Design 3 is not competitive. Suppose the

probability of design 2 is 0.46. It is very competitive. Estimates of designs 1 and 2 must

be very accurate to preclude incorrect selection. Clearly, almost all the computing effort

must be devoted to designs 1 and 2. Design 3 cannot be totally neglected because, at the

outset, the algorithm doesn’t know that it is uncompetitive. But that fact can emerge,

probabilistically, as the algorithm evolves. At the outset all designs deserve equal

attention. But the algorithm should, as it evolves, detect the probable uncompetitiveness

of design 3, and begin to shift computing effort to designs 1 and 2.

How, exactly, should it do that? Without a theory to guide implementation there

is only judgment or heuristics. OCBA provides the theory on which practical algorithms

for implementing this intuition can be built.

OCBA thus addresses the very problem posed in this dissertation: How to

maximize the PCS when selecting the best among a set of designs. Why the need for a

new approach? Because OCBA is not efficient when applied to rare events.

27

3.1 OCBA Theory

The theory behind OCBA is quite general, applicable to many kinds of designs

and different criteria for the “best”. This overview focuses on its application to the

selection of the design with the smallest probability of some rare event.

 OCBA theory answers the question: If we knew the real values of all the relevant

parameters what would be the optimum allocation of runs (or time) to designs? If we

could solve the optimization problem prior to any simulation we could make the optimum

allocation at the outset and not have to adjust anything as the algorithm evolves. But we

don’t know the real values of the relevant parameters, so cannot solve the optimization

problem. We are condemned to a strategy of gradual adjustment of allocations as the

algorithm proceeds. The theory of the optimal allocation is based on the real values of

the parameters. The implementation must employ estimates of the parameters as proxies

for the real things.

OCBA theory assumes that, within each design, simple Monte Carlo is used to

estimate the rare event probability. The outcome of each run in the simulation of design i

is a Bernoulli random variable, with probability ip of a hit on the rare event, with

expected value ip and variance ()1i ip p− . If the number of runs is iN the number of

hits is binomial:

()

[] [] ()
~ ,

1
i i

i i i i i

Hits Binomial p N

E Hits N p Var Hits N p p= = −

28

The design estimator (the estimator of the rare event probability) is the number of

hits divided by the number of runs. It is a scaled binomial (a binomial multiplied by a

constant):

[] [] ()1
ˆ ˆ ˆ i i

i i i i
i i

p pHitsp E p p Var p
N N

−
= = =

The distribution of ˆ ip is assumed to be approximately normal:

 2ˆ ~ ,i i ip Normal p σ  
()2 1i i

i
i

p p
N

σ
−

=

This assumption follows from the normal approximation of the binomial. The number of

hits is binomial and approximately normal (for large iN), so the design estimator, a scaled

binomial, is also approximately normal, with mean and variance adjusted accordingly.

 At this point it should noted that the derivation of OCBA in Chen & Lee (2011)

proceeds somewhat differently from the approach I present here. Their derivation is

based on the variance of a single run in design i, which is ()1i ip p− , whereas this

derivation is based on the variance of the design estimator ˆ ip , which is
()1i i

i

p p
N
−

. The

end results are equivalent, though expressed in slightly different notation. I adopt this

alternative framework for OCBA to be consistent with the derivation of my new

technique, OCBA+OSTRE, in chapter 7.

29

The best design is designed design 1. This entails no loss of generality. Some

design is the best, and “1” is simply the label given to that design. Maximizing the PCS,

subject to the budget constraint, over D designs, is expressed as:

1 2 1 1 2 1
1

ˆ ˆ ˆ ˆ,..., | ,..., s/t , 1
i

D

D D i i i
iN

pMax P p p p p p p p b N N
=

<  < < < ≥∑

The event to be maximized is the intersection of D-1 mutually dependent events ,

()1
2

ˆ ˆ i

D

i
p p

=
<



. Stating this probability as a closed-form function that can be maximized

by standard optimization methods is too difficult. An approximation must be adopted.

3.2 Bonferroni Approximation

Bonferroni inequalities can be stated in various forms. The one useful in this

context (see Chen & Lee, 2011, p. 37) is developed as follows. Let , 2,...,iA i D= , be

events on a probability space with measure P . Then:

()2
2

1 1
DD

i ii
i

P A P A
=

=

      
≥ − −∑

.

Let iA be the event ()1ˆ ˆ ip p< . Then:

() ()() ()1 1 12
22

ˆ ˆ ˆ ˆ ˆ ˆ1 1 1i i i

D DD
i

ii
PCS P p p P p p P p p

=
==

     
      

= < ≥ − − < = − >∑ ∑

The Bonferroni inequality provides a lower bound to the PCS:

()1
2

ˆ ˆPCS 1 i

D

i
P p p

=

 
 ≥ − >∑ .

30

Note that this is a lower bound on a probability. It guarantees no particular outcome for

any single simulation of the stochastic process. The optimization problem is re-stated as:

 ()()1
2 1

ˆ ˆ1 s/t , 1i i i i
i

D D

i iN
Max P p p b N T N

= =

 
 − > = ≥∑ ∑

It is convenient to state the problem as an equivalent minimization:

 1
2 1

ˆ ˆ s/ti i i
i

D D

i iN
Min P p p b N T

= =

  > =∑ ∑

1
2 1

ˆ ˆ 0 s/ti i i
i

D D

i iN
Min P p p b N T

= =

 − > =∑ ∑

The requirement that the 1iN ≥ can be ignored. Chen & Lee (2011) show that the iN

that solve the optimization problem must be non-negative. In fact, they must be greater

than 0, else the variance of ˆ ip would be infinite.

 With the ˆ ip (including i = 1) assumed normal, and 2
iσ (including i = 1) their

variances, the probabilities 1ˆ ˆ ip p− are distributed as

 2 2
1 1 1 1ˆ ˆ ~ ,i ip p Normal p p σ σ−  − +  .

Then:
() []1 1 1

1 2 2 2 2
1 1

ˆ ˆ
ˆ ˆ 0 i i i

i
i i

i
p p p p p pP p p P P Z φ

σ σ σ σ

−
−

 − − −   > = > = >   + + 

where Z = standard normal random variable, and the functions iφ are defined as:

31

 1
2 2
1

i
i

i

p p

σ σ
φ

−
≡

+

The minimization problem can now be expressed as:

12

 s/t i i
i

D D
i

iiN
Min P Z b N Tφ

==
  > =∑ ∑

or:

2

2 1
exp s/t

2i
i i

D D

N i ii

xMin dx b N T
φ= =

∞  
 
 
− =∑ ∑∫ .

The Lagrangean is:

2

2 1
= exp

2 i i

D D

i ii

xL dx b N T
φ

λ
= =

∞   
  

   
− + −∑ ∑∫

The Optimality Conditions:

2

2
1

1 12
0

iD
i

i

L b
N N

e
φ φ

λ
−

=

∂∂ = − + =
∂ ∂∑

2

2 0 2,...,
i

i i

i
i

L e b i D
N N

φ φ
λ

− ∂∂ = − + = =
∂ ∂

The optimality equations reduce to:

2 2
2

2

2 2 2

1 1 2 2

2

2

1 1 1.....
Di

D

D D

D
i

i
e e

b N b N b N
e

φ φ φφφ φ− − −

=

∂∂ ∂= = =
∂ ∂ ∂∑

32

These are the complete optimality equations, except for the budget constraint. We

can ignore it because the task is to use the theory to guide allocations within the

implementation of the algorithm, not to solve the optimization problem explicitly.

Within that implementation the budget constraint is automatically satisfied. The

algorithm stops when the time is exhausted. An explicit requirement that the iN be

integers is unnecessary. In the implementation they are necessarily integers. Treating

them in theory as real numbers does no harm. The ultimate rounding is negligible, given

that the numbers will be quite large. In practice the algorithm cannot be expected to

satisfy the optimality equations exactly. In that context rounding error is trivial. These

considerations, concerning the budget constraint, positivity, and integers, will apply

equally to all optimization problems in this research.

 Expressed in full, with all the partial derivatives expanded, the optimality

equations can be rather unwieldy. In practice a simplified, asymptotic version is typically

employed. (See Chen & Lee, 2011, pp. 46, 57.) But note that it is expressed in terms of

somewhat different variables and notation from those I employ, as explained above.)

These permit the optimal iN ∗ to be found analytically, given a budget constraint. This

simplified version is the one employed in my tests of OCBA.

 This derivation of OCBA lays the groundwork for the new methods developed in

this dissertation. They will be derived in similar fashion, but will differ considerably in

detail and complexity.

33

3.3 OCBA Implementation

Implementation proceeds by substituting estimated parameters (such as ˆ ip) for

the real parameters (such as ip) of the theory. At the outset there are no ˆ ip , so the

algorithm must first be “initialized”: a (modest) portion of the total computing budget is

devoted to a standard MC simulation of each design. During initialization no attempt is

made to optimize anything. The initialization time is allocated among the designs

equally.

When the required estimates are in hand, at the end of initialization, optimization

commences. At that point, and at regular intervals thereafter (updates), the simulation is

halted so the algorithm can decide, based on the current estimates of all required

parameters, where the next, generally small, amount of computing time (or number of

runs) should be allocated. The optimality equations guide this decision. At the optimum

they are satisfied (the equations equate), but almost certainly not at each update. The

theoretical equalities are, at each update, inequalities. The algorithm tries to allocate the

next (small) amount of computational effort so as to best push them toward equality. It

asks: Given the current state of these inequalities, where (to which design) should the

next dose of computing time (or runs) go, in order to make them “less unequal” at the

next update. At each update an allocation is made, the simulation implements that

allocation, then pauses for another update. This continues until the total computing

budget is exhausted.

DT

34

If the allocations are well chosen the optimality terms should become less and less

unequal. Over an infinite computing horizon they should converge to equality. In finite

time that cannot be expected, but the updatings should move them continuously toward

equality. (This does not mean that every single update will reduce the inequalities, but

that the tendency should be strongly in that direction.) The actual PCS, at the end of the

simulation, should be closer to the optimum than the PCS of an arbitrary allocation with

no optimization. Not the optimum, but closer. This does assume, without proof, that

closer is better. That is, as the inequalities are reduced, the PCS increases monotonically.

It will surely be objected, at this point, that what the algorithm is attempting to do

– reduce the inequalities in the optimality relationships – is not a well-defined task.

There is no one inequality, but a vector of inequalities. In fact, several vectors,

depending on how the equations are arranged. What is the measure of overall inequality

that the algorithm tries to reduce? Some norm of one of the vectors? It is plausible (but

unproven) that the choice does not much matter. It certainly shouldn’t matter

asymptotically. But we simulate finitely, not asymptotically. We assume that any

reasonable measure of the inequality to be reduced at each update will work well enough

in practice. This assumption seems to be borne out in practice. A method for updating

OCBA is discussed below, under section 3.5 on Asymptotic Approximations.

3.4 False Leads

 An awkwardness bedevils algorithms that try to optimize the PCS. Each update is

guided by the underlying theory (the optimality equations). To apply that theory the

current estimates of all the parameters must be used in lieu of the real, unknown

35

parameters. But the current estimates are, almost certainly, wrong. That is not crippling,

per se. They should improve, in a probabilistic sense, as the simulation progresses. But

there is one kind of mistake the algorithm can make that can be more serious.

 The problem is best explained by example. Let there be 3 designs, with

probabilities 0.1, 0.2, 0.3. (The issue is the same for rare and non-rare events.) Suppose,

at an update, the current estimates are 0.11, 0.26, 0.25. Designs 2 and 3 are “reversed”,

in the sense that design 3 is, incorrectly, estimated to be smaller than design 2. But that

error has no impact on the way the algorithm implements the theory. Within the theory

designs 2 and 3 are interchangeable. They play identical roles within the structure of the

theory, and thus within the structure of the algorithm. Interchanging them has no impact

on the algorithm’s attempt to reduce the inequalities of the optimality relationships.

 But suppose the estimates are 0.16, 0.15, 0.25, for designs 1, 2 and 3,

respectively. Now design 2 is the estimated best. The theory, however, is developed on

the assumption that design 1 is the best. This matters because, in the theory, the best

design plays a much different role than all the other designs. The probability of the best

design (designated as design 1) appears in every event in the intersection of events

comprising the event whose probability is to be minimized. (See the statement of the

minimization problem, page 30.) The probability of the best design, and only the

probability of the best design, is a parameter in every term in the optimality equations.

Its role in the structure of the theory, and thus in the structure of the algorithm, is very

different from the roles of other designs. Interchanging it with any other design can have

serious consequences.

36

The algorithm doesn’t know that design 1 is the best design. (We know, for the

test model, but can’t tell it.) It must assume, in applying the theory, that its estimated

best design is the true best design. It must assign its estimated best design to play the role

of the theory’s best design, designated “design 1”. The implementing code must assign

to the 1p of the theory whichever estimated probability is the smallest. If 2p̂ is the

estimated smallest probability, then not only must it play the role of the theory’s 1p , but

2̂b must play the role of the theory’s 2b , and likewise for all other relevant parameters.

 This adjustment, which must be implemented, if required, at every update, implies

not just extra coding. It can substantially distort the algorithm’s allocations. If the

algorithm incorrectly estimates 2p̂ to be the real smallest probability, the allocations

based on that estimate could be seriously misdirected. This I call a False Lead.

Every algorithm trying to maximize the PCS is almost certain to generate false

leads at some updates, especially the early ones, where estimated probabilities are most

prone to large error. False leads mean, in effect, that the algorithm tries to optimize “the

wrong thing”. The resulting allocations are likely to move the optimality relationships

away from, not toward, equality.

But false leads are not fatal. Any new allocation, however suboptimal, improves

some estimate (in a probabilistic sense). Eventually these improvements can overcome

false leads, as the algorithm evolves. Significant progress toward equality of the

optimality equations will be slowed by false leads, but the algorithm has the potential to

37

recover from them and (re)commence the allocation of computing time in a manner that

decreases the inequalities of the optimality relationships.

False leads are most likely, and least damaging, when they occur between a few

highly competitive designs. If designs 1 and 2 are very competitive, the allocations to

them will be very similar, even if design 2 is, at some update, falsely estimated to be the

best. False leads are most damaging when they falsely designate a rather uncompetitive

design as the best. But such false leads will not be common, and can be more easily

reversed than false leads among competitive designs.

In general false leads are an inevitable part of an optimizing algorithm, but not

necessarily serious enough to undercut their effectiveness, as illustrated in the tests

performed in this research. Chen et al. (2003) present empirical evidence that OCBA, in

practical implementation, can actually outperform a theoretically optimal allocation of

runs based on known parameters. That is, the theoretically optimal allocations are

derived from known parameters, and so are exact, whereas OCBA allocations depend on

evolving estimates of those parameters. OCBA is, then, vulnerable to false leads, but is

nonetheless sufficiently robust, in practice, to overcome them and, in some tests, equal or

outperform the theoretical optimum.

Non-optimizing algorithms also generate false leads, in the sense that, at any point

in the evolution of the algorithm, its current estimate of the best design can be wrong.

The difference between non-optimizing and optimizing algorithms is that a false lead in a

non-optimizing algorithm has no bearing on the allocation of computing time. The

algorithm simply continues with whatever arbitrary allocation is built into it. False leads

38

do not, in any sense, undercut the effectiveness of the continued simulation. For

optimizing algorithms they certainly can, by generating allocations based on optimizing

“the wrong thing”. This suggests that, in practice, optimizing algorithms may perform

more poorly than non-optimizing ones in the very early stages of the simulation. If they

start out with false leads, it may take a bit of time to overcome them. But the power of

optimizing algorithms lies in their capacity to so overcome, relatively quickly, and their

ability to minimize false leads thereafter.

3.5 Asymptotic Approximations

Chen & Lee (2011) recommend a simplification of the complete optimality

equations. By considering the asymptotic behavior of the simulation, as the computing

budget becomes infinitely large, they reduce them to expressions from which the

(approximately) optimal iN can, at each update, be easily calculated. With that

calculation in hand, how should the next allocation be made? A simple rule is to devote

the next amount of computing time to the design whose actual iN is, proportionally, the

farthest short of its optimum. Another would be to divide the effort among all the iN

short of their optima in proportion to the degree by which they fall short. Either method

can be effective. (Chen & Lee, 2011, recommend proportional allocations among all the

iN .) Over a large budget there should be no discernible difference between them. Test

simulations of OCBA, presented below, are based on the first method: allocate all effort,

at each update, to the design “most starving”, the one whose iN proportionally lags the

39

farthest behind its optimum. The allocation at each update is small, compared to the total

number of runs. In this research the new allocation at each update is 100 runs.

3.6 OCBA and Rare Events

OCBA does not perform well on rare events. It allocates computing effort among

designs. Within designs it uses MC to estimate the design probability. But MC is

inefficient at estimating rare event probabilities. The significant improvement OCBA can

bring to the simulation of multiple designs when the probabilities are not rare largely

disappears when they are rare. It is overwhelmed by the curse of Monte Carlo.

I compare OCBA to simple MC (equal allocation) with a computing budget

comprised of a 10 sec. initialization and 238 increments of 5 sec. each, producing a total

budget of 20 minutes. The simulation is across 10 designs, with 2000 experiments.

 Figure 8: OCBA vs MC, 20 Minute Budget

40

In this test OCBA is worse than simple MC, until the very end of the budget.

That is due to the relatively small budget. It is not due, in these tests, to OCBA’s extra

computational overhead, as the test program counts only simulation time, not

computation time. OCBA almost certainly suffers, at the outset, from false leads, and

there is not enough time for OCBA’s updating to overcome them and move its

allocations significantly toward the optimum. Can OCBA recover, given more time?

Here is a test over 2 hours, with initialization and time increments at 30 sec:

Figure 9. OCBA vs MC, 2 Hour Budget

41

The algorithm is sufficiently robust to recover from false leads, given sufficient

time. The advantage OCBA should enjoy, and does enjoy after recovering from false

leads, lies in the fact that, unlike MC, it does not “waste” much time on uncompetitive

designs. It can spend more time on competitive designs. This test was run over 10

designs to illustrate that advantage. The last few of these designs are rather

uncompetitive. Compare how MC and OCBA allocate time, and runs, on this test:

Table 1: MC vs OCBA Allocations

 MC OCBA

Design Time(sec) Runs Probability Time(sec) Runs

1 720 161,119,225 1.38E-7 1815 406,173,533

2 720 159,933,056 1.43E-7 1679 372,940,869

3 720 159,635,527 1.51E-7 1413 313,242,343

4 720 159,039,276 1.57E-7 1221 269,772,202

5 720 154,632,176 2.03E-7 421 90,330,113

6 720 151,698,086 2.42E-7 246 51,889,232

7 720 147,558,817 3.18E-7 148 30,268,558

8 720 140,612,381 4.83E-7 95 18,527,267

9 720 137,751,376 5.7E-7 84 16,089,068

10 720 134,850,883 6.92E-7 78 14,670,900

The allocation is in terms of time. The runs are determined by the amount of time

allocated to a design and the average time-per-run of a design. The higher the rare event

42

probability, the longer the average time-per-run for a design. Thus the runs under MC

decrease monotonically, by rather small amounts. The runs under OCBA decrease very

sharply, after the first 3 or 4 designs. It wastes very little time on the higher designs. The

probability of the uncompetitive design 10 is about 5 times greater than that of design 1,

but MC allocates design 10 about 10 times more, in time and runs, than does OCBA.

 Despite OCBA’s much more efficient allocation of effort, it still performs poorly.

After 2 hours of simulation it made the correct selection only 28% of the time. It should

be emphasized that this poor performance results solely from the application of OCBA to

rare events, for which it was not designed.

What if the probabilities are non-rare, but quite competitive? With highly

competitive designs OCBA offers little advantage over MC. I test OCBA vs MC over 10

non-rare designs, some fairly competitive:

43

 Figure 10. OCBA vs MC, Non-Rare Probabilities

OCBA quickly outperforms MC. Iit can be quite efficient when the probabilities

are non-rare. It is only for rare events that other simulation techniques are needed.

44

 4. Splitting8

Constants
jL = level j, j = 1,…,L

p = probability of the rare event

jp = level probability for level j (probability of a run in jL hitting jL)

k jq = probability of starting a run in jL from state k in 1jL −

k jp = probability of a run starting in state k of 1jL − hitting jL
2
kσ = variance of a run from state k of 1jL −

jb = average time of a run in jL
T = computing budget, in time
Random Variables
p̂ = estimator of p
ˆ jp = estimator of jp

ˆk jq = estimator of k jq
ˆ k jp = estimator of k jp

k jn = number of runs starting from state k in 1jL −

k jh = number of hits on jL from runs starting from state k in 1jL −

jh = number of hits on jL

k jX = Bernoulli random variable for the outcome of a run from state k in 1jL −
Functions

()k jf x = probability mass function (pmf) for k jX

()jf x = probability mass function (pmf) for the outcome of a run from 1jL −
Decision Variables

jn = number of runs in level j, subject to constraint that j j
j

b n T=∑

8 A short summary of Splitting literature is provided in Appendix 3.
45

Splitting is the general name of an ensemble of techniques designed to efficiently

estimate rare event probabilities. The state space is divided (split) into subsets that

partition it. One of the subsets is the rare event. The subsets are constructed so that a

sample path, to reach the rare event, must first transit the other subsets.

Splitting is easily illustrated on the test model. It divides the state space into 4

non-intersecting subsets plus their boundaries. The state space is split at the boundaries,

called “levels”: L0 = 0, L1 = 12, L2 = 15, L3 = 38, L4 = 50. In some contexts it may be

useful to designate levels by subscripts: 1 2L , L , etc. The subsets are:

L0: the single state (0, 0).

All states for which (S1 < 12) , (S2 < 12), except (0, 0).

L1: all states for which S1 = 12 or S2 = 12.

All states for which (12 < S1< 25) and (12 < S2 < 25).

 L2: all states for which S1 = 25 or S2 = 25.

All states for which (25 < S1< 38) and (25 < S2 < 38).

L3: all states for which S1 = 38 or S2 = 38.

All states for which (38 < S1 < 50) and (38 < S2 < 50).

L4: all states for which S1 = 50 or S2 = 50.

This splitting of the test model is depicted as:

46

Figure 11: Splitting of Test Model into 4 Levels

Unlike Monte Carlo, the runs in a splitting simulation start in some level and

always terminate in the next highest level, or in L0, the origin. Terminology relating to

runs and levels needs clarification. As defined above, a level is a boundary splitting the

state space into subsets which, together with the levels, partition the state space. The

levels are L0, L1, L2, etc. The phrase “in a level” refers to states in that level. For

example, (12, 3) is “in L1”, (11, 3) is not. But it is convenient, though with some abuse

of terminology, to speak of “runs in a level”. This will mean runs commencing in the

47

next “lower” boundary. Runs “in L2”, for instance, refer to runs commencing in L1.

Runs starting at L0 are runs “in L1”. Runs starting in L2 are runs “in L3”, etc. The

phrase “in L3” can thus mean a state in the boundary L3, or a run starting in a state in the

boundary L2. It should be clear from the context whether the reference is to a state in a

boundary or a run starting in a boundary. It should be noted that runs in, say, L3 may

never actually enter a state in the subset “above” L2. To be a run “in L3” it need only

start in the boundary L2. From that point its first move, and all subsequent moves, could

be in states “below” L2, until termination at (0, 0).

The following graphs illustrate runs in each of the levels, some terminating at the

boundary, some at the origin. The probabilities generating these runs are non-rare:

48

 Figure 12: Sample Run in L1, Terminating in L1

49

 Figure 13: Sample Run in L2, Terminating at the Origin

50

 Figure 14: Sample Run in L2, Terminating in L2

51

 Figure 15: Sample Run in L3, Terminating at the Origin

52

 Figure 16: Sample Run in L3, Terminating in L3

53

 Figure 17: Sample Run in L4, Terminating in L4

This last example, depicting a sample run in level 4 terminating in the rare event,

is an illustration of the fact that runs can spend considerable time “below” their starting

points but nonetheless terminate in the next higher level. Generally speaking, the

“higher” a run’s starting point, the more time it will take, on average, to complete its path

and terminate. Loosely put, it has more space to wander around in before terminating.

54

The rare event in the test model is L4. It is obvious that an MC run – a run

commencing at the origin and terminating only in L4 or back at the origin – can only hit

L4 if it first transits all the other subsets and, in particular, first hits L1, L2, and L3.

Splitting constructs levels to ensure this property holds.

Any number of levels could be chosen and placed anywhere, as long as they

partition the state space so that a MC run can reach the rare event can only by first

transiting all the other subsets. The number and placement of the levels is the most

important decision variable in the design of standard splitting. There is theoretical

guidance for these choices, discussed below (see page 65).

4.1 Estimating Level Probabilities

Let the design probability be p , its estimator p̂ . (Splitting applies to a single

design, so no subscript is required to designate the design.) Splitting estimates p by first

estimating the probabilities that a run in a level will hit that level. Keeping in mind the

distinction between a run “in a level” and a run “hitting a level” it makes perfect sense to

ask, for each level j = 1,…,L:

What is the probability that a run in jL will hit jL 9? Let that be jp . The jp are

the “level probabilities”. The overall probability that an MC run (commencing at the

origin and terminating only at the rare event or back at the origin) will hit the rare event

can be expressed as the product of the level probabilities:

9 It is redundant to include the phrase “before hitting 0L ” since the run terminates the
first time it hits 0L or jL .

55

p = (probability of a run in L1 hitting L1) x
 (probability of a run in L2 hitting L2) x
 (probability of a run in L3 hitting L3) x

 (probability of a run in L4 hitting L4).

 1 2 3 4p p p p p= .

Equivalent constructions of p can be made for any number of levels and corresponding

level probabilities. Splitting estimates p by estimating the level probabilities, then

multiplying:

 1 2 3 4ˆ ˆ ˆ ˆˆ p p p pp = .

In sec 4.4 this estimator is shown to be unbiased.

Level estimators are constructed by dividing, for each level, the number of hits by

the number of runs. Let

jn = number of runs in level j

jh = number of hits on level j

Then

 ˆ j
j

j

h
p

n
=

Insight into the effectiveness of splitting can be gained by from the following

thought experiment. Level estimators could also be constructed from simple MC runs.

Impose levels on the state space. Do a simple MC run, starting at the origin and

terminating at the rare event or back at the origin. That is, do not stop the run when it hits

any of the levels, but record those levels it does hit. (Record only the first time it hits

56

them.) Suppose it hits L1, L2, L3, but not L4. That generates a record of 1 run in each

level, and 1 hit on the first 3 levels. Do a large number of runs and construct the record

of level runs and level hits. Level estimators could be constructed from this record, and a

design estimator calculated as their product. That design estimator would be exactly the

same as the simple MC estimator (the estimator calculated without the levels). To see

this:

 1 2 3 4ˆ ˆ ˆ ˆ ˆp p p p p=

 1 2 3 4

1 2 3 4

ˆ
h h h h

p
n n n n

=

Note that, in this MC experiment, the number of runs in any level (above level 1) is

exactly the number of hits at the prior level: 2 1 3 2,n h n h= = , etc. Thus

 1 2 3 4 4

1 1 2 3 1
ˆ

h h h h h
p

n h h h n
== ,

which is precisely the MC estimator, since 1n is the number of runs from the origin, 4h

the number of hits on the rare event.

MC suffers from the fact that it generates fewer and fewer runs at higher levels. It

launches 1n runs from the origin. The probability that any such run reaches L1 is less

than 1, often much less. So 2n , the runs in L2, will be less, often much less, than 1n .

The same reasoning applies to L3 and L4. The runs at each level will be less than those

at the prior level, and, with rare events, much less: 1 2 3 4 .n n n n>> >> >> (The non-

zero probability they could be equal is too small to take seriously.) This means that the
57

MC artificially constructed level estimators, at levels above 1, will become more and

more unreliable, their variances larger and larger. The design estimator 1 2 3 4
ˆ ˆ ˆ ˆ ˆp p p p p=

will have a large variance (relative to what is desired for efficient estimation) because the

variances of the estimators for 2 3 4ˆ ˆ ˆ, ,p p p will be, increasingly, (very) large, because

they will be based on smaller and smaller numbers of runs.10

 How does “real” splitting improve upon this artificially constructed splitting of

simple MC? They appear the same, when expressed as

 31 2 4

1 2 3 4

ˆ hh h hp
n n n n

= .

The genius of real splitting is that it breaks the link between the number of hits on a level

and the number of runs in the next level. In MC these are the same. In splitting they are

not. The number of runs in each level becomes a decision variable which can be made

arbitrarily large (thereby making the variance of the level estimator arbitrarily small),

independent of the number of hits on the prior level. (Or, equivalently, the time devoted

to simulating level j is independent of the time for level j-1.) 2n can be made as large as

desired, independently of 1h . How is this done? That is, how is it done so as to maintain

the one good thing Monte Carlo does deliver, unbiased estimators?

4.2 Fixed Splitting

10 This does not imply that the variance of p̂ is the product of the variances of the level
estimators, only that it increases as the variance of a level estimator increases.

58

Splitting11 comes in two several flavors, the primary ones called “fixed” splitting

and “fixed effort” splitting. They set the number of runs in each level in different ways.

A run in MC simply continues, as a single run, until it dies. Not so in fixed splitting. A

run that hits L1 spawns a number of separate runs, each launched from the point in L1 hit

by the initial run. Each of those separate runs then continues until it hits L2, or dies at the

origin. Those that hit L2 then launch additional separate runs, each of which continues

until it hits L3, or dies at the origin. This procedure continues until all the runs, through

all the levels, spawned by the single run from the origin, have terminated. Then another

single run from the origin is launched and the process repeated. By controlling the

number of new runs launched at each level (from the runs that reach it from the prior

level) the number of runs at each level can be made much larger than they would be

under simple Monte Carlo. The total number of new runs in any level over the entire

simulation is not, itself, a control variable, since it is the product of the number of new

runs launched from each hit on that level and the number of hits. The number of hits is a

random variable, so the total number of runs, over the entire simulation, is a random

variable. But it – the total number of runs -- can be made a large multiple of the number

of hits, whereas, in MC, it is always exactly the number of hits. The variances of the

level estimators, above level 1, can thus be made much smaller than under an artificial

splitting of an MC simulation.

11 For an overview and analysis of the varieties of splitting, see L’Ecuyer et. al. in Rubino
and Triffin (2009).

59

There are various versions of fixed splitting. A common one is RESTART

(Villen-Altamirano, 1994, 2006), which contains a scheme for killing runs that have low

probability of reaching the next level. Optimizations of fixed splitting have been

developed by Lagnoux-Renaudie (2008). A review of splitting in general, with emphasis

on fixed splitting, is found in Rubino & Triffin (2009).

This potted overview of fixed splitting elides much in theory and implementation.

It skirts the key question – how to maintain unbiasedness while lowering variance -- but I

explore it no further, as this research focuses exclusively on “fixed effort” splitting.

4.3 Fixed Effort Splitting

Fixed effort splitting is explained by reference to the test model. The

generalization to other types of stochastic processes is straightforward.

Broadly speaking, fixed splitting and fixed effort splitting differ in the sense that

“depth first” differs from “breath first”. Fixed splitting is depth first. It pursues the fate

of a single run until it, and all the offspring runs it spawns at higher levels, have died.

Then it launches a new single run from the origin and repeats the procedure. Fixed effort

splitting is breath first. It completes all the desired runs in L1 before doing any runs in

L2. Then all the runs in L2 before any runs in L3. And so on.

Level estimators are calculated from the “runs in the level” and the “hits on the

level”. Consider the estimator for level j. Using the terminology adopted above, the

runs in level j all start from some state in 1L j− . They score a hit if they hit some state in

L j . Otherwise they die at the origin

60

The estimator for level j is

 ˆ j
j

j

h
p

n
= .

To generate jh the simulation launches runs from states in 1L j− . Which states? How

are they chosen?

 The critical issue is the fact that, in general, the probability of a run hitting L j

depends on the state in 1L j− from which the run starts. In general those probabilities

differ, state to state. Let:

k jq = the probability that a run in L j will start in state k (in 1L j−)

 k jp = the probability that a run from state k will hit L j

 jp = the probability that a run from 1L j− will hit L j

Then

 j k j k j
k

p q p= ∑

Neither k jq nor k jp is known. They must be estimated, indirectly:

 ˆ ˆ ˆj k j k j
k

p q p= ∑

They are not estimated explicitly. Only the level estimator that can be calculated:

 ˆ j
j

j

h
p

n
= .

61

These two versions of the level estimators should be equivalent. They are made

equivalent by the way in which the simulation selects states in 1L j− from which to

launch the runs jn .

 The runs in L j should be probabilistically equivalent to what simple Monte Carlo

would have produced. That means that k jq , the probability that a run will start in state k

in 1L j− , should be the probability that an MC run that hits 1L j− will hit it at state k. We

can estimate that probability from the hits on 1L j− under splitting. Their empirical

distribution is an estimate of the distribution of the hits on 1L j− under MC.

Consider 1kq , the probability that a run in L1 starts at state k in L0. In the test

model there is only one state in L0, so (0,0),1q = 1. In general, however, there could be

more than one state in L0. The simulation would need to calculate, or estimate, 1kq .

Now consider 2kq , the probability that a run in L2 will start at state k in L1. It

can be estimated from the distribution of the states, in L1, that were actually hit by runs

in L1. For example, in the test model (12, 0) and (12, 1) are states in L1. If 0.15 of the

hits on L1 hit (12, 0), and 0.1 hit (12, 1), then we have the estimates:

(12,0), 2 (12,1), 2ˆ ˆ0.15 0.1q q= =

Over all the states in L1 we have:

 ˆ 1k j k j
k k

q q= =∑ ∑

62

The simulation does 2n runs in L2. If it launches 2 2ˆkq n (rounded) from each

state k it will approximate the real 2 2kq n , and will be statistically equivalent to MC in

the sense that []2 2ˆk kE q q= . This line of reasoning then applies to ˆk jq through all

levels j, each ˆk j k jE q q  =  following from the unbiasedness of the prior level.

ˆk jq is calculated as the proportion of the hits on 1L j− that hit state k . That

proportion is known since, under fixed effort splitting, all the runs in 1L j− (and thus hits

on 1L j−) are completed before any runs are launched in L j . The algorithm must,

therefore, keep a record (list, array) of the states hit in 1L j− . That record must include

replications. If state k is hit 100 times, there should be 100 copies of state k in the record.

Or, equivalently, the record could include the percentages of hits on each state k, or a

count of the number of hits on each state k.

This record keeping, though burdensome in terms of computational overhead and

use of memory, can only be dispensed with if the k jq are the same for all k, and known to

be so. At any point in the implementation of splitting two such records are required: the

set of entrance states for the level in which runs are currently being conducted, and a new

set, for the next level, created by current hits on the next level.

 The states in that record are called entrance states. The set of entrance states for

L j is the set of states in 1L j− hit by runs in 1L j− , with replication. Given that set, the

63

algorithm estimates k jq in practice by launching each run in L j from a state randomly

selected from the set. The random selection is with replacement.

Define:

k jh = number of hits, on L j , from runs commencing in state k of 1L j−

 k jn = number of runs, in L j , commencing in state k of 1L j−

Then: j k j
k

h h= ∑

Given that a run in L j starts from a state randomly selected from the saved set of

entrance states in 1L j− :

ˆ k j
k j

j

n
q

n
= ˆ k j

k j
k j

h
p

n
=

1ˆ ˆ ˆ k j k j j
k j

j k j j j
k j k jj

k k k

n h h
h

n n n n
p q p = = == ∑ ∑ ∑

The two formulations of the level estimator are equivalent if each run is selected

at random from the saved set of entrance states. The larger the set of entrance states the

better the estimator (the smaller its variance), since the larger the set, the better it

empirically approximates the true k jq .

Large sets can pose a burden on memory, but it should be noted that, in this

simple form of splitting, a set of entrance states need be saved only to supply the base

from which to launch runs at the next level. The set of entrance states in 1L j− is needed

64

for runs in L j but not thereafter, since all runs in each level are completed before any

runs in the next level are started. This will not be true of the optimizing algorithms to be

considered. As will be seen, they must save all sets of entrance states at all levels

throughout the implementation of the algorithm.

4.4 The Design Estimator Is Unbiased

 The question posed earlier – how can the unbiasedness of the estimators be

maintained while their variances are decreased? -- can now be answered. The Monte

Carlo design estimator is unbiased. Garvels (2000) proves that the splitting design

estimator is also unbiased. For L levels:

 [] 1 2ˆ ˆ ˆ ˆLE p E p p p p  = ⋅⋅⋅ =

Unbiasedness requires a method for selecting each run in jL from a state in 1jL −

in a way that is probabilistically equivalent to the random selection under fixed effort

splitting described above. Garvels’ proof is stated in the context of fixed splitting, but

generalizes to fixed effort splitting. It does not require that the level estimators be

independent.

 Lower variances are achieved under splitting precisely because the number of

runs in any level becomes a decision variable that can be set at any value without

sacrificing unbiasedness. The larger they are set, the smaller the variances of the level

estimator, the smaller the variance of the design estimator.

65

4.5 Distribution of the Level Estimators

 Let k jX be the outcome of a run in level j, from entrance state k. k jX = 1 if the

run hits jL , 0 otherwise. k jX is a Bernoulli random variable, with probability k jp ,

mean k jp and variance ()1k j k jp p− . The number of hits, k jh , over k jn runs, is a

binomial random variable with mean k j k jn p and variance ()1k j k j k jn p p− . The

estimator, ˆ k j
k j

k j

h
p

n
= , is a scaled binomial (a binomial multiplied by a constant).

This simplicity does not, in general, extend to a run in level j without specification

of the entrance state from which it starts. Let jX be the outcome of such run: jX = 1 if

the run hits jL , 0 otherwise. The outcome is binary, but the probability of that outcome

is not the same on every run. Thus jX is not Bernoulli. It has a mixture distribution.12

Let

()k jf x = the Bernoulli pmf of k jX

 ()jf x = the pmf of jX

Recalling that k jq is the probability that a run in jL starts in state k (of 1jL −), the pmf

of jX is

 () ()j k j k j
k

f x q f x= ∑

12 For a treatment of mixture distributions, see Hogg, McKean & Craig, 2005, p. 189
66

with moments

 j k j k j j
k

E X q p p  = =  ∑

()22
j k j k k j k j j

k k
Var X q q p pσ  = + −  ∑ ∑

where 2
kσ = the variance of a run from state k, which is ()1k j k jp p− .

()jf x can be understood as follows: To generate a drawing from this

distribution, first select the k from the distribution of the k jq . Then generate a drawing

form the corresponding ()k jf x . That outcome is a drawing from ()jf x .

The variance can then be expressed as:

 ()22j k j k j k j j
k

Var X q p p p  = − +  ∑

In the exceptional case where all k jq are equal (all k j jp p=), this variance reduces to

 ()1j j jVar X p p  = −  ,

the variance of a Bernoulli random variable.13

Thus, when all the k jq are the same, the number of hits from jn runs in level j

will be binomially distributed, and ˆ jp will be a scaled binomial. It will not be a scaled

binomial if they are not equal. It will have the same mean as the scaled binomial, but a

13 To derive this, recall that 1k j
k

q =∑ .

67

different variance, which will depend on the k jq and k jp . This dependence will pose a

problem for the optimizing algorithms, discussed below.

4.6 The Importance Function

 The literature on splitting is fond of a formalism called the “importance function”.

It is, formally, a function from each state of the stochastic process to a number, with the

property that all states in the subset between levels 1jL − and jL have values less than

those in the subset between levels jL and 1jL + , for all j. States in jL have a common

value, which is greater than any value in the subset between 1jL − and jL and less than

any value in the subset between jL and 1jL + .

 The importance function formalizes the basic property splitting must have: a

partitioning of the state space (see page 45). From an explicit importance function one

could deduce the number of levels and their location, or placement. The literature claims,

correctly enough, that the importance function is the most important decision to be made

in constructing a splitting simulation. This means the important questions are: How

many levels should there be? Where should they be? What shape should they have?14

 For “standard” splitting these questions are the most important by default. They

are the only questions, given that I use “standard” splitting to mean fixed effort splitting

that allocates an equal number of runs (or amount of computing time) to each level.

Assuming a given computing budget there are no decision variables left, after the number

14 Poor choices for the importance function can yield poor results, even if the choices
seem sensible. See Glasserman et al., 1998.

68

and placement of the levels are decided. Of course the simulation designer could create

additional decision variables by deciding on some other allocation (other than equal) of

effort among the levels, guided, perhaps, by judgment or heuristics. But for standard

splitting the only things to decide are how many levels to create, where to put them, and

how they should be shaped.

 These questions can be important. Too few levels will not harness the potential

efficiency of splitting, too many can become computationally burdensome. Poor

placement can also undermine importance. Some theoretical guidance is available.

Garvels and Kroese (1998) show that there should be about m level estimators, all equal

at about

 2
kp e−≈ .

We then have

()2 2

1 1

log
2k

m

k k

m m p
p p e me− −

= =

−
= = = ⇒ =∏ ∏

 These results are based on the very restrictive assumption that the outcomes of all

runs, at all levels, are independent, identically distributed random variables. With this

assumption all level probabilities are the same -- an assumption so extreme that, in any

practical problem, the theoretical result is essentially useless. Moreover, without prior

knowledge of p -- precisely the thing the simulation is designed to estimate! -- these

estimates cannot be directly employed. One might take an informed guess at what p is

expected to be, or do some preliminary runs to get a rough estimate, then choose m

accordingly. That alone, however, is no help in designing the placement or shape of the
69

levels, since one would have to know, in advance, how they would generate

approximately equal level estimators.

 Absent such prescience it would be normal to locate the levels at approximately

equal distances from each other, though for some stochastic processes the concept of the

“distance” of one level from the other may not be well defined. In the test model the

distances could be defined in several ways. I choose the simplest by setting them the

levels at 12, 25, 38, and 50 for the number of customers in either subsystem. (See sec.

2.2 for a description of this test model). Since the exact design probabilities for the

designs in the test model are known, the optimal m could be approximated. For design 1,

with p = 1.37988924E-7, we have:

 ()log
3.4

2
p

m
−

= ≈ .

Either 3 or 4 levels would thus be defensible choices for m. But where should they be

placed to equalize the level probabilities?

Optimizing algorithms, such as those I consider below, may be thought of as

attempts to compensate for suboptimal placements of the levels by optimizing the number

of runs (or time) per level.

4.7 Splitting vs OCBA

 Though splitting was developed for application to a single design, it can be used

to simulate multiple designs, for the purpose of selecting the best, by simulating them

independently and comparing the results. The simulation of each design consumes

whatever portion of the computing budget is allocated to it. Splitting per se provides no

70

guidance to that allocation. The simple choice, absent some heuristic to guide the

allocation, would be equal amounts to each design.

 OCBA optimizes the allocation of the computing budget across designs, but

suffers from the poor performance of MC as the simulation technique within a design.

Splitting is a better method for simulating designs with rare events, but lacks a workable

rule for the optimal allocation of the computing budget across designs. Splitting

nonetheless significantly outperforms OCBA at selecting the best design, in the context

of rare events, as demonstrated in the following test. Splitting, with 4 levels, is compared

to OCBA in selecting the best of 8 designs. Under splitting the allocation of the 20

minute computing budget is equal across the designs. The PCS is estimated on the basis

of 2000 experiments.

71

 Figure 18: Splitting vs OCBA, 8 Designs

72

5. OSTRE

Constants
L = number of levels

jL = level j, j = 1,…,L
p = probability of the rare event

jp = level probability for level j (probability of a run in jL hitting jL)

k jq = probability of starting a run in jL from state k in 1jL −

k jp = probability of a run starting in state k of 1jL − hitting jL

jb = average time for one run in jL
T = computing budget (for 1 design), in time

Random Variables
p̂ = estimator of p
ˆ jp = estimator of jp
ˆ

jb = estimator of jb

jh = number of hits on jL

Decision Variables

jn = number of runs in level j, subject to the constraint that j j
j

b n T=∑

The Optimal Splitting Technique for Rare-Event Simulation (OSTRE), developed

by Shortle, Chen, et al. (2012)15, is a technique for optimizing the allocation of runs

among levels within a single design. Though applicable to any design that can be

15 As of this writing this dissertation, which extends OSTRE by combining it with OCBA
and applying it to multiple designs, is the only additional literature on OSTRE.

73

simulated by splitting, it was developed specifically to enhance the efficiency of rare

event estimation.

 OSTRE is a refinement of fixed effort splitting. Under standard fixed effort

splitting the computing budget assigned to n-1 out of n levels of the design is a decision

variable. (The allocation to the remaining level is then determined by the budget

constraint.) Absent any guidance from judgment or heuristics it would be natural to

allocate the computational effort (time or runs) equally among the levels. The splitting

examples and tests in this research are based on equal allocation among the levels.

 Instead of equal allocation OSTRE tries to optimize the allocation, to minimize

the variance of the estimator of the rare event probability. The key is to express that

variance in a form that can be minimized.

 As noted above, the splitting variance is a difficult creature to capture. To pin it

down precisely would require knowledge of the k jq (the probability that a run in jL is

launched from state k in 1jL −) and of the k jp (the probability that such a run would hit

jL), for all j and k. Implementing an algorithm based on the minimization of the exact

variance would require estimating all these probabilities. In practice that would likely be

a bridge much too far. A tractable approximation to the variance is required.

 These difficulties disappear if all the k jp are equal. There is then but a single

probability of a run in jL hitting jL : for all k, j k jp p= , the unconditional level

74

probability (not conditioned on the starting state). If this is true the level estimators, the

ˆ jp , are distributed as scaled binomials, with reasonably tractable variances.

5.1 OSTRE’s Major Assumption

To attain tractable level variances OSTRE assumes that the probability that a run

in jL will hit jL is independent of its starting state. OSTRE solves the exact

minimization problem only if that assumption is exactly true. Otherwise it solves a

(closely?) related problem, and its solution is an approximate solution. A good

approximation does not require that all the j kp be almost equal. Even if some j kp differ

considerably from the average, the approximation could still be quite good if the

probabilities of runs being launched from those starting states, the j kq , are remote.

Under this assumption the level estimators are independent: ˆ jp is independent of

1ˆ jp − because, since it matters not from which states runs in jL commence, it matters not

which states in 1jL − are hit by the runs in 1jL − that generate 1ˆ jp − . In fact, ˆ jp would be

unbiased, with the same variance, if all the runs in jL commence in states not hit by any

runs in 1jL − .

Even if OSTRE’s major assumption is not well approximated OSTRE might still

be worth implementing. Attaining the optimum is a theoretical objective. In practice the

implementation of the algorithm will almost never attain it, no matter how rigorous the

theory, no matter how justified the assumption. In practice the purpose is to improve the

efficiency of rare event estimation, compared to splitting based on an arbitrary (e.g.,

75

equal) allocation of computational effort among the levels. OSTRE could still be useful,

by delivering some improvement, even if its major assumption does not closely hold.

5.2 The OSTRE Assumption on the Test Model

 How well does the test model approximate the major OSTRE assumption? This

can be examined, empirically. We know the exact level probabilities in the test model.

The variances of the level estimators can therefore be calculated under the OSTRE

assumption and compared to sample variances generated by many standard splitting

simulations of the test model. The following comparison is performed on design 1,

which is simulated 1000 times (with 1 million runs at each level of each simulation):

Table 2. OSTRE Assumption Variance vs Sample Variance

 Variance under OSTRE Assumption Sample Variance from Simulations

Level 1 3.65 E-8 3.8 E-8

Level 2 1.55 E-8 2.21 E-8

Level 3 1.28 E-8 2.58 E-8

Level 4 1.74 E-8 6.5 E-8

The close agreement between the exact and sample variances of level 1 is no

surprise. Level 1 satisfies the OSTRE assumption. Every run in 1L starts from the same

point, (0, 0), so has the same probability of hitting 1L . The estimators for levels 2-4,

however, do not satisfy the OSTRE assumption, though the approximation is not bad.

The approximation appears weak at level 4. This should degrade OSTRE’s performance

76

somewhat. And not just OSTRE’s performance. The new techniques introduced in this

research are also based on the OSTRE assumption. If they perform well, that will

suggest that these optimizing algorithms are not highly sensitive to that assumption.

5.3 OSTRE Derivation

 Under the OSTRE assumption the level hits are binomials and the level

estimators are scaled binomials.

With jh = number of hits on jL , jn = number of runs in jL :

 ~ ,j j jh Binomial p n   ˆ j
j

j

h
p

n
=

()1

ˆ ˆ j j
j j j

j

p p
E p p Var p

n
−

   = =   

A closed form expression for the variance of the design estimator, with L splitting

levels, can be derived:

 [] []1ˆ ˆ ˆLVar p Var p p=   

Under the OSTRE assumption this can be expanded and expressed as:

[] () () []22 21 1
1 1

1

1 1
ˆ L L

L L
L

p p p p
Var p p p p p

n n
 −   − 

= + + −   
   

     

The OSTRE optimization problem16 becomes

16 It should be noted that OSTRE minimizes the “exact” problem (given the OSTRE
assumption): it minimizes the variance of the design estimator. This contrasts with
OCBA, which minimizes the Bonferroni approximation to its exact problem.

77

 []
1

ˆ s/t
L

k k
kkn

Min Var p b n T
=

=∑ ,

where kb = average time of a run in level k, and T = computing budget (in time).

It can be shown that this is a convex minimization problem. Its optimality equations are

{ } number of Levels1 1 , 1,...,
1 1

j ji i
i i j j

i j

n pn pn b n b i j L L
p p

  
+ = + ∈ =    − −   

.

Chen & Shortle suggest a simplification of these equations, justified when

()1 /j j jn p p>> − . The equations then reduce to:

()
()

22

1 1

1

1

j j ji i i

i j

j j ii

j i i j

n b pn b p
p p

b p pn
n b p p

=
− −

−
=

−

With this simplification, together with the budget constraint, the optimal in are easily

found. I use this form of the optimality equations in implementing OSTRE.

 This simplification can also be derived in a different way, one that generalizes to

the new techniques I propose. This is not a minor issue. Quite the contrary, it will be

central to the demonstration that those techniques are mathematically equivalent. The

simplification is based on a truncation of the expansion of the variances of the level

estimators. See Appendix 4 for details and a proof that this truncation generates the same

simplification of the optimality equations as the assumption that ()1 /j j jn p p>> − .

78

5.4 OSTRE Implementation

 Implementing OSTRE differs in one significant feature from implementing

standard fixed effort splitting. Under standard splitting all the runs at a level are

completed prior to any runs at the next level. This lightens the charge on memory from

the necessity of maintaining a record of the entrance states into a level, since that record

can be deleted once all the runs that depend on it are completed. At any point in time it is

necessary to maintain only two such lists: the set of entrance states for the level in which

runs are being conducted, and the set being built up, for the next level, from runs hitting

the next level.

This ease vanishes in OSTRE. As with all the optimizing algorithms in this

research, sets of entrance states must be built up, and maintained, at all levels, throughout

the entire implementation or the algorithm.

OSTRE begins, as does OCBA and all the optimizing algorithms, with an

initiation phase, required to generate initial estimates of the parameters required by the

optimization. (For OSTRE, the ˆ jp and ˆ
jb .) Then, at regular updates, the optimality

equations (simplified form) are solved, generating optimal values for the jn . The budget

constraint used to generate each solution is the portion of the total computing budget

consumed at the point of the update. The next allocation of runs is then made to the level

which will make the largest contribution to reducing the actual inequalities of the

optimality relationships. As with OCBA there are several ways to determine where that

allocation should go. With frequent updates, and an adequate total computing time, all

79

reasonable methods should work well. I apply a simple one: give, at each update, the

next allocation of runs to the level whose current runs fall the farthest short,

proportionately, from their optimum, as determined by the current solution of the

optimality equations.

Since, at each update, the next allocation of runs can be made to any level, the

current set of entrance states into that level must be on hand. As those runs are then

made they will generate new hits on the next level, thereby expanding the set of entrance

states for that level. The complete sets of entrance states, for all levels, are maintained,

and expanded, throughout the implementation of the OSTRE algorithm.

In addition to burdening memory, this implementation procedure introduces a

small distortion. In OSTRE as in standard splitting the entrance state from which a run is

launched is selected randomly from the set of entrance states. In standard splitting that

set is always complete. It was constructed from all prior hits on that level. Since the

random sampling is with replacement, at each selection of an entrance state for a new run

every state in the set of entrance states (counting copies, or replications) has the same

probability of being selected. Consequently, ˆk jq is an unbiased estimator of k jq . But

not so in OSTRE. At each OSTRE update it will conduct new runs at some level, thereby

potentially generating new hits that create new entrance states. The sets of entrance

states expand as the algorithm proceeds. Each time a set is randomly sampled it contains,

potentially, new entrance states, states that were not present that previous time it was

sampled, or not present in the same proportion. Thus, at each sampling not every

entrance state (counting copies) will have the same probability of being selected. States
80

which entered the set early in the evolution of the algorithm will have been there longer

(through more updates) than states which entered later. By the end of the algorithm they

will have had, cumulatively, more chances to have been selected than states entering later

in the process. Systematically more chances, that is, than warranted by their true

probability of being selected (the true k jq). In any complete set of entrance states the

proportion comprised by state k will likely not be the true k jq , but its estimator under

random sampling, ˆk jq , will be unbiased. Not so the OSTRE ˆk jq , though the bias may be

very slight. Correcting, or ameliorating, this bias could be a topic for future efforts to

construct good OSTRE implementations. It is not pursued in this research. All tests

involving OSTRE (which include the new algorithms developed below) are conducted

with no effort to counteract this bias.

OSTRE does not suffer, as does OCBA, from false leads. False leads arise only

in the context of optimizing allocations among designs, not within levels of a design.

Within OCBA theory the putative best design plays a special role. It is not

interchangeable with other designs, so getting it wrong could severely distort allocations

guided by the theory. Within OSTRE theory no level plays a special, or different, role,

compared to the other levels. No level “leads”, so there can be no false leads, no matter

how badly the algorithm errs in its estimates.

5.5 OSTRE and Multiple Designs: OSTRE vs Splitting

 OSTRE was developed to efficiently estimate the rare event probability of a

single design. There is an immediate extension to two designs, but not beyond that, in

81

the original research. The initial impetus for this dissertation was precisely to extend

OSTRE to an arbitrary number of designs.

 OSTRE can nonetheless be applied to a PCS problem, for any number of designs,

in the same manner as standard splitting: arbitrarily allocate the time (runs) among the

designs, and estimate each design independently of the others. As with standard

Splitting, the tests below make the natural allocation of equal effort across all designs.

 The comparison is between OSTRE and standard splitting, across 6 designs.

OSTRE should improve upon Splitting if it surmounts the weaknesses described above:

failure of its major assumption and bias in its selection of entrance states.

 OSTRE’s performance should not improve as the number of designs increases,

since, like standard splitting, it allocates computing effort equally among designs. The

total computing budget is 20 minutes, over 2000 experiments. Note that the graph’s lower

bound is 35%, not 0% .

82

Figure 19. OSTRE vs Splitting, 6 Designs

 OSTRE wins, and the margin of victory is greater than it might appear on the

graph. OSTRE reaches 75% PCS at 235 sec., splitting at 360 sec. OSTRE maintains its

superiority over splitting for 8 and 10 designs:

83

 Figure 20. OSTRE vs Splitting, 8 Designs

84

 Figure 21. OSTRE vs Splitting, 10 Designs

85

6. Single Optimization

Constants
D = number of designs
L = number of levels

i jL = level j in design i.

ip = probability of the rare event occurring in design i

i jp = probability of hitting level i jL , starting in level 1i jL −

i jb = average time of a run in i jL
 T = budget constraint, in time

Random Variables

i jh = number of hits in i jL

ˆ ip = estimator of ip
ˆ i jp = estimator of i jp

Decision Variables

i jn = number of runs in i jL

i j i j i jt b n= = time for i jL

In theory the standard approach to maximizing the PCS is a single optimization

over all the decision variables -- the simultaneous allocation of time (or runs) directly to

all the splitting levels of all the designs. I call this Single Optimization, to contrast it with

the two-stage approach developed in the next chapter.

Assuming, wlog, that design 1 is the best, the optimization problem may be

formulated as:

86

[]1 2 1 1 2 1
1 1

ˆ ˆ ˆ ˆ,..., | ,..., s/t , 1
L D

D D i j i j i j
i j j in

pMax P p p p p p p p b n T n
= =

<< < < = ≥∑∑

This is almost identical to the OCBA maximization problem, except that the

maximization is over the runs allocated to the splitting levels, not to the designs. The

event to be maximized is the intersection of D-1 mutually dependent events ,

()1
2

ˆ ˆ i

D

i
p p

=
<



. As with OCBA, stating this probability as a closed-form function that can

be maximized is too difficult. As with OCBA, the Bonferroni approximation is adopted.

The Bonferroni inequality provides a lower bound to the PCS:

 []1
2

ˆ ˆPCS 1 i
i

D
P p p

=
≥ − >∑ .

Maximizing the expression on the RHS of this inequality generates, via the Bonferroni

approximation, the highest lower bound on the PCS that can be attained, within a given

budget constraint and a given number of splitting levels. (The splitting levels, number

and placement, are given prior to the optimization.) This is a lower bound on a

probability. It guarantees no particular outcome for any single outcome of the stochastic

process.

It is convenient to state the optimization problem as a minimization, by noting

that the RHS is maximized when [] []1 1
2 2

ˆ ˆ ˆ ˆ 0i i

D D

i i
P p p P p p

= =
> = − >∑ ∑ is minimized.

The problem becomes:

87

()1

1 12
ˆ ˆ 0 s/t

L D

i i j i j
j ii j

D

in
Min P p p b n T

= ==
 − > = ∑ ∑∑

The requirements that the 1i jn ≥ , and that they, in practice, be integers, can be ignored,

for the same reasons these requirements on iN were ignored in OCBA.

In practice this optimization problem is not solved analytically. As with OCBA

the theory guides the algorithm in its allocation of new runs to the various levels at

frequent updates. Single optimization’s updating procedure is the same as that for

OCBA, with the (major) exception that the updating allocates runs to the levels, not the

designs. The theory guiding this updating is developed below.

6.1 Normal Distribution of the Design Estimators

Minimizing the objective function requires the distribution of the random

variables to be approximated by a known distribution -- a function to which standard

optimizing techniques can be applied. For these random variables a normal

approximation can be justified, as follows.

The OSTRE Assumption

The (approximate) normality of the design estimators, ˆ ip , is built upon the

(approximate) normality of the level estimators, ˆ i jp . For Single Optimization I adopt the

OSTRE assumption that the probability of a run in i jL hitting i jL is the same for each

possible entrance state in 1i jL − . Under this assumption the number of hits on i jL is

binomial, the level estimator a scaled binomial. We have the same formulation as in

OSTRE, except that the variables and parameters must now be indexed by design (by i)

88

as well as by level (by j). The formulation applies to all levels across all design. For D

designs and L levels:

~ , 1,..., 1,...,i j i j i jh Binomial p n i D j L  = = 

 ()1i j i j i j i j i j i j i jE h n p Var h n p p   = = −   

()1

ˆ ˆ ˆ i j i ji j
i j i j i j i j

i j i j

p ph
p E p p Var p

n n

−
   = = =   

By the De Moivre-Laplace theorem, a binomial random variable with mean

i j i jn p and variance ()1i j i j i jn p p− converges, in probability, to a normal random

variable with the same mean and variance. A normal random variable with that mean and

variance yields “excellent approximations”17 to the binomial for values of i jn and i jp

for which ()1 10i j i j i jn p p− ≥ . Values for i jn and i jp typical in rare event simulations

will easily satisfy that rule of thumb, even over quite modest computing budgets. In the

test model, with 4 splitting levels, all i jp exceed 0.01. Standard splitting, on the test

model, generates a minimum of about 1 million runs in a level (and generally more), over

a computing budget (for a single design) of about 4 minutes. Under these conditions we

have ()1i j i j i jn p p− at about 10,000.

17 Ghahramani, 2005, p. 268.
89

Approximating the binomial distribution of i jh by a normal distribution with the

same mean and variance is thus entirely justified. It follows that the level estimator, ˆ i jp ,

may also be modeled, with strong justification, as a normal random variable:

()~ , 1i j i j i j i j i j i jh Normal n p n p p − 

 ˆ i j
i j

i j

h
p

n
=

()1

ˆ ~ , i j i j
i j i j

i j

p p
p Normal p

n

 −
 
  

The design estimators are products of their respective level estimators:

1

ˆ ˆ 1,...,i i j

L

j
p p i D

=
= =∏ .

The (approximate) normality of the design estimators follows from the claim that

the product of normal random variables, of the type typical of level estimators, is

approximately normal. For each design i the design estimator, ˆ ip , is a normal random

variable plus a sum of random variables each of which can be made arbitrarily close to

0 by sufficiently large i jn . The following discussion supports this claim:

Technically a constant is a random variable, albeit a trivial one, so the statement

that a random variable converges to 0, in any mode of convergence, makes sense. Its

mean and variance then both converge to 0.

90

Any random variable normally distributed can be written as the sum of its mean

and a properly scaled standard normal. Thus, the level estimators, modeled as normal,

for each design i and level j, can be expressed as:

() []
1

ˆ ~ 0,1i j i j
i j i j i j i j

i j

p p
p p Z Z Normal

n
−

= + .

Recall that, under the OSTRE assumption, the level estimators are independent, so the

distribution of each level estimator can be stated unconditionally, without reference to

any other level estimator.

The product of the ˆ i jp may be expressed as the sum of a number of terms:

()
11 1

1
ˆ i j i j

i j
i j i ji j i j

jj j

L L L p p

n
c Z Higher Order Termsp p

== =

−
= + +∑∏ ∏

where the i jc are constants, the product of the members of some subset of { }1,...,i iLp p ,

and Higher Order Terms is the sum of terms containing products of more than one i jn in

the denominator. As all i jn become large, the Higher Order Terms become negligible,

relative to the other terms, which are constant or contain only one i jn . Clearly, all

1 1
ˆi j i j i j

j j

L L
n p p

= =
→∞ ⇒ →∏ ∏ , a constant. But, loosely put, the Higher Order Terms

converge to 0 faster than the terms with only one i jn . In the setting of rare event

estimation the i jn are finite but assumed to be large enough to justify ignoring the Higher

91

Order Terms. (For an analytical treatment of the convergence of the Higher Order

Terms, see Appendix 6).

This justification requires all the i jn to increase with an increasing computational

budget: , ,i jT n all i j↑ ⇒ ↑ . See Appendix 5 for proof that this is true

asymptotically, i jT all n→∞ ⇒ →∞ , under the condition that the i jn maintain their

optimum ratios as T increases. I assume it holds for finite T large enough to generate

efficient rare event estimation.

This approximation to the normal is easily illustrated in the case of 2 independent

normal random variables:

[]
[]

2
1 1 1 1 1 1 1 1 1

2
2 2 2 2 2 2 2 2 2

1 2 1 2 2 1 1 1 2 2 1 2 1 2

, , 0,1

, , 0,1

X N X N Z

X N X N Z

X X Z Z Z Z

µ σ µ σ µ σ

µ σ µ σ µ σ

µ µ µ σ µ σ σ σ

  = + = + 
  = + = + 

= + + +





In rare event estimation the random variables in question are level estimators. Call them,

suppressing the unneeded design index i, 1p̂ and 2p̂ .

()2
1

ˆ ˆ, , runs at level j j
j j j j j j

j

p p
E p p Var p n j

n
µ σ

−
   = = = = =   

Under the OSTRE assumption 1p̂ and 2p̂ are independent, so

() () () ()1 1 2 2 1 1 2 2
1 2 1 2 2 1 1 2 1 2

1 2 1 2

1 1 1 1
ˆ ˆ

p p p p p p p p
p p p p p Z p Z Z Z

n n n n
− − − −

= + + +

The last term becomes negligible as 1 2, largen n → , leaving:

92

() () ()2 2
2 1 1 1 2 2

1 2 1 2
1 2

1 1
ˆ ˆ ~ ,

p p p p p p
p p approx Normal p p

n n
 − −

+ 
 

I illustrate this approximation with a 3 level example. Let

 1 2 30.04, 0.05, 0.06p p p= = = .

A histogram of the distribution of 1 2 3ˆ ˆ ˆ ˆp p p p= , based on the complete expansion of the

distribution (including the 1 2 1 3 2 3 1 2 3, , ,n n n n n n n n n terms) is constructed, and compared

with a normal distribution with the same mean ()1 2 3p p p , but with the variance it has

when the higher order terms are neglected.

If the 1 2 3, ,n n n are “small”, relative to the sizes they typically require in rare

event simulation, the normal does not well approximate the actual distribution of p̂ .

Letting 1 2 3 100n n n= = = :

93

 Figure 21. Normal Approximation: 100 Runs

Increasing each in to 10,000 generates a tight fit:

94

Figure 22. Normal Approximation: 10,000 Runs

In practical applications -- and certainly in my test model -- the runs at each level,

over even modest budgets, will typically be several multiples of 10,000.

6.2 The Single Optimization Problem

()1
2 1 1

ˆ ˆ 0 s/ti i j i j
i j ii j

D L D

n
Min P p p b n T

= = =

 − > = ∑ ∑∑ ,

95

The OSTRE assumption – that the probability of hitting jL is the same for all runs in jL

-- is adopted. Under it the level estimators, the ˆ i jp , are independent. Each random

variable 1ˆ ˆ ip p− is (approximately) normally distributed. Thus:

[] [] [] [] 2 2

1 1 1 1 1

2 2
1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ~ ,
i i i i i

i i i

E p p p p Var p p Var p Var p

p p Normal p p

σ σ

σ σ

− = − − = + = +

 − − + 

For each i, the 2
iσ are functions of all the i jp and i jn at each level j:

 [] 222 2 2 2
1 1ˆ ˆ ˆ ˆ ˆ ˆi i i i i L i i LE p E p E p p E p pσ      = − = ⋅⋅⋅ − ⋅⋅⋅    

Under the OSTRE assumption the level estimators are independent, justifying:

2 22 2 2

1 1ˆ ˆ ˆ ˆi i i L i i LE p E p E p E pσ        = ⋅⋅⋅ − ⋅⋅⋅      

 2 2 2 2 2
1 1ˆ ˆi i i L i i LE p E p p pσ    = ⋅⋅⋅ − ⋅⋅⋅   

For each design i and level j:

() 2 2 2 2
1

ˆ ˆ ˆ ˆi j i j
i j i j i j i j i j

i j

p p
Var p E p E p E p p

n
−

      = = − = −      

()2 2
1

ˆ i j i j
i j i j

i j

p p
E p p

n
−

  = + 

()2 2 2

1 1

1i j i j
i i j i j

i jj j

L Lp p
p p

n
σ

= =

 −
 = + −
  

∏ ∏

96

6.3 Simplification of the Variance

It will be useful – even necessary – to work with a modest simplification of this

variance term. Useful because the implementation of the single optimization algorithm

will be (somewhat) streamlined, at almost no cost in accuracy. Necessary because the

ultimate goal – the development of an alternative, but equivalent, two-step algorithm

(OCBA+OSTRE) – will require it.

This simplification follows the approach adopted in the derivation of OSTRE.

The OSTRE simplification is justified by noting that, typically, ()1 /i j i j i jn p p>> − . I

seek an equivalent simplification in Single Optimization. The optimality equations of

Single Optimization are considerably more complicated than those for OSTRE. They

contain no obvious analogue to ()1 /i j i j i jn p p>> − . But the OSTRE simplification can

also be generated by truncating the expansion of the OSTRE variance. (See Appendix 4.)

That same truncation can be applied to Single Optimization, obtaining:

 12 2

1 1

1 1i i L
i i

i i i L i L

p p
p

p n p n
σ

 − −
≈ + ⋅⋅ ⋅+ 

  
.

The derivation of single optimization is based on this truncation.

The standard variance (without the truncation) converges to the truncated variance

when all i jn terms become arbitrarily large. The notion of all the terms increasing is

commonly captured by assuming they increase in a fixed ratio, in which case

11 i jn all n→∞ ⇒ →∞ at the same rate. For a given design i let the i jn increase in

97

some fixed ratio to 1in :

 1 1, for constants,i j i j i i jj cn c n >= .

With fixed ratios the standard variance can be expressed solely in terms of constants and

1in . To ease notation let n denote 1in , for any design i. By expanding the standard

variance, under the assumption of fixed ratios, it can be expressed as:

()2 31 2
2 3standard q

q

kkk k
n n n n

σ
 

= + + + ⋅⋅ ⋅ + 
 

where the ik are constants and q is the last term in the sum of higher order terms.

()

()

2 1

2 1

standard

truncated

 k Higher Order Terms
n

k
n

σ

σ

= +

=

The Higher Order Terms can be made arbitrarily small by making n arbitrarily

large, so () ()2 2standard truncated ,as n or Tσ σ→ →∞ →∞ , where T is the

computing budget for the design in question.

Convergence is nice but we simulate in finite time. I examine the behavior of the

standard and truncated variances over finite ranges of n. Define:

Error after runs standard variance - truncated variance after runs

at

Relative Variance Error
standard variance

 = .

n

n

e n n
Higher OrderTerms n

e

=

=

=

98

The following graphs plot the relative error for design 1 of the test model, over 11n = 100

to 10,000, and from 10,000 to 100,000. The OSTRE ratios between 11n and runs at the

other levels are imposed, so the variances can be calculated, and plotted, solely as

functions of 11n . The values of the level probabilities are shown on the graph.

 Figure 23. Relative Variance Error: 10,000 Runs

99

 Figure 24. Relative Variance Error: 100,000 Runs

A relative error of about 0.0014 is attained at 100,000 runs in level 1 of design 1.

If design 1 is given a computing budget of about 3 minutes, OSTRE would generate

about 8.5 million runs in level 1. If the runs in the levels are fixed at the OSTRE ratios,

the relative error would be about 1.7E-5. A relative error this small certainly justifies the

use of the truncated variance, in both OSTRE and Single Optimization. (And, in the next

chapter, in OCBA+OSTRE).

100

The rate of convergence, r , and the rate constant, C , are defined (if they exist)

by 1lim n
r
nn

e C
e
+

→∞
= .

Over finite ranges of n both r and C may vary with n . Write a possible relationship

over such ranges as:

() () ()
1

1 1log log log

r
n n

n n

e C e
e C r e

+

+ +

≈

≈ +

Values for r and C can be estimated empirically by plotting log(1ne +) against log(ne).

The log values are negative because the error terms are less than 1. Decreasing log

values are associated with an increasing 11n :

101

 Figure 25. Log[Error]: 10 to 1000

Over this range the convergence rate, r , is close to 1 (linear convergence). The rate

constant, C , is about 0.4. For much larger values of 11n the convergence rate is clearly

1, and C comes closer and closer to 1:

102

 Figure 26. Log[Error]: 10,000 to 100,000

If 1r = and 1C = exactly additional runs would not reduce the error. We know

that is never true because the error term converges to 0. But progress toward 0 slows as

the number of runs increases. Nonetheless, as seen in the results on the relative error, the

number of runs required to make the error term negligible is much smaller than the

number of runs generated in the test model, and generally in typical applications, over

modest computing budgets.

103

6.4 Optimality Equations

Under the normality assumption:

 2 2
1 1 1ˆ ˆ ~ , , 2,...,i i ip p N p p i Dσ σ − − + =  ,

() 1 1 1
1 2 2 2 2

1 1

ˆ ˆˆ ˆ 0 i i i
i

i i

p p p p p pP p p P
σ σ σ σ

 − − + −  − > = >   + + 

 []1
2 2
1

, ~ 0,1i

i

p pP Z Z N
σ σ

 − = >
 + 

Define functions iφ , whose arguments are

 ()11 1 1 2,..., 1,...,,..., , ,..., ,L i i Li i i D j Ln n n nφ φ = =≡ ,

as
() ()

1

2 2
1 11 1 1

2,...,
,..., ,...,

i
i

L i i i L

p p i D
n n n nσ σ

φ −
≡ =

+

where 12 2

1 1

1 1
, 1,...,i i L

i i
i i i L i L

p p
p i D

p n p n
σ

 − −
= + ⋅⋅ ⋅+ = 

  

For notational simplicity these functions will be referenced without listing their

arguments. It should be noted that they are indexed i = 2,…, D, there being no 1φ , and

that the runs in level 1, 11 1,..., Ln n , are arguments of every iφ , whereas the runs in design i

104

are arguments solely of the corresponding iφ . These properties follow from the

designation of design 1 as the best design.

Thus we have:

 ()
2

2
1 2

1ˆ ˆ 0
x

i
i

P p p dxe
φπ

−∞
 − > =  ∫

and the optimization becomes

2

2

2 1 1
s/t

i

x

i j i j
i j

L DD

i j in
Min dx b n Te

φ

−∞

= = =
=∑ ∑∑∫ .

The derivatives of the iφ functions will be needed. They require the derivatives of the

variances, which are:

()22

2

1i i ji

i j i j i j

p p
n p n
σ − −∂

=
∂

The iφ derivatives are then:

() ()
()

2
1

3
2 2 22
1

2,..., 1,... 1
1

2

i m m ji

m j
m j i m j

i D j L m or i
p p p p

n p n

φ

σ σ
= = =

− −∂
=

∂
+

The Lagrangian: () ()1
1 ,

2 1 1

2

21

2
,

i j i j
j i j i j i jn n

i j i

D L Dx
L n n dx b n Te

φπ
λ

∞

= = =

−  
= + − 

 
∑ ∑∑∫

105

2

2

2
1

21 1

2

2 11

1

2
0 1,...,

1
2

i

i

i
j

ij j

i

i jj

D

D

L b j L
n n

nb

e

e

φ

φ

π

φ λ

φλ
π

−

=

−

=

∂∂
= − + = =

∂ ∂

∂
=

∂

∑

∑

2

2

2

2

1

2
0 2,... , 1,...,

1
2

i

i

i
i j

ij i j

i

i ji j

L b i D j L
n n

nb

e

e

φ

φ

π

φ λ

φλ
π

−

−

∂∂
= − + = = =

∂ ∂

∂
=

∂

 1 1
0ij ij

j i

L DL b n T
λ = =

∂
= − =

∂ ∑∑

Equating the 'sλ yields 1DL − equations which, together with the budget

constraint, constitute DL equations for solving DL variables. The system may be difficult

to decipher in the general case of D designs, L levels. Appendix 7 contains a complete

statement of the equations for the case of 4 designs, 3 levels. The general solution is:

106

2
2

2 2

22
2

2 2
2 2

2
3

2 2

2 21 1 1, 1 1, 1

22 2

21 1 21 2,1

2 22 2

2 2 2, 1 2, 1

322 2

2 2 31 31

1,

1 1 1,..., 1

1 1

1 1 1,..., 1

1 1

1

i i

i

i i

i ik k k k

i

iL L

k k k k

L L

D k

D D

D

k L
b n b n

b n b n

k L
b n b n

b n b n

b

e e

e e

e e

e e

e

φ

φ φ

φφ

φ φ

φ

φ φ

φ φ

φ φ

φφ

− −

= =+ +

−−

=

− −

+ +

−

−

−

∂ ∂
= = −

∂ ∂

∂ ∂
=

∂ ∂

∂ ∂
= = −

∂ ∂

∂∂
=

∂ ∂

⋅
⋅

∑ ∑

∑

2 2
1 1

2 2
1

2 2

1 12 2

1, 1, 1 1, 1

12 2

1, 1, 1 1

2 2

, 1 , 1

1 1,..., 1

1 1

1 1 1,..., 1

D D

D D

D D

D D

D k D k D k

D D

D L D L D D

D D

D k D k D k D k

k L
n b n

b n b n

k L
b n b n

e

e e

e e

φ φ

φ φ

φ φ

φ φ

φ φ

φ φ

− −

−

− −

− − + − +

− −
−

− −

− −

+ +

− −∂ ∂
= = −

∂ ∂

∂ ∂
=

∂ ∂

∂ ∂
= = −

∂ ∂

The term 21/ π appears in each derivative of the Lagrangian, so it cancels out of these

equations. Stated in the form above, some of the exponential terms could be cancelled

from both sides of some equations. But this form is arbitrary. At the optimum every

term, on the LHS or RHS of these equations, should equal every other term. The order in

which they are equated to each other is arbitrary, and for some such comparisons the

exponential terms cannot be cancelled. They are retained here for complete generality,

and will be needed in the implementation of the algorithm.

107

6.5 Implementing Single Optimization

 Single Optimization implementation is very similar to OCBA implementation,

with the major exception that selecting the level, at each update, for the next allocation is

more complicated. I present a fairly complete description of the algorithm.

Notation

T = total time for the algorithm (the budget constraint)
AccumulatedTime = time consumed by the algorithm at any point prior to termination
D = number of designs
L = number of levels (the same for each design).
[]p i = probability of design i; corresponds to ip in the theory.

[]..pL = double array of level probabilities; [],pL i j = probability of design i,
 level j; corresponds to i jp in the theory.

[],nL i j = double array of number of runs in design i, level j;
 corresponds to i jn in the theory.

[],hL i j = double array of number of hits in design i, level j.

[],timeL i j = double array of time consumed doing simulations in design i, level j

[],bL i j = double array of average time-per-run, design i, level j; corresponds to
 i jb in the theory.

ES = Array of Entrance States; a multiple array, indexed for design, level,
 number of states, and number of parameters required to characterize an
 entrance state. Test model example:

[], ,3,1ES i j = 25 means that in design i, level j, the first parameter of the third

entrance state 3 is 25.
[], ,3,2ES i j = 5 means that in design i, level j, the second parameter of the third

entrance state is 5.

0T = Stopping time for simulations at each level in the initialization phase.

0H = Required number of hits at each level in the initialization phase.

108

Initialization Phase

The initialization phase is equivalent to standard fixed effort splitting with equal

allocation to all levels, but within a time constraint much less than the total computing

budget. Initial estimates for the parameters must be generated. Allocate an equal amount

of time to each level, across all designs, and conduct simple MC runs within each level.

A stopping time is required, for each level: 0T . Or perhaps a required number of runs:

0H . (Or perhaps both). The optimization commences with the initial estimates, so they

should be as accurate as possible. That suggests allocating a “large” 0T , or requiring a

“large” 0H . But the optimization part of the algorithm also requires a “large” portion of

the total time, in order for the allocations to approach their optima. This suggests

limiting the initialization phase. It might be possible to establish an optimum split of the

total time between the initialization and optimization phases, but that is not part of this

research.

Call the initialization procedure:

[] [] [] [] [] []()0 0INITIALIZE , , , , , , , , , , , , , , , ,...T H D L pL i j nL i j hL i j bL i j timeL i j ES i j

 Constant inputs: 0 0, , ,T H D L

 Variable inputs: [] [] [] [] [], , , , , , , , , ,pL i j nL i j hL i j bL i j timeL i j ES

 The operational part of the algorithm is the simulation of the stochastic process. That is

unique to each simulation problem, so no description is presented here. The level

109

probability estimates are the numbers of hits obtained (within the time, or the runs,

allocated to that level) divided by the number of runs:

 [] []
[,],

,
h i jpL i j
n i j

=

Common notation denotes estimates with a “hat”, such as p̂L , but I write them plain, as

they appear in the code.

Average time-per-run is estimated, for each set of runs within a level, by

 [] []
[]

,
,

,
timeL i j

b i j
n i j

=

Every hit, at every level (except the final one), generates a “new” entrance state from

which runs at the next level can be launched. (Each such entrance state is a new addition

to the set of entrance states at that level, though it may be, and often is, a copy of an

entrance state already in the set.) The entrance state data, for all designs and levels, are

retained in the array ES. These entrance state sets will be expanded by new hits in the

optimization phase.

Optimization Phase

The parameters of the optimality equations are, in the theoretical derivation, the true

parameters (the true , ,i i j i jp p b). The algorithm must necessarily utilize estimates of

those parameters. The initialization phase generates initial estimates. The estimates for

the design probabilities are constructed from the level probability estimates:

 [] []
1

,
L

j
p i pL i j

=
= ∏

110

The optimization phase consists of a series of simulation updates. At each update new

estimates for all the parameters are calculated. Current values of the runs, for each

design and level, are available. These are plugged into the optimality equations, which

should be satisfied at the optima. But they will not, in general, be satisfied at any update.

The purpose of each update is to nudge the equations toward satisfaction by allocating a

new set of runs to one of the levels in a way that reduces these inequalities. ∆ designates

the number of runs in the new allocation. It is typically small, relative to the number of

runs the overall simulation will eventually generate. The strategy is to try to allocate ∆ ,

at each update, to the design and level which will make the largest contribution to

reducing the inequalities. The method by which this allocation is chosen is a very

important aspect of the algorithm.

In principle the optimization problem, at each update, could be solved by numerical

techniques. The next allocation could then be made to the i jn which differs most from its

optimum. In practice, however, the optimization problem may be quite large and

intractable. The problem would have to be solved at each update, and there will be many

updates. A simpler approach, not so computationally demanding, is required.

It is not obvious, from inspection of the terms of the optimality equations, how the

allocation should be made. Nor is there a single analytical approach to making the

allocation, as there are several plausible measures of the inequality to be reduced. One

might, for example, seek the allocation which most reduces the sum of all the

inequalities, across all combinations of the terms. Or one could seek the allocation which

111

most reduces the largest inequality in the system of optimality equations. But the

ordering of the terms in this system is arbitrary.

I adopt a heuristically appealing, non-arbitrary method which entails relatively modest

overhead. For D designs, L levels, there will be DL terms in the optimality equations

(ignoring the budget constraint). Designate them as 1 2, ,..., DLt t t . Optimality requires

1 2 ... DLt t t= = = . At each update the value of each of these terms is calculated.

Each of these terms converges asymptotically to 0 as the PCS converges to 1, which it

will if all i jn →∞ (see Appendix 5 for proof). A simple, seemingly plausible allocation

rule would be: Select the largest term, calculate its new value under every possible ∆

allocation (the allocation of ∆ runs to every possible level) , and select the allocation

which reduces it the most. If the largest term is continuously reduced all terms must, in

the limit, be pushed to 0, and thus to equality.

In practice this is not the best strategy. For any finite budget the terms, at optimum, are

not 0. Increasing a single i jn , as is done at each allocation, can reduce the largest term,

but its impact on other terms is uncertain.

In practice it is better to reduce the maximum difference, MaxDiff , among all terms.

Select the maximum and minimum among them and calculate MaxDiff = max mint t− .

Increase, by ∆ , each i jn that appears in either term, and calculate the resulting change in

MaxDiff. Make the allocation to the i jn that generates the largest reduction in MaxDiff.

112

In practice the decline in MaxDiff will not be strictly monotonic. Increasing a single i jn

may not decrease every optimality term, or decrease every inequality between them. It is

possible that, after any update, the MaxDiff at the next update (which will, in general,

contain different terms from the prior MaxDiff) is larger than the prior MaxDiff. At each

update the (estimated) parameters comprising the terms are random, meaning each

MaxDiff has some randomness, meaning a new MaxDiff could be larger than the prior

MaxDiff even if the prior ∆ is optimally allocated. And in practice there is the noxious

problem of false leads. If, at any update, the algorithm generates a false lead, the

optimality terms for the next update are structurally different from the last update. The

expected continuity between the prior and the new MaxDiff could be impaired.

Despite some inevitable unevenness in the decline of MaxDiff, I show that, in practice,

on my test model, it does decline rapidly, over relatively short time periods, thereby

significantly reducing the inequalities in the optimality equations.

The following graphs show the decline of MaxDiff, for Single Optimization on my test

model, over 8 designs, 4 levels. The budget time was 480 sec (1 minute for each design).

At the first update, immediately after the initialization phase, MaxDiff was about 1.6E-3.

After 3000 updates (20 observations, recorded every 150 updates) it was about 3E-7. An

initial unevenness in the decline is evident:

113

 Figure 27. MaxDiff: 1 to 20 Updates

Extending the algorithm out to 15,000 updates takes MaxDiff down to about 7.5E-8:

 Fig 28. MaxDiff: 1 to 100 Updates
114

When the initialization phase concludes, the Accumulated Time stands at:

 0AccumulatedTime D LT=

Then the optimizing updates commence.

()

repeat
 // constant inputs: , ,
 // variable inputs: , , , , , , ,
 UPDATE , , , , , , , , , , ;
until

D L
AccumulatedTime p pL nL hL timeL bL ES

D L AccumulatedTime p pL nL hL timeL bL ES
AccumulatedTime T

∆

∆

≥ ;

When AccumulatedTime reaches T, the total budget, the algorithm stops, thereby

automatically enforcing the budget constraint.

The UPDATE procedure can be rather involved. Its key steps are:

(1) Determine, by a strategy such as the one suggested above, which level,

 in which design, should get the next ∆ allocation.

(2) Do ∆ simulation runs in the selected level. Each run is launched from a

 randomly selected entrance state from the appropriate ES[i,j,…]. Each run that

 generates a hit on the next level also generates a new entrance state for storage in

 the next level of the appropriate ES[i,j,…], except for the final level.

(3) Update the relevant estimated parameters. These are estimated, at each update,

 for the entire simulation up to that point, meaning new hits, runs, and time are

 added to old hits, runs, time:

115

[] []
[] []

[] []

[] []
[]

[] []
[]

[] []
1

New Hits, if any

time consumed by this update

, , ;

, , ;

, ,

,
, ;

,

,
, ;

,

, ;
L

j

h i j h i j

n i j n i j

time i j time i j

time i j
b i j

n i j

h i j
pL i j

n i j

p i pL i j
=

= +

= + ∆

= +

=

=

= ∏

False Leads

As with OCBA, Single Optimization can suffer from false leads. Any algorithm

optimizing allocations among designs that must designate the best design to play, in

theory, a role structurally different from the other designs will suffer from false leads.

This applies to OCBA, to Single Optimization, and it will apply to the algorithm of the

next chapter, OCBA+OSTRE. It does not apply to Monte Carlo or standard splitting

because they do not optimize anything. Nor does it apply to OSTRE, because OSTRE

optimizes solely among levels within designs, not across designs.

False leads arise in Single Optimization because, in optimizing across all levels of all

designs, the levels of the best design play a different role in Single Optimization theory.

All levels of the best design appear as variables in every optimality term. Levels of other

designs appear only in the optimality terms corresponding to their particular designs. If,

at each update, the algorithm estimates a different design to be best (different from its

prior estimate), it must code the update to replace the old estimated best with the new

estimated best. (Depending on the coding scheme this could entail swapping all data
116

between the data arrays for the old and new best.) As with OCBA the strength of Single

Optimization must lie in its ability to recover from false leads.

6.6 Computational Complexity

I offer a very basic complexity analysis of the Single Optimization algorithm,

focusing solely on how computational effort scales with the variables that define problem

size. For the Single Optimization algorithm problem size is measured by the number of

designs D, and the number of levels per design, L. At issue is not the actual

computational work done for a given D and L, but how that work increases as a function

of D and L. Big O notation is used to capture this. Let X represent the computational

effort required by the algorithm (in part or whole). Then:

()~ , ;X O f D L c  

means there is a constant c such that the function (), ;f D L c is an upper bound on the

computational effort (however measured) of X, for all D and L. There is no claim that it

is a tight upper bound. The constant c can be any number for which the bound holds and

the effort scales only with D and L. As the analysis expands to incorporate more parts of

the algorithm c is understood to expand to some constant sufficient to enforce the bound,

for any D and L.

 This analysis is based on several assumptions and simplifications. Pure record

keeping, including the maintenance, in memory, of the entrance state sets, is ignored. It

is assumed that the computational effort required to set up a run – such as selecting the

entrance state from which to launch it -- is the same for all levels. The work required to
117

do the run – the actual simulation of one sample path of the stochastic process – is also

ignored. In most cases this “simulation work” consumes the bulk of the real

computational time. But it depends on the type of process being simulated, which can

vary considerably from case to case, and cannot be captured in this analysis.

 The algorithm divides into three parts: the initialization phase, the optimality

equations phase, the updating phase. Total computational effort is the sum of the effort

required for these parts.

The initialization phase is straightforward, as there is no optimization during

initialization, and no computation beyond record keeping. Thus:

 []1~Initialization O c DL

Constructing the terms in the optimality equations requires considerable

calculation. I do not count the actual computations – the flops, or floating point

operations – since they do not scale with D or L. The standard term of the optimality

equations takes the form:

2

2 1 , 2,..., , 1,..,
i

i

m j
m or i i D j L

n
e

φ φ− ∂
= = =

∂

The actual calculation of this term requires several flops. But they are the same, for a

given m and j. I consider only how this entire calculation scales with D and L. From the

complete set of optimality equations it is clear that:

For m = 1, this term is calculated (D-1) times for j = 1,…,L: (D-1)L calculations.

For m = i, it is calculated i = 2,…,D , and, for j = 1,…,L: (D-1)L calculations.

In total the effort required is 2(D-1)L. But the 2 doesn’t scale, so:
118

 ()2~ 1OptimalityTerms O c D L−  

The updating phase, employing the MaxDiff method for selecting the next

allocation, requires (1) finding the maximum and minimum of the optimality terms,

(2) re-computing them for every possible allocation, and (3) selecting that allocation

which most reduces MaxDiff. There are DL optimality terms. Steps (1) and (3) require

DL comparisons each, for an effort of 2DL. Step (2) requires re-computing the max and

min terms for each of the possible allocations, of which there are DL, so it also requires

an effort of 2DL. Total effort is thus:

 []3~Updating O c DL

Combining all the phases:

Single Optimization Effort = Initialization + Optimality Terms + Updating

 Single Optimization Effort ~ [] () []1 2 31O c DL O c D L O c DL+ − +  

6.7 Single Optimization vs Splitting

 The first test pits Single Optimization against Splitting. Single Optimization

should win. It optimizes across all levels of all designs. Splitting optimizes nothing. But

Single Optimization is built on assumptions that, in practice, could be shaky. The results:

119

Figure 29. Single Optimization vs Splitting, 6 Designs

 Figure 30. Single Optimization vs Splitting, 8 Designs
120

 Figure 31. Single Optimization vs Splitting, 10 Designs

Single Optimization wins. For 6 designs it reaches 0.8 PCS after 295 sec.,

splitting after 500 sec. For 8 designs Single Optimization reaches 0.8 PCS at 285 sec.

splitting at 675. For 10 designs those times are 295 and 810 sec.. Splitting’s

performance deteriorates, as expected, as the number of designs increases: 500, 675, 810

sec., for designs 6, 8, 10. Single Optimization should perform approximately the same as

the number of designs increase. Its times for reaching 0.8 PCS are 295, 285, 295.

 I compare allocations made by splitting and Single Optimization. The

comparison is between allocations (of time, and the resulting number of runs) for level 1,

of designs 1 through 10. Allocations to other levels follow a similar pattern. The data

121

come from the test in Figure 30 above. Note how Single Optimization devotes almost no

time to designs 4-10, all of which it quickly deems uncompetitive.

 Table 3. Splitting Allocations vs Single Optimization Allocations

 Splitting, Level 1 Single Optimization, Level 1

Designs Time(sec) Runs Time(sec) Runs

1 30 8,285,279 25.8 7,115,442

2 30 8,267,280 80.3 22,136,790

3 30 8,240,639 22 6,032,476

4 30 8,222,640 2.3 629,045

5 30 8,083,439 0.3 79,964

6 30 7,992,719 0.25 66,814

7 30 7,871,040 0.25 65,593

8 30 7,650,719 0.25 64,002

9 30 7,586,399 0.25 63,646

10 30 7,486,560 0.27 66,278

6.8 Single Optimization vs OSTRE

Single Optimization’s real competitor is not splitting, which optimizes nothing,

but OSTRE, which optimizes across levels but not across designs. Single Optimization’s

potential advantage over OSTRE lies in the fact that it optimizes across all levels in all

designs at a single stroke. The total effort it devotes to relatively uncompetitive designs

(the effort across all the levels of those designs) will be (considerably) less than the effort

122

OSTRE devotes to uncompetitive designs, which is, by default, exactly the effort it

devotes to competitive designs. Single Optimization will, therefore, devote more total

effort to competitive designs than does OSTRE, giving Single Optimization an advantage

where it most counts. Single Optimization and OSTRE share the same major assumption

(the OSTRE assumption), so neither has a leg up on that count. OSTRE does have an

advantage in implementation. Within each design it easily computes, at each update, the

exact solution to the optimization problem, which facilitates the task of choosing where

the next allocation should go. This advantage lies not just in speed of computation,

which can be considerable when there are many designs, but also in accuracy, in the

sense that, with an exact solution at hand, at each update, OSTRE’s choice of where to

send the next allocation of effort could be somewhat better than Single Optimization’s

choice. Better in the sense of moving the equality conditions toward equality more

decisively. Single Optimization relies on the clumsier method of MaxDiff, which should

work just as well asymptotically, but probably not as well over modest computing

budgets.

Over a small number of relatively competitive designs there should be little

difference between Single Optimization and OSTRE. But the advantage should shift to

Single Optimization as the number of uncompetitive designs increases. This pattern

holds, on the test model, for comparisons over 6, 8, and 10 designs:

123

Figure 32. Single Optimization vs OSTRE, 6 Designs

Figure 33. Single Optimization vs OSTRE, 8 Designs

124

Figure 34. Single Optimzation vs OSTRE, 10 Designs

125

7. OCBA+OSTRE

Single Optimization is, theoretically, the best approach (subject to its assumptions

and approximations) to maximizing the Probability of Correct Selection. But Single

Optimization is unwieldy in implementation, especially as the number of designs and/or

levels grows. The complexity of its optimality equations renders it unattractive.

This dissertation proposes, as an alternative to Single Optimization, a two-step

algorithm, called OCBA+OSTRE. The goal is to simplify, somewhat, the implementing

algorithm. The method is to break the problem into smaller bites. Break it into two parts,

or steps, to be carried out sequentially.

The first step, the OCBA step, allocates runs (or time) among designs. It is

similar to the original OCBA optimization of the allocation of runs among designs. The

next step is to take the runs (or time) allocated to a design – the output of the OCBA step

– and allocate them among the levels of that design. This is the OSTRE step, as it

implements the OSTRE method for optimizing the allocation of effort among levels of a

given design.

If OCBA+OSTRE were mathematically inferior to Single Optimization – in the

sense that it fails, theoretically, to deliver as high a PCS as does Single Optimization – it

could still be an attractive approach, given its promise of (somewhat) less complexity. In

fact, however, OCBA+OSTRE is mathematically equivalent to Single Optimization. It

126

yields, theoretically, the same solution. Proof of this claim will be the subject of the next

chapter. This chapter derives OCBA+OSTRE and discusses its implementation.

The OCBA part of the optimization problem is:

[]1 1
1

MC

for designs

total budget constraint
the average time of a run in design

the allocation of runs to design

ˆ ˆ ˆ ˆ,..., s/t

D

i D i i
i

i

i

Min P p p p p T b N D

T
b i
N i

=
> > =

=
=

=

∑

Given an allocation, iN ∗ , to design i (the solution to the OCBA optimization), the

OSTRE part of the algorithm determines the allocation of that iN ∗ to a particular level

within that design. That optimization problem may be stated as

2 *

1
for each design levelss/t ; =

L

i i j i j i i
j

Min b n b N i Lσ
=

=∑

with

2

*

the variance of the estimator of design

the average time of one run at level , within design

the runs allocated to level within design

the solution of the OCBA optimi

=
 =

 = ,

 =

i

i j

i j

i

i j

i
b

n j i

N

σ

zation problem, for design i

This statement of the problem poses a dilemma: ib , the average time of a run in

design i, appears in each optimization step. It links the two steps. But what is it? There

are no single runs over the entire design, only runs at each level within the design. The

*
iN allocation of runs to design i is an alias: it does not designate the number of MC runs

that will be allocated to all of design i, but rather the number of runs that will be allocated
127

to one of the levels of design i, under the OSTRE step. For the OCBA step to be

legitimate the *
iN must consistent with OCBA and with the subsequent OSTRE step.

The ib must be consistent with an actual MC run over the entire design and a run over

just a single level within the design. The unpretentious ib unites the OCBA and the

OSTRE steps. It must do so in a way that allows each step to “do its own thing” –

allocate designs or allocate to levels – with no contradiction between them.

In theory the ib are “just” parameters, which we could assume are given. But in

practice they are not given, in the sense that they cannot be directly estimated. The

algorithm never does a single MC run across an entire design, so it can never estimate the

ib directly. But the algorithm will require estimates of the ib . They can only emerge

indirectly, from estimates the algorithm can make. The link between them must be

provided by theory, in a way that makes everything consistent with everything!

The first step in implementation is the OCBA step, but theory must start with the

OSTRE solution. We start by requiring that, within each design, the OSTRE optimality

equations are satisfied (in theory). From that requirement we can back out the correct

definition of the ib , and harmoniously unite the OCBA and OSTRE steps.

The OSTRE optimality equations, in the approximated version attained by

truncating the variance, are:

2 2
1 1 1

11 1
i i i i L iL iL

i iL

n b p n b p
p p

= ⋅⋅ ⋅ ⋅ =
− −

 L = levels within design i

which can be expressed as:

128

()
()

1 1

1 1

1
2,...,

1
i i i ji j

i i j i j i

b p pn
j L

n b p p

−
= =

−

The key to OCBA+OSTRE is to define the notional iN so that it reflects, or is consistent

with, these OSTRE ratios. Define constants i jα as the OSTRE ratios:

()
()

1 1

11

1

1

1

1

i i i j i j
i j

ii j i j i

i

b p p n
nb p p

α

α

−
≡ =

−

≡

 1i j i j in nα=

The runs allocated to each design (the notional iN) must equal the sum of the runs

allocated to the levels of that design. So, under the OSTRE ratios:

()1 2 1 1 2 1 1 1 1....i i i iL i i i i iL i i iL iN n n n n n n nα α α α α= + + + = + + + = + +

Define: 1 ...i i iLα α α≡ + + .

so: 1 i i iN nα=

Then: i j i
i j i j i j

i

N
n n

α
α

α
= =

These are the theoretical links between the notional OCBA allocations, the iN ,

and the runs at the various levels, the i jn . In effect they make the notional iN for a

design consistent with the optimal i jn within the design.

129

The time allocated to each design equals the sum of the times allocated to its

levels:

1 1
1 1 2 2

1
....

L
i i i i L iL i i

i i i i i i iL iL i j i j
ji i i

b N b N Nb N b n b n b n b
α α

α
α α α =

= + + + = + + = ∑

From this emerges the elusive ib :

1

1 L

i i j i j
ji

b bα
α =

= ∑

The algorithm can estimate this ib : it estimates the i jb , since it does make runs at the

various levels; the i jα are defined by the optimal OSTRE relationships, which can be

estimated, at each update, from the current estimates ˆ i jp and î jb ; iα is a definition, from

the i jα .

7.1 The OCBA Step

[]1 1
1 1 1

1ˆ ˆ ˆ ˆ,..., s/t
D D L

i D i i i j i j i
i i ji

Min P p p p p T b N b Nα
α= = =

 
> > = =  

 
∑ ∑ ∑

This is similar to the OCBA problem in Chen & Lee (2011), but different in two

important features: in the ib , as explained above, and in the variances of the design

estimators.

Standard OCBA assumes the design estimators are simple Monte Carlo, normally

distributed. The OCBA optimality equations are

2 2 2
2

22 2 2

21 1 2 2

1 1 1.....
i DD

i D

i D D

e e
b N b N b N

e
φ φ φφ φ φ− − −

=

∂ ∂ ∂
= = =

∂ ∂ ∂∑

130

with 1
2 2
1

i
i

i

p pφ
σ σ

−
=

+

The derivation of the OCBA step in OCBA+OSTRE is formally identical to this,

but differs in substance because the ib and the design variances are different. The

appropriate expression for ib is developed above. In standard OCBA the design variances

are

()2 1i i

i
i

p p
N

σ
−

= .

This is the variance of a scaled binomial, reflecting the fact that, in standard OCBA, the

MC runs, covering the entire design, produce hits that are binomially distributed.

But OCBA+OSTRE will do no MC runs over the entire design. All its runs are in

the OSTRE step, over levels. Its variance is the variance of the product of the level

estimators:

 2

1

ˆ
L

i i j
j

Var pσ
=

 
=  

 
∏

In Single Optimization the truncated version of this variance is employed.

OCBA+OSTRE employs the same truncated version:

 12 2

1 1

1 1i i L
i i

i i i L i L

p p
p

p n p n
σ

 − −
= + ⋅⋅ ⋅+ 

  

131

But this truncated variance is expressed in terms of the i jn , whereas the OCBA step is

based on the variance expressed in terms of the (notional) iN . The transformation from

one to the other is accomplished via the link between the i jn and the iN developed above:

 1
i j i

i j i j i
i

N
n n

α
α

α
= =

The design variance becomes:

() () () ()2
12 2

1 1 1

1 1 1i i i i L i ki i
i i i

i i i i L i L i i i k i k

L

k

p p ppN p
p N p N N p
α α ασ

α α α=

 − − −
 = + ⋅⋅ ⋅+ =
  

∑ .

Or, more succinctly:

 () ()2 2

1

1
, i ki

i i i i i
i i k i k

L

k

pcN c p
N p

σ α
α=

−
= ≡ ∑

with derivative:

2

2
ii

i i

c
N N
σ∂

= −
∂

.

 At this point it might be useful to reflect on what the theoretical link between the

iN and the i jn tries to accomplish. The goal is to construct OCBA+OSTRE so that it is

theoretically equivalent to Single Optimization, so that its solution is the same as Single

Optimization solution. It would seem – a conjecture at this point! – that such equivalence

would require that, at the optimum, the OSTRE ratios hold within each design. So

OCBA+OSTRE imposes those ratios within each design. It must, then, construct its

132

notional iN so that, when it calculates the design variances in the OCBA step, it is

calculating the variances implied by the OSTRE ratios it imposes on the i jn .

 It is, at this point, only a conjecture that this construction of the relationships

between the notional iN and the i jn will produce an OCBA+OSTRE that is equivalent to

Single Optimization. The next chapter will prove this conjecture correct.

 To complete the OCBA step, the optimality equations, built on the constructed

relationships between the iN and the i jn , are:

2 2 2
2

22 2 2

1 1 2 22

1 1 1.....
i DD

i D

D Di

e e
b N b N b N

e
φ φ φφ φ φ− − −

=

∂ ∂ ∂
= = =

∂ ∂ ∂∑

 ()
() ()

1
1 2 2

1 1

, 2,...,i
i i

i i

p pN N i D
N N

φ
σ σ

−
= =

+

()

()
1

3
2 2 22
1

2,..., 1
2

i mi

m
i m

p p c
i D m or i

N N

φ

σ σ

−∂
= = =

∂
+

()

()
()

()
()

()

2 2 2
2

2 2 2
1 1 2 1 2 1
3 3 3

2 2 2 2 2 2 2 2 22 2 2
1 1 2 1 2 2 1

1 2 2 2 2

1 ...

i D

i D D

i D D D

D

i

p p c p p c p p c

N b N b Nb
e e e

φ φ φ

σ σ σ σ σ σ

− − −

=

− − −

+ + +
= = =∑

()

()
()

()
()

()

2 2 2
2

2 2 2
1 2 1 2 1
3 3 3

2 2 2 2 2 2 2 22 2 2
1 2 1 2 2 1

1
2

1 1 2

...

i D

i D D

i D D D

D

i

p p p p c p p c

b N b N

c
b N

e e e
φ φ φ

σ σ σ σ σ σ

− − −

=

− − −

+ + +
= = =∑

133

() ()

()

()

1

3

2
2 2
1

2

2
2

2

3 2
2 2 2

2 1 1 2

1

2
2

1 2 1 2

1
2

i

i

i
D

i

p pb c
N
N

b p p c

e

e
φ

φ

σ σ

σ σ
=

−

−
−

+

 
 

+ 
 

=  
 

− 
 
 

∑

()()
()()

2 2
3 2

3
2 2 2

3 2 2 1 1 32 4
3

2 23 2
2 3 3 1 1 2

1
2

b c p pN
N b c p p

e
φ φσ σ

σ σ

− 
− + 

=  
 − + 

()()
()()

2 2
1

3
2 2 2

1 1 1 11 4
3

2 2 2
1 1 1 1

1
2

D D
D D D DD

D
D D D D

b c p pN
N b c p p

e
φ φσ σ

σ σ

−−
− −−

− −

 
− + 

=  
 − + 

These ratios, with a budget constraint, generate the theoretical solutions *
iN . In practice

they guide, at each update, the selection of the design for the next allocation of runs.

7.2 The OSTRE Step

The OSTRE step could be stated as the OSTRE optimization problem, but that is

an unnecessary formality. The solution to it has already been built into the *
iN . The

only thing required at the OSTRE step is to calculate the OSTRE solutions, from

 i j i
i j

i

N
n

α
α

∗
∗ = .

134

7.3 OCBA+OSTRE Implementation

As with all the optimizing algorithms (OCBA, OSTRE, Single Optimization),

OCBA+OSTRE must be implemented in stages, or updates. At each update estimates of

all the parameters are substituted for the real parameters of the theory. At each update a

(relatively small) number of new simulation runs is to be performed – at a particular level

within a particular design. The design is first chosen, via the OCBA step, so as to

minimize the actual inequalities among the OCBA optimality equalities. That determines

the i in iN . The number of new simulation runs is fixed, at some ∆ . Thus, at each

update, iN = ∆ . These ∆ runs are then performed at level j in design i, with j selected

to minimize the actual inequalities within the theoretical OSTRE optimality equalities.

Thus, i i jN n= ∆ = at each update, the i chosen in the OCBA step, the j in the OSTRE

step. The algorithm terminates when elapsed time reaches the budget constraint, T.

Initialization in OCBA+OSTRE is exactly the same as in Single Optimization.

Arbitrary allocations are made to all the designs and levels. Absent a heuristic to guide

these allocations, they are made equally: an equal amount of time (or runs) devoted to

simulations at each level, within each design. That is equivalent to standard Splitting, for

initialization.

 On the OSTRE step the algorithm implements the update exactly as the updates in

standard OSTRE are implemented. In the test model the same code is used (the same

updating procedure is called). However, the OCBA step update differs from the standard

OCBA update. The standard OCBA update, as employed in the test model for OCBA

135

simulations, uses the asymptotic simplification recommended by Chen & Lee (2011, pp.

46, 57.) It is difficult to discern how such a simplification could be imposed on the

OCBA step update, in OCBA+OSTRE. Instead, the full optimality equations are

employed. They do not permit an explicit solution for the *
iN . Resort to numerical

methods to attain a solution would be computationally expensive. Instead, the MaxDiff

method, as employed in Single Optimization, is used to select the design most deserving

of the next allocation.

 The optimality terms at each OCBA step update contain ib and ic , constructed

from iα and i jα . These parameters are defined in the OCBA step theory and can be

estimated within the algorithm. They are used to determine the optimal *
iN toward

which the algorithm tries to drive the actual, non-optimal iN . MaxDiff operates by

comparing, at each update, the non-optimal iN with the optimal *
iN . But this poses a

problem. In an OCBA step update there are no “real” iN . The iN allocated to a design

become runs at a level within that design, not true MC runs over the whole design. It

would be inconsistent to treat those “bogus” iN , in the update, as true iN .

 What to do? This issue does not arise for the *
iN because they are derived in

theory. But the iN to be compared with the theoretically optimal *
iN must be

computable, in practice, despite the lack of actual iN .

136

 The correct way to calculate the iN , at each update, is found by examining the

link between iN and i jn at the optimum. Recall that:

()
()

1 1

11

1

1
i i i j i j

i j
ii j i j i

b p p n
nb p p

α
−

≡ =
−

 (the optimum OSTRE ratio)

 1 ...i i iLα α α≡ + +

 1i i iN nα=

At the optimum the link between iN and i jn flows from the optimum OSTRE ratio. In

implementation neither iN nor i jn will be optimal at any finite update. The algorithm

has actual i jn at each update, but must calculate an appropriate notional iN to be

compared with the optimal *
iN .

 The solution is to define the i jα differently, for implementing the algorithm. The

i jα impose the optimal OSTRE ratios. They might be better labeled as *
i jα . The i jα

used in updates should, instead, be based on the actual, not the OSTRE optimal, ratios.

Taking the actual i jn at each update:

1

i j
i j

i

n
n

α =

 1 ...i i iLα α α≡ + +

 1i i iN nα=

137

This change means, simply, that the notional iN are calculated as though they had been

proportionally divided among the level runs that actually occurred. The updates try to

move the OCBA and the OSTRE optimality terms toward equality, which would ensure

that the optimal OCBA ratios among the iN and the optimal OSTRE ratios among the

i jn are attained.

7.4 Complexity Analysis

 As with Single Optimization, the complexity analysis for OCBA+OSTRE focuses

solely on how the computational effort scales with problem size, measured by the number

of designs (D) and the number of levels per design (L). It is based on the same

assumptions as those made for Single Optimization. It has the same initialization phase

but differs from Single Optimization in that it has phases for calculating the optimality

terms and updating the allocations at both the OCBA step and the OSTRE step.

The initialization phase is identical to that of Single Optimization:

 []1~Initialization O c DL

The optimality equations for the OCBA step are

2 2 2
2

22 2 2

1 1 2 22

1 1 1.....
i DD

i D

D Di

e e
b N b N b N

e
φ φ φφ φ φ− − −

=

∂ ∂ ∂
= = =

∂ ∂ ∂∑

The terms

2
2

2

1

ie
N

φ φ− ∂
∂

 must be calculated (D-1) times, then the terms

2

22
i

i

e
N

φ φ− ∂
∂

 are

calculated (D-1) times. In total:

 ()2~ 1OCBA optimality O c D −  

138

 OCBA allocation employs the MaxDiff method but differs from the Single

Optimization allocation because it is only spread over the designs, there being no levels

at the OCBA step. Thus, whereas Single Optimization allocation was bounded by

()1O c D L−   , the OCBA step allocation is bounded by

 ()3~ 1OCBA allocation O c D −  

The OSTRE step optimality terms are calculated in only one design (the design

selected in the OCBA step), so it scales solely with the number of levels per design, L:

 []4~OSTRE optimality O c L

Likewise the OSTRE step allocations require only a set of calculations (solving

for the optimal i jn∗ and comparing with the actual i jn) which scales only with L:

 []5~OSTRE optimality O c L

In total:

OCBA+OSTRE Effort = Initialization + OCBA optimality + OCBA allocation +
 OSTRE optimality + OSTRE allocation.

OCBA+OSTRE Effort ~ [] () () [] []1 2 3 4 51 1O c DL O c D O c D O c L O c L+ − + − + +       ,

or, for some c :

 OCBA+OSTRE ~ [] () []1 1O c DL O c D O c L+ − +  

Compare this with the Single Optimization Effort. The initialization phases are

identical in both methods. Assume a common c has been set, sufficient to bound all the

other phases, in both methods. The Single Optimization effort may be expressed as:

139

Single Optimization ~ [] () []1 1O c DL O c D L O cDL+ − +   .

It is clear that OCBA+OSTRE is computationally more efficient than Single

Optimization, in the sense that its required effort increases less than the required effort

for Single Optimization, as D and L increase. For large D or L the difference can be

considerable. As an approximation, replace the D-1 term in both expressions with D.

There is, then, a direct comparison:

 Single Optimization Effort ~ []O cDL

 OCBA+OSTRE Effort ~ ()O c D L+  

The computational work required of Single Optimization increases (approximately) as the

product of D and L increases, whereas that of OCBA+OSTRE increases only as their

sum increases.

That difference can be substantial, rendering Single Optimization, for relatively

large D and/or L, a very unattractive method. But OCBA+OSTRE becomes an attractive

alternative only if it is, at least approximately, mathematically just as good as Single

Optimization. Is it? Read the next chapter!

140

8. OCBA+OSTRE vs Single Optimization: Mathematical Equivalence

Theorem: Single Optimization and OCBA+OSTRE are, at the optimum,

 mathematically equivalent.

Let: S
i jn ≡ the Single Optimization optimum allocation of runs to design i , level j

 O
i jn ≡ the OCBA+OSTRE optimum allocation of runs to design i , level j

Equivalence means that, given a common budget constraint:

 ,S O
i j i jn n all i j=

Given a common budget constraint, equivalence is proved by showing that two

conditions are met:

(1) The ratios of runs allocated to different levels within a given design are, under the

 two methods, the same. Condition (1) is satisfied if, within each design i, for any

 levels j and k:

O S
i j i j
O S
i k i k

n n
n n

=

(2) The ratios of runs allocated to levels between different designs are, under the two

 methods, the same. Let i, k be different designs, j, m any levels within those

141

 designs. Condition (2) means that:

O S
i j i j
O S
k m k m

n n
n n

=

Condition 2, alone, would suffice to prove equivalence. It is, however, useful to first

prove Condition 1, and draw on it in the proof of Condition 2.

Claim: Condition (1) is satisfied.

Proof:

OCBA+OSTRE imposes the OSTRE optimality equations to link all levels within a

design. The optimum ratios of runs between levels within a given design in

OCBA+OSTRE are, by construction, the OSTRE ratios. Proving this claim thus requires

showing that the Single Optimization optimality equations linking the levels within a

design also generate OSTRE ratios.

The Single Optimization optimality equations differ, in form, between design 1

and all other designs, so the proof for design 1 is a bit different from the proof for the

other designs.

8.1 OSTRE Holds Within Design 1 of Single Optimization

For design 1, levels i and j, the optimality equations have the form:

 { }
2 2

2 2

1 1 1 12 2

1 1 , 1,...,
k k

k k

i i j j

D D

k k
i j L i j

b n b n
e e

φ φφ φ− −

= =

∂ ∂
= ∈ ≠

∂ ∂∑ ∑

This may be rearranged as:

2

2

1 1 1 12

1 1 0
k

k k

i i j j

D

k
b n b n

e
φ φ φ−

=

 ∂ ∂
− = 

∂ ∂  
∑

142

Substituting the derivatives of the kφ functions, the term in brackets becomes:

() ()
()

() ()
()

()

()

2 2
1 1 1 1

3 3
2 2 2 2 2 21 1 1 1 2 2

1 1 1 1 1 1 1 1

2
1 11

3 2 2
2 21 1 1 1 1 1 1 1 1 12
1

1 11 1

2 2

1 11 1

2

k k i k k jk k

i i j j
i i k i j j k j

i jk kk k

i i j j i i i j j j
k

p p p p p p p p
b n b n b p n b p n

p pp p p
b n b n b p n b p n

φ φ

σ σ σ σ

φ φ

σ σ

− − − −∂ ∂
− = −

∂ ∂
+ +

 
 − −−∂ ∂  

− = −  ∂ ∂    + 

The design 1 optimality equations may be re-written as:

()

()

()

()

2

2

2
1 112

3 2 2
2 2 1 1 1 1 1 12
1

2
1 1 12

32 2
2 21 1 1 1 1 1 2
1

2

2

1 1
0

2

1 1
0

2

k

k

i jk k

i i i j j j
k

i j k k

i i i j j j
k

D

k

D

k

p pp p p
b p n b p n

p p p p p
b p n b p n

e

e

φ

φ

σ σ

σ σ

−

−

=

=

 
 − −− 

− =  
   + 

 
 − − − 

− =   
    + 

∑

∑

Each term ()

()

2
1

3
2 2 2
12

k k

k

p p p

σ σ

−

+
 is positive, since the optimality equations were derived under

the stipulation that design 1 is optimal: 1 all 1, k kp p >> . The optimality equations are

thus satisfied iff, for each i, j:

 1 1
2 2

1 1 1 1 1 1

1 1
0i j

i i i j j j

p p
b p n b p n
− −

− =

or
2 2

1 1 1 1 1 1

1 11 1
i i i j j j

i j

b p n b p n
p p

=
− −

.

143

This is precisely the OSTRE optimality equation linking levels i and j, within design 1.

OSTRE ratios thus apply within design 1 of Single Optimization.

8.2 OSTRE Holds Within All Other Designs of Single Optimization

The Single Optimization optimality equations for designs 2 through D are simpler, as

there is no summation of terms. For design k > 1, levels i and j:

2 2

2 21 1k k
k k

k i k i k j k j

e e
b n b n

φ φφ φ− −∂ ∂
=

∂ ∂

1 1k k

k i k i k j k jb n b n
φ φ∂ ∂

=
∂ ∂

() ()

()
() ()

()
2 2

1 1

2 2 2 2 2 2
1 1

1 1

2 2
k k k i k k k j

k i k i k k i k j k j k k j

p p p p p p p p

b p n b p nσ σ σ σ

− − − −
=

+ +

() ()

2 2

1 1k i k j

k i k i k i k j k j k j

p p
b p n b p n

− −
=

2 2

1 1
k i k i k i k j k j k j

k i k j

b p n b p n
p p

=
− −

This is the OSTRE optimality equation linking levels i and j, within design k, k = 2,…D.

The equations linking any two levels within a design are, in both methods,

equivalent to the OSTRE optimality equations. Condition 1 is satisfied.

144

Claim: Condition 2 is satisfied.

Proof: It will be shown that

S O
i j i j
S O
k m k m

n n
n n

=

by deriving these ratios from their respective optimality equations. As in Condition (1),

the proof is somewhat different for the links (or ratios) between design 1 and other

designs and the links between any of the designs other than 1.

8.3 Cross design links, Designs Other Than 1

This will be proven by deriving the ratios from their respective optimality equations. For

{ }, 1, , 1,...,i k j m L> ∈

 Single Optimization:

22

2 21 1i k
i k

i j i j k m k mb n b n
e e

φφ
φ φ

−−
∂ ∂

=
∂ ∂

 OCBA+OSTRE:

2 2

2 21 1k k
i k

i i k kb N b N
e e

φ φ
φ φ

− −
∂ ∂

=
∂ ∂

Complete notation for the i jn , k mn would be S
i jn , S

k mn for Single Optimization, O
i jn ,

O
k mn for OCBA+OSTRE, but the subscripts are suppressed when it is clear from the

context which set of runs is meant.

22

2 21 1i k
i k

i j i j k m k mb n b n
e e

φφ
φ φ

−−
∂ ∂

=
∂ ∂

 .

Expanding:

145

() ()

()
() ()

()

22 2 2
1 12 2

3 3
2 2 2 2 2 22 2
1 1

1 11 1

2 2

i k
i i i j k k k m

i j k m
i j i i j k m k k m

p p p p p p p p
b bp n p n

e e
φφ

σ σ σ σ

−− − − − −
=

+ +

()

() ()
()

() ()

22
3 3

2 2 2 2 2 22 2
1 12 2

2 2
1 11 1

i k
i j i j i i j k m k m k k m

i i i j k k k m

b p n b p n

p p p p p p p p
e e

φφσ σ σ σ+ +
=

− − − −

() () ()
() () ()

2 23
2 2 22 2

1 1 2
32

2 2 2 2
1 1

1

1

ik
i i i j k m k m ki j

k m
k k k m i j i j i

p p p p b pn
n p p p p b p

e
φ φσ σ

σ σ

−− − +
=

− − +

Cross Design Links in OCBA+OSTRE, All Designs Other Than 1

The ratio of i jn to k mn in OCBA+OSTRE is derived from the ratio of iN to kN .

The derivation requires these relationships (introduced above):

()
()

1 1

11

1

1
i i i j i j

i j
ii j i j i

b p p n
nb p p

α
−

≡ =
−

 (The OSTRE relationship between i jn and 1in)

 ()1 1 1i j i j i in nα α= =

()1 1 1 2 1 1 1 1

1 1

....

....
i i i L i i i i i L i i i L i

i i i L i i i

N n n n n n n

N n

α α α α α

α α α α

= + + = + + + = + +

≡ + + =

1

1 L

i i n i n
i n

b bα
α

=

= ∑

 ()22

1

derived from the truncated variance
1

, i
i i

i

L
i n

i i i
i n i nn

c
N

N

p
c p

p
σα

α
=

=
−

= ∑

146

The OCBA+OSTRE optimality equations:

22

2 21 1i k
i k

i i k kb N b N
e e

φφ
φ φ

−−
∂ ∂

=
∂ ∂

()

()
()

()

22

1 12 2
3 3

2 2 2 2 2 22 2
1 12 2

i k
i i k ki

k
i i k k

p p c p p cb
bN N

e e
φφ

σ σ σ σ

−− − −
=

+ +

()
()

()
()

22
3 3

2 2 2 2 2 22 2
1 12 2

1 1

i k
i i k k k

i i i k k

N b N
p p c b p p c

e e
φφσ σ σ σ+ +

=
− −

() ()
() ()

2 23
2 2 22

1 1 2
32

2 2 2
1 1

ik
i i k ki

k
k k i i

p p c bN
N p p c b

e
φ φσ σ

σ σ

−− +
=

− +

Substituting 1i i iN nα= :

() ()
() ()

2 23
2 22 2 2

1 1 2
32 2

2 2 2
1 1

ik
i i k ki i j

k k m
k k i i

p p c bn
n p p c b

e
φ φσ σα

α
σ σ

−− +
=

− +

() ()
() ()

2 23
2 2 22 2

1 1 2
32

2 2 2 2
1 1

ik
k i i k ki j

k m
i k k i i

p p c bn
n p p c b

e
φ φα σ σ

α σ σ

−− +
=

− +

The ratios of i jn to k mn in OCBA+OSTRE and Single Optimization are the same iff:

147

() ()
() ()

() () ()
() () ()

2 2 2 23 3
2 2 2 2 2 22 2

1 1 1 12 2
3 3

2 2 2 2 2 22 2
1 1 1 1

OCBA+OSTRE Ratio Single Optimization Ratio

1

1

i ik k
k i i k k i i i j k m k m k

i k k i i k k k m i j i j i

p p c b p p p p b p

p p c b p p p p b p
e e
φ φ φ φα σ σ σ σ

α σ σ σ σ

− −

=

− + − − +
=

− + − − +

After cancellations:

()
()

22

2 2

1

1
i i j k m k mk i k

i k i k k m i j i j

p p b pc b
c b p p b p

α
α

−
=

−

Is this true?

Expand
2

2
k i k

i k i

c b
c b

α
α

 in terms of , , , , , , ,i k i j k m i k i j k mp p p p b b b b :

Expressions for ,i kc c , from substituting
()
()

1 1

1

1

1
i i i j

i j
i j i j i

b p p

b p p
α

−
=

−
 :

()
()

()
1 1

1

2 2 2 1

1 11 1 11

1

11 1 1

i i i j

i j i j i

i j i ji j i j i
i i i i i i i

i j i j i i i j

i j

L L L

j j jb p p

b p p

b pp p pc p p p
p b p p

p

α α α
α= = =−

−

−− − −
= = =∑ ∑ ∑

The expansion of kc is the same, indexed at k instead of i:

()2 1

1 1 1

11 k j k jk
k k k

k k k j

L

j

b ppc p
b p p

α
=

−−
= ∑

Now we have:

148

()

()

2 2 1

2 1 1 1

2

2 2 1

1 1 1

11

11

L
i j i ji

k i i k
i i i jj

k i k

Li k i k j k jk
i k k i

k k k jj

b ppp b
b p pc b

c b b ppp b
b p p

α α
α
α

α α

=

=

 −−  
 
 =
 −−  
 
 

∑

∑

After substituting
1 1

1 1,
L L

i i n i n k k n k n
i kn n

b b b bα α
α α

= =

= =∑ ∑ and cancelling:

()

()

2 1

2 1 1 1 1

2

2 1

1 1 1 1

11

11

L L
i n i ni

i k n k n
i i i nn n

k i k

L Li k i k n k nk
k i n i n

k k k nn n

b ppp b
b p pc b

c b b ppp b
b p p

α
α
α

α

= =

= =

 −−  
 
 =
 −−  
 
 

∑ ∑

∑ ∑

Expand the
1

L

i n i n
n

bα
=
∑ ,

1

L

k n k n
n

bα
=
∑ terms and substitute into

2

2
k i k

i k i

c b
c b

α
α

:

()1 1 1 1

1 11 1 1

11

1 1
i n i n

i n

i ni i i i

i i n i n i

L L L

i n i n i n
n n n

b p

p

pb p b p
p b p p

b bα
= = =

−−

− −
= =∑ ∑ ∑

()1 1

11 1

1

1
k n k n

k n

k k

k

L L

k n k n
n n

b p

p

b p
p

bα
= =

−

−
=∑ ∑

() ()

() ()

1 1

1

1 1

1

2 1

2 1 1 1 1

2

2 1

1 1 1 1

1

1

1

1

11

11

k n k n

k n

i n i n

i n

k k

k

i i

i

L L
i n i ni

i
i i i nn n

k i k

L Li k i k n k nk
k

k k k nn n

b p

p

b p

p

b p
p

b p
p

b ppp
b p pc b

c b b ppp
b p p

α
α

= =

= =

−

−

−

−

 −−  
 
 =
 −−  
 
 

∑ ∑

∑ ∑

149

Cancellations simplify this to:

1 1

1

1 1

1

2 1
22

1 1 1 1 1 1 1 1
2 2

2 1 1 1 1 1 1 1

1 1

1

1

1
1 1

1 1 1

k k

k

i i

i

i
i

i i i i k k k k ik i k

i k i k k i i k k i i
k

k k

b p
p

b p
p

pp
b p p p b p b p pc b

c b p p b p p p b pp
b p

α
α

−

−

−
− −

= =
− − −

()
()

22
1 1 1

2 2
1 1 1

Single Optimization Ratio
1

1

i i k kk i k

i k i k k i i

QED
p p b pc b

c b p p b p
α
α

−
= =

−

Note that the OCBA+OSTRE ratio
2

2
k i k

i k i

c b
c b

α
α

 is valid for any designs i and k,

including design 1. It is developed, above, to establish cross design equivalence for all

designs other than 1, but the expansion of
2

2
k i k

i k i

c b
c b

α
α

 depends only on the definitions of

, ,c bα , which hold for any design. This fact will be very useful in the following:

8.4 Cross Design Equivalence, Design 1 With Any Other Design

The previous proof establishes cross design equivalence for any two designs other

than design 1. The proof of cross design equivalence when one of the designs is design 1

requires a slightly different approach, as the structure of the optimality equations for

design 1 differs from the structure for all other designs.

The OSTRE ratios within any design i permit all the optimum number of runs at

any level, i jn , to be expresses in terms of the optimum number of a single level. That is,

there exist constants i jk (which can be explicitly recovered from the optimality

150

equations), such that

 1 all 1 ,i j i j i jn k n >=

Given this fact, together with the previously established cross design equivalence

between any levels in any designs other than design 1, cross design equivalence between

any level in design 1 and any level in any other design can be proven by showing that it

holds for any specific level in design 1 and any specific level in any other design. I show

this equivalence for levels 1 in design 1 and 2. That is, I show that, between Single

Optimization and OCBA+OSTRE:

 11 11

21 21

S O

S O
n n
n n

=

Single Optimization

The ratio between 11n and 21n is derived from the optimality equation:

2 2
2

22 2

11 11 21 212

1 1kD
k

k

e
b n b n

e
φ φ

φ φ
− −

=

∂ ∂
=

∂ ∂∑

() ()

()
() ()

()

2 2
22 2

1 1 11 2 1 2 212 2
3 3

2 2 2 2 2 211 212 22
11 1 11 21 1 2 21

1 11 1

2 2

kD
k

k
k

p p p p p p p p
e

b bp n p n
e

φ φ

σ σ σ σ

− −

=

− − − −
=

+ +
∑

151

() ()

()
() ()

()

2 2
22 2

11 11 2 1 2 212 2
3 32

2 2 2 2 211 11 11 212 22
1 21 1 2 21

1 11
2 2

kD
k

k
k

p pp p p p p p
e

b p n b p n
e

φ φ

σ σ σ σ

− −

=

−− − −
=

+ +
∑

() () ()

()

() ()

2

2
2

3
2 2 2
1

3
2 2 2 122

21 1 11 21 1 2
2 2
11
2
21 2 2

11 11 2 1 2 21

1

1

k

k

D
k

k

p p
b p p p

n
n

b p p p p p e

e

φ

φ

σ σ
σ σ

−

=

−

+

−
− +

=

− −

∑

OCBA+OSTRE

The ratio between 11n and 21n is derived from the optimality equation for 1N and 2N

2 2
2

22 2

1 1 2 22

1 1kD
k

k

e
b N b N

e
φ φ

φ φ
− −

=

∂ ∂
=

∂ ∂∑

()

()
()

()

2 2
2

1 1 2 1 22 2
3 3

2 2 2 2 2 21 22 22
1 1 1 2 2

1 1

2 2

kD
k

k
k

p p c p p c
e

b bN N
e

φ φ

σ σ σ σ

− −

=

− −
=

+ +
∑

()

()
()

()

2 2
2

1 2 1 21 2 2
3 32 2

2 2 2 21 1 2 22 22
1 1 2

1
2 2

kD
k

k
k

p p p p cc e
b N b N

e
φ φ

σ σ σ σ

− −

=

− −
=

+ +
∑

 () ()

()
()

2 2
23

12 2 2 22 22
2 2 1 1 2 1 1 2 1 23

2 2 22
1

kD
k

k
k

p p
b N c b N p p c ee

φ φ

σ σ
σ σ

− −

=

−
+ = −

+
∑

152

() ()

()

()

2

2
2

3
2 2 122

2 1 1 2 3
2 2 222
11

2
2

2
1 2 1 2

kD
k

k
k

p p
b c

N
N

b p p c e

e
φ

φ

σ σ
σ σ

−

=

−

−
+

+
=

−

∑

Substitute: 1 1 11 2 2 21,N n N nα α= =

() ()

()

()

2

2
2

3
2 2 2 122
2 2 1 1 2 3

2 2 222
111

2
21 2 2

1 1 2 1 2

kD
k

k
k

p p
b c

n
n

b p p c e

e
φ

φ

α σ σ
σ σ

α

−

=

−

−
+

+
=

−

∑

8.5 Equivalence

The optimal ratios of 11n and 21n in Single Optimization and OCBA+OSTRE are thus the

same iff, after cancellations:

()

()
2 2

21 1 11 21 2 2 1
2 2

11 11 2 21 1 1 2

1
1

b p p p b c
b p p p b c

α
α

−
=

−

This is exactly the equality of ratios shown, above, to hold between levels of different

designs, for arbitrary designs i and k. Set i = 1, k = 2, and the equality

 11 11

21 21

S O

S O
n n
n n

=

 is established, implying equality between design 1, any level j, and any design k, level m:

 1 1
S O
j j

S O
km km

n n
n n

= .

QED

153

9. OCBA+OSTRE vs Single Optimization: Implementation

Mathematical equivalence is one thing. Equivalence in practice is another. No

one should be surprised if twin in theory is twain in practice. The implementations of

Single Optimization and OCBA+OSTRE differ in ways that could produce some

divergence in practice, beyond randomness.

 How do OCBA+OSTRE and Single Optimization differ on the test model. I

compare them for 6, 8, and 10 designs:

 Figure 35. Single Optimization vs OCBA+OSTRE, 6 Designs
154

 Figure 36. Single Optimization vs OCBA+OSTRE, 8 Designs

 Figure 37. Single Optimization vs OCBA+OSTRE, 10 Designs
155

 Over 6 designs there is no wiggle room between Single Optimization and

OCBA+OSTRE. But some begins to appear, slightly, over 8 designs, and a bit more

clearly over 10 designs. Why?

The most likely reason – a conjecture – lies in the implementation of the OSTRE

step updates. The update phase of Single Optimization uses the MaxDiff method for

selecting the next allocation. That is computationally expensive, as it must be applied to

all levels of all designs. But, on the test model the computational overhead is not counted

against the computational budget (only the pseudo simulation time counts) so that

difference should make no difference in performance. MaxDiff is a heuristic, utilized to

avoid having to find the optimal solution, by numerical methods, at each update.

Updating the OCBA step of OCBA+OSTRE also utilizes the MaxDiff method,

but needs to apply it only across the designs, not, as with Single Optimization, across all

levels of all designs. Updating in the OSTRE step does not require MaxDiff, or any

similar method. It solves for the optimum solution directly (and cheaply). It is, to be

sure, an approximate optimum, because it is based on the truncated version of the

variance, but the truncation error is negligible for fairly large i jn .

 The conjecture is that the OSTRE step allocation, based on an explicit solution of

the optimum at each update, is more efficient than MaxDiff at moving the algorithm

closer to the optimum. This advantage should give OCBA+OSTRE an edge over Single

Optimization in implementation, despite their mathematical equivalence in theory. This

edge is borne out in tests on the test model.

156

10. Conclusion

 This dissertation has reviewed four current simulation methods that could be used

to select the best design from a set of designs, discussed their strengths and weaknesses

when applied to the estimation of rare event probabilities, and tested them on a practical

test model. Their strengths and weaknesses are relative to the computing budget

constraint. All can work as well as desired, given a sufficiently large budget.

Comparisons between them are based on the same, fairly tight, constraint. Their chief

characteristics are:

Monte Carlo

• Equal allocation of computing effort among designs.

• Simple Monte Carlo estimation (hits/runs) for each design.

• Unbiased estimator, but unacceptably inefficient when applied to rare events.

Would require a massively larger budget than other methods to achieve

comparable results.

OCBA (Optimal Computing Budget Allocation)

• Optimizes allocation of computing effort among designs.

• Effective when selecting the best design in context of non-rare probabilities.

157

• Better than Monte Carlo when selecting best design in context of rare event

probabilities, due to optimization of effort across designs, but still very inefficient,

compared to other methods, due to reliance on simple Monte Carlo (hits/runs) for

estimating each design probability.

Splitting

• No optimization of computing effort within or across designs. Assumes equal

allocation within and across designs.

• Despite no optimization, can be very effective in estimating rare event

probabilities.

• Its efficiency in estimating rare event probabilities is so much greater than that of

OCBA (or Monte Carlo) that it is clearly superior to OCBA in selecting the best

designs, when design probabilities are rare.

OSTRE (Optimal Splitting Technique for Rare Event Simulation)

• Optimizes allocation of effort among the levels of a design, given a budget

constraint for that design.

• No optimization across designs; assumes equal allocation to designs.

• Should be better than Splitting in terms of estimating individual design

probabilities, which should give it an edge on Splitting in terms of selecting the

best design.

158

• Performance depends on the appropriateness of a key assumption: that the

probability of a run hitting the next level is independent of the state from which

the run launched.

• On the test model used in this research that assumption is rather weak.

• OSTRE nonetheless outperforms Splitting (though not by much) in selecting the

best design, suggesting it may be quite robust even when its key assumption is not

well supported.

The contribution of this dissertation is the development, in theory and

implementation, of two new techniques for selecting the best design when all design

probabilities are rare. They are:

Single Optimization

• Optimizes the allocation of effort simultaneously across all levels of all designs.

• Implementation requires a heuristic method for allocating the next increment of

effort at each update.

• Computational overhead is substantial, and grows rapidly as number of designs

and levels increases. Scales with (grows proportionately to) the product of

number of designs and the number of levels per design.

• Outperforms the four techniques reviewed above

159

OCBA+OSTRE

• The major contribution of this research: a novel technique for combining OCBA

and OSTRE in a two-step procedure that, like Single Optimization, optimizes

across designs (the OCBA step) and, within each design, across levels (the

OSTRE step).

• Mathematically equivalent to Single Optimization: attains, in theory, the same

optimum allocations to all levels of all designs.

• More tractable in implementation: computational overhead somewhat less, and

scales with the sum of number of levels and number of designs (whereas Single

Optimization scales with their product).

• On the test model used in this research, OCBA+OSTRE is indistinguishable from

Single Optimization across 6 designs, but is somewhat better across 8 and 10

designs. This suggests it enjoys an advantage in implementation, as designs

increase, probably due to the fact that its allocation of effort in the OSTRE step is

based on exact solutions, not on the heuristic method employed by Single

Optimization.

The following graph displays the comparative performance of all the methods

reviewed, and developed, in this research:

160

 Figure 38. All Methods, 10 Designs

Neither Monte Carlo nor OCBA are competitive methods. Between them, MC

seems to perform better, but that is due to the relatively small budget constraint. (See

Figure 5, p 19, for an illustration of OCBA’s superiority over MC over a longer budget.)

For a closer look at the four competitive designs:

161

 Figure 39. OCBA+OSTRE vs Single Optimization vs OSTRE vs Splitting

Prior to this research Splitting and OSTRE were state-of-the-art approaches to

rare event estimation, even across several designs, within the framework of “fixed effort”

splitting. Fixed splitting (see sec. 4.2, p. 54), not considered in this research, could offer

alternative approaches. Single Optimization and OCBA+OSTRE – the contributions of

162

this dissertation – have moved the state-of-the-art for fixed effort splitting, applied to the

selection of the best design in the context of rare events, a few notches higher.

163

Appendix 1: The Exact Probabilities of the Test Model

Because the test model, a two server tandem queue, is an absorbing Markov chain

all the design and level probabilities can be calculated analytically. (See Winston, 2004,

p. 945, for details.) In addition, the probability of hitting jL from every possible starting

state in 1jL − (the j kq , for all j, k) can be calculated, analytically, along with the

average number of transitions required to do so. These analytical solutions make it

possible to do pseudo simulation on the test model.

The random variables driving the process -- the time to the next arrival, the times

to completion of service in the servers – are exponentially distributed, with rates

1 2, ,λ µ µ . For all designs λ = 1. 1µ and/or 2µ differ from design to design. i kp is the

level probability for design i, level k; ip is the design probability for design i.

 Table 4. Design Parameters

Design: 1 2 3 4 5 6 7 8 9 10

1µ : 1.4 1.398 1.395 1.393 1.392 1.395 1.385 1.383 1.38 1.37

2µ : 1.4 1.4 1.4 1.4 1.4 1.39 1.39 1.385 1.381 1.384

164

 Table 5. Design Probabilities

Design 1ip 2ip 3ip 4ip ip

1 0.037959229 0.015750363 0.013004592 0.017747597 1.37988924E-7

2 0.038218298 0.015911667 0.013130667 0.017905504 1.42975098E-7

3 0.038612548 0.01616228 0.01333082 0.018161203 1.51088892E-7

4 0.038879197 0.016335291 0.013471841 0.018344581 1.56956356E-7

5 0.04090109 0.017613131 0.014442516 0.019525255 2.03147276E-7

6 0.042311688 0.018538121 0.0151515415 0.020394392 2.42378247E-7

7 0.044401756 0.020007779 0.0163441024 0.021930997 3.18433297E-7

8 0.04.814084 0.022620291 0.0182909784 0.0242427018 4.8286958E-07

9 0.049776117 0.023786267 0.0191251617 0.0251902433 5.704069E-07

10 0.051506333 0.02512962 0.0201790462 0.0264993546 6.9212172E-07

165

Appendix 2: OCBA Literature

Chen et al. (1997) and Chen et al. (2000, 2010) developed the Optimal Computing

Budge Allocation (OCBA) to (approximately) maximize the PCS of choosing the correct

design, where “correct” means the design with the minimum mean (of some metric of

interest).

OCBA was extended by Fu et al. to incorporate correlated sampling. Non-normal

distributions were brought in by Glynn and Juneia (2004) and Fu et al. (2004). Other

refinements include the introduction of regression models (Brantley et al., 2008);

multiple objective functions (Lee at al. 2004, Chew et al. 2009, Lee et al., 2010);

replacing the PCS with expected opportunity cost (Chick and Wu, 2005; He, Chick, and

Chen 2007); and minimizing variances in lieu of maximizing the PCS (Trailovic and Pao,

2004). Chen et al. (2008) extend OCBA to the selection of an optimal subset in lieu of

the single best design. Pujowidianto et al. (2009), and Yan et al. (2010) focus on

selecting the best design under stochastic constraints or design complexity.

166

Appendix 3: Splitting Literature

 A comprehensive survey of splitting in found in L’Ecuyer et al. (2009).

Glasserman et al. (1998) analyses the role of the importance function in splitting,

showing that a bad choice can yield poor results. Asymptotic optimality for the

importance function can be obtained under conditions derived by Dean and Dupuis

(2009).

 Garvels (2000) provides a thorough analysis of fixed splitting. The RESTART

method, presented in Villen-Altamirano (1994, 2006, 2007), is a prominent

implementation of fixed splitting, containing methods for killing off unpromising

simulation runs. Techniques to enhance the effectiveness of fixed splitting are developed

by Lagnoux-Renaudie (2008).

Fixed effort splitting is addressed by L’Ecuyer et al. (2006). Glasserman et al.

(1996) analyze bias and efficiency in simple implementations of splitting, and

Glasserman et al. (1998) derive necessary conditions for splitting, in general, to by

asymptotically optimal. Glasserman et al. (1999) apply a branching-process analysis to

derive “the optimal degree of splitting at each threshold as the rarity of the event

increases”. Garvels and Kroese (1998) derive optimal allocations under fixed effort

splitting, under the assumption equal costs for all simulation runs. Shortle, Chen et al.

generalize these results, including variable costs.

167

Appendix 4: Truncation of the Variance in OSTRE

Claim: The approximation of the OSTRE design variance justified by the assumption that

()1 /j j jn p p>> − is equivalent to truncating that variance at its higher order terms.

Proof:

p̂ = design estimator; jp = level probability for jL ; jb = average time of a run in jL .

For L levels, the design variance can be expressed as:

[] () ()2 2 2 21 1
1 1

1

1 1
ˆ L L

L L
L

p p p p
Var p p p p p

n n
 −   − 

= + ⋅⋅ ⋅ + − ⋅⋅ ⋅   
   

Define:
()1

,j j
j j j j

j

b p
a s b n

p
−

≡ ≡

Express the variance in these terms:

[] 2 2 2 21
1 1

1

ˆ 1 1 L
L L

L

a aVar p p p p p
s s

   
= + ⋅⋅ ⋅ + − ⋅⋅ ⋅   

   

[] ()2 2 2 21
1 1

1

ˆvar 1 1 L
L L

L

a ap p p p p
s s

   
= ⋅⋅ ⋅ + ⋅ ⋅ ⋅ + − ⋅⋅ ⋅   

   

168

[] () ()2 2 2 21
1 1

1

higher order termsˆ 1 L
m L

L

a aVar p p p p p
s s

 
= ⋅⋅ ⋅ + + ⋅⋅ ⋅ + + − ⋅⋅ ⋅ 

 
∑

The higher order terms are of the form ji

i j

aa
s s
⋅ ⋅ ⋅ , involving products of the form

1

i jn n⋅ ⋅ ⋅
, and may be regarded as negligible, compared to the first order terms.

Discarding them:

 [] ()2 2 21 1
1

1 1

ˆvar L L
L

L L

a a a ap p p p
s s s s

   
≈ ⋅⋅ ⋅ + ⋅ ⋅ ⋅ + = + ⋅⋅ ⋅ +   

   

The minimization problem is:

 []ˆ s/t

j
j j j

j js
Min Var p b n s T= =∑ ∑

The Lagrangian is

 2 1

1

L
j

jL

a aF p s T
s s

λ
  

= + ⋅⋅ ⋅ + + −  
   

∑

2

2 0j

j j

p aF
s s

λ
−∂

= + =
∂

 which implies:

 1
2 2
1

L

L

a a
s s

= ⋅⋅ ⋅ = , or:

2 2
1 1 1

11 1
L L L

L

n b p n b p
p p

= ⋅⋅ ⋅ =
− −

,

which are the OSTRE optimality equations under the ()1 /j j jn p p>> − justification.

169

Appendix 5: PCS = 1 Requires Infinite Runs at All Levels

The optimization problem is constrained minimization:

()

2

1

2
,

2 1 1
 s/t

i j i j

xD

i j i jn n
ii j

L D

j in
dx b n TMin e

φ

−∞

= = =
=∑ ∑∑∫

The PCS is maximized at 1 iff the objective function

()

2

1

2
,

2
 = 0.

i j i j

xD

n n
i

dxe
φ

−∞

=
∑∫

This is attained iff all ()1 ,i j i jn nφ →∞ .

For each i, 1
12 2

1

iff 0 0i
i i

i

p p andφ σ σ
σ σ

−
= → ∞ → →

+

For each i (including 1), the truncated variance used in Single Optimization is:

 12 2

1 1

number of levels
1 1

, i i L
i i

i i i L i L

L
p p

p
p n p n

σ
 − −

= + ⋅⋅ ⋅+ = 
  

Clearly, 0iσ → iff i jn for all j→∞ .

Thus,
()

2

1

2
,

2
 0

i j i j

xD

i jn n
i

dx all n Te
φ

−∞

=

→ ⇒ →∞ ⇒ →∞∑∫

170

Appendix 6: Convergence of Higher Order Terms in the Design Estimators

The expansion of the product of the level estimator may be expressed as:

()
1

11 1

1
ˆ

q

i j i j

i j

m m
i j i j

i j i j
i j i j

jj j

L L L

m

p p

n
k Xc Z

n n
p p

== =

−
= + +

⋅⋅⋅
∑ ∑∏ ∏

where:

,i j mc k = constants

mX = the product of two or more i jZ from { }1,..., LZ Z

1 qi j i jn n⋅ ⋅ ⋅ = product of q i jn terms from { }1,...,i i Ln n , 2q ≥

The last term,
1 q

m m

i j i jm

k X
n n⋅ ⋅ ⋅

∑ , converges to 0, in probability, as all the i jn increase

without limit. The random variables in this summation are of the same form: a random

variable mX scaled by a non-random multiple,
1 q

m

i j i j

k
n n⋅ ⋅ ⋅

. To show that the sum of

these random variables converges to 0 it suffices to show that any given
1 q

m m

i j i j

k X
n n⋅ ⋅ ⋅

 so

converges. (If each of a sum of random variables converges to 0, so does their sum.)

The argument depends on all the i jn increasing as T, the computing budget, increases.

The goal is to maximize the PCS. It is assumed that any increase in T is devoted to that

171

purpose. That is, given an increase in T, all the i jn adjust to their new optimum values,

those that maximize the PCS subject to the new T. It should be obvious that driving the

PCS to certainty (PCS 1→) forces all the i jn to increase without limit. Increasing any

i jn will always improve the PCS, so the PCS cannot be 1 if any i jn is finite. (See

Appendix 5 for a proof confirming the obvious.) Thus:

1 i jPCS all n T→ ⇒ →∞ ⇒ →∞ .

All that is needed to prove convergence, in this case, is the requirement that, as T

increases, all the i jn change to their new optimum values. Then i jT all n→∞ ⇒ →∞ ,

and we have, for any term
1 q

m m

i j i j

k X
n n⋅ ⋅ ⋅

, convergence in probability. For any 0ε > :

[]

1

1 1

1

lim

lim

q

q q

j

m m

i j i j

i j i j i j i j
m

m miall

T

n

k XP
n n

n n n n
P X

k k

P X

ε ε

ε ε

→∞

→∞

 
 − < < =
 ⋅⋅⋅ 

 − ⋅⋅⋅ ⋅ ⋅ ⋅
 < < =
 
 

−∞ < < ∞ =

172

Appendix 7: Single Optimization Optimality Equations for 4 Designs, 3 Levels

2 2 2
4 4 4

2 2 2

11 11 12 12 13 132 2 2

1 1 1i i i
i i i

i i ib n b n b n
e e e

φ φ φφ φ φ− − −

= = =

∂ ∂ ∂
= = =

∂ ∂ ∂∑ ∑ ∑

2 2 2
2 2 2

2 2 22 2 2

21 21 22 22 23 23

1 1 1e e e
b n b n b n

φ φ φφ φ φ− − −∂ ∂ ∂
= = =

∂ ∂ ∂

2 2 2
3 3 3

3 3 32 2 2

31 31 32 32 33 33

1 1 1e e e
b n b n b n

φ φ φφ φ φ− − −∂ ∂ ∂
= = =

∂ ∂ ∂

2 2 2
4 4 4

4 4 42 2 2

41 41 42 42 43 43

1 1 1e e e
b n b n b n

φ φ φφ φ φ− − −∂ ∂ ∂
= =

∂ ∂ ∂

3 4

1 1
ij ij

j i
b n T

= =
=∑∑

173

Appendix 8: In Single Optimization Each Optimality Term Converges to 0

In Single Optimization each optimality term → 0 as 1PCS → :

Appendix 6 showed that 1 i jPCS all n T→ ⇒ →∞ ⇒ →∞ . I extend that to:

 1 0i jPCS all n Each Optimality Term→ ⇒ →∞ ⇒ → :

Ignoring the constants 1/ i jb each term in the optimality conditions (see p….) takes the

form (or is the sum of such forms):

2

2 2,..., 1 1,...,
i

i

m j
i D m or i j L

n
e

φ
φ

−
∂

= = =
∂

Consider the first term,
2

2
i

e
φ−

. The function iφ is defined as

1
2 2
1

, 2,...,i

i

i
p p i Dφ
σ σ

−
= =

+

with

 12 2

1 1

1 1
, 1,...,i i L

i i
i i i L i L

p p
p i D

p n p n
σ

 − −
= + ⋅⋅ ⋅+ = 

  
.

Clearly:
2

2 20 0i j i

i

iAll n e
φ

σ φ
−

→∞ ⇒ → ⇒ →∞ ⇒ → .

Now consider the second term:

174

() ()
()

2
1

3
2 2 22
1

2,..., 1,... 1
1

2

i m m ji

m j
m j i m j

i D j L m or i
p p p p

n p n

φ

σ σ
= = =

− −∂
=

∂
+

Also for this term:

0i
i j

m j

All n
n
φ∂

→∞ ⇒ →
∂

Thus:
2

21 0
i

i
i j

m j
PCS all n

n
e

φ
φ

−
∂

→ ⇒ →∞ ⇒ →
∂

175

References

Booth, Thomas. (2009) Particle transport application, in Rubino, G., Tuffin, B. (eds),

Rare Event Simulation Using Monte Carlo Methods, Wiley, Chichester, UK, pp
215-242.

Brantley, M. W., L. H. Lee, C. H. Chen, and A. Chen, “Optimal Sampling in Design of
 Experiment for Simulation-based Stochastic Optimization,” Proceedings of 2008
 IEEE Conference on Automation Science and Engineering, pp. 388-393,
 Washington, DC, August 2008.

Bucklew, James Antonio. (2004) Introduction to Rare Event Simulation, Springer-

Verlag, New York, NY.

Chen, H. C., C. H. Chen, L. Dai, and E. Yücesan. (1997). New development of optimal
 computing budget allocation for discrete event simulation. In Proceedings of the
 1997 Winter Simulation Conference, 334–341. Piscataway, NJ: IEEE.

Chen, C.H., He, D., and Yucesan, E. (2003) Better-Than-Optimal Simulation Run

Allocation?, in Proceedings of the 2003 Winter Simulation Conference, IEEE
Press, Piscataway, NJ.

Chen, C. H., J. Lin, E. Yücesan, and S. E. Chick. 2000. Simulation budget allocation for
further enhancing the efficiency of ordinal optimization. Discrete Event Dynamic
Systems: Theory and Applications 10:251–270.

Chen, C. H., D. He, M. C. Fu, and L. H. Lee. 2008. Efficient simulation budget
 allocation for selecting an optimal subset. INFORMS Journal on Computing. 20 (4):
 579-595.

Chen, C.H. and Lee, L.H. (2011) Stochastic Simulation Optimization: An Optimal

Computing Budget Allocation, World Scientific, Singapore.

Chew, E. P., Lee, L.H., Teng, S.Y., and Koh, C.H. 2009. Differentiated service inventory
 optimization using nested partitions and MOCBA. Computers and Operations

176

 Research 36(5): 1703-1710.

Chick, S. E., and Y.-Z. Wu. 2005. Selection procedures with frequentist expected
 opportunity cost. Operations Research 53 (5): 867–878.

Crain, B., Chen, C.H. and Shortle, J.F. (2011) Combining Simulation Allocation and
Optimal Splitting for Rare-Event Simulation Optimization, in Proceedings of the
2011 Winter Simulation Conference, IEEE Press, Piscataway, NJ.

Fu, M. C., J. Q. Hu, C. H. Chen, and X. Xiong. 2004. Optimal computing budget
 allocation under correlated sampling. In Proceedings of the 2004 Winter
 Simulation Conference, 595–603. Piscataway, NJ: IEEE.

Garvels, M. (2000) The splitting method in rare event simulation. Ph.D. thesis, University

of Twente, The Netherlands.

Garvels, Marnix J.J. and Kroese, Dirk K. (1998) A Comparison of RESTART

Implementations, in Proceedings of the 1998 Winter Simulation Conference,
IEEE Press, Piscataway, NJ, pp 601-608.

Ghahramani, Saeed. (2005) Fundamentals of Probability with Stochastic Processes, third

edition. Pearson Prentice Hall, Upper Saddle River, NJ.

Glasserman, P., Heidelberger, P. Shahabuddin, P. and Zajic, T. (1996) Splitting for Rare

Event Simulation: Analysis of Simple Casesilevel splitting, in Proceedings of the
1996 Winter Simulation Conference, IEEE Press, Piscataway, NJ, pp 302-308.

Glasserman, P., Heidelberger, P. Shahabuddin, P. and Zajic, T. (1998) A large deviations

perspective on the efficiency of multilevel splitting. IEEE Transactions on
Automatic Control, 43, 1666-1679.

Glasserman, P., Heidelberger, P. Shahabuddin, P. and Zajic, T. (1999) Multilevel

Splitting for Estimating Rare Event Probabilities. Operations Research. Vol. 47,
No. 4, 585-600.

Glynn, P.W. (1994) Efficiency improvement technique. Annals of Operations Research,

53, 175-197.

Glynn, P., and S. Juneja (2004). A large deviations perspective on ordinal optimization,
 in Proceedings of the 2004 Winter Simulation Conference, 577–585. Piscataway,
 NJ: IEEE.

177

He, D., S. E. Chick, and C. H. Chen. 2007. The opportunity cost and OCBA selection
 procedures in ordinal optimization. IEEE Transactions on Systems, Man, and
 Cybernetics–Part C 37:951–961.

Heidelberger, P. (1993) Fast simulation of rare events in queueing and reliability models,

in Donatiello, L. and Nelson, R. (eds.) Performance Evaluation of Computer and
Communication Systems, Springer Verlag, Berlin, pp. 165-202.

Hogg, R.V., McKean, J.W. and Craig, A.T. (2005) Introduction to Mathematical

Statistics, sixth edition. Pearson Prentice Hall, Upper Saddle River, NJ.

Lagnoux-Renaudie, A. (2008) Effective branching splitting method under cost constraint.

Stochastic Processes and Their Applications. 118, 1820-1851.

L’Ecuyer, P., Demers, V. and Tuffin, B. (2006) Splitting for rare-event simulation, in

Proceedings of the 2006 Winter Simulation Conference, IEEE Press, Piscataway,
NJ, pp 137-148.

L’Ecuyer, P., Le Gland, F., Lezaud, P., and Tuffin, B. (2009) Splitting techniques, in

Rubino, G., Tuffin, B. (eds), Rare Event Simulation Using Monte Carlo Methods,
Wiley, Chichester, UK, pp 39-62.

Lee, L. H., E. P. Chew, S. Y. Teng, and D. Goldsman. 2004. Optimal computing budget
 allocation for multi-objective simulation models. In Proceedings of the 2004
 Winter Simulation Conference, 586–594. Piscataway, NJ: IEEE.

Lee, L. H., Chew, E. P., Teng, S. Y., and Goldsman, D. 2010. Finding the non-dominated
 Pareto set for multi-objective simulation models. IIE Transactions 42:656-674.

Hammersley J.M. and Handscomb, D.C. Monte Carlo Methods. Methuen, London, 1964.

Kahn, H. and Harris, T.E. Estimation of Particle Transmission by Random Sampling.

National Bureau of Standards Applied Mathematics Series, 1951.

Pujowidianto, N. A., L. H. Lee, C. H. Chen, C. M. Yep, “Optimal Computing Budget
 Allocation For Constrained Optimization,” Proceedings of 2009 Winter Simulation
 Conference, pp. 584-589, Austin, TX, December 2009.

Rubino, G. and Triffin, B. (eds) (2009) Rare Event Simulation Using Monte Carlo

Methods, Wiley, Chichester, U.K.

178

Shortle, John F., L’Ecuyer, P. (2010) Introduction to Rare-Event Simulation, in James J.
Cochran (ed.), Wiley Encyclopedia of Operations Research and Management
Science, John Wiley & Sons.

Shortle, John F., Chen, Chun-Hung, et al. (2012) Optimal splitting for rare-event

simulation. IIE Transactions, 44, 352-367.

Trailovic, L., and L. Y. Pao. 2004. Computing budget allocation for efficient ranking and
 selection of variances with application to target tracking algorithms. IEEE
 Transactions on Automatic Control 49: 58–67.

Villen-Altamirano, M. and Villen-Altamirano, J. (1994) RESTART: A straightforward

method for fast simulation of rare events, in Proceedings of the 1994 Winter
Simulation Conference, IEEE Press, Piscataway, NJ, pp. 282-289.

Villen-Altamirano, M. and Villen-Altamirano, J. (2006) On the efficiency of RESTART

for multidimensional state systems. ACM Transactions on Modeling and
Computer Simulation, 16, 251-279.

Villen-Altamirano, Jose. (2007) Rare event RESTART simulation of two-stage networks.

European Journal of Operational Research, 179, 148-159.

Yan, S., E. Zhou, and C. H. Chen, “Efficient Simulation Budget Allocation for Selecting
 the Best Set of Simplest Good Enough Designs,” Proceedings of 2010 Winter
 Simulation Conference, pp. 1152-1159, Baltimore, MD, December 2010.

Winston, Wayne L. (2004) Operations Research Applications ad Algorithms, fourth

edition. Brooks/Cole, Belmont, CA.

179

Curriculum Vitae

Ben W. Crain worked for many years in the House of Representatives of the U.S.
Congress, earned several Masters Degrees from Johns Hopkins University, and finally
earned a PhD from George Mason University, upon the completion of which he was
unemployed and broke.

180

	5. OSTRE…………………………………………………………...………………..….72
	6. Single Optimization……………………………………………………………….….85
	8. OCBA+OSTRE vs Single Optimization: Mathematical Equivalence………..…......141
	9. OCBA+OSTRE vs Single Optimization: Implementation………………….......…..154
	Constants
	D = number of designs T = computing budget (in time)
	Random Variables = estimator of (the design estimator) Functions
	= variance of
	Decision Variables = number of simulation runs in design i
	How should computational effort, or time, be allocated among designs? The Optimal Computing Budget Allocation, or OCBA, developed in Chen & Lee (2011), answers this question. OCBA allocates the computing budget to maximize (approximately) the Probab...
	Constants
	Random Variables = estimator of
	= estimator of
	= estimator of
	= estimator of
	= number of runs starting from state k in = number of hits on from runs starting from state k in
	= number of hits on = Bernoulli random variable for the outcome of a run from state k in
	Functions
	= probability mass function (pmf) for
	= probability mass function (pmf) for the outcome of a run from Decision Variables = number of runs in level j, subject to constraint that
	Constants
	Random Variables = estimator of
	= estimator of
	= number of hits on Decision Variables = number of runs in level j, subject to the constraint that

	6. Single Optimization
	7. OCBA+OSTRE
	8. OCBA+OSTRE vs Single Optimization: Mathematical Equivalence

