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ABSTRACT 

IMPROVING VEGETATION AND BACKGROUND DISCRIMINATION FROM 

HYPERSPECTRAL IMAGING (HSI) AND LIGHT DETECTION AND RANGING 

(LIDAR) FUSION USING AN ADDED SHORTWAVE INFRARED (SWIR) HSI 

COMPONENT 

Joshua F. Magarick, M.S. 

George Mason University, 2012 

Thesis Director: Dr. Tony Stefanidis 

 

An observation made with respect to reviewing previous work in this domain is 

that many authors do not include the use of shortwave infrared (SWIR) bands that are 

made available by some hyperspectral imaging (HSI) sensor systems. This work will 

investigate the fusion of HSI and light detection and ranging (LiDAR) data that will 

include the use of SWIR bands during the fusion process in order to better characterize, 

discriminate, map, detect, and possibly identify, background vegetation materials. Data 

for this project comes from an August 2008 collection over the Washington, DC National 

Arboretum using the Mapping Reflected Energy Spectrometer (MaRS) Visible Near 

Infrared and SWIR (VNIR/SWIR) HSI system, and also from an Optech 3100 ALTM 

LiDAR system. The two targets chosen for analysis were the American sweetgum tree 

and several trails (footpaths).  The objective of this work is to run several data fusion 
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experiments where LiDAR raster transformations are fused with VNIR-only, SWIR-only, 

and full VNIR/SWIR HSI data to investigate which combination of fusion methods are 

optimal under the given circumstances. In some cases, improvement in the American 

sweetgum tree detection and trails detection is noted when the SWIR HSI bands are 

included in the data fusion analysis.
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INTRODUCTION 

Hyperspectral Imagery ― HSI 
It is widely known that plenty of work has been completed within the domain of 

HSI and LiDAR data fusion for different purposes such as geologic mapping, riparian 

vegetation mapping, tropical vegetation mapping and discrimination, low lying grass, 

bush, and brush discrimination, and complex forest area classifications 

[49][23][4][31][14]. HSI is also commonly referred to as imaging spectroscopy (IS). IS, 

as defined by Goetz et al. (1985), is based on sensors that have the ability to 

simultaneously collect data using a large number─often hundreds─of narrow spectral 

bands over a continuous range of the electromagnetic spectrum [21]. Something less 

commonly discussed regarding HSI is that it is not necessarily a requirement that HSI 

sensors have more than one hundred bands; rather, it often may depend on a specific 

problem set of the end-user. For example, consider a material that has only two spectral 

features of interest that each span 0.05µm. Perhaps a system with only 40 spectral bands 

that covers each of these features─depending on the width and depth of those 

features─could be considered an HSI system just so long as the material in question can 

be properly detected using such band assignments. Moreover, the spectral range of IS is 

certainly not limited to the VNIR/SWIR (0.4 µm - 2.5 µm) spectral range; rather, it has 

also been demonstrated as useful in the midwave infrared (MWIR) range (3.0 µm - 5.5 

µm) and also the longwave infrared (LWIR) range (7.5 µm - 13.5 µm) [22][46]. 
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Historically, the VNIR range has been shown to be particularly useful for vegetation 

discrimination, while the SWIR has been particularly useful in geologic material 

discrimination [1] [29]. With regards to the HSI data analyzed here, the intention of this 

topic will be to cover as much of the VNIR/SWIR range as possible (less those bands 

where the atmosphere does not transmit signal and that contain unacceptable levels of 

noise due to system constraints) for the purposes of vegetation discrimination and 

background identification and/or suppression. 

LiDAR 
LiDAR is more straightforward and thus slightly easier to describe. LiDAR is an 

active system that fires a laser pulse with a specific narrow wavelength [48]. Although 

there are some minor variations, common active LiDAR system laser wavelengths 

include the visible green 0.532 µm, and the infrared (IR) wavelengths of 1.064 µm and 

1.550 µm. Although seemingly instantaneous, a laser travels at the speed of light, which 

can be measured. The time it takes for the laser pulse to reach the ground (or object─not 

all LiDAR systems are airborne) and return to the system can be calculated. As long as 

the altitude and position of the aircraft is well known, differences in the measured times 

of each laser return are used to precisely calculate ground elevations. The number of 

points, density of points, and accuracy of elevation is determined by the particular make 

and model of LiDAR system in operation. It is also understood that the original priority 

of LiDAR was to only generate high resolution digital elevation models (DEMs) [48]. 

When a laser pulse is transmitted from a LiDAR system, it can, depending on the spot 

size of the laser once it reaches the ground, produce multiple returns which can result in 
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LiDAR pulses reaching both the ground (second return), and an object above the ground 

(first return), such as a tree limb. In order to generate a DEM, the first return LiDAR 

points are simply thrown out if they are considered above the ground thus allowing the 

user to produce DEMs of only the bare earth. It was found that, by keeping first return 

LiDAR points on those objects such as trees, three dimensional (3D) models of these 

above-ground objects could also be produced. Additionally, LiDAR systems that can 

achieve higher point densities per square meter (m
2
) will likely have higher rates of return 

on bare earth and objects of interest. For example, according to Li et al. (2012) [30], tree 

structures maybe better modeled with higher point density LiDAR systems since there 

would be a higher probability of laser pulses penetrating tree-top canopies to reach parts 

of the tree (limbs, branches) under the top canopy, and eventually the ground. Moreover, 

Asner et al. (2007) [5] state that high LiDAR pulse repetition rates of 70 - 100 kHz will 

have a better chance at foliage penetration to the ground, which would in turn produce 

better overall canopy characterization. 

HSI and LiDAR Fusion for Vegetation 
Although previous studies have been conducted, the mapping and discrimination 

of different vegetation types using HSI and LiDAR fusion remains an activity in which 

further development is warranted. While some analysis methods such as onboard HSI-

LiDAR hardware mounting and software-based feature and pixel fusion have been 

presented, no single fusion method has become widely accepted as a standard by the HSI 

and LiDAR communities [49][4][31][14][30][5]. The importance of using HSI and 

LiDAR fusion for vegetation mapping has been highlighted in multiple studies. Some of 
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these reasons include floodplain vegetation mapping for the purposes of studying the role 

vegetation has on hydraulic resistance, forest preservation and management, detecting, 

identifying, and mapping invasive species to a particular biome, and mapping certain 

types of vegetation for the purposes of forest fire preparation planning and management 

[20][14][4][27]. Asner et al. (2008) [4] and Jones et al. (2010) [25] are examples of two 

studies that have published HSI and LiDAR fusion materials that also take some of the 

SWIR bands into consideration. Asner et al. (2008) [4] use these bands to estimate live 

and dead vegetation cover using Airborne Visible Infrared Imaging Spectrometer 

(AVIRIS) VNIR/SWIR HSI data while Jones et al. (2010) [25] use a small subset of 

SWIR bands for continued vegetation discrimination─as opposed to additional 

background characterization─that go out to ~2.40 µm. Neither of these authors, however, 

specifically evaluated the use of VNIR-only, SWIR-only, or full VNIR/SWIR HSI and 

LiDAR fusion in their work.  

Two other authors, Schmidt and Skidmore (2002) [40], show–using statistical 

analysis of field and lab spectra of vegetation–how various parts of the VNIR/SWIR 

portion of the spectrum contribute to vegetation discrimination. In particular, they discuss 

portions of the SWIR–in addition to the near infrared (NIR)–that can maximize the 

discrimination of vegetated species. Based on the work of Schmidt and Skidmore (2002) 

[40], as well as the community's preference for leaving out the SWIR, it is sensible to test 

the addition of SWIR bands for this HSI and LiDAR fusion project. 

Another key point to add is that this work involves the undertaking of one of the 

more difficult problems in this field: mapping and attempting to discriminate certain 
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types of vegetation using small target datasets contained within a predominately 

vegetated background. Ribeiro and Crowley (2010) [36] use LWIR HSI data to map 

some types of vegetation around the State Arboretum of Virginia (not to be confused with 

the National arboretum referred to in this work). Although Ribeiro and Crowley (2010) 

[36] do not use VNIR/SWIR HSI and do not include LiDAR in their work, their data 

collection parameters and objectives were similar to the work herein- discriminating 

vegetation using small target datasets that contain primarily vegetation in the scenes. In 

their conclusions, Ribeiro and Crowley (2010) [36] state that better atmospheric 

compensation and improved spectral analysis methods will be needed in order to harness 

the full potential of such LWIR HSI datasets for mapping vegetation. Perhaps the 

addition of LiDAR fused with LWIR could be one way of enhancing their analysis.  

The bulk of the literature and background review that will be covered below 

discusses specific topics related to the fusion of HSI and LiDAR data for vegetation 

mapping and discrimination. The work presented here will expand upon the principles of 

exploiting SWIR data─fused with LiDAR data─in order to characterize, and thus 

discriminate and possibly identify, background materials surrounding vegetation during 

the trails analysis. Additionally, vegetation discrimination will be demonstrated using 

HSI fused with some of the numerous raster outputs of LiDAR including vegetation 

height statistics and vegetation roughness estimations for the American sweetgum 

analysis. 
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LITERATURE REVIEW AND CURRENT STATE-OF-THE-ART 

VNIR HSI and LiDAR Fusion 
There are several key papers that will be reviewed in this thesis, and also 

continuously cited throughout. Geerling et al. (2007) [20] is an example of one such 

study. They discuss many of the fusion methodologies that were applied throughout this 

thesis. Unlike other authors, they clearly point out the three overall levels of data fusion: 

decision level, feature level, and pixel level that were also discussed by Pohl and van 

Genderen (1998) [35]. Decision level fusion, with respect to geoprocessing, is a high 

level of data fusion that occurs when the results of georegistered datasets are brought 

together only after such data have been processed in separate software packages. A 

typical example would include a Quickbird image orthorectified using Overwatch's 

RemoteView™ Electronic Light Table (ELT) [33]. The post processed, orthorectified 

Quickbird image could then be draped onto a corresponding high resolution LiDAR 

DEM using ESRI's ArcScene™ [16] software where the LiDAR data are preprocessed 

using Applied Imagery's Quick Terrain (QT) Modeler™ [2] software. Geospatial analysis 

using the three-dimensional (3D) capabilities of ArcScene™ could be completed 

thereafter, which is an example of decision level fusion. Feature level fusion also 

involves the processing of data sources in multiple software packages where objects such 

as shapefiles are extracted from each data source and then used for additional tipping and 

queuing of each data source to find additional targets or areas of interest (AOIs). Lastly, 
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the pixel level fusion of two datasets, such as HSI and LiDAR, involves the immediate 

fusion of properly coregistered pixels from each data source. An example of this in the 

context of HSI and LiDAR fusion would be using LiDAR generated and rasterized digital 

canopy models (DCMs) and surface roughness rasters stacked into a file containing 

multiple bands derived from HSI processing using the ENVI
®

 [18] software. This single, 

coregistered, multi-banded file could then be processed using standard algorithms such as 

a mixture tuned matched filter (MTMF) [10] or an adaptive coherence estimator (ACE) 

[28]. This type of pixel level fusion is similar to that of Geerling et al. where vegetation 

discrimination using HSI and LiDAR fusion was demonstrated in the Netherlands [20]. 

Geerling et al., however, only used 10 bands of the airborne HSI CASI data, and did not 

have access to SWIR data. It is stated in the paper that there was some level of difficulty 

when attempting to separate bare soil from low lying grasslands using the HSI and 

LiDAR. Although the single band of 3D LiDAR data would be a good discriminator for 

areas that are generally low lying and thus may not be vegetated, it would not be able to 

identify whether these low lying areas (i.e. completely flat areas such as bare soil or 

tramped footpaths where the height above ground is less than 10 cm) were comprised of 

vegetation or bare soil. Even though some idea of bare earth type may be obtained using 

only 10 VNIR CASI bands, it would have been much more useful to have included SWIR 

bands in this analysis as well. 

Mundt et al. (2006) [31] also use VNIR HSI data collected with the airborne 

HyVista system in conjunction with LiDAR data to improve the results of sagebrush 

classification in Idaho. Although the HyVista system covers the full VNIR/SWIR (0.4 



8 

 

µm - 2.5 µm) spectral range, the authors chose to only use a subset of the VNIR portion 

of the spectrum (0.605 µm - 0.984 µm), which only consisted of 27 spectral bands after 

band subsetting.  The authors state that the amount of sagebrush vegetation was sparse in 

the study area, which made this type of vegetation easy to separate from the background 

using MTMF as the means of analyzing the HSI data. It appears that they chose to 

eliminate the SWIR portion of the spectrum for two reasons. First, when using the full 

VNIR/SWIR spectral range, it was noted that MTMF would overestimate the amount of 

sagebrush due to burned areas as a result of previous wild fires in the study area. Second, 

it was claimed that the use of the full VNIR/SWIR range resulted in generally confused 

classification results due to bright soil backgrounds that are not easily discriminated. 

There seemed to be two factors the LiDAR proved extremely useful for here. First was 

classifying the LiDAR into ground or non-ground points (i.e., calculating a DCM- 

sometimes also referred to as a canopy height model). The height model was used for 

obvious discrimination of whether sagebrush was present; sagebrush does not grow high 

above the surface, and thus, taller objects─those above 1 m─could be negated. The 

second raster made possible by LiDAR was the surface roughness calculation. The 

authors looked at this raster multiple times to determine what surface roughness (the 

standard deviation of above ground elevation values) values best matched that of 

sagebrush.  Smooth surfaces were often the result of manmade features such as roads 

while rough and tall features were also the result of other manmade objects such as utility 

poles. Roughness threshold values were determined that were used to indicate either the 

presence or absence of sagebrush. If a separate pre-processing of only the SWIR data 
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were executed in addition to the VNIR processing, additional separability from the soil 

background could have been achieved, especially if using the spectral features pointed 

out by Asner et al. (2007) [5]. Perhaps this additional SWIR data processing could have 

resulted in a raster dataset that might have been included in the final MTMF-versus-

roughness scatter plot shown in the paper as a third dimension to further negate false 

alarms. 

Current State-of-The-Art HSI and LiDAR Fusion 
Asner et al. (2007) [5] have completed the most extensive work to date that 

incorporates SWIR bands into the HSI and LiDAR fusion analysis process. In this paper, 

an auto Monte Carlo unmixing (Auto-MCU) approach was used on the HSI data with so-

called tied-SWIR, which is described in a separate paper by Asner et al. (2002) [3]. The 

tied-SWIR is a means of subtracting a reflectance value from one wavelength (the tie 

point) from all other bands [3]. The tied-SWIR method is beneficial because it is not as 

sensitive to finer noise bands. Moreover, Asner et al. (2002) [3] show that the use of tied-

SWIR spectra, similar to first derivative spectra, improves the user's ability to distinguish 

features that are characteristic of specific endmembers, and especially those endmembers 

in the SWIR that relate to bare soil or bare substrates. This would be an interesting 

concept if applied to manmade materials or other geologic materials, and warrants further 

investigation. Nevertheless, Asner et al. (2007) [5] used tied-SWIR to separate 

photosynthetic vegetation (PV) from non-photosynthetic vegetation (NPV) and to detect 

bare substrate between these vegetation types. It should be noted that although these 

authors have introduced and chosen the tied-SWIR method to accomplish this analysis, 
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this is certainly not the only way to achieve these types of results while incorporating the 

SWIR; for example, Jones et al. (2010) [25] used a support vector machine (SVM) to 

incorporate similar bands into their analysis. Pixel maps are generated that demonstrate 

their final results using both the HSI and LiDAR data collected during their experiment 

[5]. LiDAR data was initially used to calculate ground terrain (i.e., a DEM) and 

vegetation canopy surface. These calculations lead to the ability to calculate vegetation 

height and shape. With vegetation height and shape already calculated using the LiDAR 

data; they could then determine areas where shadows may exist with respect to sun angle 

and azimuth. Shadows are not an issue for the LiDAR system since it uses an active 

illumination source─the laser; rather, shadows are an issue for the HSI system, which is a 

passive instrument, and uses the sun as the primary illumination source. By determining 

areas that would be affected by shadows using the LiDAR data, such areas could be 

masked during HSI data analysis. Jones et al. (2010) [25] have used both feature level 

fusion, and pixel level fusion in their analysis─as defined by Pohl and van Genderen, 

(1998) [35]. Asner et al. (2007) [5] and Geerling et al. (2007) [20] provide examples of 

feature level fusion where areas found to contain shadows calculated in the LiDAR data 

are later used to masked areas in the HSI data. Pixel level fusion appears to occur in the 

final invasive species detection planes, which are shown in the paper. One other note is 

that the data used by Asner et al. (2007) [5] were collected over Hawaiian rainforests and 

apparently did not take into account any manmade obstacles or materials such as roads or 

buildings. Through many of their papers, Asner et al. have not only incorporated the 
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SWIR, but have also demonstrated what is perhaps the state-of-the-art in the field of HSI 

and LiDAR fusion for vegetation analysis. 

A study by Brook et al. (2010) [12] also demonstrates the use of HSI and LiDAR 

fusion using full VNIR/SWIR Airborne Imaging Spectrometer for Applications (AISA) 

data. Interestingly, the data used is somewhat analogous to the data used in this thesis; 

full VNIR/SWIR HSI data, and LiDAR data collected at 1.050 µm (a slightly different 

laser wavelength) at 100 kHz [12]. The authors do not state the exact LiDAR system used 

for their work. Brook et al. (2010) [12] make two well stated points in their paper. First, 

they state that both spectral and 3D spatial information are needed for comprehensive 

real-time analysis of urban environments [12]. Second, they state that the surface 

composition of urban materials can be identified by spectral analysis while being 

coincidentally mapped using LiDAR data in 3D visualizations [12]. They then assert that 

chemical runoff (i.e., from pollutants) detected using HSI could be mapped in this 3D 

environment as well [12].  Although Brook et al. (2010) [12] use the full spectral range to 

detect scene endmembers using the HSI data; they do not identify the endmembers that 

they detect. It is clear that the scene used for analysis contains manmade materials such 

as asphalt and tile roofs, and also natural background materials such as gravel and soils, 

but these could be identified by general photo interpretation. The authors have probably 

detected these endmembers using the pixel purity index (PPI) algorithm [9] followed by 

mapping with the spectral angle mapper (SAM) algorithm, but do not identify these 

materials in the final product [12]. The means of data coregistration and fusion between 

the HSI and LiDAR involves a scene-to-scene feature based method where edges are 
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automatically aligned between the two datasets [12]. Although the registration between 

the two datasets looks good, the authors do not provide a quantitative pixel-based 

measure of exactly how good the feature-based registration is between the two datasets 

(i.e., within a pixel, two pixels, etc). In general, it would be more beneficial to have the 

final products presented using some standard cartographic principles such as including a 

legend, scale, north arrow, and stating the general geographic location on the product (the 

nation of Israel in this case). 

The study by Onojeghuo and Blackburn (2011) [32] discussed the use of full 

VNIR/SWIR HSI data and LiDAR fusion for mapping areas containing reedbeds. Reeds 

are generally described as tall grasses that surround wetland areas, while reedbed 

describes an entire landscape of such grasses [32]. Similar to Brook, et al. (2010) [12], 

Onojeghuo and Blackburn (2011) [32] also use a similar HSI and LiDAR system setup 

that is analogous to those systems used for this thesis project. Onojeghuo and Blackburn 

(2011) [32] used the AISA Eagle and AISA Hawk systems, which collected VNIR and 

SWIR HSI data coincidentally. Moreover, a Leica ALS50 collected LiDAR 

coincidentally with the HSI using a laser with a wavelength of 1.064 µm at a pulse rate of 

83 kHz. Onojeghuo and Blackburn (2011) [32] state that the LiDAR point density was 

3.5 points per m
2
. The maximum pulse rate of 83 kHz of the Leica ALS50 system could 

have slightly limited the overall point density; Optech LiDAR systems are able to collect 

at pulse rates of 100 kHz or even higher. Onojeghuo and Blackburn (2011) [32] are the 

only authors that seem to deliberately breakdown the results of using VNIR versus SWIR 

HSI, and both combined, in combination with LiDAR to map vegetation (reedbeds). For 
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the purposes of mapping reedbeds, the authors came to the conclusion that using only the 

VNIR portion of the spectrum fused with a height mask derived from the LiDAR data 

produced the best results. The authors claimed that incorporating the SWIR only included 

redundant data, and that the inclusion of redundant data (i.e., input of SWIR bands) 

reduced the overall accuracy of the classification [32]. Another important point to note 

here is that Onojeghuo and Blackburn only chose to use the LiDAR as a height mask and 

nothing more. They attempted to fuse the LiDAR-derived CHM band directly into the 

HSI data as an additional band (i.e., layer stacking), but this drastically reduced the 

accuracy of the classification. Consequently, they derived a height mask from the LiDAR 

data, and applied this to the HSI data prior to classification in order to improve the 

overall results of the classification [32]. Other authors, such as Jones, et al. (2010) [25], 

obtained similar results when using LiDAR as a height mask. What is surprising, 

however, is that Onojeghuo and Blackburn (2011) [32] did not attempt to derive surface 

roughness using the LiDAR data; rather, they only derived surface roughness from the 

HSI data using texture co-occurrences. It seems that deriving surface roughness of the 

reedbeds from the LiDAR data, (similar to Mundt et al. (2006) [31], and West and 

Resmini, (2009) [49]), and fusing this information with the HSI data would improve the 

classification accuracy of the reedbeds even more. Another unforeseen aspect of 

Onojeghuo and Blackburn’s paper is that a maximum likelihood classifier (MLC) was 

used in conjunction with the HSI data to assist in the mapping of the reedbed vegetation. 

It should be noted that most other authors choose to use other types of classifiers. 

Geerling et al. is the only other author reviewed that─when carrying out work in HSI and 
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LiDAR fusion─used the MLC as the primary classifier for the HSI data [20]. Asner et al. 

(2007) [5] used the tied-SWIR method. Dalponte et al. (2009) [14], Jones et al. (2010) 

[25], and Koetz et al. (2008) [27] each chose to use the SVM method. Dalponte et al. 

(2009) [14] and Jones et al. (2010) [25] each specify that the MLC method is not a robust 

method of classification. Salvador and Resmini (2009) [49] chose to evaluate several 

types of classifiers to include the MF, SAM, and linear unmixing. Mundt et al. (2006) 

[31] and Sankey and Glenn (2011) [39] each chose the MTMF to map vegetation using 

HSI data. Onojeghuo and Blackburn (2011) [32] chose to use the MLC for two reasons. 

First, they claim that it is a robust algorithm and that it has been shown to perform well 

for the purposes of mapping vegetation, and second, it is widely available in most 

commercial software packages at no charge [32]. Nevertheless, this use of a wide variety 

of classifiers demonstrates that authors have been successful using many types of 

techniques, but that most authors believe the MLC is a dated method. The best approach 

maybe to test several classification methods based on the problem set at hand.  

Previous Work on MaRS HSI and LiDAR Fusion 
To date, there are three known published papers that involve the use of MaRS 

data, and the MaRS sensor generally. One of these papers, by West and Resmini (2009) 

[49] involves the use of HSI and LiDAR fusion specifically for a geological analysis of 

Cuprite, Nevada. The authors use standard HSI filtering techniques such as matched 

filtering and linear spectral mixture analysis to identify the local geology such as 

kaolinite and alunite. Using coincidentally collected LiDAR data, surface roughness of 

the area was calculated. The authors attempted to find a correlation between surface 
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roughness and geology types. Although it is believed that there might be some small 

correlation, it is thought that the LiDAR GSD of approximately 1 m was too large to 

make accurate assessments of geology and mineralogy surface roughness. The idea of 

visually interpreting LiDAR surface roughness against HSI filtering techniques was 

successfully used to map sagebrush in Idaho, but the surface roughness of rocks is much 

finer than that of vegetation and would thus require LiDAR data with more resolution 

[31]. Regarding West and Resmini (2009) [49], one item to point out includes the aircraft 

flying underneath a cloud deck on the day of the data collection. Although flying 

underneath a cloud deck would not affect an active LiDAR system, it would most 

certainly negatively impact a passive VNIR/SWIR HSI system such as MaRS. In 

particular, the SWIR region would be most affected since, according to Simi and Reith 

(2009) [42], there tends to be less signal in the SWIR portion of the MaRS and AVIRIS 

VNIR/SWIR HSI systems than in the VNIR. As a side note, it should be made apparent 

that, although Simi and Reith call the system the "Mapping Reflected energy Sensor," 

this system has since been commonly referred to as the "Mapping Reflected energy 

Spectrometer." Even though West and Resmini (2009) [49] present a custom method for 

atmospheric correction, and mineral maps appear accurate according to ground truth, 

there are no spectra shown in the paper to verify the results of the custom atmospheric 

correction method presented. Lastly, it should also be noted that few words are stated 

with respect to the preprocessing of the MaRS data such as which bands were eliminated 

as "bad" during the processing. Knowledge of which band specific regions were used for 

their analysis would be useful for determining how they came to these conclusions. It is 
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important to note here that the SWIR region was used as the primary spectral 

discriminator for mineralogy, and was later fused with the LiDAR data. This thesis will 

potentially use some of the spectral filtering techniques presented here, and from Asner et 

al. (2000) [3], to assist in additional vegetation and background discrimination. 

In a paper by Salvador and Resmini (2009) [38], the MaRS data were analyzed 

with respect to what spectral matching techniques might be most useful for vegetation 

discrimination using MaRS data over the National Arboretum[38]. The HSI data 

presented in Salvador and Resmini (2009) [38] is the same HSI data that will be used for 

this thesis. Salvador and Resmini did not use the LiDAR data that were also collected 

coincidentally with the HSI over the Arboretum. Moreover, they focused specifically on 

the use of the VNIR/SWIR data for vegetation discrimination, and only used a 

Normalized Difference in Vegetation Index (NDVI) for masking out areas that were not 

vegetated. Some of the spectral mapping methods that Salvador and Resmini applied to 

the Arboretum such as Matched Filtering, 1
st
 derivative filtering, and MTMF may be 

used during both the spectral analysis and pixel level HSI and LiDAR fusion portion of 

this thesis. 



17 

 

DATA & STUDY SITE 

Data for this project comes from the MaRS VNIR/SWIR HSI system and the 

Optech ALTM 3100 LiDAR system. Both systems were mounted coincidentally onboard 

a C-131 aircraft. Photos and ground truth of the National Arboretum study site will also 

be presented in this section. 

 

MaRS (HSI) 
The MaRS system, developed by the Jet Propulsion Laboratory (JPL), is similar 

in specifications to AVIRIS, also developed by JPL. It nominally collects 332 bands of 

spectral data between 0.38 µm and 2.515 µm with a spectral resolution of 4 nm in the 

VNIR and 8 nm in the SWIR [42]. It should be noted that there is a focal plane overlap 

region between the two 640x480 pixel VNIR and SWIR focal planes [42]. This overlap 

region occurs between approximately 0.800 µm and 0.825 µm and corresponds to 

spectral band numbers 112 – 121; these are typically the first bands that are eliminated 

and considered bad bands by the user. Additionally, there is a slight, 40 pixel, physical 

gap between the two focal planes. Thus, although the raw data files are 640 pixels wide, 

the VNIR and SWIR bands are brought together (i.e., coregistered) automatically during 

the calibration process provided by JPL. This process leaves 15 samples of zero value 

data on the left side of the data cubes and 25 samples of zero value data on the right side 
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of the cubes. These samples must be removed (i.e., subsetted), which leaves the user with 

600 samples of useable data. Under optimal conditions such as proper aircraft altitude, 

data sampling speed, aircraft speed, and weather conditions, the MaRS system is capable 

of a high signal-to-noise ranging from 1200 – 1800 [42]. 

For this data collection on August 12
th

, 2008, over the National Arboretum, a total 

of nine flight lines were collected with ground sampling distances (GSD) ranging 

between approximately 0.67 meters and 0.76 meters. For the purposes of this thesis, only 

4 of the flight lines were chosen, and only two of them will be utilized. Near infrared 

composites of MaRS lines collected of the National Arboretum used for this project are 

shown in Figure 1 through Figure 4. Additionally, panchromatic LiDAR data (shown as 

intensity images) that were collected coincidentally with the MaRS HSI data are shown 

alongside the MaRS images. 

Optech ALTM 3100 (LiDAR) 
The Optech ALTM 3100 LiDAR system operates with a laser at 1.064 µm and 

collects data at a frequency of 100 kHz. During preprocessing, it was found that the point 

density of the LiDAR data over the National Arboretum ranges, on average, from 6.67 

points per m
2 

to 10.51 points per m
2
. Precise measures of LiDAR point density are 

outlined in Table 2. Although LiDAR data were collected coincidentally with the MaRS 

HSI data onboard the same aircraft, the swath width of the LiDAR data is different than 

that of the MaRS data. It should be noted that there are also differences in the GSD of the 

HSI and LiDAR systems. The GSDs and aircraft altitudes given in Table 1 are 

approximate. Due to slight variations in aircraft altitude during flight and also minor 
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variations in ground elevation throughout each of the scenes, there can be GSD variations 

on the order of ±5%. Nevertheless, HSI data will be interpolated to that of the slightly 

lower overall resolution LiDAR data of 1 m. This process is accomplished using the 

ENVI
®
 software, which uses a nearest neighbor interpolation. Initial tests using this 

method between HSI and LiDAR datasets showed quite good results. 

 

 

Figure 1: MaRS NIR Composite (left) and Optech ALTM 3100 LiDAR Intensity Image (right) of the National 

Arboretum, Washington, DC. In the MaRS NIR composite, the red band is displayed as 0.863 µm, green 0.650 

µm, and blue 0.546 µm. Both data files have been projected to UTM Zone 18 North, and the datum used is the 

North American Datum 1927 (NAD27).  Collection time 1616Z. 
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Figure 2: MaRS NIR Composite (left) and Optech ALTM 3100 LiDAR Intensity Image (right) of the National 

Arboretum, Washington, DC. In the MaRS NIR composite, the red band is displayed as 0.863 µm, green 0.650 

µm, and blue 0.546 µm. Both data files have been projected to UTM Zone 18 North, and the datum used is the 

North American Datum 1927 (NAD27).  Collection time 1628Z. 

 

 
Table 1: HSI and LiDAR data used for this project. The aircraft altitude was measured in feet above ground 

level (AGL). The ground sampling distances (GSD) represent the size of a single pixel as it represents the ground 

from each system. 

 

 

12 August 2008 - Washington, DC National Arboretum Coincident HSI & LiDAR Data 

Collection 

Time 

(Zulu) 

Altitude (Feet - 

AGL) 

LiDAR 

GSD (m) 

HSI GSD 

(m) 
LiDAR File Name HSI File Name 

1616 2500 1 0.76 Sensor1strip030.las m080812t1616 

1628 2500 1 0.75 Sensor1strip032.las m080812t1628 

1644 2500 1 0.67 Sensor1strip035.las m080812t1644 

1659 2500 1 0.67 Sensor1strip038.las m080812t1659 
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Figure 3: MaRS NIR Composite (left) and Optech ALTM 3100 LiDAR Intensity Image (right) of the National 

Arboretum, Washington, DC. In the MaRS NIR composite, the red band is displayed as 0.863 µm, green 0.650 

µm, and blue 0.546 µm. Both data files have been projected to UTM Zone 18 North, and the datum used is the 

North American Datum 1927 (NAD27).  Collection time 1644Z. 
 

 
Table 2: National Arboretum LiDAR Point Densities. HSI and LiDAR data used for this project. The aircraft 

altitude was measured in feet above ground level (AGL). The ground sampling distances (GSD) represent the 

size of a single pixel as it represents the ground from each system. 

 

 

 

Time 

(Zulu) 

Alt. 

(Feet - 

AGL) 

LiDAR 

GSD 

(m) 

LiDAR File Name 

Minimum 

Point 

Density 

per m
2
 

Maximum 

Point 

Density 

per m
2
 

Mean 

Point 

Density 

per m
2
 

1616 2500 1 Sensor1strip030.las 0.09 12.72 7.61 

1628 2500 1 Sensor1strip032.las 0.06 13.14 6.67 

1644 2500 1 Sensor1strip035.las 0.00 15.21 7.45 

1659 2500 1 Sensor1strip038.las 0.13 16.01 10.51 
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Figure 4: MaRS NIR Composite (left) and Optech ALTM 3100 LiDAR Intensity Image (right) of the National 

Arboretum, Washington, DC. In the MaRS NIR composite, the red band is displayed as 0.863 µm, green 0.650 

µm, and blue 0.546 µm. Both data files have been projected to UTM Zone 18 North, and the datum used is the 

North American Datum 1927 (NAD27).  Collection time 1659Z. 
 

Study Site 
 The National Arboretum is located in northeast Washington, DC. According to 

historical flight logs, and also Salvador and Resmini, weather conditions on the day of 

collection were typical for a DC summer day with temperatures in the mid to upper 80’s 

(°F), but with somewhat low humidity for the area [38]. Unfortunately, limited ground 

truth was collected during the actual day of collection, which impacts the trails portion of 

this exercise in particular because the actual conditions of the trails at the time of 

collection are unknown. Handheld photographs were captured of the American sweetgum 

trees and also the trails almost exactly 4 years later on Friday, August 3
rd

 2012. Figure 5 



23 

 

shows a map with several photos of American sweetgum trees that were detected during 

this exercise.  

 

 

Figure 5: Ground truth map showing the capture location of handheld photos of several American sweetgum 

trees that were mapped during this exercise. Many species on the National Arboretum have tags attached to 

identify the exact species. One of these tags is visible in Inset 1.  
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 Figure 6 shows a map that includes some pictures of the trails that were mapped 

during this exercise. Unfortunately, due to the time lapse between airborne data collection 

and the collection time of these photos, it is not possible to know the exact condition of 

the trails at the time of airborne data collection. It does seem, however, that the trails may 

not have been in quite as good of condition during the time of airborne data collection. It 

appears that when the ground photos were collected, the trails are flusher with a bit more 

healthy vegetation. It is evident from the MaRS true color and false color imagery that 

the trails show signs of stressed vegetation, and this can be observed in the full 

VNIR/SWIR spectrum as well. At the time of handheld photo collation, it may be 

assumed that inset 2 in Figure 6 is more indicative of the type of condition the trails were 

in at the time of airborne data collection in 2008. On the contrary, vegetation and trail 

condition appears much healthier in inset 3 than it does in MaRS imagery from 2008. 
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Figure 6: Ground truth map showing the capture location of handheld photos of a few trails and footpaths that 

were mapped during this exercise. The green line displayed in the figure indicates the swath width of the fused 

HSI and LiDAR dataset; only a portion of the dataset is shown in the graphic for ease of viewing the inset areas. 

Trail conditions have probably changed between the time of airborne data collection in 2008 and ground photo 

collection in 2012. 
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METHODS 

Each step will be explained in detail while all of the steps are outlined in a flow 

chart. Due to the nature of this HSI and LiDAR fusion project, processing of HSI and 

LiDAR data occurred almost simultaneously as opposed to, for example, processing all of 

the HSI data, and then all of the LiDAR data. 

Initial LiDAR Processing 
In order to initiate the entire process, the first data analyzed was the LiDAR data. 

The reason for this was because the swath width of the LiDAR data was less than that of 

the MaRS HSI data. Therefore, it made sense to first preprocess the LiDAR data so that 

the MaRS HSI data could be spatially subsetted, and thus clipped, to the LiDAR data. 

Some extremely capable freeware tools provided by the Boise Center for Aerospace 

Laboratory (BCAL) were used in the initial LiDAR data processing and will be 

referenced throughout this thesis.  These BCAL ENVI
®
 plugin tools [7] are extensively 

used in this work. The BCAL LiDAR tools are used as an ENVI
®

 plugin while the 

E3De™ [18] software is used for other processes that are not included in the BCAL 

LiDAR tools. 

Using the subset LAS file(s) function, “Subset via Image/ROI,” in the BCAL 

LiDAR tools [7], the four LiDAR LAS files were manually subsetted to only the National 

Arboretum study area. New LAS files of the National Arboretum study area were 
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generated. Next was to determine the overall average point densities of each of the four 

LiDAR LAS files. This was achieved using the “Generate Density Map” function in the 

E3De™ software; this functionality becomes available to the user once a LiDAR project 

is created and LAS files are entered into E3De™. E3De™ outputs the density maps as 

TIFF files where the data value within each pixel of each TIFF file represents the overall 

point density relative to its geographic area. These images, however, were not sufficient, 

by themselves, to determine the necessary statistical point density information. As a 

result, each point density TIFF image was individually opened in the ENVI
®

 software. 

Statistics were calculated in ENVI
®
 on each point density image to determine the relative 

LiDAR point densities of each subsetted LAS file. These point density statistics are 

shown in Table 2. Higher point densities are optimal for studying some aspects of 

vegetation using LiDAR such as surface roughness, structure, and shape [49] [14]. 

Moreover, higher point densities should be able to improve classification because, 

according to Geerling et al. (2007) [20], such densities should result in better 

discrimination between height classes. Dalponte et al. (2009) [14] also used an Optech 

ALTM 3100 LiDAR system and achieved point densities of approximately 5.6 points/m
2
, 

which is slightly lower than the data presented herein. Koetz et al. (2008) [27] was also 

using an Optech ALTM 3100 LiDAR system, but it should be noted that the system was 

only scanning at a frequency of 70 kHz, and as a result, the LiDAR data presented by 

them only has a point density of 3.7 points/m
2
. Additionally, Li et al. (2012) [30] report a 

LiDAR point density between 6 points/m
2
 and 20 points/m

2
, and they state that high point 

densities such as these are needed to capture the 3D structures of trees. Li et al. (2012) 
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[30] go on to state that misclassifications can occur where point densities fall short of 

requirements. In any case, these authors make it clear that higher point densities can 

result in more accurate LiDAR classifications and thus the average point densities of 

between 6.6 points/m
2
 and 10.5 points/m

2
 used for this work are more than optimal for 

what was achieved here. 

The last step that will be briefly discussed in this section is the generation of 

LiDAR intensity images. LiDAR intensity images provide panchromatic-like context 

images of each subsetted LAS file in the form of a raster that can be used for subsetting 

and coregistration of HSI images. The intensity images were generated using the 

“Convert LAS Data” function in ENVI
®
. The X and Y pixel sizes were set to 1 meter, 

which was the stated GSD of the Optech ALTM 3100 LiDAR system at the time of 

collection. With respect to geographic information, the native projection of UTM Zone 

18 North was retained, but the datum was converted from WGS84 to NAD27. The 

NAD27 datum is native to the MaRS HSI data. Keeping the native datum with the MaRS 

HSI minimized processing time, and also reduced the overall amount of pixel warping 

that would be caused by switching datums. 

Intermediate HSI and LiDAR Processing 
 An important item to note here that could be somewhat controversial to some is 

that it was decided to first georegister the MaRS HSI data prior to executing any standard 

HSI processing steps. One reason for this was that the idea was to process only the HSI 

data contained within the footprint of the LiDAR data. The only way to achieve this 

effect was to first apply a georegistration to the MaRS HSI data. Using only the HSI data 



29 

 

contained within the footprint of the LiDAR data provides for a kind of simulation so 

that, if in the future, HSI and LiDAR fusion were to be taking place in real-time onboard 

an aircraft similar to Asner et al. (2007) [5], the thought would be to retain only the 

relevant overlapping data between the two systems. Doing so could possibly save an 

immense amount of storage space, especially since HSI data files are much larger than 

the LiDAR. For the purposes of this thesis, if the HSI data were to be processed prior to 

subsetting to the footprint of the LiDAR data, statistics within the HSI data- but also from 

outside of the footprint of the LiDAR data- would be used for feature and target 

detection. Second, direct pixel-based fusion such as incorporating a LiDAR intensity 

image as an additional band, between the HSI and LiDAR data may not be possible 

without georegistering the MaRS HSI data prior to traditional HSI processing [35][20]. 

Geerling et al. not only georegistered their data prior to running filters (in their case, a 

Maximum Likelihood filter), but also mosaicked the files together so that their entire 

study area could be processed all at once [20]. 

 Full native georegistration was applied to the four MaRS cubes using Input 

Geometry (IGM) files provided with the MaRS data delivery. The application of the IGM 

files to the unregistered MaRS data was accomplished using the “Georeference from 

IGM” function found in the ENVI® software. It should be noted that elevation is 

incorporated into the MaRS georegistration process in the form of Digital Terrain 

Elevation Data (DTED) Level 2. Actual GSD of the MaRS HSI data was computed 

automatically in ENVI® during this step. These GSD numbers are reported in Table 1. 
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 While the GSD of the MaRS HSI data was slightly better than that of the LiDAR 

data, it was important to match the GSD of the MaRS HSI data as closely as possible to 

the LiDAR data. This was accomplished by interpolating (or up sampling) the GSD of 

the MaRS HSI data to 1 meter. This interpolation was performed in ENVI® using the 

“Resize Data (Spatial/Spectral)” function. Under this function, there is an option that 

reads, “Set Output Dims by Pixel Size.” Using this option, it was possible to 

automatically force the MaRS GSD values printed in Table 1 from their original values 

up to 1 meter by interpolation. 

 Although the next step of generating LiDAR boundary files could have easily 

occurred earlier in the process, it was not needed until later, and thus, simply occurred 

later in the process. The LiDAR boundary files will be used later to subset the MaRS HSI 

files to match the LiDAR files as closely as possible; this step would not be possible 

without first having georegistered the MaRS data files. A simple function exists within 

the BCAL LiDAR tools [7], “Create Boundary EVF/SHP/KML,” which allowed for the 

fast and easy creation of the four LiDAR boundary files in the form of polygons. One 

important item to note here is that the LiDAR boundary files not only encompass the 

outer boundary of the LiDAR flight lines, but they also take into account dropped returns. 

For example, dropped returns could exist over large bodies of water (eg. rivers). Water 

absorbs most energy at the wavelength of 1.064µm, and can thus result in some dropped 

LiDAR returns. The polygons obtained from the BCAL LiDAR tools do not include these 

dropped returns, and thus, areas of dropped LiDAR returns will be removed from the 

MaRS HSI data during subsetting in the next step. 
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 The last step that will be discussed in this section is the subsetting of the MaRS 

data to match- as closely as possible at this phase- the footprint of the LiDAR data. This 

was accomplished by using the “Subset Data by ROI” function in the ENVI® software. 

Prior to running this function, the four LiDAR boundary files were loaded into ENVI® as 

vector files while the four corresponding georegistered MaRS HSI cubes were loaded as 

well. While running the function, it was imperative that the proper LiDAR boundary file 

was chosen to correspond with the correct MaRS HSI cube. For example, according to 

Table 1, MaRS cube “m080812t1616” needed to be subsetted using the boundary file 

from the LiDAR LAS file “Sensor1strip030;” these two datasets were collected 

coincidentally. Moreover, a key item to note is that there is a switch that asks if users 

want to “Mask pixels outside of ROI.” For this type of data fusion, the switch should be 

set to “yes.” This switch eliminates any MaRS HSI data outside of the LiDAR footprint 

by excluding MaRS data outside of the LiDAR boundary file. It should be reiterated that 

this step could not have taken place if the MaRS HSI data were not already georegistered. 

Figure 7 shows an example of one of the coincidentally collected MaRS HSI and LiDAR 

data pairs almost exactly coregistered where the footprint of the MaRS HSI data has been 

closely matched to that of the LiDAR data. A more precise coregistration using tie points 

will follow. 
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Figure 7: MaRS HSI data (left) subsetted to Optech ALTM 3100 LiDAR data (right). Tie point registration in 

subsequent steps will provide a more exact registration between the two data types. 

 

Traditional HSI Processing 
 This section will discuss traditional HSI data processing that was performed on 

the MaRS data prior to executing any filters or detection algorithms. Spectrally, there is a 

focal plane overlap region in that MaRS data that corresponds to band numbers 112 – 121 

[42]. These bands are automatically delivered as zero value bands, and are the first to be 

removed (subsetted). The “Resize Data (Spatial/Spectral)” function in ENVI
®

 was used 

to remove these bands. Subsequent to removing these overlap region bands, each data 

cube contained 322 spectral bands. Spatially, there is a physical gap between the VNIR 

and SWIR focal planes that results in an offset of 40 pixels. Prior to data delivery, MaRS 

calibration software automatically corrects for this offset by shifting the VNIR and SWIR 

data into place so that they are properly aligned. This shifting results in 15 zero value 

lines (columns) on the left side of the data cubes and 25 zero value lines (columns) on the 



33 

 

right side of the data cubes. These zero value lines are thus removed from each data cube, 

which results in data cubes that are 600 lines across. The “Resize Data (Spatial/Spectral)” 

function in ENVI
®

 was used to remove these lines. 

 Atmospheric correction was the next step. In order to make the HSI data useable 

for the purposes of material detection, it must be converted to reflectance [44]. 

Reflectance data are needed so that the in-scene spectral absorbance material features are 

more evident and can then easily be compared to a library of known reflectance spectra. 

The MaRS HSI data were delivered in calibrated radiance in the following units:    

 

  
         

The Quick Atmospheric Correction (QUAC) method was used to convert the four MaRS 

HSI data cubes from units of radiance to unit of reflectance [8]. In an effort to save 

storage space, the calibrated data are delivered in two-byte signed integer format. As a 

result, when converted to reflectance using QUAC, data are scaled between 0 and 10,000 

where “0” is considered 0% reflectance and 10,000 is considered 100% reflectance. 

 Once the atmospheric correction was performed, routine atmospheric bad band 

removal (spectral subsetting) was achieved. Bad band removal was completed manually 

in several iterations using the ENVI
®

 software with the “Resize Data (Spatial/Spectral)” 

function. The first iteration involved opening the MaRS HSI data cubes in ENVI
®
 and 

animating the spectral bands. Spectral bands that contained unreasonable amounts of 

noise were removed. The second iteration involved opening each of the data cubes and 

examining known areas of in-scene reflectance spectra such as water, vegetation, and soil 

for spectral discrepancies. Often, additional subtle discrepancies not discovered during 
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spectral band animation can be noted around water vapor absorption features’ border 

areas along the wavelength dimension where the atmosphere does not transmit 

electromagnetic radiation. Many of these areas are due to water vapor; however some of 

them could also be due to sensor noise or outside interference. A complete list of bands 

removed along with the reasoning is provided in Table 3. For consistency, the same 

bands were removed from each MaRS HSI data cube. 

 

Table 3: Bad Bands Removed 

 

The last step of HSI processing that could be considered a form of traditional 

preprocessing, but was specific to this thesis topic, was to separate the MaRS HSI data 

into VNIR, SWIR, and VNIR/SWIR datasets, respectively. Splitting the MaRS HSI data 

into these three categories allows for individual testing and scrutiny of each spectral 

region during the HSI and LiDAR fusion process, which is the goal of this thesis. The 

MaRS HSI data were split into these three spectral regions in ENVI
®

 using the “Resize 

Spectral 

Band 

Numbers 

Removed 

Corresponding 

Wavelengths 

(µm) 

Reason for Removal 

1 – 12 0.386 – 0.430 
Too little signal provided by the system in this region 

results in unreasonable noise 

112 – 121 
0.829 – 0.853; 

0.806 – 0.822 
Focal Plane Overlap Region 

135 – 136 0.935 – 0.943 H2O inhibits atmospheric transmission in this region 

158 – 161 1.120 – 1.144 H2O inhibits atmospheric transmission in this region 

185 – 200 1.337 – 1.457 H2O inhibits atmospheric transmission in this region 

241 – 268 1.787 – 2.004 H2O inhibits atmospheric transmission in this region 

323 – 332 2.446 – 2.518 
Some H2O and CO2, and little signal provided by the 

system in this region results in unreasonable noise 
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Data (Spatial/Spectral)” function. A total of twelve MaRS HSI data cubes were generated 

as a result of this splitting (four original VNIR/SWIR, four VNIR-only, and four SWIR-

only). Table 4 provides the specifics of the three spectral regions chosen for analysis. 

 

Table 4: Split MaRS HSI Spectral Regions 

 

It is only coincidental that the “VNIR-only” and “SWIR-only” spectral regions listed in 

Table 4 contain the same number of bands. Additionally, extending the VNIR region out 

to 1.04µm could be considered one source of contention, but it should be noted that some 

VNIR-only spectral systems such as WorldView-2 extend out to 1.04µm [6]. 

Tie Point Coregistration of HSI and LiDAR 
 In order to achieve the accuracy necessary for this type of data fusion work, the 

coregistration between the MaRS HSI and LiDAR data files not only had to be accurate, 

but it also had to be precise. Although the HSI and LiDAR data were collected 

coincidentally onboard the same aircraft, the two systems exhibit slightly different 

behavior with respect to the accuracy of their native georegistration. Naturally, the MaRS 

HSI system is less accurate than the LiDAR geospatially for a few reasons, one of which 

can be attributed to distortions in the optical lens that can be difficult to correct even with 

some of the most accurate modeling. If such registration inaccuracies are not corrected, 

visibly noticeable offsets will exist between the two datasets that would probably result in 

Spectral 

Region 

Number of Bands Contained 

within Image Cube 
Corresponding Wavelengths (µm) 

VNIR-only 125 0.434 – 1.040 

SWIR-only 125 1.050 – 2.430 

VNIR/SWIR 250 0.434 – 2.430 
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classification errors. For example, due to registration inaccuracies a road could exist in 

the HSI data at the same place where a building lies in the LiDAR data, which would 

result in erroneous classification results. 

 So that such errors are prevented, a combination of custom semi-automated tie 

point coregistration methods was executed using the ENVI
®

 software. Each of the four 

flight lines that consisted of one HSI data file and one LiDAR data file had to be 

coregistered. Since the native LiDAR georegistration was already highly accurate, the 

MaRS HSI data files were warped to the LiDAR files. The previously generated LiDAR 

intensity images at 1.064 µm were used as the base images during the coregistration 

process. Likewise, Mundt et al. (2006) [31] stated that it would be advantageous to use 

the reflectance band in the HSI that most closely matched the wavelength of the LiDAR 

intensity image. There exists a MaRS spectral band at 1.06392 µm, and this was the 

MaRS band chosen for the coregistration process. Approximately 20 seed points were 

first selected for each combination of images using the “Select GCPs: Image to Image” 

functionality in ENVI
®
. Next, the seed points generated in ENVI

®
 were imported into the 

ENVI
®
 “Image Registration Workflow” tool (only available in v5.0). The matching 

method used to automatically generate more tie points based on the manually generated 

seed points, was the “[Cross-Modality] Mutual Information” method with the setting 

“Minimum Matching Score” of 0.005. The “Geometric Model” used was “Fitting Global 

Transform” with a “Transform” of first-order polynomial. For each data file, the total 

number of tie points generated and the average root mean squared RMS error is listed in 

Table 5. 
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Table 5: HSI and LiDAR Coregistration Information 

 

HSI File Name LiDAR Intensity File 
Total Number of Tie 

Points Selected 

Mean RMS 

Error 

m080812t1616 Sensor1strip030 78 0.72 

m080812t1628 Sensor1strip032 108 0.61 

m080812t1644 Sensor1strip035 155 0.60 

m080812t1659 Sensor1strip038 77 0.59 

 

 It should be noted that the first file set, HSI file m080812t1616 and 

Sensor1stip030, exhibited a mean RMS error that is much larger than the other three 

values. This deviation is due to there being far fewer discernible features between the two 

datasets; much of this flight line contained a forested area. 

 Once each of the sets of tie points was generated and considered acceptable, the 

full VNIR/SWIR MaRS cubes were the first to be warped. The tie points were saved and 

applied to the remaining VNIR-only and SWIR-only HSI files were coregistered using 

the same four sets of tie points. This operation was completed using the “Select GCPs: 

Image-to-Image” function in ENVI
®
.  

Figure 8 and Figure 9 are LiDAR images that have been color sharpened using the 

coincidentally collected MaRS HSI images; this is also the first illustrated example of 

pixel-level fusion given in this document. The method of color sharpening chosen was 

hue, saturation, and value (HSV), and was performed using the “Image Sharpening” 

function in ENVI
®

. The reader may note some vivid color spots in the images. Most of 

these are due to shadowing in the MaRS HSI images that is not present in the LiDAR 

imagery. Extremely low (dark) values contained in the areas of these shadows in the 
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MaRS HSI images cause the HSV algorithm to exhibit slightly erroneous results due to 

the low dynamic range in these areas, which can be expected. The true color VNIR 

MaRS bands chosen for color sharpening corresponded to the wavelengths at 0.638 µm 

(red), 0.550 µm (green), and 0.458 µm (blue). Additionally, the HSV color sharpened 

LiDAR images presented in Figure 8 and Figure 9 also visually demonstrates the overall 

accuracy, precision, and proficiency of the tie point coregistration performed between the 

MaRS HSI and LiDAR datasets. 

Specialized LiDAR Processing 
 This section will cover the processing of LiDAR data unique to this topic of HSI 

and LiDAR fusion for vegetation and background discrimination. There does not yet 

seem to be a standard set of procedures for this type of data fusion processing; rather, the 

previous studies cited thus far have each performed the HSI and LiDAR fusion somewhat 

differently. As a result, the LiDAR processing presented herein will include some 

combinations of methods that have been executed by previous authors. 

 Prior to generating vegetation raster products using the BCAL LiDAR tools, the 

LiDAR data had to be processed into ground and vegetation classes. This processing 

technique was used to automatically determine which LiDAR points are ground returns, 

which LiDAR points are vegetation returns, and of the vegetation returns, the height of 

those returns above the ground. This processing technique, “Perform Height Filtering,” is 

found in the BCAL LiDAR tools, and is attributed to Streutker and Glenn (2006) [43]. 

Operating the tool was rather straightforward; the subsetted LAS files are selected and 

only a few parameters were set; canopy spacing was set to 4 m, and the maximum 
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allowable height was set to 40 m to eliminate outlying LiDAR returns. New height 

filtered LAS files were generated and saved in the designated output directory. 

 

 

Figure 8: HSV color sharpened LiDAR images. Zulu time 1616 (left) and Zulu time 1628 (right). The 

corresponding MaRS wavelengths used for the color sharpening are 0.638 µm (red), 0.550 µm (green), and 0.458 

µm (blue). Spotty exuberant discolorations are caused primarily by shadows in the HSI images that are not 

present in the LiDAR images. 
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Figure 9: HSV color sharpened LiDAR images. UTC time 1644 (left) and UTC time 1659 (right). The 

corresponding MaRS wavelengths used for the color sharpening are 0.638 µm (red), 0.550 µm (green), and 0.458 

µm (blue). Spotty exuberant discolorations are caused primarily by shadows in the HSI images that are not 

present in the LiDAR images. Some edge effects may also be observed. 

 

Once the height filtered LAS files were generated, specific raster transformations 

could be produced from the LiDAR data using the BCAL LiDAR tools. Many options 

were explored with respect to which transformations would work best for this type of 

analysis. Asner et al. (2008) [4] used the LiDAR data in order to compute vegetation 

height, crown shape, and a DSM. These transformations were immediately fused with the 

HSI data to generate additional filters that would not have been made possible without 

the LiDAR data. Dalponte et al. (2009) [14] chose to use only the elevation and intensity 

of the LiDAR data. Onojeghuo and Blackburn chose to use the CHM, DSM, and slope, 

but it should be noted that these were used as masks for the HSI data, and thus, this 

represents feature-level fusion as opposed to pixel level [32]. Geerling et al. (2007) [20] 
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chose to compute the minimum, maximum, mean, median, standard deviation, and range 

of height as transformations. 

 Similarly, for this project, the following LiDAR transformations were chosen for 

vegetation analysis: 

 Vegetation Roughness 

o The vegetation roughness is calculated as the standard deviation of all the 

height point returns within each raster pixel. [7] [17] 

 Vegetation Height: Minimum 

o The minimum vegetation height is calculated using the minimum 

vegetation height point return within each raster pixel. [7] [17] 

 Vegetation Height: Maximum 

o The maximum vegetation height is calculated using the maximum 

vegetation height point return within each raster pixel [7] [17]. 

 Vegetation Height: Range 

o The vegetation height range is calculated by subtracting the maximum 

vegetation height point return from the minimum vegetation height point 

return within each raster pixel [7] [17]. 

 Vegetation Height: Mean 

o The mean vegetation height is calculated by taking an average of the 

height of the point return within each raster pixel [7] [17]. 

 Vegetation Height: Variance 
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o The vegetation height variance is calculated using the statistical variance 

of all height point returns within each raster pixel [7] [17]. 

 Number of LiDAR Vegetation Returns 

o The number of LiDAR vegetation returns is the sum of all point returns 

within each pixel that were classified as vegetation. [7] [17] 

 Vegetation Cover 

o The vegetation cover is calculated by dividing the sum of all point returns 

within each pixel that were classified as vegetation by the total number of 

LiDAR returns contained within each pixel. [7] [17] 

Each of the above LiDAR raster transformations can be fused with the MaRS HSI 

data as an additional band. This should be extremely useful in reducing the number of 

false alarms that will come out of traditional HSI processing such as Mahalanobis 

Distance or SAM filtering. For example, if a pixel rings positive for vegetation using a 

SAM filter in the HSI, that same pixel in the vegetation cover LiDAR transformation 

may have no results (i.e., a value of zero) for vegetation, which would negate this pixel as 

a positive detection. Likewise, with regards to vegetation species delineation and 

mapping, a training pixel could have a perfect HSI vegetation signature with a strong red 

edge, but will also have a maximum height value associated with it from the LiDAR data. 

Although many types of vegetation may present similar spectral signatures, the height 

values could vary by orders of magnitude, and as a result, this height value will continue 

to help to reduce the number of false alarms in the final filtering phase. Note that a 

LiDAR intensity image is not included as one of the above LiDAR transformations. Since 
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the MaRS HSI data collected includes a band that is practically at 1.064µm, it did not 

seem necessary to include the LiDAR intensity image, which would be including 

redundant information. On the contrary, if this work utilized an HSI system that did not 

include a band at or near 1.064 µm, then it would be appropriate to include the LiDAR 

intensity image as part of the project.  

Figure 10 shows an example of a fused MaRS HSI and LiDAR image where the 

true color values corresponding to green and blue are used in conjunction with the 

LiDAR vegetation roughness transformation. Generally, red areas are vegetated. 

However, brighter red areas correspond to regions of greater vegetation roughness. 

Figure 10 shows similar results to those previously published by Geerling et al. (2007) 

[20]. 
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Figure 10: A fused MaRS HSI and LiDAR image; regions of brighter red correspond to higher vegetation 

roughness values as a result of LiDAR processing. Similar to results in Geerling et al. [20]. 

 

 

Additional LiDAR Transformations for Trails Analysis 
In addition to the eight transformations listed above, there were five additional 

LiDAR transformations that were added in to the layer-stacked file specifically for the 
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purposes of finding trails and footpaths. Since it is assumed that trails and footpaths are 

essentially bare earth, the five additional LiDAR transformations were calculated using 

bare earth parameters. Although vegetation transformations can be useful layers for the 

purposes of finding trails, these layers will not be used to locate vegetation here; rather, 

they will be used to find where there is no vegetation. In other words, when searching for 

trails, a value of 0 or close to 0 should be expected at the location of a trail in layers such 

as vegetation roughness, number of LiDAR vegetation returns, and vegetation cover. 

Since most of these layers may contain values closer to 0 where a trail exists, the addition 

of the following layers was deemed necessary: 

 Bare Earth Absolute Roughness 

o The bare earth absolute roughness is calculated as the standard deviation 

of all points within each pixel classified as bare earth elevation. Note: The 

bare earth elevation is calculated by subtracting the vegetation height from 

the data elevation [7]. 

 Bare Earth Local Roughness 

o The bare earth local roughness is calculated just as the absolute roughness, 

however, the local slope has been removed first [7]. 

 Bare Earth Slope (degrees) 

o The bare earth slope is calculated using the mean of all points classified as 

bare earth within each pixel [7]. 

 Bare Earth Aspect (degrees from N) 
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o The bare earth aspect is calculated by finding the aspect of the average 

slope of all points classified as bare earth within each pixel [7]. 

 Ground Point Density 

o The ground point density is calculated by finding the density of all points 

classified as bare earth within each pixel [7]. 

Although this hypothesis will go untested, the use of these five additional transformations 

for the purposes of locating trails should yield better results than if the vegetation 

transformations were used alone. These additional transformations will be stacked on top 

of the eight vegetation transformations mentioned above to form a 13-band, stacked 

LiDAR transformation image cube. 

LiDAR Transformation Stacking 
The eight LiDAR transformations listed above (and for trails analysis, the five 

additional bare earth transformations) are stacked into a single image and normalized so 

that they could be fused with the MaRS HSI data. Some of the transformations contained 

values between 0 and 1 while other transformations would contain values between 0 and 

100 or more. Hence, all of the transformations had to be normalized, or scaled to between 

0 and 1, to be equivalent to the scale of the HSI data. The transformations were first 

stacked into a single image cube in ENVI
®
 using the “Layer Stacking” function. Next, an 

equation and a code program provided by Dr. Ronald Resmini were used to scale the 

transformation between 0 and 1. 
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Equation 1: Data normalization 

 

 

 This equation would result in small subsets of negative values in each of the 

transformations, especially near edge pixels with already low values. These negative 

values had to be removed so that the scale would remain aligned with the HSI data. These 

values were easily set to 0 by using the “Band Math” function in ENVI®, and setting the 

stacked and normalized transformation image cube file greater than 0 using “B1>0.” The 

scale, however, was still not finalized. Since the HSI data files started in an integer 

format, the reflectance values were scaled between 0 and 10,000 instead of 0 to 1. As a 

result, the stacked and normalized LiDAR transformation file simply had to be multiplied 

by 10,000 so that the LiDAR transformation values would read between 0 and 10,000 as 

opposed to 0 and 1. 

Locating Exploitable Tree Species on the National Arboretum Study Site 
 Although it may seem that there are many trees and tree species at the National 

Arboretum, locating ones to satisfy the needs of this study was challenging. Many of the 

plant species at the National Arboretum only occur in pairs, and for this study, it was 

necessary to have more than one or two of a single species for testing and evaluation 

purposes. It would be rather easy to map a pair of trees if these were the only two trees 

used in the training sample during raster processing. An AutoCAD
®
 file containing 

ground truth information on the National Arboretum (as of 2008) was obtained from the 

National Arboretum. This file type can be imported into ArcGIS
®
, but it was found that 
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there was no geolocation information associated with it. As a result, the AutoCAD
®
 file 

had to be manually warped and georeferenced to overlay properly onto the MaRS and 

LiDAR data. The projection and coordinate system of NAD27, UTM Zone 18N, was also 

matched to the data. The flow chart for this GIS process is shown in Figure 11. 

 Once imported into ArcGIS
®
, it was found that the AutoCAD

®
 file contained five 

separate layers: points, lines, polygons, multipatch, and annotation. The point and 

polygon layers were exported as shapefiles and would be used for geolocation and 

subsequent processing. The Georeferencing Toolbar in ArcGIS
®
 was used to accurately 

geolocate the exported shapefiles. The polygon shapefile contained a column called 

“RefName,” which contained an attribute called “Canopy.” These “Canopy” polygons 

represented the canopies of certain tree species at the arboretum. If there were any trees 

species where multiple plants were represented on the ground with large canopies (i.e. 

over 100 m
2
), such larger canopy species would be easier to locate visually in the MaRS 

and LiDAR images for ground truth purposes. These canopy polygons were exported as a 

separate shapefile, and since the shapefiles are georeferenced, the shape area could be 

calculated. Only 115 of the 6,215 shapes contained the canopy attribute; thus the 

canopies of only 115 plants had been extracted (mainly the larger plants). Unfortunately, 

the canopy polygons did not contain the plant names. As a result, the plant names had to 

be extracted from the point shapefiles. A standard “Select by Location” was executed in 

ArcGIS
®
 to find which of the canopy shapes intersected the point shapes. It was 

determined that, of the total canopy shapes that were within the swath widths of the fused 

HSI and LiDAR data, 16 were determined to be of the same species: Liquidambar 
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styraciflua, or American sweetgum. There were, however, five additional American 

sweetgum tree shapefile points in the same general area that did not have associated 

canopy shapefiles, but will most certainly be useful during the ground truth portion of 

this exercise.  

Figure 12 shows a map of the American sweetgum trees and the location of the 

imagery data files. Some of the Arboretum plants, depicted by polygons, lay outside of 

the swath width of the project data, and cannot be used for this exercise. Slight 

differences between the data boundary shapefiles and the two MaRS files shown are due 

to the boundary shapefiles being generated prior to the tie point registration of the MaRS 

and LiDAR data. Background publicly available orthoimagery was acquired from the 

United States Geological Survey (USGS). The true color USGS orthoimagery collected 

in April 2010 has a 0.16 meter GSD [45].  

There were a large number of Quercus phellos, or Willow Oak trees, but these 

were unfortunately outside of the swath width of the project data. Salvador and Resmini 

were able to make use of the Willow Oak for their study because they did not use the 

LiDAR data, which would have limited the swath width of their HSI data and thus their 

use of the Willow Oak for ground truth purposes [38]. 
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Figure 11: This flow chart shows the steps used to determine that the American sweetgum would be a good 

ground truth source for this project. The use of a GIS helped to determine which tree species would be good for 

ground truthing. 
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Figure 12: Map of the location of American sweetgum trees vs. project data files. The two MaRS images (shown 

here subsetted to the LiDAR data) and USGS orthoimagery are displayed as true color composites. Shadows 

extending out from some of the tree canopies could make the location of the tree canopy polygons deceiving to 

the viewer. 

 

Locating Trails for Exploitation 
 In addition to the American sweetgum trees, some trails located within the 

National Arboretum study site were chosen for background materials and target analysis. 

Locating mappable trails for this type of work was not as straightforward as locating a set 

of trees. The National Arboretum AutoCAD
®

 DWG ground truth file that was converted 

to shapefiles did not contain information on trails or footpaths. Moreover, although the 

District of Columbia Geographic Information System (DC GIS) offers some shapefiles 

related to trails in Washington, DC, these shapefiles did not seem to include trail 
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information for the arboretum. As seen in Figure 13, sidewalk and street information was 

included in shapefiles offered by DC GIS. This information was useful because it 

provided ground truth to eliminate any confusion related to what might have been an 

unpaved trail versus a paved sidewalk or street. A few trails were located in MaRS cube 

m080812t1628 coincidentally with LiDAR Strip032. Using the “ROI Tool” in ENVI
®

, 

visible trails were extracted manually as a raster region of interest (ROI). These manually 

extracted trails can also be seen in Figure 13. An important note about this analysis is that 

these trails represent footpaths that blend in with the natural vegetated background. These 

trails most certainly do not represent every type of trail that exists in the environment. For 

example, in arid regions, trails could be the result of substantial foot or vehicular traffic 

dispersing and overturning rock and sand resulting in other types of exposed minerals 

than those visible in the natural background. Trail types are mostly unique to the 

environment in which they exist, and although some generic methods can be used to 

extract such trails, analytic judgments must be made as to what type of analysis must be 

conducted in order to extract them. 
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Figure 13: Map of the location of the trails to be analyzed vs. project data. The trails were extracted manually 

using ArcGIS®. MaRS data cube m080812t1628 is displayed as a true color composite. 

 

Specialized MaRS HSI Data Processing 
 A total of five in-scene methods were chosen to map the American sweetgum in 

MaRS cube m080812t1616. This cube was chosen as opposed to the adjacent cube, 

m080812t1659, because it encompassed a larger number of American sweetgum trees. It 

can be seen in Figure 1, Figure 4, and Figure 12 that both cubes also have large amounts 

of other vegetation species within them, which creates the possibility for false alarms in 

the datasets. Nine pixels were chosen from two separate American sweetgum trees as the 

training ROIs. Thus, the training ROI was a total of 18 pixels. The mean spectral 
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reflectance signature of these 18 pixels was used for mapping. The five algorithms 

chosen for sweetgum mapping were MF, MTMF, ACE, SAM, and principal component 

(PC)-rotated SAM. The PC-rotated SAM was also utilized by Salvador and Resmini 

(2009) [38]. There was interest in using other algorithms such as Mahalanobis distance 

and maximum likelihood, but these algorithms require a larger training sample. Since 

there were already so few American sweetgum trees in the scenes of interest, choosing 

large training ROIs for these other algorithms would not be possible. Figure 14 shows the 

location of the two training ROIs chosen for the in-scene American sweetgum mapping. 

The same ROIs, the same set of LiDAR-derived transformations, and algorithms were 

used for each of the VNIR, SWIR, and VNIR/SWIR analysis. 

 Some of the filters mentioned above need further description. A standard means 

of using the MTMF in ENVI
®
 is to first compute the MTMF using the Minimum Noise 

Fraction (MNF) [10]. The user then opens a 2D scatter plot with the infeasibility on the 

y-axis and the MF score on the x-axis. Pixels with low infeasibility values and high MF 

values are target pixels. Since filter planes must be stacked for this exercise, the 

scatterplot method was not practical. As a result, when referred to herein, MTMF is the 

filter plane that is the result of the MF divided by the infeasibility, which is also scaled 

from 0 to 1. 

Additionally, the SAM filter planes required further processing. Filter planes 

produced by the SAM algorithm produce target pixels with low values. In other words, 

values closer to zero in a SAM filter plane are those that indicate a match. Since the filter 

planes must be stacked into one image for this exercise, not only must all of them be 
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scaled from 0 to 1, but the target pixels must also be all high values. Consequently, the 

SAM filter planes had to be inverted so that the low values became high values. This 

way, the SAM filter planes would be in line with the MF, MTMF, and ACE filter planes 

where values closer to 1 are the target pixels. Dr. Ronald Resmini provided a C code 

program that inverted the SAM filter planes. The PC-rotated SAM worked well for 

Salvador and Resmini when mapping vegetation in the National Arboretum [38]. A 

standard Principal Components Analysis (PCA) is first performed, and then SAM is 

performed on the PCA using the American sweetgum (or trails) training ROIs. These 

signatures are in PCA space as opposed to reflectance space. The same SAM filter plane 

inversion must also be applied to the PC-rotated SAM filter plane so that the target pixels 

have values closer to 1. 

Like the sweetgum analysis, nine pixels were chosen from two separate portions 

of the trails to be mapped as the training ROIs. Thus, the total size of the training ROI 

was 18 pixels. The same five HSI algorithms were chosen for trail mapping: MF, MTMF, 

ACE, SAM, and PC-Rotated SAM. There were, however, some additional HSI filters that 

would be added to the trails analysis in an attempt to make the mapping of such trails 

simpler. Figure 15 shows the location of the two training ROIs chosen for the in-scene 

trails mapping. 
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Figure 14: Location of the training pixels selected for American sweetgum analysis. 
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Figure 15: Location of the training pixels selected for trails analysis. 

 

Additional HSI Filters for Trails Analysis 
Similar to the addition of transformations in the LiDAR processing, several HSI-

derived filters based on various indices were also chosen to be added to the trails 

analysis. Not all of the HSI filters could be generated using every part of the spectrum; 

some of the HSI filters work only in the VNIR, only in the SWIR, and some use bands 

from both the VNIR and the SWIR. Thus, only the HSI filters corresponding to the 

appropriate parts of the spectrum were added to each portion of the analysis. For 
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example, if a filter used only bands from the VNIR, it was added to the VNIR-only 

analysis, and was not included in the SWIR-only analysis or the full VNIR/SWIR 

analysis. The additional HSI filters chosen were the following: 

 Atmospherically Resistant Vegetation Index (ARVI, VNIR-only & VNIR/SWIR) 

 

Equation 2: ARVI [26] 

 

 

o  The ARVI is effectively an enhanced Normalized Difference Vegetation 

Index (NDVI) that is designed to account for atmospheric factors such as 

aerosols [26] [19]. This filter was useful in separating trails from the 

background. Although the reasoning behind the usefulness of ARVI for 

these purposes may not be fully understood, Kaufman and Tanre (1996) 

[26] show that the ARVI value is lower than that of a NDVI value, 

especially in areas where vegetation is not present. As a result, ARVI 

could be providing slightly increased discrimination between background 

areas and fully vegetated areas. 

 Simple Ratio Index (VNIR-only & VNIR/SWIR) 

 

                    

Equation 3: SR [37] 
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o This Simple Ratio Index takes a band of high vegetation chlorophyll 

reflectance from the NIR region of the spectrum, and divides it by a band 

from the red portion of the spectrum. Similar to ARVI, this helps to 

separate trails by indicating areas of healthy and unhealthy vegetation [37] 

[19].  Trails would be associated with stressed vegetation (i.e., unhealthy 

vegetation) due to crushing and trampling associated with trail usage. 

 Structure Intensive Pigment Index (SIPI, VNIR-only & VNIR/SWIR) 

 

      
               

               
 

Equation 4: SIPI [34] 

 

 

o SIPI utilizes bands that are directly linked with vegetation pigments. 

Increases in SIPI values may be linked with increased vegetation canopy 

stress. SIPI may be used to detect physiological stress in plants.  Thus, 

SIPI shows good results with respect to trails and footpaths where 

vegetation has been stressed by knocking down or foot stomping [34] [19]. 

 Vogelmann Red Edge 1 (VNIR-only & VNIR/SWIR) 

 

      
     

     
 

Equation 5: VOGI1 [47] 
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o The two effects of interest here are the foliage chlorophyll concentration, 

and the water content. Trails and footpaths littered with dead or stressed 

vegetation would show little signs of water content and low foliage 

chlorophyll concentrations. The VOGI1 filter showed promising signs of 

trail detection [47] [19].  

 Cellulose Absorption Index (SWIR-only & VNIR/SWIR) 

 

     
 

 
(             )  (      ) 

Equation 6: CAI [15] 

 

 

o The CAI is the only index chosen that involves the use of entirely SWIR 

bands. The primary use of the CAI is to expose dry plant material. This 

formula can be used for finding trails that are a result of stressed 

vegetation in areas where vegetation is predominantly healthy. In this part 

of the SWIR spectrum, if there is stressed vegetation, a spectral absorption 

feature is observed with a minimum at 2.10 µm [15] [19]. 

 Normalized Difference Infrared Index (VNIR/SWIR) 

 

      
               

               
 

Equation 7: NDII [24] 
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o The NDII is useful for the detection of changing water content within 

plant canopies and can be used for vegetation stress detection. These 

factors make it appropriate for detecting trails that may contain stressed 

vegetation. Moreover, this is one of two filters that involve the use of two 

regions of the spectrum simultaneously: the VNIR and the SWIR [24] 

[19].  

 Moisture Stress Index (VNIR/SWIR) 

 

     
       

       
 

Equation 8: MSI [13] 

 

 

o This formula provides a measure of the water content of vegetation. There 

is an absorption for water in the spectrum at 1.599 µm. Vegetation 

containing more water, which is a sign of health, will have a deeper 

absorption at 1.599 µm [13] [19]. 

MaRS HSI and LiDAR Pixel Level Fusion 
With respect to the American sweetgum tree analysis, once each of the five HSI 

filters were calculated using the American sweetgum training ROIs shown in Figure 14 

for each of the VNIR, SWIR, and VNIR/SWIR MaRS HSI cubes, the five filter planes 

could be stacked into a single image using the “Layer Stacking” function in ENVI
®
. For 

the trails analysis, this was accomplished the same way using the trails training ROIs 

shown in Figure 15; however in accordance with Table 7, the number of HSI filters that 
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were used in the stacked HSI filter image varied for the trails analysis. The VNIR-only 

stacked HSI filter image was a 10-band filter image cube, the SWIR-only a 6-band image 

cube, while the VNIR/SWIR a 12-band image cube. As with any image cube (HSI or 

otherwise), a Z-profile can be displayed for each pixel in the cube, including the filter-

only image cubes. These filter-only image cubes, however, can be considered images in 

the filter space, where spectral values are no longer representing ground reflectance; 

rather they are representing filter space values. 

Moreover, the LiDAR transformation plane images could be appended onto the 

stack of HSI filter planes to form a 13-band HSI filter plus LiDAR transformation image 

cube for the sweetgum analysis in which each of the bands is scaled between 0 and 1. 

Figure 16 shows an example of an ENVI
®
 screen capture of the stacked image in the 

ENVI
®
 “Available Bands List,” which includes georeferencing information. In this 

example, processing was completed on the SWIR-only HSI data and fused with the 8 

LiDAR transformations. For the trails analysis, the filter + transformation image cubes 

varied in size with the VNIR-only image cube containing 23 total filter and 

transformation bands, the SWIR-only image 19 total filter and transformation bands, and 

the VNIR/SWIR having 25 total filter and transformation bands.  Using these multi-band 

cubes, the same training ROIs shown in Figure 14 and Figure 15 could be used to apply 

additional filtering. With all of these multi banded images scaled between 0 and 1, each 

pixel formed a signature in the filter space. An example of a signature in this filter space 

could indicate where a pixel within the scene had a maximum height of, for example, 5 

meters, but according to the filter planes from the HSI, did not match the target of 
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interest. Figure 17 shows a fused HSI filter and LiDAR transformation image cube from 

the sweetgum analysis where the red band is displaying height information from the 

LiDAR data (brighter red indicates taller vegetation), the green band is displaying the 

MTMF SWIR-only filter plane (brighter green indicates higher MTMF values for 

American sweetgum), and the blue band is displaying the SAM PC-rotated SWIR-only 

filter plane (brighter blue indicates a better SAM match). Generally, darker values in the 

image, especially black areas, denote areas where there is little to no match at all for the 

American sweetgum. Light areas, such as those that appear white or cyan, denote areas 

where all three of the image planes have high values, which indicates detections for the 

American sweetgum. Three additional filters were applied to this 13-band American 

sweetgum filter cube, which would be considered the final filter results for this part of the 

process: MF, ACE, and SAM. 

Figure 18 shows a fused HSI filter and LiDAR transformation image of the trails 

analysis where the red band is displaying bare earth absolute roughness information from 

the LiDAR data (brighter red indicates rougher bare earth area), the green band is 

displaying the CAI filter plane available from the MaRS SWIR data (brighter green 

indicates lower CAI values, which can correspond to areas where these types of trails are 

established), and the blue band is displaying the MSI filter plane (brighter blue indicates 

areas that contain less water overall). Darker values in the image, especially black areas, 

denote areas where there is little to no match at all for the trails or footpaths. Light areas, 

such as those that appear white or cyan, denote areas where all three of the image planes 

have high values, which could indicate possible detections trails, but more generally, 
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areas of stressed vegetation and flat bare earth. This is an important point because, in the 

case of these trails, not all of the brighter white or cyan values necessarily indicate trails; 

rather, they merely indicate areas of stressed vegetation and flatter bare earth. The trails 

can be easily identified through quick visual inspection of the three color image planes 

shown in Figure 18. Although many linear features colored cyan and white are trails, 

some of these features are simply areas of bare earth. Some bare earth features are similar 

to trails and caused by excessive foot traffic, while other bare earth features are naturally 

occurring. Similar to the sweetgum analysis, three additional filters comprised of MF, 

ACE, and SAM results were applied to these multi banded image cubes. 

This additional filtering amounts to one of three fusion experiments that would be 

performed. The second experiment was to take either the 8 LiDAR transformations from 

the sweet gum analysis or the 13 LiDAR transformations from the trails analysis and 

perform a layer stacking directly with the each of the original VNIR, SWIR, and 

VNIR/SWIR warped HSI cubes. For the sweetgum analysis, each of the VNIR and SWIR 

HSI files would increase from 125 bands to 133 bands with the inclusion of the LiDAR 

transformations, while the full VNIR/SWIR HSI file from the sweetgum analysis would 

increase from 250 bands to 258 bands with the inclusion of the LiDAR transformations. 

For the trails analysis, each of the VNIR and SWIR HSI files would increase from 125 

bands to 138 bands with the inclusion of the LiDAR transformations, while the full 

VNIR/SWIR HSI file from the trails analysis would increase from 250 bands to 263 

bands with the inclusion of the LiDAR transformations. 
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The third experiment was to simply compare the results of the MF, ACE, and 

SAM algorithms run solely on the MaRS HSI data with no incorporation of LiDAR data 

transformations or HSI filters. Reasons for choosing to only use the MF, ACE, and SAM 

for the final filtering included the following: A PC-rotated SAM requires a PCA 

transform and MTMF requires a MNF transform. Running PCA and MNF operations on 

HSI-only data and HSI plus LiDAR transformation data is an option that should be 

explored further. However, running PCA and MNF transforms on filter-only data (i.e., 

multi banded filter and transformation images) may not be appropriate, and warrants 

future investigation. Some reasons include, for example, the MNF transform attempts to 

estimate sensor noise. Estimating sensor noise from already filtered and transformed data 

does not seem sensible since some level of additional noise or error not attributed to 

sensor noise (such as anomalous MF pixels) could have been introduced by the filters. 

Since the PCA and MNF transforms were not processed for any of the experiments that 

involved only the multi banded filter and transformation image cubes, it was decided to 

set these algorithms aside for the final filtering process for consistency. Table 6 illustrates 

each of the experiments along with the filters, transformations, and bands used 

throughout the sweetgum exercise while Table 7 illustrates each of the experiments along 

with the filters, transformation, and bands used throughout the trails exercise. 
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Figure 16: Stacked HSI (SWIR-only) filter and LiDAR transformation image cube as displayed in the ENVI® 

"Available Bands List" window. 
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Table 6: HSI and LiDAR fusion experiments performed for the American sweetgum analysis. The “HSI Filters” 

column refers to the five HSI filters that were included in the 13 band layer stacked filter and transformation 

image cube. The “Final Filters” column refers to the three filters that were performed on the final fused images. 

For consistency, the same three final filters were used on every fused (or non-fused) image. Color has been 

added to the table for visual clarity. Light green represents the VNIR-only experiments, light blue represents the 

SWIR-only experiments, and light orange represents the full VNIR/SWIR experiments.  

 

American sweetgum Experiments 

Experiment Bands Used 5 HSI Filters 

Total 

Number 

of Bands 

in Image 

Cube 

Final 

Filters 

1.1 
8 LiDAR Vegetation + 5 HSI 

filters (VNIR-only) 

MF, MTMF, ACE, 

SAM, SAM PC-

rotated 

13 

MF, ACE, 

SAM 

1.2 

8 LiDAR Vegetation + 125 

HSI spectral bands (VNIR-

only) 

N/A 

133 

MF, ACE, 

SAM 

1.3 
125 HSI Spectral Bands Only 

(VNIR-only) 

N/A 
125 

MF, ACE, 

SAM 

 

2.1 
8 LiDAR Vegetation + 5 HSI 

filters (SWIR-only) 

MF, MTMF, ACE, 

SAM, SAM PC-

rotated 

13 

MF, ACE, 

SAM 

2.2 

8 LiDAR Vegetation + 125 

HSI spectral bands (SWIR-

only) 

N/A 

133 

MF, ACE, 

SAM 

2.3 
125 HSI Spectral Bands Only 

(SWIR-only) 

N/A 
125 

MF, ACE, 

SAM 

 

3.1 
8 LiDAR Vegetation + 5 HSI 

filters (VNIR/SWIR) 

MF, MTMF, ACE, 

SAM, SAM PC-

rotated 

13 

MF, ACE, 

SAM 

3.2 

8 LiDAR Vegetation + 250 

HSI spectral bands 

(VNIR/SWIR) 

N/A 

258 

MF, ACE, 

SAM 

3.3 
250 HSI Spectral Bands Only 

(VNIR/SWIR) 

N/A 
250 

MF, ACE, 

SAM 
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Table 7: HSI and LiDAR fusion experiments performed for the trails / footpaths analysis. The “HSI Filters” 

column refers to the 12 total HSI filters that were included with the 13 LiDAR transformations in either the 22-

band layer stacked VNIR-only filter image cube, the 19-band layer stacked SWIR-only image cube, or the 25-

band layer stacked VNIR/SWIR image cube. The “Final Filters” column refers to the three filters that were 

performed on the final fused images. For consistency, the same three final filters were used on every fused (or 

non-fused) image. Color has been added to the table for visual clarity. Light green represents the VNIR-only 

experiments, light blue represents the SWIR-only experiments, and light orange represents the full VNIR/SWIR 

experiments. 

 

Trails / Footpaths Experiments 

Experiment Bands Used HSI Filters Used 

Total 

Number 

of Bands 

in Image 

Cube 

Final 

Filters 

4.1 

8 LiDAR Vegetation & 5 

Bare Earth + 10 HSI filters 

(VNIR-only) 

MF, MTMF, ACE, 

SAM, SAM PC-

rotated, ARVI, SR, 

SIPI, VOGI1 

23 
MF, ACE, 

SAM 

4.2 

8 LiDAR Vegetation & 5 

Bare Earth + 125 HSI 

spectral bands (VNIR-only) 

N/A 138 
MF, ACE, 

SAM 

4.3 
125 HSI Spectral Bands Only 

(VNIR-only) 
N/A 125 

MF, ACE, 

SAM 

 

5.1 

8 LiDAR Vegetation & 5 

Bare Earth + 6 HSI filters 

(SWIR-only) 

MF, MTMF, ACE, 

SAM, SAM PC-

rotated, CAI 

19 
MF, ACE, 

SAM 

5.2 

8 LiDAR Vegetation & 5 

Bare Earth + 125 HSI 

spectral bands (SWIR-only) 

N/A 138 
MF, ACE, 

SAM 

5.3 
125 HSI Spectral Bands Only 

(SWIR-only) 
N/A 125 

MF, ACE, 

SAM 

 

6.1 

8 LiDAR Vegetation & 5 

Bare Earth + 12 HSI filters 

(VNIR/SWIR) 

MF, MTMF, ACE, 

SAM, SAM PC-

rotated, ARVI, 

CAI, MSI, NDII, 

SR, SIPI, VOGI1 

25 
MF, ACE, 

SAM 

6.2 

8 LiDAR Vegetation & 5 

Bare Earth + 250 HSI 

spectral bands (VNIR/SWIR) 

N/A 263 
MF, ACE, 

SAM 

6.3 
250 HSI Spectral Bands Only 

(VNIR/SWIR) 
N/A 250 

MF, ACE, 

SAM 
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Figure 17: Fused HSI and LiDAR transformation image cube example. Brighter values such as those that 

appear white or cyan denote areas of possible detections for the American sweetgum tree. Darker areas, such as 

those that appear black, denote areas where the filter and transformation planes are displaying prominently low 

values. Areas that are of a single color red, green, or blue, denote areas where only one of the filters or 

transformations was returning higher values. 
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Figure 18: Fused HSI and LiDAR transformation image cube example. Brighter values such as those that 

appear white or cyan denote areas of possible detections for trails and footpaths, but could also indicate bare soil 

and stressed vegetation. Darker areas, such as those that appear black, denote areas where the filter or 

transformation planes are displaying prominently low values. Areas that are of a single color red, green, or blue, 

denote areas where only one of the filters or transformations was returning higher values. 
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Receiver Operator Characteristic (ROC) Curve Generation 
The last step of this process was to evaluate the performance of each of the final 

filters and compare their performance. This evaluation was completed by generating 

ROC curves for each of the final filter planes. The “ROC Curves” function in ENVI
®
 was 

used to execute this process. Prior to generating the ROC curves, ground truth ROIs had 

to be created for both the American sweetgum analysis and also the trails analysis. For 

the American sweetgum analysis, true color MaRS images and LiDAR vegetation 

roughness images were visually compared to the ground truth maps in ArcGIS
®
 

concurrently, and those pixels that represented American sweetgum trees were manually 

identified. Figure 19 shows the ground truth ROI that was manually selected. For the 

trails analysis, true color and SWIR color composite MaRS images were displayed and 

compared with the high resolution USGS orthoimagery in order to manually identify the 

location of the trails of interest. Additionally, some of the HSI filter planes, such as the 

CAI were useful in initially separating the trails from the background. Figure 20 shows 

the trails ground truth ROI that was manually selected. As of August 3
rd

, 2012, all of the 

trails depicted in Figure 20 by ROIs remained in the same location. As mentioned, 

earlier, however, the trails appear to be in better condition in 2012 with less foot traffic 

and/or covered with healthier (less stressed) foliage. 

Using the ground truth ROI, ROC curves could be generated. It is important to 

note that, for consistency in the ROC curves, the final filter planes for the SAM images 

had to be inverted using the software provided by Dr. Ronald Resmini. This inversion 

had to take place so that higher values in the SAM filter planes represented better 

detection results like the MF and ACE filter planes. This was similar to what occurred 
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prior to the HSI filter stacking. Each ROC curve contained 100 points for smoothness 

with the Probability of detection (Pd) on the y-axis and the Probability of false alarm (Pf) 

on the x-axis. 

Finally, single metric had to be used in order to compare the ROC curves. This 

could be achieved by calculating the area under each of the ROC curves, or more simply 

the area under the curve (AUC). More area under a ROC curve indicates a better 

performance because this would account for a higher Pd and a lower Pf. This integration 

was performed using the Trapezoidal rule, uniform method, which is one of the most 

straightforward ways to calculate the AUC [11]. The following equation was used: 

 

∫  ( )  
 

 

  
 

 
∑(       )( (    )   (  ))

 

   

 

Equation 9: Trapezoidal rule (non-uniform grid) as implemented 

 

 

In Equation 9, “i” refers to each ROC curve sampling interval, “N” refers to the total 

number of steps or samples (100), while “X” refers to the Pf value and “f(X)” refers to the 

Pd value. 
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Figure 19: American sweetgum ground truth ROIs. 
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Figure 20: Trails ground truth ROIs. 
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RESULTS AND DISCUSSION 

In this section, the American sweetgum results will be presented followed by the 

trails results. Results will include ROC curves and AUC charts, which will demonstrate 

the performance of the fusion process and the algorithms used throughout this process. 

American sweetgum VNIR, SWIR, and VNIR/SWIR Analysis 
 Figure 22 through Figure 24 show the ROC curve results for the American 

sweetgum analysis. Table 10 shows the final AUC results for all of the sweetgum ROC 

curves. The table has been color coded for easier visual interpretation. Arbitrary threshold 

values of less than 0.90, between 0.90 – 0.93, and greater than 0.94 were established for 

the color coding. By simple visual inspections of the ROC curves, the MF performed the 

best out of the three final algorithms. Objectively, the MF algorithm had the most 

consistent AUC performance metric at 0.94 for seven out of the nine total sweetgum 

experiments. The MF algorithm performed the worst for the full VNIR/SWIR filters only 

experiment 3.1 with an AUC value of 0.89 while the SAM algorithm performed the best 

in experiment 3.1 with an AUC value of 0.93. Interestingly, the SAM algorithm performs 

the worst overall for the sweetgum experiments with seven of the nine AUC values under 

0.90. This could mean that the spectral signature of the sweetgum tree is more unique 

from the background vegetation than originally anticipated. It was hypothesized that the 

sweetgum ground truth signature would be mixed into background statistics used to build 
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the MF and ACE kernels, and that the demeaning step of data whitening would 

negatively impact the performance of algorithms such as MF and ACE. Since these 

negative impacts are not observed as originally anticipated, the sweetgum signature may 

present some unique qualities, which could warrant further investigation to those 

interested in such analysis. 

 Additionally, the three most consistently large performance gaps occur between 

the MF and SAM algorithms for the full HSI + LiDAR transformations experiments 1.2, 

2.2, and 3.2. The MF performed 13% better in experiments 1.2 and 2.2, while the MF 

performed 16% better in experiment 3.2. In experiment 3.2, although the AUC value for 

MF was consistent with experiments 1.2 and 2.2 with a value of 0.94, the SAM value was 

lower with a value of 0.81. The largest gap, however, was in SWIR-only, HSI-only 

experiment 3.3 where the MF performed 18% better than did the SAM. This result alone 

indicates unique differences between the SWIR portions of the sweetgum reflectance 

spectrum from other SWIR spectra making up the background. 

 Also regarding SWIR-only values, it is surprising to see that some of the 

algorithms for the SWIR-only experiments 2.1 – 2.3 outperformed some of the VNIR-

only experiments 1.1 – 1.3. The filters-only SWIR-only ACE experiment 2.1 performed 

5% better than the filters-only VNIR-only ACE experiment 1.1. Moreover, the filters-

only SWIR-only SAM experiment 2.1 performed 4% better than the filters-only VNIR-

only SAM experiment 1.1. This is surprising since one of the key factors typically used 

for vegetation discrimination is the red-edge portion of the spectrum, which resides in the 

VNIR. 



77 

 

Something that should not be overlooked is the overall general performance of the 

filters and transformation-only experiments 1.1, 2.1, and 3.1 where the AUC values are 

comparable to the rest of the experiments with only minor variations. In some 

experiments such as the SAM SWIR-only experiments 2.1 – 2.3, the filters and 

transformation -only experiment 2.1 outperformed the HSI + LiDAR and HSI-only 

experiments 2.2 and 2.3 by factors of 12% and 16%. The same occurs for the full 

VNIR/SWIR experiments 3.1 – 3.3 where the SAM filters and transformations-only 

experiment 3.1 outperforms the HSI + LiDAR and HSI-only experiments 3.2 and 3.3 by 

factors of 15% and 9%. Moreover, for the VNIR-only MF experiments 1.1 – 1.3, the 

filters and transformations-only experiment 1.1 has the same performance as the HSI + 

LiDAR and HSI-only experiments 1.2 and 1.3 with an AUC value of 0.94. The reason 

this is fascinating is because the filters and transformations-only image cubes are only 

comprised of 13 bands, which by data size, is orders of magnitudes smaller than the size 

of a full HSI data cube. 

The reason these filters-only image cubes present comparable–and in some cases 

better–results can be attributed to many of the filter bands being uncorrelated. It is 

generally understood that HSI image cubes containing more uncorrelated bands allows 

for the extraction of more information [41]. Using a 13-band filter image cube from the 

American sweetgum SWIR-only experiment 2.1, a correlation matrix was generated. The 

correlation matrix is shown in Table 8. It makes sense that many of the LiDAR 

transformations show high correlation since many of the filters are calculated in a similar 

fashion. It also makes sense that the LiDAR transformations do not show correlation to 
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the HSI filters, which is why more information can be extracted from these filters when 

they are fused. Moreover, there is higher correlation between the MF, MTMF, and ACE 

HSI filters, which can be expected because these filters are similar. However, the impact 

that correlation has on the results presented here requires additional consideration. 

 

 One last analysis was conducted to determine if the different algorithm methods 

identified different pixels within the ground truth ROIs. Only experiment 3.1–full 

VNIR/SWIR HSI filters and LiDAR transformations–was selected for this analysis. 

Algorithm results were based on an arbitrary Pf threshold of 0.10. Using a logical 

combination of the algorithm results detailed in Table 9, it was determined that the 

different detection methods do identify different pixels; this is shown in Figure 21. The 

blue ROIs shown in Figure 21 represent the pixels added by the SAM and ACE 

algorithms. Although it appears as though the SAM and ACE algorithms added the most 

pixels, each of the green and red pixels shown in Figure 21are pixels that have been 

added by the other two algorithm combinations in addition to the SAM and ACE 

algorithm combination. As an example, including a MF with the SAM instead of an ACE 

Band (Filter)
Vegetation 

Cover

Number of 

LiDAR 

Vegeation 

Returns

Vegetation 

Height: 

Mean

Vegetation 

Height: 

Range

Vegetation 

Height: 

Maximum

Vegetation 

Height: 

Minimum

Vegetation 

Roughness

Vegetation 

Height: 

Variance

ACE 

Sweetgum

MTMF 

Sweetgum

SAM 

Sweetgum

SAM PC-

Rotated 

Sweetgum

MF 

Sweetgum

Vegetation Cover 1.00 0.84 0.86 0.37 0.84 0.75 0.33 0.13 0.42 0.22 0.69 0.55 0.14

Number of LiDAR Vegeation Returns 0.84 1.00 0.73 0.44 0.75 0.59 0.36 0.18 0.37 0.20 0.59 0.48 0.12

Vegetation Height: Mean 0.86 0.73 1.00 0.38 0.96 0.89 0.35 0.20 0.38 0.17 0.61 0.50 0.08

Vegetation Height: Range 0.37 0.44 0.38 1.00 0.59 0.04 0.97 0.88 0.21 0.14 0.33 0.28 0.09

Vegetation Height: Maximum 0.84 0.75 0.96 0.59 1.00 0.78 0.57 0.41 0.39 0.19 0.62 0.51 0.10

Vegetation Height: Minimum 0.75 0.59 0.89 0.04 0.78 1.00 0.05 0.18 0.32 0.12 0.51 0.42 0.06

Vegetation Roughness 0.33 0.36 0.35 0.97 0.57 0.05 1.00 0.92 0.20 0.13 0.31 0.27 0.09

Vegetation Height: Variance 0.13 0.18 0.20 0.88 0.41 0.18 0.92 1.00 0.11 0.07 0.17 0.14 0.04

ACE Sweetgum 0.42 0.37 0.38 0.21 0.39 0.32 0.20 0.11 1.00 0.73 0.45 0.37 0.63

MTMF Sweetgum 0.22 0.20 0.17 0.14 0.19 0.12 0.13 0.07 0.73 1.00 0.24 0.28 0.94

SAM Sweetgum 0.69 0.59 0.61 0.33 0.62 0.51 0.31 0.17 0.45 0.24 1.00 0.42 0.14

SAM PC-Rotated Sweetgum 0.55 0.48 0.50 0.28 0.51 0.42 0.27 0.14 0.37 0.28 0.42 1.00 0.14

MF Sweetgum 0.14 0.12 0.08 0.09 0.10 0.06 0.09 0.04 0.63 0.94 0.14 0.14 1.00

Table 8: A correlation matrix of the 13-band filter image cube used in American sweetgum experiment 2.1; 

values > 0.75 are color coded red and represent high correlation, while values > 0.50 > 0.75 are color coded 

yellow and represent medium correlation, and values < 0.50 are color coded green and show low correlation. 
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with the SAM showed a 7% improvement in detection based on the arbitrary Pf threshold 

of 0.10. 

 

Table 9: Filter-to-filter analysis for experiment 3.1. This was a logical method of quantifying the addition of 

information by some filter, but not others. 

 
Filter Analysis Based On PFa Threshold of 10% 

Filters 
# of Ground Truth 

Pixels Detected 

Percent of Ground Truth Pixels Detected 

(Total Ground Truth Pixels = 3,289) 

SAM vs MF 1916 58% 

SAM vs ACE 1693 51% 

MF vs ACE 1756 53% 

 

 

 

Figure 21: A graphical display of the filter comparison analysis for experiment 3.1. The analysis was completed 

only on the American sweetgum ground truth pixels to determine the number of target pixels detected by each 

combination of algorithms outlined in Table 9. 
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Figure 22: ROC curves representing American sweetgum experiments 1.1 - 1.3 (VNIR-only) 

 

 

 

 

Figure 23: ROC curves representing American sweetgum experiments 2.1 - 2.3 (SWIR-only) 
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Figure 24: ROC curves representing American sweetgum experiments 3.1 - 3.3 (Full VNIR/SWIR) 
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Table 10: Final American sweetgum AUC results. For ease of visual analysis, values less than 0.90 are color 

coded red, values between 0.90 and 0.93 are color coded yellow, and values equal to or above 0.94 are color 

coded green. Higher numbers indicate a better performance where 0 is the minimum and 1 is the maximum. 

 

Experiment Bands Used 
Final ACE 

AUC Value 

Final MF 

AUC Value 

Final SAM 

AUC Value 

1.1 
8 LiDAR Vegetation + 5 

HSI filters (VNIR-only) 
0.87 0.94 0.89 

1.2 

8 LiDAR Vegetation + 125 

HSI spectral bands (VNIR-

only) 

0.92 0.94 0.83 

1.3 
125 HSI Spectral Bands 

Only (VNIR-only) 
0.88 0.94 0.89 

2.1 
8 LiDAR Vegetation + 5 

HSI filters (SWIR-only) 
0.91 0.93 0.93 

2.2 

8 LiDAR Vegetation + 125 

HSI spectral bands (SWIR-

only) 

0.91 0.94 0.83 

2.3 
125 HSI Spectral Bands 

Only (SWIR-only) 
0.89 0.94 0.80 

3.1 
8 LiDAR Vegetation + 5 

HSI filters (VNIR/SWIR) 
0.86 0.89 0.93 

3.2 

8 LiDAR Vegetation + 250 

HSI spectral bands 

(VNIR/SWIR) 

0.92 0.94 0.81 

3.3 
250 HSI Spectral Bands 

Only (VNIR/SWIR) 
0.91 0.94 0.85 

 

Trails and Footpaths VNIR, SWIR, and VNIR/SWIR Analysis 
 Figure 25 through Figure 27 show the ROC curve results for trails analysis. Table 

11 shows the final AUC results for the trails ROC analysis. Similar to the sweetgum 

analysis, the table has been color coded for easier visual interpretation. Like the 

sweetgum analysis, values less than 0.90, between 0.90 – 0.93, and greater than 0.94 

were established for the color coding. Generally, algorithm performance for the trails 

analysis was quite different than the sweetgum analysis. According to Table 11, the SAM 

algorithm performed the best while the ACE algorithm performed the worst. On the 

contrary, for the sweetgum analysis, the ACE algorithm performed in the middle while 
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the SAM algorithm performed the worst. This may indicate that since the trails are 

comprised of mainly background vegetation and dirt materials, these materials are not 

standing out from the background like the sweetgum trees. As a result, for the ACE 

algorithm throughout, and for the filters and transformations-only MF experiments 5.1 

and 6.1, the average spectral signature of the trails mixes in with the background 

vegetation spectra as originally anticipated. Consequently, the trails ground truth 

signature mixes into statistics used to build the MF and ACE kernels, and the demeaning 

step of data whitening negatively impacts the performance of the ACE algorithms 

throughout, and the MF algorithm for filters and transformations-only experiments 5.1 

and 6.1.  

 Although slight, SAM algorithm performance trends upwards with added SWIR 

bands. Differences are no more than 1% - 2%. The largest AUC gaps for the trails 

analysis occur between the performance of the SAM algorithm and the ACE algorithm. 

For the full VNIR/SWIR experiments 6.2 (HSI + LiDAR) and 6.3 (HSI-only), the SAM 

algorithm performs 9% and 10% better respectively. As more bands of HSI and LiDAR 

transformation information are added for this non-unique trails problem, the performance 

of the ACE algorithm degrades. More bands of information are creating an 

overabundance of vegetation background, which is causing the trails ground truth 

signature to mix into the background statistics, and thus degrade overall ACE algorithm 

performance. 
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Figure 25: ROC curves representing trails experiments 4.1 - 4.3 (VNIR-only) 

 

 

Figure 26: ROC curves representing trails experiments 5.1 - 5.3 (SWIR-only) 
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Figure 27: ROC curves representing trails experiments 6.1 - 6.3 (full VNIR/SWIR) 
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Table 11: Final trails AUC results. For ease of visual analysis, values less than 0.90 are color coded red, values 

between 0.90 and 0.93 are color coded yellow, and values above 0.94 are color coded green. Higher numbers 

indicate a better performance where 0 is the minimum and 1 is the maximum. 

 

Experiment Bands Used 
Final ACE 

AUC Value 

Final MF 

AUC Value 

Final SAM 

AUC Value 

4.1 

8 LiDAR Vegetation & 

5 Bare Earth + 10 HSI 

filters (VNIR-only) 

0.93 0.94 0.96 

4.2 

8 LiDAR Vegetation & 

5 Bare Earth + 125 HSI 

spectral bands (VNIR-

only) 

0.91 0.94 0.94 

4.3 
125 HSI Spectral Bands 

Only (VNIR-only) 
0.89 0.94 0.96 

5.1 

8 LiDAR Vegetation & 

5 Bare Earth + 6 HSI 

filters (SWIR-only) 

0.91 0.89 0.95 

5.2 

8 LiDAR Vegetation & 

5 Bare Earth + 125 HSI 

spectral bands (SWIR-

only) 

0.91 0.94 0.95 

5.3 
125 HSI Spectral Bands 

Only (SWIR-only) 
0.91 0.94 0.95 

6.1 

8 LiDAR Vegetation & 

5 Bare Earth + 12 HSI 

filters (VNIR/SWIR) 

0.91 0.89 0.96 

6.2 

8 LiDAR Vegetation & 

5 Bare Earth + 250 HSI 

spectral bands 

(VNIR/SWIR) 

0.88 0.94 0.96 

6.3 
250 HSI Spectral Bands 

Only (VNIR/SWIR) 
0.87 0.94 0.96 
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CONCLUSION 

Several conclusions and recommendations for future work can be derived from 

this project. The addition of information from the SWIR can be valuable for some cases 

of vegetation mapping throughout the HSI and LiDAR fusion process, but it remains 

inconclusive for others. Algorithm performance is effected by unique versus non-unique 

targets sets. The addition of SWIR for non-unique background vegetation enhanced 

results. Thus, if available, the SWIR should always be used, and not discarded, to 

enhance detection results on a case dependent basis.  

In looking at the results section, the method chosen to measure the performance of 

the algorithms operating on the fused HSI and LiDAR data should probably be altered. 

Graphically, it appears that the results are there, especially in Figure 17 and Figure 18. 

Although no screen captures are provided here, when looking at raw MF and ACE filter 

planes, clumps of trees representing the American sweetgum are clearly visible to the 

eye, and the same goes for the trails analysis. The pixel-by-pixel ROC curve method of 

measuring performance is probably not appropriate for such high abundance targets like 

vegetation and background materials. Rather, these methods are good for low abundance 

targets and algorithm performance such as the classic example of finding plastic in a 

large body of water where the plastic would clearly stand out from the water background. 

Accordingly, object based methods as opposed to pixel based methods of measuring 
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performance may have been more appropriate here. For example, if there were 12 

sweetgum trees in the scene or 4 trails in the scene, instead of counting the number of 

pixels that were detected and number false alarmed, simply counting the number of trees 

detected in general by identifying clumps of pixels that represent these types of large 

targets. 

Next is the idea of low and high abundance target mapping, generally. High 

abundance targets were chosen for this exercise, which can in some cases be much more 

difficult to map with accuracy. For example, Mundt et al. (2006) had success in mapping 

sagebrush vegetation using HSI and LiDAR fusion, but this vegetation was in an arid 

region, and was therefore a low abundance target, which made it easier to map. 

Furthermore, there were no efforts during this exercise to reduce data 

dimensionality. Some quick data dimensionality reduction tests were performed on the 

data used for this project, and some of the results were orders of magnitude better than 

the results shown in Table 10 and Table 11. The idea of reducing data dimensionality on 

fused HSI and LiDAR data could be a research topic alone. For example, does it make 

sense to reduce the data dimensionality of a fused HSI and LiDAR transformation s-only 

image such as those images presented in experiments 1.1, 2.1, 3.1, 4.1, 5.1, and 6.1? If so, 

how many filters and / or transformations should be included and by how much should 

the dimensionality be reduced? What are the thresholds of reduction? The same questions 

could be asked for an HSI image where the LiDAR transformations have been added as 

extra bands such as those in experiments 1.2, 2.2, 3.2, 4.2, 5.2, and 6.2. Although it was 

tempting to produce and present results from such data dimensionality reduced data sets, 
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true research should be completed in this respect, which is outside of the bounds of this 

project. 

Additionally, the idea of data compression from stacked filter and transformation 

images was thought provoking. Given the amount of memory computers have now, raw 

data can technically be processed in the memories of computers without ever actually 

being stored. As seen in Table 10 and Table 11, the stacked filters and transformation-

only images did almost as well, and in some cases better, than the full HSI images. 

Remarkably, these stacked filter and transformation images are only between 20Mb and 

40Mb in size. The warped HSI images are all over 100Mb in size. In fact, some of the 

warped HSI images that also contain the added LiDAR transformation bands are over 

half a gigabyte in size. This goes to show that if filtering the final filter and 

transformation planes can produce equally or even better results, perhaps some of the 

original data can be discarded, or perhaps never stored to begin with if all of it was 

processed in the computer memory. 

 Finally, an alternative means of weighting or classifying the HSI and LiDAR 

transformation planes during pixel level fusion should be investigated. Using the LiDAR 

height transformation as the example, this transformation was simply added in as an 

additional band. Although this is not bad information, the height band is being interlaced 

with the rest of the filter and transformation planes and some of the information possibly 

lost. Perhaps there could be an option where this transformation is set specifically as a 

height plane, and each pixel is processed accordingly. In other words, if the user were 

looking for a type of vegetation with certain spectral characteristics that were at an exact 
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height of 5 meters above the ground, computer software such as ENVI
®
 could recognize– 

on a pixel level using a raster format within a multi banded file–which pixels are worthy 

of processing and which ones are not based on this single band of information. This could 

almost be viewed as a hybrid feature level and pixel level style of fusion. Other LiDAR 

transformation planes, such as vegetation roughness or surface roughness could possibly 

be treated the same way. 

This project ends with 3D perspective views of the National Arboretum. Figure 

28 and Figure 29 show the overall quality of the LiDAR data fused with the HSI data, 

and in particular, the precision of the georegistration between the two datasets. The 3D 

perspective views were generated using E3De™. 
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Figure 28: HSI and LiDAR 3D perspective view of the American sweetgum ground truth area. The LiDAR 

closely matches the hand held photo captured above. The photo mainly encompasses American sweetgum trees; 

however a willow oak and a pine species are visible in the handheld image. 
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Figure 29: HSI and LiDAR 3D perspective view of the trails area. It is important to note here that the color 

presented over top the LiDAR is a fused HSI and LiDAR color image. The same color combination was used in 

Figure 18. This particular color filter and transformation image combination clearly shows the location of the 

trail through the Arboretum. 



93 

 

REFERENCES 

 



94 

 

REFERENCES 

[1] Abrams, M.J., Ashley, R.P., Rowan, L.C., Goetz, A.F.H., and Kahle, A.B., "Mapping 

of hydrothermal alteration in the Cuprite mining district, Nevada using aircraft 

scanner images for the spectral region 0.46-2.36 μm," Geology, v. 5, p. 713-718 

(1977). 

 

[2] Applied Imagery Copyright © 2011. URL: http://www.appliedimagery.com  

 

[3] Asner, G.P. and Lobell, D.B., "A Biogeophysical Approach for Automated SWIR 

Unmixing of Soils and Vegetation," Remote Sensing of The Environment, V. 74, 

99–112 (2000). 

 

[4] Asner, G.P., Knapp, D.E., Kennedy-Bowdoin, T., Jones, M.O., Martin, R.E., 

Boardman, J., Hughes, R. F., "Invasive species detection in Hawaiian rainforests 

using airborne imaging spectroscopy and LiDAR," Remote Sensing of The 

Environment 112:1942-1955 (2008). 

 

[5] Asner, G.P., Knapp, D.E., Kennedy-Bowdoin, T., Jones, M.O., Martin, R.E., 

Boardman, J., Field, C.B., "Carnegie Airborne Observatory: in-flight fusion of 

hyperspectral imaging and waveform light detection and ranging (wLiDAR) for 

three-dimensional studies of ecosystems," Journal of Applied Remote Sensing, 

Vol. 1, 013536, 1-21 (2007). 

 

[6] “The Benefits of the 8 Spectral Bands of WorldView-2,” Digital Globe [white paper] 

(2009). URL: http://worldview2.digitalglobe.com/docs/WorldView-2_8-

Band_Applications_Whitepaper.pdf  

 

[7] BCAL LiDAR Tools ver 1.4.2. Idaho State University, Department of Geosciences, 

Boise Center Aerospace Laboratory (BCAL), Boise, Idaho. URL: 

http://bcal.geology.isu.edu/tools-2/envi-tools  

 

[8] Bernstein, L.S., Adler-Golden, S.M., Ratkowski, A.J., “In-scene-based atmospheric 

correction of uncalibrated VISible-SWIR (VIS-SWIR) hyper- and multispectral 

imagery,” in SPIE proceedings, Europe Security and Defense, Remote Sensing, 

V. 7107 (2008). 

 

http://www.appliedimagery.com/
http://worldview2.digitalglobe.com/docs/WorldView-2_8-Band_Applications_Whitepaper.pdf
http://worldview2.digitalglobe.com/docs/WorldView-2_8-Band_Applications_Whitepaper.pdf
http://bcal.geology.isu.edu/tools-2/envi-tools


95 

 

[9] Boardman, J.W., and Kruse, F.A., “Mapping target signatures via partial unmixing of 

AVIRIS data: in Summaries, Fifth JPL Airborne Earth Science Workshop, JPL 

Publication 95-1, v. 1, p. 23 – 26. 

 

[10] Boardman, J.W., “Leveraging the high dimensionality of AVIRIS data for improved 

sub-pixel target unmixing and rejection of false positives: mixture tuned matched 

filtering,” In: 7th JPL Airborne Geoscience Workshop, pp. 55-56 (1998). 

 

[11] Bradley, A.P., “The use of the area under the ROC Curve in the evaluation of 

machine learning algorithms,” Pattern Recognition, V. 30, No.7, pp 1145-1159 

(1997). 

 

[12] Brook, A., Ben-Dor, E., Richter, R., “Fusion of Hyperspectral Images and LiDAR 

Data for Civil Engineering Structure Monitoring,” in Hyperspectral 2010 

Workshop Proceedings (2010). 

 

[13] Ceccato, P., Flasse, S. Tarantola, Jacquemoud, S. and Gregoire, J.M., “Detecting 

Vegetation Leaf Water Content Using Reflectance in the Optical Domain,” 

Remote Sensing of Environment V. 77, Pgs. 22-33 (2001). 

 

[14] Dalponte, M., Bruzzone, L., Gianelle, D., "Fusion of Hyperspectral and LIDAR 

Remote Sensing Data for Classification of Complex Forest Areas," IEEE 

Transactions on Geoscience and Remote Sensing, Vol. 46, No. 5, 1416-1427 

(2009). 

 

[15] Daughtry, C.S.T., Hunt, E.R. Jr., and McMurtrey, E.R. III., “Assessing Crop 

Residue Cover Using Shortwave Infrared Reflectance,” Remote Sensing of 

Environment V. 90, Pgs. 126-134 (2004). 

 

[16] ESRI 2012. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems 

Research Institute. URL: http://www.esri.com 

 

[17] Evans, J.S., Hudak, A.T., Faux, R., Smith, A.M.S., “Discrete Return Lidar in Natural 

Resources: Recommendations for Project Planning, Data Processing, and 

Deliverables.” Remote Sensing. 1(4):776-794 (2009). 

 

[18] Exelis Visual Information Solutions. Copyright © 2012. Boulder, Colorado. URL: 

http://www.exelisvis.com/language/en-US/ProductsServices/ENVI.aspx  

 

[19] Exelis Visual Information Solutions, “Vegetation Indices,” ENVI® 5.0 Help Files. 

Boulder, Colorado: Exelis Visual Information Solutions (2012). 

 

 

http://www.esri.com/
http://www.exelisvis.com/language/en-US/ProductsServices/ENVI.aspx


96 

 

[20] Geerling, G.W., Labrador-Garcia, M., Clevers, J.P.G.W., Ragas, A.M.J., Smits, 

A.J.M., "Classification of floodplain vegetation by data fusion of spectral (CASI) 

and LiDAR data," International Journal of Remote Sensing, 28:19, 4263 - 4284 

(2007). 

 

[21] Goetz, A.F.H., Vane, G., Solomon, J.E., Rock, B.N., "Imaging spectrometry for 

earth remote-sensing," Science, V. 228, 1147–1153 (1985). 

 

[22] Hackwell, J.A., Warren, D.W., Bongiovi, R.P., Hansel, S.J., Hayhurst, T.L., Mabry, 

D.J., Sivjee, M.G., & Skinner, J.W., "LWIR/ MWIR imaging hyperspectral sensor 

for airborne and ground-based remote sensing," SPIE, 2819, 102– 107 (1996). 

 

[23] Hall, R.K., Watkins, R.L., Heggem, D.T., Jones, K.B., Kaufman, P.R., Moore, S.B., 

Gregory, S.J., "Quantifying structural physical habitat attributes using LiDAR and 

hyperspectral imagery," Environmental Monitoring and Assessment 159:63-83 

(2009). 

 

[24] Jackson, T.L., Chen, D.M., Cosh, F.L., Anderson, M.C., Doriaswamy, W.P., and 

Hunt, E.R., “Vegetation Water Content Mapping Using Landsat Data Derived 

Normalized Difference Water Index for Corn and Soybeans,” Remote Sensing of 

Environment V. 92, Pgs. 475-482 (2004). 

 

[25] Jones, T.G., Coops, N.C., Sharma, T., "Assessing the utility of airborne 

hyperspectral and LiDAR data for species distribution mapping in the coastal 

Pacific Northwest, Canada," Remote Sensing of Environment, V. 114, 2841-2852 

(2010). 

 

[26] Kaufman, Y.J. and Tanre, D.,  “Strategy for Direct and Indirect Methods for 

Correcting the Aerosol Effect on Remote Sensing: from AVHRR to EOS-

MODIS,” Remote Sensing of Environment V. 55, Pgs. 65-79 (1996).  

 

[27] Koetz, B., Morsdorf, F., van der Linden, S., Curt, T., Allgöwer, B., "Multi-source 

land cover classification for forest fire management based on imaging 

spectrometry and LiDAR data," Forest Ecology and Management, V. 256, 263-

271 (2008). 

 

[28] Kraut, S., Scharf, L. L., and Butler, R.W., “The adaptive coherence estimator: a 

uniformly most-powerful-invariant adaptive detection statistic,” IEEE Trans. on 

Signal Processing, vol. 53, no. 2, pp. 427-438 (2005). 

 

[29] Kruse, F.A., "Use of Airborne Imaging Spectrometer Data to Map Minerals 

Associated with Hydrothermally Altered Rocks in the Northern Grapevine 

Mountains, Nevada, and California," Remote Sensing of The Environment. V. 24, 

31 - 51 (1988). 



97 

 

[30] Li, W., Guo, Q., Jakubowski, M.K., Kelly, M., "A New Method for Segmenting 

Individual Trees from the Lidar Point Cloud," Photogrammetric Engineering & 

Remote Sensing, Vol. 78, No. 1, 75-84 (2012). 

 

[31] Mundt, J.T., Streuker, D.R., Glenn, N.F., "Mapping Sagebrush Distribution Using 

Fusion of Hyperspectral and Lidar Classifications," Photogrammetric Engineering 

& Remote Sensing ,Vol. 72, No. 1. 47–54 (2006). 

 

[32] Onojeghuo, A.O., and Blackburn, G.A., “Optimising the use of hyperspectral and 

LiDAR data for mapping reedbed habitats,” Remote Sensing of the Environment. 

V. 115, 2025 – 2034 (2011). 

 

[33] Overwatch  Systems, Ltd, Copyright © 2012. All Rights Reserved. Overwatch 

Systems, Ltd. is an indirect wholly owned subsidiary of Textron Inc. URL: 

http://www.overwatch.com/products/remote_view_pro.php  

 

[34] Penuelas, J., Baret, F., and Filella, I., “Semi-Empirical Indices to Assess 

Carotenoids/Chlorophyll-a Ratio from Leaf Spectral Reflectance,” 

Photosynthetica V. 31, Pgs. 221-230 (1995). 

 

[35] Pohl, C. and van Genderen, J.L., "Multisensor image fusion in remote sensing: 

concepts, methods and applications," International Journal of Remote Sensing, 

vol. 19, no. 5, 823-854 (1998). 

 

[36] Ribeiro da Luz, B., and Crowley, J.K., “Identification of plant species by using high 

spatial and spectral resolution thermal infrared (8.0–13.5 μm) imagery,” Remote 

Sensing of Environment, V. 114 Pgs. 404-413 (2010). 

 

[37] Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W., “Monitoring Vegetation 

Systems in the Great Plains with ERTS,” In the Third ERTS Symposium, NASA 

SP-351 I: 309-317 (1973). 

 

[38] Salvador, M.Z., and Resmini, R.G., "Comparison of spectral matching techniques 

for vegetation species delineation of the National Arboretum," in SPIE 

Proceedings, Algorithms and Technologies for Multispectral, Hyperspectral, and 

Ultraspectral Imagery XV (2009). 

 

[39] Sankee, T., and Glenn, N., “Landsat-5 TM and LiDAR Fusion for Sub-pixel Juniper 

Tree Cover Estimates in a Western Rangeland,” Photogrammetric Engineering & 

Remote Sensing. V. 77. No. 12. Pgs. 1241 – 1248 (2011). 

 

[40] Schmidt, K.S., and Skidmore, A.K., “Spectral discrimination of vegetation types in a 

coastal wetland,” Remote Sensing of The Environment, V. 85 Pgs. 92-108 (2002). 

 

http://www.overwatch.com/products/remote_view_pro.php


98 

 

[41] Schowengerdt, R. A., “Remote Sensing: Models and Methods for Image 

Processing,” Academic Press (1997). 

 

[42] Simi, C., and Reith, E., "The Mapping Reflected-energy Sensor–MaRS: A New 

Level of Hyperspectral Technology," in SPIE Proceedings, Imaging Spectrometry 

XIV (2009). 

 

[43] Streutker, D. and Glenn, N., “LiDAR measurement of sagebrush steppe vegetation 

heights,” Remote Sensing of Environment, V. 102, Pgs. 135-145 (2006). 

 

[44] Teillet, P.M., “Image correction for radiometric effects in remote sensing,” 

International Journal Remote Sensing. V. 7. Pgs. 1637 – 1651 (1986). 

 

[45] USGS Orthoimagery. Obtained from the National Map Viewer. URL: 

http://cumulus.cr.usgs.gov/  

 

[46] Vaughan, R.G., Calvin, W.M., Taranik, J.V., "SEBASS hyperspectral thermal 

infrared data: surface emissivity measurement and mineral mapping," Remote 

Sensing of Environment. V. 85, 48 – 63 (2003). 

 

[47] Vogelmann, J.E., Rock, B.N., and Moss, D.M., “Red Edge Spectral Measurements 

from Sugar Maple Leaves,” International Journal of Remote Sensing V. 14 Pgs. 

1563-1575 (1993). 

 

[48] Wehr, A. and Lohr, U., "Airborne laser scanning—an introduction and overview," 

ISPRS Journal of Photogrammetry and Remote Sensing, V. 54, 68–82 (1999). 

 

[49] West, M.S. and Resmini, R.G., "Hyperspectral imagery and LiDAR for Geological 

Analysis of Cuprite, Nevada" in SPIE Proceedings, Algorithms and Technologies 

for Multispectral, Hyperspectral, and Ultraspectral Imagery XV (2009). 

http://cumulus.cr.usgs.gov/


99 

 

CURRICULUM VITAE 

Joshua F. Magarick graduated from the Friends School of Baltimore, in 2000. He 

received his Bachelor of Arts from the University of Colorado at Boulder in 2004. He has 

been employed with the National Geospatial-Intelligence Agency for over 7 years. 


