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ABSTRACT 

A STATISTICAL COMPARISON OF SIDEWALK SLOPES DERIVED FROM 
MULTI-RESOLUTION DIGITAL ELEVATION MODELS IN SUPPORT OF 
ACCESSIBILITY 

Robin E. Rodgers, M.S. 

George Mason University, 2015 

Thesis Director: Dr. Kevin M. Curtin 

 

Sidewalk slope is a major factor taken into consideration when visually or 

mobility impaired pedestrians select a route to their destination. In an effort to improve 

campus accessibility, a testbed pedestrian routing environment, called the George Mason 

University (GMU) Geocrowdsourcing Testbed, has been developed by researchers in the 

Department of Geography and GeoInformation Science (GGS) at GMU in Fairfax, 

Virginia. In order to determine how to best incorporate slope as an attribute in the 

testbed’s sidewalk network, this research considers the effect that using Digital Elevation 

Models (DEMs) of varying spatial resolutions has on the accuracy of slope calculations. 

Lower resolution DEMs are often free and more easily acquired than higher resolution 

DEMs, such as those derived from Light Detection And Ranging (LiDAR). Therefore, if 

a lower resolution DEM sufficiently captures variations in slope, it may be deemed 

acceptable to use for this type of application, when a high resolution DEM is not 
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available. To test this proposition, slope values for the sidewalk network were derived 

from four DEMs with the following resolutions: 1/3 arc-second (about ten meters); five 

meters; 1/9 arc-second (about three meters); and one meter (m). The slope values from 

the lower resolution DEMs were statistically analyzed and compared to the high 

resolution 1 m DEM and to each other to detect significant differences. The results 

conveyed that the differences between the slope values derived from the lower resolution 

DEMs and the slope values calculated from the 1 m DEM were statistically significant. 

Consequently, it was concluded that, for the incorporation of slope in the GMU 

Geocrowdsourcing Testbed, a high resolution (1 m or higher) DEM needs to be used for 

slope calculations, to provide the most accurate results for visually and mobility impaired 

pedestrian routing. 
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CHAPTER ONE 

1.1 Introduction 
A research team with the Department of Geography and GeoInformation Science 

(GGS) at George Mason University (GMU) in Fairfax, Virginia (VA) has developed an 

application called the GMU Geocrowdsourcing Testbed (Figure 1). It is designed to 

collect transient navigation obstacle information and provide routing and data 

visualization, specifically for visually and mobility-impaired students (Rice, Curtin, Paez, 

Seitz, & Qin, 2013). Crowdsourcing is incorporated to allow contributors to provide up-

to-date information about barriers (such as construction cones) that are present, whether 

temporarily or long-term, along pedestrian routes across campus. It is likely that visually 

and mobility impaired students traverse paths with which they are familiar. Thus, the 

presence of unexpected obstructions can be quite inconvenient, not to mention potentially 

dangerous, and the student will have to find an alternate, accessible route. The GGS 

Department’s testbed web application can dynamically provide alternate routes based on 

obstacle information entered. However, these new routes may present other challenges, 

such as directing students to travel on sidewalks that have steeper slopes and may not be 

easy to manage. For safety, students requiring accessible paths may opt to take a longer 

route rather than a shorter one, if that means not having to deal with more precarious 

sidewalk conditions.  
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Earlier versions of the testbed did not incorporate slope, and it was discovered, 

upon asking students to validate the results provided by the routing algorithm, that slope 

was an important factor that had been neglected. By incorporating the slope of sidewalks 

and including it as an impedance factor in the testbed routing algorithm, route options, 

with or without obstacles present, have a higher chance of being optimal for the student, 

with respect to the quickest, safest path. While the current routing algorithm used in the 

testbed does take slope into account as an impedance factor, it is possible that the slope 

values are not as accurate as they should be to provide a truly accessible route. The slope 

values currently in use were derived from a 1/9 arc-second (about three-meter resolution) 

digital elevation model (DEM) obtained from the United States Geological Survey’s 

(USGS’s) National Elevation Dataset (NED).  
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Figure 1 GMU Geocrowdsourcing Testbed (Source: Qin et al., 2015) 
 

GMU has produced a Physical Accessibility Map of the Fairfax Campus (Figure 

2), and while it does provide students with a good idea of the accessible (Americans with 

Disabilities Act [ADA] compliant) sidewalks, entrances, and parking spots across 

campus, it is static in nature (a Portable Document Format [PDF] file). As such, it cannot 

incorporate dynamic obstacle information that may impact the route a disabled student 

would take. It is also not frequently updated. As of November 2015, the map available 

online was revised in August 2012. The ADA compliant sidewalks data and other map 

data could not be acquired for analysis and comparison with the slope results derived in 

this research because the data were not available in a file format supported by Geographic 
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Information Systems (GIS) software. Fortunately, the GMU Geo-crowdsourcing Testbed 

will allow the same information to be available to students in an interactive environment, 

enhancing their awareness of current campus conditions and giving them the security of 

knowing that an alternate route to their destination can be calculated dynamically based 

on the latest information available.  

 

 
Figure 2 GMU Fairfax Campus Physical Accessibility Map (Source: GMU, 2012) 

 

 
Elevation data are required in order to calculate slope using GIS software. Light 

Detection And Ranging (LiDAR) can provide high resolution elevation data, but it is 

typically not freely available, and, even if it is, it may not be available for the desired 

study area. Other elevation data, such as the USGS NED, are more readily available, but 
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the quality of the resolution is lower. Standard lower resolution DEMs available through 

the USGS include 2 arc-second (about 60 meters), 1 arc-second (about 30 meters), 1/3 

arc-second (about 10 meters) and 1/9 arc-second (about 3 meters) DEMs. In January 

2015, a new project called the 3D Elevation Program (3DEP), managed by the USGS, 

began. Its goal is to have free, publicly available high resolution elevation data (LiDAR) 

coverage of the entire United States (U.S.) by 2022 (Carswell, 2013). In October 2015, 

high resolution 1 meter (m) DEMs became available over GMU and the surrounding 

areas. Nevertheless, much of the country still does not have freely available high 

resolution elevation data.  

The objective of this research was to determine if the slope results from any of the 

lower resolution DEMs considered were comparable to the results obtained from the high 

resolution 1 m DEM. This was achieved by visually and statistically comparing slope 

values calculated from three lower resolution (3 m, 5 m, and 10 m) DEMs to the slope 

values from the LiDAR-derived 1 m DEM, which was used as the ground truth dataset. If 

the slope results from one of the lower resolution DEMs were acceptable for this 

application (namely, determining the slopes of sidewalks in order to identify them as 

ADA compliant), then using a lower resolution DEM would be a viable option, at least 

until a higher resolution DEM becomes freely available over the desired area. The study 

area selected for this endeavor was the GMU main campus in Fairfax, VA.  

1.2 Content Organization 
This research is divided into several chapters in order to present the information 

in an organized manner. Chapter 2 discusses relevant background information, as well as 
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similar research that has been conducted in related applications. Chapter 3 describes the 

datasets that were acquired to perform the analysis and identifies the selected study area. 

Chapter 4 steps through the data preparation process and analytical methods used to 

assess the relative accuracies of the slope values. Since ground truth data for sidewalk 

slopes were not available, DEM elevation values were assessed for accuracy by 

comparing them to field surveyed spot elevation points using the root mean square error 

(RMSE). Given the high accuracy of the 1 m DEM, the slope values derived from it were 

considered to be ground truth, enabling accuracy assessments of slope values derived 

from the other DEMs using GIS software to be conducted. The differences in the slopes 

produced from each DEM were first observed visually by color-coding the sidewalks by 

percent slope categories. Statistical comparisons were then made using paired t-tests and 

Wilcoxon signed-rank tests to identify significant differences in slope results between 

DEM pairs. Chapter 5 outlines the results obtained from the analysis and then moves into 

a discussion. All of the lower resolution DEMs provided slope results that were 

statistically significant when compared with the slope results obtained from the high 

resolution DEM. Therefore, for similar applications at this scale requiring a high level of 

slope detail to be captured, a high (1 m or higher) resolution DEM provides the most 

accurate results. Lastly, Chapter 6 presents conclusions and recommended future 

research. Ultimately, it is the combination of a clean, systematically digitized sidewalk 

dataset, a well-chosen slope calculation algorithm, and accurate, high resolution elevation 

data that leads to trustworthy slope results. In other words, it is the quality of the input 

data that will determine the quality of the final results.  
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CHAPTER TWO 

2.1 Definitions: Slope and Cross-Slope 
Ideally, when conducting pedestrian routing, two types of slope need to be taken 

into account: slope (also called grade) and cross-slope. Slope is defined as the slope 

parallel to the direction of travel. It is calculated by dividing the vertical change in 

elevation (rise) by the horizontal distance covered (run). Axelson et al. define (1999) 

running slope as the average slope along a contiguous slope, and maximum slope is 

defined as a limited section of path that exceeds the typical running slope. It is important 

to note that, if the maximum slope is relatively steep, even paths with moderate running 

slopes can be difficult to traverse. Figure 3 demonstrates this concept: the running slope 

(grade) is only 5 percent (%), but the maximum slope (grade) is 14%.  

 

 

Figure 3 Running Grade versus Maximum Grade (Source: U.S. Department of Transportation [DOT] Federal 
Highway Administration [FHWA], 2014) 
 



 8   
 

Cross-slope is the slope perpendicular to the direction of travel. Unlike grade, 

cross-slope can be measured only at specific points. Cross-slope is calculated by taking 

measurements at intervals throughout a section of sidewalk and then averaging the 

values. As prior research (Souleyrette, Hallmark, Pattnaik, O’Brien, & Veneziano, 2003), 

which will be discussed in the following paragraphs, has shown, even a high 

(approximately one foot) resolution DEM was unsuitable for accurately calculating cross-

slopes on highway segments.  

2.2 Challenges Faced by Pedestrians with Disabilities  
Easily accessible sidewalks for pedestrians have become a necessity in 

increasingly urban environments, where mass transportation systems are often more 

convenient than commuting by privately owned vehicles. As challenging as it can be to 

identify an ideal pedestrian route, it is even more difficult for pedestrians with 

disabilities, whether physical or visual. When new routes have to be identified due to 

temporary obstacles (such as construction zones) that require pedestrians to take detours, 

both the slope and cross-slope of sidewalks encountered along the new route have a 

significant influence on whether or not a disabled pedestrian can traverse that route. 

Additional considerations must be taken into account when routing pedestrians with 

disabilities. The physical fitness level of the individual is a factor that influences the 

slope that the person feels comfortable scaling. Also, based on the direction of travel, the 

pedestrian may prefer taking one route to his or her destination and an alternative route 

back, depending on whether or not he/she is more comfortable descending versus 

ascending a given slope (Rice et al., 2014). In general, firm paths with smooth surfaces, 
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free of steps, obstructions, and slopes are desirable. Given that it is usually not possible to 

meet all these criteria, standards have been put in place to help maintain safety for 

pedestrians with disabilities.  

According to the U.S. Department of Transportation (DOT) Federal Highway 

Administration (FHWA), maximum slope should be measured over 0.61 m (two feet) 

intervals, since this is the approximate length of a wheelchair wheelbase or a single 

walking pace. For the average pedestrian, slopes of more than 6% require significant 

energy to travel up and considerable effort braking to go down (Price, 2012). For 

accessible paths, running slopes greater than 5% require hand rails, as specified in the 

Americans with Disabilities Act Accessibility Guidelines (ADAAG). A ramp is within 

the ADA requirements as long as the ramp maintains a running slope of 5% to a 

maximum of 8.33%. Slopes greater than 8.33% are difficult for disabled pedestrians 

(namely those using a wheelchair) to navigate for long distances. Therefore, maintaining 

a ramp slope as close to 5% as possible is recommended (United States Access Board 

[USAB]). Additionally, steep cross-slopes can make it difficult for wheelchair or crutch 

users to maintain lateral balance and can cause wheelchairs to veer downhill, roll into the 

street, or even tip over. Most sidewalks are built with some degree of cross-slope to allow 

water to drain into the street and to prevent water from collecting on the path. As such, 

the ADAAG state that cross-slopes should not exceed 2%.  

An example of an easily overlooked consideration is the rate of change of grade: 

the change in grade over a given distance. In the sidewalk environment, rate of change of 

grade should not exceed 13%. An example of a 13% change in rate of grade occurs at a 
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curb ramp if the slope of the gutter is 5% and the slope of the curb ramp is 8% (Figure 4). 

If the rate of change of grade exceeds 13% over a two-foot interval, the wheelchair 

footrests might not clear the ground. The stability of the pedestrian can also be 

significantly compromised, depending on the speed at which the wheelchair goes through 

the curb ramp (Axelson et al., 1999).  

 

 

Figure 4 Rate of Change of Grade (Source: U.S. DOT FHWA, 2014) 
  

With this information in mind, it is readily apparent that, when conducting routing 

specifically geared toward accommodating disabled pedestrians, slope is a major 

component. It must be incorporated as an impedance factor when routing algorithms are 

implemented in order to successfully offer alternate routing solutions. The ideal situation 

would be to calculate slope every 0.6 m, as per ADA guidelines, but this is often not an 

option, due to financial constraints and the availability of personnel. A more feasible 

solution is to use available elevation data to calculate slopes as accurately as possible. 
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2.3 A Brief Review of DEMs, Contours, and LiDAR 
Since slope is derived from elevation data, it would be beneficial to briefly review 

the differences between some common elevation dataset types. DEMs, or Digital 

Elevation Models, are three-dimensional (3D) representations of continuous elevation 

values over a topographic surface. The data collected to create DEMs are commonly 

obtained through remote sensing techniques, such as radar satellites, or from aerial 

photogrammetry. Contours, typically produced from direct field surveys, are lines that 

connect points of equal elevation based on a vertical datum, or reference (often mean sea 

level). Interpolation techniques can be used to produce a continuous surface similar to a 

DEM from contours, but it is more appropriate to call a contour-derived dataset a digital 

terrain model (DTM). For simplicity, however, this research will refer to contour-derived 

DTMs as DEMs. In GIS, the raster data model represents data that vary continuously, and 

it is made up of a regular grid of cells, also called pixels. Elevation rasters have a single 

value, representing elevation, assigned to each cell. 

The quality of a DEM depends on how accurate the elevation value is for each 

cell. One primary factor that affects accuracy is the resolution of the DEM. The 

resolution describes the size of the cells in the raster. For example, a 10 m DEM contains 

cells that are ten meters by ten meters, and each cell contains an elevation value. Smaller 

cells tend to capture more terrain variation. Figure 5 shows an example of the increase in 

the level of detail captured as cell size decreases. For this reason, Light Detection And 

Ranging, or LiDAR, is one of the most accurate data collection methods used to produce 

DEMs, given that cell size is commonly one meter or less. LiDAR is a high resolution 

remote sensing technique in which laser pulses are emitted at the target, and the returns 
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are analyzed to determine elevation. Aerial and terrestrial (a vehicle, for example) 

platforms can both be used for LiDAR collections. The output is a dense point cloud, and 

the spacing of the points (every half meter, every one meter, et cetera) should determine 

the minimum cell size of the DEM that is generated.  

 

  
Figure 5 Raster Resolution: detail increases as cell size decreases 

 

2.4 Slope as a Factor for ADA Sidewalk Compliance and Pedestrian 
Routing  

The Public Works Department of the City of Clayton, Missouri, conducted a 

study in 2014 to determine their sidewalk compliance with ADAAG. Using a laser sensor 

system mounted on a Segway, they were able to measure the sidewalk surface at a rate of 

10,000 records per second. The system captured highly detailed information about slope, 

cross-slope, and small surface variations. This extremely accurate data provided by the 
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laser system allowed the city to identify which sidewalks were in compliance with 

ADAAG. The ADAAG does provide exceptions for non-compliance due to technical 

infeasibility. For example, if sidewalks follow the natural topography of the area, it may 

not be possible to meet grade compliance. The City of Clayton used a LiDAR DEM to 

derive slope values for the centerlines of streets adjacent to any non-compliant sidewalks. 

This way, they could show that some of the non-compliant sidewalks were simply 

following the roadway and area topography and could therefore be exempt from grade 

compliance due to technical infeasibility.   

The difficulty that arises when trying to navigate across an area if a person 

requires a wheelchair has been recognized, and one solution has been to develop 

wheelchair navigation systems. In order to develop a personal wheelchair navigation 

system, sidewalk slope must be included as one of the attributes of the sidewalk network. 

It is preferable for the navigation system to allow the user to specify that he or she would 

like to avoid slopes, as wheelchairs are more sensitive to this attribute of the 

transportation network (Ding et al., 2007). Research conducted using a spatial database of 

the University of Pittsburgh campus area for a personal wheelchair navigation system 

used contour line data to calculate slope (Kasemsuppakorn & Karimi, 2009). The 

researchers recognized that slope was a required parameter for calculating impedance 

values when routing, as slope not only has an impact on accessibility, but also on safety 

for wheelchair users. In a similar study, researchers utilized GIS to develop bicycle and 

pedestrian networks on the University of Alabama campus to assess how they facilitate 

travel for students and professors (Lundberg & Weber, 2014). In addition to impacting 
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the safety factor, increases in slope can require more energy and increase travel time by 

reducing travel speed; therefore, once pedestrian networks are created, slope should be 

included as an impedance factor when assigning travel time to a line segment. 

2.5 Analysis of DEMs with Varying Resolutions 
The importance of including slope in pedestrian routing has clearly been 

demonstrated, but many organizations will not have the opportunity to use a terrestrial 

sensor system to obtain highly accurate data. Indeed, many organizations may not even 

have access to a high resolution 1 m LiDAR DEM, either due to financial constraints or 

unavailability over the study area. While this should change in the near future with the 

USGS’s 3DEP project, for the present, it is worthwhile to determine if lower resolution 

DEMs may be used for deriving slope values with accuracies suitable for disabled 

pedestrian routing. 

Landslide susceptibility and hydrology are other applications for which slope is 

an important factor. A study considering landslide susceptibility commented on the use of 

high and lower resolution DEMs for slope calculations, concluding that higher resolution 

DEMs provide better determination of slope instabilities (Fuchs, Torizin, & Kühn, 2014). 

However, there is a catch; the higher resolution DEM is only recommended if the other 

parameters required for high resolution mapping are available. The higher resolution 

DEM has a small impact (as far as model quality improvement) on poorly parameterized 

models, and its use in such a context is inefficient.  

A hydrology study, in which hydrological features were derived from DEMs, 

discovered that higher resolution DEMs produced much better results than lower 
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resolution DEMs derived from contour maps (Vaze, Teng, & Spencer, 2010). A higher 

resolution LiDAR DEM was also resampled to lower resolutions and compared to other 

DEMs of the same resolution, where it was discovered that the resampled LiDAR DEM 

provided higher accuracy and higher quality hydrological features than did the other 

DEM with the same resolution. Another study, in which slope and aspect were derived 

from DEMs for study areas in South America, confirmed that when performing a regional 

scale analysis, an original source lower resolution DEM is not optimal. Rather, if a lower 

resolution DEM is needed based on the scale of the application, and a higher resolution 

DEM is available, it can be resampled to a lower resolution (Grohmann, 2015). However, 

Li & Wong (2010) suggest that it would be best to evaluate lower resolution DEMs 

derived from higher resolution data to confirm that they are, in fact, superior to other data 

sources with lower resolutions, versus making that assumption. 

When making a determination about the appropriate DEM resolution to use for a 

particular application, one study explained that the grid cell size of the DEM must be the 

same as or less than one-half the size of the smallest geographic unit to be investigated. 

Therefore, to calculate slope over a five meter segment, the DEM utilized should have a 

resolution of 2.5 meters or less (Warren, Hohmann, Auerswald, & Mitasova, 2004). On 

the other hand, if the resolution is too high, slope variation may have a much higher level 

of detail than is relevant for the application being considered. It was also noted that in 

addition to resolution, the interpolation method and degree of smoothing applied during 

the creation of the DEM impacts the accuracy of slope calculations. As with any data 

analysis, the quality of the input data impacts the quality of the output results. For 



 16   
 

example, a 2008 study determined that the magnitude of slope errors resulting from 

elevation errors in a high resolution LiDAR DEM were only slightly smaller than errors 

in slope calculated from 10 meter and 30 meter resolution DEMs (Haneberg, 2008).  

2.6 LiDAR Accuracy and Use as Ground Truth 
A 2003 study conducted in Iowa utilized a LiDAR DEM (horizontal accuracy was 

0.98 feet and vertical accuracy was 0.49 feet) to calculate running grade (slope) and 

cross-slope on tangent highway segments along Iowa Highway 1. These values were 

compared to field measurements for 10 test segments, each 100 feet in length, collected 

using an automatic level. It was observed that running grade on paved surfaces was 

within 0.5% of the surveyed value for most sections and within 0.87% for all sections 

(Souleyrette et al., 2003). Cross-slope estimates were less accurate, with LiDAR 

measurements deviating from field measurements by 0.72% to 1.65% on paved sections. 

The study concluded that running grade could be estimated to within 1% using LiDAR 

(clarifying that the specific application determines whether or not this is adequate), but 

that cross-slope cannot be estimated by LiDAR. While LiDAR may be the best option 

when it comes to estimating running grade, its acquisition for that sole purpose would not 

be practical, given that the process to collect and process LiDAR is fairly time-

consuming and expensive. However, if LiDAR for the study area has already been 

collected for other purposes, as contracted by the state or another agency, it is certainly 

advantageous to use that dataset.  

If a high resolution LiDAR DEM can provide fairly accurate results for slope, it 

may be possible, when comparing DEMs of varying resolutions, to use the LiDAR DEM 
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in place of ground truth data, when ground truth data are not available, nor are there time 

and resources to collect ground truth. Airborne LiDAR can be collected over a wide 

range of spatial scales, while providing good spatial coverage at high resolution, with 

relatively little need for field time. A study published in 2006 documented the use of a 

LiDAR DEM with a resolution of two meters to extract ground control points (GCPs) and 

orthorectify old aerial photographs in order to produce DEMs from them. With a study 

area identified in northern England, GCPs were extracted from a LiDAR DEM and also 

collected using field survey methods. The results showed that while the use of LiDAR-

derived ground control (also called ground truth) initially produced a DEM of inferior 

quality, increasing the number of GCPs used in the model produced results comparable to 

the field survey controlled DEM (James, Murray, Barrand, & Barr, 2006). A similar 2007 

study for image orthorectification concluded that orthoimage accuracy achieved by using 

LiDAR data is superior to that achieved by using lower accuracy data sources, not to 

mention more cost effective (Liu, Zhang, Peterson, & Chandra, 2007). The RMSEs were 

1.3 m for the LiDAR-orthorectified image and 7.26 m for the other data source, a 20 m 

resolution DEM.  

In the National Oceanic and Atmospheric Administration (NOAA)-sponsored 

Rutland Ranch Ground Truth Survey for LiDAR Control conducted in 2006, ground truth 

checkpoints were compared with LiDAR points that were within three feet horizontally 

from the ground truth points. The result of the comparisons of the values indicated a 

vertical RMSE of 0.111 feet, which equated to vertical accuracy of 0.218 feet at the 95% 

confidence level (NOAA, 2006). This was within the vertical accuracy tolerance outlined 
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in the Geometric Geodetic Accuracy Standards and Specifications published by the 

Federal Geodetic Control Committee in 1998.  

Given the high accuracy results obtained in the previous studies, it is reasonable 

to opt to use high resolution LiDAR data as ground truth in the absence of available 

GCPs. Time and resources may not always be available for the collection of ground truth 

data. Ultimately, if a lower resolution DEM is able to provide reasonably accurate slope 

values for pedestrian routing, that will alleviate the required time and resources that are 

associated with high resolution data collection and processing.  
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CHAPTER THREE 

3.1 Data Sources 
Two data formats are used in this analysis: raster and vector. A raster represents 

data that vary continuously; it consists of cells, and each cell contains a value. Elevation 

and aerial imagery are examples of raster data, and common file extensions include TIF, 

JPEG, and IMG. A vector dataset represents data that have discrete boundaries—points, 

lines, and polygons—and their attributes. Only one of the three feature types is 

represented in a given dataset. For example, a polygon dataset could represent states, and 

the attributes might include name, area, and population. A popular and common standard 

geospatial vector data file format is the shapefile, developed by the Environmental 

Systems Research Institute (ESRI), and its extension is SHP.  To use more familiar terms, 

vector data will be called feature data, and raster data will be referred to as elevation data, 

since the only raster datasets used in this analysis represent elevation. 

3.2 Feature Data 
A line shapefile containing the sidewalks throughout the GMU campus and the 

surrounding areas in Fairfax, VA was provided by the GGS Department (Figure 6). This 

shapefile, called the Pedestrian Network, represents the sidewalk centerlines and also 

contains attributes associated with the sidewalks, such as their length and accessibility 

(whether or not the sidewalk consisted of stairs or steep paths). It was generated by 

combining existing, incomplete campus sidewalk data with sidewalk data originally 
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digitized by the Fairfax County GIS team from orthoimagery collected under the Virginia 

Base Mapping Program (Rice et al., 2015).  

 

  
Figure 6 Original Pedestrian Network  

 

Two additional files containing data collected for the GMU Facilities Division 

were provided: a point shapefile of spot elevations located throughout campus, and a line 

shapefile of elevation contour intervals (Figure 7). Campus spot elevations are collected 

by professional surveyors using surveying equipment, typically when new construction is 
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completed on campus. The assumption is made that, to collect the spot elevations, they 

adhered to best practices and used field surveying equipment that provided high accuracy 

measurements. The contours were compiled by photogrammetric methods from aerial 

photography dated March 2010. The coordinate system is North American Datum (NAD) 

1983 Virginia State Plane North, and the units are in feet. The vertical datum is based on 

the North American Vertical Datum (NAVD) of 1988. A GIS technician in the GMU 

Facilities Division updates the contours as needed using the spot elevations, and the 

contours were last updated in February 2015.   

 

  
Figure 7 Contours and Spot Elevations  
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3.3 Elevation Data and Basemaps 
Not long after this research began, USGS 3DEP LiDAR-generated, high 

resolution 1 m DEMs became available over GMU and the surrounding areas. These 

DEMs were downloaded using the USGS’s National Map Viewer (NMV), which 

provides free geospatial data, including orthoimagery (aerial photographs), elevation, 

geographic names, hydrography, boundaries, transportation, structures, and land cover. 

The LiDAR points were collected in April 2014, and the DEMs were created in 

September 2015. The data quality level of the LiDAR points was Level 2. According to 

the 3DEP project specifications, Level 2 data have a nominal pulse spacing of 0.7 m and 

a vertical accuracy of 9.25 centimeters (Carswell, 2013). The nominal point spacing 

simply conveys that elevation points were collected every 0.7 m. The spatial reference of 

the 1 m DEMs generated from the LiDAR points is Universal Transverse Mercator 

(UTM), in conformance with the NAD of 1983, and the units are in meters. Each DEM 

tile is distributed in the UTM Zone in which it lies; in this case, all tiles acquired are in 

Zone 18 North. All elevation values are in meters and are referenced to the NAVD of 

1988. To cover the GMU campus and the surrounding area, four 1 m DEM tiles were 

downloaded.  

Lower resolution NED DEMs were also obtained from the USGS’s National Map 

Viewer. Two DEMs with resolutions of 1/3 arc-second (about 10 m) and 1/9 arc-second 

(about 3 m) that covered the extent of the GMU campus and surrounding areas were 

downloaded. For simplicity, the 1/3 arc-second DEM will be referred to as the 10 m 

DEM, and the 1/9 arc-second DEM will be called the 3 m DEM. These DEMs are shown, 

along with the four 1 m DEM tiles, in Figure 8. NED DEMs are updated continually as 
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new data become available. The 10 m DEM was last updated in 2014, while the 3 m 

DEM used in this research contains information collected in 2008 (the most recent 3 m 

DEM available over the area). The spatial references of both are geographic coordinates 

— the Global Coordinate System (GCS) — in units of decimal degrees, in conformance 

with the NAD of 1983. As with the 1 m DEM, elevation values are in meters and are 

referenced to the NAVD of 1988. Table 1 summarizes the information about the different 

DEMs. In the analysis conducted for this research, the 1 m USGS DEM was resampled to 

lower resolution 3 m, 5 m, and 10 m DEMs for comparison purposes. These resampled 

DEMs are denoted in Table 1 by an (R) beside them.  All the DEMs used in this analysis 

were bare earth DEMs, which represent the topographic surface of the earth, as opposed 

to first return DEMs, which capture elevations of features on the earth’s surface (such as 

trees and buildings) in addition to the topographic surface itself. 
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Figure 8 USGS DEMs. Yellow spot denotes GMU campus.  
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Table 1 Summary of Elevation Data (Sources: USGS 3DEP Product Metadata and GMU Facilities Division) 

 

 

To add context when viewing the Pedestrian Network and DEMs, two web map 

services made available by ESRI were identified to use as basemaps: World Imagery 

Map Service and World Topographic Map Service. The imagery service provides high 

resolution (0.3 m) imagery over the United States, and the topographic map service 

provides features such as boundaries, cities, water bodies, transportation, and buildings. 

These map services are free, publicly accessible, and frequently updated.  

3.4 Study Area 
The original Pedestrian Network provided by the GGS Department covered the 

entire GMU campus, as well as nearby areas in Fairfax, VA. The GMU campus is 

situated in the Piedmont Plateau physiographic region of Virginia, which is characterized 

by rolling hills (VA Department of Conservation and Recreation). Using the 1 m DEM as 
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a reference, it was observed that elevations across campus range from 359 feet above 

mean sea level in the southeast corner to 472 feet in the western and northern parts of 

campus. In general, elevation increases going north and west. For the most part, 

undeveloped areas of campus are tree-covered, as seen in the aerial imagery shown in 

Figure 9. It was decided that the study area for the analysis would be limited to the 

Pedestrian Network sidewalks within the main campus of GMU. The study area, shown 

in Figure 10, is bounded by Ox Road to the west, Braddock Road to the south, Roberts 

Road to the east, and University Drive to the north.  
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Figure 9 Aerial Imagery of GMU Campus within Study Area 
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Figure 10 Study Area: GMU Main Campus Pedestrian Network 
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CHAPTER FOUR 

4.1 Overview of Approach and Methods 
One of the most important principles learned when performing an analysis is that 

the quality of the results is dependent upon the quality of the input data. Thus, the first 

priority was to assess the initial condition of the original datasets.  The feature and 

elevation datasets were then processed as needed and clipped to the study area extent. 

Since the 1 m DEM was to be used in place of ground truth data, it was assessed for 

accuracy by comparing its elevation values with the same elevations captured by the field 

surveyed spot elevation points and calculating the RMSE.   

Once the accuracy of the 1 m DEM was assessed, an appropriate slope calculation 

method was selected to obtain the slopes of sidewalks. Percent slope was determined by 

extracting elevation information (from each of the DEMs) corresponding to the line 

features of the Pedestrian Network. Differences in slope results between DEMs were 

tested for normality, as normality is an assumption of many statistical tests. The 

appropriate parametric test and its nonparametric counterpart were used to statistically 

compare the differences between slope results for each pair of DEMs to conclude 

whether or not the differences were significant. A general overview of the methods is 

presented in the flow chart shown in Figure 11, and the details are discussed in the 

following sections. In order to process and analyze the data, ESRI’s ArcGIS Desktop 
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Advanced software (version 10.2.2) and its 3D Analyst and Spatial Analyst extensions 

were used. 

 

 
Figure 11 General Overview of Data Preparation and Analysis Methods 
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4.2 Assessment and Preparation of Feature Data 
An understanding of the current state of the datasets was necessary before any 

data preparation and editing began. Additionally, the coordinate system that would be 

used throughout the analysis had to be identified, as it is best to convert all datasets to the 

same coordinate system before any analyses are performed. Since the ultimate goal of the 

results is to provide slope values for the testbed Pedestrian Network, the coordinate 

system of the Pedestrian Network (NAD 1983 Virginia State Plane North) was identified, 

so that all subsequent datasets could be converted to that coordinate system, if needed. To 

avoid processing more data than necessary, a boundary delineating the study area was 

created; only the feature data falling within this boundary were prepared for analysis.  

The GMU Pedestrian Network was assessed to ensure the positional accuracy of 

the sidewalk lines, and the lengths of the line segments that made up the entire network 

were also evaluated. The network shapefile contained 3,489 line features. Visual 

observation of the network and its alignment with the same features on the image and 

topographic map services provided by ESRI, as well as a 2009 sidewalk centerline 

dataset acquired from Fairfax County Open Data, confirmed that the positional fidelity of 

the line features was acceptable. An inspection of the attribute table revealed that the 

length of the lines in the network varied greatly. Line lengths ranged from 0.16 feet to 

2,327 feet, with an average length of 79 feet. The original network included the GMU 

campus sidewalks and sidewalks of the surrounding neighborhoods, as shown in Figure 

6. The network was therefore clipped to the extent of the study area boundary to only 

include the sidewalks located within the main campus area (shown in Figure 10).  
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In an attempt to be more consistent when taking slope measurements, it was 

determined that a standard line length should be chosen. Ideally, slope would be 

calculated every two feet (0.6 m), as per guidelines set forth by the ADA, to capture 

small variations in the sidewalk that may be problematic for disabled pedestrians. 

However, that is not practical when the DEM resolutions (10 m, 5 m, 3 m, and even 1 m) 

are not high enough to accurately capture that level of detail. Shorter lines mean more 

line features, which will also lead to an increase in the complexity of calculations, 

especially during routing. Waze, Google’s navigation mobile application, and Routino, an 

open source routing application using Open Street Map, both recommend that street 

segments be at least 5 m (16.4 feet) in length, for processing speed and routing accuracy. 

Since the lowest resolution DEM used in this analysis was 10 m, though, the sidewalk 

line features needed to be long enough to allow the 10 m DEM to capture variations. 

Keeping in mind the guideline mentioned by Warren et al. (2004) that the size (length in 

this case) of features should be at least twice that of the frequency of expected change in 

the underlying raster, the GMU Pedestrian Network was divided into line lengths of 20 m 

(65.6 feet). Since the lowest resolution DEM used was 10 m, then change could be 

expected every 10 m, so the line features would need to be at least 20 m long. To 

accomplish this, a point dataset with points spaced 20 m apart was created using a free 

function of an ArcGIS extension called ET GeoWizards, and these points were used to 

split the line features (sidewalks) in the Pedestrian Network. Due to the fact that not all 

lines were evenly divisible by 20, numerous shorter, remainder line features were 

produced. These short lines were inspected, and all those less than 5 m in length were 
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merged with an adjacent line, in order to minimize the number of very short line features. 

One exception made was that short line features classified as “stairs” or “steep paths” 

were not merged with adjacent lines, if the adjacent lines were not also stairs or steep 

paths. Thus, there are a few line features (2.7%) that are under 5 m; some (18.5%) ended 

up being between 5 m and 10 m; a good number of lines (27.7%) are greater than 10 m 

and less than 19.8 m in length; and a slight majority of lines (51.1%) are 19.8 m or 

greater, with the maximum line length being 26.8 m (88 feet).  The total number of line 

features in the study area Pedestrian Network was 2,887.  

With the pedestrian network in the desired condition, attention could then be 

turned to the campus contour dataset. Since the coordinate system of the contours was the 

same as that of the network, no changes needed to be made. The contours were in one-

foot (0.3 m) intervals, meaning that moving from one contour interval line to the next 

resulted in either an elevation increase or decrease of one foot. The first step taken was to 

create a DEM from the contours, so that this dataset could be in the required raster format 

to determine slope. The default DEM resolution automatically suggested by the 

conversion tool in ESRI was about 6 m, but a more standard resolution of 5 m was 

chosen for the output DEM. The spot elevation points were also included in the 

conversion procedure to improve the accuracy of the resulting DEM.  

4.3 Assessment and Preparation of Elevation Data 
In preparation for analysis, the USGS DEMs needed to be in the same coordinate 

system as the pedestrian network. Before projecting the 1 m DEM, given that there were 

multiple 1 m DEM tiles needed to cover the study area, the 1 m DEM tiles were merged 
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into one single, larger tile. The merged 1 m DEM and the other DEMs were then 

projected to the Pedestrian Network coordinate system. For the projections, bilinear 

interpolation was the resampling technique selected, keeping in mind ESRI’s guidance 

that elevation is most appropriately resampled using bilinear interpolation (ESRI ArcGIS 

Help 10.2).  

The original projected DEMs were much larger than the study area. To reduce the 

amount of time taken to render the DEM in the software application during analysis, all 

the DEMs (including the 5 m contour-derived DEM) were clipped to the same extent as 

the study area. Additionally, new lower resolution DEMs were created by resampling the 

clipped USGS 1 m DEM into 3 m, 5 m, and 10 m resolutions using bilinear interpolation. 

This enabled further comparisons between the lower resolution USGS DEMs and 

contour-derived DEM and the DEMs resampled from the high resolution 1 m DEM.  

Once all the DEMs were processed, the minimum and maximum elevation values 

(about 109 m and 144 m, respectively) among all the DEMs, including the contour-

derived DEM, were identified. These values were used when assigning minimum and 

maximum values to all of the DEMs for symbology purposes, so that the color ramps 

across all the DEMs would be consistent. Figure 12 shows the 1 m LiDAR-derived DEM, 

and Figure 13 shows the USGS 3 m DEM and the resampled 3 m DEM. The contour-

derived 5 m DEM and the resampled 5 m DEM are shown in Figure 14, and lastly, Figure 

15 shows the USGS 10 m DEM and the 10 m resampled DEM. While it is more difficult 

to visually identify differences between the 1 m and 3 m DEMs, differences can be 
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observed in the 5 m DEMs, and the courser resolution of the 10 m DEMs is quite 

apparent. 

 

Figure 12 Study Area DEM: 1 m resolution 
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Figure 13 Study Area DEMs: 3 m resolution 
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Figure 14 Study Area DEMs: 5 m resolution 
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Figure 15 Study Area DEMs: 10 m resolution 
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4.4 Accuracy Assessment of DEMs 
Given the conclusions drawn by James et al. (2006), Liu et al. (2007), and the 

Rutland Ranch Ground Truth survey sponsored by NOAA (2006) regarding the high 

level of accuracy of LiDAR data, it was decided that, due to the absence of ground truth 

sidewalk slope values over the study area, the 1 m LiDAR-derived DEM would serve as 

the “ground truth” dataset. Consequently, the slope values derived from the 1 m DEM 

were the standard to which the slope values from all the other elevation datasets were 

compared. In order to make the determination that the 1 m DEM was appropriate to use 

as the ground truth dataset, the RMSE between the field surveyed spot elevation points 

provided by GMU and the elevation values of those same points extracted from the 1 m 

DEM was calculated. It should be noted that, while it would not be correct to assume the 

spot elevations were error free, they could be considered to be an order of magnitude 

more accurate than the elevations provided by the DEMs.   

When the elevations of the spot elevation points were extracted from the DEM, 

the elevation of the cell in which the point was located was calculated using bilinear 

interpolation, which takes adjacent cells into account. The RMSEs between the spot 

elevations and all the lower resolution DEMs were also calculated to verify that the 

smallest RMSE was indeed the one associated with the 1 m DEM. Smaller RMSEs 

indicate a better fit between the DEM and spot elevations. RMSE is calculated by taking 

the difference between the observed ground truth elevations (xi) and the elevations in the 

DEM being compared to the ground truth (yi). The differences in elevations are called 

residuals. The residuals for all the elevation points being compared are squared and then 
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added together. This value is divided by the sample size (n), and finally, the square root 

of that value is taken to produce the RMSE. The formula is shown in Equation 1. 

  

Equation 1 Calculation of Root Mean Square Error 

RMSE = �∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
    

 

4.5 Calculation of Slope Values for Pedestrian Network  
The importance of both slope and cross-slope has been discussed, and while 

cross-slope is a very important attribute to incorporate, this research focuses solely on the 

calculation of slope. When calculating slope, there are many different methods that can 

be used. Much research has been conducted to compare the accuracies of resulting slope 

values by using multiple slope calculation algorithms (Warren et al., 2004; Xuejun & Lu, 

2008). One of the simplest approaches is, as in mathematics, to calculate the elevation 

change (rise) over a given distance (run). In this method, only the elevation values at the 

start and end points of any given line are used when calculating the slope. Elevation 

values for all start and end points of line features can be extracted from the DEMs and 

added as attributes in the Pedestrian Network. When the elevation values are extracted, 

the exact value of the cell in which the start/end point is located can be used, or the value 

can be interpolated, taking neighboring cells into account. The elevation values 

(represented as z in formulas) and positional (latitudinal and longitudinal) values 
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(represented as x and y, respectively) of the start and end points can then be used to 

calculate the percent slope, as shown in Equation 2. This method does not take into 

account any variances in slope that may occur between the start and end points. The 

topographic profile in Figure 16 demonstrates this concept. If only the start and end 

points of the profile are used to calculate slope, significant slope variations in between 

the points are not captured.  As such, it is better to use this method to calculate slope 

when the distance between start and end points is short.  

 

Equation 2 Calculation of Percent Slope 

Percent Slope = 
𝒛𝒛𝒆𝒆𝒆𝒆𝒆𝒆 − 𝒛𝒛𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

�(𝒙𝒙𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔−𝒙𝒙𝒆𝒆𝒆𝒆𝒆𝒆)𝟐𝟐 − (𝒚𝒚𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔−𝒚𝒚𝒆𝒆𝒆𝒆𝒆𝒆)𝟐𝟐
 × 𝟏𝟏𝟏𝟏𝟏𝟏 

 

 

Figure 16 Variations in Slope Not Captured by Standard Slope Calculation 
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Another slope calculation approach is offered in ArcGIS: a tool called Add 

Surface Information. Any given line feature consists of a start point (also called a vertex) 

and an end point, but frequently, the line feature contains several more vertices in 

between the start and end points (Figure 17). This is the case with almost all, if not all, of 

the line features in the Pedestrian Network. The Add Surface Information tool calculates 

percent slope values for every segment between all the vertices for each line feature in 

the network. It obtains minimum slope from the segment whose value is closest to 0, or 

level (no slope). Maximum slope is obtained from the segment with the largest calculated 

slope value. Average slope is obtained by weighing each segment’s slope by its 3D 

length, then determining the average. This results in longer segments having greater 

influence on the resulting slope value than shorter segments (ESRI ArcGIS Help 10.2). 

The segments in Figure 17 appear to have equal lengths, so they will equally influence 

the final slope value. 

 

 

Figure 17 Single Line Feature with Multiple Vertices 

 

In addition, the Add Surface Information tool uses the elevation values of the four 

nearest cells (versus only the cell in which the segment start or end vertex is located) to 

interpolate the elevation values of the segment vertices. While this method is also 

influenced by the overall length of the line features, the average slope value will be more 
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accurate than the slope calculated by the standard method when there are notable slope 

variations within a line feature. Finally, one distinct advantage of this tool is that it 

requires less processing time by the analyst and is easy to implement.  

For visualization purposes, seven copies of the Pedestrian Network were made so 

that each could contain slope information extracted from the USGS DEMs, the contour 

DEM, or the resampled DEMs. The Add Surface Information tool was run on the 

Pedestrian Network seven times, using each of the DEMs to extract minimum, maximum, 

and average elevation and percent slope values for all line features. These characteristics 

were automatically added as attribute fields in each Pedestrian Network copy. The 

interpolation method was bilinear, which is the only option available for raster datasets.  

4.6 Statistical Analysis of Slope Values 
In order to quantitatively determine whether or not DEM resolution had a 

significant influence on the slopes of the line features, differences in slope values 

between all possible DEM pairs were statistically assessed. Slopes from the resampled 3 

m, 5 m, and 10 m DEMs, the USGS 3 m and 10 m DEMs, and the contour-derived 5 m 

DEM were all compared with slopes from the USGS 1 m DEM. The slopes from the 

lower resolution DEMs were also compared with one another, so that conclusions could 

be drawn regarding the utility of one with respect to the other. For example, if the slope 

differences between the 3 m DEM and the 5 m DEM were not statistically significant, 

then it could be concluded that the DEMs were equally useful for determining slope for 

the selected study area. 
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Before statistical tests could be performed, the slope differences between all DEM 

pairs first needed to be tested for normality. While parametric statistical tests assume a 

normal, Gaussian distribution of observations, nonparametric tests do not make that 

assumption. In this analysis, only differences were tested for normality (as opposed to the 

original slope values of both datasets being compared), because it is the distribution of 

the differences that has to be normal for parametric tests (Mordkoff, 2011). To test for 

normality, a suite of statistics tools called StatPlus was used. Its normality tests include 

the following: the Kolmogorov-Smirnov/Lilliefor test; the Shapiro-Wilk W test; the 

D'Agostino Skewness test; the D'Agostino Kurtosis test; and the D'Agostino Omnibus 

test. By default, all the tests are performed on the input data.  Advanced options are 

available that allow the alpha value for the desired confidence interval to be specified. 

The normality tests were run on the differences for all DEM pairs, and an alpha value of 

5% (0.05) was specified.       

If the distribution of the differences were normal, then the paired t-test would be 

the appropriate parametric statistical test to use. In fact, several similar studies (Warren et 

al., 2004; Weih & Mattson, 2004; White, Dietterick, Mastin, & Strohman, 2010) assessed 

slope accuracy using the paired t-test. A paired t-test is used to compare two population 

means, where there are two samples in which observations in one sample can be paired 

with observations in the other sample. This was applicable in this situation because every 

pair of slopes being compared was for the same line feature. However, if the results of the 

normality tests showed that the slope differences did not have a normal distribution, a 

nonparametric test would need to be employed. The nonparametric test that is the 
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counterpart of the paired t-test is called the Wilcoxon signed-rank test, which has also 

been used to assess differences in slope values (Thompson, Bell, & Butler, 2001). The 

Wilcoxon signed-rank test also compares two paired samples, but it does not require the 

normality of within-pair differences, as the paired t-test does. Also, it compares the 

medians of two populations, as opposed to means in the paired t-test.  

Parametric tests are usually more powerful than their nonparametric counterparts. 

Consequently, if it is possible to justify the assumptions of a parametric test, that is the 

preferable course of action (McCrum-Gardner, 2008). If the normality assumption is not 

met in this case, it may still be reasonable to justify using the paired t-test. Mordkoff 

(2011) explains that Central Limit Theorem states that, “given random and independent 

samples of N observations each, the distribution of sample means approaches normality  

as the size of N increases, regardless of the shape of the population distribution” (p. 2).  

For this reason, referring specifically to the paired t-test, Samuels, Witmer, & Schaffner 

(2012) also suggest that a widely accepted exception to the normality assumption for the 

paired t-test is that the test is also valid if the sample size is large. A sample is considered 

large if the number of observations is greater than or equal to 30. 

To be thorough and to observe whether or not discrepancies would arise, both 

parametric and nonparametric tests were conducted. Two-tailed paired t-tests and two-

tailed Wilcoxon signed-rank tests were performed between all pairs of DEMs using the 

Real Statistics Resource Pack, a free statistical analysis toolset for Microsoft Excel. Two-

tailed tests were performed because it was anticipated that there could be negative and 

positive differences for slope values between two datasets. For the paired t-tests, the null 
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hypothesis was that the mean difference between pairs of observations would be zero; for 

the Wilcoxon tests, the null hypothesis was that the median difference between pairs 

would be zero. For all tests, the alpha value was set to 5% (0.05), and the sample size was 

2,887.  

The paired t-test’s null hypothesis is rejected or fails to be rejected depending on 

the relationship between the t statistic (t) and the critical value of the t statistic (tcrit); the 

Wilcoxon test’s null hypothesis is rejected or fails to be rejected depending on the 

relationship between the T statistic (T) and the critical value of the T statistic (Tcrit). All of 

these values are provided as outputs of the tests. The alpha value is taken into account by 

tcrit /Tcrit. The null hypothesis fails to be rejected (in other words, it is true) for the paired 

t-test if tcrit is greater than t; for the Wilcoxon test, it is when T is greater than Tcrit that the 

null hypothesis fails to be rejected.  
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CHAPTER FIVE 

5.1 DEM Accuracy Results  
The accuracy assessment of the elevations extracted from the 1 m LiDAR-derived 

DEM provided an RMSE of 0.3 m, or 1 foot. Upon closer inspection, it was determined 

that 88% of the 1 m DEM elevation points had differences of 0.3 m (1 foot) or less when 

compared to the field surveyed spot elevation points. Since time and resources were not 

available to collect sufficient ground truth slope measurements for this research, it was 

determined that it was reasonable to use the 1 m DEM as the ground truth DEM. Table 2 

displays summary statistics and the RMSE for the differences between the spot elevations 

and the 1 m DEM, in addition to the other DEMs used in the analysis, to demonstrate that 

the 1 m DEM does in fact have the smallest RMSE. Table 3 includes the summary 

statistics and RMSEs for the DEMs resampled from the 1 m DEM. In all cases, the total 

number of points (sample size) was 3,066. 

 

Table 2 Summary Statistics: DEM and Spot Elevation Differences (meters) 

DEM Maximum Minimum Mean Standard 
Deviation RMSE 

1 m 3.249 -2.515 0.175 0.256 0.310 
3 m  4.040 0.218 0.082 0.706 0.710 
5 m 2.074 0.053 -0.002 0.381 0.381 
10 m 3.829 0.212 0.157 0.362 0.394 
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Table 3 Summary Statistics: Resampled DEM and Spot Elevation Differences (meters) 

DEM Maximum Minimum Mean Standard 
Deviation RMSE 

3 m  3.300 0.196 0.171 0.263 0.313 
5 m 3.117 0.270 0.170 0.275 0.323 
10 m 3.762 0.267 0.161 0.326 0.363 

 

5.2 Slope Results  
The total number of sidewalk line features for which percent slope values were 

calculated across all DEMs was 2,887. Since the GMU testbed routing environment is 

concerned with steep slopes that would be an impediment for disabled pedestrians, it is 

worthwhile to look at the maximum slope in addition to the average slope along any 

given line. Tables 4 and 5 provide summary statistics for the average and maximum 

(respectively) percent slope values derived from each of the DEMs.  DEMs resampled 

from the 1 m DEM have an (R) beside them. The summary statistics demonstrate that 

there are variations present in the slopes of some line features that result in maximum 

slope being noticeably greater than average slope. 

 

Table 4 Summary Statistics: Average Percent Slope 

DEM  Minimum Maximum Mean Standard 
Deviation 

1 m 0.088 12.363 1.238 1.255 
3 m  0.047 12.442 1.282 1.153 
3 m (R) 0.041 11.760 1.212 1.172 
5 m 0.023 6.247 1.074 0.814 
5 m (R) 0.013 11.211 1.218 1.112 
10 m 0.015 9.705 1.122 0.940 
10 m (R) 0.016 11.149 1.179 0.985 
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Table 5 Summary Statistics: Maximum Percent Slope 

DEM  Minimum Maximum Mean Standard 
Deviation 

1 m  0.152 38.016 2.616 2.833 
3 m  0.081 24.632 2.332 2.040 
3 m (R) 0.097 39.832 2.302 2.259 
5 m 0.042 6.842 1.473 0.921 
5 m (R) 0.014 23.457 2.241 1.962 
10 m 0.018 15.650 1.729 1.337 
10 m (R) 0.044 15.172 1.989 1.555 

 

To facilitate the visualization of the differences in slope results derived from each 

DEM, the Pedestrian Network sidewalk lines were assigned various colors representing 

the categories to which each line feature belonged, based on slope. The categories 

included: Level (0 – 2%); Very Gentle Slope (>2 – 5%); Gentle Slope (>5% – 8.33%); 

Moderate Slope (>8.33 – 15%); and Strong Slope (>15%). Categories were identified by 

referencing a standard slope descriptors table (Barcelona Field Studies Centre, 2013) and 

taking ADA guidelines into account. Maximum, versus average (running), slope was 

selected as the attribute to display. Even if a sidewalk were classified as having a percent 

average slope in the Gentle Slope category and could likely be manageable for a disabled 

pedestrian over short distances, if there were a section of the sidewalk that had steeper 

slope (which would be captured as maximum percent slope), the pedestrian would be at a 

disadvantage and would probably have to turn around and find an alternate route. Table 6 

shows the number of line features in each maximum slope category for all the DEMs. 

Figures 18 through 21 display the Pedestrian Network sidewalk slopes, categorized by 

percent maximum slope, that resulted from using varying DEM resolutions to extract 

slope information.   
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Table 6 Line Features in Each Maximum Slope Category by DEM 

DEM Level 
(0 - 2%) 

Very Gentle 
(>2 - 5%) 

Gentle 
(>5 – 8.33%) 

Moderate 
(>8.33 – 15%) 

Strong 
(>15%)  Total 

1 m 1647 944 136 140 20 2887 
3 m 1679 964 188 48 8 2887 
3 m (R) 1763 879 172 64 9 2887 
5 m 2224 655 8 0 0 2887 
5 m (R) 1739 936 160 46 6 2887 
10 m 2024 781 73 8 1 2887 
10 m (R) 1823 929 113 21 1 2887 
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Figure 18 Percent Maximum Slope Results: 1 m DEM 
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Figure 19 Percent Maximum Slope Results: 3 m DEM and Resampled 3 m DEM 



 53   
 

 
Figure 20 Percent Maximum Slope Results: 5 m DEM and Resampled 5 m DEM 
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Figure 21 Percent Maximum Slope Results: 10 m DEM and Resampled 10 m DEM 
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5.3 Statistical Analysis Results  
The results of the normality tests consistently concluded that the distributions of 

all the paired DEM differences were not normal. Figures 22, 23, and 24 display the 

results of the Kolmogorov-Smirnov/Lilliefor, Shapiro-Wilk W, D'Agostino Skewness, 

D'Agostino Kurtosis, and D'Agostino Omnibus normality tests performed on each pair. In 

all cases, the p-level is less than alpha (5%, or 0.05), leading to the conclusion that the 

null hypothesis—that the distributions are normal—should be rejected. The figures also 

show the histograms for each pair comparison so that the actual distributions can be 

visualized. The red line on the histograms represents the normal curve of the distribution. 

The results of the paired t-tests and Wilcoxon signed-rank tests are displayed in 

Table 7. No discrepancies arose between the results of the two tests; if the paired t-test 

rejected the null hypothesis, the Wilcoxon signed-rank test also rejected the null 

hypothesis. For the 12 comparisons made between DEM pairs, 11 suggested that the 

differences between the DEM pairs were statistically significant. This could be concluded 

for the paired t-tests because tcrit was less than t. For the Wilcoxon signed-rank tests, this 

conclusion was drawn because T was less than Tcrit. For both tests, the fact that the p-

value was less than alpha (0.05) led to the rejection of the null hypothesis (that the mean 

[for paired t-tests] or median [for Wilcoxon signed-rank tests] difference between pairs of 

observations was zero). 

The only pair for which the tests suggested that there was no statistically 

significant difference was the 3 m DEM and 3 m resampled DEM pair. In that case, t was 

less than tcrit for the paired t-test, and Tcrit was less than T for the Wilcoxon signed-rank 
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test. Additionally, the p-values of both tests were greater than alpha (0.05), meaning that 

the null hypothesis failed to be rejected.  

It can be observed that, for some of the paired t-tests, the value of the t-statistic, t, 

is negative. The negative value simply conveys the direction of the difference in the 

means, and this is why a two-tail t-test was conducted. In these situations, when 

comparing t with tcrit, the absolute value of t is used (Elrod, 2015).  
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Figure 22 Normality Test Results, Part 1 



 58   
 

Figure 23 Normality Test Results, Part 2 
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Figure 24 Normality Test Results, Part 3 
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Table 7 Paired t-Test and Wilcoxon Signed-Rank Test Results 
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5.4 Discussion 
As expected, the RMSEs between the field surveyed spot elevations and the 3 m, 

5 m, and 10 m DEMs were greater than the RMSE associated with the 1 m DEM. Since 

the RMSE conveys how well the DEM elevation values match the spot elevations, and 

lower RSMEs indicate a better fit, it is not surprising that the lowest RMSE is associated 

with the highest resolution DEM. It was unusual, however, that the RMSE of the 3 m 

DEM was higher than the RMSEs of the 5 m and 10 m. The expected pattern would be 

for the RMSEs to increase with lower DEM resolutions, and this was the case with all the 

DEMs, including the resampled versions, aside from the 3 m DEM. This discrepancy 

may be due to the fact that the 3 m DEM is older (from 2008) and may have had more 

errors present that were not corrected. The USGS corrects DEM errors encountered as 

new datasets are acquired, but given the production of 1 m DEMs as part of the 3DEP, 

the 3 m DEMs will no longer be updated.  When comparing the resampled DEMs with 

the lower resolution USGS and contour-derived DEM, it was observed that, for the same 

resolutions, the resampled DEMs had lower RMSEs. This observation corroborates the 

conclusions drawn by Vaze et al. (2010) that, when a lower resolution DEM is needed 

based on the scale of a study, it is better to resample an available higher resolution DEM 

than to use the original lower resolution DEM. 

In conjunction with Table 7, Figures 18 through 21 display the differences present 

in the number of line features in each slope category among all the DEMs considered. 

The majority of line features are in the Level slope category, regardless of DEM 

resolution. As DEM resolution becomes coarser, fewer and fewer line features are placed 

in the higher maximum slope categories, such as Moderate and Strong. In the figures, this 
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is made apparent by the Pedestrian Network becoming more and more dominated by the 

light green (Level) and green (Very Gentle) color categories. In fact, the 5 m DEM 

derived from the campus contours does not have any line features classified as Moderate 

or Strong. It contains almost all light green and green line features, as opposed to its 

resampled 5 m counterpart, which displays more variation. This was likely due to the fact 

that a certain degree of detail was not captured by the DEM created from the contour 

lines, since the areas between the contour lines were interpolated. In general, as terrain 

surface detail is gradually reduced by moving from higher to lower resolution DEMs, it 

produces a smoothing effect (Weih & Mattson, 2004; Gillin, Bailey, McGuire, & Prisley, 

2015). It can be more readily understood when described as follows: one single 10 m by 

10 m cell covers the same area that is covered by one hundered 1 m by 1 m cells. The one 

hundred cells can capture variations in elevation values, whereas the single 10 m cell has 

only one elevation value to represent the entire area. Although it was anticipated that the 

10 m DEM would likely not capture the level of slope detail needed for accessible 

routing for this study area, it was included to demonstrate and facilitate an understanding 

of how detail is lost by lowering the resolution.  

The visual assessment of the Pedestrian Network classified by color-coded 

maximum percent slope categories, along with the corresponding table (Table 6), was 

sufficient to be able to qualitatively convey that the lower resolution DEMs did not 

capture the slope variations of the sidewalk line features as well as the 1 m DEM. 

However, it was preferred that this observation also be assessed using quantitative 

methods, so that the final conclusions could be made with more objective information 
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regarding the differences in the slopes captured by the various DEMs. The DEMs were 

therefore compared statistically to detect significant differences. It was initially decided 

that the parametric paired t-test was the appropriate test to use for the comparisons, since 

it had been applied in similar studies and took into account that the samples were 

dependent. The normality assumption was not met by the DEM pair differences, though, 

so the nonparametric counterpart, the Wilcoxon signed-rank test, was identified as an 

alternative test to perform.  

At this point it is important to pause and briefly address the issue of spatial 

autocorrelation. Since geospatial data were considered in this analysis, it is highly likely 

that spatial autocorrelation was present in the DEMs. Waldo Tobler (1970) described 

spatial autocorrelation in what has become known as the First Law of Geography: 

“Everything is related to everything else, but near things are more related than distant 

things” (p. 236). This presents a problem when performing statistical analyses, because 

the independence of observations is typically an assumption found in classical statistics 

(Wong & Lee, 2005).  Even though the paired t-test and Wilcoxon signed-rank test are 

meant for dependent samples, spatial autocorrelation may have affected the slope values. 

DEMs, even those of very high resolutions, are still generalizations of the actual terrain. 

It is therefore not surprising that errors are inherently present in DEMs when they are 

generated. These errors are autocorrelated and will propagate to any DEM derivatives, 

such as slope (Vaze et al., 2010).  However, there is not a single, simple solution to 

address this challenge. Much research has been conducted using the Monte Carlo 

simulation technique to simulate error in order to research the spatial autocorrelation of 
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DEM errors (Wechsler & Kroll, 2006; Xuejun & Lu, 2008).  Stochastic techniques have 

also been used (Stefanescu et al., 2012). If the differences between observations are 

spatially autocorrelated, it can lead to a greater chance of committing Type I errors 

(Warren et al., 2004). In statistics, Type I errors occur when the null hypothesis is 

rejected, when, in actuality, it should fail to be rejected. To address this challenge, one 

simple approach would be to only assess observations that are far enough apart to 

minimize the effects of spatial autocorrelation (in other words, look at a random subset of 

observations that are at least a specified distance from one another), but this approach 

potentially eliminates important information from the dataset. Even though spatial 

autocorrelation is not considered in this analysis, it is important to be aware of its 

potential effects so that corrections can be applied, if needed, at a future time.  

The rejection of the normality assumption for the distributions of all the pair 

differences was not unexpected. The histograms show that the distributions do not follow 

a normal Gaussian bell-shaped distribution; rather, there is a tendency for the tails to be 

long and thin. This is due to the fact that the majority of the differences in slopes are not 

large, but there are a few pairs that do exhibit large positive and/or negative differences, 

causing the histograms to have long tails stretched in either a positive or negative 

direction. Kurtosis is the measure that describes this effect; a distribution with high 

kurtosis peaks at the mean and declines rapidly to heavy tails. The type of kurtosis readily 

seen in many of the histograms in Figures 22 through 24 is called leptokurtic, which is 

defined by a high peak in the middle and long tails on either side (Figure 25). While some 

of these large differences may be the result of outliers that had inaccurate slope values, it 
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would not be appropriate to assume that all large differences could be removed simply to 

move closer to a normal distribution.  

 

 
Figure 25 Kurtosis 
 

It has been suggested that, even if the distributions are severely non-normal, it 

may still be alright to analyze the data using a parametric test, given that parametric tests 

are robust and not highly sensitive to non-normality (McDonald, 2014). If that were the 

case, and since the sample size was quite large, the paired t-test results could be 

considered acceptable on their own. Nevertheless, since both tests provided the same 

conclusions regarding every DEM pair, the objective of this research could clearly be 

answered. The lower resolution DEMs did not provide slope results comparable to those 

calculated using the high resolution 1 m DEM for this particular application and study 

area. Additionally, the lower resolution DEMs also did not provide results comparable to 

each other; in other words, the 5 m DEM could not be used in place of the 3 m DEM to 

deliver nearly the same slope results. This is primarily due to the scale of the application; 

higher resolutions are required to capture the level of detail needed. 
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CHAPTER SIX 

6.1 Conclusions 
The primary objective of this research was to determine if lower resolution 

elevation data could provide reasonably accurate slope values that could be incorporated 

into the GMU Geocrowdsourcing Testbed in order to improve dynamic routing solutions 

for visually and mobility impaired students. Slope results from three lower resolution 

DEMs (3 m, 5 m, and 10 m) were statistically compared, via paired t-tests and Wilcoxon 

signed-rank tests, to the slope results from a high resolution 1 m DEM, which had been 

deemed acceptable to use in the absence of ground truth data. The lower resolution 

DEMs were also compared to each other using the same statistical tests. The results of the 

paired t-tests and Wilcoxon signed-rank tests revealed that the differences between all 

DEM pairs, aside from the 3 m and resampled 3 m DEM pair, were statistically 

significant. Consequently, it was concluded that, for this type of application and at this 

scale, a high resolution (1 m or higher) DEM needs to be used for slope calculations, to 

provide the most accurate results for disabled pedestrian routing. The degree of variation 

in the topography of the GMU campus requires the use of the 1 m DEM to detect 

sidewalk slope changes, but if the study area had relatively little topographic variation, 

then a lower resolution DEM would likely be acceptable to capture the level of detail 

needed. In other words, based on the study area, as topography becomes more and more 

varied, DEM resolution would need to increase.     
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6.2 Future Work 
While the RMSE results did show that the errors between the field surveyed spot 

elevations and the 1 m DEM elevations were minimal, it would be valuable to take a 

sample of field surveyed slopes across campus and compare those values to the slope 

values for the same sidewalk in the 1 m DEM. It may especially be worthwhile to field 

check the sidewalks that were in the strong slope category in Table 6 when the 1 m DEM 

was used, since there are only 20.  Afterward, once corrections are made (if needed), 

slope values could be updated in the GMU Geocrowdsourcing Testbed’s Pedestrian 

Network using values derived from the 1 m DEMs, since those DEMs are now available 

over the area, to provide the most accurate slope information. Further analysis should be 

conducted using the 1 m DEM to determine whether or not cross-slope could accurately 

be calculated and incorporated in the Pedestrian Network. However, the current 

Pedestrian Network only represents the centerline of sidewalks, and the lines on both 

sides of the sidewalk would be needed in order to calculate cross-slope.  

Table 6 showed the number of line features in each maximum percent slope 

category. It would be interesting to be able to specify, when changing DEM resolutions, 

which line features changed from one category to another. Although it can already be 

observed that the number of features in the moderate and strong slope categories 

decreased as DEM resolution decreased, it would be beneficial to know if they switched 

to the next lowest slope category, or if they switched to an even lower category.  

Several other modifications could be made to the Pedestrian Network to improve 

it. If time and resources allow, the network could be divided into shorter segments to 

more accurately capture sections where slope is too steep for disabled pedestrians. For 
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example, if a 20 m sidewalk line contained a short segment at the end with a slope greater 

than 8.33%, the entire line would be classified as inaccessible (if maximum slope, versus 

average slope, were being considered). In reality, the pedestrian might need to only 

traverse 10 m of the sidewalk and then continue along another connected, accessible 

sidewalk. This possibility would not be identified by the routing algorithm, given that the 

entire sidewalk line would be eliminated from consideration. To minimize the total 

number of lines in the network in order to improve processing time, once slope has been 

calculated for short lines, adjacent lines with the same (or nearly the same) slope could be 

merged. Although, another motivation to keep line features shorter would be to not 

eliminate an entire sidewalk when routing is performed if only a portion of the sidewalk 

has an obstacle (dynamic information entered through crowdsourcing). That way, only 

the portion of the sidewalk with the obstacle would be classified as inaccessible. The 

optimal procedure for processing the Pedestrian Network would need to be finalized 

before it is included in the testbed application for routing to be performed.  

To improve the user (pedestrian) experience with the routing results, it would be 

beneficial to allow the user to specify the maximum slope with which he or she is 

comfortable, since that is highly subjective. Additionally, since maximum slope 

preferences may be different depending on the direction of travel (uphill or downhill), the 

user would ideally have the option to specify constraints for maximum uphill (positive) 

slope and maximum downhill (negative) slope. These options would require that the 

routing algorithm be able to incorporate user-specified constraints. It would also require 

that the slope percentages in the attribute table of the Pedestrian Network be classified as 
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positive or negative from the line start to end point. Laakso, T. Sarjakoski, Lehto, & L. 

Sarjakoski (2013) suggest that personal user accounts could be implemented so that 

profiles could be customized. For example, there could be profiles geared toward 

mobility impaired users, and profiles for visually impaired users. A feature layer of 

accessible entrances should be incorporated into the routing solution as well, to ensure 

that the recommend route leads to an accessible entrance. Even something as minimal as 

a single stoop, or small porch, in front of an entrance can prevent accessibility.  

Another factor related to user preference is that of canopy cover. Recent research 

conducted by a student at GMU considered the possibility of selecting routes based on 

canopy cover (Heuwinkel, 2015). During warm months especially, disabled pedestrians 

may face thermoregulation challenges and prefer to travel in the shade. The canopy cover 

routing research did not take slope into account, so it would be beneficial to incorporate 

slope, verify the results, and then identify how to include that capability in the testbed. 

Ultimately, the success of an application, such as the GMU Geocrowdsourcing Testbed, 

is not simply measured by whether or not it accurately performs the functions for which it 

was designed. It is also measured by whether or not the application is intuitive and 

provides functionality that the user deems beneficial, in addition to providing trustworthy 

results.   
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