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Graphs are universal representations of pairwise information in many domains, e.g.,

social networks and molecule structures. The problem of deep graph generation which is

handled by deep generative models has attracted great attentions in the most recent years.

However, it is usually desirable to guide the graph generation process by conditioning on

additional information such as data from the different modality, which is also coined as

conditional graph generation (i.e., graph transformation). Conditional graph generation

can be seen in many real-world applications such as Internet of Things (IoT) confinement

and chemical reactant prediction. In addition, the existing graph generation works neglect

the entanglement of the encoded latent factors, rendering the generation process non-robust

and hardly explainable. Therefore, the general goal of this research is how to develop the

graph deep generative models for conditional and interpretable graph generation.

To solve the above problems, there are two main aims to be achieved: (1) The conditional

graph generation aims to control the generation process on a specific input graph. One needs

to not only learn the transformation mapping in the local information of a graph (i.e.,

neighborhood pattern of each node), but also in the global property of the whole graph

(e.g., node degree distribution or graph density). It is also very important to deal with



more general graph transformation problem for various graph types, such as the multi-

attributed graphs, the signed graphs and directed graphs. (2) The interpretation of the

graph generation process is also imperative but unexplored. The complex formation process

of graphs requires the model to have a sophisticated mechanism for inferring the latent factor

that may cause an edge of a specific node and the global properties of the whole graph.

This mechanism needs to be differentiable to support end-to-end training and be capable

of conducting inductive learning to enable out-of-sample node processing in real-time for

real-world deployment.

To achieve the above goals, we first present a novel framework for conditional deep

graph topology generation with a graph-translation generative adversarial nets (GT-GAN).

GT-GANs learn a conditional generative model, which is a graph translator that transforms

an input graph to a target graph. For a more generalized problem, we propose a node-edge

co-evolution framework for the multi-attributed graph transformation considering both the

directed and sign graphs. Secondly, to interpret the generation process, we first propose a

novel Variational Auto-encoder (VAE)-based graph generative model which can learn the

disentangled latent representations as well as semantic factors for interpreting the generation

process. In addition, to further precisely control the generation process, we propose a

property controllable generative model for manipulating the generated graphs with desired

properties.

This research spans multiple disciplines and promises to make general contributions in

various domains such as deep learning, explainable AI, molecular modeling, and computa-

tional biology by putting forth a novel algorithm that can be applied to various real-world

network transformation and generation problems, ranging from cyber network transforma-

tion to novel molecule structure generation.



Chapter 1: Introduction

Graphs are ubiquitous in the real world, representing objects and their relationships such

as social networks, citation network, biology networks, and traffic networks, etc. Graphs

are also known to have complicated structures that contain rich underlying values [5]. In

the last decade, deep learning has been a “crown jewel” in the domain of artificial intelli-

gence and deep learning, showing superior performance in images [6] and natural language

processing [7], etc. The expressive power of deep learning to extract complex patterns

underlying from data has been well recognized. As a result, how to utilize deep learning

methods for graph data analysis has attracted considerable research attention in the past

few years. Tremendous effort has been made towards this area, resulting in a rich literature

of related papers and methods to deal with various kinds of graph problems, such as node

classification, graph classification, link prediction, community detection and graph genera-

tion. The architectures adopted also vary greatly, with operations ranging from supervised

to unsupervised, convolutional to recursive.

Graph generation is one of the main topics of graph problems. Graph generation entails

modeling and generating real-world graphs, and it has applications in several domains, such

as understanding interaction dynamics in social networks [8–10], link prediction [11, 12],

and anomaly detection [13]. Owing to its many applications, the development of generative

models for graphs has a rich history, resulting in famous models such as random graphs,

small-world models, stochastic block models, and Bayesian network models, which all gener-

ate graphs based on apriori structural assumptions [14]. These traditional graph generation

models [15–17] are engineered towards modeling a pre-selected family of graphs, such as

random graphs [18], small world networks [19], and scale-free graphs [15]. However, they

have limitations. First, due to their simplicity and hand-crafted nature, these random graph
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models generally have limited capacity to model complex dependencies and are only capa-

ble of modeling a few statistical properties of graphs. For example, Erdos–Rényi graphs do

not have the heavy-tailed degree distribution that is typical of many real-world networks.

Second, the utilization of the apriori assumption limits these traditional techniques from ex-

ploring more applications in larger scale of domains, where the apriori knowledge of graphs

is always not available.

Considering the limitations of the traditional graph generation techniques, a key open

challenge in this area is developing methods that can directly learn generative models from

an observed set of graphs. Developing generative models that can learn directly from data

is an important step towards improving the fidelity of generated graphs, and paves a way

for new kinds of applications, such as discovering new graph structures and completing

evolving graphs. Recent advances in deep generative models, such as variational autoen-

coders (VAE) [20] and generative adversarial networks (GAN) [21], have made important

progress towards generative modeling for complex domains, such as image and text data.

Building on these approaches a number of deep learning models for generating graphs have

been proposed [11, 22–24] and result in a new domain: deep generative models for graph

generation.

However, there are some limitations or unexplored aspects of existing deep graph gener-

ative models on graphs. (1) Inability to deal with the conditional graph generation

problem. More importantly, most of the existing graph generation models are uncondi-

tioned and thus ignore rich input graph information for generating a new graph. In many

applications, it is crucial to guide the graph generation process by conditioning on an input

graph, which can be cast as a graph transformation learning problem – transforming the

input graph to the output graph. (2) Inability to deal with the mutli-attributed

graphs generation. Multi-attributed graphs are commonly observed in the real-world

where nodes and edges both have multiple attributes (i.e. labels, features, and properties).

It is very important and challenging to conditionally co-generate both the node and edges

attributes in the domain of graph generation. (3) The generative models usually lack
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interpretation for the generated graphs and the generation process. When we

learn the underlying distribution of complex graph data, learning interpretable representa-

tions of graphs that expose semantic meaning is very important. Such representations are

useful not only for standard downstream tasks such as supervised learning and reinforce-

ment learning, but also for tasks such as transfer learning and zero-shot learning where

humans excel but machines struggle [25]. In the domain of computer vision, most research

has focused on learning factors of variations in the data, commonly referred to as learning a

disentangled representation, where the variables of the representations are highly indepen-

dent. Examples of this include variables that only control the size of objects, or their color.

However, in the promising domain of graph generation, disentangled enhancement has rarely

been well explored yet, but could be highly beneficial for domains such as controlling the

generation of protein structures, or designing Internet of Things (IoT) applications. (4)

Lack of abilities to interpret and precisely control the data generation process

with the desired properties, especially continuous-valued properties. Given the

interpretation of the generation process, sometimes it is important to utilize the information

to manipulate and control the generated data with the desired values of properties. That is,

it is important to explicitly explore the mathematical relationship between each property

and each latent variable of the data. The first and second sub-problems can be catego-

rized and result in a new research topic, namely conditional deep graph generation, where

the task is to learn the underlying mapping from input graphs to target graphs regard-

ing different kinds of graphs (i.e. graph topology, multi-attributed graphs, signed graphs

and directed graphs) efficiently and effectively via an end-to-end model, which requires less

aprior knowledge about the graphs. The third and forth sub-problems can be categorized

into one new research topic, namely interpretation of graph generation and will be handled

in two sub-tasks.

Thus, the goal of this research is to explore two novel and important problems in the

domain of deep generative model for graph generation, that is, conditional deep graph

generation and interpretable deep graph generation as well as their applications in many
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real-world tasks. The details of each issue are provided in the following subsections.

1.1 Research Issues

This research aims to explore deep generative models for conditional and interpretable graph

generation as well as their applications in many domains. For deep generative models for

conditional graph generation, we explore two sub-problems, namely, deep graph topology

transformation and multi-attributed graph transformation. For deep interpretable graph

generation, we also explore two sub-problem, namely, disentangled deep graph generation

and property controllable deep graph generation. The major research issues are stated as

follows:

1.1.1 Conditional Deep Graph Topology Generation

Deep graph generation models have achieved great successes recently, among which how-

ever, are typically unconditioned generative models that have no control over the target

graphs given an input graph. There are various kinds of graph transformation problems

regarding the entries to be transformed. One important topic is graph topology transfor-

mation where the node set is fixed and the graph topology changes. In this dissertation, we

propose a novel Graph-Translation-Generative-Adversarial-Network (GT-GAN) [26] that

transforms the input graphs into their target output graphs. GT-GAN consists of a graph

translator equipped with innovative graph convolution and deconvolution layers to learn the

translation mapping considering both global and local features. A new conditional graph

discriminator is proposed to classify the target graphs by conditioning on input graphs while

training. Extensive experiments on multiple synthetic and real-world datasets demonstrate

that the proposed GT-GAN significantly outperforms other baseline methods in terms of

both effectiveness and scalability. For instance, GT-GAN performs at least 10 and 15 time

faster than two existing unconditional generation models, i.e., GraphRNN and Random-

VAE, respectively, when the size of the graph is around 50.
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1.1.2 Conditional Deep Graph Generation for Multi-attributed Graphs

Generalized from image and language transformation, graph transformation aims to gener-

ate a graph in the target domain by conditioning an input graph in the source domain. This

promising topic has attracted fast-increasing attention recently. Existing works are limited

to either merely predicting the node attributes of graphs with fixed topology or predicting

only the graph topology without considering node attributes (i.e., graph topology transfor-

mation), but cannot simultaneously predict both of them, due to substantial challenges: 1)

difficulty in characterizing the interactive, iterative, and asynchronous translation process

of both nodes and edges and 2) difficulty in discovering and maintaining the inherent consis-

tency between the node and edge in predicted graphs. These challenges prevent a generic,

end-to-end framework for joint node and edge attributes generation, which is a need for

real-world applications such as malware confinement in IoT networks and structural-to-

functional brain-network transformation. These real-world applications highly depend on

hand-crafting and ad-hoc heuristic models, but cannot sufficiently utilize massive historical

data. Here, we termed this generic problem “multi-attributed graph transformation” and

developed a novel framework, namely, node-edge co-evolution deep graph translator (NEC-

DGT), which integrates both node and edge transformation seamlessly. The proposed novel

edge translation path is generic and is proven to be a generalization of the existing link pre-

diction models. In addition, a spectral graph regularization based on a novel non-parametric

graph Laplacian is proposed in order to learn and maintain the consistency of the predicted

nodes and edges. Extensive experiments on both synthetic and real-world application data

demonstrated the effectiveness of the proposed method.

1.1.3 Interpretable Deep Graph Generation for Multi-attributed Graphs

For interpretation of the graph generation, one way is to discover the semantic meaning

of the representations that are used for graph generation. Disentangled representation

learning has recently attracted significant amount of attentions, particularly in the field
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of interpretable image representation learning. However, learning the disentangled repre-

sentations behind a graph remains largely unexplored, especially for the multi-attributed

graph with both node and edge features. Disentanglement learning for graph generation

has substantial new challenges including: 1) the lack of graph deconvolution operations to

jointly decode node and edge attributes; and 2) the difficulty in enforcing the disentangle-

ment among latent factors that respectively influence: i) only nodes, ii) only edges, and

iii) joint patterns between them. To address these challenges, we propose a new disentan-

glement enhancement framework based on deep generative models for attributed graphs,

namely, node-edge co-disentanglement variational auto-encoder (NED-VAE). In particular,

a novel variational objective is proposed to disentangle the above three types of latent fac-

tors, with novel architecture for node and edge deconvolutions. Moreover, within each type,

individual-factor-wise disentanglement is further enhanced, which is shown to be a general-

ization of existing framework for images. Qualitative and quantitative experiments on both

synthetic and real-world datasets demonstrate the effectiveness of the proposed model and

its extensions.

1.1.4 Property Controllable Deep Graph Generation via Graph Manip-

ulation

Deep generative models have made important progress towards modeling complex, high

dimensional data. Their usefulness is nevertheless often limited by a lack of control over

the generative process or a poor understanding of the latent representation. It is always

desirable to manipulate the generated complex data with desired properties. To overcome

these issues, attention is now focused on discovering latent variables correlated to the data

properties and exploring the mathematical relationship between these properties and latent

variables. In this dissertation, we present the Property-controllable VAE (PCVAE), where

a new Bayesian model is proposed to inductively bias the latent representation using ex-

plicit data properties via novel group-wise and property-wise disentanglement terms. Each

data property corresponds seamlessly to a latent variable, by enforcing invertible mutual
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dependence between them. This allows us to move along the learned latent dimensions

to control specific properties of the generated data with great precision. Quantitative and

qualitative evaluations confirm that the PCVAE outperforms the existing models by up to

28% in capturing and 65% in manipulating the desired properties.

1.2 Contribution

The major contributions of the research presented here can be stated as follows:

Conditional Deep Graph Topology Generation

• Development of an unsupervised framework: We develop a generic framework

called GT-GAN consisting of a novel graph translator and conditional graph discrim-

inator for learning a conditional distribution of target graphs given the input graphs.

• Proposal of a novel convolution-based graph encoder: We propose a novel

graph encoder consisting of “edge convolution” layers that extract various relations

among nodes containing both local and global information, and “node convolution”

layers that embed the node representations based on the extracted relations.

• Proposal of a novel deconvolution-based graph decoder: We propose a novel

graph decoder consisting of the “edge deconvolution” and “node deconvolution” layers,

which can decode the node representations first into the latent relations of the target

graph and then generate the final target graph. The graph skip-connection is also

utilized to map the learned latent relations between the input and target graphs.

Conditional Deep Graph Generation for Multi-attributed Graphs

• The development of a new framework for multi-attributed graph transfor-

mation. We formulate, for the first time, a multi-attributed graph transformation

problem and propose a framework (i.e., NEC-DGT) to tackle this problem. The

proposed framework is generic for different applications where both node and edge

attributes can change after translation.
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• The proposal of novel and generic edge translation layers and blocks. A

new edge translation path is proposed to translate the edge attributes from the input

domain to the output domain. Existing edge translation methods were proven to be

special cases of ours, which can handle broad multi-attribute edges and nodes.

• The proposal of a spectral-based regularization that ensures consistency of

the predicted nodes and edges. In order to discover and maintain the inherent re-

lationships between predicted nodes and edges, a new non-parametric graph Laplacian

regularization with a graph frequency regularization is proposed and leveraged.

Interpretable Deep Graph Generation for Multi-attributed Graphs

• A novel framework is proposed for the disentanglement of attributed graph

generation. In order to jointly disentangle the nodes and edges, we derive a novel

objective framework for learning three factors that are exclusive to node patterns,

exclusive to edge patterns, and those spanning node-edge-joint patterns. This new

framework is demonstrated to be a significant generalization over existing disentan-

glement frameworks for image generation.

• A novel architecture is proposed for disentanglement learning on graphs.

Derived from the theoretical objective of our framework, a novel architecture pro-

posed for the representation learning of graphs consists of three sub-encoders (a node

encoder, an edge encoder, and a node-edge co-encoder) to learn the three types of rep-

resentations, along with two novel sub-decoders (a node-decoder and an edge decoder)

to co-generate both nodes and edges.

• Simultaneous group-wise and variable-wise disentanglement. The proposed

framework hierarchically disentangles attributed graph generation according to node,

edge, and their joint factors. A set of variational auto-encoder-based models for

attributed graphs have been proposed.

Property Controllable Deep Graph Generation via Graph Manipulation
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• A new Bayesian model and inference process is proposed. A new Bayesian

model that inductively biases the latent representation using explicit real data prop-

erties is proposed. A variational inference strategy and inference model have been

customized to ensure effective Bayesian inference.

• Two novel regularization terms are proposed to enforce the disentangle-

ment of latent variables. Group-wise and property-wise disentanglement terms

are proposed to enhance the mutual independence among the desired property, their

relevant and irrelevant latent variables.

• A novel invertible property decoder is proposed. The invertible mutual depen-

dence between property-latent variable pair is achieved by enforcing an invertibility

constraint over a residual-based decoder. The invertible property decoder allows the

precisely property control on the generated complex data.

1.3 Proposal Organization

The remainder of the research proposal is as follows. Chapter 2 defines the deep graph trans-

formation problem (i.e., conditional deep graph generation), and proposes a new GAN-based

model for conditional graph topology generation problem and presents experiments results

and discussions. Chapter 3 extends the conditional graph topology generation into condi-

tional multi-attributed graph generation, and describes the proposed supervised framework

for dealing with the multi-attributed graph transformation with a node-edge co-evolution

process and designs a spectral-based regularization term to enforce the node-edge consis-

tent, where the regularization term is also expanded to handle the sign graphs and directed

graphs. Experiments results and discussions are also presented for this work. Chapter 4

introduces the new Node-Edge Disentangled Variational Auto-encoder (NED-VAE) model

for interpretable graph generation. NED-VAE is a deep unsupervised generative approach

for disentanglement learning on graphs that automatically discover the independent latent

factors in both edges and nodes. In Chapter 5, a new model, Property-controllable VAE
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(PCVAE) is introduced for interpretable graph generation, where a new Bayesian model

is proposed to inductively bias the latent representation using explicit data properties via

novel group-wise and property-wise disentanglement terms. Chapter 6 summarizes the work

carried out, lists the associated publications, and suggests directions for future research.
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Chapter 2: Deep Generative Models for Conditional Graph

Topology Generation

2.1 Introduction

In recent years, deep learning on graphs has seen a surge of interest, especially for graph

representation and recognition tasks such as node-level classification [27–31] and graph-

level classification [32–34]. Because of the successes in graph neural networks, researchers

have recently started to explore the use of deep generative models for graph synthesis on

practical applications such as designing new chemical molecular structures [23, 35]. This

has led to many of the recent advances in deep graph generative models, some of which

are domain-dependent models [36,37] for generating graphs with physical constrains, while

others consider the generation of generic graphs [24,38,39].

However, there are two main drawbacks of existing deep graph generative models. First,

one significant limitation of the previous approaches is that most of these models are only

suitable for small graphs with 40 or fewer nodes, which is mainly due to their one-node-per-

step generation manner. More importantly, most of the existing graph generation models

are unconditioned and thus ignore rich input graph information for generating a new graph.

In many applications, it is crucial to guide the graph generation process by conditioning

on an input graph, which can be cast as a graph translation learning problem — translating

the input graph to the output graph. Such graph translation can be highly desirable for

applications such as disaster management and rare event forecasting, where rare and ab-

normal graph patterns (e.g., traffic congestion and terrorism events) can be inferred prior

to their occurrence even without historical data on the abnormal patterns for this specific

graph (e.g., a road network or human contact network). For example, important trade
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secrets stored in an enterprise’s computer network are extremely hard to defend from theft-

of-trade-secret behaviors, which involve highly sophisticated activities in terms of malicious

authentication paths over cyber-networks[40]. Malicious detection involves learning from

rich historical attack examples, which are not available for all the employee accounts. The

generic distribution of theft behaviors from historical attacks on some accounts can be

learned and used to synthesize a range of possible malicious authentication graphs for other

accounts based on their regular authentication graphs.

For another example, in social networks where people are the nodes and their contacts

are the edges, the contact graph among them varies dramatically across different situations.

For instance, when people are organizing a riot, it is expected that the contact graph will

become denser and several special “hubs” (e.g., key players) may appear. Hence, accu-

rately predicting the contact network in a target situation is highly beneficial to situational

awareness and resource allocation.

This type of problem is formulated as deep graph transformation, which aims at trans-

forming an input graph in the source domain into the distribution of corresponding output

graphs in the target domain based on deep graph neural networks. Few works have been

proposed in the domain of graph transformation, however, with their own limitations. Some

works propose to only handle some specific tasks without generality, such as molecule re-

action prediction or molecule optimization in the domain of biology [39,41]. Others utilize

the sequential generating technique which has difficulty in preserving the global probability

of graphs due to the lack of long-term dependency in the sequence [42]. Thus, there are still

critical challenges that hurdle the further scientific exploration of the deep graph translation

domain: 1) How to learn one-to-more mapping between the input graph and the

target graphs. Different from the plain graph generation problem, a conditional graph

synthesis task is to learn a distribution of target graphs conditioning on the input graph,

which aims to capture the underlying implicit properties of the graphs, such as their scale-

free characteristic. 2) How to jointly learn both local and global information for

translation. One needs to learn the translation mapping not only in the local information
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(i.e., neighborhood pattern of each node), but also in the global property of the whole graph

(e.g., node degree distribution or graph density). 3) Difficulty in developing a decoder

to utilize the extracted patterns of multiple levels in the encoder. In the deep

graph translation process, where multiple levels’ graph information is learned and propa-

gated through a top-down and bottom-up path, it is hard to decide which level’s extracted

patterns in the encoder should be preserved for the generation of target graphs.

To address the aforementioned challenges, we present a novel neural network archi-

tecture: Graph-Translation-Generative-Advers arial-Nets (GT-GAN). We first propose a

conditional graph GAN architecture that consists of an encoder-decoder translator and a

conditional graph discriminator to learn the one-to-more mapping (a conditional distribu-

tion) for graph translation. To jointly embed the local and global information, we present a

novel graph encoder including both the edge and the node convolution layers. In addition,

we further propose a novel graph U-net with graph skips and dedicated graph deconvolution

layers including both the edge and the node deconvolution layers. This graph U-net with

skips enables the model to learn multiple levels’ information in the graph encoder as well as

select to utilize valuable multiple levels’ information to generate the target graphs in graph

decoder. Finally, GT-GAN is scalable with at most quadratic computation and memory

consumption in terms of the number of nodes in a graph, making it suitable for at least

modest-scale graphs (with hundreds of nodes, compared to the tens of nodes in most of the

existing graph generative models).

For this work, we highlight our main contributions as follows:

• We develop a generic framework called GT-GAN consisting of a novel graph translator

and conditional graph discriminator for learning a conditional distribution of target

graphs given the input graphs.

• We propose a novel graph encoder consisting of “edge convolution” layers that ex-

tract various relations among nodes containing both local and global information,

and “node convolution” layers that embed the node representations based on the

extracted relations.
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• We propose a novel graph decoder consisting of the “edge deconvolution” and “node

deconvolution” layers, which can decode the node representations first into the latent

relations of the target graph and then generate the final target graph. The graph

skip-connection is also utilized to map the learned latent relations between the input

and target graphs.

• We conduct extensive experiments on both synthetic and real-world datasets on six

performance metrics to demonstrate the effectiveness and efficiency of the proposed

model.

2.2 Related Works

Graph Neural Networks. The recent surge of research into graph neural networks (GNN)

can be generally divided into two categories: graph recurrent networks and graph convo-

lutional networks. Graph recurrent networks originate from early work by [43, 44] and are

based on recursive neural networks that have been extended by modern deep learning tech-

niques such as gated recurrent units [27]. The other category, graph convolutional networks,

originates from spectral graph convolutional neural networks [45], which were extended by

Defferrard et al. [46] using fast localized convolutions, and further approximated by an effi-

cient architecture for a semi-supervised setting proposed by Kipf et al. [28]. Self-attention

mechanism and subgraph-level information were also explored later to further improve the

representation power of learned node embedding [29, 47, 48]. GNNs are mostly utilized for

first learning the latent representation of the nodes or graphs and then apply the learnt

representation into many downstream tasks such as node classification, graph classification

and link prediction.

Graph Generation. Most of the existing graph generation methods for general graphs

has been proposed in the last two years and is based on variational auto-encoders (VAE)

[23, 38] and generative adversarial nets (GANs) [49], and others [24, 35]. The current deep
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graph generation methods can be categorized into two main branches: (1) Sequential gen-

erating [24, 35]: this generates the nodes and edges in a sequential way, one after another.

Sequential generating performs the local decisions made in the preceding one in an efficient

way with time complexity of only O(N), but it has difficulty in preserving the long-term

dependency. Thus, some global properties (e.g., scale-free property) of the graph are hard

to include. (2) One-shot generating [23, 38]: this refers to building a probabilistic graph

model based on the matrix representation that can generate all nodes and edges in one

shot. One-shot generating methods have the capacity of modeling the global property of

a graph by generating and refining the whole graph (i.e. nodes and edges) synchronously

through several iterations, but most of them are limited to small graphs (i.e. the size of

node set is less than 20) since the time complexity is not less than O(N4). In this chapter,

we adopt the one-shot generation process considering that the global and local information

are both critical to be captured in the graph translation task. Furthermore, our one-shot

generation process are validated to enjoy less complexity (i.e., O(N2)) compared to the

existing one-shot generation methods. Most of these approaches generate nodes and edges

sequentially to form a whole graph, leading to the issues of being sensitive to the generation

order and being very time-consuming for large graphs.

Data-Transformation-Involved Graphs. A variety of graph-to-sequence models

have been proposed to cope with different tasks including machine translation [50, 51],

semantic parsing [52–54], question generation [55], and health status prediction [56]. The

sequence-to-graph algorithms are generally popular with those working on NLP methods,

including generating AMR structures [57] and dependency graphs [58, 59]. A few very

recent attempts have also been made to develop graph-to-graph translation models. Jin

et al. [60] proposed a domain-specific graph translation model to deal with the molecular

optimization task by utilizing the domain knowledge: a junction tree and molecule graph.

Do et al. [41] dealt with the chemical reaction product prediction problem by predicting the

reaction sequences based on the input graph of molecules. Sun et al. [42] proposed an RNN-

based model for encoding and decoding the directed acyclic graph (converted from regular
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Figure 2.1: GT-GANs consisting of a graph translator and a conditional graph discrimina-
tor. A novel graph encoder and decoder are designed for the graph translation problem.

graphs). Guo et al. [61] proposed the NEC-DGT model to deal with the transformation

between multi-attributed graphs. However, these methods are trained following the encoder-

decoder architecture in a supervised setting instead of learning a distribution of graphs.

More importantly, they are difficult to scale to even modest-scale graphs due to their one-

node-per-step generation manner.

2.3 The Overall Architecture of GT-GAN

In this section, we first present our formulation of the graph translation problem. We then

propose our new GT-GAN model for graph translation and discuss each component in detail

in the subsequent sections.

2.3.1 Problem Formulation for Deep Graph Translation

Our goal is to learn an end-to-end translation mapping from an input graph to a target

graph. Let an input graph GX = (V, E , A, S) such that V is the set of N nodes, E ⊆ V×V is

the set of edges, and A ∈ RN×N is an adjacency matrix (binary or weighted), where GX can

be weighted or unweighted, directed or undirected. Let S ∈ RN×F be a node feature matrix
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with each row representing a node feature vector Si. Denote ei,j ∈ E as an edge from the

node vi ∈ V to vj ∈ V; Ai,j ∈ A therefore denotes the corresponding weight of the edge ei,j .

Similarly, we define a target graph GY = (V ′, E ′, A′, S′) that shares the same node sets and

node features with GX but with different topology and connection weights. Formally, graph

translation is learning a translator from an input graph GX ∈ GX with a random noise U

to generate a target graph GY ∈ GY , where GX and GY denote the domains of the input

and target graphs, respectively. The translation mapping is denoted as T : U,GX → GY .

Note that since our aim is to learn a conditional distribution of the target graphs given

an input graph, we can cast the graph translation problem as a conditional graph generation

problem, where an input graph can be mapped into any target graph that may have different

topologies yet follow the same distribution. In contrast, graph generation, which is designed

to learn a distribution of graphs and generate a new graph sample based on this distribution,

typically uses a variational autoencoder framework for graph generation. Therefore, the

previous graph generation frameworks such as graphVAE [23] and GraphRNN [35] do not

directly fit into the ”translation” setting.

The Proposed GT-GAN Framework. Fig. 2.1 shows our proposed generic GAN

framework for graph translation that consists of a graph translator T and a conditional

graph discriminator D. In this figure, we assume the node feature has only one dimension

for simplicity. Since our task is to train a conditional generator with “one-to-many mapping”

instead of a deterministic one, the noise U is introduced by the dropout function [62] in

each convolution and deconvolution layer, as shown (in green lines) in Fig. 2.1. Our graph

translator T is trained to produce target graphs that cannot be distinguished from “real”

ones by our conditional graph discriminator D. Specifically, the generated target graph

GY ′ = T (GX , U) cannot be distinguished from the real one, GY , based on the current

input graph GX . T and D undergo an adversarial training process based on input and

target graphs by solving the following loss function:
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L(T ,D) = EGX ,GY [logD(GY |GX)] + EGX ,U [log(1−D(T (GX , U)|GX))], (2.1)

where T tries to minimize this objective while an adversarial D tries to maximize it, i.e.

T ∗ = arg minT maxD L(T ,D). We mix the GAN loss with the L1 loss to enforce sparsity

similarity, which is also found to be useful in the image translation problem [63],

Ll1(T ) = EA,A′,U [‖A′ − T (GX , U)‖1], (2.2)

where T (GX , U) refers to the adjacent matrix of the generated graph. The training process

is a trade-off between Ll1 and L(T ,D), which jointly enforces T (GX , U) and GY to follow a

similar, but not necessarily identical, topological pattern. Specifically, Ll1 makes T (GX , U)

share the same rough outline of sparsity pattern as GY , while L(T ,D) allows T (GX , U)

to vary to some degree. Thus, the optimal objective T ∗ of the translator, which generates

graphs that are as “real” as possible, is defined as

T ∗ = arg min
T

max
D
L(T ,D) + Ll1(D). (2.3)

The graph translator T is an encoder-decoder architecture, where we propose a new

graph encoder to obtain the node representations of the input graph and propose the graph

deconvolution with skips to generate the target graph, as shown in Fig. 2.1, which we

elaborate in the following sections.

2.3.2 Graph Encoder

The graph encoder aims to learn the representations of nodes based on the node features

and graph topology of the input graph. One of the crucial challenges is to learn both local

and global information in the graph embedding. For instance, when learning translation

between two scale-free graphs, one needs to translate both the local information (i.e., n-hop
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Figure 2.2: The process of proposed graph convolution: the latent edge representations
are first extracted based via the edge convolution and the node latent representation are
generated based via the node convolution.

neighborhood of each node) and the scale-free property (i.e., node degree distributions of

the whole graph) from an input graph to a target graph.

The Proposed Graph Convolution. To learn the local information, the proposed

encoder learns each node representation based on its n-hop neighbors. To learn the global

information, it learns each node representation by looking for more “virtual neighbors”

regarding the latent relations from the aspect of the whole graph. As shown in Fig. 2.2,

though Nodes 1 and 2 are located far away in the original network, they have similarities in

some properties, such as neighborhood structure and node degree. Thus, these nodes are

treated as virtually connected, which is called “virtual neighbors”, and they have “hidden

relations.” We first propose “edge convolution” layers to learn a group of hidden relations

from the topology of the input graph, which can include both the n-hop connection rela-

tions and those that can deliver structural similarity among nodes. And then the “node

convolution” layer is used to embed each node representation by aggregating its “virtual

neighbors” that relate to each hidden relation. Fig. 2.3 illustrates the details of these matrix

operations involving graph convolution.

Edge Convolution. In each “edge convolution” layer, each node pair’s hidden relations
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Figure 2.3: Matrix operations for graph convolution and graph deconvolution. In convo-
lution operations, we need to utilize row filter to convolute “incoming” edges and column
filter for “outgoing” edges. However, in deconvolution operations, we have to utilize the
transposed filters, namely the column filter to decode for “incoming” edges and row filter
to decode for “outgoing” edges.

are computed by its adjacent edges or the extracted hidden relations from the last layer.

In the directed graph, each node has incoming edge(s) and outgoing edge(s). Thus, there

are two learnable parametric vectors φ and ψ as convolution filters for two directions to

convolute the adjacent edges/relations for each node pair, as shown in Fig 2.3(c). The

relation El+1,n
i,j in the nth relation mode of the (l + 1)th layer is learned by the outgoing

edges/relations of node vi and the incoming edges/relations of node vj :

El+1,n
i,j =

∑Rl+1

m=1
(σ(
∑N

k1=1
El,mi,k1φ

l,n
k1

) + σ(
∑N

k2=1
El,mk2,jψ

l,n
k2

)), (2.4)

where E1,1
i,j ≡ Ai,j , φl,n ∈ RN×1 refers to the filter vector to be learned, and φl,nk1 refers to the

element of φl,n that is related to node vk1 . Rl refers to the number of hidden relation that

will be extracted for the (l + 1)th layer of the graph encoder. For the indirected graphs,

only one direction’s convolution is needed.

Node Convolution. After learning the various hidden relations, the “node convolu-

tion“ layer is used to learn each node’s representations by aggregating its “virtual neighbors”

in terms of each kind of relation. There are also two vectors of covolution filter µl,n and νl,n

for two directions, as shown by the rectangles in orange in Fig. 2.3. The nth feature vector
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of node representation tensor H̄ l+1,n
i ∈ R1×F for node vi is computed as

H̄ l+1,n
i =

∑Rl

m=1
(σ(
∑N

k1=1
El,mi,k1µ

l,n
k1
Sk1) + σ(

∑N

k2=1
El,mk2,iν

l,n
k2
Sk2)), (2.5)

where H̄ l+1
i ∈ RRl+1×F and Rl+1 refers to the number of feature vectors in the “node

convolution” layer. Here, µl,n, νl,n ∈ RN×1 refers to the filter vectors for the two directions

to be learned, and µl,nk1 refers to the element of µl,n that is related to node vk1 . H̄ l+1
i is

then flattened and transformed into a node representation vector H l+1
i ∈ R1×C by a fully

connected layer. C is the length of the node representation. Note that our graph encoder

is designed for a directed graph, and it is easily generalized to an undirected graph, where

the weight vector is shared by both directions. In this proposed architecture, the number

of ”node convolution layers” is one.

2.3.3 Graph Decoder

The decoder aims to generate the edges of the target graph by taking the extracted latent

information of the input graph. It is straightforward to directly use the embedded node

representation of the last layer to generate the target graph. However, the extracted infor-

mation from each layer in the encoder could also be useful for generating the target graph.

Thus, we consider all possible information learned in the encoder to be fed into a graph

decoder.

The Proposed Graph Deconvolution. Motivated by these observations, we propose

a graph U-Net consisting of graph skips and dedicated graph deconvolution layers. The

graph deconvolution decodes the single node (or edge) information to yield its incoming

and outgoing adjacent edges as a mirrored graph convolution process. In addition, several

skips are implemented to map the learned information of each layer in the encoder to mirror

the corresponding layers in the decoder. The proposed graph deconvolution technique

incorporates both “node deconvolution” and “edge deconvolution” layers.
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Similar graph U-Net was proposed by Gao et al [64]. The key difference is that their

U-Net is barely a graph embedding method because it uses the old graph topology from

the pooling part to embed nodes during the unpooling part. However, our Graph U-Net

can not only learn node embedding in the graph encoder but also generate the new graph’s

topology in the graph decoder, which is necessary for the graph translation problem.

Node Deconvolution. First, the “node deconvolution” layer is used to generate the

various hidden relations of the target graph mentioned above based on the learned latent

node representations. As shown in Fig. 2.3(b), “node deconvolution” is a reversed process

of “node” convolution. It is assumed that each node can influence its relations to other

nodes. Then the relation El+1,n
i,j between node vi and node vj in the nth relation mode of

the (l + 1)th “node” deconvolution layer in the decoder can be computed as follows:

El+1,n
i,j =

∑C

m=1
(σ(H l,m

i µ̄l,nj ) + σ(H l,m
j ν̄l,ni )), (2.6)

where σ(H l,m
i µ̄l,nj ) means the deconvolution contribution of node vi to its relation with node

vj made by the mth element of its node representations, and µ̄l,nj represents the element of

the deconvolution filter vector µ̄l,n ∈ RN×1 that is related to node vj .

Edge Deconvolution. We can now recursively apply our proposed “edge deconvolu-

tion” layer to decode the latent relation between each pair of nodes from the upper layer to

those of the lower layer. As a reversed way of doing “edge” convolution, the relation of each

pair of nodes in the lth layer can make contribution to generating itself and its adjacent

relations in the (l + 1)th layer, as shown in Fig. 2.3 (d). Thus, the relation El,ni,j between

node vi and node vj in the (l + 1)th layer is computed as follows:

El+1,n
i,j =

∑R′l

m=1
(σ(φ̄l,nj

N∑
k1=1

El,mi,k1Sk1) + σ(ψ̄l,ni

N∑
k2=1

El,mk2,jSk1)), (2.7)

where φ̄l,nj
∑N

k1=1E
l,m
i,k1

is interpreted as the decoded contribution of node i to its relations
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with node vj , and φ̄l,nj refers to the element of deconvolution filter vector that is related to

node vj . R
′
l refers to the number of relation modes extracted by the lth layer in the graph

decoder. The output of the last “edge” deconvolution layer denotes the edges of the target

graph.

Skips for Graph Deconvolution. Based on the graph deconvolution above, it is

possible to utilize skips to link the extracted latent relation sets of each layer in the graph

encoder with those in the graph decoder. Specifically, the output of the lth “edge decon-

volution” layer with Rl channels in the decoder is concatenated with the output of the lth

“edge convolution” layer with R′l channels in the encoder to form joint Rl + R′l channels,

which are then input into the (l + 1)th deconvolution layer.

2.3.4 Conditional Graph Discriminator

The graph discriminator must distinguish between the “translated” target graph and the

“real” ones based on the input graphs, as this helps to train the generator in an adversarial

way. Technically, this requires the discriminator to accept two graphs simultaneously as

inputs (a target graph and an input graph or a generated graph and an input graph) and

classify the two graphs as either related or not. Thus, we propose a conditional graph

discriminator (CGD) that leverages the same graph convolution layers in the translator for

the graph classification, as shown in Fig. 2.1. Specifically, the input and target graphs are

both ingested by the CGD and stacked into an N ×N × 2 tensor, which can be considered

a 2-channel input. After obtaining the node representations, the graph-level embedding is

computed by summing these node embeddings. Finally, a softmax layer is implemented to

distinguish the input graph-pair from the real graph or generated graph.

2.3.5 Computational Complexity Analysis

The graph encoder and decoder share the same time complexity. Without loss of generality,

we assume all the hidden layers have the same number of feature maps as M . P is the
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length of the fully connected layer in the CGD. The worst-case total complexity of GT-

GAN (i.e., the dense graph) is now O(9N2M2 + 3N2M2 +N2MP ), where the first, second,

and third terms represent “edge convolutions,” “node convolutions,” and fully connected

layers in the graph discriminator, respectively. Similarly, the total memory consumption

for GT-GAN is O((9NM2 + 9N2M) + (3NM2 + 3NM) + (N2MP + P )). In practice,

many graphs are likely to be sparse; thus, using sparse matrix-vector operations [35] further

reduces the computational and memory costs to O(N), which paves the way toward modest

scale graphs with hundreds or thousands of nodes, compared to most of the existing graph

generation methods, which often have O(N3) or even O(N4) computational costs.

2.3.6 Indirect Evaluation Metrics

To further evaluate the generated graphs, we propose a novel indirect evaluation schema. It

is straightforward to directly evaluate whether the generated graphs follow the same under-

lying patterns as the target graphs by simply calculating some predefined graph property

metrics, such as graph kernel similarity and degree distribution similarity. However, some-

times the underlying patterns are more complex to define and measure. Thus, we design

an indirect evaluation schema inspired from a real-world classification problem: label im-

balance issues. For example, we may want to build a classifier to determine whether an

authentication graph of a user is malicious (positive) or normal (negative), but this user has

few malicious records. For this difficult task, the graphs (i.e., malicious graphs) generated

by GT-GAN, which has been trained on other users’ records, can be utilized as positive

samples to train the classifier.

Specifically, when evaluating, the test set is further split evenly into two subsets. The

first subset is used to train a graph classifier, as proposed by Nikolent et al. [65], using only

the normal graphs plus the generated malicious graphs. The second subset, which contains

both the normal and real malicious graphs, can then be used to validate the trained classifier.

In addition, a “gold standard” classifier trained on both normal and real malicious graphs

acts as the “best-possible performer” and is used to evaluate all the different generative
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Figure 2.4: Flow chart of validation: Graphs X and Y denote the real input and target
graphs. Graph Y ′ denote to the generated target graphs given the input condition X.
Graphs X and Y ′ are used for training the classifier. The classification results on graphs
X and Y are evaluation metrics of GT-GAN. The classification results on graphs X and Y ′

are “gold standards”.

models to judge how “real” the graphs they generate are. The detailed evaluation flowchart

is provided in Figure. 2.4

2.4 Experiments

This section reports the results of extensive experiments and ablation studies carried out

to test the performance of GT-GAN on two synthetic and two real-world datasets. All

experiments were conducted on a 64-bit machine with an NVIDIA GPU (GTX 1070, 1683

MHz, 8 GB GDDR5).

2.4.1 Datasets

In this section, we describe the experimental settings and rules for generating synthetic

input-target graph pairs, as well as the process of collecting the real-world graphs for each

dataset.
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Synthetic Datasets. Synthetic datasets were used to validate the performance of the

proposed GT-GAN. Each input graph is generated as a directed scale-free network, whose

degree distribution follows the power-law property [66]. A node will be selected as the

target node with a probability proportional to its in-degree, which will be linked to a new

source node with probability of 0.41. Similarly, a node will be selected as a source node

with probability proportional to its out-degree, which will be linked to a new target node

with a probability of 0.54. Then, in the target graph, each weight between two connected

nodes will be added to m, where m could be any value larger than 1. Thus, both the input

and target graphs are scale-free graphs. Each group has five subsets with different graph

sizes (number of nodes): 10, 20, 50, 100, and 150. Each subset consists of 5,000 input-target

graph pairs: 2,500 pairs were used for training and the remaining 2,500 for testing.

User Authentication Dataset. This dataset includes the authentication activities of

97 users on their accessible computers and servers in an enterprise computer network [67].

Each user account generates a log file recording the computer accessing history, which could

be formulated as a directed weighted graph called an authentication graph, where nodes

represent computers and the directed edges’ weights represent authentication activities with

certain frequencies. Here, each authentication graph records user behavior for thirty min-

utes. The goal of this application was to forecast future potential malicious authentication

graphs given the user’s normal authentication graph. In total, there are 78 pairs of graphs

(malicious and normal behavior) of graph size 50 and 315 pairs of graphs of graph size

300 from 97 users in two subsets. We performed a 2-fold cross-validation and 3-fold cross-

validation, respectively, for the two subsets.

Internet of Things (IoT) Dataset. This application focused on IoT network malware

confinement prediction (predicting optimal network operation given a compromised one),

which is also tested in the work proposed by Guo et al. [61]. There are three subsets of

graph pairs with different sizes (20, 40, and 60), where the nodes represent devices and the

node attributes indicate the compromised status of the nodes. The weights of the edges

represent the distance between two devices. There are 334 pairs of input (compromised
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IoT) and target graphs (optimal IoT) in each subset, and each is divided into two parts for

the 2-fold cross-validation.

Real-world HCP Dataset: The human connectome project (HCP) dataset is used

for evaluating the signed graph translation model. Brain network prediction, such as pre-

diction of functional connectivity based on structural connectivity, is a very critical task

in neuroscience. The goal is to learn the mapping from the resting-state functional con-

nectivity into task-specific functional connectivity in the human brain. In this dataset, the

source and the target graphs respectively reflect the structural connectivity (SC) and the

functional connectivity (FC) of the same subject’s brain network. In particular, both types

of connectivity are processed from the magnetic resonance imaging (MRI) data obtained

from the HCP dataset [68]. By following the preprocessing procedure in [69], the SC data

is constructed by applying probabilistic tracking on the diffusion MRI data using the Prob-

trackx tool from the FMRIB Software Library [70] with 68 predefined regions of interest

(ROIs). Then, the edge attributes of FC are defined as the Pearson’s correlation between

two ROIs’ blood oxygen level-dependent time obtained from the resting-state functional

MRI data, where both ”full” normalized temporal correlation and partial regularized tem-

poral1 between every node time-series and every other are considered. The node attributes

refer to the index of each node by a one-hot vector. FC data are collected regarding 5

different human brain states, namely, resting, emotion, gambling, language and motoring.

Thus, there are 5 subusets for both full normalized and partial regularized dataset. In total,

each subset has 823 pairs of SC and FC samples.

2.4.2 Baseline Methods

We compare our GT-GAN against five state-of-the-art graph generation methods: 1) GraphRNN [35]

is a new graph generation method based on sequential generation with the LSTM model;

2) GraphVAE [23] is a probability-based graph generation method for small graphs; 3)

GraphGMG [24] is a framework based upon graph neural networks for small single graphs;

1To estimate the partial correlation coefficients, a small amount of L2 regularization is applied

26



4) RandomVAE [38] was described in related works; and 5) S-Generator is the part of our

full model GT-GAN that essentially is a graph translator with L1 loss but no discrimina-

tor. We propose this S-Generator model in order to evaluate the necessity of the proposed

GT-GAN framework to learn the one-to-many mappings. All the comparison methods were

trained on the malicious graphs without conditioning on the input graphs due to the mod-

els’ inherent capability limitations. The datasets were assigned to each comparison model

for the experiment based on their scalability in terms of graph size.

2.4.3 Evaluation Results on Synthetic Datasets

Statistics-based Evaluation. To evaluate the similarity between the generated and real

target graphs, we selected four performance metrics: 1) one metric is distance between

a generated and real graph in terms of Closeness centrality (C-dist) [71] and another is

similarity score based on the graph kernels of the Weisfeiler Lehman kernel(wl-sim) [72];

2) two metrics are used to evaluate the node degree distribution correlation between the

generated and real target graphs by Jensen-Shannon distances (JS) and the Wasserstein

Distances (WD). As shown in Table 2.1 (left), our GT-GAN consistently outperforms all

other baselines by a large margin, especially when the graph size becomes large (i.e., it

outperforms the other methods by 34.6% when the size is 150). S-Generator is generally the

second best method in terms of these six evaluation metrics, highlighting the effectiveness

of our proposed graph encoder and decoder.

Classifier-based Evaluation. To further evaluate the generated graphs, we propose

a novel classifier-based evaluation schema. We assume that the classifier that is capable of

recognizing the real target graphs can also be succeed in recognizing the generated target

graphs. Table 2.2 shows the average results of graph classifiers: Precision, Recall, AUC, and

F1-measure for different methods. The ‘gold standard’ is a classifier trained on real input

and target graphs, which is used to compared with those trained on the graphs generated by

different models. For small graphs (e.g., fewer than 10), the power-law property of scale-free

networks is less obvious compared to larger size graphs, which may explain why the tasks on
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Table 2.1: Statistics-based evaluation results for the scale-free graphs

Size Methods JS WD C-dist wl-sim

10

GraphRNN 0.47 1.64 0.5319 0.2470
GraphVAE 0.67 2.85 0.6664 0.3723
GraphGMG 0.43 1.69 0.4763 0.3701
S-Generator 0.35 0.80 0.2465 0.4185
GT-GAN 0.35 0.77 0.2379 0.4195

20

GraphRNN 0.50 1.44 0.6087 0.2652
S-Generator 0.36 0.67 0.1367 0.4665
GT-GAN 0.35 0.66 0.1894 0.4681

50

GraphRNN 0.49 0.94 0.6129 0.2613
S-Generator 0.31 0.90 0.2100 0.3400
GT-GAN 0.43 0.89 0.2087 0.4078

100
GraphRNN 0.48 0.90 0.6519 0.2713
S-Generator 0.14 0.30 0.1501 0.3522
GT-GAN 0.15 0.31 0.2087 0.4078

150
GraphRNN 0.42 0.95 0.6266 0.2891
S-Generator 0.08 0.29 0.1101 0.3493
GT-GAN 0.07 0.27 0.2105 0.3926

smaller scale-free graphs are more difficult. However, when the size of graphs increases, GT-

GAN becomes closer to the performance of the “Gold Standard” with average differences

of 10% and 9% on F1 accordingly on two sub-datasets, and it significantly outperforms the

other methods by large margins up to 51% and 19% on F1, respectively.

To verify whether GT-GAN indeed discovers the underlying ground-truth graph distri-

butions of the target graphs, we draw the node degree distribution curve for three pairs

of generated and real target graphs by GT-GAN, as an example shown in Fig. 2.5. In

addition, Fig. 2.6 shows 18 examples of the node degree distribution curve in generated and

real target graphs for scale free dataset from size 50 to 150. As shown in Fig. 2.6, the node

degree distribution of the generated graphs closely follow the node degree distribution of

the real target graphs. It is also interesting to observe that the larger the size of the graphs,

the more similar of the generated graphs to the real target graphs. This is because the

power-law property of the node degree distribution is more obvious and thus is more easier

to capture when there are more nodes in the graphs.
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Table 2.2: classifier-based evaluation results for the scale-free graphs

Size Method P R AUC F1

10

GraphRNN 0.31 0.11 0.49 0.16
GraphVAE 0.75 0.23 0.65 0.35
GraphGMG 0.42 0.12 0.49 0.18
S-Generator 0.46 0.83 0.43 0.59
GT-GAN 1.00 0.50 0.52 0.67
Gold Standard 1.00 0.74 0.82 0.77

20

GraphRNN 0.67 0.12 0.50 0.21
S-Generator 0.50 1.00 0.50 0.67
GT-GAN 1.00 0.50 0.50 0.67
Gold Standard 1.00 0.67 0.72 0.71

50

RandomVAE 0.89 0.67 0.84 0.76
GraphRNN 0.52 0.53 0.70 0.52
S-Generator 0.50 1.00 0.37 0.67
GT-GAN 0.93 0.82 0.94 0.87
Gold Standard 0.94 0.90 0.97 0.91

100

GraphRNN 0.61 0.65 0.67 0.60
S-Generator 0.50 1.00 0.50 0.67
GT-GAN 0.72 0.69 0.68 0.70
Gold Standard 0.99 0.61 0.81 0.75

150

GraphRNN 0.73 0.92 0.92 0.81
S-Generator 0.90 0.50 0.50 0.67
GT-GAN 0.94 0.79 0.96 0.86
Gold Standard 0.99 0.93 0.96 0.95

 

Figure 2.5: Examples of node degree distributions of generated and target graphs for scale-
free graphs
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Figure 2.6: Examples of node degree distribution for generated graphs and real graphs for
different graph size
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2.4.4 Evaluation Results on User Authentication Datasets

Classifier-based Evaluation. As shown in Table 2.3, classifiers trained by the graphs

generated by GT-GAN can classify normal and hacked behaviors effectively with AUC above

0.78, which is well above the 0.5 obtained using a random model. GT-GAN significantly

outperforms other methods by around 25%, 16%, 24.5%, and 22.1%, respectively, on the

four metrics: precision (P), recall (R), AUC, and F1-score for the trained classifier. GT-

GAN performs consistently better than other methods when the graph size increases from

50 to 300.

Table 2.3: Classifier-based Results for user authentication datasets

Size Method P R AUC F1-score

50

GraphRNN 0.34 0.36 0.50 0.36
S-Generator 0.72 0.61 0.74 0.66
GT-GAN 0.79 0.68 0.78 0.73
Gold Standard 0.97 0.97 0.97 0.97

300
S-Generator 0.77 0.58 0.62 0.66
GT-GAN 0.84 0.66 0.79 0.74
Gold Standard 0.98 0.96 0.97 0.97

Statistics-based Evaluation. In addition, GT-GAN clearly outperformed the S-

Genertor in statistics-based evaluation setting. For example, there are three direct eval-

uation metrics (i.e., En-dist, C-dist and wl-sim) mentioned above that are also tested, and

the results can be found in Table 2.4. The proposed GT-GAN has the best performance

in all three aspects both in small scale graphs and large scale graphs. Specifically, for

the graphs with size 50, GT-GAN significantly outperforms S-Generator by around 2.2%,

31.2%, and 3.2%, respectively, on the three metrics. For the graphs with size 300, GT-GAN

significantly outperforms S-Generator by around 35.2%, 16.7%, and 0.2%, respectively, on

the three metrics. This confirms that using a translator alone to learn a deterministic out-

put given an input graph is not sufficient to capture the generic distribution of the target

graphs.

Case study on user authentication dataset. Fig. 2.7 shows two examples of users
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Table 2.4: Statistics-based evaluation for user authentication datasets

Size Method C-dist wl-sim

50
GraphRNN 0.7456 0.6265
S-Generator 0.4414 0.9137
GT-GAN 0.1924 0.9439

300
S-Generator 0.0702 0.9846
GT-GAN 0.0681 0.9864

with a regular activity graph, real malicious activity graph, and malicious activity graph

generated by our GT-GAN, from left to right. Only those of edges with a difference among

them are drawn for legibility. For User 049, it can be seen that the hacker performed attacks

on Computer 192, which has been successfully simulated by our GT-GAN. In addition, GT-

GAN also correctly identified that Computer 192 is the end node (i.e., with only incoming

edges) in this attack. This is because GT-GAN can learn not only the global hacking

patterns (i.e., graph density, modularity) but also the local properties for specific nodes (i.e.,

computers). GT-GAN even successfully predicted that the hacker connect from Computers

0 and 1, with Computers 7 and 14 as false alarms. For User 006, the red team attackers

make more connections on Node 192 compared to user’s regular activity, as marked in the

red rectangle. GT-GAN leans how to choose the Node 192 and it also generated more

connections in Node 36.

2.4.5 Evaluation Results on IoT dataset

Table 2.5 compared the performance of GT-GAN and other comparison methods for the

IoT dataset by examining the edges of the generated and real target graphs for four metrics:

coefficient of determination score(R2) and Accuray(ACC) for the correct existence of edges

among all the pairs of nodes, as well as two statistic-based metrics mentioned above. The

results show that GT-GAN performed almost the best for all three subsets. Due to the

L1-loss required to maintain topology pattern similarity, GT-GAN outperformed the com-

parison methods with around 8%, 26%, and 40% superiority in ACC for the three subsets
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User 049 

User 006 

(a) Input Graph (b) Target Graph (c) Generated Graph 

Figure 2.7: Regular graphs, malicious graphs, and generated graphs of User 049 and User
006 for author authentication graph synthesis task

with the size 20, 40 and 60, respectively. As the graph size increases, the properties of the

graphs are clearer and the superiority of the proposed GT-GAN model is more obvious.

For example, the proposed GT-GAN model outperforms the GraphRNN and GraphVAE

by 67.6% and 21.5% on average on the metrics of C-dist and wl-sim, respectively, when the

graph size is 40, and by 75.4% and 12.2% when the graph size is 60.

Table 2.5: Results for the IOT datasets

Size Method R2 Acc(%) C-dist wl-sim

20
GraphRNN 0.16 83.97 0.6913 0.3334
GraphVAE 0.39 81.19 0.3283 0.3471
GT-GAN 0.67 92.00 0.4653 0.3536

40
GraphRNN 0.44 70.54 0.6908 0.3333
GraphVAE 0.73 66.60 0.4683 0.2603
GT-GAN 0.69 93.94 0.3378 0.3758

60
GraphRNN 0.52 61.07 0.6914 0.3333
GraphVAE 0.00 50.64 0.3896 0.3510
GT-GAN 0.62 94.63 0.3051 0.3899

33



2.4.6 Evaluation Results for HCP Datasets

We consider four classic brain network prediction methods and one graph-based method that

use SC to predict FC [73,74] as the comparison methods for this experiment in the domain

of brain network science. Abdelnour et al. [74] considered the graph spectral transformation

kernels by assuming that SC and FC share the identical eigenvectors on their Laplacians.

Another two methods directly considers the graph translation between SC and FC. The

goal is to predict the FC given the SC when the brain is doing different tasks. The Pearson

coefficient used as metric by comparing the predicted graphs with the empirical target

graphs, which is widely used in the domain of brain network [75, 76]. As shown in Table

3.5, the proposed GT-GAN achieves the highest Pearson coefficient on all the five sub-

datasets regarding both the full correlation and L2 correlation, with superiority of about

52.38% and 32.5% averagely. The great superiority of the proposed GT-GAN over the

typical methods in the domain of brain networks validates the power of deep learning-based

models in handling complex real-world applications.

Table 2.6: Pearson correlation between the predicted graph and empirical graph on HCP
datasets (Res for Resting, Emo for Emotion, Gam for Gambling, Lang for Language)

Method
Full Normalized Network L2 Regularized Network
Res Emo Gam Lang Res Emo Gam Lang

Ganlan et al. [73] 0.23 0.14 0.14 0.14 0.41 0.42 0.44 0.44
Abdelnour et al. [77] 0.23 0.14 0.14 0.15 0.41 0.42 0.43 0.44
Meier et al. [78] 0.26 0.16 0.15 0.16 0.43 0.44 0.46 0.46
Abdelnour et al. [74] 0.23 0.14 0.14 0.15 0.40 0.41 0.43 0.43
Guo et al. [61] 0.13 0.34 0.04 0.17 0.43 0.43 0.46 0.45
GT-GAN 0.45 0.34 0.34 0.35 0.66 0.62 0.63 0.64

2.4.7 Model Ablation Study

To further validate the superiority of the proposed graph convolution and deconvolution

layers, an ablation experiment was conducted. The graph encoder was replaced by GCN [28],
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Table 2.7: Ablation study of graph encoder and decoder in GT-GAN (Scale-III denotes
to the scale free datasets with graph size of 50; Auth-I denotes to the user authentication
dataset with graph size of 50; IoT-III donotes to the IoT dataset with graph size of 60).

Dataset Method JS WD C-dist wl-sim

Scale-III

GCN+decoder 0.18 18.84 0.6751 0.4031
DCNN+decoder 0.65 0.77 0.6745 0.4032
Unet+decoder 0.69 5.77 0.6496 0.4040
Encoder+VGAE 0.31 43.78 0.2559 0.4003
GT-GAN 0.15 0.31 0.2087 0.4078

P F1 C-dist wl-sim

Auth-I

GCN+decoder 0.31 0.33 0.7494 0.6632
DCNN+decoder 0.59 0.57 0.3349 0.6851
Unet+decoder 0.41 0.49 0.6859 0.9239
Encoder+VGAE 0.49 0.47 0.3129 0.6111
GT-GAN 0.79 0.73 0.1924 0.9439

R2 Acc(%) C-dist wl-sim

IoT-III

GCN+decoder 0.46 92.69 0.4349 0.3304
DCNN+decoder 0.52 93.26 0.3217 0.3292
Unet+decoder 0.45 92.46 0.2771 0.3310
Encoder+VGAE 0.12 88.14 0.4876 0.3333
GT-GAN 0.62 94.63 0.3051 0.3899

DCNN [79] and Graph U-NET [64]. The graph decoder was replaced by the decoder in

VGAE [11]. There were thus three method combinations for comparison.

Table. 2.7 shows parts of the results in the ablation study of the proposed encoder

and decoder on part of the scale-free graphs with size 50 (Scale-III), user authentication

with graph size 50 (Auth). The encoder of GT-GAN outperformed both the GCN- and

DCNN-based encoders by a large margin on these datasets, especially for the real-world

datasets, where the edges of the graphs can have a very complex meaning. For example, on

Auth-I, GT-GAN performed 41% and 38% better on average than other encoders in terms

of precision and F1-scores, respectively. Similar results can also be found for the proposed

decoder, which demonstrates that the proposed decoder in GT-GAN was both effective and

irreplaceable for graph generation.
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Figure 2.8: Scalability plots for memory (upper) and time cost (bottom) of GT-GAN, RandomVAE,
GraphVAE, and GraphRNN

2.4.8 Model Scalability Analysis

We compare the scalability of GT-GAN against three graph generation methods as shown

in Fig. 2.8. Our GT-GAN model significantly outperforms other state-of-the-art baselines in

terms of both computational time and memory consumption. As the graph size increases up

to 50, both the computational time and memory consumption of GT-GAN remain almost

constant. In contrast, the runtime and memory consumption of RandomVAE and the

runtime of GraphVAE increase super-linearly as the graph size increases, making it hard

to scale even to a graph size of 50. Though the runtime and memory consumption of

GraphRNN also increase slightly as the graph size increases, our GT-GAN achieves around

a ten-time speedup while requiring almost half of the memory as compared to GraphRNN.

Moreover, graphRNN requires a larger base runing time (i.e.,3000s) for even a graph with

5 nodes. This is because graphRNN generates the graph in a sequential style, where nodes

and edges are generated one by one.

2.5 Conclusion

This chapter focuses on a new problem: conditional deep graph topology generation, which

has been never explored before. To deal with it, we propose a novel GT-GAN model
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that transforms an input graph to a target graph. To learn both global and local map-

ping between graphs, a new graph encoder-decoder model is proposed while preserving the

graph patterns in various scales. Extensive experiments were conducted on synthetic and

real-world datasets to compare with the state-of-the-art graph generation models. Exper-

imental results show that our GT-GAN can discover the ground-truth translation rules,

and significantly outperforms other baselines in terms of both effectiveness and scalability.

Considering that both nodes and topology are important in formalizing a graph, the next

step is to explore the conditional graph generation for multi-attributed graphs where both

nodes and edges can change during transformation process.
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Chapter 3: Conditional Deep Multi-attributed Graph

Generation with Node-Edge Co-evolution

3.1 Introduction

As introduced in the last chapter, many problems regarding structured predictions are

encountered in the process of “translating” an input data (e.g., images, texts) into a corre-

sponding output data, which is to learn a translation mapping from the input domain to the

target domain. For example, many problems in image processing and computer vision can

be seen as a “translation” from an input image into a corresponding output image. Similar

applications can also be found in language translation [52, 53], where sentences (sequences

of words) in one language are translated into corresponding sentences in another language.

Such generic translation problem, which is important yet has been extremely difficult in

nature, has attracted rapidly-increasing attention in recent years. The conventional data

translation problem typically considers the data under special topology. For example, an

image is a type of grid where each pixel is a node and each node has connections to its

spatial neighbors. Texts are typically considered as sequences where each node is a word

and an edge exists between two contextual words. Both grids and sequences are special

types of graphs. In many practical applications, it is required to work on data with more

flexible structures than grids and sequences, and hence more powerful translation techniques

are required in order to handle more generic graph-structured data. This has been widely

applied into many applications, e.g. predicting future states of a system in the physical

domain based on the fixed relations (e.g. gravitational forces) among nodes [80] and the

traffic speed forecasting on the road networks [81, 82]. Though they can work on generic

graph-structured data, they assume that the graphs from the input domain and target do-

main share the same graph topology but cannot model or predict the change of the graph
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topology.

To address the above issues where the topology can change during translation, deep

learning-based graph translation problem has debuted in the very recent years. This prob-

lem is promising and critical to the domains where the variations of the graph topology

are possible and frequent such as social network and cyber-network. For example, in social

networks where people are the nodes and their contacts are the edges, the contact graph

among them vary dramatically across different situations. For example, when the people

are organizing a riot, it is expected that the contact graph to become denser and several

special “hubs” (e.g., key players) may appear. Hence, accurately predicting the contact

network in a target situation is highly beneficial to situational awareness and resource allo-

cation. Existing topology translation models [26,42] predict the graph topology (i.e., edges)

in a target domain based on that in an input domain. They focus on predicting the graph

topology but assume that the node attributes value are fixed or do not exist.

Therefore, existing works either predict node attributes upon fixed topology or predict

edge attributes upon fixed node attributes, as introduced in the last chapter. However,

in many applications, both node attributes and edge attributes can change. In this work,

such generic problem is named as multi-attributed graph translation, with important real-

world applications ranging from biological structural to functional network translation [74]

to network intervention research [83]. For example, the process of malware confinement1

over IoT (Internet of Things) is typically a graph translation problem as shown in Fig. 4.1.

It takes the initial status of IoT as input, and predicts the target graph which is ideally the

optimal status of the network with modified connections (i.e., edges) and devices (i.e., nodes)

state that helps to limit malware propagation and maintain network throughput. Epidemic

controlling can also be considered as a multi-attributed graph translation problem, which

is to estimate how the initial disease contact network (i.e., multi-attributed edges) and

the human health stage (i.e., multi-attribute nodes) are jointly changed after the specific

1A device infected in an IoT network can propagate to other nodes connected to it, leading to contami-
nating the whole network, such as MiraiBot attack. As such, it is non-trivial to confine the malware to limit
the infection and also equally important to maintain overall network connectivity and performance.
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Figure 3.1: Given the network at time t (shown in the left graph), malware confinement
is conducted to predict the most optimal status at time t + γ shown in the right, where
Devices 2 and 3 are protected by cutting the links (edges) to the compromised Device 1,
while the Device 4 is propagated by malware without cutting link.

interventions. Since multi-attributed graph translation problem is highly sophisticated,

there is no generic framework yet, but only ad-hoc methods for few specific domains, which

heavily rely on intensive hand-crafting and domain-specific mechanistic models that could

be extremely time- and resource- consuming to run in large scale. Hence, a generic, efficient,

and end-to-end framework for general multi-attributed graph translation problems is highly

in demand. Such framework needs to be able to comprehensively learn the translation

mapping, remedy human bias by enjoying the large historical data, and achieve efficient

prediction.

In this chapter, we focus on the generic problem of multi-attributed graph transforma-

tion, which cannot be handled by the existing methods because of the following challenges:

1) Translation of node and edge attributes are mutually dependent. The trans-

lation of edge attributes should not only consider edges, but also the node attributes. For

example, in Fig. 4.1, two links are cut down since their linked Device 1 is compromised,

which exemplifies the interplay between nodes and edges. Similarly, node translation also

needs to jointly consider both nodes and edges, e.g., Device 4 is infected due to its link

to Device 1. All the above issues need to be jointly considered but no existing works can

40



handle. 2) Asynchronous and iterative changes of node and edge attributes dur-

ing graph translation. The multi-attributed graph translation process may involve a

series of iterative changes in both edge and node attributes. For example in Fig.4.1, the

translation could take several steps since the malware propagation is an iterative process

from one device to the others. The links to a device may be cut (i.e., edge changes) right

after it is compromised (i.e, node attribute change). These orders and dependencies of how

node and edge attributes change during the translation are very important, yet difficult

to be learned. 3) Difficulty in discovering and enforcing the correct consistency

between node attributes and graph spectra. Although the predicted node and edge

attributes are two different outputs, they should be highly dependent on each other instead

of being irrelevant. For example, as shown in Fig. 4.1, the reason why Devices 2 and 3

on the right graph are not compromised is that they have no links with the compromised

Device 1 anymore. It is highly challenging to learn and maintain the consistency of node

and edge attributes, which are very sophisticated and domain-specific patterns.

To the best of our knowledge, this is the first work that addresses all the above chal-

lenges and provides a generic framework for the multi-attributed graph translation problem.

We propose an Node-Edge Co-evolving Deep Graph Translator (NEC-DGT) with novel ar-

chitecture and components for joint node and edge translation. Multi-block network with

novel interactive node and edge translation paths are developed to translate both node

and edge attributes, while skip-connection is utilized among different blocks to allow the

non-synchronicity of changes in node and edge attributes. A novel spectral graph regular-

ization is designed to ensure the consistency of nodes and edges in generated graphs. The

contributions of this work are summarized as follows:

• The development of a new framework for multi-attributed graph transla-

tion. We formulate, for the first time, a multi-attributed graph translation problem

and propose the NEC-DGT to tackle this problem. The proposed framework is generic

for different applications where both node and edge attributes can be transformed.

• The proposal of novel and generic edge translation layers and blocks. A
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new edge translation path is proposed to translate the edge attributes from the input

domain to the output domain. Existing edge translation methods were proven to be

special cases of ours, which can handle broad multi-attribute edges and nodes.

• The proposal of a spectral-based regularization that ensures consistency of

the predicted nodes and edges. In order to discover and maintain the inherent re-

lationships between predicted nodes and edges, a new non-parametric graph Laplacian

regularization with a graph frequency regularization is proposed and leveraged.

• The conduct of extensive experiments to validate the effectiveness and

efficiency of the proposed model. Extensive experiments on four synthetic and

four real-world datasets demonstrated that NEC-DGT is capable of generating graphs

close to ground-truth target graphs and significantly outperforms other comparison

graph generative models.

3.2 Related Works

Traditional graph transformation. Traditional graph transformation target on handling

a specified relationship between the input and output graphs, including graph morphism,

conceptual graph projecting and reasoning, and graph matching [84,85]. Specifically, graph

morphism aims to rewrite the input graph into its isomorphic graph based on predefined

transformation rules [86,87]. For many applications, one requires more than graphs labeled

over a finite alphabet. Hence attributed graph transformation methods are proposed to

deal with graphs that are attributed with elements of given data types (e.g., integer, string,

boolean) [88–90]. They can perform computations (e.g., add two integers) of attributes

and define guards that restrict the applicability of rules (e.g., apply the rule only if a

certain attribute is above some threshold). Conceptual graph projection and reasoning only

handles the conceptual graph which is a knowledge representation scheme in formalizing

semantic networks. These kinds of graphs are also attributed graphs with two types of nodes:

concepts (which represent objects, entities or ideas) and relation nodes, which represent
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relations between the concepts [91]. Reasoning based on the conceptual graphs can be

regarded as a translation problem where the output graph is generated based on some

predefined canonical formation rules, such as equivalence, specialization, and generalization.

Concept Projection in ontology is used to find out whether two ontologies are semantically

compatible or similar.

Though the above problem is about translating an input graph into a target graph, these

traditional graph transformation requires the pre-knoledge of the relationship between the

input and target graph (e.g., isomorphism or semantically compatible), based on which

a set of rules and operations (e.g., projection) are hand-crafted. However, In real-world

graphs, the relationship between two graphs can be various and complex and is hard to

define and observe. And the graphs are also not limited to semantic graph or logical

graphs. Thus, to model and learn the relationship between the input and output graphs,

we resorts to deep learning methods on graphs via observing from large amounts of data.

The most significance of the proposed deep learning-based graph transformation model is

that given any large amounts of input-target graphs where the relationship and translation

rules are unknown, our proposed data-driven model could automatically learn and model

this translation process via optimizing an objective function.

Graph neural networks learning. In recent years, there has been a surge in research

focusing on graph neural networks, which are generally divided into two categories: Graph

Recurrent Networks [43,92,93] and Graph Convolutional Networks [32,46,65,94–98]. Graph

Recurrent Networks originates from the early works of graph neural networks proposed by

Gori et al. [43] and Scarselli et al. [92] based on recursive neural networks. Another line of

research is to generalize convolutional neural networks from grids (e.g., images) to generic

graphs. Bruna et al.[99] first introduced the spectral graph convolutional neural networks,

and then it was extended in [46] using fast localized convolutions, which is further approxi-

mated for an efficient architecture for a semi-supervised setting [97]. The above-mentioned

methods all focus on the general problem of graph representation learning, which aims to

embed the graphs into the low-dimension spaces. They provide the fundamental theories
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and operations for many downstream tasks such as node classification, graph classification,

and graph generation.

Deep Generative Models for Graph generation. Deep generative models for graph

generation aim to learn the distribution of a set of observed graphs via a deep generative

model. Most of the existing GNN based graph generation for general graphs have been

proposed in the last two years and are based on VAE [23, 38] and generative adversarial

nets (GANs) [49], among others [24, 35]. Most of these approaches generate nodes and

edges sequentially to form a whole graph, leading to the issues of being sensitive to the

generation order and very time-consuming for large graphs. Differently, GraphRNN [35]

builds an autoregressive generative model on these sequences with LSTM model and has

demonstrated its good scalability. However, the above-mentioned models all deal with the

unconditional graph generation instead of generating a target graph conditioning on an

input graph, as our problem requires in this chapter.

Graph structured data transformation. The existing Graph structured data trans-

lation either deal with the node attributes prediction or translate the graph topology. Node

attributes prediction aims at predicting the node attributes given the fixed graph topol-

ogy [80–82, 100]. Li et al. [81] propose a Diffusion Convolution Recurrent Neural Network

(DCRNN) for traffic forecasting which incorporates both spatial and temporal dependency

in the traffic flow. Yu et al. [82] formulated the node attributes prediction problem of

graphs based on the complete convolution structures. Graph topology translation considers

the change of graph topology from one domain distributions to another. Guo et al. [26]

proposed and tackled graph topology translation problem by proposing a generative model

consisting of a graph translator with graph convolution and deconvolution layers and a

new conditional graph discriminator, as introduced in Chapter 2. Sun et al. [42] proposed

a graphRNN based model which generates a graph’s topology based on another graph.

Beyond the above two separate tasks, our proposed model can jointly predict the node

attributes and topology via modeling the complex interaction between them during the

translation process.
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3.3 Problem Formulation

This chapter focuses on predicting a target multi-attributed graph based on an input multi-

attributed graph by learning the graph translation mapping between them. The following

provides the notations and mathematical problem formulation.

Table 3.1: Important notations and descriptions

Notations Descriptions

G(V0, E0, E0, F0) Input graph with node set V0, edge set E0, edge at-
tributes tensor E0 and node attributes matrix F0

G(V ′, E ′, E′, F ′) Target graph with node set V ′, edge set E ′, edge at-
tributes tensor E′ and node attributes matrix F ′

C Contextual information vector
N Number of nodes
M Number of edges
D Dimension of node attributes
K Dimension of edge attributes
c Dimension of contextual information vector
S Number of translation blocks

Define an input graph as G(V0, E0, E0, F0) where V0 is the set of N nodes, and E0 ⊆ V0×

V0 is the set of M edges. ei,j ∈ E0 is an edge connecting nodes i ∈ V0 and j ∈ V0. E0 contains

all pairs of nodes while the existence of ei,j is reflected by its attributes. E0 ∈ RN×N×K

is the edge attributes tensor, where E0,i,j ∈ R1×K denotes the edge attributes of edge

ei,j and K is the dimension of edge attributes. F0 ∈ RN×D refers to the node attribute

matrix, where F0,i ∈ R1×D is the node attributes of node i and D is the dimension of

the node attributes. Similarly, we define the target graph as G(V ′, E ′, E′, F ′). Note that

the target and input graphs are different both in their node attributes as well as edge

attributes. Moreover, vector C provides some contextual information on the translation

process. Therefore, multi-attributed graph translation is defined as learning a mapping:

T : G(V0, E0, E0, F0);C → G(V ′, E ′, E′, F ′).
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Figure 3.2: Five types of interactions during graph translation in the example of malware
confinement. Node attributes are indications of malware attacks of IoT devices and edges
represent the connections between devices.

For example, considering the malware confinement case where the nodes refer to IoT

devices and the edges reflect the communication links between two devices. The node at-

tributes include the malware-infection status and the properties of that device (i.e., specifi-

cation and anti-virus software features). A single IoT device (i.e., node) that is compromised

has the potential to spread malware infection across the network, eventually compromis-

ing the network or even ceasing the network functionality. In contrast, in order to avoid

malware spreading as well as maintain the performance of the network, the network con-

nectivity (i.e., graph topology) should be modified through malware confinement, thus to

change the device status (i.e., node attributes) accordingly. Hence, malware confinement

can be considered as predicting the optimal topology as well as the corresponding node and

edge attributes of the target graph, where both malware prevention and device performance

are maximized.
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Multi-attributed graph translation problem requires to highlight several unique consid-

erations as depicted in Fig. 3.2: 1) Edges-to-edges interaction: In target domain, the

edge attributes E′i,j of an edge ei,j can be influenced by its incident edges’ attributes E0,i,k

and E0,k,j in input domain. For example, in Fig. 3.2 (a), if Devices 1 and 3 must be

prevented from infection, then the edges between the compromised Device 1 and Device 2

need to be cut, due to the paths among them in input domain. 2) Nodes-to-edges inter-

action: In target domain, the attributes E′i,j of edge ei,j can be influenced by its incident

nodes’ attributes F0,i and F0,j in the input domain. As shown in Fig. 3.2 (b), if Device 2

is compromised in input domain, then in target domain, only its connections to Devices 1

and 3 need to be removed but the connection between Devices 1 and 3 can be retained be-

cause they are not compromised. 3) Nodes-to-nodes interaction: For a given node i, its

attribute F0,i in input domain may directly influence its attribute F ′i in target domain. As

shown in Fig. 3.2 (c), Device 3 with effective anti-virus protection (e.g. firewall) may not be

easily compromised in target domain. 4) Edges-to-nodes interaction: For a given node

i, its related edge attributes E0,i,j in input domain may affect its attributes F ′i in target

domain. As shown in Fig. 3.2 (d), Device 1 which has more connections with compromised

devices in input domain is more likely to be infected in target domain. 5) Spectral Graph

Property: There exist relationships between nodes and edges in one graph as reflected by

the graph spectrum. These relationships are claimed to have some persistent or consistent

patterns across input and target domains, which have also been verified in many real-world

applications such as brain networks [74]. For example, as shown in Fig. 3.2 (e), the devices

that are densely connected as a sub-community tend to be in the same node status, which

is a shared pattern for relationships between nodes and edges in different domains.

Multi-attributed graph translation should consider all the above properties, which can-

not be comprehensively handled by existing methods because: 1) Lack of a generic frame-

work to simultaneously characterize and automatically infer all of the above node-edge
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interactions during translation process. 2) Difficulty in automatically discovering and char-

acterizing the inherent spectral relationship between the nodes and edges in each graph,

and ensuring consistent spectral patterns in graphs across input and target domains. 3) All

the above interactions could be imposed repeatedly, alternately, and asynchronously dur-

ing the translation process. It is difficult to discover and characterize such important yet

sophisticated process.

3.4 The Proposed Method: NEC-DGT

In this section, we propose the Node-Edge Co-evolving Deep Graph Translator (NEC-DGT)

to model the multi-attributed graph translation process. First, an introduction of the overall

architecture and the loss functions is given. Then, the elaborations of three modules on

edge translation, node translation, and graph spectral regularization are presented.

3.4.1 Overall architecture

Multi-block asynchronous translation architecture. The proposed NEC-DGT learns

the distribution of graphs in the target domain conditioning on the input graphs and contex-

tual information. However, such a translation process from input graph to the final target

graph may experience a series of interactions of different types among edges and nodes.

Also, such a sophisticated process is hidden and needs to be learned by a sufficiently flexi-

ble and powerful model. To address this, we propose the NEC-DGT as shown in Fig. 4.2.

Specifically, the node and edge attributes of input graphs are inputted into the model and

the model output the generated target graphs’ node attributes and edge attributes after sev-

eral blocks. The skip-connection architecture (black dotted lines in Fig. 4.2) implemented

across different blocks aims to deal with the asynchrony property of different blocks, which

ensures that the final translated results fully utilize various combinations of blocks’ informa-

tion. To train the deep neural network to generate the target graph G(E′, F ′) conditioning

on the input graph G(E0, F0) and contextual information C, we minimize the loss function
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Figure 3.3: The proposed NEC-DGT consists of multiple blocks. Each block has edge and
node translation paths which are co-evolved and combined by a graph regularization during
training process.

as follows:

LT = L(T (G(E0, F0), C), G(E′, F ′)) (3.1)

where the nodes set V0 and V ′ as well as edges set E0 and E ′ can be reflected in F0 and

F ′, as well as E0 and E′.

Node and edge translation paths. To jointly tackle various interactions among nodes

and edges, respective translation paths are proposed for each block. In node translation path

(in upper part of detailed structure in Fig. 4.2), node attributes are generated considering

the ”nodes-to-nodes” and ”edges-to-nodes” interactions. In edge translation path (in lower

part of detailed structure in Fig. 4.2), edge attributes are generated following the ”edges-

to-edges” and ”node-to-edges” interactions.

Spectral graph regularization. To discover and characterize the inherent relation-

ship between nodes and edges of each graph, the frequency domain properties of the graph

is learned, based on which the interactions between node and edge attributes are jointly
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regularized upon non-parametric graph Laplacian. Moreover, to maintain consistent spec-

tral properties throughout the translation process, we enforce the shared patterns among

the generated nodes and edges in different blocks by regularizing their relevant parameters

in the frequency domain. The regularization of the graphs is formalized as follows:

R(G(E,F )) =
∑S

s=0
Rθ(G(Es, Fs)) +R(θ) (3.2)

where S refers to the number of blocks, and θ refers to the overall parameters in the

spectral graph regularization. Es and Fs refer to the generated edge attributes tensor and

node attributes matrix in the sth block. Thus G(ES , FS) is the generated target graph.

Then the final loss function can be summarized as follows:

L̃ = L(T (G(E0, F0), C), G(E′, F ′)) + βR(G(E,F )) (3.3)

where β is the trade-off between the LT and spectral graph regularization. The model is

trained by minimizing the mean squared error of ES with E′, and FS with F ′, enforced

by the regularization. Optimization methods (e.g. Stochastic gradient descent (SGD) and

Adam) based on Back-propagation technique can be utilized to optimize the whole model.

Subsequently, the details of a single translation block are introduced: edge transla-

tion path in Section 3.4.2, node translation path in Section 3.4.3 and graph spectral-based

regularization in Section 3.4.4.

3.4.2 Edge Translation Path

Edge translation path aims to model the nodes-to-edges and edges-to-edges interactions,

where edge attributes in the target domain can be influenced by both nodes and edges in the

input domain. Therefore, we propose to first jointly embed both node and edge information

into influence vectors and then decode it to generate edges attributes. Specifically, the edge

translation path of each block contains two functions, influence-on-edge function which
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Figure 3.4: Details of edge translation path for one edge (i.e. e0,3) in a single block.

encodes each pair of edge and node attributes into the influence for generating edges, and

the edge updating function which aggregates all the influences related to each edge into an

integrated influence and decodes this integrated influence to generate each edge’ attributes.

Fig. 3.4 shows the operation of the two functions in a single block by translating the current

input of graph G(Es, Fs) to output graph G(Es+1, Fs+1).

Influence-on-edge layers. As shown in Fig. 3.4, the input graph G(Es, Fs) is first

organized in unit of several pairs of node and edge attributes. For each pair of nodes v

and u, we concatenate their edge attributes Es,u,v and their node attributes: Fs,u and Fs,v

as: Bs,u,v = [Fs,u, Es,u,v, Fs,v] (as circled in black rectangles in Fig. 3.4). Then Bs,u,v ∈

R1×(2D+K) is inputted into the influence-on-edge function: a constrained MLP (Multilayer

Perceptron) φ which is used to calculate the influence φ(Bs,u,v) ∈ R1×q from the pair of

the nodes u and v. q refers to the dimension of the final influence on edges. φ for edge

translation path is expressed as follows:

φ(X;WE , bE) =σM (...(σ0(X ·W (0)
E + b

(0)
E )...W

(M)
E + b

(M)
E )

s.t.,W
(0)
E,1:D ≡W

(0)
E,(D+K):(2D+K)

(3.4)

where WE and bE are weights and bias for φ in edge translation path. M refers to the

51



number of layers of φ and {σ0, ...σM} refers to the activation functions. For undirected

graph, we add a weight constraint W
(0)
E,1:D ≡W

(0)
E,(D+K):(2D+K) to ensure that the influence

of Bs,u,v is the same as the influence of Bs,v,u, which means that the first D rows (related to

the attributes of node u ) and the last D rows (related to the attributes of node v) of W
(0)
E

are shared. The influence on edges of each pair is computed through the same function with

the same weights. Thus the NEC-DGT can handle various size of graphs.

Edge updating layers. After calculating the influence of each pair of nodes and

edge, the next step is to assigning each pairs’ influences to its related edge to get the

integrated influence for each edge (as shown of
⊕

operation in Fig. 3.4). This is because

each edge is generated depending on both its two related nodes and its incident edges (like

the pairs circled in the orange rectangle and purple rectangle related to node 0 and node

3 respectively in Fig. 3.4). Here we define the integrated influence on one edge attribute

Es+1,i,j as: ζs+1,i,j ∈ R1×q, which is computed as follows:

ζs+1,i,j =
∑

k1∈N(i)
φ(Bs,i,k1 ;WE , bE)+

∑
k2∈N(j)

φ(Bs,k2,j ;WE , bE)

(3.5)

where N(i) refers to the neighbor nodes of node i. Then the edge attributes Es+1,i,j

is generated by ψ([E0,i,j , ζs+1,i,j , C]), where E0,i,j refers to the input edge attributes of

edge ei,j . C refers to the contextual information for the translation. The function ψ is

implemented by an MLP.

Relationship with other edge convolution networks. Edge convolution network is

the most typical method to handle the edge embedding in graphs, which was first introduced

as BrainNetCNN [95] and later explored in many studies [26,101,102]. Our edge translation

path is a highly flexible and generic mechanism to handle multi-attributed nodes and edges.

Several existing edge convolution layers and their variants can be considered as special cases
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of our method, as demonstrated in the following theorem. The proof process is available at

Appendix A.1.

Theorem 1. The influence-on-edge function φ in edge translation path of NEC-DGT is a

generalization of conventional edge convolution networks.

3.4.3 Node Translation Path

Node translation aims to learn the “nodes-to-nodes” and “edges-to-nodes” interactions,

where translation of one node’s attributes depends on the edge attributes related to this

node and its own attributes. The node translation path of each block contains two functions,

influence-on-node function which learns the influence from each pair of nodes, and node

updating function which generates the new node attributes by aggregating all the influences

from pairs containing this node. Fig. 3.5 shows how to translate a node in a single block.

 

Figure 3.5: Details of node translation path for one node (i.e., node 0) in a single block.

Influence-on-node layers. As shown in Fig. 3.5, the input graph G(Es, Fs) is first

organized in the unit of pairs of nodes, where each pair is Bs,u,v ∈ R1×(2D+K) which is

similar to the edge translation path (as circled in the black rectangle in Fig. 3.5). Then

Bs,u,v is inputted into the influence-on-node function, which is implemented by contrained

MLP φ as Equation (3.4), to compute the influence φ(Bs,u,v;WF , bF ) ∈ R1×h to nodes (as

shown in the grey bar after φ in Fig. 3.5), where h is the dimension of the influence on

nodes.
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Node updating layers. After computing the influences of each node pair, the next

step is to generate node attributes. For node i, an assignment step is required to aggregate

all the influences from pairs containing node i (as shown of
⊕

operation in Fig. 3.5).

Thus, all the influences for node i are aggregated and input into the updating function,

which is implemented by a MLP model ψ to calculate the attributes of node i as: Fs+1,i =

ψ([F0,i,
∑

j∈N(i) φ(Bs,i,j ;WF , bF ), C]).

3.4.4 Graph spectral-based regularization

Based on the edge and node translation path introduced above, we can generate node and

edge attributes, respectively. However, since these generated node and edge attributes are

predicted separately in different paths, their patterns may not be consistent and harmonic.

To ensure the consistency of the edge and node patterns mentioned in Section 3.3, we

propose a novel adaptive regularization based on non-parametric graph Laplacian, and a

graph frequency regularization.

Non-parametric Graph Laplacian Regularization. First, we recall the property

of the multi-attributed graphs where node information can be smoothed over the graph

via some form of explicit graph-based regularization, namely, by the well-known graph

Laplacian regularization term [97]: F
(d)
s

T
L
(k)
s F

(d)
s =

∑
i,j∈V E

(k)
s,i,j

∥∥∥F (d)
s,i − F

(d)
s,j

∥∥∥2, where

F
(d)
s ∈ RN×1 is the node attribute vector for the dth node attribute and E

(k)
s ∈ RN×N is the

edge attribute matrix for kth attribute generated in the sth block. L
(k)
s =D

(k)
s −E(k)

s denotes

the graph Laplacian for the kth edge attributes matrix. The degree matrix D
(k)
s ∈ RN×N

is computed as: D
(k)
s,i,i =

∑
j∈N(i)E

(k)
s,i,j .

However, the above traditional graph Laplacian can only impose an absolute smoothness

regularization over all the nodes by forcing the neighbor nodes to have similar attribute

values, which is often over-restrictive for many situations such as in signed networks and

telecommunications networks. In the real world, the correlation among the nodes is much

more complicated than purely “smoothness” but should be a mixed pattern of different
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types of relations. To address this, we propose an end-to-end framework of non-parametric

graph Laplacian which can automatically learn such node correlation patterns inherent in

specific types of graphs, with rigorous foundations on spectral graph theory. In essence, we

propose the non-parametric graph Laplacian based on the parameter θ as: gθ(L̂
(k)
s ). L̂

(k)
s is

the normalized Laplacian computed as L̂
(k)
s = D

(k)
s

− 1
2L

(k)
s D

(k)
s

− 1
2 and can be diagonalized

by the Fourier basis U
(k)
s ∈ RN×N , such that L̂

(k)
s = U

(k)
s Λ

(k)
s U

(k)
s

T
where Λ

(k)
s ∈RN×N is a

diagonal matrix storing the graph frequencies. For example, Λ
(k)
s,1 is the frequency value of

the first Fourier basis U
(k)
s,1 . Then we got gθ(L̂

(k)
s ) = gθ(U

(k)
s Λ

(k)
s U

(k)
s

T
) = U

(k)
s gθ(Λ

(k)
s )U

(k)
s

T
.

Therefore, we have the regularization as follows:

Rθ(G(Es, Fs)) =
∑K

k=1

∑D

d=1
F (d)
s

T
U (k)
s gθ(Λ

(k)
s )U (k)

s

T
F (d)
s (3.6)

where gθ(Λ
(k)
s ) is a non-paramteric Laplacian eigenvalues that will be introduced subse-

quently.

Scalable approximation. gθ(Λ
(k)
s ) is a non-parametric vector whose parameters are all

free; It can be defined as: gθ(Λ
(k)
s ) = diag(θ

(k)
s ), where the parameter θ

(k)
s ∈ RN is a vector

of Fourier coefficients for a graph. However, optimizing the parametric eigenvalues has the

learning complexity of O(N), the dimensionality of the graphs, which is not scalable for

large graphs. To reduce the learning complexity of O(N) to O(1), we propose approximating

gθ(Λ
(k)
s ) by a normalized truncated expansion in terms of Chebyshev polynomials [103]. The

Chebyshev polynomial Tp(x) of order p may be computed by the stable recurrence relation

Tp(x) = 2xTp−1(x)−Tp−2(x) with T1 = 1 and T2 = x. The eigenvalues of the approximated

Laplacian filter can thus be parametric as the truncated expansion:

gθ(Λ
(k)
s ) =

∑P

p=1
θ(k)s,pTp(Λ̃

(k)
s )/

∑P

p=1
θ(k)s,p (3.7)
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for P orders, where Tp(Λ̃
(k)
s ) ∈ RN×N is the Chebyshev polynomial of order p evaluated

at Λ̃
(k)
s = 2Λ

(k)
s /Λ

(k)
s,max − I, a diagonal matrix of scaled eigenvalues that lie in [−1, 1]. The

Λs,max refers to the largest element in Λ
(k)
s . θ ∈ RS×P×K denotes the parameter tensor for

all S blocks. θ
(k)
s,p is the pth element of Chebyshev coefficients vector θ

(k)
s ∈ RP for the kth

edge attribute. Each θ
(k)
s,p is normalized by dividing the sum of all the coefficients in θ

(k)
s

to avoid the situation where θ
(k)
s is trained as zero. Thus, the laplacian computation can

then be written as gθ(L̃
(k)
s ) =

∑P
p=1 θ

(k)
s,pTp(L̃

(k)
s )/

∑P
p=1 θ

(k)
s,p , where Tp(L̃

(k)
s ) ∈ RN×N is the

Chebyshev polynomial of order p evaluated at the scaled Laplacian L̃
(k)
s = 2L̂

(k)
s /Λ

(k)
s,max−I.

For efficient computation, we further approximate Λ
(k)
s,max ≈ 1.5, as we can expect that the

neural network parameters θ will adapt to this change in scale during training.

Graph frequency regularization. To ensure that the spectral graph patterns are

consistent throughout the translation process across different blocks, we utilize a graph

frequency regularization to not only maintain the similarity but also allow the exclusive

properties of each block’s patterns to be reserved to some degree. Specifically, regarding all

the frequency pattern basis of form L̃, some are important in modeling the relationships

between nodes and graphs while some are not, resulting in the sparsity pattern of θ. Thus,

inspired by the multi-task learning, we learn the consistent sparsity pattern of θs by using

the L2,1 norm as regularization:

R(θ) =
∑K

k=1

∑S

s=1

√∑P

p=1
θ
(k)
s,p

2
(3.8)

3.4.5 Extensions of Graph Spectral-based regularization

In this section, we extend our framework of multi-attributed graph translation into broadly

signed graph and directed graphs, which makes our model more general to various graph

types. The node and edge translation paths do not need to change since the trainable

parameters can be adaptive in dealing with various edge and node attributes. However,
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apart from the two translation paths, the spectral-based regularization term cannot be

utilized without change for signed or directed graphs. This is incurred by several technical

challenges: the Laplacian matrix for both sign and directed graph are different from the

undirected graphs. The way to calculate the Laplacian matrix which should be symmetric

and positive semi-definite needs to be customized for both signed and direct graphs. Thus,

the way to approximate the Laplacian needs also changes accordingly. Thus, we explore how

to fit our model into the signed and directed graph translation respectively, by proposing the

signed spectral-based graph regularization and directed spectral-based graph regularization.

Extension to Signed Graphs

Signed graphs are defined as the weighted graphs in which negative and positive entries are

allowed, the intuition being that a negative weight indicates dissimilarity or distance. Thus,

for a signed graph, the degree matrix may contain zero or negative entries (thus D
(k)−

1
2

s

may not exist), and the Laplacian L
(k)
s may no longer be positive semi-definite. However,

the spectral-based graph regularization requires the Laplacian to be positive semi-definite

for representing the relations between the node and edge attributes.

Thus, we adopt a definition of the signed graph Laplacaian [104]. First, the degree matrix

is computed as D̄
(k)
s,i,i =

∑
j∈N(i)

∣∣∣E(k)
s,i,j

∣∣∣, and then the normalized version of the Laplacian for

the signed graph is L
(k)
s = I − D̄(k)−

1
2

s E
(k)
s D̄

(k)−
1
2

s . In this way, the signed graph Laplacian

can be positive semi-definite and decomposed with eigenvalues and eigenvectors. Thus,

we can fit our proposed non-parametric regularization and scalable approximation into the

signed graph as

Rθ(G(Es, Fs)) =
∑K

k=1

∑D

d=1
F (d)
s

T∑P

p=1
θ(k)s,pTp(L̃

(k)
s )F (d)

s /
∑P

p=1
θ(k)s,p , (3.9)

where L̃
(k)
s = 2L

(k)
s /Λ

(k)
s,max − I. Thus, the signed spectral-based graph regularization can

enjoy a constant time complexity O(1).
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Extension to Directed Graphs

For directed graphs, the major problem is that the edge attribute matrix is not symmetric,

and the way to calculate the Laplacian matrix described above cannot semantically enforce

the relations between edges and nodes. Here, we calculate the Laplacian of the directed

graph as a Hermitian matrix by using the transition probability matrix [105].

First, we use Es,i,j to denote the sth edge attributes of the edge from the ith node to the

jth node. Thus, for a weighted directed graph with edge weights Es,i,j > 0, each element

of a general transition probability matrix Ps regarding the sth attribute can be defined as

Ps,i,j =
Es,i,j∑
k Es,i,k

. (3.10)

The Perron-Frobenius Theorem [106] states that an irreducible matrix with nonnegative

entries has a unique (left) eigenvector with all entries positive. Let ρs denote the eigenvalue

of the positive eigenvector of Ps. Namely, the transition probability matrix Ps of a strongly

connected directed graph has a unique left eigenvector φs with φs,i > 0 for all nodes i, and

φsPs = ρsφs. We can normalize and choose φs to satisfy
∑

i φs,i = 1. Now the φs is called

the Perron vector of Ps. Then the Laplacian of a directed graph is defined by

Ls = I − Φ
1
2
s PsΦ

−1
2
s + Φ

−1
2
s P ∗s Φ

1
2
s

2
, (3.11)

where Φs is a diagonal matrix with entries Φs,i,i = φs,i, and P ∗s denotes the conjugated

transpose of Ps. Next, we use the non-parametric approximation to define the spectral-

based regularization. As mentioned in Section 3.4.4, we need to approximate the eigenvalues

gθ(Λs) of the original graph Laplacian. This means the decomposition of Ps to calculate Φs

and the decomposition of Ls to calculate Us (Us is the eigenvector for Ls, as mentioned in

Section 3.4.4) are both needed. However, it will lead to intensive computation, especially

for large graphs. Thus, to avoid decomposition, the non-parametric method is used to

58



approximate gθ(Ls) for directed graphs as

gθ(Ls) = gθ(I −
Φ

1
2
s PsΦ

−1
2
s + Φ

−1
2
s P ∗s Φ

1
2
s

2
) (3.12)

= (I − gθ(Φs)
1
2Psgθ(Φs)

−1
2 + gθ(Φs)

−1
2 P ∗s gθ(Φs)

1
2

2
), (3.13)

It is easy to find that approximating Ls is equal to approximating Φs. It should be

noted that this operation also reduces the computational effort that is spent on getting Φs

by decomposing the transition matrix Ps, because otherwise we need to use a polynomial-

time algorithm to calculate the exact Φs computationally since there is no closed form

solution for Φs [107]. Now we approximate Φs by learning gθ(Φs) = diag(θ1, · · · , θN ) with

the complexity O(N).

3.4.6 Complexity Analysis

The proposed NEC-DGT requires O(N2) operations in time complexity and O(N2) space

complexity in terms of number of nodes in the graph. It is more scalable than most of

the graph generation methods. For example, GraphVAE [23] requires O(N4) operations in

the worst case and Li et al [24] uses graph neural networks to perform a form of “message

passing” with O(MN2) operations to generate a graph.

3.5 Experiments

In this section, we present both the quantitative and qualitative experiment results on NEC-

DGT as well as the comparison models. All experiments are conducted on a 64-bit machine

with Nvidia GPU (GTX 1070, 1683 MHz, 8 GB GDDR5). The model is trained by ADAM

optimization algorithm.
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3.5.1 Datasets

We performed experiments on four synthetic datasets and four real-world datasets with

different graph sizes and characteristics. All the dataset contain input-target pairs.

Synthetic dataset: Four datsets are generated based on different types of graphs and

translation rules. The input graphs of the first three datasets (named as Syn-I, Syn-II,

and Syn-III) are Erdos-Renyi (E-R) graphs generated by the Erdos Renyi model [18] with

the edge probability of 0.2 and graph size of 20, 40, and 60 respectively. The target graph

topology is the 2-hop connection of the input graph, where each edge in the target graph

refers to the 2-hop reachability in the input graph (e.g. if node i is 2-hop reachable to

node j in the input graph, then they are connected in the target graph). The input graphs

of the fourth dataset (named as Syn-IV) are Barabási-Albert (B-A) graphs generated by

the Barabási-Albert model [108] with 20 nodes, where each node is connected to 1 existing

node. In Syn-IV, topology of target graph is the 3-hop connection of the input graph. For

all the four datasets, the edge attributes Es,i,j ∈ [0, 1] denotes the existence of the edge. For

both input and target graphs, the node attributes are continuous values computed following

the polynomial function: f(x) : y = ax2 + bx + c(a = 0, b = 1, c = 5), where x is the node

degree and f(x) is the node attribute. Each dataset is divided into two subsets, each of

which has 250 pairs of graphs. Validation is conducted where one subset is used for training

and another for testing, and then exchange them for another validation. The average result

of the two validations is regarded as the final result.

Malware confinement dataset: Malware dataset are used for measuring the perfor-

mance of NEC-DGT for malware confinement prediction. There are three sets of IoT nodes

at different amount (20, 40 and 60) encompassing temperature sensors connected with Intel

ATLASEDGE Board and Beagle Boards (BeagleBone Blue), communicating via Bluetooth

protocol. Benign and malware activities are executed on these devices to generate the ini-

tial attacked networks as the input graphs. Benign activities include MiBench [109] and

SPEC2006 [110], Linux system programs, and word processor. The nodes represent devices
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and node attribute is a binary value referring to whether the device is compromised or not.

Edge represents the connection of two devices and the edge attribute is a continuous value

reflecting the distance of two devices. The real target graphs are generated by the classical

malware confinement methods: stochastic controlling with malware detection [83,111,112].

We collected 334 pairs of input and target graphs with different contextual parameters (in-

fection rate, recovery rate, and decay rate) for each of the three datasets. Each dataset is

divided into two subsets: one has 200 pairs and another has 134 pairs. The validation is

conducted in the same way as the synthetic dataset.

Molecule reaction dataset: We apply our NEC-DGT to one of the fundamental

problems in organic chemistry, thus predicting the product (target graph) of chemical re-

action given the reactant (input graph). Each molecular graph consists of atoms as nodes

and bond as edges. The input molecule graph has multiple connected components since

there are multiple molecules comprising the reactants. The reactions used for training are

atom-mapped so that each atom in the product graph has a unique corresponding atom in

the reactants. We used reactions from USPTO granted patents, collected by Lowe [113]. we

obtained a set of 5,000 reactions (reactant-product pair) and divided them into 2,500 and

2,500 for training and testing. Atom (node) features include its elemental identity, degree of

connectivity, number of attached hydrogen atoms, implicit valence, and aromaticity. Bond

(edge) features include bond type (single, double, triple, or aromatic), and whether it is

connected.

Real-world HCP Dataset: The human connectome project (HCP) dataset is used for

evaluating the signed graph translation model. Brain network prediction, such as prediction

of functional connectivity based on structural connectivity, is a very critical task in neu-

roscience. The goal is to learn the mapping from the resting-state functional connectivity

into task-specific functional connectivity in the human brain. In this dataset, the source

and the target graphs respectively reflect the structural connectivity (SC) and the func-

tional connectivity (FC) of the same subject’s brain network. In particular, both types of

connectivity are processed from the magnetic resonance imaging (MRI) data obtained from
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the HCP dataset [68]. By following the preprocessing procedure in [69], the SC data is con-

structed by applying probabilistic tracking on the diffusion MRI data using the Probtrackx

tool from the FMRIB Software Library [70] with 68 predefined regions of interest (ROIs).

Then, the edge attributes of FC are defined as the Pearson’s correlation between two ROIs’

blood oxygen level-dependent time obtained from the resting-state functional MRI data.

The node attributes refer to the index of each node by a one-hot vector. Since the edges of

FC can be either positive or negative, signed graph translation model is needed to handle

this task. In total, 823 pairs of SC and FC samples are used and 5-fold cross-validation is

performed.

Online Breast Cancer Community Dataset: We adopt the dataset from Gao [56]

for validation of the proposed di-NEC-DGT. The data is collected through the Breast

Cancer Community,2 which is one of the largest online forums designed for patients to

share information related to breast cancer. The forum data collected for this study covers

an eight-year period from the beginning of 2010 to the end of 2017. There are 80 sub-

forums, such as “Not Diagnosed But Worried” and “Breast Reconstruction”. The user sub-

forum activity transition is defined as being when the users posted new topics or replied to

existing topics and the time window was set as one month. After removing common words

and stop words, 59 top-frequency keywords from the forum content construct the feature

vectors for the sub-forums. Also, each user may come across different health stages. The

health stages consists of “Dx,” “Chemotherapy,” “Targeted,” “Hormonal,” “Radiation,”

“Surgery,”. Each transition graph of a user reflects the stage of the user, and it is obvious

that the graph can change as the user transfers to another health stage since the things that

concern them change. Our goal is to predict how the user transitions across subforums when

their health stage changes from the current to the next, given the current transition graph.

We randomly selected 70% of users who provided their health stage history for training,

another 10% for validation, and the remaining 20% for testing. The predicted transition

graphs were validated against the real transition graphs in the target stage. We treat “Dx”

2https://community.breastcancer.org/

62



as the initial input stage and treat the others as the target stages.

3.5.2 Comparison methods

Since there is no existing method handling the multi-attributed graph translation problem,

NEC-DGT is compared with two categories of methods: 1) graph topology generation

methods, and 2) graph node attributes prediction methods.

Graph topology generation methods: 1) GraphRNN [35] is a recent graph gen-

eration method based on sequential generation with LSTM model; 2) Graph Variational

Auto-encoder (GraphVAE) [23] is a VAE based graph generation method for small graphs;

3) Graph Translation-Generative Adversarial Networks (GT-GAN) [26] is a new graph

topology translation method based on graph generative adversarial network.

Node attributes prediction methods: 1) Interaction Network (IN) [80] is a node

state updating network considering the interaction of neighboring nodes; 2) DCRNN [81] is

a node attribute prediction network for tranffic flow prediction; 3) Spatio-Temporal Graph

Convolutional Networks (STGCN) [82] is a node attribute prediction model for traffic speed

forecast. Furthermore, to validate the effectiveness of the graph spectral-based regulariza-

tion, we conduct a comparison model (named as NR-DGT) which has the same architecture

of NEC-DGT but without the graph regularization.

3.5.3 Evaluation metrics

A set of metrics are used to measure the similarity between the generated and real target

graphs in terms of node and edge attributes. To measure the attributes which are Boolean

values, the Acc (accuracy) is utilized to evaluate the ratio of nodes or edges that are correctly

predicted among all the nodes or possible node pairs. To measure the attributes which

are continuous values, MSE (mean squared error), R2 (coefficient of determination score),

Pearson and Spearman correlation are computed between attributes of generated and real

target graphs. N− < metric > represents metrics evaluated on node attributes and E− <

metric > represents metrics evaluated on edge attributes.
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Table 3.2: Evaluation of Generated Target Graphs for Synthetic Dataset (N for node at-
tributes, E for edge attributes, P for Pearson correlation, SP for Spearman correlation and
Acc for accuracy).

dataset Method N-MSE N-R2 N-P N-Sp Method E-Acc

Syn-I

IN 5.97 0.06 0.48 0.44 GraphRNN 0.6212
DCRNN 51.36 0.12 0.44 0.45 GraphVAE 0.6591
STGCN 15.44 0.19 0.42 0.56 GT-GAN 0.7039
NR-DGT 2.13 0.87 0.90 0.89 NR-DGT 0.7017
NEC-DGT 1.98 0.76 0.93 0.91 NEC-DGT 0.7129

Syn-II

IN 1.36 0.85 0.77 0.87 GraphRNN 0.5621
DCRNN 71.07 0.11 0.39 0.37 GraphVAE 0.4639
STGCN 33.11 0.21 0.15 0.15 GT-GAN 0.7005
NR-DGT 1.43 0.91 0.94 0.97 NR-DGT 0.7016
NEC-DGT 1.91 0.93 0.97 0.97 NEC-DGT 0.7203

Syn-III

IN 35.46 0.31 0.59 0.56 GraphRNN 0.4528
DCRNN 263.23 0.09 0.41 0.39 GraphVAE 0.3702
STGCN 43.34 0.22 0.48 0.47 GT-GAN 0.5770
NR-DGT 5.90 0.90 0.94 0.92 NR-DGT 0.6259
NEC-DGT 4.56 0.93 0.97 0.96 NEC-DGT 0.6588

Syn-IV

IN 4.63 0.10 0.53 0.51 GraphRNN 0.5172
DCRNN 63.03 0.12 0.22 0.16 GraphVAE 0.3001
STGCN 6.52 0.08 0.11 0.10 GT-GAN 0.8052
NR-DGT 4.49 0.12 0.55 0.54 NR-DGT 0.6704
NEC-DGT 1.86 0.73 0.93 0.89 NEC-DGT 0.8437

3.5.4 Evaluation for synthetic datasets

For synthetic datasets, we compare the generated and real target graphs on various metrics

and visualize the patterns captured in the generated graphs.

Metric-based evaluation. Table 3.2 summarizes the effectiveness comparison for four

synthetic datasets. The node attributes are continuous values evaluated by N-MSE, N-R2,

N-P, and N-SP. The edge attributes are binary values evaluated by the accuracy of the

correctly predicted edges. The results in Table 3.2 demonstrate that the proposed NEC-

DGT outperforms other methods in both node and edge attributes prediction and is the
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only method to handle both. Specifically, in terms of node attributes, the proposed NEC-

DGT get smaller N-MSE value than all the node attributes prediction methods by 85%,

71%, 95% and 95% on average for four dataset respectively. Also, NEC-DGT outperforms

the other methods by 46%, 36%, 44% and 58% on average for four dataset respectively on

N-R2, N-P, and N-SP. This is because all the node prediction methods only consider a fixed

graph topology while NEC-DGT allows the edges to vary. In terms of edges, the proposed

NEC-DGT get the highest E-ACC than all the other graph generation methods. It also has

higher E-ACC than graph topology translation method: GT-GAN by 7% on average since

NEC-DGT considers both edge and node attributes in learning the translation mapping

while GT-GAN only considers edges. The proposed NEC-DGT outperforms the NR-DTG

by around 3% on average in terms of all metrics, which demonstrates the effectiveness of

the graph spectral-based regularization.

Evaluation of the learned translation mapping for synthetic graphs. To eval-

uate whether the inherent relationship between node and edge (reflected by node degree)

attributes is learned and maintained by NEC-DGT, we draw the distributions of the node

attribute versus node degree of each node in the generated graphs to visualize their rela-

tionship. For comparison, a ground-truth correlation is drawn according to the predefined

rule of generating the dataset, namely, each node’s degree and attribute follows the function

y = x + 5. Fig. 3.6 shows four example distributions of nodes in terms of node attributes

and degree with the black line as ground-truth. As shown in Fig. 3.6, the nodes are located

closely on the ground-truth, especially for the syn-I and syn-IV, where around 85% nodes

are correctly located. This is largely because the proposed graph spectral-based regulariza-

tion successfully discovers the patterns: the densely connected nodes all tend to have large

node attributes and in reverse.

3.5.5 Evaluation for malware datasets

Table 3.3 shows the evaluation of NEC-DGT by comparing the generated and real target

graphs. For malware graphs, the node attributes are evaluated by N-ACC by calculating

65



  

Figure 3.6: Relation visualizations between node attributes and node degrees for samples
from four synthetic graphs

the percentage of nodes whose attributes are correctly predicted in all nodes. The edge

attributes are continuous value evaluated by E-MSE, E-R2 and E-P. We also use E-Acc to

evaluate the correct existence of edges among all pairs of nodes.

The results in Table 3.3 demonstrates that NEC-DGT performs the best for all the three

datasets. In terms of E-Acc, the graph generation methods (GraphRNN and GraphVAE)

cannot handle the graph translation work and got low E-Acc of around 0.6 at Mal-I,Mal-

II, and 0.8 at Mal-III. GT-GAN achieves high E-ACC, but its E-MSE is about 2 folds

larger than that of the proposed NEC-DGT on average. NEC-DGT successfully handle the

translation tasks with high E-Acc above 0.9, and the smallest E-MSE. In terms of N-Acc,

NEC-DGT outperforms other methods by around 5% on the first two datasets. In summary,
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Table 3.3: Evaluation of Generated Target Graphs for Malware Dataset (N for node at-
tributes, E for edge attributes, P for Pearson correlation, SP for Spearman correlation and
Acc for accuracy).

Malware-I

Method E-Acc E-MSE E-R2 E-P Method N-Acc

GraphRNN 0.6107 1831.43 0.52 0.00 IN 0.8786
GraphVAE 0.5064 2453.61 0.00 0.04 DCRNN 0.8786
GT-GAN 0.6300 1718.02 0.42 0.11 STGCN 0.9232
NR-DGT 0.9107 668.57 0.82 0.91 NR-DGT 0.9108
NEC-DGT 0.9218 239.79 0.78 0.91 NEC-DGT 0.9295

Malware-II

Method E-Acc E-MSE E-R2 E-P Method N-Acc

GraphRNN 0.7054 1950.46 0.44 0.29 IN 0.8828
GraphVAE 0.6060 2410.57 0.73 0.16 DCRNN 0.8790
GT-GAN 0.9033 462.73 0.13 0.81 STGCN 0.9330
NR-DGT 0.9117 448.48 0.68 0.83 NR-DGT 0.8853
NEC-DGT 0.9380 244.40 0.81 0.91 NEC-DGT 0.9340

Malware-III

Method E-Acc E-MSE E-R2 E-P Method N-Acc

GraphRNN 0.8397 1775.58 0.16 0.23 IN 0.8738
GraphVAE 0.8119 2109.64 0.39 0.32 DCRNN 0.8738
GT-GAN 0.9453 550.30 0.63 0.80 STGCN 0.9375
NR-DGT 0.9543 341.10 0.76 0.88 NR-DGT 0.8773
NEC-DGT 0.9604 273.67 0.81 0.90 NEC-DGT 0.9002

the proposed NEC-DGT can not only jointly predict the node and edges attributes, but also

performs the best in most of metrics. The superiority of NEC-DGT over the NR-DGT in

terms of E-MSE demonstrates that the graph spectral-based regularization indeed improve

modeling translation mapping.

Case study for malware dataset. Fig. 3.7 investigates three cases of input, real target

and generated target graph by NEC-DGT. The green nodes refer to the uncompromised

devices while the red nodes refer to the compromised devices. The width of each edge

reflects the distance between two devices. In the first case, both in generated and real

target graphs, Devices 4 and 6 are restored to normal, while Device 19 get attacked and

is isolated from the other devices. It validates that our NEC-DGT successfully finds the
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Generated target graph Input graph Real target graph 

Figure 3.7: Cases of Malware translation by NEC-DGT

rules of translating nodes and performs like the true confinement process. In the second

case, Device 8 propagates the malware to Device 38, which is also modeled by NEC-DGT

in generated graphs. In addition, the NEC-DGT not only correctly predicts the nodes

attributes, but also discovers the change in edge attributes, e.g. in the third case, most

of the connections of compromised Device 10 were cut both in generated and real target

graphs.

3.5.6 Evaluation for Molecule Reaction datasets

In this task, the NEC-DGT is compared to the Weisfeiler-Lehman Difference Network

(WLDN) [114], which is a graph learning model specially for reaction prediction. Table 3.4

shows the performance of our NEC-DGT on the reaction dataset on five metrics, which

are the same with the synthetic datasets. The proposed NEC-DGT outperforms both the
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Table 3.4: Evaluation of Generated Target Graphs for Molecule Dataset: N for node at-
tributes, E for edge attributes

Method N-MSE N-R2 N-P N-Sp Method E-Acc

IN 0.0805 0.46 0.13 0.12 GT-GAN 0.8687
STGCN 0.0006 0.98 0.99 0.97 WLDN 0.9667
NR-DGT 0.0008 0.97 0.99 0.99 NR-DGT 0.9918
NEC-DGT 0.0004 0.99 0.99 0.99 NEC-DGT 0.9925

translation model GT-GAN and the WLDN by 5% on average. Though the atoms do not

change during reaction, we evaluate the capacity of our NEC-DGT to copy the input node

features. As shown in Table 3.4, The NEC-DGT get the smallest N-MSE and get higher

N-R2 than other comparison methods by around 18%. This shows that our NEC-DGT can

deal with a wide range of real-world applications, whether the edges and nodes need change

or keep stable.

Metric-based Evaluation for HCP Datasets

We consider two classic brain network prediction methods that use SC to FC [73, 74] as

the comparison methods for this experiment. Abdelnour et al. [74] considered the graph

spectral transformation kernels by assuming that SC and FC share the identical eigenvectors

on their Laplacians. Another method directly considers the graph translation between SC

and FC. The goal is to predict the FC given the SC when the brain is doing different tasks.

Table 3.5 shows the Pearson coefficient by comparing the predicted graphs with the

empirical target graphs. Our method achieves the highest Pearson coefficient on seven out

of eight datasets with superiority of 3.8%, and the highest average Pearson correlation.

Specifically, the proposed sign-NEC-DGT outperformed the comparison methods by 5.8%

on average in the resting task and 5.4% in Gambling tasks. Also, the proposed sign-NEC-

DGT has a 1.3% higher Pearson coefficient than the one without regularization, which

demonstrates the effectiveness of the proposed signed graph spectral regularization. This

superiority is mainly because the proposed sign-NEC-DGT has the most freedom to learn
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Table 3.5: Pearson correlation between the predicted graph and empirical graph on HCP
datasets (Res for Resting, Emo for Emotion, Gam for Gambling, Re for Relational)

Method Res Emo Gam Lang Motor Re Social WM

Ganlan2008 0.41 0.42 0.44 0.44 0.45 0.44 0.45 0.45
Abdelnour2018 0.40 0.41 0.43 0.43 0.44 0.43 0.44 0.45
sign-NEC-DGT(NR) 0.42 0.43 0.44 0.45 0.46 0.45 0.45 0.46
sign-NEC-DGT 0.43 0.43 0.46 0.45 0.45 0.45 0.46 0.46

different parameters for dealing with positive and negative edge attributes.

Case Study for HCP Dataset

Figure 3.8 plots two subjects: 1) structural connectivity (i.e., the adjacent matrix of the

source graph shown on the left column), 2) empirical functional connectivity (i.e., the adja-

cent matrix of the target graph shown on the middle column), and 3) predicted functional

connectivity (i.e., the adjacent matrix of the target graph shown on the right column).

As shown in Figure 3.8, the predicted FC using Subject 87’s SC is very close to the

same subject’s empirical FC. On the other hand, the predicted FC using Subject 71’s SC

is different from Subject 87’s empirical FC, although Subject 87’s SC is very similar to

Subject 71’s SC. This is because SC reflects the human brain’s anatomical neural network,

which has relatively fewer individual differences among human beings. Unlike SC, the FC

used in this dataset reflects the Pearson correlations between two time series (i.e., Blood

Oxygen Level Dependent (BOLD) signal) of different brain regions of interest (ROIs), when

the subject is instructed under the resting-state. Practically, it is difficult to control these

subjects’ brain activities, which causes the empirical FC to be very noisy such that it may

affect the performance of all prediction methods.
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(a) Subject 87 

(b) Subject 71 

Figure 3.8: Cases of FC prediction by sign-NEC-DGT

Metric-based Evaluation for Breast Cancer Community Dataset

In this task, the goal is to predict the direct transition network of a user at one health

stage given the transition network at another health stage (Dx). Thus, there are five tasks

relating to five different target stages. Due to the requirement of handling the directed

graphs, we use two comparison methods: GT-GAN [26] and IN [80]. Table 3.6 shows the

metric-based evaluation results for this task.

As shown in Table 3.6, the proposed di-NEC-DGT is the only method that not only can

handle the node attribute prediction but also can predict the edge attributes for the directed

graph. More importantly, it achieves a better performance than the comparison methods

for all the different tasks. Specifically, for node prediction tasks, the proposed di-NEC-DGT

achieves the a better performance than IN on four metrics on average by about 47.9% in the
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Table 3.6: Evaluation of Generated Target Graphs for Breast Cancer Dataset: N for node
attributes, E for edge attributes, Chem for Chemotherapy, Ra for Radiation, Hor for Hor-
monal, Sur for Surgery, Tar for Targeted.

Task Method N-MSE N-R2 N-P N-Acc Method E-Acc

Chem
IN 0.0666 0.31 0.72 0.9167 GT-GAN 0.9993
di-NEC-DGT(NR) 0.0068 0.93 0.98 0.9991 di-NEC-DGT(NR) 0.9988
di-NEC-DGT 0.0060 0.94 0.98 0.9995 di-NEC-DGT 0.9988

Ra
IN 0.0667 0.31 0.72 0.9167 GT-GAN 0.9953
di-NEC-DGT(NR) 0.0076 0.92 0.97 0.9989 di-NEC-DGT(NR) 0.9981
di-NEC-DGT 0.0073 0.92 0.98 0.9985 di-NEC-DGT 0.9982

Hor
IN 0.0661 0.32 0.73 0.9177 GT-GAN 0.9945
di-NEC-DGT(NR) 0.0078 0.92 0.97 0.9983 di-NEC-DGT(NR) 0.9973
di-NEC-DGT 0.0061 0.94 0.98 0.9996 dir-NEC-DGT 0.9973

Sur
IN 0.0661 0.32 0.73 0.9175 GT-GAN 0.9981
di-NEC-DGT(NR) 0.0066 0.93 0.98 0.9992 dir-NEC-DGT(NR) 0.9981
di-NEC-DGT 0.0064 0.94 0.98 0.9992 dir-NEC-DGT 0.9981

Tar
IN 0.0671 0.31 0.71 0.9158 GT-GAN 0.9986
di-NEC-DGT(NR) 0.0205 0.79 0.90 0.9866 di-NEC-DGT(NR) 0.9989
di-NEC-DGT 0.0073 0.92 0.98 0.9989 di-NEC-DGT 0.9989

Chemotherapy task, 44.8% in the Radiation task, 45.4% in the Hormonal task, 45.3% in the

Surgery task, and 47.1% in the Targeted task. The success of the proposed di-NEC-DGT lies

mainly on its outgoing and incoming edge parameters and the customized approximation

of the direct spectral Laplacian matrix. In addition, for some specific tasks where the edge

and node may have many more relations, the spectral regularization term plays a very

important role for good prediction. For example, in the Targeted task, di-NEC-DGT has a

17.5% better metric score on average than the same model without regularization.

3.6 Conclusion

This chapter focuses on a new problem: multi-attributed graph translation. To achieve

this, we propose a novel NEC-DGT consisting of several blocks which translates a multi-

attributed input graph to a target graph. To jointly tackle the different types of interactions

among nodes and edges, node and edge translation paths are proposed in each block and
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the graph spectral-based regularization is proposed to preserve the consistent spectral prop-

erty of graphs. Extensive experiments have been conducted on the synthetic and real-world

datasets. As the extension of the undirected NEC-DGT, this chapter also proposed the

sign-NEC-DGT for the signed graphs and di-NEC-DGT for the directed graphs. Experi-

ment results show that our NEC-DGT can discover the ground-truth translation rules and

significantly outperform comparison methods in terms effectiveness. This chapter provides

a further step of research for graph transformation problems in more general scenarios. In

the next step, We are excited about the prospect of introducing the interpretability of the

generation process for explainable deep graph generation.
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Chapter 4: Interpretable Deep Graph Generation with

Node-edge Co-disentanglement

4.1 Introduction

Recent advances in deep generative models, such as variational auto-encoders (VAE) [20]

and generative adversarial networks (GAN) [21], have made important progress towards

generative modeling for complex domains, such as image data. The goal here is to learn the

underlying (low-dimensional) distribution of the images, hence image generation is treated

as sampling from learned distributions. Building on these techniques for images, which can

be considered as grid-structured data, a number of deep learning models for generating

general graphs have been proposed over the last couple of years [23, 24,97]. These involves

real-world applications, such as discovering new chemical and molecular structures [36,37],

and constructing knowledge graphs.

When we learn the underlying distribution of complex data such as images, learning in-

terpretable representations of data that expose semantic meaning is very important. Such

representations are useful not only for standard downstream tasks such as supervised learn-

ing and reinforcement learning, but also for tasks such as transfer learning and zero-shot

learning where humans excel but machines struggle [25]. As yet, most research has focused

on learning factors of variations in the data, commonly referred to as learning a disentangled

representation, where the variables of the representation are highly independent. Examples

of this include variables that only control the size of objects, or their color. For the instance

in Fig. 4.1 (a), where a semantic factor controls the degree of smile in a human facial image.

However, in the promising domain of deep generative models for graph generation,

disentangled enhancement has rarely been well explored yet, but could be highly beneficial

for applications such as controlling the generation of protein structures, or designing Internet
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 Node-related Factor (smile) 

Node-related Factor (e.g., CPU usage):  

Edge-related Factor (e.g., geo-spatial distance among computers):  

Node-edge-joint Factor (e.g., data downloading amount/network traffic):  

(a)  Semantic factors for images  

(b) Semantic factors for graphs  

Figure 4.1: Two examples of disentanglement: (a) semantic factors of images, where each
pixel is a node and each pixel is connected to its eight neighboring pixels, and (b) semantic
factors of cyber networks, where each computer is a node and the link between each pair of
computers is an edge (better seen in color).

of Things (IoT). As shown in Fig. 4.1, we would love to generalize from an image situation to

a graph situation, where the variables control specific factors related to node attributes, edge

attributes, or joint-node-edge patterns in the graph. For example, Fig. 4.1 (a) shows the

semantic factor (i.e. smile) in the images, which can be regarded as special cases of graphs

where nodes are pixels that are connected in a fixed topology. All the factors that control

image formulation are effectively node-related. Fig. 4.1(b) shows the factors that control

the formulation of a cyber network, which is an attributed graph where computers are

nodes and their links are edges. Unlike images, there are three types of factors formulating

the networks: (1) node-related factors that control some properties of node attributes but

are independent of edge patterns (e.g., the CPU usage of each computer); (2) edge-related
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factors that only influence edge patterns but are independent of node patterns (e.g., geo-

spatial distances between computers); and (3) node-edge-joint factors that jointly influence

some properties from both nodes and edges (e.g., the node patterns of ”downloaded data

amount” and edge patterns ”network traffic” which are inherently highly entangled and

hence must be controlled by such factors). Thus, it is necessary to develop a generic model

to discover and disentangle all three types of factors for the graph data. Though a few

researchers have sought to apply the disentanglement learning to graphs [115–117], as yet

they only have identified the latent factors that caused the edge between a node and its

neighbors.

In this chapter, we focus on the generic problem of disentangled representation learning

on attributed graphs, where the characteristics of graphs pose great challenges to disentan-

glement learning on graphs: 1) Lack of node and edge joint deconvolution operations.

The formation process for real-world graphs, which is both complex and iterative, is based

on the three types of factors depicted in Fig. 4.1. For example, edges are generated not

only by the edge related factors, but also node-edge-joint related factors. There is no ex-

isting graph decoder that can simultaneously handle all three types of factors during the

generation process. 2) Complex disentanglement enhancement of multiple types

of latent representation. Although the three types of semantic factors mentioned in

Fig. 4.1 are independent from each other, it is extremely difficult to enforce that. First, it is

difficult to automatically categorize individual factors into these three types. Second, even

they are categorized, the enhancement of such independency patterns still cannot be ac-

complished by the existing techniques which mostly focus on images without categorization

capability. 3) The dilemma between disentanglement and reconstruction qual-

ity for attributed graphs. Disentangling the three types of factors and reconstructing

both edges and nodes can require multiple trade-offs between reconstruction errors and

disentanglement performance during the training process. For example, the objective of

disentanglement of node-edge-joint factors can conflict with not only edge but also node

reconstruction errors.
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To the best of our knowledge, this is the first work that can address all the above

challenges and provides a generic framework that incorporates multiple disentanglement

enhancements for attributed graphs. We propose the new Node-Edge Disentangled Varia-

tional Auto-encoder (NED-VAE) model, a deep unsupervised generative approach for disen-

tanglement learning on graphs that automatically discovers the independent latent factors

in both edges and nodes. A novel objective for node-edge jointly disentanglement is derived

and proposed based on the variational autoencoder (VAE) [20,118]. A novel architecture is

proposed consisting of three sub-encoders and two sub-decoders to model the complicated

relationships between nodes and edges. We also propose a general framework of objectives

that can include various extensions of the base NED-VAE to realize the group-wise and

variable-wise disentanglement. The contributions of this work are summarized as follows:

• A novel framework is proposed for the disentanglement of attributed graph

generation. A novel objective framework is derived for learning three factors that

are exclusive to node patterns, exclusive to edge patterns, and those spanning node-

edge-joint patterns.

• A novel architecture is proposed for disentanglement learning on graphs.

Derived from the theoretical objective, an architecture is proposed with three sub-

encoders (a node encoder, an edge encoder, and a node-edge co-encoder) to learn

three types of representations, and two sub-decoders (a node-decoder and an edge

decoder) to co-generate both nodes and edges.

• Simultaneous group-wise and variable-wise disentanglement. The proposed

framework hierarchically disentangles attributed graph generation according to node,

edge, and their joint factors. A set of varational auto-encoder-based models for at-

tributed graphs have been proposed.

• Comprehensive experiments have been conducted to validate the effective-

ness of our proposed model and its extensions. Qualitative and quantitative
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experiments on two synthetic and two real-world datasets demonstrate that NED-

VAE and its extensive models are indeed capable of learning disentangled factors for

different types of graphs.

4.2 Related Works

Disentangled Representation Learning. Disentangled representation learning has gained

considerable attention, in particular in the field of image representation learning [119–122].

The goal is to learn representations that separate out the underlying explanatory factors

responsible for variations in the data. Such representations have been shown to be relatively

resilient to the complex variants involved [123], and can be used to enhance generalizability

as well as improve robustness against adversarial attack [120]. The disentangled represen-

tations are inherently more interpretable, and can thus potentially facilitate debugging and

auditing [124]. This has prompted a number of approaches that modify the VAE objective

by adding, removing, or altering the weight of individual terms [120–122, 125–128]. How-

ever, the best way of learning representations that disentangle the latent factors behind a

graph remains largely unexplored.

Graph neural networks and graph generation. Recent work on graph neural

networks (GNNs) [43, 92], especially graph convolutional networks [99, 129], is attracting

considerable attention, because of their remarkable success in multiple domains such as

natural language processing [55,130], computer vision [131], software engineering [132] and

traffic flow prediction [133]. Self-attention mechanisms and sub graph-level information

have also been explored as ways to potentially improve the representation power of learned

node embeddings [29, 48, 56]. Most of the existing GNN based graph generation methods

are based on VAE [23,38] and generative adversarial nets (GANs) [49], and others [24,35].

For example, GraphRNN [35] builds an autoregressive generative model on these sequences

utilizing LSTM model and has demonstrated good scalability; while GraphVAE [23] repre-

sents each graph in terms of its adjacent matrix and feature vector and utilizes the VAE
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model to learn the distribution of the graphs conditioned on a latent representation at the

graph level. Graphite [8] and VGAE [11] encode the nodes of each graph into node-level

embeddings and predict the links between each pair of nodes to generate a graph. Some

conditional graph generation methods also provide powerful graph encoders and decoders

for attributed graphs where both node and edge attributes are considered [26,61].

4.3 Problem Formulation

Define an input graph as G(V, E , E, F ), where V is the set of N nodes and E ⊆ V ×V is the

set of M edges. E contains all pairs of nodes, while the existence of each edge is reflected by

one of its attributes. E ∈ RN×N×K is the edge attributes tensor, where K is the dimension

of the edge attributes. F ∈ RN×D refers to the node attribute matrix, where Fi ∈ R1×D

is the node attributes of node i and D is the dimension of the node attribute vector. As

shown in Fig. 4.1, three types of factors (i.e. node-related factors, edge-related factors and

node-edge-joint related factors) are assumed to control the generation of the graph G.

The goal is to develop an unsupervised deep generative model that can learn the joint

distribution of the graph G and three groups of generative latent variables Z = (ze ∈

RL1 , zf ∈ RL2 , zg ∈ RL3) ( L1, L2, and L3 are the number of variables in each group) to

discover the three types of factors, such that the observed graph G can be generated as

p(G|Z) = P (E,F |ze, zf , zg). There are three challenges must be overcome to achieve the

above goal: (1) The lack of co-decoder based on co-deconvolution to jointly generate both the

nodes attributes F and edges attributes E; (2) difficulty of enforcing independence among

the variable groups ze, zf and zg (group-wise disentanglement), rather than simply enforcing

the disentanglement of the variables inside ze, zf and zg (variable-wise disentanglement);

and (3) the need to simultaneously solve multiple reconstruction-disentanglement conflicts

in ze and E, zf and F , zg and E, and zg and F .
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4.4 Node-edge Disentanglement VAE

In this section, we first introduce the derived training objective and the architecture of

the proposed Node-edge Disentanglement VAE (NED-VAE). Then we propose a generic

objective framework as well as its derivation to further enforce the disentanglement of

NED-VAE models with different purposes.

4.4.1 Objective and Architecture

In this section, we first derive the objective for learning disentanglement on graphs. Then,

to solve the first challenge, we propose a new architecture, the NED-VAE, based on the

derived objectives.

The objective for disentanglement on graphs

For a given observation G = (E,F ), we describe the inferred posterior configurations of the

latent factors Z = (ze, zf , zg) using a probability distribution qφ(ze, zf , zg|E,F ). Our aim is

to ensure that the inferred latent factors qφ(ze, zf , zg|E,F ) capture all three types of gener-

ative factors in a disentangled manner. In order to encourage this disentangling property in

the inferred qφ(ze, zf , zg|E,F ), we can introduce a constraint by trying to match it to a prior

p(ze), p(zf ) and p(zg) that both controls the capacity of the latent information bottleneck,

and embodies the statistical independence mentioned above. This can be achieved if we set

the prior to be an isotropic unit Gaussian, i.e. p(Z) = p(ze, zf , zg) = N (0, 1), leading to the

constrained optimisation problem in Eq. 4.1, where ε specifies the strength of the applied

constraint:

max
θ,φ

EG∼D[Eqφ(Z|G)logpθ(E,F |ze, zf , zg)]

s.t.DKL(qφ(ze, zf , zg|E,F )||p(ze, zf , zg) < ε. (4.1)

Eq. 4.1 can be rewritten as a Lagrangian under the KKT conditions and, according

80



to the complementary slackness KKT condition, we therefore arrive at the β-VAE [119]

formulation, which takes the form of the familiar variational free energy objective function:

L(θ, φ,G,Z, β) =Eqφ(Z|G)[logpθ(E,F |ze, zf , zg)]

− βDKL(qφ(ze, zf , zg|E,F )||p(ze, zf , zg). (4.2)

Based on the definitions of zf , ze, and zg, namely that zf only controls some properties

of nodes, ze only controls some properties of edges and zg controls the properties of both,

we obtain:

qφ(ze, zf , zg|E,F ) = qφ(zf |F )qφ(ze|E)qφ(zg|E,F ) (4.3)

pθ(E,F |ze, zf , zg) = pθ(F |zf , zg)pθ(E|ze, zg) (4.4)

We can now rewrite the loss function as:

L(θ, φ,G,Z, β) = Eqφ(Z|G)[logpθ(F |zf , zg)pθ(E|ze, zg)]

− βDKL(qφ(zf |F )qφ(ze|E)qφ(zg|E,F )||p(ze)p(zf )p(zg))

= Eqφ(Z|G)[logpθ(F |zf , zg)pθ(E|ze, zg)]− βDKL(qφ(zf |F )||p(zf ))

− βDKL(qφ(ze|E)||p(ze))− βDKL(qφ(zg|E,F )||p(zg)) (4.5)

To maximize the above objective, a deep generative model is needed to model each of the

components in this objective.

The architecture of the node-edge disentangled VAE

Derived from the above objective, the Node-Edge Disentangled VAE model (NED-VAE) is

proposed based on a novel architecture. The architecture of the proposed model is shown

in Fig. 4.2.
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Figure 4.2: The architecture of the proposed NED-VAE consist of three sub-encoders to
inference ze, zf and zg, as well as two sub-decoders to reconstruct E and F simultaneously.

The overall framework is based on the traditional VAE, where the encoder learns the

mean and standard deviation of the latent representation of the input and the decoder

decodes the sampled latent representation vector to reconstruct the input. Unlike the

structure of traditional VAE, the proposed framework has three encoders, each of which

models the distributions qφ(zf |F ), qφ(zg|E,F ) or qφ(ze|E); and two novel decoders to model

pθ(F |zg, zf ) and pθ(E|zg, ze), that jointly generate the node and edge attributes based on

the three types of latent representations. Each type of representations is sampled by their

own inferenced mean and standard derivation. For example, the representation vectors zf

are sampled as ze = µf + σf � ε, where ε follows a standard normal distribution. This

architecture also partially solves the second challenge described above because it enforces

the disentanglement between the two groups of variables ze and zf by separating their
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inference process. The details of each components are described as follows.

Node, edge and graph encoder. The node encoder consists of several traditional

convolution layers to extract latent features from node attribute matrix F ; and two paths

of fully connected layers to get the mean µf and standard derivation vectors σf of the node

representation distribution. The edge encoder consists of several edge convolution layers

proposed by [26] to extract edge representations from the edge attribute tensor E; and edge

embedding layers to get the node-level representation; and fully connected layers to yield

the mean µe and standard derivation σe vectors of the edge representation distribution. The

graph encoder consists of several graph convolution layers proposed in [97] to get node-level

representations; and fully connected layers to aggregate the learned node representations

into a graph-level representation that can be separately mapped into the mean µg and

standard derivation σg vectors of the graph representation distribution 1.

Node decoder. The proposed node decoder aims to generate the node attribute matrix

F ′ based on the sampled node representations zf and graph representations zg, which

ensures the node attribute generation process is controlled by both the node-related factors

and the node-edge-joint related factors. As shown in Fig. 4.2 (a), the node decoder consists

of several traditional deconvolution layers and fully connected layers as a reversed process of

the node encoder. First, the input node representation zf and graph representation zg are

concatenated together and mapped into several fully connected layers to decode the vector

into multiple feature vectors. Next, we aim to convert each feature vector into a feature

matrix, where each row should refer to an individual node, by replicating each feature

vectors N times. Moreover, to ensure the diversity and randomness of the nodes in each

graph, a node assignment vector S ∈ RN (shown as a red rectangle in Fig. 4.2 (a) is sampled

following the normal distribution and is concatenated with each feature matrix. Thirdly,

once the feature matrix has been obtained, one-dimensional filters are used to deconvolute

each row of the feature matrix into the attribute vectors for each node, completing the

reconstruction of the input node attribute matrix F .

1Operation details of the encoders can be found in https://github.com/xguo7/NED-VAE.
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Edge Decoder. The proposed edge decoder aims to generate the reconstructed edge

attribute E based on the sampled node representations ze and graph representations zg,

ensuring that the edge attributes generation is controlled by both the edge-related and

node-edge-joint related factors. The proposed edge decoder consists of several edge decon-

volution layers and fully connected layers as a reversed process of the edge encoder. The

input is the concatenation of both the edge representation ze and the graph representation

zg. First, the input vector is mapped into a node-level feature vector through a fully con-

nected layer and is converted into a matrix by being replicated. The same node assignment

vector S is also concatenated to this feature matrix. The hidden edge feature matrices are

then generated by the edge-node deconvolution layer [26] by decoding each of the node-level

representations, where the principle is that each node’s representation can make contribu-

tions to the generation of its related edges features (contributions are shown as dark grey

rectangles in Fig. 4.2 (b)). Thirdly, the edge-attribute tensor E is generated through the

edge-edge deconvolution layer, where the principle is that each hidden edge feature can

contribute to the generation of its adjacent edges.

4.4.2 Framework of node-edge co-disentanglement

To solve the second and third challenges, we propose a generic objective framework to fur-

ther enforce the disentanglement of NED-VAE models with different purposes. First, the

basic overall framework with four terms are introduced, namely two conditional distribution

terms of the graphs (denoted as 1○), the latent representations term (denoted as 2○), the

marginal distribution term for the graphs (denoted as 3○), and the inferred prior distri-

butions (denoted as 4○). Next, we move on to further enforce the disentanglement among

variable groups by generalizing the term 4○ to introduce a novel node-edge-total-correlation

term (denoted as A○) for group-wise disentanglement and a variable-wise disentanglement

term (denoted as C○). At last, we further enforce the disentanglement inside the three

types of latent representations, generalizing the term C○ to introduce three variable-total-

correlation terms (denoted as A○f , B○f , and C○f ). Furthermore, based on the framework,
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Table 4.1: Summary of objectives of the extensions of NED-VAE model. ( C○∗ refers to the
sum of C○e, C○f and C○g; 2○a

e can be changed to 2○a
f or 2○a

g)

NED-VAE 1○+ 3○+β( 2○+ 4○)

NED-IPVAE-I 1○+ 3○+ 2○+λ 4○
NED-IPVAE-II 1○+ 3○+λ 4○
NED-HCVAE 1○+ 3○+ 2○+γ A○
NED-TCVAE 1○+ 3○+ 2○+ C○+β A○
NED-VTCVAE 1○+ 3○+ 2○+ C○*+β A○+γ1 A○f+γ2 A○e+γ3 A○g

NED-AnchorVAE 1○+ 3○+ 2○+ 4○-λ 2○a
e

six extensions of the base NED-VAE models are proposed that enforce different terms, as

shown in Table 4.1.

Overall graph disentanglement framework

As proved by [128], the VAE objective can be equivalently defined as a KL divergence

between the generative model pθ(x, z) and inference model qφ(z, x) = qφ(z|x)q(x). Inspired

by this and given that p(z1, z2, z3) = p(z1)p(z2)p(z3), in conjunction with Eq. 4.4, the

NED-VAE objective for the graph data can be defined as:

−DKL(pθ(ze, zf , zg, E, F )||qφ(E,F, ze, zf , zg))

= Eqφ(Z,G)[log
pθ(E,F, ze, zf , zg)

pθ(E,F )p(ze, zf , zg)
+ log

q(E,F )qφ(ze, zf , zg)

qφ(E,F, ze, zf , zg)
+ log

pθ(E,F )

q(E,F )
+ log

p(ze, zf , zg)

qφ(ze, zf , zg)
]

= Eqφ(Z,G)[log
pθ(E,F |ze, zf , zg)

pθ(E,F )
− log

qφ(ze, zf , zg|E,F )

qφ(ze, zf , zg)
]−KL(q(E,F )||pθ(E,F ))

−KL(qφ(ze, zf , zg)||p(ze, zf , zg))

= Eqφ(Z,G)[log
pθ(F |zf , zg)pθ(E|ze, zg)

pθ(E,F )︸ ︷︷ ︸
1○

− log
qφ(ze|E)qφ(zf |F )qφ(zg|E,F )

qφ(ze)qφzf )qφ(zg)︸ ︷︷ ︸
2○

]

−KL(q(E,F )||pθ(E,F )))︸ ︷︷ ︸
3○

−KL(qφ(ze, zf , zg)||p(zf )p(ze)p(zg))︸ ︷︷ ︸
4○

(4.6)
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Specifically, Terms 3○ and 4○ enforce consistency between the marginal distributions

over G = (E,F ) and Z = (ze, zf , zg). Minimizing the KL divergence in Term 3○ maximizes

the marginal likelihood Eq(E,F )logpθ(E,F ); maximizing Term 4○ which is named as inferred

priors term enforces the distance between qφ(ze, zf , zg) and p(ze, zf , zg). Terms 1○ and 2○

enforce consistency between the conditional distributions. Specifically, Term 1○ maximizes

the correlation for each Z that generates each Gn; when Z ∼ qφ(Z|Gn) is sampled, the

likelihood pθ(G
n|Z) should be higher than the marginal likelihood pθ(G

n). Meanwhile

Term 2○ regularizes Term 1○ by minimizing the mutual information I(Z,G) in the inference

model.

Since Term 2○ actually represents the mutual information between the latent ze, zf , zg

and the graphs G, this will lead to poor reconstructions when enforcing disentanglement

with high values of β in the proposed NED-VAE [134]. Thus, to solve the trade-off problems

between the disentanglement of ze, zf , zg and G, we propose to either enforce Term 4○

alone or enforce it with high weights. Accordingly, we can refer to the model enforcing only

Term 4○ as (Node-edge disentangled Inferred Priors VAE) NED-IPVAE-I, and the model

enforcing both 2○ and 4○ with different weights as NED-IPVAE-II, as shown in Table 4.1.

Generalization of the Inferred Priors Term 4○

Next, to further address the second challenge and enforce the disentanglement among groups

of variables ze, zf and zg, we further generalize the Term 4○ by decomposing it and introduce

the Node-edge Total Correlation term ( A○ in Table. 4.1). Specifically, Term 4○ can be

decomposed into sub components A○, B○ and C○, as the followings (Here, we use Z to
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denote (ze, zf , zg) for clarity):

4○→ −Eqφ(Z)[log
qφ(Z)

qφ(ze)qφ(zf )qφ(zg)
+ log

qφ(ze)qφ(zf )qφ(zg)

p(ze)p(zf )p(zg)
+ log

p(ze)p(zf )p(zg)

p(Z)
] (4.7)

= −Eqφ(z) [log
qφ(Z)

qφ(ze)qφ(zf )qφ(zg)︸ ︷︷ ︸
A○

+ log
p(ze)p(zf )p(zg)

p(Z)
]︸ ︷︷ ︸

B○

−DKL(qφ(ze)||p(ze))−DKL(qφ(zf )||p(zf ))−DKL(qφ(zg)||p(zg))︸ ︷︷ ︸
C○

We refer to Term A○ as the “Node-Edge Total Correlation” term since it measures the

dependence between the three types of latent of graphs ze, zf and zg (group-wise disen-

tanglement). The penalty for this term forces the model to find statistically independent

factors for the nodes, the edges and their combinations. A heavier penalty on this term

induces better separately and disentangled learning for the graph format data. We refer

to Term C○ as the “variable-disentangelment” term which enforces the disentanglement of

the variables inside each latent group. This allows us to propose variant model which only

penalizes Terms A○ and C○, shown as the Node-edge Disentangled Total Correlation VAE

(NED-TCVAE) in Table 4.1. In some application cases where only the group-wise disentan-

glement is needed, and the variable-wise disentanglement in ze, zf and zf is not required.

This kind of disentanglement can be referred to as a “Half Correlation Disentanglement”

of the graphs, where the penalty for Term C○ is ignored, leading to another variant model

NED-HCVAE, as defined in Table.4.1.

When calculating Term A○, we utilize the Näıve Monte Carlo approximation based on

a mini-batch of samples to underestimate qφ(Z), qφ(ze), qφ(zf ), and qφ(zg), as described in

work proposed by [121].
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Generalization of variable-wise disentanglement C○

To further enforce the variable-wise disentanglement, we generalize Term C○ by decomposing

it to obtain the “Variable Total Correlation“(VTC) terms to largely enforce the variable-

wise disentanglement in ze, zf and zg respectively. The following shows the decomposition

of DKL(qφ(zf )||p(zf )) in Term C○ as an example:

−DKL(qφ(zf )||p(zf )) = −Eqφ(zf )[log
qφ(zf )∏
d qφ(zdf )

+ log

∏
d qφ(zdf )∏
d p(z

d
f )

+ log

∏
d p(z

d
f )

p(zf )
] (4.8)

= −Eqφ(zf ) [log
qφ(zf )∏
d qφ(zdf )︸ ︷︷ ︸
A○

f

− log
p(zf )∏
d p(z

d
f )

]︸ ︷︷ ︸
B○

f

−
∑
d

DKL(qφ(zdf )||p(zdf ))︸ ︷︷ ︸
C○

f

Here, Term A○f (referred to as the “Node Total Correlation“(TC)) is the most im-

portant term as it helps the model to identify the statistically independent factors in the

representation zf , as proved by [135]. Similarly, when decomposing the latent ze and zg,

we obtain their respective TC terms A○e and A○g. The relevant variant model, labelled

NED− V TCV AE in Table. 4.1, can flexibly enforce both the group-wise disentanglement

and the variable-wise disentanglement with pre-defined weights.

Generalization of conditional distribution Term 2○

In some cases, we are really only concerned with node attributes or edge attributes, so we

need only control either the nodes or edges when generating the graph. Thus, to learn the

types of factors involved, we can anchor a single group of latent variable (e.g., ze), to yield

higher mutual information with the observation graphs G.
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First, if we decompose Term 2○ in Eq. 4.6, we have:

− log
qφ(ze|E)qφ(zf |F )qφ(zg|E,F )

qφ(ze)qφ(zf )qφ(zg)
(4.9)

= log
qφ(ze)

qφ(ze|E)︸ ︷︷ ︸
2○a

e

+ log
qφ(zf )

qφ(zf |F )︸ ︷︷ ︸
2○a

f

+ log
qφ(zg)

qφ(zg|E,F )︸ ︷︷ ︸
2○a

g

.

Since each of the three above terms actually represents mutual information between ob-

servations and latent representations, because−log qφ(ze)
qφ(ze|E) = −log qφ(ze)qφ(E)

qφ(ze,E) = log
qφ(ze,E)

qφ(ze)qφ(E) =

I(ze, E). Thus, enforcing them can help ensure the mutual information between each types

of latent representations and observed graphs. The extensive model that enforces either of

the three terms is named as NED-AnchorVAE in Table 4.1.

Relation to existing models

Next we elaborate the graph version for the remaining disentangle VAE models in Table. 4.1.

First, as a special case of attributed graph, image only involves node attributes and

node-related factors matters. Hence in this special case, the NED-VAE objective can be

rewritten by ignoring ze and zg as:

L(θ, φ,G,Z, β) = Eqφ(Z|F )[logpθ(F |zf )− βDKL(qφ(zf |F )||p(zf )), (4.10)

which is the same objective as that defined in β-VAE [119] for the image domain. In the

same way, we can easily demonstrated that DIP-VAE [126] is a special case of the the

proposed NED-IPVAE-I, obtained by enforcing the inferred priors disentanglement, and

InforVAE is a special case of the proposed NED-IPVAE-II.

In addition, the proposed NED-TCVAE is a more general form that includes the objec-

tive of two existing methods FactorVAE [122] and β-TCVAE [121] which share the same

objectives. For example, when the weight β of Term A○ is 0, and there is no ze and zg, there
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is no need to enforce the group-wise disentanglement among the edge-latent ze, node-related

latent zf and node-edge joint latent zg. Only the variable-wise disentanglement C○f is used.

4.4.3 Complexity Analysis

The proposed NED-VAE requires O(N2) operations in time complexity and O(N2) com-

putation complexity in terms of number of nodes in the graph, which paves the way toward

modest scale graphs with hundreds or thousands of nodes, compared to most of the existing

graph generation methods, which often have O(N3) or even O(N4) computational costs.

For example, GraphVAE [23] requires O(N4) operations in the worst case and [24] uses

graph neural networks to perform a form of message passing with O(MN2) operations to

generate a graph.

4.5 Experiment

This section reports the results of both qualitative and quantitative experiments that are

carried out to test the performance of NED-VAE and its extensions on two synthetic and one

real-world datasets. All experiments are conducted on a 64-bit machine with an NVIDIA

GPU (GTX 1070, 1683 MHz, 16 GB GDDR5) 2.

4.5.1 Dataset

Erdos-Renyi Graphs

Erdos-Renyi (ER) graphs are generated based on three types of factor. One is an edge-

related factor a that refers to the probability of edge creation in a graph following the rule

specified in [18]; the second is a node-related factor b which is the mean of a Gaussian random

distribution (the standard is set to 0.1), based on which node attribute Fi,1 is generated; and

the third is a node-edge-joint related factor c defining the function: Fi,2 = degree(i)+10∗ c
2The code of the model and additional experiment results and details are available at: https://github.

com/xguo7/NED-VAE.
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(where c is a positive integers chosen from 1 to 10), based on which the second node attribute

Fi,2 is generated. Here, degree(i) refers to the degree of Node i. The dimension of the node

attribute and edge attribute is 2 and 1 respectively. A total of 25,000 ER graphs are used

for training and 12,500 for testing.

Watts Strogatz Graphs

Watts Strogatz (WR) graphs are also generated based on three types of factor. One is an

edge-related factor a that indicates the number of nearest neighbours that each node is

joined to in a ring topology [19]; the second is a node-related factor b that refers to the

mean of a Gaussian distribution (the standard is set as 0.01) based on which node attribute

is generated; and the third factor is a node-edge-joint related factor c that not only defines

the probability of rewiring each edge for graph topology but also defines the second node

attribute as:Fi,2 = degree(i) + 10 ∗ c. The dimension of the node and edge attribute is 2

and 1 respectively. A total 25,000 WR graphs used for training and 12,500 for testing.

Protein Structure Dataset

Protein structures can be formulated as graph structured data where each amino acid is a

node and the geo-spatial distances between them are edges. To generate the dataset, we

simulate the dynamic folding process of a protein peptide with a sequence AGAAAAGA,

which for our purposes can be considered as a graph of 8 nodes with node attributes (x, y, z)

corresponding to 3D coordination of the Cα atom of each amino acid. The protein contact

map (graph topology) is generated based on fully atomistic molecular dynamics simulations.

The details of molecule simulation process are provided in Appendix B.3. There are two

factors involved in generating the contact maps and nodes attributes: simulation time (T)

and ionic concentration (C), both of which are edge-related factors. Here, 38 values are

used for the ionic concentration (C) and 2,000 values are used for the simulation time

(T) to generate the dataset, producing 38,000 samples for training and 38,000 samples for

testing.
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4.5.2 Comparison Methods

Since GraphVAE [23] is the only existing method that fits the requirement of graph dis-

entanglement (i.e, not only learning the representations of graphs but also generate both

edge and node attributes), it is utilized as one comparison method. In addition, to vali-

date the necessities of inferring three types of representations separately, a baseline model

called GDVAE is used, which has only one graph encoder for inferring an overall graph

representation vector. The proposed model NED-VAE as well as the extensions (except

NED-AnchorVAE) in Table 4.1 are all tested and compared.

4.5.3 Evaluation Metrics

Qualitative Metrics

As it is important to be able to measure the level of disentanglement achieved by different

models, we search to qualitatively demonstrate that our proposed NED-VAE model and

its extensions consistently discover more latent factors and disentangles them in a cleaner

fashion than the previous models. By learning a latent code representation of a graph, we

assume that each variable in the latent code corresponds to a certain factor or property that

is used to generate the graphs’ edge and node attributes. Thus, by changing the value of one

variable continuously and fixing the remaining variables, we can visualize the corresponding

change in the generated graphs.

Quantitative Metrics

We used four quantitative metrics to evaluate the disentanglement of the proposed models.

β-M [119] and F-M [122] measure disentanglement by examining the accuracy of a classifier

that predicts the index of a fixed factor of variation; and the modularity score (mod) [136]

measures whether each dimension of z depends on at most a factor describing the maximum

variation using their mutual information. Finally, disentanglement metric, DCI metric [137]

computes the entropy of the distribution obtained by normalizing the importance of each
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Figure 4.3: Generated Graphs from different models when the related latent variables range
from 0 to 10 for ER graphs: (a) node-related factor which is reflected by color of node icon;
(b) edge-related factor which is reflected by edge density (c) node-edge-joint related factor
which is reflected by the size of node icon.

dimension of the learned representation for predicting the value of a factor of variation. All

the implementation details are the same as those in the work proposed by [138].

4.5.4 Results for ER dataset

Qualitative Evaluation

For ER graphs visualization, the color of nodes is used to represent the value of the node-

related factor b, and graph topology is used to represent the value of the edge-related factor

a, and the size of the node is used to represent the value of the edge-node-combined factor

c. The values of the latent variables range in [0, 10] and some segments of the generated

graphs is shown in Fig. 4.3. All of the proposed node-edge disentangelment models (NED-)

shows the best capabilities in discovering and disentangling all the three types of factors

than the graphVAE and the baseline GVAE. For example, the node-related factor travels

well with the obvious color ranging, while the discovered node-related factor by graphVAE

is not disentangled well because it has some influence on the edges. This is highly due to
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Table 4.2: Comparison of disentanglement scores of the proposed NED-VAE and its exten-
sions for three datasets.

Dataset method β-M(%) F-M(%) DCI Mod

ER

GraphVAE 79.20 33.30 0.33 0.75
GDVAE 79.20 33.34 0.33 0.74
NED-VAE 97.20 86.70 0.62 0.95
NED-IPVAE-I 99.71 98.84 0.73 0.92
NED-IPVAE-II 99.90 98.70 0.71 0.93
NED-TCVAE 99.70 88.00 0.64 0.92
NED-VTCVAE 94.00 59.10 0.63 0.97

WS

GraphVAE 73.10 37.87 0.13 0.49
GDVAE 73.06 37.86 0.13 0.62
NED-VAE 100.00 64.96 0.16 0.52
NED-IPVAE-I 99.30 91.23 0.16 0.50
NED-IPVAE-II 100.00 97.82 0.16 0.50
NED-TCVAE 94.91 64.70 0.16 0.50
NED-VTCVAE 94.50 49.33 0.17 0.51

Protein

GraphVAE 54.00 50.00 0.20 0.61
GDVAE 54.00 50.00 0.21 0.60
NED-VAE 63.42 61.67 0.31 0.69
NED-IPVAE-I 60.46 55.20 0.31 0.67
NED-IPVAE-II 60.00 64.00 0.28 0.67
NED-TCVAE 57.63 50.25 0.25 0.68
NED-VTCVAE 58.40 50.00 0.24 0.67

the powerful co-decoder in the generation of both nodes.

Quantitative Evaluation

Four quantitative evaluation metrics are tested on different models and compared in Ta-

ble 4.2. The proposed node-edge disentanglement models all shows greater superority than

graphVAE and baseline GDVAE. Specifically, NED-IPVAE-II achieves the score of 99.90%

in β-M, outperforming comparison methods by 20% and other proposed extensions by

2.5%. NED-IPVAE-I achieves 98.84% score in F-M, outperforming comparison methods by

66.28% and other proposed extensions by 16.9%.The great superiority of the two NED-IP-

VAE models is mainly due to their great penalty on the inferred prior term in the objective,

which balances the trade-off between the reconstruction error and the disentanglement.
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NED-VAE 

Edge related factor Node related factor Node-edge-joint related factor 

factor(node Shape) factor 

NED-TCVAE 

NED-VTCVAE 

Factor Not Learnt 

Factor Not Learnt 

Factor Not Learnt 

NED-IPVAE-I 

Factor Not Learnt Factor Not Learnt GraphVAE 

GDVAE 

Factor Not Learnt 

NED-IPVAE-II 

Figure 4.4: Generated Graphs from different graph disentangled models when the related
latent variable value ranges in [0, 10] for WS graphs: (a) node-related factor, which is
reflected by color of node icon; (b) edge-related factor which is reflected by number of rings
in topology and (c) node-edge-joint related factor which is reflected by edge density and the
size of node icon.

4.5.5 Results for WR dataset

Qualitative Evaluation

For WR graphs, we utilize the color of node icon to reflect the node-related factor b; and

the number of neighboring rings in the graph topology to reflect the edge-related factor a;

and the density of graph edges as well as the size of node icon to reflect the edge-node-

joint related factor c. The values of the latent variables range in [0, 10] and some segment

of the generated graphs to visualize, as shown in Fig. 4.4. All of the proposed node-edge

disentanglement models (NED-) successfully discovers and disentangle at least two of all the

three types of factors, while graphVAE fails in discovering both edge-related and node-edge-

joint related factors, and GDVAE fails in discovering the node-edge-joint related factors.

This validates the necessities of the three types of factor disentanglement and superiority of

the proposed architecture which separates the inference of node-related, edge-related and

node-edge-related representations.
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Quantitative Evaluation

Four quantitative evaluation metrics are tested on WS dataset on different models and

compared in Table 4.2. The proposed node-edge disentanglement models all shows greater

superority than graphVAE and baseline GDVAE. Specifically, NED-VAE and NED-IPVAE-

I both achieve 100% regarding β-M, outperforming comparison methods by 26.9% and

other proposed extensions by 3.9%. NED-IPVAE-II achieves 97.8% score regarding F-M,

outperforming comparison methods by 60.3% and other proposed extensions by 30.8%.

4.5.6 Results for Protein Structure dataset

Qualitative Evaluation

We evaluate the control of the factor of simulation time (T) to the generation of edges by

visualizing the contact map of the proteins. The value of the relevant latent variables ranges

in [0, 10] and some segment of the generated contact maps are shown in Fig. 4.5. All of the

proposed models are capable of finding T factor, while graphVAE shows bad performance

in a very slight variation of structure. In addition, qualitative evaluation on protein dataset

is also meaningful in analyzing how the proteins folds (reflected in contact maps) as the

time flies.

Quantitative Evaluation

Four quantitative evaluation metrics are also tested on protein dataset on different models

and compared in Table 4.2. The proposed node-edge disentanglement models, especiallt

NED-VAE all shows greater superiority than graphVAE and baseline GDVAE. Specifically,

NED-VAE outperforms the comparison methods by 14.9%, 32.2%, and 13.1% on metrics of

β −M , DCI and Modularity respectively; and outperforms other proposed extensions by

6.8%, 17.2%, and 2.8% on metrics of β −M , DCI and Modularity respectively.This proves

that the proposed NED-VAE still have superiority even when there is only edge-related

factor.
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NED-VAE 

NED-IP-VAE-I 

NED-IP-VAE-II 

NED-TCVAE 

NED-VTCVAE 

𝑍𝑒,𝑖=0 𝑍𝑒,𝑖=10 

GraphVAE 

GDVAE 

Figure 4.5: Generated contact maps from different models when one edge-related latent variable
ranges from 0 to 10 in protein dataset: more blank spaces indicates higher degree of protein folding

4.6 Conclusion

We have introduced NED-VAE, a novel and the first method for disentangling on attributed

graphs as far as we know. Moreover, we propose a generic framework of objectives includ-

ing various derived disentanglement penalties to solve different issues in dealing with graph

structured data, such as group-wise and variable-wise disentanglement; multiple trade-off

issues between reconstructed edges and nodes, and edge-related, node-related, and node-

edge-joint related latent. Finally, we have performed an experimental evaluation of disen-

tangling qualitatively and quantitatively for the proposed NED-VAE and its extensions,

which validates the effectiveness of the graph disentanglement architecture and the necessi-

ties of separately learning three types of latent representations. In the next step, we would

like to further explore how can we precisely control the properties of the generated graphs.
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Chapter 5: Property Controllable Deep Graph Generation

via Graph Manipulation

5.1 Introduction

Important progress has been made towards learning the underlying low-dimensional repre-

sentation and generative process of complex high dimensional data such as images [139],

natural languages [140], chemical molecules [61, 141] and geo-spatial data [142] via deep

generative models. We also have addressed the intepretation for structured data in the last

chapter. In recent years, a surge of research has developed new ways to further enhance the

disentanglement and independence of the latent dimensions, creating models with better

robustness, improved interpretability, and greater generalizability with inductive bias (see

Figures 5.1(a) and 5.1(b)) [1–3] or without any bias [121,126,143]. Although it is generally

assumed that the complex data is generated from the latent representations, their latent

dimensions are typically not associated with physical meaning and hence cannot reflect real

data generation mechanisms such as the relationships between structural and functional

characteristics. A critical problem that remains unsolved is how to best identify and en-

force the correspondence between the learned latent dimensions and key aspects of the data,

such as the bio-physical properties of a molecule. Knowing such properties is crucial for

many applications that depend on being able to interpret and control the data generation

process with the desired properties.

In an effort to achieve this, several researchers [4,144] have suggested methods that en-

force a subset of latent dimensions correspond to targeted categorical properties, as shown

in Figure 5.1(c). Though the initial results have been encouraging, critical challenges re-

main unsolved such as: (1) Difficulty in handling continuous-valued properties. The

98



 

Figure 5.1: While most existing models (e.g., Sub-figures (a) [1,2] and (b) [3]) do not explicitly learn
the correspondence between latent dimensions and data properties, some recent work (Sub-figures
(c) [4] and (d)) has started to explore this. The generative model (right) and its model inference
(left) are shown in each sub-figure. Dotted arrows represent the enforcement of independence and
double arrows represent the invertible dependence between two variables. x refers to data, z and w
refer to two subsets of latent variables, and y refers to the properties.

control imposed on data generation limits existing techniques to categorical (typically bi-

nary) properties, to enable tractable model inference and sufficient coverage of the data.

However, continuous-valued properties (e.g., the scale and light level of images) are also

common in real world data, while their model inference usually can be easily intractable.

Also, many cases require to generate data with properties of which the values are unseen

during training process. This cannot be achieved by conventional techniques such as condi-

tional models without making strong assumption on the model distributions. (2) Difficulty

in efficiently enhancing mutual independence among latent variables relevant

and irrelevant to the properties. This problem requires to ensure that each property

is only correlated to its corresponding latent variable(s) and independent of all the others.

Directly enforcing such mutual independence inherently between all pairs of latent variables

incurs quadratic number of optimization efforts. Hence an efficient way is imperative. (3)
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Difficulty in capturing and controlling correlated properties. It is feasible that sev-

eral independent latent variables can capture multiple independent properties. But when

the properties are correlated, they cannot be “one-on-one” mapped to corresponding inde-

pendent latent variables anymore. However, correlated properties are commonly found in

formatting a real world data.

To solve the above challenges, we propose a new model, Property-controllable VAE

(PCVAE), where a new Bayesian model is proposed to inductively bias the latent represen-

tation using explicit data properties via novel group-wise and property-wise disentanglement

terms. Each data property is seamlessly linked to the corresponding latent variable by inno-

vatively enforcing an invertible mutual dependence between them, as shown in Figure 5.1(d).

Hence, when generating data, the corresponding latent variables are manipulated to simul-

taneously control multiple desired properties without influencing the others. We have also

further extended our model to handle inter-correlated properties. Our key contributions

are summarized as follows:

• A new Bayesian model and derivation process is provided. A new Bayesian

model that inductively biases the latent representation using explicit real data prop-

erties is proposed. A variational inference strategy and inference model have been

customized to ensure effective Bayesian inference.

• The disentanglement enforcement terms of structured latent representa-

tion is proposed. Group-wise and property-wise disentanglement terms are pro-

posed to enhance the mutual independence among property, relevant and irrelevant

latent variables.

• A novel a property controllable graph decoder is proposed. The invertible

mutual dependence between property-latent variable pair is achieved by enforcing an

invertibility constraint over a residual-based decoder.

• Comprehensive experiments to validate the effectiveness of the model. The

quantitative and qualitative evaluation performed for this study revealed our PCVAE
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outperforms existing methods by up to 28% in capturing and 65% in manipulating

the desired properties.

5.2 Related works

Disentanglement Representation Learning. An important relevant area of research

is disentangled representation learning [120–122,143], which structures the latent space by

minimizing the mutual information between all pairs of latent variables. The goal here

is to learn representations that separate out the underlying explanatory factors that are

responsible for variations in the data, as these have been shown to be relatively resilient

with respect to the complex variants involved [123,145,146], and thus can be used to enhance

generalizability as well as improve robustness against adversarial attack. As noted by [138],

it is impossible for disentangled representation learning to capture the desired properties

without supervision and inductive biases.

Learning latent representations via supervision. This ensures that the latent

variables capture the desired properties though supervision, generally by directly defining

properties as latent variables in the model [144]. Unfortunately, apart from providing an

explicit variable for the labelled property, this yields no other easily interpretable structures,

such as discovering latent variables that are correlated to the properties, as the model

proposed in the current study does. This is also an issue with other methods of structuring

latent space that have been explored, such as batching data according to labels [2, 147] or

using a discriminator network in a non-generative model [148]. Some researchers addressed

this problem by introducing the architecture bias through a two-way factored autoencoder

and realize the supervision based on a pair-wise contrastive loss [149]. Other researchers

addressed this problem by linking latent variables with observed labels through adversarial

learning [3,150–152]. The most relevant work for our purpose is CSVAE [4], where a subset

of latent variables are correlated with binary properties via an adversarial learning. All

the above works can not handle multiple continuous-valued properties due to their strict
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assumptions on the distribution of properties.

Data manipulation and generation. Here, trained machine learning models are

utilized to manipulate and generate data in a controllable way with the desired properties,

which is especially useful for applications in the image domain. Several works have specif-

ically considered transferring attributes in images, which is the same goal as that in the

CASVE. These earlier works [153–155] all transfer attributes from a source image onto a

target image. These models can only perform categorical attribute transformation between

images (e.g., “splice the beard style of image A onto image B”), but only through interpo-

lation between existing images. Once trained, our proposed model can generate an objects

with any value of a certain property (either observed or unobserved during training) that

can be encoded in the subset of latent variables.

5.3 Property Controllable VAE

5.3.1 Problem Formulation

Suppose we are given a dataset D where each data instance is (x, y) with x ∈ Rn and

y = {yk ∈ R}Kk=1 to represent K properties of interest of x. For example, if x is a molecule,

then we may have properties of interest, such as cLogP and cLogS. We assume that the

data (x, y) are generated by some random process from continuous latent random variables

(z, w). Each variable in w controls one of the properties of interest in y, while the variables

in z control all the other aspects of x.

Our goal is to learn such a generative model involving (x, y) and (z, w), where the

subset of variables (i.e., z) are disentangled from subset w, and the variables inside w

are disentangled from each other. Once this model has been learned, then we can expect

different elements of variables in w to control different properties of interest, which is a

highly desirable goal for many data generation downstream tasks. For example, we may

want to decrease the value of a specific property (e.g., protein energy) by changing the value

of the corresponding element in w. It is also possible to directly set a desired property value
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(e.g., the mass of a molecule) and then generate the corresponding x with this target value

(i.e., a molecule with the target mass value).

5.3.2 Overall Objective

In this section, we first introduce the Bayesian variational inference of PCVAE. Then we

introduce the group-wise and property-wise disentanglement terms as part of the overall

objective. Following this, an invertibility constraint is introduced to enforce mutual depen-

dence between each property-latent variable pair. At last, PCVAE is extended to capture

and control multiple correlated properties.

Bayesian Variational Inference of PCVAE

The goal in Section 5.3.1 requires us to not only model the dependence between x and

(w, z) for latent representation learning and data generation, but also model the dependence

between y and w for property manipulation. We propose to achieve this by maximizing a

form of variational lower bound on the joint log likelihood p(x, y) of our model. Given an

approximate posterior q(z, w|x, y), we can use the Jensen’s equality to obtain the variational

lower bound of p(x, y) as:

log p(x, y) = logEq(z,w|x,y)[p(x, y, w, z)/q(z, w|x, y)]

≥ Eq(z,w|x,y)[log p(x, y, w, z)/q(z, w|x, y)]. (5.1)

The joint likelihood log p(x, y, w, z) can be decomposed as log p(x, y|z, w) + log p(z, w).

We have two assumptions: (1) w only encodes the information from y, namely, x and

y are conditionally independent given w (i.e., x ⊥ y|w); (2) z is independent from w

and y, namely z ⊥ w and z ⊥ y, which is equal to y ⊥ z|w (see derivation in Ap-

pendix C.1.2). First, based on the two assumptions, we can get x ⊥ y|(z, w) (see derivation

in Appendix C.1.3). Thus, we have log p(x, y|z, w) = log p(x|z, w) + log p(y|z, w) . Then,

based on the assumption y ⊥ z|w, we can have log p(y|z, w) = log p(y|w). Then we get
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log p(x, y|z, w) = log p(x|z, w) + log p(y|w). To explicitly represent the dependence between

x and (z, w) as well as the dependence between y and w, we can parameterize the joint

log-likelihood as log pθ,γ(x, y, w, z) with θ and γ as:

log pθ,γ(x, y, w, z) = log pθ(x|z, w) + log p(z, w) + log pγ(y|w). (5.2)

Given the condition that a parameterized qφ(z, w|x, y) = qφ(z, w|x) = qφ(z|x)qφ(w|x)

(since the information on y is included in x), by taking Eq. 5.2 into the above varia-

tional lower bound term in Eq. 5.1, we obtain the negative part as an upper bound on

− log pθ,γ(x, y) (as shown in the right sub-figure of Figure 5.1(d)):

L1 =− Eqφ(z,w|x)[log pθ(x|z, w)]− Eqφ(w|x)[log pγ(y|w)] +DKL(qφ(z, w|x)||p(z, w)) (5.3)

This gives us the proposed Bayesian variational inference of PCVAE. The detailed

derivation of Eq. 5.3 can be found in Appendix C.1.1. As there are K properties of in-

terest in y which are assigned and disentangled by the latent variables in w, the second

term in Eq. 5.3 can be detailed as
∑K

k Eqφ(w|x)[log pγ(yk|wk)].

Group-wise and Property-wise Disentanglement

Considering that the above derivation is conditional on two requirements: (1) z is indepen-

dent from w and y and (2) the variables in w are independent from each other, while in

practice minimizing the above objective L1 will not imply that our model will satisfy these

conditions. We therefore propose to further penalize the novel Group-wise- and Property-

wise Disentanglement terms.

We first decompose the KL (Kullback-Leibler) divergence term in Eq. 5.3 as:
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Ep(x)[DKL(qφ(z, w|x)||p(z, w))]

= DKL(qφ(z, w, x) ‖ q(z, w)p(x)) +DKL(q(z, w) ‖
∏

i,j
q(zi)q(wj))︸ ︷︷ ︸

total correlation term

+
∑

i
DKL(q(zi) ‖ p(zi)) +

∑
j
DKL(q(wj) ‖ p(wj)) (5.4)

The second term in the right of the above equation is referred to as the total correlation

(TC), as proposed by Chen et al. [121], which is one of many generalizations of mutual

information to more than two random variables. The detailed derivation of this decompo-

sition can be found in Appendix C.1.1. The penalty on this TC term forces the model to

find statistically independent factors in the data distribution. A heavier penalty on this

term induces a more disentangled representation among all variables in both z and w, but

as stated in our problem formulation, we only require that (1) variables in w are disentan-

gled to capture different properties, and (2) although z is disentangled from w, the latent

variables inside z do not need to be disentangled from each other. Roughly enforcing the

disentanglement between all pairs of latent variables in w and z, as done by the existing

TC term, can incur at least quadratic number of redundant optimization efforts and could

lead to poor convergence. Thus, we further decompose and analyze the TC term as:

DKL(q(z, w) ‖
∏

i,j
q(zi)q(wj)) = DKL(q(z, w) ‖ q(z)q(w))︸ ︷︷ ︸

group-wise disentanglement

+ DKL(q(w) ‖
∏

i
q(wi))︸ ︷︷ ︸

property-wise disentanglement

+DKL(q(z) ‖
∏

i
q(zi)). (5.5)

The first term in the right part of above decomposition enforces the independence be-

tween the two subsets of latent variables z and w, which we term group-wise disentangle-

ment. The second term enforces the independences of variables inside w, ensuring that each

latent variable can only capture the information of the single property assigned to it. We
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term this property-wise disentanglement. Imposing a heavy penalty on these two terms can

satisfy the two requirements mentioned above. We can now obtain the second part for the

objective of PCVAE by introducing the coefficient ρ as:

L2 = DKL(q(z, w)||q(z)q(w)) + ρDKL(q(w)||
∏

i
q(wi)) (5.6)

Invertible Constraint for Property Control

As stated in the problem formulation, an important goal for our new model is to generate

a data point x that retains the original property value of a given property yk with great

precision. More importantly, there should be no strict assumptions of parameters for p(yk)

and q(wk|yk). The most straightforward way to do this is to model both the mutual depen-

dence between yk and its relevant latent variable wk, namely, q(wk|yk) and p(yk|wk), which,

however, could incur double errors in this two-way mapping. To address it, we innovatively

propose instead an invertible function that mathematically ensures the exact recovery of

wk given yk based on the following deduction.

In the above objective, we only explicitly model the conditional distribution of pγ(yk|wk),

hence, to achieve the precisely control of property via z and w, which is necessary to generate

x with a certain property yk = m, we need to maximize the probability that yk = m as

follows:

x ∼ pθ(x|z, w), z, w ← arg maxz∼p(z),w∼p(w) pγ(yk = m|z, w), (5.7)

which is equal to:

x ∼ pθ(x|z, w), z ∼ p(z), wj,j 6=k ∼ p(wj), wk ← arg maxwk∼p(wk) pγ(yk = m|wk) (5.8)
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where wk can be determined as follows (N in the followings denotes Gaussian distribution):

wk ← arg maxwk∼p(wk) pγ(yk = m|wk)

= wk ← arg maxwk∼p(wk) logN (yk = m|fk(wk; γ), σk) (5.9)

= wk ← arg maxwk∼p(wk)−(m− fk(wk; γ))2 = wk ← fk
−1(m)

Therefore, by learning an invertible function fk(wk; γ) from wk to the expectation of yk

to model pγ(yk|wk), we can easily achieve the desired precise control of the property. The

above derivation are based on the assumption that y is a continuous-value. It can also be

extended into the situation when y is discrete property, as detailed in Appendix 5.3.2. To

learn an invertible function fk(wk; γ), we propose to leverage an invertible neural network.

Inspired by the invertible ResNet [156], we decompose the function fk(wk; γ) as fk(wk; γ) =

f̄k(wk; γ) + wk. As proved by [156], the sufficient condition that fk(wk; γ) is invertible is

that Lip(f̄k) < 1, where Lip(f̄k) is the Lipschitz-constant of f̄k(wk; γ).

Thus, the overall objective of the proposed PCVAE is finally formalized as: min
θ,φ,γ
L1+αL2

with subject to Lip(f̄k) < 1 for all k ∈ K, where α is the coefficient parameter.

Remark 1 (Monotonic relationship of property-latent variable pair). Given the condition

that fk(wk; γ) is invertible and continuous (Lip(f̄k) is less than 1), fk(wk; γ) is thus a

monotonic function. This is very important to increase (or decrease) the value of property

yk by increasing (or decreasing) wk, especially when the desired value of property is not

available.

Extension of the invertible function to discrete-valued Properties

Here we consider the situation when property y is discrete-valued and we denote yk =

{0, 1} ∈ RC as a one-hot vector here to represent its category and C is the number of

categories. In the overall objective, we only explicitly model the conditional distribution
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of pγ(yk|wk), hence, to achieve the precisely control of property via z and w, which is

necessary to generate x with a certain property yk that belong to the mth category, we

need to maximize the probability that yk = M as follows:

x ∼ pθ(x|z, w), z, w ← arg maxz∼p(z),w∼p(w) pγ(yk = M |z, w), (5.10)

where M is also an one-hot vector with M [m] = 1. Then the above equation is equal

to:

x ∼ pθ(x|z, w), z ∼ p(z), wj,j 6=k ∼ p(wj), wk ← arg maxwk∼p(wk) pγ(yk = M |wk) (5.11)

where wk can be determined as follows based on cross entropy objective (Cat in the fol-

lowings denotes categorical distribution):

wk ← arg maxwk∼p(wk) pγ(yk = M |wk)

= wk ← arg maxwk∼p(wk) log Cat(yk = M |νk(wk; γ))

= wk ← arg maxwk∼p(wk) log
exp(νk(wk; γ)[m])∑C
j exp(νk(wk; γ)[j]

= wk ← ν−1K (M) (5.12)

Generalization of handling correlated properties

As stated in the third challenge in Section 5.1, there are usually several groups of properties

involved in describing the data x and each group has several properties. These different

groups are independent, but the properties within the same group are correlated. Thus, we

can further generalize the above objective framework to handle the correlated properties

inside the same group.

The notation for yk is extended to yk = {yj,k ∈ R}Mk
j=1, signifying that there are Mk cor-

related properties inside the k-th property group. The properties inside the same property
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set yk are correlated, while the different property sets (e.g. yp and yk) are independent.

Similarly, the notation for wk is extended as a group of latent variables to control the cor-

responding property set. For the properties inside the same group, we assume all depend

on the same group of latent variables wk as

p(yj,k|wk) = N (yj,k|fk(wk; γ)[j], σj,k)), (5.13)

where fk(wk; γ)[j] denotes the j-th element of the output of fk(wk; γ). Thus, the second

term in Eq. 5.3 can be generalized as
∑K

k

∑Mk
j Eqφ(w|x)[log pγ(yj,k|wk)].

5.3.3 Neural Network Architecture of PCVAE

As shown in Figure 5.1 (d), there is an encoder (left-hand side of Figure 1(d)) that models

the distribution q(z, w|x) and two decoders (right-hand side of Figure 1(d)) that model

the distribution p(y|w) and p(x|z, w). To implement the encoder and decoders in the first

objective (i.e., L1), we use Multi-perceptions (MLPs), Convolution Neural Networks (CNNs)

or Graph Neural Networks (GNNs) to represent the distributions over relevant random

variables.

To implement the second part L2, it is necessary to calculate the group-wise and

property-wise disentanglement terms. Noting that the calculation of the density q(z), q(w)

and q(wi) in group-wise and property-wise disentanglement terms depends on the entire

data space. As such, it is inaccessible to compute it exactly during training. Thus, as the

same operation conducted by Chen et al. [121], we utilize the Näıve Monte Carlo approx-

imation based on a mini-batch of samples to underestimate q(z), q(w) and q(wk). The

detailed operation is described in Appendix C.2.3.

To implement the invertible constraint and model the distribution of pγ(yk|wk), we

utilize MLPs to model the function f̄k(·). Since the function f̄k(·) modeled by MLPs is

a composition of contractive nonlinearities (e.g., ReLU, ELU, tanh) and linear mappings,

based on the definition of Lipschitz-constant we have Lip(f̄k) < 1 if ‖ Wl ‖2< 1 for l ∈ L,

109



where Wl refer to the weights of the l-th layer in f̄k, ‖ · ‖2 denotes the spectral norm, and

L refers to the number of layer in the MLPs. To realize the above constraint on weights of

neural networks, we propose to use the spectral normalization for each layer of MLPs, as

introduced by Behrmann et al. [156].

5.3.4 Precisely Property Controllable Generation

Our proposed model can be applied to an important downstream task, namely precisely

property controllable generation. Given the value of a required property yk, the goal of

property controllable generation is to generate a data x which holds the same value as

this desired property. To achieve this, three steps are conducted: (1) infer the value of wk

based on the well-trained neural network f̄k(·) and the given property yk via fixed-point

iteration by following wi+1
k := yk − f̄k(wik; γ), where wik is the updated latent variable at

the i-th iteration step and w0
k = yk; (2) randomly sample the values of z and the remaining

variables in w from their prior distributions (i.e., Gaussian distribution) to obtain all the

latent variables; and (3) generate a data x using the decoder based on the latent variables

that are inferred from the previous two steps.

5.4 Experiment

This section reports the results of the qualitative and quantitative evaluation carried out to

test the performance of the proposed model on two datasets in two domains, namely images

and molecules. All experiments were conducted on a 64-bit machine with an NVIDIA GPU

(GTX 1080 Ti, 11016 MHz, 11 GB GDDR5). The architectures and hyper-parameters can

be found in Appendix C.2.1.

1The code for the proposed PCVAE is available at: https://github.com/xguo7/PCVAE
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5.4.1 Experiment Setup

Datasets

The dSprites dataset [157] consists of 2D shapes procedurally generated from ground truth

independent semantic factors. The factors that are explored as properties of data in this

experiment are scale, and the x and y positions (mentioned as x pos and y pos) of a sprite.

All possible combinations of these semantic factors are used for generating a total of 730k

images, where 580k/146k is the training/testing set split.

The 3Dshapes dataset [158] consists of 3D shapes procedurally generated from ground

truth independent semantic factors. The factors that are explored as properties of data

in this experiment are wall hue, floor hue and scale. All possible combinations of these

semantic factors are used for generating a total of 480k images, where 390k/90k is the

training/testing set split.

The QM9 dataset [159] consists of 134k stable small organic molecules, where 120k/20k

is the training/testing set split.

Comparison Methods

In order to validate the superiority of our proposed model in capturing and manipulating

the property during generation, we compare the performance of PCVAE to those achieved

by three comparison models that are most relevant to our problem: (1) semi-VAE [144] is a

semi-supervised model that enforces the value of each latent variable to be equal to the value

of each property. Here we utilize all the labels for supervision for fairness; (2) CSVAE [4] is a

VAE-based model that utilizes mutual information minimization to learn latent dimensions

associated with only binary properties. Here we adjust this model to handle continuous

property by assuming a Gaussian distribution; and (3) PCVAE tc is a baseline model that

holds the same inference model and property controlling strategy as PCVAE, of which the

proposed group-wise and property-wise disentanglement terms are replaced with the TC

term, namely, DKL(q(z, w)||
∏
i,j q(zi)q(wj)), as proposed in β-TCVAE [121]. It is used as

111



an ablation study to validate the effectiveness of the proposed group-wise and property-wise

disentanglement. (4) PCVAE nsp is a baseline model that holds the same architecture and

disentanglement terms as PCVAE except for the spectral normalization. It is used as an

ablation study to validate the effectiveness of spectral normalization.

5.4.2 Evaluation for Disentangled Latent Variables

In this section, we explore (1) whether each variable wk successfully captures the information

of the property that is assigned to it through supervision, and (2) whether the subset z of

latent variables is independent from the properties.

Quantitative evaluation. We calculate the normalized mutual information between

each encoded latent variable wk and the property yk that is assigned to it, as well as the

average mutual information between latent z and each yk. Figure 5.2 shows the mutual

information heat map by each model on dSprites. The element in the row of zavg denotes

to the average of all the mutual information between z and each property.

 

Figure 5.2: Heat-maps of the mutual information between latent variables and three proper-
ties by each model for the dSprites dataset. Data value in each cell denotes the normalized
mutual information.

We also calculate the mutual information between each encoded latent variable wk and

the property yk that assigned to it, as well as the average mutual information between latent

z and each yk, as shown in Figure 5.3 for the results on molecule QM9 dataset. For this

difficult task in the molecule domain which contains the implicit properties, the proposed
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Figure 5.3: Heat-maps of the mutual information between latent variables and two prop-
erties by each model for the molecule QM9 dataset. Data value in each cell denotes the
normalized mutual information.

PCVAE still shows significant advantage in capturing the Mol weight and cLogP properties.

In addition, we utilize the metric avgMI 2 proposed by Locatello et al. [144] to show

an overall quantitative comparison between different methods, as shown in Table 5.1. The

proposed PCVAE achieves the least avgMI of 0.257, which demonstrate its strength in en-

forcing the relationship between wk and yk. These results also validate the effectiveness and

necessity of the proposed group-wise and property-wise disentanglement term, as PCVAE

outperforms the baseline model PCVAE tc on avgMI by around 28%. Though CSVAE

shows an good performance in disentangling z and w, its latent variables in w turn in

a poor performance for capturing the properties. Similar conclusions can also be drawn

from the results on the 3Dshapes and QM9 dataset. For example, PCVAE outperforms

the comparison models by about 16% in capturing two independent properties cLogP and

Molweights.

Qualitative evaluation. We also qualitatively evaluate the dependence of each latent

variable and its relevant property by visualizing the variation of the properties when travers-

ing the priors of each latent variable. As shown in Figure 5.4, as the values of w1, w2 and

w3 change between (−0.5, 0.5), the continuous variations of the assigned properties of scale,

x position and y position of the generated images are clearly visible (as highlighted in red

rectangle). The variables in z = {z1, z2, z3} have almost no influence on these properties,

2avgMI =‖ I(w, y) − E(k)) ‖2F , where k is the number of properties. I(w, y) is mutual information
matrix. The details can be found in Appendix C.2.4
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Table 5.1: The avgMI achieved by each
model on the dSprites and QM9 datasets.

Methods dSpirites 3Dshapes QM9

Semi-VAE 0.439 0.115 1.413
CSVAE 0.868 1.348 1.411
PCVAE tc 0.285 0.018 1.245
PCVAE nsp 0.266 0.031 1.162
PCVAE 0.257 0.016 1.125

Table 5.2: MSE between the expected and
actual property of the generated molecules
(PCVAE (cor) denotes the extended model
for correlated properties).

Model cLogP Molweights cLogS

Semi-VAE 1.40 122.34 N/A
CSVAE 4.69 180.92 N/A
PCVAE tc 5.02 131.15 N/A
PCVAE nsp 1.81 176.94 N/A
PCVAE 1.29 87.62 N/A

PCVAE (cor) 1.33 53.49 1.15

 

Figure 5.4: The generated images by PCVAE when traversing three latent variables in
subset z (upper 3 rows) and three latent variables in subset w (bottom 3 rows) for the
dSprites dataset.

which validates the effectiveness of the group-wise disentanglement term.

We also provide the qualitative evaluation on the comparison experiments when travers-

ing the values of latent variables in Fig. 5.5. As shown here, the latent variables w learned

by the baseline model PCVAE tc could successfully capture the three properties, which

validate the effectiveness of the proposed overall inference model. The latent variables w2

and w3 learned by CSVAE can capture the x pos and y pos properties, while w1 fails in

capture the scale property. Semi-VAE can capture the three properties but the quality of

the generated images is very bad and biased.
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Figure 5.5: The generated images by comparison models when traversing on three latent
variables in subset of latent z (upper3 rows) and three latent variables in subset of latent
w (bottom 3 rows) for the Dsprits dataset
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Figure 5.6: The generated images by PCVAE and comparison methods when traversing on
three latent variables in subset of latent w (bottom 3 rows) for the 3Dshapes dataset

Next, we provide the qualitative evaluation on the 3Dshapes when traversing the values

of each latent variables w in Fig. 5.5. As shown here, the latent variables w learned by the

proposed model PCVAE could successfully capture the three properties, object scale, wall

hue and the floor hue in the images, which validate the effectiveness of the proposed overall

inference model.

We also qualitative evaluate the relationship of each latent variable and its relevant

properties. We visualize the variation of the properties on QM9 datasets, when traversing

on the priors of each latent variable, as shown in Figure 5.7. The variable w1 and w2 could

successfully capture the properties Molweight and cLogP.
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Figure 5.7: The properties of generated molecules when traversing on the corresponding
latent variables in sub-space w by PCVAE tc (left) and PCVAE (right).

5.4.3 Evaluation for property controllable generation

In this section, we validate the performance of the property controllable generation. Specif-

ically, given a predefined value of property yk, the aim is to explore whether the proposed

model could generate a data point x with a property y′k that is the same as yk.

Qualitative evaluation. For dSprites and 3Dshapes dataset, since we have no ground-

truth method with which to calculate the property y′k of the generated images, we directly

visualize the images that are generated given different values of property yk. In Figure 5.8,

each column contains four images generated given the same value of yk (here yk refers to

the x position property) but given the different values for the other two properties. The

objects of the generated images in the same column clearly share the same x position.

Similar results can be observed in Figure 5.9, the wall hue or floor hue of four images

in the same column are the same given the same desired property. At each column, given
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Figure 5.8: The generated images on dSprites dataset when traversing the desired value
of property X-position. Each column of images are generated given the same value of the
desired property.

 

(a) Control the property of “wall hue” (b)Control the property of “floor hue” 

Figure 5.9: The generated images on 3Dshapes dataset when traversing the desired value
of property (a) wall hue and (b)floor hue. Each column of images are generated given the
same value of the desired property and random values of other properties.

the same desired values of the relevant properties, the properties of the generated images

are the same.

Quantitative evaluation. For the QM9 dataset, since the properties can not be vi-

sualized directly from the molecule, we quantitatively measure the property controllable

performance in terms of the MSE (mean squared error) between the actual property y′k

of generated molecule and the desired property yk, as shown in Table 5.2. The proposed

PCVAE outperforms the other comparison models in successfully controlling cLogP and

Molweights in molecule generation with a smaller MSE than that of the comparison meth-

ods by around 65.1% and 40.5% on average, respectively. This demonstrate the superiority
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of PCVAE in precisely controlling the continuous-valued properties due to the effective in-

vertible property prediction network. In addition, the obvious advantage of PCVAE over

PCVAE tc demonstrate the effectiveness and necessity of the proposed group-wise and

property-wise disentanglement term in precisely property controllable generation.

5.4.4 Evaluation for handling correlated properties

In this section, we access the ability of the proposed model to capture and control the

correlated properties. The performance is tested on the QM9 molecule set for two tasks:

property prediction and property controllable generation. Three properties are selected:

Molweights, cLogP and cLogS. Molweights is independent from cLogP and cLogS, while

cLogP and cLogS are inner-correlated.

First, we evaluate whether the subset of latent variables w can power the ability of

property prediction, which is a very important task for new compound design in drug

discovery. Given an input molecule, the trained encoder (inference model) is used to get

the relevant latent variable wk, and then utilize the invertible function of p(yk|wk) to predict

the property yk. Table 5.3 compares the performance of property prediction task on PCVAE

and comparison models for uncorrelated properties, as well as the extended model (denoted

as PCVAE(cor)) for correlated properties. Though PCVAE(cor) deals with a more difficult

case than PCVAE, where an additional property clogS that is correlated with cLogP is

included, PCVAE(cor) still successfully captures the information of the added property

cLogS with ignorable influence on the prediction of cLogP and Molweight. Specifically, as

shown in Table 5.3, regarding the prediction of independent properties, PCVAE outperforms

semi-VAE and CSVAE with a smaller MSE of 33.33 in terms of Molweights. It can be

also observed that the prediction results of PCVAE nsp is better than PCVAE, which

shows that enforcing both directions’ dependence (i.e., p(w|y) as well as p(y|w) via spectral

normalization) can introduce more errors than only modelling the dependence p(y|w).

Next, we further explore the performance of the PCVAE(cor) to control the generation

of the correlated properties. As shown in Table 5.2, PCVAE(cor) achieves the smallest MSE
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Table 5.3: Evaluation of the property prediction task in term of MSE between the predicted
and real properties.

Latent Variable Molweights cLogP cLogS

semi-VAE 975.18 1.44 N/A
CSVAE 63.78 1.21 N/A
PCVAE tc 34.37 0.86 N/A
PCVAE nsp 31.50 0.64 N/A
PCVAE 33.33 1.21 N/A

PCVAE (cor) 33.04 0.96 0.53

on all the properties. It demonstrate that adding the supervision of its correlated property

cLogS does not influence the control of the property cLogP. This also demonstrates the

effectiveness of the invertible function for handling multi-input and multi-output data. To

test the necessities of the proposed PCVAE (cor), we also evaluate the performance of

PCVAE and comparison models in dealing with correlated properties, of which the results

could be found in Appendix 5.4.5.

5.4.5 Evaluation on the necessaries of PCVAE(cor) for dealing with cor-

related property

To validate the necessity of PCVAE (cor) for dealing with the correlated properties, we

evaluated the performance of PCVAE and comparison models in dealing with correlated

properties. As shown in Table 5.4, for generation task, the proposed PCVAE (cor) achieved

much smaller MSE than those achieved by CSVAE and PCVAE by averagely around 72.9%,

52.5% and 58.0% on the control of Molweigt, cLogP and cLogS, respectively. This validates

that traditional disentangled-based VAE models cannot handle the controllable generation

for correlated properties. For prediction task, the proposed PCVAE (cor) also achieved

much smaller MSE than those achieved by CSVAE and PCVAE by averagely around 53.12%,

13.2% and 22.1% on the prediction of Molweight, cLogP and cLogS respectively. The bad

performance on PCVAE and CSVAE in dealing with correlated properties is caused by the

conflicts between the independence enforcement on latent variables w and the dependence
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Table 5.4: Comparison of models in dealing with the correlated properties

Prediction task Generation task

Model Molweight cLogP cLogS Molweight cLogP cLogS

CSVAE 88.03 1.21 0.63 183.41 3.84 2.56
PCVAE 52.43 1.03 0.73 168.52 1.76 2.95

PCVAE (cor) 33.04 0.96 0.53 53.49 1.33 1.15

relationship enforcement on w and the correlated properties y, which largely deteriorate the

optimization of the whole model.

5.4.6 Evaluation on the quality of generation on QM9

We evaluate the quality of the generated molecules on the QM9 dataset by three metrics:

Novelty measures the fraction of generated molecules that are not in the training dataset;

Uniqueness measures the fraction of generated molecules after and before removing dupli-

cates; Validity measures the fraction of generated molecules that are chemically valid. The

results of the evaluation are shown in Table 5.5. As shown in Table 5.5, the proposed PC-

VAE still achieve 100% valdity and 99.5%, which is desirable in the problem of controlling

generation. We could also found that the proposed PCVAE can have an influence on the

uniqueness of the generated data, which may be explained by the supervision of the model.

However, considering our focus is on data generation given the desired property, is not a

critical issue, whereas the validity and novelty are still very high.

Table 5.5: Quantitative evaluation of the generated molecules.

Method Validity Novelty Uniqueness

GrammarVAE [36] 30.00% 95.44% 9.30%
GraphVAE [160] 61.00% 85.00% 40.90%
CGVAE [161] 100.00% 96.33% 98.03%
PCVAE tc 100.00% 99.10% 63.50%
PCVAE nsp 100.00% 99.10% 63.50%
PCVAE 100.00% 99.50% 33.40%
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5.5 Conclusion

In this chapter, we have proposed the PCVAE and its extended model, which learns a latent

space that separates information correlated with the properties into a predefined subset of

latent variables. To accomplish this, we first propose a novel Bayesian variational infer-

ence of PCVAE to jointly learn the distribution of data and properties followed by a novel

group-wise and property-wise disentanglement term to deal with the complex dependency of

subsets of latent variables. Then, we propose to enforce an invertible mutual dependence to

allow the precise property controllable generation. At last, we demonstrate through quan-

titative and qualitative evaluations from three aspects that our proposed model achieves

better performance than existing and baseline models. In future work, we plan to extend

PCVAE to a semi-supervised setting, where some of the property labels are missing.
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Chapter 6: Conclusions and Future Works

This dissertation aims to handle the conditional and intepretable graph generation prob-

lems in the domain of deep learning: conditional deep graph generation (i.e., deep graph

transformation) and deep graph interpretation. For the conditional deep graph generation

problem, we explore two sub-tasks, namely the conditional generation for graph topology

and the multi-attributed graph. To further interpret the graph generation process, we

explore two sub-tasks, namely, the disentangled graph generation and the property control-

lable graph generation, which provide the interpretation for graph generation from different

aspects.

To deal with the conditional graph topology generation problem, we propose a novel GT-

GAN model that is able to transform an input graph to a target graph. We first propose a

conditional graph GAN architecture that consists of an encoder-decoder style translator and

a conditional graph discriminator to learn the conditional distribution for graph topology

transformation. In addition, a novel graph U-net translator with graph skips is proposed

to guarantee the model to learn multiple levels’ information in the graph encoder as well as

select valuable ones to generate the target graphs in graph decoder. To corporate with the

U-net structure, a set of mirrored graph convolution and deconvolution layers are designed

including both the edge and the node convolution and deconvolution. Furthermore, the

proposed graph convolution and deconvolution layers are able to jointly embed the local

and global information. Experimental results show that our GT-GAN can discover the

ground-truth transformation rules, and significantly outperforms other baselines in terms

of both effectiveness and scalability.

The above problem is then extended to a more general setting, namely, the condi-

tional multi-attributed graph generation problem. To solve it, We propose a more generic

node-edge co-evolution framework for the multi-attributed graph transformation, where a
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novel graph spectral-based regularization is proposed to enforce the consistent of nodes and

edges in the generated graphs. To jointly tackle the different types of interactions among

nodes and edges, the node and edge translation paths are proposed in each block and the

graph spectral-based regularization is proposed to preserve the consistent spectral property

of graphs. Extensive experiments have been conducted on the synthetic and real-world

datasets. As the extension of the undirected NEC-DGT, we also propose the sign-NEC-

DGT for the signed graphs and di-NEC-DGT for the directed graphs. Experimental results

show that our NEC-DGT can discover the ground-truth translation rules and significantly

outperform comparison methods in terms effectiveness.

To interpret the conditional deep generation techniques proposed in the first two sub-

tasks, we then resort to the disentangled representation learning for the structured data.

We introduced NED-VAE, a novel and the first method for disentanglement representation

learning on attributed graphs as far as we know. Moreover, we propose a generic framework

of objectives including various derived disentanglement penalties to solve different issues in

dealing with graph structured data, such as group-wise and variable-wise disentanglement;

multiple trade-off issues between reconstructed edges and nodes, and edge-related, node-

related, and node-edge joint related latent. Finally, we perform an experimental evaluation

of disentangling performance qualitatively and quantitatively of the proposed NED-VAE,

its extensions, and the comparison models. The comparison with GraphVAE and a base-

line model validates the effectiveness of the graph disentanglement architecture and the

necessities of separately learning three types of latent representations.

Beyond exploring the relationship between the latent variables and generated graphs

as mentioned above, it is more important to manipulate the properties of the generated

graph. To solve this problem, we have proposed the PCVAE and its extended model, which

learns a latent space that separates information correlated with the properties into a pre-

defined subset of latent variables. To accomplish this, we first propose a novel Bayesian

variational inference of PCVAE to jointly learn the distribution of data and properties

followed by a novel group-wise and property-wise disentanglement term to deal with the
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complex dependency of subsets of latent variables. Then, we propose to enforce an invert-

ible mutual dependence to allow the precise property controllable generation. At last, we

demonstrate through quantitative and qualitative evaluations from three aspects that our

proposed model achieves better performance than existing and baseline models.

6.1 Research Tasks

The major research tasks are described as follows. The current status of these tasks is listed

in Table 6.1.

6.1.1 Conditional Deep Graph Topology Generation

• The definition and proposal of the novel problem (A1). We first define and

mathematically formulate the deep graph translation problem. We also propose a

novel indirect evaluation metric for evaluating the generated graph based on a super-

vised graph classification model.

• A generic framework for deep graph topology transformation (A2). We

develop a generic framework called GT-GAN consisting of a novel graph translator

and conditional graph discriminator for learning a conditional distribution of target

graphs given the input graphs.

• A novel graph convolution-based encoder (A3). We propose a novel graph

encoder consisting of “edge convolution” layers that extract various relations among

nodes containing both local and global information, and “node convolution” layers

that embed the node representations based on the extracted relations.

• A novel graph deconvolution-based decoder (A4). We propose a novel graph

decoder consisting of the “edge deconvolution” and “node deconvolution” layers, which

can decode the node representations first into the latent relations of the target graph

and then generate the final target graph. The graph skip-connection is also utilized

to map the learned latent relations between the input and target graphs.
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• Validating performance on synthetic and real-world dataset (A5). We con-

duct extensive experiments on both synthetic and real-world datasets on six perfor-

mance metrics to demonstrate the effectiveness and efficiency of the proposed model.

6.1.2 Conditional Deep Multi-attributed Graph Generation with Node-

Edge Co-evolution

• The development of a new framework for multi-attributed graph transla-

tion (B1). We formulate, for the first time, a multi-attributed graph transformation

problem and propose the NEC-DGT to tackle this problem. The proposed framework

is generic for different applications where both node and edge attributes can change

through transformation.

• The proposal of novel and generic edge translation layers and blocks (B2).

A new edge translation path is proposed to translate the edge attributes from the

input domain to the output domain. Existing edge translation methods were proven

to be special cases of ours, which can handle broad multi-attribute edges and nodes.

• The proposal of a spectral-based regularization that ensures consistency

of the predicted nodes and edges (B3). In order to discover and maintain

the inherent relationships between predicted nodes and edges, a new non-parametric

graph Laplacian regularization with a graph frequency regularization is proposed and

leveraged.

• The conduct of extensive experiments to validate the effectiveness and ef-

ficiency of the proposed model (B4). Extensive experiments on four synthetic

and four real-world datasets demonstrated that NEC-DGT is capable of generating

graphs close to ground-truth target graphs and significantly outperforms other gener-

ative models.

• The extension of the proposed model to signed graph translation (B5). A

variant of the proposed model called sign-NEC-DGT is designed by proposing a novel
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signed spectral-based regularization, which is based on a specially designed definition

of graph Laplacian for signed networks.

• The extension of the proposed model to directed graph translation (B6).

A variant of the proposed model called di-NEC-DGT is designed by proposing a novel

direct spectral-based regularization, which is based on the approximation of the Perron

vector.

6.1.3 Interpretable Deep Graph Generation with Node-edge Co-disentanglement

• Derivation of a novel objective framework for the disentanglement of at-

tributed graph generation (C1). In order to jointly disentangle the nodes and

edges, we derive a novel objective framework for learning three factors that are exclu-

sive to node patterns, exclusive to edge patterns, and those spanning node-edge-joint

patterns.

• The proposal of a novel architecture for disentanglement learning on graphs.

(C2) Derived from the theoretical objective of our framework, a novel architecture

is proposed for the representation learning of graphs to learn different types of repre-

sentations and to co-generate both nodes and edges.

• Constrains on simultaneous group-wise and variable-wise disentanglement

(C3). We conduct the hierarchically disentanglement of the attributed graph gener-

ation according to node, edge, and their joint factors.

• Comprehensive experiments to validate the effectiveness of the proposed

model (C4). Qualitative and quantitative experiments on both synthetic and two

real-world datasets are used to validate whether the proposed model is indeed capable

of learning disentangled factors for different types of graphs.
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Table 6.1: Research tasks and status

Task Description Status
Research Area A Deep Generative model for Graph Topology Transformation

A1 The definition and proposal of the novel problem Completed
A2 Proposal of the GT-GAN based framework Completed
A3 Proposal of the graph convolution-based encoder Completed
A4 Proposal of the graph deconvolution-based decoder Completed
A5 Validation on synthetic and real-world datasets Completed

Research Area B Multi-attributed Graph Transformation with Node-edge Co-
disentanglement

B1 Proposal the node-edge co-evolution framework Completed
B2 Proposal of generic edge convolution layers Completed
B3 Proposal of the graph spectral regularization Completed
B4 Validation on synthetic and real-world datasets Completed
B5 Extension to signed graph translation Completed
B6 Extension to directed graph translation Completed

Research Area C Interpretable Deep Graph Generation with Node-edge Co-
disentanglement

C1 Derivation of graph disentanglement objective. Completed
C2 Proposal of node-edge co-disentanglement framework Completed
C3 Constrains on group/variable-wise disentanglement Completed
C4 Validation on synthetic and real-world datasets Completed

Research Area D Property Controllable Generative Model for Structured Data Gen-
eration

D1 Proposal of graphical model and inference process Completed
D2 Proposal of disentangled enforcement for structured latent Completed
D3 Proposal of property controllable component Completed
D4 Validation on image and molecule datasets Completed
E Dissertation Writing and revision Completed

6.1.4 Property Controllable Graph Generation via Graph Manipulation

• The inference of the graphical model and objective (D1). A new Bayesian

model that inductively biases the latent representation using explicit real data prop-

erties is proposed. A variational inference strategy and inference model have been

customized to ensure effective Bayesian inference.

• The disentanglement enforcement of structured latent representation (D2).

Group-wise and property-wise disentanglement terms are proposed to enhance the

mutual independence among property, relevant and irrelevant latent variables .

• The proposal of a property controllable component (D3). The invertible
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mutual dependence between property-latent variable pair is achieved by enforcing an

invertibility constraint over a residual-based decoder.

• Comprehensive experiments to validate the effectiveness of the model (D4).

The quantitative and qualitative evaluation performed on both the image and molecule

datasets is used to reveal that our PCVAE is effective in capturing and manipulating

the desired properties.

6.2 Publications

6.2.1 Published papers at GMU

1. Xiaojie Guo, Liang Zhao, Houman Homayoun, Sai Manoj Pudukotai Dinakarrao.

Deep Graph Transformation for Attributed, Directed, and Signed Networks”. Knowl-

edge and Information Systems (KAIS), (impact factor: 2.936), to appear. [Best of

ICDMs]

2. Xiaojie Guo , Yuanqi Du, Liang Zhao. Property Controllable Variational Autoencoder

via Invertible Mutual Dependence. The 9th International Conference on Learning

Representations (ICLR 2021), (Acceptance Rate: 28.7%). May 4-7, 2021, Virtual

Event, Vienna, USA. to appear.

3. Xiaojie Guo, Liang Zhao, Zhao Qin, Lingfei Wu, Amarda Shehu, and Yanfang Ye.

2020. Interpretable Deep Graph Generation with Node-edge Co-disentanglement. In

Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data

Mining (KDD 2020), (Ac- ceptance Rate: 16.8%), August 23-27, 2020, Virtual Event,

CA, USA. ACM, New York, NY, USA.

4. Xiaojie Guo, Liang Zhao, Cameron Nowzari, Setareh Rafatirad, Houman Homay-

oun, and Sai Dinakarrao. Deep Multi-attributed Graph Translation with Node-Edge

Co-evolution.The 19th International Conference on Data Mining (ICDM 2019), long
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paper, (acceptance rate: 9.08%), pp. to appear, Beijing, China, Nov 2019. [Best

Paper Award]

5. Xiaojie Guo, Amir Alipour-Fanid, Lingfei Wu, Hemant Purohit, Xiang Chen, Kai Zeng

and Liang Zhao. Deep Classifier Cascades for Open World Recognition. The 28th

ACM International Conference on Information and Knowledge Management (CIKM

2019), long paper, (acceptance rate: 19.4%), pp. 179-188, Beijing, China, Nov 2019.

6. Yuanqi Du, Xiaojie Guo, Liang Zhao, and Amarda Shehu. Interpretable Molecule

Generation via Disentanglement Learning. The ACM Conference of Bioinformat-

ics and Computational Biology: Computational Structural Biology Workshop (BCB

CSBW 2020).

7. P D Sai Manoj, Xiaojie Guo, Hossein Sayadi, Cameron Nowzari, Avesta Sasan,

Setareh Rafatirad, Liang Zhao, Houman Homayoun. Cognitive and Scalable Tech-

nique for Securing IoT Networks Against Malware Epidemics, in IEEE Access, vol.8,

pp. 138508 138528, 2020.

8. Liang Zhao, Junxiang Wang, and Xiaojie Guo. Distant-supervision of heterogeneous

multitask learning for social event forecasting with multilingual indicators. Thirty-

Second AAAI Conference on Artificial Intelligence (AAAI 2018), Oral presentation

(acceptance rate: 11.0%), pp. 4498-4505, New Orleans, US, Feb 2018.

9. Yuyang Gao., Xiaojie Guo, Liang Zhao. Local event forecasting and synthesis using

unpaired deep graph translations. In Proceedings of the 2nd ACM SIGSPATIAL

Workshop on Analytics for Local Events and News (LENS 2018), pp. 1-8, seattle,

US, Nov 2018.

6.2.2 Previously published papers before GMU

1. Xiaojie Guo, Liang Chen, Changqing Shen. Hierarchical adaptive deep convolution

neural network and its application to bearing fault diagnosis. Measurement, 2016,
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v93, 490-502.

2. Xiaojie Guo, Changqing Shen, Liang Chen. Deep fault recognizer: an integrated

model to denoise and extract features for fault diagnosis in rotating machinery. Ap-

plied Science, 2016, 7(1), 41.

3. Xiaojie, Guo, Liang Chen, et al. An improved K-means algorithm and its application

in the evaluation of air quality levels. Proceedings of the 27th Chinese Control and

Decision Conference (CCDC 2015), pp. 3324-3329, IEEE, Qingdao, China, May 2015.

4. Liang Chen, Xiaojie Guo, et al. Human face recognition based on adaptive deep

Convolution Neural Network. Proceedings of the 35th Chinese Control Conference

(CCC 2016), pp. 6967-6970, IEEE, Sichuan, China, July 2016.

6.2.3 Submitted papers

1. Xiaojie Guo, Lingfei Wu, and Liang Zhao. Deep graph Translation. IEEE Transac-

tions on Neural Networks and Learning Systems (TNNLS),submitted.

2. Xiaojie Guo, Yuanqi Du, and Liang Zhao. Disentangled Deep Generative Models

for Spatial Networks. ACM SIGKDDConference on Knowledge Discovery and Data

Mining (KDD 2021),submitted.

3. Xiaojie Guo, Liang Zhao. A Systematic Survey on Deep Generative Models for Graph

Generation. ACM Computing Surveys (CSUR), submitted.

4. Xiaojie Guo, Sivani Tadepalli, Liang Zhao, and Amarda Shehu.Generating Tertiary

Protein Structures via an Interpretative Variational Autoencoder. Scientific reports,

submitted.
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6.3 Future Research Directions

6.3.1 Disentangled Representation Learning for Spatial-temporal Graphs

generation

• Graph neural networks for spatial-temporal graphs. Designing a graph neural network

for spatial-temporal graphs is the foundation for the spatial-temporal graph genera-

tion. The proposed GNN should be able to capture both the temporal and spatial

information of a series of graphs.

• Deep generative models for spatial-temporal graph generation. The goal is to disentan-

gle the spatial-related and temporal-related semantic factors of the spatial-temporal

graphs. For the temporal-related information, the time-invariant and time variant

semantic factors should be disentangled. For the spatial-related information, the

graph-related and spatial-related semantic factors should be disentangled.

6.3.2 Deep Graph Transformation for NLP tasks

• Graph-to-graph transformation for information extraction. We plan to formalize the

information extraction as a graph transformation problem, where the goal is to learn

a mapping from the input dependency parser graph to the information graph. During

the transformation, three tasks (i.e., entity recognition, relation extraction and co-

reference linking) are jointly conducted.

• Graph-to-graph transformation for AMR semantic parsing. The goal is to propose

an end-to-end graph transformation framework for semantic parsing which bridges

the sentence dependency parsing graph to AMR logits graph. The model should

be able to address the graph sparsity issue in neural AMR parsing and conduct the

unpaired transformation in dealing with the situation where less AMR annotations

are available.
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6.3.3 Disentanglement Graph Generative Models for Neural-Symbolic

Computing

• Scene graph interpretation and manipulation. The novel problem of image manipu-

lation from scene graphs requires to edit images by merely applying changes in the

nodes or edges of a semantic graph of the image. Our goal is to encode image infor-

mation in a given constellation and from there on generate new constellations, such

as replacing objects or even changing relationships between objects.

• Interpretable Spatial-Temporal Scene Graph Representation Learning. For the inter-

pretable generation of video scene graphs, the goal is to design the spatial-temporal

graph encoder and decoder, which is invariant to Rotation and shift, disentangling

spatial, temporal factors on latent representation of each object.
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Appendix A: Deep Multi-attributed Graph Transformation

for Node Edge Co-evolution

A.1 Proof of Theorem 1

Proof. Due to Es,(i,j) ∈ [1, 0], The influence calculated from the effects function in node

translation path of C-DGT for block s of node i can be summarized as:

ĪFs,i =

d∑
j=1

φIF (Es−1,(i,j)[Fs−1,i; 1;Fs−1,j ]) (A.1)

Then after the updating function, the node i at stage s can be modeled as: Fs,i =

φUF (F0,i;C; ĪFs,i). F0,i denotes the node attributes from the input graphs.

In DCNN, the message information learned for node i is formalized as:

ÎFs,i =
s−1∑
n=0

d∑
j=1

pn,(i,j)F0,jW
s−1
n (A.2)

where s denotes the pre-defined number of hop information utilized in DCNN. Wn ∈ Rd×F

denotes the weights related to nth hop. and F denotes to the dimension of node effects.

The ps,(i,j) is the s-hop reachable of two nodes calculated by an iteration: ps+1,(i,j) =∑d
k=1 p0,(i,k)ps,(k,j) and p0,(i,j) = E0,(i,j). For DCNN, Fs,i = F0,i. Due to the iterative nature

of n-hop problem, we use Iterative proof to validate that ĪFs,i = ÎFs,i when the parameters of

C-DGT are trained to meet some requirements.

(1) If s = 1, p0,(i,j) = E0,(i,j) and E0,(i,j) ∈ [1, 0].

For DCNN we got:

ÎF1,i =

d∑
j=1

E0,(i,j)F0,jW
0
0 (A.3)
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where W 0
0 ∈ Rd×F .

For C-DGT, since φEO is implemented by a two-layer MLP. After the first layer, the

output can be written as:

Ī ′
F
1,i =

d∑
j=1

E0,(i,j)[F0,i; 1;F0,j ]W1 (A.4)

=
d∑
j=1

E0,(i,j)(F0,iw11 + w12 + F0,jw13) (A.5)

where W1 ∈ R(2d+1)×d and can be divided into w11 ∈ Rd×d, w12 ∈ R1×d and w13 ∈ Rd×d.

When w11 = 0 and w12 =
−→
0 , we can got:

ĪFs,i =
d∑
j=1

E0,(i,j)F0,jw13 (A.6)

After the second layer of MLP, it can be expressed as:

ĪFs,i =
d∑
j=1

E0,(i,j)F0,jw13W2 (A.7)

where W2 ∈ Rd×F . Thus, if w13W2 = W 0
0 , it is proved that ĪF1,i = ÎF1,i.

(2) Given ĪFm,i = ÎFm,i is valid (s=m), we need prove ĪFm+1,i = ÎFm+1,i, namely to prove:

d∑
j=1

φIF (Em,(i,j)[Fm,i; 1;Fm,j ]) =
m∑
n=0

d∑
j=1

pn,(i,j))F0,jW
m
n (A.8)
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For the right of part of equation A.8, we can write it as:

right =
m∑
n=1

d∑
j=1

pn,(i,j)F0,jW
m
n +

d∑
j=1

p0,(i,j)F0,jW
m
0 (A.9)

=
m∑
n=1

d∑
j=1

d∑
k=1

p0,(i,k)pn−1,(k,j)F0,jW
m
n +

d∑
j=1

p0,(i,j)F0,jW
m
0 (A.10)

=
m∑
n=1

d∑
j=1

d∑
k=1

E0,(i,k)pn−1,(k,j)F0,jW
m
n +

d∑
j=1

E0,(i,j)F0,jW
m
0 (A.11)

For the left part of Equation A.8, we can write as:

left =

d∑
j=1

Em,(i,j)[Fm,i; 1;Fm,j ]W6 (A.12)

=

d∑
j=1

Em,(i,j)(Fm,iw61 + Em,(i,j)w62 + Fm,jw63) (A.13)

where W6 ∈ R(2d+1)×d and can be divided as w61 ∈ Rd×d, w62 ∈ R1×d and w63 ∈ Rd×d.
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When w61 = 0 and w62 =
−→
0 , we can got:

left =
d∑
j=1

Em,(i,j)Fm,jw63 (A.14)

=
d∑
j=1

Em,(i,j)φUF (F0,j ; Ī
F
m,j)w63 (A.15)

=
d∑
j=1

Em,(i,j)(F0,jw70 + ĪFm,jw71)w63 (A.16)

d∑
j=1

φIF (Em,(i,j)[Fm,i; 1;Fm,j ]) =
d∑
j=1

Em,(i,j)(F0,jw70w63 + ĪFm,jw71w63) (A.17)

=

d∑
j=1

Em,(i,j)(F0,jw70w63 + ÎFm,jw71w63) (A.18)

=

d∑
j=1

Em,(i,j)F0,jw70w63 +

m−1∑
n=0

d∑
j=1

d∑
k=1

Em,(i,j)pn,(j,k)F0,kw71w63W
m−1
n (A.19)

Since Em,(i,j) = E0,(i,j), when w70w63 = Wm
0 and Wm−1

n w71w63 = Wm
n+1, it is proved that

Īm+1,i = Îm+1,i.
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Appendix B: Interpretable Deep Graph Generation with

Node Edge Co-disentanglement

B.1 Experimental Details

We use [0, 1] normalised data as targets for the mean of a Bernoulli distribution, using

negative cross-entropy for calculating logp(E|ze, zg) and Adam optimiser with learning rate

2×10−4. We use the same encoder/decoder architecture for NED-VAE and all of its exten-

sions, as shown in Tables B.1. The architecture details of comparison methods graphVAE

and baseline GDVAE are shown in Table B.3 and Table B.2 respectively. We use leaky

ReLU (lReLU) non-linearity as the activation function in all models. We train for 500

iterations on two synthetic dataset and 1000 iterations on protein dataset. We use a batch

size of 1000 for all data sets. The β in NED-VAE is set to 10. The λ in NED-IPVAE-II

and NED-IPVAE-I are set to 10. The β in NED-TCVAE is set to 10. The β, γ1, γ2, γ3 are

all set to 10 in NED-VTCVAE.

B.2 Details of Node, edge and graph encoder

The node encoder consists of several traditional convolution layers and fully connected

layers. First, the node attribute matrix F is convoluted by convolution filters to learn the

inherent patterns from all the nodes’ attributes. Second, two paths of fully connected layers

are used to get the mean µf and standard derivation vectors σf of the node representations

distribution.

The edge encoder consists of several edge convolution layers proposed in [26] and fully

connected layers. First, the edge attribute tensor E is convoluted by convolution filters in

two directions (outgoing and incoming) to learn the hidden relations. Second, the extracted

hidden relations are convoluted into a node-level representation and mapped into two paths

of fully connected layers to yield the mean µe and standard derivation σe vectors of the
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Table B.1: Encoders and decoders architectures (Each layers is expressed in the format as <
filter size >< layertype >< Num channel >< Activationfunction >< stridesize >. FC refers
to the fully connected layers). c-deconv and c-conv refers to the cross edge deconvolution and
convolution respectively.

Node Encoder Edge encoder Graph encoder Node decoder Edge decoder
Input: F ∈
R20×2

Input: E ∈ R20×20 Input: E,F Input:zn ∈ R3,zg ∈
R3

Input:ze ∈ R3,zg ∈
R3

2 × 2 conv.10
ReLU. stride 1

20 × 1 c-conv.10
ReLU. stride 1

Graph-conv.10 ReLU FC.320 FC.6

2 × 2 conv.8
ReLU. stride 1

20 × 1 c-conv.8
ReLU. stride 1

Graph-conv.8 ReLU 2×2 deconv.8 ReLU.
stride 1

20 × 1 deconv.6
ReLU. stride 1

FC.3 20× 1 conv.6 ReLU.
stride 1

FC.6 2 × 2 deconv.10
ReLU. stride 1

20 × 1 c-deconv.8
ReLU. stride 1

FC.3 FC.3 20 × 1 c-deconv.10
ReLU. stride 1

Table B.2: Encoders and decoders architectures of Baseline GDVAE (Each layers is expressed
in the format as < filter size >< layertype >< Num channel >< Activationfunction ><
stridesize >. FC refers to the fully connected layers).

Graph encoder Node decoder Edge decoder
Input: F ∈ R20×2,E ∈ R20×20 Inputzg ∈ R9 Input:zg ∈ R9

Graph-conv.10 ReLU FC.320 FC.6
Graph-conv.8 ReLU 2× 2 deconv.8 ReLU. stride 1 20× 1 deconv.6 ReLU. stride 1
FC.6 2× 2 deconv.10 ReLU. stride 1 20× 1 cross-deconv.8 ReLU. stride 1
FC.3 20× 1 cross-deconv.10 ReLU. stride 1

edge representations distribution.

The graph encoder consists of several graph convolution layers [97] and fully connected

layers. First, the node-level representations are embedded by graph convolution layers.

Second, fully connected layers are used to aggregate the learned node representations into

a graph-level representation that can be separately mapped into the mean µg and standard

derivation σg vectors of the graph representations.

B.3 Details about the simulation process for protein dataset

In each of the simulations, we simulate the dynamic folding process of a protein peptide with

a sequence AGAAAAGA. This sequence is selected because of the compelling evidence that

indicates that an evolutionary N-terminal conserved motif AGAAAAGA plays an important
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Table B.3: Encoders and decoders architectures of graphVAE (Each layers is expressed in the format
as < filter size >< layertype >< Num channel >< Activationfunction >< stridesize >. FC
refers to the fully connected layers)..

Graph encoder Node decoder Edge decoder
Input: F ∈ R20×2,E ∈ R20×20 Inputzg ∈ R9 Input:zg ∈ R9

Graph-conv.10 ReLU FC.8 FC.6
Graph-conv.8 ReLU FC.10 FC.8
FC.9 FC.20× 3 FC.20× 20

role in causing the cellular prion protein to change to a misfold form and lead to prion

diseases [162]. A prion is a type of protein that can trigger normal proteins in the brain

to fold abnormally. Prion diseases can affect both humans and animals. Indeed, if we

refer to the protein data bank (PDB) of all the known protein structures, AGAAAAGA

sequence shows very different secondary structures within different protein molecules. Thus

it is meaningful to the chemical domain on understanding how its structure change with

different environmental conditions. We start by testing how simulation time (T) and ionic

concentration (C) play roles in the folding. The initial structure of this 8 amino-acid

sequence is a straight chain as the fully unfolded state. We solve the structure in a fully-

periodic rectangular water box with a dimension of 50A in each of the (x, y, z) direction.

NaCl is added by substituting water molecules to reach a certain concentration that varies

from 0 to 3 mol/L. We run 38 simulations for different NaCl concentrations and simulate

the folding of the peptide in NPT (constant number of the atom, constant room pressure

and temperature 1 atm and 300 K, respectively) ensemble for 20,000,000 dynamic time

steps (2 fs time step, 40 ns in total time). We save the fully atomistic structure for every

20 ps, which allows us to further extract the (x, y, z) coordinates of the C α atoms for each

frame, as well as the distance matrix that defines how far is C αi from C αj(i, j = 1...8) for

that frame. This distance matrix (D, 8×8) is converted to a contact map matrix (M, 8×8)

by taking Mij = 1 value for a distance smaller than 8A(Dij < 8A) and taking Mij = 0

value for a distance larger than or equal to 8A(Dij >= 8A).
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Appendix C: Property Controllable Variational

Auto-encoders via Invertible Mutual Dependence

C.1 Additional derivations about Methodology

C.1.1 Detailed Derivation of Bayesian variational inference of PCVAE

Given an approximate posterior q(z, w|x, y), we can use the Jensen’s equality to obtain the

variational lower bound of p(x, y) as:

log p(x, y) ≥ Eq(z,w|x,y)[log p(x, y, w, z)/q(z, w|x, y)]. (C.1)

We have two assumptions: (1) w only encode the information from y, namely, x and

y are conditionally independent given w (i.e., x ⊥ y|w); (2) z is independent from w

and y, namely z ⊥ w and z ⊥ y, which is equal to y ⊥ z|w (see derivation in Ap-

pendix C.1.2). First, based on the two assumptions, we can get x ⊥ y|(z, w) (see derivation

in Appendix C.1.3). Thus, we have log p(x, y|z, w) = log p(x|z, w) + log p(y|z, w) . Then,

based on the assumption y ⊥ z|w, we can have log p(y|z, w) = log p(y|w). Then we get

log p(x, y|z, w) = log p(x|z, w) + log p(y|w). To explicitly represent the dependence between

x and (z, w) as well as the dependence between y and w, we can parameterize the joint

log-likelihood as log pθ,γ(x, y, w, z) with θ and γ as:

log pθ,γ(x, y, w, z) = log pθ(x|z, w) + log p(z, w) + log pγ(y|w). (C.2)

Given the condition that a parameterized qφ(z, w|x, y) = qφ(z, w|x) = qφ(z|x)qφ(w|x)

(since the information on y is included in x), by taking it into the above variational lower
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bound term, we obtain the negative part as an upper bound on − log pθ,γ(x, y) as:

L1 =Eq(z,w|x,y)[log pθ(x|z, w)− log p(z, w)− log pγ(y|w) + log q(z, w|x, y)]

= −Eq(z,w|x,y)[− log pθ(x|z, w)]− Eq(z,w|x,y)[log pγ(y|w)]

+ Eq(z,w|x,y)[log q(z, w|x, y)− log p(z, w)] (C.3)

= −Eq(z,w|x)[− log pθ(x|z, w)]− Eq(w|x)[log pγ(y|w)] + Eq(z,w|x)[log
q(z, w|x)

p(z, w)
]

= −Eqφ(z,w|x)[log pθ(x|z, w)]− Eqφ(w|x)[log pγ(y|w)] +DKL(qφ(z, w|x)||p(z, w))

Based on the above derivation of DKL(qφ(z, w|x)||p(z, w)), we could further decompose

it as:

DKL(qφ(z, w|x)||p(z, w)) = Eq(z,w|x)[log
q(z, w|x)

p(z, w)
]

= Eq(z,w|x)[log q(z, w|x)− log p(z, w)]

= Eq(z,w|x)[log
q(z, w|x)

q(z, w)
+ log

q(z, w)∏
i,j q(zi)q(wj))

+ log

∏
i q(zi)∏
i p(zi)

+ log

∏
i q(wi)∏
i p(wi)

].
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Considering that q(z, w) = Ep(x)q(z, w|x), we can get:

Ep(x)[DKL(qφ(z, w|x)||p(z, w))]

= Ep(x)[Eq(z,w|x)[log
q(z, w|x)

q(z, w)
+ log

q(z, w)∏
i,j q(zi)q(wj))

+ log

∏
i q(zi)∏
i p(zi)

+ log

∏
i q(wi)∏
i p(wi)

]]

= Eq(z,w,x)[log
q(z, w, x)

q(z, w)p(x)
+ Eq(z,w)[log

q(z, w)∏
i,j q(zi)q(wj))

]

+ Eq(z)[log

∏
i q(zi)∏
i p(zi)

] + Eq(w)[log

∏
i q(wi)∏
i p(wi)

] (C.4)

= DKL(qφ(z, w, x) ‖ q(z, w)p(x)) +DKL(q(z, w) ‖
∏

i,j
q(zi)q(wj))

+
∑

i
DKL(q(zi) ‖ p(zi)) +

∑
j
DKL(q(wj) ‖ p(wj)) (C.5)

C.1.2 Derivation process explanation 1

In this section, we proof that if z ⊥ w and z ⊥ y, we can have y ⊥ z|w.

First, based on the Bayesian theory, we could have p(y, z|w) = p(z|y, w)p(y|w) = p(y|z, w)p(z|w),

namely,

p(z|y, w)p(y|w) = p(y|z, w)p(z|w). (C.6)

Then, considering that z ⊥ w and z ⊥ y, we can have p(z|w) = p(z) and also p(z|y, w) =

p(z). Then the right and left sides of Equation C.6 can be replaced as: p(z)p(y|w) =

p(y|z, w)p(z), and then we have p(y|w) = p(y|z, w). Given p(y|w) = p(y|z, w), both sides

of the equations are multiplied by p(z|w), and we have p(z|w)p(y|w) = p(y|z, w)p(z|w) =

p(y, z|w). Thus, y ⊥ z|w.

C.1.3 Derivation process explanation 2

In this section, we proof that if x ⊥ y|w, y ⊥ z, and z ⊥ w, we can have x ⊥ y|(w, z).

First, based on the Bayesian theory, we could have p(x, y|w, z) = p(y|x, z, w)p(x|z, w) =
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p(x|y, z, w)p(y|z, w), namely,

p(y|x, z, w)p(x|z, w) = p(x|y, z, w)p(y|z, w) (C.7)

Then, considering that y ⊥ z and z ⊥ w (namely y ⊥ z|w, as proved in Section C.1.2), as

well as y ⊥ x|w, we can have p(y|x, z, w) = p(y|w) and also p(y|z, w) = p(y|w). Then the

right and left sides of Equation C.7 can be replaced as p(y|w)p(x|z, w) = p(x|z, y, w)p(y|w),

and then we have p(x|z, w) = p(x|y, z, w). Thus, we get x ⊥ y|(w, z).

C.2 Architecture and Hyper-parameters

C.2.1 Architecture and Hyper-parameters for dSprits and 3Dshapes dataset

Based on the description of the implementation of the proposed objective, there are three

components, namely, encoder 1 to model pθ(z, w|x), decoder 1 to model pφ(x|z, w) and

decoder 2 to model pγ(w|y). When evaluate the dSprites data, the number of latent dimen-

sions in z is 3 and the number of latent dimensions in w is also 3. The detailed architectures

are shown in Table C.1. The hyper-paramter used for training is detailed in Table C.3.

Table C.1: Encoders and decoders architectures of PCVAE for dSprites dataset (Each lay-
ers is expressed in the format as < kernel size >< layer type >< Num channel ><
Activation function >< stride size >. FC refers to the fully connected layers).

Encoder 1 Decoder 1 Decoder 2
Input: X ∈ R64×64 Input[z, w] ∈ R6 Input:wk ∈ R
4× 4 Conv.32 ReLU.stride 2 FC.256 ReLU FC.50 ReLU
4× 4 Conv.32 ReLU.stride 2 FC.256 ReLU Spectral Norm Layer
4× 4 Conv.32 ReLU.stride 2 FC.512 ReLU FC.1
4× 4 Conv.32 ReLU.stride 2 4× 4 ConvTranspose.32 ReLU.stride 2 N/A
FC.256 ReLU 4× 4 ConvTranspose.32 ReLU.stride 2 N/A
FC.256 ReLU 4× 4 ConvTranspose.32 ReLU.stride 2 N/A
FC.12 4× 4 ConvTranspose.64 ReLU.stride 2 N/A
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Table C.2: Encoders and decoders architectures of PCVAE for QM9 dataset (Each lay-
ers is expressed in the format as < kernel size >< layer type >< Num channel ><
Activation function >< stride size >. FC refers to the fully connected layers).

Encoder 1 Decoder 1 Decoder 2
Input: G(X,A), X ∈ R9 Input[z, w] ∈ R100, h type ∈ R101 Input:wk ∈ R
FC.100 ReLU FC.100 ReLU FC.20 ReLU
GGNN.100 ReLU GGNN.100 ReLU Spectral Norm Layer
GGNN.100 ReLU GGNN.100 ReLU FC.1
FC.100 FC.9 (node) FC.3 (edge) N/A

C.2.2 Architecture and Hyper-parameters for molecule QM9 dataset

The architecture used for evaluation on the QM9 dataset are totally borrowed from the

work proposed by Liu et al. [163]. A molecule is represented as a graph G(X,A), where

each atom is a node and X refers to the features for all nodes; each bond is an edge, where

A denotes to the adjacent matrix of the graph. We briefly introduce the model and provide

it architecture parameters in Table C.2. We recommend the reader to the work [163] for

more details.

Molecule Encoder and Decoder. A encoder 1 is constructed to model pφ(z, w|x)

based on a gated graph neural network (GGNN). As a result, by sampling from the modelled

distribution, (z, w) are obtained variables containing the graph representation vectors. The

molecule decoder 1 models the distribution pθ(x|z, w) to generate the molecule graph G.

The molecule decoder 2 models the distribution pθ(y|w) to predict the properties y. The

process proceeds in an auto-regressive style. In each step a focus node is chosen to be

visited, and then the edges are generated related to this focus node. The nodes are ordered

by using the breadth-first traversal. The molecule decoder mainly contains three steps,

namely node initialization, node update and edge selection and labelling.

Node Initialization. We first define N as an upper bound on the number of nodes in

the final generated graph. An initial state h
(t=0)
i is assigned with each node vi in a set of

initially unconnected nodes. Specifically, h
(t=0)
i is the concatenation as [(z, w), τi], where τi
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is an one-hot vector indicating the atom type. τi is derived from (z, w) by sampling from

the softmax output of a learned mapping τi ∼ f(Zi). From these node-level states, we can

calculate global representations H(t), which is the average representation of nodes in the

connected component at generation step t. In addition to N working nodes, a special “stop

node” is also initialized to a learned representation hend for managing algorithm termination

detailed as below.

Edge Selection and Labeling At each step t, a focus node vi is picked from the queue

of nodes. Then an edges ei,j is selected from node vi to node vj with label Ei,j . Specifi-

cally, for each non-focus node vj , we construct a feature vector η
(t)
i,j = [h

(t)
i , h

(t)
j , di,j , H(t),

H(0)], where di,j is the graph distance (i.e. path) between two nodes vi, vj . We use

these representations to produce a distribution over candidate edges as p(ei,j , Ei,j |η(t)i,j ) =

p(Ei,j |η(t)i,j , ei,j) · p(ei,j |η
(t)
i,j ).

The parameters of the distribution are calculated as softmax outputs from neural net-

works. New edges are sampled one by one from the above learned distributions. Any nodes

that are connected to the graph for the first time during this edge selection are added to

the node queue.

Node Update. Whenever we obtain a new graph G(t+1) at step t, the previous node

states h
(t)
i is discarded and a new node representations h

(t+1)
i for each node is calculated by

taking their (possibly changed) neighborhood into account. To this end, a standard gated

graph neural network (GGNN) is utilized through S steps, which is defined as a recurrent

operation over messages r
(s)
i .

Termination. In the edge generation process of each node, the edges to a node vi is

kept added until an edge to the stop node is selected. Then we move the focus from the

node vi, and regard vi as a “closed” node. The next focus node is then selected from the

focus queue. In this way, a single connected component is grown in a breadth-first manner.

The node and edge generations continue until the queue of nodes is empty.
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Table C.3: hyper-paramter used for training on dSprites and QM9 datasets

Dataset Learning rate Batch size α ρ Num iteration c (spectral norm)
dSprites 5e-4 64 3 1 20 0.97
QM9 5e-4 32 1 6 100 1

C.2.3 Estimation of Group-wise and property-wise disentanglement terms

To evaluate the density q(z), q(w) and q(wi) in the second loss L2, a näıve Monte Carlo

approximation [164] is utilized for the estimation. We describe the operation by taking q(z)

as an example. A näıve Monte Carlo approximation based on a minibatch of samples from

p(n) (n is the data sample index) is likely to underestimate q(z). As stated by [121], this

can be intuitively seen by viewing q(z) as a mixture distribution where the data index n

indicates the mixture component. With a randomly sampled component, q(z|n) is close to

0, whereas q(z|n) would be large if n is the component that z came from. So it is much

better to sample this component and weight the probability appropriately. Thus, we can

use a weighted version for estimating the function log q(z) during training. When provided

with a mini-batch of samples {n1, ..., nM}, we can use the estimator as:

Eq(z)[log q(z)] ≈ 1

M

∑
i=1

[log
1

MN

M∑
j=1

q(z(ni)|ni)], (C.8)

where z(ni) is a sample from q(z|n), and N is the count of the whole samples in dataset.

M is the count of samples in a mini-batch.

C.2.4 Detailed description of avgMI

To evaluate the performance of the disentangled representation learning of the inference

model, we adopt the metric avgMI proposed by [144]. The goal of avgMI is to evaluate the

whether each latent variable wk only capture the information of the relevant property yk and

has nothing correlation with the other properties. We utilize the MI matrix (i.e. the matrix
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of pairwise mutual information between w and y) to represent the overall disentanglement

performance. The optimal MI matrix should be like an identity matrix with diagonal entries

all 1 and other entries all 0, where the mutual information between each wk and yk is 1

and the MI between wk and other property yj is 0. Then avgMI score is calculated as the

distance between the real MI matrix and the optimal MI matrix. The smaller the avgMI

is, the better the performance are.

Each entry, namely, mutual information MI(wi, yj), in the mutual information matrix

I(x, y) is calculated as: MI(wi, yj) =
∑

wi

∑
yj

[(p(wi, yj) log
p(wi,yj)
p(wi)p(yj)

)]. Therefore, to em-

pirically estimate p(wi), p(yj), and p(wi, yj), we need to have w and y in the experiments.

And as we know, we have the observations on x and y, and w is generated from x by the

encoder.
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