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Abstract

UNSUPERVISED LEARNING FOR MOLECULAR STRUCTURE DISCOVERIES

Kazi Lutful Kabir, PhD

George Mason University, 2022

Dissertation Director: Dr. Amarda Shehu

We have long known that form determines function. This is particularly true of biologi-

cal molecules, which utilize their three-dimensional structures to interface with one another

and propagate chemical reactions in the living cell. We also now better understand how vast

and rich the structure space available to a molecule is and how little we know about what

information to extract from this space to better characterize the structure(s)-function(s)

relationship in biological molecules. This dissertation puts forth computational concepts

and techniques to support this goal. Particularly, we develop algorithms to organize the

structure space of a molecule and reveal one or more important structural states of small

molecules, macromolecules, and complexated molecules. The algorithms proposed here fall

under the umbrella of unsupervised learning but leverage explicit or implicit embeddings

of molecular structures in discrete data-structures, such as graphs, to better utilize prox-

imity in structure space for capturing structural states. The proposed algorithms employ

diverse formalizations and show the power of those formalizations in addressing increasingly

complex problems and application settings. Rigorous evaluation on hallmark problems in

computational structural biology suggests that the leveraged formalizations and proposed

algorithms advance research on unsupervised learning of the organization of molecular struc-

ture spaces.



While the focus of the algorithms presented here is on molecular structure data, the

techniques we describe are of general utility to any domain where the ultimate objective is

to obtain informative organizations of high-dimensional spatial data.



Chapter 1: Introduction

Molecules are three-dimensional objects. Their building units, atoms, occupy positions in

three-dimensional space. The different spatial arrangements of the connected set of atoms in

a molecule give rise to what we refer to as tertiary structures. Having this three-dimensional

understanding of a molecule, in addition to its chemical formula, is central to understanding

molecular function, as molecules use their structures to complement, stick to, and so interact

with one another [1]. Summarily said, structure carries function [2].

We have known the central role that molecular structure plays for decades, particularly

for biological macromolecules (to which refer as biomolecules), such as proteins, RNA, and

DNA. Fig. 1.1 relates the tertiary structure of the hemoglobin protein, a molecule that

carries oxygen in our blood and whose mutations are implicated in a large number of blood

disorders. The left panel of Fig. 1.1 shows the string of the building units, the amino acids,

that comprise a protein molecule. They are abbreviated into one-letter codes. Each letter

hides anywhere from a few to a dozen atoms. This string of amino acids “hold” hands

via peptide bonds, giving rise to a highly flexible chain. The right panel of Fig. 1.1 shows

one spatial arrangement, one tertiary structure, through which hemoglobin is able to bind

oxygen.

What we know of proteins is that, indeed, they are inherently dynamic/plastic. While

experiments are able to capture them in one or at most a few tertiary structures, we now

know that protein molecules have great structural plasticity [3]. They leverage their ability

to assume different tertiary structures in the cell to regulate interactions with other molec-

ular partners and control many cellular processes [4]. In the words of Richard Feynman [5],

“Everything that living things do can be understood in terms of the jiggling and wiggling

of atoms.”
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Figure 1.1: Primary sequence (of amino acids) and experimentally-resolved tertiary struc-
ture of the hemoglobin protein [6]

Simulation (via physics-based models that track movements of atoms in response to

physical forces) is often used to capture these changes. Other methods not based on physics-

based models but operating under the umbrella of stochastic optimization [7, 8] have also

been shown powerful in complementing experiments and providing a broader view of the

large, high-dimensional structure space of a dynamic protein molecule.

Unraveling the organization of the protein structure space provides valuable insights

into connecting structure(s) with function. In particular, the dynamic nature of a protein

molecule is captured in the concept of a structural state. A state is a homogeneous set/group

of structures. In the context of machine learning, we can think of a state as a cluster. Indeed,

clustering algorithms have been popular in organizing structures of a molecule into states.

However, the actual concept of a state utilizes not just proximity in the structure space

but additionally energy. The inherent dynamics of a molecule is more evident when one

considers the energy landscape. In its simplest exposition, the energy landscape is a lifted

space; that is, the structure space is associated with an additional dimension of energy

by evaluating/associating an energetic value/score with each structure. When considering

an uncomplexed molecule (in isolation, not bound to others), we evaluate a structure by

its internal energy, also known as potential energy. We describe this in greater detail in

2



Chapter 3, where we relate some preliminaries, but the main idea is that physics-based

interactions among atoms in a particular structure can be summed up to associate with

a structure an energy value. A state is then a group of structurally- and energetically-

similar structures. The energy values distinguish a thermodynamically-stable state from a

meta-stable state.

What we often observe in wet laboratories is a stable state. A molecule dwells longer

in a stable state. In the energy landscape, a state corresponds to a broad and deep basin

or valley [9]. An extended amount of time needs to pass to collect sufficient kinetic energy

via small thermal vibrations for the molecule to navigate outside of a basin; that is, escape

a stable state. What we do not observe in wet laboratories is the diversity of stable and

semi-stable states. The main reason is that a molecule does not stay in a semi-stable state

for too long. However, such states are particularly rich in information, as they provide us

with a mechanistic understanding of how exactly a molecule switches between two different

stable states [9]. Such states may be further stabilized by the presence of a binding molecule;

therefore, obtaining a broad view of the diversity of stable and semi-stable structural states

is essential to better connecting structure to function [4].

As we have laid out earlier, the energy landscape provides an inherent organization

of the structure space by taking into account both the proximity of structures and their

energetics [10]. Routinely in this dissertation, we will use the terms energy landscape and

structure-energy space interchangeably so as to remind readers of the pairing of structures

with energies. The energy landscape can be leveraged to expose the relationship between

protein structure, dynamics, and function [10, 11]. However, no computational method

reveals the energy landscape explicitly; instead, what one draws in silico is an ensemble

of energy-evaluated structures that constitute points sampled from the landscape. These

points may not accurately represent certain regions of the landscape due to sample bias of

the methods that have to allocate limited computational resources to explore large, high-

dimensional search spaces related to the corresponding structure spaces [12].
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1.1 Problem Statement

A fundamental question presents itself: given a set of computed tertiary structures of a

molecule, which provide us with a limited and possibly biased view of the structure space,

and with possibly associated energies, which provide us with a limited and biased view of the

energy landscape, how can we dissect the information available and expose the structural

states present in the absence of any a priori knowledge? This question underlies two

hallmark problems that drive the conceptualization and design of the algorithms proposed

here. These problems are summarized in Chapter 2, and the preliminaries essential for

readers to understand the molecular structure, architecture, structure representation, and

benchmark proximity metrics for comparing tertiary structures are related in Chapter 3.

1.2 Contribution

This dissertation approaches answers to the above fundamental question under the um-

brella of machine learning. In particular, the dissertation advances computational work in

unsupervised learning for organizing the tertiary structure space (and, where available, the

associated energy landscape) of a molecule to identify structural states relevant to biological

function, so that we can learn directly from structure data. Specifically, contributions are

made along the following dimensions:

• In Chapter 4, we address the setting when energies are not available, and we only have

access to structure data. Effectively, we harness tertiary structures only as a first-order

approximation of our answer to the question formulated above. Making connections

with graph mining, we investigate graph embeddings of structures sampled in silico

over the structure space of a protein molecule. In particular, we leverage graph-based

clustering algorithms and evaluate the ability of community detection algorithms to

organize tertiary structures of a protein molecule into communities/groups. We assess

the quality and relevance of these groups with known functionally-relevant structures
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and elucidate top-performing community detection algorithms in a comparative set-

ting.

• Chapter 5 focuses on the tertiary structures of a small molecule obtained via physics-

based simulation. In this setting, we leverage both structures and internal structure

energies provided by the simulation platform to organize structures into groups cor-

responding to basins. Building over Markov State Models, where we draw analo-

gies between basins and Markov states, we build a discrete model of dynamics that

quantifies the state-to-state transitions at equilibrium, revealing precious mechanistic

information about a molecule. We compare and evaluate the impact of various algo-

rithms for identifying states into the quality of the resulting state model and show

that considering energy and so utilizing basins as states provide us with better models

of dynamics.

• In Chapter 6, we start a new thread of research that improves upon graph embed-

dings on both time and memory demands while still leveraging adjacency matrix

information. We leverage a matrix factorization formulation and show its power in

addressing a challenging problem setting. In addition to evaluating the quality of

obtained structure groups, we also perform a rank-based selection and show that the

resulting method outperforms basin-based and other state-of-the-art methods.

• Buoyed by these results, in Chapters 7 and 8, we capitalize further on this thread

of research via novel matrix factorization-based methods. In particular, we propose

novel tensor-factorization methods. We outline several ideas in detail, as well as

specific ways forward on enhancing these methods for application settings where, in

addition to evaluating structure groups, we evaluate (and score) single structures for

their relevance. This is an important contribution that allows us to place our work

in a broader context and additionally compare with existing state-of-the-art methods

that do not leverage unsupervised learning but devise novel scoring functions and

utilize them to score (and select) individual structures in a structure set.
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• In Chapter 9, we expand on our evaluation and application settings. In particular,

we organize complexated structures of antibody-antigen bound molecular systems and

show the power of the methods we have developed in exposing valuable information on

the role of the structure and dynamics in unbound and and bound antibodies. Finally,

Chapter 10 concludes this dissertation by highlighting the major contributions and

providing future research directions.
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Chapter 2: Computational Structural Biology Problems

Driving this Dissertation

The concepts and algorithms we present in this dissertation are motivated by two hallmark

problems in computational structural biology. They both necessitate the organization of

the structures available to a molecule as a primary step, but for different downstream tasks.

Since these problems not only motivate our methods but also determine the evaluation

setting for what we propose in various chapters of this dissertation, we describe them in

detail here for the interested reader.

2.1 From Structures to Markov State Models of (Structural)

Dynamics

Wet laboratory techniques have been able to elucidate the exquisitely complex equilibrium

dynamics of many biomolecules. Despite significant progress in single-molecule techniques,

they can only strike a few snapshots of a biomolecule transitioning between structures

while navigating its structure space [2]. In this regard, the results obtained from simulation

studies have been very informative. The structure space of a protein molecule accessed via

MD simulation can be leveraged to build discrete models of protein structure dynamics.

2.1.1 Molecular Dynamics Simulation

Molecular dynamics (MD) simulations speculate how every atom in a protein or a molecular

system of interest will move over time according to a general model of the physics regulating

inter-atomic interactions [13]. The basic idea behind an MD simulation is the following:

given the positions of all atoms in a biomolecular system, it is possible to calculate the force
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exerted on each atom by all of the other atoms. Hence, Newton’s laws of motion can be used

to speculate the spatial position of each atom as a function of time [14]. Specifically, step

by step through time, repeated calculation of the forces on each atom and then leveraging

those forces to update the position and velocity of each atom. The resulting trajectory

is, fundamentally, a series of three-dimensional snapshots that describes the atomic-level

configuration of the system at each point during the simulated time interval [14]. In partic-

ular, each trajectory is a list of structures accessed consecutively during the simulation, in

time steps of a specific magnitude. The forces in an MD simulation are calculated using a

molecular mechanics force field model. The commonly used molecular dynamics simulation

software include AMBER [15], GROMACS [16], NAMD [17], CHARMM [18].

An MD simulation provides a local view of the structure space of a molecule. To cap-

ture the structural dynamics of the molecule of interest, we need to find the answer to the

question that is how to integrate the trajectories obtained from MD simulations. Moreover,

extracting and quantifying equilibrium dynamics from MD simulations remains a chal-

lenge [19]. An MD simulation provides a limited sampling of the structure space accessed

at equilibrium by a molecule of interest. As a result, many MD simulations are required to

obtain a broader view of the structure space. Hence, summarizing and quantifying the equi-

librium dynamics of a molecule require deriving information from various MD trajectories.

In the past decade, Markov State Models (MSM) have emerged as a tool to do so [19,20].

Building an MSM involves organizing the structures (microstates) accessed in simula-

tion into structural states (macrostates). Once the macrostates are identified, transitions

observed between structures in simulation can be mapped to transitions between structural

states, and counts of state-to-state transitions can be mathematically converted into transi-

tion probabilities [20]. In this multi-stage process, a crucial step that regulates the quality

of the derived MSM is the determination of states.
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2.2 Estimation of Model Accuracy (EMA)

As presented in Chapter 1, computational methods are now considered to be precious tools

in the determination of tertiary structures of molecules. There is a long, multi-decade

long history of such methods, which first started with lattice-based modeling approaches

that discretized atomic positions on a lattice/grid and utilized combinatorial optimization,

to then methods that relaxed these conditions and could handle continuous 3D space but

resorted to stochastic optimization, such as Rosetta [21], and then all the way to deep

learning-based methods, such as AlphaFold2 [22], leveraging the precious information in

similar sequences of proteins to infer proximal atoms in 3D space. All these methods

effectively sample the structure space of a protein molecule and give us a discrete (sample-

based) representation of this space. Not all the structures are relevant; many may be

physically unrealistic and so functionally-irrelevant.

Rosetta [21] is a popular platform that we leverage in our work to generate structures

that effectively are samples of a protein’s structure space. The Rosetta structure generation

procedure operates in 4 subsequent phages where each one is a single trajectory Metropolis

Monte Carlo (MMC) search [23], and the final structure obtained as the byproduct of each

phase is utilized as the initial structure for the next one. Each pass for the MMC search

is fundamentally a molecular fragment replacement operation. The four phases proceed as

follows:

• Phase 1 forms an extended chain from the amino-acid sequence by setting the back-

bone dihedral angles (described in Section 3.2.2) to corresponding characteristic val-

ues. Then, it performs a number (20,000) of MMC moves, where each move suggests

replacing a fragment of length 9 in a current structure with a fragment sampled from a

library pre-compiled over known structures (from a structure database). The process

is driven by the Rosetta score0 energy function, which penalizes self-collisions of the

amino-acid chain in 3D.

• After a structure is obtained at the end of the steps mentioned above, phase 2 repeats
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the entire process with a more ambitious energy function, score1, which includes

additional energetic terms to promote the formation of secondary structure elements.

• Phase 3 switches to the score2 energy function, again adding more energetic terms.

• Finally, phase 4 shifts to fragment length 3 in order to make more fine-grained struc-

tural changes. It also switches to the score3 energy function and proceeds for 12, 000

moves to optimize the structure at the coarse-grained level [24].

The result of the process described above is a low-energy structure that may or may not

be functionally-relevant. After all, the structure space is vast, and an MMC trajectory may

converge to a different local minimum in the structure-energy space. Typically, one repeats

the above process n times to obtain n structures, which constitute an ensemble or set that

are a sample-based representation of the structure space of a molecule.

It is necessary to assess the quality/accuracy of computed structures generated by com-

putational methods for a protein molecule. The primary assumption is that the protein

molecule has a biologically-active state. Even though this is not an accurate assumption

that ignores dynamics and the ability of many proteins to carry out many functions in

the cell, it is a necessary (albeit insufficient) step in connecting structure with function.

Nonetheless, analyzing a structure set and identifying one best structure is still a challeng-

ing problem in computational (structural) biology and bioinformatics [25]. The problem is

known as the estimation of model/structure accuracy (EMA) [26].

A method addressing this problem can be characterized as selecting a subset of structures

or selecting an individual structure from a given structure dataset. In the former, such

methods can be evaluated in terms of purity, a metric originally introduced in [27]. In the

latter, methods can be evaluated via loss, a classic machine learning metric that we adopt

in [28–30].

Methods in the first category, which include clustering-based methods, organize struc-

tures in a given dataset into groups. These groups can be ranked/ordered based on char-

acteristics that can be measured over a group. For instance, one such characteristic can
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be size (number of structures in the group). After ordering the groups by rank, one can

take the first l groups and offer them as the set that is most likely to contain functionally-

relevant structure. Given an experimentally-known structure and a distance threshold, we

can measure the purity of the set by computing the dissimilarity of each structure of the

set with respect to the experimentally-known structure.

Methods in the second category select structures directly. It is worth noting that one

can easily put together a pipeline that follows up a method from the first category with a

method from the second category. For instance, after selecting first a subset B of structures

from a given dataset, uniform random sampling can be employed to select any structure

from B and offer for prediction. We propose loss to evaluate how good a selected structure

is. The structure that is closest to the experimentally-known structure (according to some

proximity measure) has a loss of zero. A perfect method would always find such a structure.

Currently, there is great diversity among structure selection methods. Based on the

approach they follow, these methods can be roughly grouped into single-model, multi-

model, and quasi-single model methods. Single-model methods work on a per structure

basis [31] and employ energy functions designed specifically to aid structure selection. Some

of these methods use physics-based functions relying on the physical properties of atomic

interactions [18, 32, 33]. Others use knowledge-based/statistical scoring functions that rely

on the statistical analysis of experimentally known structures [34–36]. The latter methods

have been more successful [37,38]. Clustering-based methods, on the other hand, do not rely

on energy or scoring functions. They group together similar structures and offer the largest c

clusters as prediction. Some recent work has leveraged concepts, such as communities, from

network science to cluster structures [39]. These methods construct clusters as communities

as in social networks.

Until very recently, clustering-based methods decidedly outperformed single-model meth-

ods [40]. However, single-model methods have progressed considerably, to the point that
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they can now compete with clustering-based methods [41]. Since the most successful single-

model methods rely on specially-designed scoring functions that users often have to re-

implement, clustering-based methods remain more popular. Clustering-based methods pose

their own concerns, some of which are addressed in [42–44]. Most notably, they suffer from

the curse of dimensionality [45] and carry significant computational costs with structure

data of increasing size. Since they are based on consensus, they have a very hard time

identifying good structures in sparse, low-quality structure datasets, where structures simi-

lar to the functionally-relevant one are significantly under-sampled by structure generation

algorithms.

In recent years, quasi-single model methods and supervised learning methods have taken

hold in the community. These methods currently outperform clustering-based methods.

Quasi-single model methods combine concepts of single- and multi-model methods [46,47].

They work by comparing structures to some selected, high-quality reference structures [48].

Methods based on supervised learning are currently quite diverse, leveraging SVMs [49,50],

Random Forest [51], Neural Networks [52, 53], and ensemble learning [54]. Feature sets

are also diverse, derived from terms of statistical scoring functions [55, 56] and/or expert-

constructed structural features [57, 58]. These methods show great promise. Inspired by

outstanding performance in image recognition, structure selection research has adopted deep

learning strategies. For instance, Cao et al. [53] propose DeepQA, a single-model structure

selection method that utilizes energy, structural, and physio-chemical characteristics of a

structure for quality prediction. Improved structure selection has also been observed with

models based on convolutional neural networks (CNNs). For instance, Hou et al. [59]

use a deep one-dimensional CNN (1DCNN) to build a single-model structure selection

method. The authors make use of two 1DCNNs to predict the local and global quality

of a structure. In [60], the authors propose Ornate, a single-model method that applies

a deep three-dimensional CNN (3DCNN) for model quality estimation. 3DCNN has also

been used successfully in [61]. Hou et al. observed a substantial improvement in protein

model selection by using contact distance predicted via a deep CNN [62]. These methods
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are very promising, but they are still challenged by the scarcity of labeled data, imbalanced

data distribution, and more.
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Chapter 3: Preliminaries and Background

Protein molecules feature prominently in this dissertation. So, we first summarize back-

ground information on protein structure and representation that is generally informative for

other molecular modeling. In addition, since the foundational building block is the ability

to compare two structures, we then provide an overview of benchmark dissimilarity and

similarity measures for molecular structures.

3.1 Protein Architecture

Proteins are composed of small organic molecules called amino acids. That means the

fundamental building block in a protein molecule is the amino acid. Small to medium-sized

proteins can have 50-300 amino acids. An amino acid can have dozens of atoms. All amino

acids have a common set of atoms known as the backbone and where they are different is in

the set of atoms that hang out of the main/central alpha carbon, known as the side chain.

There are 20 naturally-occurring amino acids, and one-letter, as well as three-letter codes,

have been devised for them. A linear representation of a protein molecule can be a string of

characters (also known as primary structure or primary sequence), each taking value over

an alphabet of 20 letters. For analyzing structures, we need 3D information.

Tertiary (3D) structures of proteins are three-dimensional objects; they have shape and

occupy volume in space as they are composed of atoms occupying positions. The atoms

are not free-floating and connect to each other with links/bonds. Hence the obvious key

question one would have to answer first is how do we represent these three-dimensional

objects? What do we encode that will allow us to recognize any inherent organization?

14



3.2 Representation

3.2.1 Cartesian Coordinates

Generally, tertiary structures of protein molecules are represented as ordered sequences of

the 3D coordinates of amino acids. If one considers a molecule of N atoms, then a naive

representation of a structure of the molecule under consideration would be a point of form

x1, y1, z1, . . . , xN , yN , zN in a space of 3N dimensions. The protein data bank (PDB) [6]

stores structural information (coordinate file(s)) as the list of atoms in each protein molecule

along with the spatial information (3D position in space) needed to reconstruct the par-

ticular structure. Besides the all-atom setting (where all types of atoms are considered),

one can focus on a specific type of atom or a particular group of atoms. For instance, a

protein structure can also be represented by the coordinates of the alpha-carbon (Cα/CA)

atoms of its residues, discarding other atoms from the representation. This is often done

to reduce dimensionality. Another way is to consider the backbone atoms: Cα, C, N, and

O (backbone-atom setting). This representation is suitable for employing classic distance

metrics (e.g., Euclidean distance) for comparing two structures. However, it is extremely

high-dimensional as even a small protein can have hundreds of atoms. This presents what

is also known as the curse of dimensionality. Finding an informative distance metric in high

dimensional space remains an open problem.

3.2.2 Dihedral Angles

Instead of Cartesian coordinates, one can use the backbone dihedral/torsion angles (ϕ and

ψ angles per amino-acid) as features. A dihedral angle is the angle between two planes; the

plane formed by the atoms i − 2, i − 1, i and the plane formed by the atoms i − 1, i, i + 1

where i−2, i−1, i, i+1 are four sequentially bonded atoms (Figure 3.1). The backbone of a

protein (which links the backbone atoms) has three different torsion angles- phi (ϕ): rotation

around N–Cα bond in an amino acid, psi (ψ): rotation around Cα–C bond in an amino

acid, omega (ω): rotation around C–N bond linking two consecutive amino acids [63]. The

15



key idea here is that the changes in structures can be considered as the result of rotations

around bonds that connect atoms. It has been observed that the comparison of structures

(at room temperature) reveals changes in angles are due to some specific ones (dihedral

angles). This representation ensures dimensionality reduction by a factor of 7 over the

Cartesian coordinates. For this representation, the most intuitive distance function would

be of L1-norm. However, it is necessary to go beyond the L1-norm to design more meaningful

distance functions. Because, all angles are not equally important. If we interpret angles

as rotations, changes in angles at the beginning of the chain of atoms cause larger changes

(swept volume in 3D) than changes in angles at the end of the chain.

Figure 3.1: Backbone Dihedral Angles

3.2.3 Coarse-grained Representation

Ultrafast Shape Recognition (USR) metrics [64] that contribute to characterizing the three-

dimensional shapes of ligands, can be utilized to featurize tertiary structures. The metrics

are based on the moments of distance distribution of atoms and provide ways to compare
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the molecular shapes. From a tertiary structure, USR metrics extract four reference points

to characterize the distribution of distances of all atoms. These four points (Fig. 3.2) are:

the molecular centroid (ctd), the closest atom to the molecular centroid (cst), the far-

thest atom from the molecular centroid (fct), and the farthest atom from fct (ftf). To

capture the geometry and shape of a molecular structure, the moments of these discrete

distributions are captured. The resulting distributions can be encapsulated by three mea-

sures: mean, variance, and skewness. As a result, each structure becomes a collection of 12

features [65]. The key observation for this type of representation is that changes in atomic

positions or angles ultimately result in changes to the shape of the structure. Hence, it is

possible to get away with a coarse representation of shape. USR metrics summarize the

distance distribution of atoms from each of the four reference points via mean, variance,

and skewness [64]. This encoding mechanism ensures dimensionality reduction and makes

the data more suitable for applying clustering algorithms. However, this representation is

too coarse to capture subtle structural changes.

Figure 3.2: Reference Points for USR Metrics [65]
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Furthermore, dimensionality reduction techniques are employed either implicitly or ex-

plicitly with these representations. For instance:- in [66], principal component analysis

(PCA) is used to sample protein structure coordinates while considering the correlation

among the atomic coordinates in the low-energy regions. To analyze molecular dynamics

simulations, PCA is applied on dihedral angles [67] resulting in a one-to-one representation

of the original angle distribution. Isometric feature mapping (ISOMAP) is used in [67] for

the analysis of protein trajectories. Besides, time-lagged independent component analy-

sis (TICA) is applied for molecular dynamics data that discovers coordinates of maximal

auto-correlation at a specific lag time, whereas PCA focuses on the coordinates of maximal

variance.

3.3 Domain-Specific Proximity/Distance Measure

Proximity measures or distance functions (for comparing protein tertiary structures) are

primarily focused on Cartesian coordinate-based representation. To compare the tertiary

structures of proteins, a number of similarity/dissimilarity measures are available [68]:

Root mean square deviation (RMSD)

The RMSD [69] between pairs of equivalent atoms is widely used to capture the degree of

dissimilarity between two optimally superimposed tertiary structures of a protein. RMSD

is computed by,

RMSD =

√√√√ 1

N

N∑
1

| Si
1 − Si

2 |2 (3.1)

Here, N is the number of atoms, Si
1 and Si

2 represent the coordinate vectors for i-th atom

of the structure1 and structure2 respectively (after optimal superimposition). One can

consider a number of settings to compute RMSD such as: only over Cα atoms or backbone

atoms or over all atomic coordinates of the structures. It is to be noted that the significance
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of the RMSD value is dependent on the size of the structure e.g., a particular RMSD value

between two large structures representing the degree of similarity might indicate otherwise

for two smaller structures. However, RMSD is very intuitive and can be considered as a

variant of euclidean distance.

Global Distance Test-Total Score (GDT-TS)

In the context of protein tertiary structures, GDT-TS determines the similarity between

two structures with their corresponding superimposed residues.

GDT − TS(S1, S2) =
ρ1 + ρ2 + ρ4 + ρ8

4
(3.2)

Here, ρt denotes the percentage of residues from structure S1 to be superimposed with

the corresponding residues from structure S2 having chosen distance threshold (in terms of

RMSD), t (t ∈ {1, 2, 4, 8} Å). GDT-TS value ranges from 0 to 1. The larger score indicates

better similarity. In case of comparison between the two structures of the same protein,

GDT-TS is more accurate than RMSD. However, GDT-TS score is sensitive to the lengths

of the structures which can be tackled by normalization (scaling with the lengths of the

structures under comparison). Moreover, a variant of GDT-TS, GDT-HA uses the distance

threshold, t ∈ {0.5, 1, 2, 4} Å.

Template-Modeling (TM) Score

TM-Score determines the global structural similarity of a structure with respect to the

reference structure in terms of the distances of each pair of residues.

TM − Score = max

[
1

N

N∑
i=1

1

1 + ( did0 )
2

]
(3.3)
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Here, N denotes the number of residues, di represents the distance of the i-th pair of residues

after alignment, and d0 = 1.24 3
√
N − 15 – 1.8 (Å). The range of TM-Score values is (0, 1],

with a higher value indicating better similarity. Nevertheless, GDT-TS and the TM-Score

incur the same computational cost.

MaxSub Score

MaxSub aims at identifying the maximum superimposable subset of residues of a structure

over the experimental structure and provides a single normalized score that exhibits the

quality of the structure [70]. This score is sequence-dependent. MaxSub score ranges from

0 to 1, with a higher value indicating better similarity. A minor limitation of this score is

that it does not take into account the fragmentation of the structures.

3.4 Internal Structure Energy: Potential Energy Functions

The energy function approximates the energy of a tertiary structure. The Rosetta en-

ergy/scoring functions offer a variety of alternatives to do so for a structure that consider

different energetic terms to calculate the energy scores. We use Rosetta REF15 energy

function [71]. The energy terms and their description for this energy function are provided

in Table 3.1.

3.5 Interaction Energy

The performance of the computational methods that characterize protein–ligand interac-

tions from tertiary structures relying on the laws of physics and chemistry is quantified

by their capability to qualitatively describe protein–ligand interaction as well as by their

ability to quantify the strength of interaction. In fact, the strength of the interaction can

be determined by the free energy of binding and it is possible to measure this quantity

experimentally. Computational methods strive to calculate the free energy of binding from

tertiary structures and assess their performance by comparing with experimentally observed
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Table 3.1: Energy Terms in REF15 Energy Function

Term Description

fa atr Attractive energy between two atoms on different residues
separated by distance d

fa rep Repulsive energy between two atoms on different residues
separated by distance d

fa sol Gaussian exclusion implicit solvation energy between atoms
in different residues

fa intra rep Repulsive energy between two atoms on the same residues
separated by distance d

fa intra sol Gaussian exclusion implicit solvation energy between atoms
in the same residue

lk ball wtd Orientation-dependent solvation of polar atoms assuming
ideal water geometry

fa elec Energy of interaction between two non-bonded charged atoms
separated by distance d

pro close Penalty for an open proline ring and proline ω bonding energy

hbond sr bb Energy of long-range hydrogen bonds

hbond lr bb Energy of short-range hydrogen bonds

hbond bb sc Energy of backbone-side-chain hydrogen bonds

hbond sc Energy of side-chain-side-chain hydrogen bonds

dslf fa13 Energy of disulfide bridges

omega Backbone-dependent penalty for cis ω dihedrals that deviate
from 0° and trans ω dihedrals that deviate from 180°

fa dun Probability that a chosen rotamer is functionally relevant-like given
backbone ϕ, ψ angles

p aa pp Probability of amino acid identity given backbone ϕ, ψ angles

yhh planarity Sinusoidal penalty for non-planar tyrosine χ3 dihedral angle

ref Reference energies for amino acid types

rama prepro Probability of backbone ϕ, ψ angles given the amino acid type
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free energies of binding [72]. Theoretically, the free energy of binding is determined by eval-

uating the properties of individual structures of the protein, ligand, the complex, or of their

corresponding ensembles. In fact, binding free energy is a state function and is independent

of the path taken from the protein or ligand to the protein-ligand complex [72]. Generally,

the free energy of binding is decomposed into a number of additive energy components [73].

∆Gbind = ∆Gint +∆Gsolv +∆Gmotion +∆Gconf (3.4)

where ∆Gint denotes the free energy due to the interaction of the protein and ligand that

form the protein-ligand complex, ∆Gsolv is the free energy of solvation, ∆Gmotion represents

the free energy change associated with the changes in the motion of the protein, ligand,

and the protein-ligand complex, ∆Gconf is the free energy due to structural changes during

the formation of the complex [72]. It is worth mentioning that ∆Gint is dominated by

enthalpic contributions from steric and electrostatic interactions upon complex formation.

The steric interactions are usually captured by a pairwise Lennard-Jones (LJ) potential

and the electrostatic interaction energy is usually computed via Coulomb’s law using atom-

centered point charges [74]. The impact of the protein environment is mimicked by scaling

the Columbic interaction with a distance-dependent dielectric constant [75]. Both steric

and electrostatic interactions are computed for non-bonded atoms in molecular mechanics

force fields such as AMBER [15], and CHARMM [18].

3.6 Energy Landscape

The energy landscape is a fitness landscape that consists of a set of pointsX, a neighborhood

N (X) of X, a distance metric on X, and a fitness function f : X → R≥0 that assigns a

fitness to each point in X. Neighbors are assigned to the points via a neighborhood function

N : X → P(X). In the context of protein structure space, the points x ∈ X represent

structures and the fitness function often delegates an energy function. Effectively, the energy
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landscape of a protein describes its internal or potential energy as a function of the energy-

evaluated points (representing structures) x ∈ X that constitutes the landscape. A protein

energy landscape is complex. The multi-modal and high-dimensional nature of a protein

energy landscape is contributed by an ensemble of structural states such as basins/wells and

their separating barriers near or far from the functionally-relevant state [76]. In molecular

energy landscapes, a basin corresponds to a long-lived, thermodynamically stable or semi-

stable state [10]. The concept of a basin is related to a local minimum (also known as focal

minimum). A focal minimum in a landscape is covered by a basin of attraction, that is

the collection of points on the landscape from which the steepest ascent/descent converges

to that focal optimum [77]. Barriers that comprise collections of local maxima along the

path between basins isolate basins and modulate transitions of a system between different

structural states corresponding to the basins in the landscape [12].
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Chapter 4: Graph-embedding Methods to Organize Protein

Structure Space

In this chapter, we present methods to leverage a graph-based representation of a computa-

tionally probed protein structure space in terms of the nearest-neighbor graph (nngraph),

which is used to embed computed structures of a protein molecule of interest. Then, we

organize the structures into groups via community detection algorithms initially devised to

detect communities of users in social networks. After that, we evaluate the obtained groups

and then demonstrate how various ranking-based techniques perform in automatically se-

lecting groups that are more likely to contain functionally-relevant structures, employing

experimentally-available structures as the ground truth. The work described in this chapter

has been disseminated in [39].

4.1 A Graph-based Embedding of Structures

We employ a nearest-neighbor graph to represent the structure space probed via compu-

tation. The graph encodes the proximity of structures in this space. Let us denote the

nngraph where the set of structures are embedded as G = (V,E). The structures pop-

ulate the vertex set V . A local neighborhood composition is inferred for each structure

to populate the edge set E. This is based on proximity, measuring the distance between

two structures via root-mean-squared-deviation (RMSD). First, each structure is super-

imposed over a structure selected as a reference (we arbitrarily choose the first structure

as reference). The superimposition minimizes the differences due to rigid-body motions:

whole-body rotation, and whole-body translation. After this superimposition, the RMSD

is then measured between every pair of structures. It is to be noted that superimposing

all structures to a reference structure and then performing pairwise RMSD computations
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saves computation time. In contrast, seeking an optimal superimposition for each pair of

structures would result in quadratic (rather than linear) running time. Once such distances

are available for every pair of structures, the neighbors of each vertex u ∈ V are other

vertices v ∈ V such that dist(u, v) ≤ ϵ, where ϵ is a user-defined parameter that controls

the radius of the neighborhood. A vertex is connected via an edge to each of its neighbors

determined in this manner. We note that proximity query data structures (such as kd-

tree) allow efficiently extracting the nearest neighbors of a vertex. It is worth noting that

the value of ϵ is an important consideration. A small value may result in a disconnected

graph. This can be remedied by initializing ϵ to some initial value ϵ0 and then increasing

it by δϵ over a maximum number of nϵ iterations while at the same time controlling the

density of the nngraph via a parameter h. This parameter specifies the maximum number

of neighbors allowed per vertex. In this way, only vertices with no more than h neighbors

gain neighbors after each iterative increment of ϵ, with h controlling the density of the

graph. It is worth noting that the nngraph is undirected. It is possible to convert it to a

directed one by additionally including the role of energy in the embedding. An edge can

be directed from a vertex corresponding to a structure with higher energy to a neighboring

vertex corresponding to a structure with lower energy.

4.2 Organize Structures into Communities

After embedding the structures into an nngraph, we can employ community detection algo-

rithms to identify communities as the groups of structures. We compare several state-of-the-

art community detection algorithms, such as Girvan–Newman’s Edge betweenness, which

is based on hierarchical clustering; Leading Eigenvector (LE), which maximizes modularity

over communities/clusters; Walktrap (WT), which implements an agglomerative approach;

Label Propagation (LP), which seeks a consensus on a unique label for densely-connected

vertices; Louvain (Lo), which is a heuristic-based method focusing on modularity optimiza-

tion; InfoMap (IM), which is based on information flow analysis; and Greedy Modularity
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Maximization (GMM), which implements hierarchical agglomeration-based clustering on a

list of recommended metrics with the communities they yield, as well as on the quality of

top-ranked selected communities.

4.2.1 Community Detection Methods

We provide here a high-level overview of the community detection algorithms that have

been taken into consideration:

Edge betweenness (Girvan-Newman): This approach was introduced to sidestep

the drawbacks of hierarchical clustering. It operates based on the intuition that edges linking

the communities are anticipated to possess a high edge betweenness, which generalizes

Freeman’s betweenness centrality [78] from vertices to edges. To reveal the underlying

community structure of the network, the Girvan-Newman method successively removes

edges with high edge betweenness. Measuring edge betweenness takes O(|E| · |V |) time.

Since this step has to be carried out repeatedly (for each edge), the entire approach runs in

O(|E|2 · |V ) time.

Leading Eigenvector (LE): The prime objective of this method is modularity maxi-

mization (in terms of the eigen-spectrum of the modularity matrix) across possible subdivi-

sions of a network [79]. With repeated divisions, the method discovers a leading eigenvector

that partitions the graph into two subgroups; the goal of maximal improvement of modu-

larity is achieved at every step. This process terminates when modification of modularity in

the sub-network starts being negative. In fact, the method is associated with additional out-

comes: a spectral measure of bipartite architecture in the network and a centrality measure

to detect the vertices holding nuclear positions in communities. In general, the partitioning

step takes O(|V |(|E|+ |V |)) time.

Walktrap (WT): This method employs random walks to take into account the archi-

tectural resemblance between vertices (or groups of vertices). The underlying intuition is

that vertices that are within the same community are supposed to have shorter distances for

random walks [80]. The method administers an agglomerative approach that starts from |V |
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communities (reduced to singleton clusters) and hierarchically merges two adjacent com-

munities at each step. This is an effective approach to handling dense subgraphs of sparse

graphs, which is most often the case for complex real-world networks. The method runs in

time O(|E||V |2) and space O(|V |2) in the worst case.

Label Propagation (LP): This method is based on the intuition that each vertex

in the network is supposed to follow the majority of its neighbors while joining a commu-

nity [81]. The method aims for the robust use of the network infrastructure instead of a

predefined objective function (to optimize) or a-priori information on the communities. Ini-

tially, a unique label is assigned to each vertex; that is, the method initializes |V | singleton

communities. In progressive steps, the adoption of a label comes into play for each vertex

depending on the label possessed by the majority of its neighbors at that instant. This

iterative process effectively performs the task of label propagation through the network and

helps to form a consensus on a unique label for densely connected vertices. The process

halts when each vertex and most of its neighbors have an identical label. The algorithm

takes linear time in the number of edges (O(|E|)).

InfoMap (IM): This method identifies communities by using random walks along

with information flow analysis [82]. The vertices and their connections are decomposed into

modules to represent the network in such a way that maximizes the amount of information in

the actual network. The method tries to assign codewords to vertices; the process is efficient

in terms of the dynamics of the network. A signal is transmitted to a decoder (via a limited

capacity channel) who tries to decode the message, as well as to form viable candidates for

the actual network. The lower the number of candidates, the more information about the

actual network has been transmitted. The method runs in O(|E|) time.

Louvain (Lo): This heuristic-based method focuses on modularity optimization. The

method consists of an iterative repetition of two stages. The first stage deals with the initial

partition, where each vertex is assigned to a unique community (singleton communities).

Modularity gain is measured by assigning a vertex to a neighborhood community so as

to exclusively search for a way to maximize positive gain. The order in which vertices
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are explored does not affect modularity but may increase computation time. The second

stage commences with the construction of a new weighted network, whose vertices are the

communities generated by the first phase. This process continues until maximummodularity

is achieved [83].

Greedy Modularity Maximization (GMM): This is a hierarchical agglomeration

method that makes use of a greedy optimization approach. The underlying assumption is

that high modularity values are associated with good communities. Initially, each vertex

itself forms a community. Then, the vertices of the two communities are combined together

in a way that yields maximum modularity gain. This step is repeated (|V | − 1) times. The

process is represented as a hierarchical tree-like structure (a dendrogram), whose end-nodes

represent the vertices of the actual network, and the internal vertices correspond to the

connections; that is, the dendrogram shows a hierarchical decomposition (level-wise) of the

network into communities. The method runs in O(|E| dd log |V |) time [84], where dd is the

depth of the dendrogram representing the network’s community architecture.

4.2.2 Metrics for Evaluating Community Detection Methods

A comprehensive list consisting of 15 community-recommended metrics has been considered

to assess the community detection methods [85]. We note that the following metrics are

scoring functions that perform mathematical formalization of the community-wise connec-

tivity structure of a provided set of vertices and identify communities as high-scored sets.

To summarize these metrics, let us consider a graph G(V,E) with n = |V | vertices and

m = |E| edges, and a community is defined as a set S of nS vertices and mS edges.

Fraction Over Median Degree (fomd): Let the degree of u for each vertex u ∈ S

be denoted by d(u), and let dm be the median across the degrees d(u). Then, fomd is

determined as the fraction of vertices in S with an internal degree greater than dm; that

is, fomd(S) = |{u:u∈S,|{(u,v):v∈S}|>dm}|
nS

. The denser and more cohesive the communities, the

higher the associated fomd scores.

Max odf (out degree fraction): Max odf evaluates the maximum ratio of edges of a
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vertex in community S which point outward from S. That is, odfmax(S) = maxu∈S
|{(u,v)∈E:v/∈S}|

d(u) .

According to Max odf, a community is characterized as a set of vertices that connect to

more vertices within the set than to vertices outside of it. As a result, better communities

are associated with lower Max odf scores.

Triangle(Triad) Participation Ratio (tpr): Let Tc denotes the number of vertices

which form a triangle in S. The tpr metric measures the ratio of vertices belonging to a

triangle and can be formulated as: tpr(S) = |{u:u∈S,{(v,w):v,w∈S,(u,v)∈E,(u,w)∈E,(v,w)∈E}≠∅}|
nS

.

Better community clustering yields higher tpr scores.

Internal Edge Density: For a set S, let us denote the maximum number of possible

edges by mSmax = nS(nS − 1)/2. The internal edge density is the ratio of the edges that

are actually in S, denoted by mS , over mSmax; that is, ied(S) = mS
nS(nS−1)/2 . This metric

represents the internal connectivity of a cluster (community) and a higher score indicates

that there are more connections within the vertices of that community.

Average Internal Degree: This metric determines the average internal degree of the

members of set S and can be formulated as: aid(S) = 2mS
nS

. The denser a community, the

higher its average internal degree score.

Cut Ratio: Let CS denotes the edges that are going outward from a set S. The cut ratio

score measures the ratio of CS over all possible edges and is defined as: cr(S) = CS
nS(n−nS)

.

Better communities are associated with lower scores.

Expansion: This metric calculates the number of edges (for each vertex) going out

of a set S and can be formulated as: ex(S) = CS
nS

. Lower scores correspond to better

communities.

Edges Inside: This metric measures the internal connectivity of a set S as ei(S) = mS .

Better communities are related with higher scores.

Conductance: This metric is based on the combination of internal and external con-

nectivity and is measured as: cnd(S) = CS
(2mS+CS)

. Lower scores relate with well-separated

communities.
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Normalized Cut: This metric is defined as: nc(S) = CS
(2mS+CS)

+ CS
2(m−mS)+CS

. The

metric has the special property that concurrently meets the two following objectives: maxi-

mization of dissimilarity across communities and minimization of overall similarity (eschew-

ing the unnatural bias for breaking up small sets). Lower values of normalized cut maintain

balance between these two objectives.

Coverage: This metric measures the ratio of the number of intra-community edges

to the number of edges in the graph and is defined as: cvg(S) = ω(C)
ω(G) . Here, ω(C) =∑k

i=1 ω(E(vx, vy)); vx, vy ∈ Ci. Higher coverage values indicate that there are more con-

nections within communities rather than edges linking various communities. In fact, the

ideal scenario is that communities are completely separated from one another, which would

correspond to a coverage of 1 (the maximum possible value).

Average odf This metric provides the average ratio of edges that point outward of S

over vertices in S and is defined as: odfavg(S) =
1
nS

∑
u∈S

|{(u,v)∈E:v/∈S}|
d(u) . Lower values of

average odf relate with better communities.

Modularity: This metric is based on the network model and determines the difference

between the number of edges within S and the expected number of such edges in a random

graph of with identical degree sequence, E(mS) [85]. Modularity can be defined as: md(S) =

1
4(mS − E(mS)). Higher values of modularity correspond to denser connections within a

community than anticipated at random.

Flake odf: This metric combines internal and external connectivity and determines

the fraction of the number of vertices with fewer connections within the community than

with the outside. Flake odf is defined as: fodf(S) = |{u:u∈S,|{(u,v)∈E:v∈S}|<d(u)/2}|
nS

. Better

communities are associated with higher values.

Separability: This is a community-goodness metric [85] based on the intuition that

good communities are well-separated (have relatively few edges from set S to the rest of

the network). Separability finds the ratio between edges pointing in and outside of the set

S and is defined as: sp(S) = mS
CS

. Higher values indicate better communities.
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We note that these metrics can be grouped into four major classes [85]: metrics based on

internal connectivity (fraction over median degree, triangle participation ratio, internal edge

density, average internal degree, edges inside), metrics based on external connectivity (cut

ratio, expansion), metrics based on internal-external connectivity (conductance, normalized

cut, max odf, average odf, flake odf), and metrics based on the network model (modularity).

4.3 Selection Strategies to Rank the Groups/Communities

We utilize group-level characteristics associated with the communities to rank them. They

fall into three categories: size, energy, and hybrid characteristics. The size of a group

is the number of structures/vertices in it. Energy can also be associated with a group.

We note that the structures we consider here are generated from template-free methods,

which pursue an optimization approach that seeks to minimize the inter-atomic energy in

a structure via a selected energy function. Hence, each structure has an associated energy

value. Given the energies of structures in a community, the energy of the same can be

defined as the minimum energy over all the structures in it or the average over the energies

of the structures in it.

Whether size or energy, a selection technique ranks (via sorting) the groups and selects

the c top-rank communities, offering them as prediction for where functionally-relevant

structures reside. It is worth mentioning that considering only energy would promote a

significant number of false positives, as it is well known that protein energy functions are

inherently inaccurate. Therefore, we consider both size and energy together in a second

selection strategy (S+E); we consider the l > c largest groups and then re-sort them from

lowest to highest energy, selecting the top c of them for prediction. Hybrid characteris-

tics consider both size and energy but additionally take into account the possibility that

size and energy are possibly conflicting optimization criteria. Since solutions minimizing

all conflicting objectives simultaneously are typically non-existent, Pareto-optimal solutions
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are sought. A Pareto-optimal solution cannot be improved in one objective without sacri-

ficing the quality of at least one other objective. That is, a solution Sol1 Pareto-dominates

another solution Sol2, if the following two conditions are satisfied:

(1) For all optimization objectives i, scorei(Sol1) ≥ scorei(Sol2);

(2) For at least one optimization objective i, scorei(Sol1) > scorei(Sol2).

Based on this concept of Pareto optimality, two additional quantities, Pareto Rank (PR)

and Pareto Count (PC), can be associated with each group C. These two quantities employ

the concept of dominance, summarized above. PR(C) is the number of communities that

dominate C. PC(C) is the number of communities that C dominates. It is now straight-

forward to use these two new, hybrid characteristics, in the same ranking-based manner.

It is worth noting that while ranking with PR, the groups are sorted by low to high PR

values; in PR+PC, groups with the same PR value are additionally sorted from high to

low PCs. Taken all together, we consider four selection strategies: Sel-S, Sel-S+E, Sel-PR,

Sel-PR+PC.

4.4 Evaluation Dataset and Metric

Our evaluation focuses on ten target proteins of different folds and lengths (number of

amino acids), listed in Table 4.1 where column 2 shows the PDB ID of an experimentally-

available, functionally-relevant structure for each test case, and columns 3 and 4 show the

fold (* indicates structures with a predominant β fold and a short helix) and the length

(number of amino acids), respectively, whereas column 5 shows the size of the structure

set Ω generated via the Rosetta ab-initio protocol [21], and column 6 shows the lowest

lRMSD from the experimentally-known structure over the structure ensemble. The targets

selected have experimentally known structures to aid the evaluation. The Protein Data

Bank identifier (PDB ID) of the (crystallographic) experimentally known structure of each

target is shown in Column 3 in Table 4.1. The targets listed in Table 4.1 are divided
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into three categories (easy, medium, and hard) to indicate the quality of the Rosetta-

generated structure ensembles. This categorization emerges from analysis in terms of the

lowest distance (measured via least root-mean-squared distance–lRMSD) of all Rosetta-

computed structures from the corresponding experimentally-available structure of a target.

Specifically, if the lowest lRMSD (over all structures) min dist ≤ 0.7, these are considered

as the easy cases. For medium-difficulty targets, the range is 0.7 Å < min dist < 2Å), and

the min dist > 2.0 for the hard cases. This distance is shown as min dist in Column 6 in

Table 4.1.

Table 4.1: Rosetta Generated Structure Ensemble Dataset of Proteins

PDB ID Fold Length |Ω| min dist (Å)

1dtdb α+ β 61 57, 839 0.51
Easy 1tig α+ β 88 52, 099 0.60

1dtja α+ β 74 53, 526 0.68

1hz6a α+ β 64 57, 474 0.72
1c8ca β∗ 64 53, 322 1.08

Medium 1bq9 β 53 53, 663 1.30
1sap β 66 51, 209 1.75

2ezk α 93 50, 192 2.56
Hard 1aoy α 78 52, 218 3.26

1isua coil 62 60, 360 5.53

4.4.1 Evaluation Metric

As stated earlier in Chapter 1, a limitation of experimental techniques is that they reveal

a limited number of functionally-relevant structures for a protein; in the majority of cases,

we often have only one such structure, indicated above in Table 4.1 with one PDB ID entry.

Operating within this limitation, we expand the notion of ground-truth structures to include

additional structures around one given experimental structure to at least account for small
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(RMSD) fluctuations expected under physiological conditions (at room temperature). So,

in our metric described below that allows us to evaluate the quality of a group, we refer to

plurality of functionally-relevant structure(s) for a given protein.

Specifically, we leverage the purity metric p, which keeps track of the number of functionally-

relevant structures relative to the size of a group of structures. The purity of a group C

is,

pc =
number of functionally-relevant structures in C

|C|
(4.1)

where |C| denotes the size of group C.

Purity is related with the precision metric in machine learning. If we consider the

functionally-relevant structures in a group as true-positives (TP) and all other structures

as false-positives (FP), then purity is TP
TP+FP . Here, we are less concerned about the false

negatives, as our objective is to maximize the possibility of selecting a functionally-relevant

structure from a group uniformly at random, which is equivalent to maximizing true posi-

tives and minimizing false positives in a group. The purity metric p penalizes a group by

the number of false positives present in that group. Therefore, a group populated with a

large number of false positives will result in a low purity (p) regardless of the number of

true positive population present in that group.

4.5 Evaluation Results

As mentioned earlier in Section 4.2, we have evaluated the community detection algorithms

using a number of recommended metrics; Figure 4.1 shows the comparison along three

of those metrics that evaluate communities over undirected nngraphs and demonstrates

that Louvain and GMM yield better communities in comparison to the others as higher

modularity represents denser connections in a community, lower values for conductance

and max odf correspond to better separated communities.
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Figure 4.1: Comparison of Community Detection Algorithms on Modularity (a), Conduc-
tance (b), and Maximum out degree fraction-Max odf (c)

35



Figure 4.2: Comparison of the various selection strategies on the purity of the top com-
munity(C1) selected over communities detected with the (a) Louvain method on directed
nngraph, (b) Louvain method on undirected nngraph, and (c) GMM method on undirected
nngraph embeddings of the structures
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Fig. 4.2 and 4.3 show the comparison of the selection strategies in terms of the purity

of the topmost and the top 3 communities detected with the Louvain method on directed

nngraph embeddings of structure data in (a), the Louvain method on undirected nngraph

embeddings of structure data in (b), and the GMM method on undirected nngraph em-

beddings of the structure data in (c). These comparisons imply that, of the four selection

strategies, Sel-S and Sel-S+E consistently yield good results. And taking all together,

Sel-S+E is better than the others.

Figure 4.3: Comparison of the various selection strategies on the purity of the top three
communities (C1-3), selected over communities detected with the (a) Louvain method on
directed nngraph, (b) Louvain method on undirected nngraph, and (c) GMM method on
undirected nngraph embeddings of the structures
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In fact, we bolster the above comparison of selection strategies via two sets of analyses.

First, we compare the four selection strategies based on the rank/position of the purest

community in the sorted order they impose on detected communities. Table 4.2 reports the

rank of the top-selected community (by each selection strategy) in a purity-based ordering

(from high to low purity). The lowest rank over the selection strategies is highlighted in

bold font. The results in Table 4.2 show that the lowest rank is obtained overall by Sel-S+E,

which selects communities by size and energy. Moreover, on the medium- and hard-difficulty

datasets, the Louvain on directed and undirected and GMM behave comparably, with GMM

outperforming the two other methods on the easy datasets.

Table 4.2: Rank (by Size, Size and Energy, Pareto rank, Pareto rank and Pareto
count) of the community with the highest purity among those identified by Louvain (Lo),
LouvainDirected (LoD) and GMM.

Rank by (Lo) Rank by (LoD) Rank by (GMM)
S, S+E, PR, PR+PC S, S+E, PR, PR+PC S, S+E, PR, PR+PC

1dtdb 3, 4, 1, 9 1, 1, 1, 3 1, 1, 1, 8
1tig 691, 396, 7069, 7073 229, 112, 2287, 2289 283, 44, 962, 963
1dtja 71, 64, 26735, 26736 1, 7, 1, 12 1, 3, 1, 9
1hz6a 647, 639, 10160, 10166 280, 49, 673, 670 337, 70, 748, 740
1c8ca 818, 572, 9700, 9736 42, 31, 540, 542 15, 1, 4, 2
1bq9 1230, 267, 4816, 4836 1223, 268, 4810, 4827 1271, 269, 4826, 4853
1sap 3301, 137, 538, 541 3298, 137, 538, 551 3369, 142, 566, 566
2ezk 6, 5, 13, 12 3, 9, 14, 16 3, 1, 2, 1
1aoy 3, 2, 12, 11 3, 3, 14, 13 1, 3, 1, 3
1isua 135, 117, 1519, 1527 136, 117, 1520, 1525 194, 193, 1236, 1241

Second, we conduct 1-sided and 2-sided statistical significance analysis via Fisher’s [86]

and Barnard’s [87] exact tests on 2 × 2 contingency matrices. The analysis compares Sel-

S+E to the other three selection strategies on the rank of the top-selected community in

a purity-based ordering (from high to low purity). Over each of the 10 structure datasets
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corresponding to 10 target proteins, the rank of the top-community selected over those iden-

tified by Louvain on directed and undirected nngraphs and GMM on undirected nngraphs.

Fisher’s exact test is conditional and widely adopted for statistical significance. Barnard’s

test is unconditional and generally considered more powerful than Fisher’s test on 2 × 2

contingency matrices. We use 2-sided tests to determine which algorithms do not have

similar performance and 1-sided tests to determine if Sel-S+E performs significantly better

than the other selection strategies.

Table 4.3: Comparison of Sel-S+E to other selection strategies on best rank via 1-sided
Fisher’s and Barnard’s tests. Top panel evaluates the null hypothesis that Sel-S+E does
not provide the best rank (based on reported p-values), considering each of the other three
selection strategies in turn. Similarly, the lower panel evaluates the null hypothesis that Sel-
S+E does not provide a better rank with respect to another particular selection strategy,
considering each in turn.

Best Rank

Test Sel–S Sel–PR Sel–PR+PC

Fisher’s 6.621 × 10−7 1.626 × 10−7 9.388 × 10−12

Barnard’s 2.314 × 10−7 6.33 × 10−8 2.128 × 10−12

Better Rank

Test Sel–S Sel–PR Sel–PR+PC

Fisher’s 0.0001154 7.744 × 10−7 4.194 × 10−15

Barnard’s 6.738 × 10−5 3.811 × 10−7 8.075 × 10−16

The top panel in Table 4.3 evaluates the null hypothesis that Sel-S+E does not provide

the best rank, considering each of the other three selection strategies in turn. The bottom

panel evaluates the null hypothesis that Sel-S+E does not provide a better rank with respect

to another particular selection strategy, considering each of the other three in turn. The

results in Table 4.3 show that the null hypothesis is rejected in both cases.

Table 4.4 shows a similar comparison for a 2-sided test. The results in Table 4.4 show
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that the null hypothesis is rejected in both cases. Taken together, the analysis confirms

that Sel-S+E is the top performing selection strategy with regards to the rank of the the

top-selected community in a purity-based order of detected communities.

Table 4.4: Comparison of Sel-S+E to other selection strategies on best rank via 2-sided
Fisher’s and Barnard’s tests. The tests evaluate the null hypothesis (based on reported p-
values) that Sel-S+E (or, Size+Energy) provides similar ranking in comparison to other
selection strategies.

Best Rank

Test Sel–S Sel–PR Sel–PR+PC

Fisher’s 1.324 × 10−6 3.252 × 10−7 1.878 × 10−11

Barnard’s 4.629 × 10−7 1.266 × 10−7 4.255 × 10−12

Better Rank

Test Sel–S Sel–PR Sel–PR+PC

Fisher’s 0.000231 1.549 × 10−6 8.388 × 10−15

Barnard’s 0.0001348 7.621 × 10−7 1.615 × 10−15

4.6 Summary

The work summarized in this chapter shows the utility of embedding computationally-

sampled tertiary structures of a protein molecule in a graph and leveraging the graph

embedding to elucidate the organization of the structure space. Prior work has shown

that other clustering algorithms not based on graphs perform poorly in comparison [88].

However, while we show here that embedding structures in a graph is informative, it comes

with high memory demands due to the storage of the vertex and edge lists. This motivates

us to explore alternative frameworks and do away with explicit storing of the graph data

structure. In later chapters (Chapter 6-8) we directly leverage the adjacency matrix via

matrix (and tensor) decomposition-based methods that also prove more powerful for a
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variety of application settings. Before we proceed to relate our work in this direction, we

take a short detour and show how the organization of protein structure space is powerful

and essential in obtaining discrete summarization of protein dynamics, a key application of

the methodological work described here.
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Chapter 5: From Organization of Structure Space to Markov

State Models of Dynamics

In this Chapter, we demonstrate how the organization of the structure space of a protein

molecule can be leveraged to build discrete models of protein structure dynamics. We lever-

age work presented in the previous chapter that embeds structures in a graph to find the

inherent organization. We compare in this setting the community-detection formulation

presented in the previous chapter and the top algorithms shown, Lo and GMM, with work

in [88], which additionally utilizes energies of structures to group structures into basins, a

concept we relate in detail later in this chapter. We make the connection between struc-

ture groups or structure basins and structural states and then build Markov State models

(MSMs) over the states to summarize protein dynamics. We compare various methodolog-

ical settings, effectively conducting an ablation study, and demonstrate the utility of the

work on a highly-flexible peptide, Met-Enkephalin. The work described in this chapter has

been disseminated in [89,90].

5.1 Application Setting

The setting we investigate here is the following. We are provided structures accessed by

a molecule in a physics-based simulation via Molecular Dynamics (MD) platforms. The

structures are organized into trajectories. Each trajectory is a list of structures accessed

consecutively during the simulation, in time steps of magnitude δt. So, for instance, a

trajectory Tj is a list {St0 , St1 , . . . , Stk}, where ti+1− ti = δt, and Sti is a structure accessed

by a molecule in simulation at time ti. An MD simulation provides a local view of the

structure space of a protein, which can be considered a biased random walk, with the

potential energy providing the bias towards lower-energy structures. However, since the
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energy landscape is vast and rich in local minima, an MD simulation often converges to a

local minimum near the structure initializing the simulation. That is the reason why many

MD simulations are typically conducted so that one obtains a list of trajectories Tj .

Then, the problem is how to integrate these trajectories. Many of them may be inter-

secting paths in the structure-energy space. Many may contain structures that populate

the same or nearby local minima in the space. Therefore, our goal is to integrate these

trajectories, so that structures are grouped into structural states, and then to utilize the

temporal information in the trajectories to build an MSM over the states, which gives us a

high-level but quantitative summarization and view of the structure-energy space and tells

us, for instance, what the major states are, what are the transitions between states, and

whether there are “absorbing” states that would indicate important, functionally-relevant

regions of the structure-energy space.

Computational platforms that build MSMs of dynamics are now becoming increasingly

popular tools in computational biology. There are two main ones, MSMBuilder [91] and

EMMA [92]; the Python implementation of the latter is known as PyEMMA. These plat-

forms do not spend much thought on how to organize structures first into groups and rely

on simple clustering algorithms, such as k-means. They also allow some reduction of the

structures via dimensionality reduction algorithms, such as Principal Component Analysis

(PCA) or Independent Component Analysis (ICA) [93]. These platforms, however, are im-

portant in providing us with the functionality we need to construct MSMs, as well as to

interrogate the quality of a constructed MSM with rigorous statistical analysis.

In this Chapter, our hypothesis is that more careful thought into how to organize struc-

tures first into groups or states will lead to better-quality MSMs. We utilize our prior work

on graph-clustering and additionally consider energy in order to better capture the organi-

zation of structure-energy space. Once the states are obtained in this manner (as we will

also show in more detail later in this Chapter), we then utilize PyEMMA to build an MSM

over the identified states. We build a full computational pipeline that converts given MD

trajectories into an MSM of the fragmented dynamics probed in simulation.
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5.2 Organizing Structures in MD Trajectories

We first provide an overview of the computational pipeline that constructs an MSM from

various MD trajectories. We then describe the approaches that organize the structures

accessed in MD simulations into structural states. Finally, we summarize the statistical

techniques we employ for evaluation of the various MSMs one can obtain.

5.2.1 From MD Trajectories to a Markov State Model (MSM)

Figure 5.1: Schematic of the computational pipeline that converts the information available
in MD trajectories probing the structural dynamics of a molecular system of interest into
an MSM of the system’s dynamics.

Fig. 5.1 provides a schematic overview of the computational pipeline that takes MD

trajectories and returns a transition probability matrix. As described above, the input to

the pipeline is a list of MD trajectories. Each MD trajectory is a series of structures accessed

consecutively in an MD simulation. Generally, the structures are described in terms of the

Cartesian coordinates of the atoms of the molecular system under investigation. The time
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interval/step between two successive structures is also available. Generally, the time step is

a user-defined parameter in an MD simulation. Its range can vary from 1 femtosecond (fs) in

a detailed MD simulation to several femtoseconds in coarse-grained, expedited simulations.

It is not necessary (and sometimes not feasible) to analyze all the structures in an

MD trajectory. Most of the MSM construction software, such as MSMBuilder [91] and

EMMA [92] allow the user to select a lag time. This can be a multiple of the original time

step/gap between two successive structures in an MD trajectory. The selection of lag time

can be viewed as a data reduction strategy. It is generally assumed that structures within

the same state inter-convert faster than the chosen lag time, but it is important to verify

this assumption by examining the properties of the resulting MSMs for varying lag times.

After selecting a suitable lag time (which is a user-defined parameter and can range from

the time interval between two successive structures in MD simulation to several multiples

of it), the construction of the MSM proceeds as follows. Before organizing structures into

states, structures are “prepared” via a two-step process.

First, features of interest (such as coordinates of all the atoms or only a specific group

of atoms) are extracted from structures that are subjected to reduction via dimensionality

reduction techniques, and it is the reduced representations of the structures that are fed

to clustering algorithms for identification of structural states. In fact, studies [94] suggest

that the time-lagged Independent Component Analysis (TICA) [93] is preferable over PCA

(or other dimensionality reduction techniques) for MD trajectory data. Moreover, the

fundamental distinction between the PCA and TICA is that PCA captures coordinates of

maximal variance, while TICA captures coordinates of maximal auto-correlation for a given

lag time. The reduced structures are then subjected to a clustering algorithm in order to

group structures into clusters, which are referred to as structural states. This process is

also known as state-space discretization. The baseline algorithms provided in EMMA are

k-means, uniform time clustering, regular space clustering; but one can apply a different

clustering algorithm. This is where we evaluate two alternative approaches: one with

community detection algorithms and another with the identification of energy landscape
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basins.

5.2.2 State Identification via Clustering over a Graph Embedding of

Structures

We employ the strategy of embedding the structures obtained from various MD simulations

in a nearest-neighbor graph (nngraph). The nngraph encodes the proximity among the

structures in the MD-probed structure space. Specifically, consider a set of structures to

be embedded in an nngraph G = (V,E), where the vertex set V contains the structures,

and the edge set E is generated by inferring a local neighborhood over each vertex. A

vertex is connected via edges (undirected) to its nearest neighbors, which are identified by

pre-specifying a distance threshold. We construct the undirected nngraph as described in

Section 4.1.

It is worth noting that we do not make use of any sophisticated features or any di-

mensionality reduction and instead compute the distance between two structures in the

original structure space probed by the various MD trajectories in terms of RMSD. The

application of RMSD requires the structures under comparison to being first superimposed

so as to remove differences due to rigid-body motions (translations and rotations in three

dimensions). This is a computationally expensive step. Instead, we first align all the struc-

tures to a reference structure (arbitrarily selected to be the first in an MD trajectory).

This pre-alignment to a reference has been employed in time-aware RMSD-based analysis

of molecular structures [27, 88]. Moreover, the identification of nearest neighbors does not

have to rely on a brute-force approach to performing all possible comparisons. Instead, we

make use of a proximity query data structure (k-d tree) that organizes structures so as to

efficiently answer proximity queries.

Clustering can be carried out over the nngraph. Specifically, we leverage community

detection algorithms originally introduced for applications that encode relations among

entities or individuals in social networks. Such algorithms are effective in aggregating

structures based on their organization in the nngraph, identifying cohesive groupings among
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the structures/vertices. As suggested by our work summarized in Chapter 4, the top two

community detection algorithms are Louvain (Lo) and Greedy Modularity Maximization

(GMM); we consider these two algorithms to cluster structures into states for the purpose

of constructing the MSM models.

5.2.3 State Identification via Detection of Energy Landscape Basins

An alternative strategy is to utilize (rather than ignoring) the energies of structures ob-

tained in MD simulations. This strategy considers that the MD simulations have probed

an underlying energy landscape, which adds the energy as an additional dimension to the

structure space. In this landscape, a point is a structure-energy pair, and an MD simu-

lation has probed this landscape one point at a time; effectively, an MD trajectory leaves

footprints that are nearby points in the landscape. The landscape itself proves an organi-

zation of the structure space, as it groups together structures that are geometrically and

energetically similar. The landscape contains information on how structures with simi-

lar energies inter-convert into one another, thus providing an opportunity for quantitative

understanding of the underlying dynamics of a molecule of interest [11]. Specifically, a

thermodynamically-stable (or semi-stable) state does not directly rely on structural simi-

larity but instead corresponds to basins/wells in the energy landscape [9].

This understanding of the rich information in an energy landscape inspires us to pursue

statistical spatial analytics capable of identifying basins in the landscape and so organizing

structures into basins. Identification of basins again relies on first embedding the structures

in a nngraph (as described in Section 4.1), but the graph is now equipped with energies, as

well; that is, the energy of each structure is additionally recorded in the vertex that encodes

it. The first step is to identify vertices that represent a distinct local minimum. A vertex

u is a local minimum if ∀v ∈ N(u) and ∀v ∈ V, e(u) ≤ e(v), where e denotes energy and N

denotes neighborhood.

The identification of local minima is important because a basin is tied to a unique local

minimum. This is the deepest point in a basin and is also referred to as the focal minimum.
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In this sense, a basin is a basin of attraction. Other structures/vertices near to the local

minimum are attracted to the local minimum. A procedure identifies the vertices drawn

to the same local minimum and associates them with the corresponding basin. Specifically,

each vertex u is associated with a negative gradient estimated by selecting the edge (u, v),

maximizing the ratio [e(u) − e(v)]/dist(u, v) (dist is the distance between two vertices

measured via RMSD). From each vertex u that is not a local minimum, the negative gradient

is iteratively followed (the edge that maximizes the above ratio is selected and followed)

until a local minimum is reached. Vertices that reach (by this mechanism) the same local

minimum are assigned to the (same) basin associated with that minimum.

We note that this approach, which takes into account energy as summarized above and

identifies basins, has first appeared in [27] but was used to advance a problem known as

estimation of model accuracy (model refers to a structure in this term), which we address

in later chapters and utilized as an evaluation setting. In this chapter, we leverage our

understanding that the detected basins can be treated as the states and so can be employed

to construct an MSM, as we now describe in detail.

5.2.4 MSM Construction

After the assignments of structures into states, state-to-state transition probabilities are

computed by utilizing the MD trajectories. In a given MD trajectory, suppose a structure

SA is followed by a structure SB. Now, let us assume that clustering has revealed that

structure SA maps to state Sti and structure SB maps to state Stj . Then, the transition

from SA to SB contributes one count to the transition from state Sti to state Stj . Since many

structures may map to the same state, the various MD trajectories increase such counts of

transitions between states. These counts are normalized to obtain transition probabilities

between the clustering-identified states. In summary, let us consider that clustering has

yielded Y disjoint states St1, St2, . . ., StY . A matrix of conditional transition probabilities

between these states is estimated from the simulation trajectories xt [20]. The transition

matrix, T ≡ ( Pij): Pij(τ) = Probability (xt+τ ∈ Stj | xt ∈ Sti), where τ is the chosen lag
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time. The resultant MSM is subjected to rigorous analysis that focuses on model selection,

estimation, and validation. The purpose of this analysis is to verify whether the constructed

model is capable of making reliable predictions regarding the dynamics of the system under

observation.

5.3 Evaluation Dataset

We carry out the evaluation of various MSMs constructed over a dataset of 30, 000 molecular

structures of the Met-enkephalin (Met-Enk) peptide. Met-Enk is a naturally-occurring

opioid (5 amino acids long) that mediates pain and opiate dependency by interacting with

opioid receptors [95]. Interest in Met-Enk dynamics is due to a hypothesis that the peptide

is highly flexible and possibly involved in many more interactions than presently known.

The 30, 000 structures are obtained from three MD trajectories. Each trajectory starts

from a different experimentally-known structure found in the Protein Data Bank (PDB)

under entry with identifiers 1PLW, 1PLX, and 2LWC, respectively. The MD simulations

were carried out at 300K (room temperature) and at standard atmospheric pressure in the

AMBER [15] simulation package, using all-atom detail and immersing the peptide in explicit

solvent. The time step in each simulation was 1 fs, and each simulation was run for 10 million

steps. Structures were saved every 1000 fs (1 ps), resulting in 10, 000 structures collected

from every MD simulation (a total of 30, 000 structures collectively in 3 trajectories).

5.4 Evaluation of MSM

5.4.1 Convergence Analysis

The quality of MSMs obtained can be evaluated to determine the impact of the various state

identification techniques. First, we do so via the convergence analysis that tests whether

the duration of the lag time is sufficient to guarantee that the state space discretization

maintains the Markov property that the system is memory-less; that is, the conditional

probability distribution of future states depends only upon the current state and not on
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prior states [19]. According to this property, if the state space decomposition is accurate,

structures within a state inter-convert on timescales faster than the lag time and transition

to other states on slower timescales.

The standard practice is to verify whether an MSM satisfies the Markov property by

visually interpreting the generated implied timescale plot of the model relaxation timescale

versus model lag time. The desired property is to have an exponential decay in the plot to

system equilibrium. With relaxation timescales being physical properties of the system, the

ideal case is for the implied timescales to be independent of the lag time. For an ideal model

with good discretization, the implied timescales plot exhibit convergence within fewer steps.

Out of the clustering algorithms readily available in PyEMMA, the k-means outperforms

uniform time clustering and regular space clustering, whereas the community detection

algorithm GMM also outperforms them (results can be found in [90]). We consider k-

means as the baseline. Figure 5.2 shows the models obtained when states are identified by

(a) Louvain’s community detection algorithm, (b) PyEMMA’s k-means, and (c) basin-based

method. Both k-means and Louvain-based models fail to exhibit convergence even after 1000

steps. In contrast, the model obtained when states are extracted via the basin identification-

based approach reaches convergence early (after about 700 steps). This indicates that

the best MSM of the Met-Enk equilibrium dynamics is the one obtained when states are

identified as basins in the energy landscape.

Another way to test for the Markov property is to conduct the Chapman-Kolmogorov

(CK) test which compares the transition probability of different states for increasing lag

times. Ultimately, the goal is to establish whether the lag time is sufficiently large to make

the selected state decomposition Markovian. We conduct both evaluations to determine

which state-space decomposition strategy results in a higher-quality MSM of molecular

dynamics.
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(a) Louvain-based

(b) k-means-based

(c) Basin-based

Figure 5.2: Implied timescale plot obtained when carrying out state space discretization
via (a) the Louvain community detection algorithm, (b) PyEMMA’s k-means, and (c) the
basin identification algorithm. The cutoff region (above which any curve representing a
good discretization should be) is shown in gray.
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5.4.2 MSM Model Visualization

Figure 5.3: Visualization of the best model of dynamics, limiting the visualization to the
top five states. Structures in each of the top five states of the best model are shown
superimposed over one another (Red: N terminus, Silver: C terminus).

The best MSM of the Met-Enk equilibrium dynamics is obtained when states are iden-

tified as basins in the energy landscape, which is visualized in Fig. 5.3. To make the

visualization uncluttered, rather than showing all the 173 states (173 basins are identified

with the basin identification approach), the visualization is limited to the five states with

the highest self-transition probabilities. Altogether these states contain approximately 16%

of the 30, 000 Met-Enk structures. Fig. 5.3 shows these states as disks, with the sizes of

disks indicating the relative differences in sizes (number of structures) of the corresponding

states. Transitions among these states and others not shown states are drawn as arcs, with

transition probabilities annotated, as well. Fig. 5.3 makes it clear that the peptide visits

several long-lived states; each of the shown states has self-transition probabilities > 0.69.
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State 1 (S1) has a very high self-transition probability of over 0.9. The other states have

slightly lower self-transition probabilities and comparatively-low probabilities of transition

to other states. Fig. 5.3 also manifests the actual structures in each of these five states. All

the structures in a state are superimposed over one another. Each amino acid is color-coded

according to its position (red denotes the N terminus and silver the C terminus).

5.4.3 Relating Long-lived States to Experimentally-known Structures

Table 5.1: Structures in each model-identified state are compared to the first structure in
each of the three experimentally-identified NMR ensembles (PDB IDs shown) deposited in

the PDB. Average and minimum RMSDs (Å) are reported. Entries in bold highlight the
lowest RMSD.

1PLW 1PLX 2LWC

avg min avg min avg min

S1 2.813 1.181 1.920 0.712 2.023 0.543
S2 1.018 0.516 1.905 1.411 1.895 1.539
S3 1.540 1.167 1.904 0.845 1.376 0.364
S4 2.229 1.244 1.748 1.214 1.817 1.199
S5 1.511 0.741 1.575 1.321 1.480 1.280

Finally, the long-lived states identified by the model are compared with structures iden-

tified in the wet laboratory. This analysis provides insight into which states capture already

known ones, and which may constitute new, unknown states of the Met-Enk peptide. Known

structures are under PDB IDs 1PLW, 1PLX, and 2LWC. Table 5.1 compares each identi-

fied state to each known structure. It is worth noting that each of the PDB entries indeed

contains a small NMR ensemble of 20-80 models (NMR refers to Nuclear Magnetic Reso-

nance). So, all structures in a model-identified state are compared via RMSD (after optimal

superposition removes rigid-body differences) to the first structure in each NMR ensemble.
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Table 5.1 reports the minimum and average RMSD and highlights in bold RMSDs under

1Å. RMSDs below 1Å can be used to establish a correspondence between model-identified

states and experimentally-identified structures. For instance, S2 can be considered to cap-

ture 1PLW, S1 captures both 1PLX and 2LWC, S3 captures 1PLX, 2LWC, and S5 cap-

tures 1PLW. With a more stringent cutoff of 0.72Å, only S1, S2, and S3 capture the three

experimentally-known structures, whereas S4 and S5 constitute new states. This type of

analysis suggests that the MD simulation probes novel states of Met-Enk; at least one of

them, S4, as shown in Fig. 5.3, transitions to a state (S2) captured in the wet laboratory.

5.5 Summary

The work described in this chapter relates to the importance of leveraging the structural

energetics readily available from MD simulations (rather than ignoring it) to identify states

in the crucial step of state-space discretization in MSM construction. The evaluation also

suggests that such states, tied to the concept of basins in the energy landscape probed by

MD simulations yield MSMs of better quality and thus more accurate models of structural

dynamics. It is worth mentioning that as our application has been on a small peptide, it

is important to make a case for the generalization of this approach by extending to larger

and richer biological systems. In Chapter 9, we elaborate on employing this strategy for

organizing structures of antibody-antigen bound molecular systems for which MD data has

been provided to us by computational and molecular biology collaborators.
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Chapter 6: Feature-oriented Factorization Methods to

Organize Protein Structure Space

This chapter investigates a new direction of research that improves upon graph embedding-

based methods in both time cost and memory demand issues, as well as upon the chal-

lenge of identifying functionally-relevant structures from sparse datasets while still utilizing

adjacency matrix information. We demonstrate here the capability of a matrix factor-

ization approach in organizing the protein structure space and allowing the detection of

functionally-relevant structures, even when data are sparse. In particular, we show that a

feature-based, factorization-based method outperforms basin-based and other state-of-the-

art methods. Work described in this chapter has been disseminated in [29].

6.1 Non-negative Matrix Factorization (NMF)-based Frame-

work to Organize Protein Structure Space

We first describe the main ingredients of the NMF-based framework at a high level. Fig. 6.1

shows that the framework essentially assigns provided structures of a protein molecule into

groups, selects a best group, and finally selects the best structure from the selected group.

The inspiration for the framework is the classic setting, where a protein molecule is active

in one structural state, and we seek to determine this state via a representative structure

selected with no prior information from the structure data.

The various structures illustrated in Fig. 6.1 are colored in red, green, and blue, indi-

cating their corresponding energy levels; red indicates higher energy, blue indicates lower

energy, and green indicates a level between red and blue. First, the framework extracts

features from the given structures and stores them in an initial feature matrix, X. In the

next step, the NMF-based framework decomposes the feature matrix into two non-negative

55



matrices, W and H. The factor matrix W contains the basis patterns. Linear combina-

tions of these basis patterns describe and reconstruct each structure in the initial matrix.

These basis patterns define different structure groups/clusters. The framework assigns a

structure s to a structure-group G if s is closest to the basis pattern representing the

structure-group G. Next, it selects a structure-group via structure selection strategies and

evaluates how functionally-relevant the selected group is. Finally, the framework selects a

representative structure from the selected group/cluster to represent the best functionally-

relevant/biologically-active structural state in the given set of structures.

Figure 6.1: Schematic of the NMF-based framework. At a high level, the framework groups
structures, selects a best group, and then selects a best structure from the selected group.
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6.1.1 Non-negative Matrix Factorization (NMF)

Figure 6.2: Illustration of NMF decomposition of the feature matrix X. The decomposition
produces two factor matrices W and H. The columns of W represent basis patterns. Each
structure di (column in feature matrix X) is expressed as a linear combination of the basis
patterns with coefficients found in the corresponding column matrix H.

NMF is a widely-used unsupervised learning method for dimensionality reduction and

feature extraction. The non-negative data, a matrix of dimensions features × samples, is

factorized into two non-negative low-rank matrix factors, W and H, with a small inner

dimension K. For a given data X ∈ RF×N
+ (features × samples), NMF approximates X

with the product of W and H, by minimizing the Frobenius norm (indicated by ||.||F ),

ϵ = min||X −WH||2F (6.1)

or, Xij =
∑K

s=1WisHsj + ϵij , where, ϵij is the error of the approximation, which is

normally distributed. In this way, each column of X (representing a sample) is expressed

as a linear combination of the basis latent patterns (the columns of W ) and its weights (the

corresponding column of H) as in Fig. 6.2. The non-negativity forces NMF to learn local

parts of the object (described in X) [96], hence, to extract easily interpretable and sparse

latent features, which makes NMF a preferable technique when explainability is important.
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NMF is underpinned by a statistical model of superimposed components (the number of

these components is equal to the size of the small dimensionK) that can be treated as latent

features in Gaussian, Poisson, or other mixture models. NMF minimization (with a specific

distance metric ||...||dist) is equivalent to the expectation-minimization (EM) algorithm. In

this probabilistic interpretation of NMF, the manifested variables are the columns d1, ..., dN ,

of the matrix, X, generated by the latent variables, h1, ..., hK , that are the columns of the

matrix, H. Specifically, each observable xi is generated from a probability distribution with

mean ⟨di⟩ =
∑K

s=1Wishs, where K is the number of the latent variables [96]. Thus, the

influence of hs on di is through the basis patterns represented by the columns of the matrix

W , w1, ..., wK .

In our case, the basis patterns, represented by the columns of the matrix W , can be

thought of as pseudo-structures (not necessarily in the structure ensemble) whose linear

combinations span the entire ensemble space. Then, each structure is a linear combination

of these pseudo-structures with coefficients given by the corresponding columns of matrixH.

The NMF optimization problem, min||X −WH||dist, can be solved by various algorithms,

such as the multiplicative update [96], block principle pivot [97], and projected gradient

methods [98]. All these methods follow alternating non-negative least squares [99], where

for each iteration, one of the factors is fixed and the other updates.

6.1.2 Feature Extraction

We encode each structure with 39 energy-based features covering three different categories.

Of these 39 features, 9 are potential energy-based, 17 are Rosetta REF2015 energy terms, 9

features are based on the consistency between the actual and predicted values of structures,

and 3 are contact-based scores. One more feature comes from Rosetta Score12’s total

energy. The potential energy-based and consistency-based terms are used in a support

vector machine-based single structure selection method [50].

1. Features Based on Energy Functions (27 features): Eighteen of these features

are collected from Rosetta REF2015 and Score12 energy functions. We use raw values
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of 17 energy terms from Rosetta REF2015 energy function. We also use REF2015 and

Score12 total energy. The total energy values are computed using the weighted energy terms.

The 9 potential energy terms are the following: we use a side-chain orientation-dependent

potential RWplus [100]; a distance-dependent potential DFIRE [101]; dDFIRE [102] adds

orientation-dependency to DFIRE; three features from GOAP [56] that are distance and

orientation-dependent all-atom potential. GOAP contains DFIRE and an angle-dependent

term. We use the overall GOAP potential, the DFIRE term, and the angle-dependent

term as three features. OPUS-PSP [103] is an orientation-dependent all-atom potential

that includes an orientation-dependent packing energy term and a Lenard-Jones repulsive

energy term. Both of these energy terms and the total energy constitute three more features.

2. Features Based on Structural Consistency (9 features): We use nine features

based on structural consistency. Four of these are secondary structure-based features. We

use PSIPRED to compute the secondary structure of each target from its primary sequence.

We extract the secondary structure of the structures for each protein using DSSP. We keep

track of the number of matches in secondary structure elements (beta sheets, alpha helices,

and coils) between PSIPRED and DSSP calculations. We normalize the match counts for

the three secondary structure elements by the length of the corresponding sequence and

use the normalized match counts as features. The fourth feature is computed as follows.

When there is a match between the PSIPRED and DSSP calculations, we store the score

of each secondary element computed by PSIPRED. We add these scores and use the total

score as a feature. We compute 5 features based on solvent accessibility. To determine the

buried (B) or exposed (E) state of a residue (with respect to solvent accessibility), we use

RaptorX, which is a Deep Convolutional Neural Fields (DeepCNF)-based webserver [104].

We specify each residue as either buried or exposed based on the probabilities computed by

RaptorX. We also calculate the relative solvent accessibility of a residue of each structure

using DSSP. To specify a residue as buried or exposed, we divide the calculated solvent

accessibility by the total solvent accessibility [105]. A cut-off value of 25% has been used

in this process. Two more features are computed from the number of B and E matches
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computed by RaptorX and DSSP. We use the length of the corresponding sequence to

normalize these features. When there is a mismatch between RaptorX and DSSP results,

we note the corresponding probabilities. We use the combined probability as another fea-

ture. We also compute Pearson’s correlation, and cosine similarity between the number of

secondary structure elements and solvent accessibility states computed from the primary

sequence and from the structures, and used them as two more features.

3. Features Based on Residue Contacts (3 features): We use three features based

on contact scores. We use relative contact order which is defined as the average sequence

distance between all pairs of contacting residues and normalized by the total sequence

length [106]. We extract two more features by following the process mentioned in [107]. We

use RaptorX-contact [104] to predict the contacts from the amino-acid sequence. We treat

the top 10 RaptorX-predicted contacts as references. We determine true positives (TP),

false positives (FP), and False negatives (FN) from the structures using the top 10 pairs of

amino acids. If these 10 pairs are also found in contact with a structure, we have a true

positive. False negatives increase when the top 10 pairs are not found in contact with a

structure. Finally, false negatives are found if the contacts in a structure are not found

in the reference structures. We calculate precision and recall and use them as features;

precision is defined by TP
TP+FP , and recall is defined as TP

TP+FN .

6.1.3 NMF-backed Structure Groups

We construct structure clusters/groups using the factors of NMF on the structure matrix.

The structure matrix is essentially a feature matrix with features extracted from the struc-

tures. In the structure matrix X, the rows correspond to the features of structures and

the columns represent distinct structures. Therefore, each cell X(i, j) represents the i-th

feature of the j-th structure. To satisfy the non-negativity, we shift the negative values of

any feature in the feature matrix X into positive space, and then apply NMF to the feature

matrix. The basis patterns, i.e., the columns of the matrix W define the structure-groups

backed by NMF. To identify the basis pattern that a structure di belongs to, we note the
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maximum value of the corresponding hidden variable his (Fig. 6.2). A structure di belongs

to the group/cluster defined by the basis pattern wi; basis pattern wi is associated with the

maximum value of the column his corresponding structure di.

6.1.4 Structure-Group Selection

Once the membership of each structure to a given pattern wi is established, we select a

structure group/cluster. The structure-groups are characterized by their associated metrics.

We compute two metrics. The first metric, median absolute deviation (MAD), measures

the spread of data within a group. Lower MAD value indicates less variability. Another

desirable property of MAD is its robustness against outliers. As our methods rely on the

principle of consensus, we choose MAD for one of our metrics, described below.

NMF-MAD

Median Absolute Deviation (MAD) measures the variability of data samples while not

considering any application-oriented characteristics of the data samples. This metric is also

resilient to outliers. Let C be a group and xi be a structure from C, then the MAD measure

for C is defined as,

MAD(C) = b ·median({dist(xi,median(C)) | xi ∈ C}) (6.2)

where b is a constant scale factor that depends on the probability density of the observed

samples [108]. For each group C, we compute the MAD score for all structures in the group

and take the average of the scores. Considering the average MAD score as a characteristic

of the group, they are ranked based on increasing MAD score and the top group (highest

MAD score) is selected.
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NMF-Rank

The second selection method is based on structure-specific characteristics. The average

of the energies of structures of a group is defined as the average energy of the group.

The minimum energy of a group is defined as the minimum of the energies of all structures

assigned to that group. The size of a group is the number of structures populating the group.

Three stages of rankings are performed on the groups to identify the group that represents

the structures that are similar to the experimentally-known structure. The groups are

ranked based on increasing size and the top 5 groups are selected. We rank the selected

groups again based on minimum energy and select the top 3 groups. Finally, these 3 groups

are sorted in ascending order of average energy, where the top group is offered as prediction.

6.1.5 Functionally-relevant Structure Selection

We use the concept of density score of a structure [109] to select the best structure from

the top structure-group. Let a structure-group consists of n structures and a structure xi

belongs to this group. The density score DSi of structure xi is defined as follows,

DSi =

∑n
j=1 rij

n
(6.3)

The term rij denotes the pairwise root-mean-squared-deviation (RMSD) between structure

xi and structure xj (1 ≤ i, j ≤ n). We normalize the density scores so that the scores are

in a range between −1 and 1. We compute the normalized density score DS
′
i as following.

DS
′
i =



(DSi−DSmedian)
DSmedian−DSmin

if DSi < DSmedian

0 if DSi = DSmedian

(DSi−DSmedian)
DSmax−DSmedian

if DSi > DSmedian

(6.4)
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The terms DSmin, DSmax, and DSmedian denote the minimum, maximum, and median

density scores, respectively. We assign weight Wi to each structure based on its normalized

density score. The weight Wi is defined by Wi = e−r(DS
′
i), where r is a constant (we use

r = 5). We rank the structures in decreasing order of their weights, and offer the top

structure as the best. If a structure set is of sparse distribution, then a group might consist

of only two structures. In such a scenario, we select the structure with the lower energy.

6.2 Evaluation Dataset

Table 6.1: Benchmark dataset (* denotes proteins with a predominant β fold and a short
helix). The chain extracted from a multi-chain PDB entry is shown in parentheses.

Difficulty # PDB ID Fold Length |Ω| min dist
(Å)

Easy

1 1ail α 70 53, 544 0.50
2 1dtd(B) α+ β 61 57, 810 0.51
3 1wap(A) β 68 51, 810 0.60
4 1tig α+ β 88 52, 071 0.61
5 1dtj(A) α+ β 74 53, 497 0.68

Medium

6 1hz6(A) α+ β 64 57, 449 0.72
7 1c8c(A) β∗ 64 53, 297 1.08
8 2ci2 α+ β 65 52, 187 1.22
9 1bq9 β 53 53, 629 1.31
10 1hhp β∗ 99 52, 128 1.52
11 1fwp α+ β 69 53, 103 1.56
12 1sap β 66 51, 182 1.75

Hard

13 2h5n(D) α 123 51, 450 2.05
14 2ezk α 93 50, 167 2.56
15 1aoy α 78 52, 189 3.27
16 1cc5 α 83 51, 666 3.95
17 1isu(A) coil 62 60, 329 5.53
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We evaluate our methods on two datasets. First, we evaluate on 17 benchmark proteins

of different folds and lengths (number of amino acids, Table 6.1). We use Rosetta template-

free protocol to generate 50, 000 to 60, 000 structures per target. The 4-letter PDB id for

each protein is in column 3. These proteins represent easy, medium, and hard cases for

Rosetta. The difficulty levels (easy, medium, hard) are informed by the performance of an

incremental clustering-based structure selection [27]. Further specification is also available

in Section 4.1. The size of structure ensemble, |Ω| for each protein is in column 6. Column

7 is the minimum distance, min dist, between the structures generated by Rosetta and an

experimentally-known structure in corresponding PDB entries. The min dist informs about

the varied performance that Rosetta achieves for each protein.

Table 6.2: CASP dataset. CASP target IDs are shown in Column 2. PDB ID, Length, and
Minimum RMSD over structure dataset to corresponding experimentally-known structure
are shown for each target. Experimentally-known structures only available in the CASP
website [110] are marked by asterisks.

# Target ID PDB ID Length |Ω| min dist
(Å)

1 T1008-D1 6msp 77 55, 000 1.54

2 T0886-D1 5fhy 69 55, 000 4.92

3 T0953s1-D1 6f45 67 55, 000 5.81

4 T0960-D2 6cl5 84 55, 000 5.98

5 T0898-D2 ** 55 43, 435 6.0

6 T0892-D2 5nv4 110 36, 860 6.62

7 T0953s2-D3 6f45 77 55, 000 7.52

8 T0957s1-D1 6cp8 108 45, 000 4.91

9 T0897-D1 ** 138 25, 000 8.30

10 T0859-D1 5jzr 113 40, 000 9.06

Besides, we consider 10 free modeling targets from CASP 12 and 13 (Table 6.2). Several

of these targets such as T0953s2, T0957s1, T1008 are determined as hard targets [111,112].
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6.3 Evaluation Results

6.3.1 Group Selection Results

Figure 6.3: Comparison of four unsupervised basin-based and two NMF-based structure
selection methods (y-axis tracks the purity of the top basin/group/cluster detected by each
selection method, while x-axis tracks the PDB ID of each target protein)

We compare (in terms of purity as described in Section 4.4.1) the NMF-based methods:

NMF-MAD and NMF-Rank, with four unsupervised basin-based methods presented in [27]

that leverage the concept of energy landscape to construct structure-groups. At first, the

basins are extracted from the underlying energy landscape of a protein structure space, and

then structure selection is performed by ranking and selecting the basins based on their size

(Basins-Select(S)), and size and energy (Basins-Select(S+E)). A basin consists of structures

and is considered a structure-group/cluster. Specifically, Basins-Select(S) ranks the basins
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based on decreasing basin-size and selects the top basin. Basins-Select(S+E) ranks the

basins first by decreasing size and selects top b basins where b is user-defined. Then, the b

basins are further ranked based on increasing energy and the top basin is selected. Since the

goals of obtaining lower energy and larger size pose two conflicting objectives, two Pareto-

based selection methods (Basins-Select(PR) and Basins-Select(PR+PC)) are devised by

utilizing the concept of dominance described in Section 4.3.

Fig. 6.3 compares NMF-MAD and NMF-Rank with four basin-based unsupervised struc-

ture selection methods on 17 proteins (5 easy, 7 medium-difficulty, 5 hard). All methods

perform comparably well on the easy test cases. For all the 5 test cases, NMF-MAD achieves

100% purity. NMF-Rank shows more than 90% purity in 4 test cases, and more than 80%

purity for the remaining. The four basin-based methods achieve good purity scores (from

88% to 100%). However, one method, Basins-Select(S+E), shows poor performance ( 2.8%

purity) on an easy test case (1dtd(B)).

For medium-difficulty proteins, NMF-MAD performs better than basin-based methods

in 4 out of 7 cases. The structure sets for medium-difficulty proteins contain comparatively

lower number of structures that are similar to the experimentally-known structure. For

instance: 1bq9 with a structure set of size 53, 629 contains only 1.6% of such structures.

Similarly, the percentage is 2.5% for the structures in a structure set of size 52, 128 (1hhp).

Even in those cases, the best that the basin-based methods achieve for the protein under

PDB ID 1bq9 is 80.4% purity, whereas NMF-MAD achieves 100% purity. In the other

instance, NMF-Rank scores 74.1% for the protein under PDB ID 1hhp. For the same

protein, the best purity score by any basin-based method is 53.6%. NMF-Rank and NMF-

MAD both outperform the basin-based structure-group selection methods.

The utility of NMF-based structure selection methods can be better realized when we

consider the hard test cases. The structure sets for hard proteins exhibit the highest level of

sparsity. The number of structures that are close to the experimentally-known one found in

these structure sets is below 6%. Additionally, the best quality structure that Rosetta could

sample for these proteins is further away from the experimentally-known one compared to
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the best structures under the category of easy and medium-difficulty proteins. A lack of

enough good quality structures and the resulting sparsity in the structure set for hard

proteins make the task of functionally-relevant structure selection more challenging. For

these challenging cases, NMF-based methods significantly outperform basin-based methods

in 4 out of 5 test cases. For instance, NMF-MAD achieves 100% purity for both the proteins

with PDB IDs 1cc5 and 1isu(A), whereas the basin-based methods can achieve 1.14% and

14.1% purity at best. On the hardest test case, the protein with PDB ID 2h5n(D), NMF-

Rank achieves 7.54% purity whereas the basin-based methods capture 0% purity. Such an

outstanding performance by NMF-based methods on the hard test cases emphasizes the

utility of NMF for grouping structures for functionally-relevant structure selection.

Figure 6.4: Comparison of two NMF-based structure selection methods and MUFOLD-CL
on CASP targets (y-axis tracks the purity of the top basin/group/cluster predicted by each
selection method, while x-axis tracks the ID of each target protein).
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Fig. 6.4 compares NMF-MAD, NMF-Rank and MUFOLD-CL (a state-of-the-art Estima-

tion of Model Accuracy (EMA) method) on the CASP targets. NMF-MAD and NMF-Rank

outperform MUFOLD-CL in 10/10 and 8/10 test cases, respectively.

6.3.2 Single Structure Selection Results

Table 6.3: Results for Quantitative Comparison on CASP targets. Columns 2 and 3 show
loss in lRMSD, GDT-TS, TM-score for the best structure selected by NMF-MAD and
MUFOLD-CL, respectively.

Targets NMF-MAD
lRMSD Loss
(Å), GDT-TS
loss, TM Loss

MUFOLD-
CL
lRMSD Loss
(Å), GDT-TS
loss, TM Loss

T0886-D1 2.77, 0.029, 0.03 8.51, 0.03, 0.02
T0892-D2 5.5, 0.007, 0.03 6.32, 0.025, 0.032
T0897-D1 3.5, 0.0, 0.003 6.5, 0.014, 0.017
T0859-D1 4.44, 0.011, 0.032 8.62, 0.022, 0.014
T0898-D2 5.2, 0.027, 0.01 5.1, 0.027, 0.007
T0953s1-D1 5.4, 0.011, 0.017 8.34, 0.019, 0.017
T0953s2-D3 4.88, 0.029, 0.039 4.2, 0.032, 0.024
T1008-D1 0.42, 0.012, 0.02 6.2, 0.019, 0.009
T0960-D2 3.51, 0.011, 0.016 5.6, 0.012, 0.02
T0957s1-D1 4.68, 0.008, 0.027 6.64, 0.074, 0.091

We compare NMF-MAD and MUFOLD-CL for best structure selection in terms of

lRMSD loss, GDT-TS loss, and TM-Score loss. We report the loss incurred with random

selection and the average lRMSD of the selected group as baselines. Table 6.3 shows a

quantitative comparison between NMF-MAD and MUFOLD-CL on the CASP dataset in

terms of lRMSD loss, GDT-TS loss, and TM-score loss. NMF-MAD outperforms MUFOLD-

CL in 8/10 cases in terms of lRMSD loss, in 9/10 cases in terms of GDT-TS loss. In terms

68



of TM-score loss, MUFOLD-CL performs better than NMF-MAD in 5/10 cases, NMF-

MAD outperforms MUFOLD-CL in 4/10 cases, while both perform somewhat similar in

the remaining case.

1tig (0.32Å) 1hz6(A) (0.35Å) 1cc5 (1.93Å)

Figure 6.5: Structures under each difficulty category (easy, medium, hard) selected by
NMF-MAD are shown superimposed over known wet-laboratory structures under PDB ID
1tig, 1hz6(A), and 1cc5. The corresponding experimentally-known structure is colored in
purple, and the best structure selected by NMF-MAD is colored green (with the RMSD
loss reported in parentheses).

Fig. 6.5 shows NMF-MAD-selected structures (colored in green) for each difficulty level

(easy, medium, hard) superimposed over the corresponding experimentally-known struc-

tures (colored in purple) resolved in the wet laboratory and deposited in Protein Data Bank.

The best structure selected (Fig. 6.5) by NMF-MAD for the easy protein target with PDB

ID 1tig and for the protein with PDB ID 1hz6(A) under the medium-difficulty category are

structurally similar to their experimentally-known structures. For the hard protein target

(PDB ID 1cc5), the selected structure, albeit not quite close to the experimentally-known

one as for the easy and medium-difficulty cases, but is not significantly deviant too.
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6.4 Summary

The work described in this chapter marks the opening of a new avenue in organizing the

structure space of dynamic molecules like proteins and also demonstrates the potential-

ity of factorization-based methods for organizing as well as detecting functionally-relevant

structures. However, the method summarized in this chapter relies heavily on features and

parameters. For instance, one needs to provide the number of groups as a parameter. Chap-

ters 7 and 8 provide ways to extend factorization-based frameworks that promise to resolve

these issues and so support a variety of applications for advancing knowledge in molecular

biology.
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Chapter 7: Non-parametric, Feature-free Factorization-based

Method to Organize Protein Structure Space

The work presented in this chapter capitalizes on the decomposition-based framework and

formulate a novel method relying on matrix-factorization that is both feature-free and non-

parametric. Specifically, we describe a novel symmetric non-negative matrix factorization

(SNMF)-based framework. The work described here has been disseminated in [30].

7.1 Symmetric Non-negative Matrix Factorization (SNMF)-

based Framework to Organize Protein Structure Space

Figure 7.1: The schematics of the framework operationalized by SNMF-DS

We propose a novel method, SNMF-DS, that utilizes symmetric non-negative matrix

factorization (NMF) in the graph embedding setting for structure selection. The method

is fully non-parametric and employs the eigen-gap statistic to automatically determine the
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number of components for matrix factorization. The framework that SNMF-DS opera-

tionalizes for structure selection proceeds in three stages.

• In the first stage, given the tertiary structures of a target protein, they are organized

into groups {Gi}.

• The second stage utilizes structure energies to discriminate among the groups and

select a best group G∗ from {Gi}.

• In the third stage, a weighting scheme associates weights with structures in the best

group to select a best structure from the best group.

The best structure is selected as the closest approximation to the functionally-relevant

structure available in the given structure ensemble. Conceptually, the framework is related

in Figure 7.1.

Figure 7.1 shows that the input to SNMF-DS are the Cartesian coordinates of the

structures. These are utilized to construct a structure similarity matrix, which is then

subjected to an eigen-gap heuristic in order to determine k, the number of groups. We use

this information of k to perform symmetric non-negative matrix factorization. The resultant

factor (W) is used to elucidate k groups in which structures are organized by finding the

group membership from the factor matrix, W. The method is non-parametric, as the value

for k is determined automatically by exploiting the eigen-gap heuristic.

7.1.1 From Structure Ensemble to Structure Similarity Matrix

SNMF-DS takes as input the structures of a given protein target whereas each structure

is a tertiary structure. Each tertiary structure is stripped down to its main-chain carbon

atoms (CA atoms), discarding side-chain atoms and other backbone atoms. This reduc-

tion improves the cost of computing the similarity matrix Sn×n (in Figure 7.1) which is

symmetric and contains at entry Si,j the similarity between two structures i and j in the

given structure set. Specifically, Si,j = 1
RMSD(i,j)+ϵ where RMSD refers to the root-mean-

squared-deviation that measures the dissimilarity between two structures, and ϵ refers to an
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infinitesimally-small constant. While different metrics other than RMSD can be used, we

elect to use RMSD due to its popularity in comparing molecular structures. RMSD averages

the Euclidean distance over the number of atoms (CA atoms in our case). The structures

are first optimally superimposed over an arbitrarily-chosen structure (we use the first in

the set of given structures) to minimize differences due to rigid-body motions (whole-body

translation and rotation). In this way, the RMSD values capture the internal structural dif-

ferences rather than differences due to whole-body motions in space. The reason for using

ϵ is to guard against, in principle, a division by 0 in the case of two identical structures.

7.1.2 From Structure Similarity Matrix to number of Structure Groups

In this step, SNMF-DS finds the number of structure groups in a non-parametric manner

using eigen-gap heuristic [113]. The pairwise structure similarity matrix S is used to search

for the m nearest neighbors of each structure. Specifically, Algorithm 1 demonstrates the

eigen-gap heuristic to find k [114]. Some suggestions about the value of m are available in

literature [115], such as log(n) + 1,
√
n, 2n1/d where, n is the number of structures in our

setting, and d is the number of coordinates in a structure. For our implementation, we pick

m =
√
n.

Finding the m nearest neighbors of each structure in the structure set is instantiat-

ing a nearest-neighbor graph (nngraph), where structures are vertices, and edges connect

structures to their nearest-neighbors. We note that this graph is not explicitly constructed.

Instead, SNMF-DS constructs an adjacency matrix A and a degree matrix D. The entries

of A indicate whether pairs of vertices/structures are adjacent or not in the nngraph. Since

the nngraph is a finite simple graph, A is a binary matrix with zeros on its diagonal (we

do not allow a structure to be considered a nearest neighbor of itself). The degree matrix

D is a diagonal matrix that contains the degree of each vertex; Di,j = deg(i, j) if i = j and

0 otherwise. A and D are used together to construct the Laplacian matrix, L = D − A of

the nngraph and obtain the optimal number k of groups in which to organize structures.
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Algorithm 1 EigenGap Heuristic

Require: S, m

1: A← Adjacency Matrix from S,m
2: D ← Degree Matrix from A
3: L← D −A //Laplacian Matrix

4: LS ← D−1/2LD−1/2 //Symmetric normalized Laplacian Matrix
5: {λ,U} ← Eigen-decompose(LS) //λ: eigenvalues, U : eigenvectors
6: λd ← diagonal(λ) //extract eigenvalues
7: sort the elements of λd in ascending order
8: for k ← 1 . . . λd.length− 1 do
9: EigenGap(k)← λd[k + 1]− λd[k]

10: end for
11: return k that corresponds to the highest peak of the EigenGap(k)-curve
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0.000
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Figure 7.2: The EigenGap curve computed over structures of CASP Target T1008-D1. The
highest peak is obtained at k = 23 (indicated by an arrow), thus identifying 23 groups
among the structures. The curve is only shown for the first 25 components out of 500 in
the interest of clarity.
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Figure 7.2 shows the EigenGap curve computed as described over the structures of a

protein target in one of our evaluation datasets. The highest peak is obtained at k = 23;

so, 23 is the number of groups that is utilized by SNMF-DS to organize the structures as

described next.

7.1.3 Organizing Structures into Groups

Conceptually, as shown in Figure 7.3, in this step the SNMF-DS method approximates the

similarity matrix S by a lower-rank factorization WW T . The matrix W is interpreted by

SNMF-DS as the cluster membership indicator matrix, which reveals the groups to which

structures belong.

Figure 7.3: An illustration of the factorization of a symmetric non-negative similarity ma-

trix: S ≈WW T as in Eq. (7.1). Colored region has larger values than white region

We recall that NMF is an unsupervised method which approximates a given non-negative

data-matrix, X ∈ Rn×d
+ by factoring it into two non-negative factor matrices, W ∈ Rn×k

+ ,

and H ∈ Rk×d
+ such that, X =WH [116] where k is identified via Algorithm 1. Symmetric

NMF is a special case of NMF having completely positive and identical non-negative factor

matrices [117]. In symmetric NMF [118], we solve the following equation for the cluster
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membership indicator matrix W ∈ Rn×k
+ ,

minW≥0 f(W ) = ||S −WW T ||2F (7.1)

where similarity matrix S ∈ Rn×n
+ (S is symmetric and hence, S = ST ), and ||.||F indi-

cates the Frobenius norm-based minimization. Typically, k << n. To solve the optimiza-

tion problem in Eq. (7.1) for W , we apply alternating non-negative least squares (ANLS)

optimization (with block principal pivoting) that converges to stationary points [119].

To initialize the factor W , we apply non-negative double singular value decomposition

(NNDSVD) [120] which is based on approximations of the positive sections of the partial

SVD factors of the similarity matrix so that symmetric NMF optimization attains bet-

ter convergence. The largest entry in each row of the W matrix indicates the clustering

assignments [121].

7.1.4 Determining the Best Structure-Group

After determining the group composition using the matrix W as described above, we then

identify the best group as follows. Each group of structures is associated a score that is

computed as the average over the potential energies of structures in the group. The groups

are then ranked, and the one with the lowest score is selected as the best group.

7.1.5 Determining the Best Structure in a Group

Once the best group of structures is determined, the structures in the group are evaluated

so as to determine a best structure. We make use of the strategy recently introduced

in [28], which employs a structure density score [109]. Let a structure xi belong to a group

comprised of l structures. The density score dsi of structure xi is given by dsi =
∑l

j=1 rij
l ;

where rij denotes the pairwise root-mean-squared-deviation (RMSD) between structure xi

and structure xj (1 ≤ i, j ≤ l). The structure density scores are normalized to be in the
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range −1 and 1. The normalized density score ds
′
i is given by

ds
′
i =



(dsi−dsmedian)
dsmedian−dsmin

if dsi < dsmedian

0 if dsi = dsmedian

(dsi−dsmedian)
dsmax−dsmedian

if dsi > dsmedian

(7.2)

where dsmin, dsmax, and dsmedian denote the minimum, maximum, and median density

scores respectively. Using these normalized scores, we then assign weight wi to each struc-

ture as in: wi = e−ds
′
i . Once the structures in a group are weighted in this manner, the

maximum-weight structure is then selected as the best structure.

7.2 Evaluation Dataset

SNMF-DS is evaluated on two datasets. The first, shown in Table 7.1, contains 18 bench-

mark proteins of different folds and lengths (number of amino acids). The second dataset,

shown in Table 7.2, contains 10 targets selected from the free modeling category in CASP12

and CASP13; the list includes several hard targets [111, 112]. For each protein target, we

use the Rosetta AbInitio protocol to generate 12, 000 structures. Tables 7.1-7.2 provide

additional details for each structure dataset. For instance, Table 7.1 shows the entry id of

an experimentally-known structure (ground truth) for each target in the Protein Data Bank

(PDB). The fold of the experimentally-known structure, and the number of amino acids in

the corresponding target are shown, as well. The minimum RMSD to the experimentally-

known structure in a structure dataset is shown in Column 6. This value is utilized to

estimate the difficulty of a structure dataset for structure selection. Targets where this

value does not exceed 1Å are considered easy; those where this value does not exceed

3Å are considered medium; the rest are considered hard.
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Table 7.1: Benchmark dataset (* denotes proteins with a predominant β fold and a short
helix). The chain extracted from a multi-chain PDB entry is shown in parentheses. PDB ID,
Fold, Length, and minimum RMSD over structure dataset to corresponding experimentally-
known structure are shown for each target.

Difficulty # PDB
ID

Fold Length Min RMSD
(Å)

Easy

1 1ail α 70 0.573
2 1dtd(B) α+ β 61 0.565
3 1wap(A) β 68 0.568
4 1tig α+ β 88 0.623
5 1dtj(A) α+ β 74 0.701
6 1hz6(A) α+ β 64 0.827

Medium

7 1c8c(A) β∗ 64 1.331
8 2ci2 α+ β 65 1.581
9 1bq9 β 53 1.308
10 1hhp β∗ 99 1.761
11 1fwp α+ β 69 1.568
12 1sap β 66 2.031
13 2h5n(D) α 123 2.053

Hard

14 2ezk α 93 3.475
15 1aoy α 78 3.496
16 1aly β 146 9.179
17 1cc5 α 83 4.654
18 1isu(A) coil 62 5.912

Moreover, Table 7.2 lists similar information for the CASP targets. We note that in two

cases, marked by asterisks, the experimentally-known structure has not been deposited yet

in the PDB and is only available on the CASP website [110]. The minimum RMSDs shown

in Column 5 indicate the level of difficulty Rosetta experiences on the CASP targets and

convey the variability of the quality of structure datasets over which a structure selection

method has to perform in general.
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Table 7.2: CASP dataset. CASP target IDs are shown in Column 2. PDB ID, Length, and
Minimum RMSD over structure dataset to corresponding experimentally-known structure
are shown for each target. Experimentally-known structures only available in the CASP
website [110] are marked by asterisks.

# Target ID PDB ID Length Min RMSD
(Å)

1 T1008-D1 6msp 77 1.542
2 T0886-D1 5fhy 69 5.102
3 T0953s1-D1 6f45 67 6.344
4 T0960-D2 6cl5 84 6.402
5 T0898-D2 ** 55 6.598
6 T0892-D2 5nv4 110 6.950
7 T0953s2-D3 6f45 77 7.607
8 T0957s1-D1 6cp8 108 7.677
9 T0897-D1 ** 138 9.638
10 T0859-D1 5jzr 113 10.268

7.3 Evaluation Results

We compare SNMF-DS with three representative, state-of-the-art methods, (1) Feature-

based NMF method [122] that outperforms the basin-based [27] methods (which outper-

form community-based graph-clustering methods [28, 39]), (2) SBROD [123], an energy-

based method, and (3) MUFOLD-CL [124], a clustering-based method. The comparative

evaluation is carried out on two datasets via rigorous metrics.

7.3.1 Running Time Comparison

We compare SNMF-DS, NMF-MAD [29], MUFOLD-CL, and SBROD on five selected struc-

ture sets (two from the CASP targets and three from the benchmark targets) that are

representative of our observations with regards to running time. Table 7.3 indicates that

MUFOLD-CL is the fastest, followed by SNMF-DS, and SBROD. NMF-MAD is the most

expensive due to its costly feature selection and extraction steps.
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Table 7.3: Running Time Comparison

ID SNMF-DS MUFOLD-CL SBROD NMF-MAD

T0898-D2 16m 46s 1m 17s 33m 55s 2h 41m 53s

T0897-D1 39m 9s 3m 14s 1h 25m 37s 5h 7m 12s

1ail 17m 57s 55s 43m 39s 3h 9m 15s

1tig 18m 26s 1m 6s 52m 17s 3h 48m 8s

1aly 25m 26s 2m 33s 1h 36m 15s 6h 22m 43s

7.3.2 Group Purity Comparison
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Figure 7.4: The purity of the group/cluster selected by SNMF-DS, NMF-MAD, and
MUFOLD-CL are shown over the benchmark targets.

We compare the purity of the group/cluster selected by SNMF-DS, NMF-MAD, and
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MUFOLD-CL. It is worth noting that SBROD ranks structures by energies and so does

not organize them into groups. Figure 7.4 compares purities over the benchmark targets,

whereas Figure 7.5 does so over the CASP targets.
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Figure 7.5: The purity of the group/cluster selected by SNMF-DS, NMF-MAD, and
MUFOLD-CL are shown over the CASP targets.

Figures 7.4-7.5 show that SNMF-DS and NMF-MAD largely outperform MUFOLD-CL.

Specifically, for the easy benchmark targets, the purity values obtained by MUFOLD-CL

range from 17% to 62%, whereas NMF-MAD attains 78% to 100% purity, and SNMF-DS

dominates with 100% purity in each target. For the medium benchmark targets, SNMF-DS

achieves better purity than NMF-MAD on 4/7 cases; MUFOLD-CL is inferior to SNMF-DS

on all the medium benchmark targets (and with only two marginal wins over NMF-MAD).

On the hard benchmark targets, NMF-MAD does particularly well, reaching purity values

from 11% to 81% (except for 1aly); for SNMF-DS, purity values over these targets range
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from 3% to 51%. MUFOLD-CL does not perform better than SNMF-DS on any target;

it only beats NMF-MAD on one target (2ezk). These observations are further confirmed

over the CASP dataset. On the 10 CASP targets, MUFOLD-CL reaches purity values

ranging from 3% to 16% (on T1008-D1, purity is 0%) and is inferior to both NMF-MAD

and SNMF-DS; it performs as well or slightly better than SNMF-DS on only 2/10 targets.

Specifically, in 7/10 targets, NMF-MAD outperforms SNMF-DS with purity values ranging

from 13% to 50%; in the remaining 3 targets, SNMF-DS performs better than NMF-MAD

with purity values ranging from 3% to 49%. Altogether, these results demonstrate that

SNMF-DS is as competitive as NMF-MAD in terms of the quality of the selected group.

7.3.3 Loss Comparison

Table 7.4: SNMF-DS, MUFOLD-CL, SBROD, and NMF-MAD are compared in terms of
RMSD, TM-Score, and GDT-TS loss on the benchmark targets. Lowest loss per PDB ID
in any metric (RMSD, TM-Score, or GDT-TS) is highlighted in bold.

PDB ID
RMSD Loss, TM-Score Loss, GDT-TS Loss

SNMF-DS MUFOLD-CL SBROD NMF-MAD
1ail 0.5084, 0.0655, 0.072 1.447, 0.1676, 0.1336 2.937, 0.314, 0.3478 0.971, 0.1604, 0.1357
1dtj(A) 0.1941, 0.0048, 0.0296 0.036, 0.0198, 0.0066 0.69, 0.006, 0.0329 0.3345, 0.0782, 0.1081
1dtd(B) 0.3528, 0.0042, 0.0041 0.49, 0.0052, 0.0043 0.12, 0.005, 0.0082 0.5915, 0.0329, 0.0451
1wap(A) 0.3425, 0.0288, 0.0166 0.263, 0.0242, 0.0233 1.242, 0.1107, 0.1 0.6219, 0.0531, 0.04
1tig 0.0717, 0.003, 0.0053 0.749, 0.004, 0.008 0.709, 0.0134, 0.016 0.6569, 0.0469, 0.0483
1hz6(A) 0.0936, 0.002, 0.0034 0.405, 0.0037, 0.0036 0.191, 0.0145, 0.0382 0.809, 0.0415, 0.0352
1bq9 1.1992, 0.1677, 0.1389 2.02, 0.2115, 0.1759 1.337, 0.1331, 0.1065 1.3089, 0.1167, 0.0755
1c8c(A) 0.7991, 0.1092, 0.086 1.012, 0.135, 0.1016 1.531, 0.1465, 0.1328 1.092, 0.0596, 0.0429
1fwp 0.5085, 0.0034, 0.0036 0.724, 0.0074, 0.0018 1.039, 0.0589, 0.1332 0.5319, 0.0471, 0.0616
1hhp 2.1971, 0.0601, 0.0707 10.919, 0.6326, 0.6161 2.76, 0.0533, 0.0606 2.6835, 0.2939, 0.2828
1sap 0.5592, 0.074, 0.0417 1.61, 0.0831, 0.0492 1.873, 0.141, 0.1136 2.075, 0.0989, 0.125
2ci2 0.3118, 0.007, 0.006 3.202, 0.1155, 0.1114 3.083, 0.1334, 0.1175 1.7897, 0.3246, 0.3462
2h5n(D) 3.7028, 0.3178, 0.3215 7.806, 0.2479, 0.2576 3.883, 0.0856, 0.094 3.3498, 0.0805, 0.0732
1aoy 2.7896, 0.1136, 0.093 5.246, 0.1856, 0.1635 2.047, 0.1286, 0.1218 2.9788, 0.2918, 0.2788
1aly 5.7842, 0.0167, 0.0368 3.467, 0.0155, 0.024 4.373, 0.029, 0.0325 7.9939, 0.1411, 0.1635
1cc5 0.4732, 0.048, 0.0452 1.159, 0.0831, 0.0392 1.949, 0.0501, 0.0551 2.1843, 0.0565, 0.0573
1isu(A) 2.9928, 0.2182, 0.2299 6.357, 0.2106, 0.242 5.32, 0.1603, 0.2137 2.5552, 0.081, 0.0887
2ezk 2.9154, 0.0188, 0.0177 1.172, 0.003, 0.0076 3.142, 0.0178, 0.0244 3.5136, 0.0229, 0.0296

We compare SNMF-DS, NMF-MAD, MUFOLD-CL, and SBROD in terms of RMSD

loss, TM-Score loss, and GDT-TS loss of the selected structure. This comparison is in
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Table 7.4 for the benchmark targets and in Table 7.5 for the CASP targets.

Table 7.5: SNMF-DS, MUFOLD-CL, SBROD, and NMF-MAD are compared in terms of
RMSD, TM-Score, and GDT-TS loss on the CASP targets. Lowest loss per target in any
metric (RMSD, TM-Score, or GDT-TS) is highlighted in bold.

Target ID
RMSD Loss, TM-Score Loss, GDT-TS Loss

SNMF-DS MUFOLD-CL SBROD NMF-MAD
T1008-D1 0.3656, 0.007, 0.0011 3.305, 0.0137, 0.065 0.398, 0.0086, 0.0032 1.0238, 0.0156, 0.0162
T0886-D1 3.6714, 0.03, 0.0362 4.94, 0.0403, 0.0435 2.12, 0.034, 0.0326 2.5984, 0.0331, 0.029
T0953s1-D1 2.9398, 0.02, 0.0112 2.947, 0.055, 0.0187 3.032, 0.084, 0.0037 2.613, 0.0225, 0.0223
T0960-D2 1.8595, 0.0307, 0.0268 0.53, 0.0384, 0.0328 0.67, 0.0505, 0.0417 2.6181, 0.0182, 0.0178
T0898-D2 1.4889, 0.003, 0.0071 0.468, 0.008, 0.0091 0.162, 0.001, 0.0137 2.3824, 0.0108, 0.0181
T0892-D2 0.9038, 0.0119, 0.004 1.787, 0.0129, 0.0069 1.51, 0.0134, 0.0114 2.8416, 0.0242, 0.009
T0953s2-D3 1.4223, 0.01, 0.011 2.137, 0.0187, 0.0162 0.326, 0.0109, 0.0033 1.8621, 0.0256, 0.0153
T0897-D1 3.471, 0.0263, 0.0108 1.137, 0.0064, 0.018 0.236, 0.0032, 0.0055 2.9413, 0.0158, 0.009
T0957s1-D1 1.18, 0.0027, 0.0047 0.709, 0.008, 0.0023 0.423, 0.0079, 0.001 1.6803, 0.018, 0.0076
T0859-D1 2.3755, 0.056, 0.045 0.421, 0.0094, 0.0023 0.518, 0.0088, 0.0044 3.5967, 0.0329, 0.0132

Tables 7.4-7.5 make clear the superiority of SNMF-DS over the other methods. For

instance, Table 7.4 shows that the RMSD loss incurred by SNMF-DS is below 1Å for 11/18

of the benchmark targets. Table 7.4 also shows that for 14/18 of these targets, the best

structure selected by SNMF-DS incurs the minimum loss compared to the other methods in

terms of at least one of the three quantities (RMSD loss, TM-Score loss, and GDT-TS loss).

Table 7.5 shows that the RMSD loss incurred by SNMF-DS is below 2Å for 6/10 of the

CASP targets. For 7/10 CASP targets, the best structure selected by SNMF-DS incurs the

minimum loss compared to the other methods in terms of at least one of the three measures

(RMSD loss, TM-Score loss, and GDT-TS loss).

7.3.4 Statistical Significance Analysis

Finally, we conduct a statistical significance analysis on both purity and RMSD loss results

combined over the benchmark and CASP. We report the results of Friedman statistical

tests with Hommel’s post-hoc analysis [125]. We note that Friedman’s test is ideal for

conducting statistical significance of multiple methods contending over multiple test cases.
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The test is non-parametric and evaluates the null hypothesis. The null hypothesis states

that there is negligible difference between the contending methods. Once the null hypothesis

is rejected, we conduct Hommel’s post-hoc analysis to justify the performance of SNMF-

DS with respect to the other methods. The statistical tests are performed on all the 28

targets at α = 0.05. The results are shown in Table 7.6. The lowest average rank reported

in Columns 2 and 5 for RMSD loss and purity, respectively, indicates the best method

(marked with an star); we note that SNMF-DS is reported as the best on either RMSD loss

or purity. We note that a method is said to be significantly different from the best one,

when the p-value of the corresponding method is less than that of the p-Hommel at α =

0.05 (values are indicated in bold). Therefore, Table 7.6 clearly shows that SNMF-DS is

the best method irrespective of the performance measure, purity or RMSD loss. In fact, for

RMSD loss, SNMF-DS significantly outperforms all the other methods; for purity, SNMF-

DS outperforms MUFOLD-CL, while there is insignificant difference with NMF-MAD.

Table 7.6: Statistical significance of different methods over all 28 targets (benchmark and
CASP) determined through Friedman’s tests with Hommel’s post-hoc analysis at α = 0.05.
The best method is marked with an star (⋆), while boldface indicates that the corresponding
method is significantly different in comparison to the best method. Note that SBROD does
not produce a group, hence no purity analysis can be provided.

Method
RMSD Loss Purity

Avg. p p Avg. p p
Rank value Hommel Rank value Hommel

NMF-MAD 2.929 0.002 0.006 1.679 0.593 0.593

MUFOLD-CL 2.679 0.017 0.034 2.786 2.91E-6 5.8E-6

SBROD 2.536 0.049 0.05

SNMF-DS⋆ 1.857 - - 1.536 - -
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7.4 Summary

The work described in this chapter shows that SNMF-DS is a powerful method that out-

performs state-of-the-art methods. The presented results are encouraging, as exploiting

non-negative matrix factorization is a relatively new thread of research for molecular struc-

ture modeling and further support extending matrix factorization to tensor factorization by

utilizing a collection of proximity measures (rather than a single one as in SNMF-DS). In

chapter 8, we describe a hybrid framework capable of not only organizing structures into

groups but also scoring individual structures, thereby additionally addressing the EMA

problem we laid out in chapter 2.
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Chapter 8: Tensor Decomposition-based Method to

Organize, Score, and Select Structures

In this chapter, we suggest a shift from matrix-factorization to tensor factorization-based

method that can support further utility alongside the organization of tertiary structures of

a protein into groups. In fact, the method doubles as a non-parametric clustering technique

and so can broadly support various application settings. We investigate its efficacy on the

hallmark EMA problem. The framework falls in the category of multi-structure methods,

as it can extract information from multiple structures of a given protein. Furthermore, as

we want to demonstrate the method as a complete EMA framework, it should additionally

allow us to obtain an individual score/distance for each structure that can serve as a proxy

of the quality/accuracy of a structure in the set it belongs to. By analyzing such scores

and the structure with the best score over many protein targets, we can evaluate the de-

scribed method with state-of-the-art methods, including single-structure methods that are

currently considered the best-performing ones in EMA. The work described here has been

disseminated in [126].

8.1 Non-negative Tensor Factorization (NTF)-based Frame-

work to Organize Protein Structure Space

We refer to the method as NTF-REL (non-negative tensor factorization with RESCAL)

which can proceed in four stages. Stage I organizes given structures into groups {Gi} via

tensor factorization. Stage II utilizes energies to rank the groups. Stage III partitions each

group into subgroups and ranks them. Stage IV utilizes all this information to compute a

score for each structure. A schematic is related in Fig. 8.1.
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Figure 8.1: (a) Schematic of NTF-REL, (b) Finding the number of latent features with
non-negative RESCAL factorization.

8.1.1 Stage I: From Structures to Groups

Different metrics for comparing two structures can capture different aspects and often pro-

vide complementary information [127]. This concept motivates us to go from matrix to

tensor. In fact, we can form a tensor X by stacking (symmetric) similarity matrices Si
n,n

obtained on n structures, where i refers to a particular metric. Entry (a, b) in Si measures

the similarity according to metric i between two structures at positions a, b in a list of n

structures; Si
a,a = 1. We utilize 5 popular domain-specific metrics, RMSD, TM-score, GDT-

TS, GDT-HA, and MaxSub Score. Since RMSD is a dissimilarity measure, we turn it into a

similarity one as in Sa,b =
1

RMSD(a,b) . Now, Each S
i is a slice of the tensor. Each structure
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can be stripped down to its main-chain carbon atoms (CA atoms) thereby reducing the cost

of computing the tensor.

As Fig. 8.1 represents the schematics of the framework, we employ the RESCAL tensor

factorization approach [128] integrated with an automatic latent dimension determination

method [129]. RESCAL was initially intended for extracting latent communities in re-

lational data coming from dynamic networks. However, there exists recently proposed

tensor-based frameworks that support both stationary and non-stationary systems [130].

Specifically, RESCAL factorizes tensors formed by a set of m stacked matrices of graphs

(each graph has n nodes), Xn×n×m into a factor matrix An×k and a core tensor Rk×k×m,

where k is the latent dimension (or number of the latent communities/groups). The factor-

ization solves the following optimization problem:

argminA,R ∥X −R×1 A×2 A∥2F (8.1)

where ×i denotes the mode−i product [131]. The extracted factors are interpretable; each

column of A represents a latent community/group of objects, and each slice Rm of the

core tensor R captures the relations among the groups at instance m. Considering the

non-negativity of the data, we employ non-negative RESCAL [132]. The optimization with

non-negativity constraints is given by,

argminA,Rm

∑
m

∥∥Xm −ARmA
⊤∥∥2

F
subject to

∑
j Aij = 1, for 1 ≤ j ≤ k;A,R ≥ 0

Fig. 8.1(b) demonstrates the mechanism for the adaptation of RESCAL integrated with

an algorithm to find the k latent groups, to which we refer as RESCAL-k [129]. RESCAL-k

consists of the following components:

(1) Custom Resampling: We generate an ensemble of tensors from X, [X(q)]q=1,...,P ;

where the mean of these tensors is equal to the original tensor X. Each of these tensors

X(q) is built by perturbing each of the elements using random uniform noise, such that

X(q) = X(⊙)∆q (further details can be found in [133]).
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(2) RESCAL Minimization: We use Frobenius norm-based multiplicative updates [128]

to explore various numbers of latent features; k in an interval [kmin, kmax], for each of the P

generated random tensors X(q). The decomposed component A corresponds to the samples

in reduced latent dimension n×k denoting the groups, whereas R is the k×k×m relational

tensor representing the group interactions.

(3) Custom Clustering: For each k ∈ [kmin, kmax], we cluster the set of the n × k

latent components. To extract the latent dimension, we determine the dependency of the

stability of the obtained clusters and the improvement of the reconstruction error on the

latent dimension k. The final latent components, Ã, are the medoids of the obtained stable

clusters, with R̃ denoting the corresponding mixing coefficients. The latent group estimation

pipeline is based on the pyDNMFk toolbox [134,135].

Figure 8.2: The stability analysis for one of our protein targets from CASP, T1008-D1.
Candidate values of k contain considerably larger gaps between the relative reconstruction
error and the silhouette statistics with silhouette score ≥ 0.6. Out of the candidates (2, 3,
and 5), we choose the one with the lowest reconstruction error (i.e., kopt = 5 here).
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RESCAL-k employs Silhouette statistics [136] to determine the cluster stability for each

k. The Silhouette parameter that quantifies the cluster stability is in the range [−1, 1],

where −1 corresponds to a bad clustering and 1 to perfect clustering. Fig. 8.2 shows how

using both Silhouette and reconstruction norm, we can determine the optimal k. The final

representative A corresponding to the RESCAL factorization of X for kopt estimated by

RESCAL-k is then used to identify the best composition of the k groups identified, as

illustrated in Fig. 8.2.

8.1.2 Stage II: Ranking Groups

After determining the group composition using the matrix A as described above, we can

then rank the groups. Each group (of structures) may be associated with the average value

over energies of the structures in the group. The groups can then be ranked in ascending

order of the group energy score; the group with the lowest score is the best-ranked group.

The rank of a group G is denoted by RG.

8.1.3 Stage III: Partitioning Groups into Subgroups

We hybridize the tensor-based approach above with graph clustering. We utilize work

in [27] which embeds structure-energy pairs in a nearest-neighbor graph (using RMSD

to identify nearest neighbors), over which it identifies local energy minima representing

different energy basins and groups vertices into basins. The methodological details are

described in section 5.2.3. Our adaptation here is not to apply this approach over all n

structures, but instead to apply it to each group identified via tensor factorization in order

to partition each of them into “basins”; to which we refer more generally as subgroups.

8.1.4 Stage IV: Scoring each Structure

To score each structure, we modify the strategy proposed in [28], which employs a model den-

sity score [109]. Let a structure xi belong to a group G comprised of l structures. As in [28],

we associate a density score dti with xi as: dti =
∑l

j=1 TM−Scorei,j
l , where TM− Scorei,j is
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the TM-Score between xi and xj (1 ≤ i, j ≤ l). In principle, different metrics can be

measured; unlike work in [28], which uses RMSD, we use TM-score; its [0, 1] range easily

translates via the above formula into density scores in the range [0, 1].

Our density score additionally utilizes information from Stages II-III. Let the number of

subgroups in group G be z. The subgroups are first sorted and ranked in descending order

of size. Let the rank of each subgroup g ∈ G be rg. The last d′
(
d′ =

⌈
z
3

])
subgroups are

further sorted (in ascending order) by the average potential energy of the structures in a

subgroup, resulting in rg
′.

The modified structure density score dt
′
i is then:

dt
′
i =


dti

max(RG)+rg ′
if xi ∈ last d′ subgroups

dti
RG+rg

otherwise

Using these modified scores, we then assign weight/score wi to each structure as in: wi =

edt
′
i . Once the structures are weighted in this manner, the highest-weight structure is

considered as the best structure.

8.2 Experimental Setup and Evaluation Results

We compare NTF-REL to representative SOTA methods: (1) Single-structure methods

ProQ2 [137], ProQ3 [138], ProQ3D [139], and ProQ4 [140], and (2) recent NMF-based

methods [29, 30] which were shown to outperform MUFOLD-CL and other multi-model

methods. We evaluate NTF-REL on the same two datasets (described in section 7.2) that

we have employed for our symmetric NMF-based method, SNMF-DS. These NMF-based

methods were shown to outperform MUFOLD-CL and other multi-model methods. We

present three sets of results: comparison with SOTA methods on target-wise correlation

with respect to the true TM-Score, structure loss, and an analysis of statistical significance.
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8.2.1 Evaluation Metrics

Since NTF-REL assigns a score to each structure and hence can also select a single structure

as the best one, we evaluate its performance as an EMA method, as well as a single-structure

selection method. First, we evaluate the quality of the scores assigned to structures by

measuring the Pearson correlation between these scores and the true TM-Score from the

ground truth (the experimentally-known structure for each target). We also measure loss as

the difference in quality between the structure selected by a method and the best-quality

structure in a dataset, with quality assessed by any of the three following metrics, RMSD,

TM-Score, and GDT-TS, with respect to the experimentally-known structure.

8.2.2 Comparative Evaluation on Correlation with TM-Score

Table 8.1: Target-wise Pearson correlation with respect to true TM-Score. Top two values
are highlighted in boldface font.

Benchmark Targets
Target-ID NTF-REL ProQ2 ProQ3 ProQ3D ProQ4

1ail 0.7821 0.683 0.699 0.743 0.787
1dtj(A) 0.802 0.701 0.707 0.762 0.807
1dtd(B) 0.7713 0.675 0.683 0.733 0.776
1wap(A) 0.7432 0.658 0.665 0.713 0.747
1tig 0.715 0.624 0.634 0.689 0.719
1hz6(A) 0.741 0.647 0.657 0.714 0.745
1bq9 0.688 0.616 0.607 0.655 0.697
1c8c(A) 0.728 0.636 0.643 0.693 0.733
1fwp 0.733 0.641 0.646 0.702 0.728
1hhp 0.679 0.602 0.605 0.645 0.683
1sap 0.7066 0.617 0.621 0.673 0.711
2ci2 0.746 0.655 0.661 0.709 0.741
2h5n(D) 0.7204 0.623 0.637 0.685 0.724
1aoy 0.686 0.599 0.604 0.652 0.677
1aly 0.652 0.596 0.592 0.639 0.661
1cc5 0.709 0.627 0.625 0.684 0.714
1isu(A) 0.6938 0.607 0.611 0.679 0.698
2ezk 0.667 0.602 0.607 0.653 0.675

CASP Targets
Target-ID NTF-REL ProQ2 ProQ3 ProQ3D ProQ4

T0859-D1 0.7031 0.619 0.642 0.689 0.717
T0886-D1 0.6972 0.624 0.634 0.684 0.704
T0892-D2 0.7044 0.643 0.638 0.691 0.719
T0897-D1 0.6896 0.637 0.628 0.676 0.703
T0898-D2 0.7203 0.638 0.656 0.707 0.734
T0953s1-D1 0.701 0.632 0.603 0.652 0.708
T0953s2-D3 0.718 0.627 0.617 0.678 0.725
T0957s1-D1 0.738 0.602 0.635 0.696 0.745
T0960-D2 0.7161 0.624 0.646 0.667 0.731
T1008-D1 0.7533 0.643 0.648 0.701 0.761
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Table 8.1 relates the comparison on the benchmark and CASP targets. The top two

predictions on each target are highlighted in boldface font. Table 8.1 shows that NTF-REL

and ProQ4 outperform ProQ2, ProQ3, and ProQ3D on all benchmark and CASP targets.

NTF-REL performs comparably to ProQ4, with differences often observed in the third

digit after the decimal sign. In particular, both NTF-REL and ProQ4 achieve a Pearson

correlation higher than 0.7 on 12/18 of the benchmark targets, and 8/10 and 10/10 of the

CASP targets, respectively (with strictly no rounding). In many targets, both methods

achieve or come very close to a Pearson correlation of 0.8.

8.2.3 Loss-based Comparison

Table 8.2: NTF-REL, SNMF-DS, ProQ3D, ProQ4, and NMF-MAD are compared on
RMSD, TM-Score, and GDT-TS loss. Lowest loss per metric per target is highlighted
in boldface font.

Benchmark Targets

ID
RMSD Loss, TM-Score Loss, GDT-TS Loss

SNMF-DS ProQ3D ProQ4 NMF-MAD NTF-REL
1ail 0.5084, 0.0655, 0.072 0.357, 0.042, 0.034 0.486, 0.063, 0.057 0.971, 0.1604, 0.1357 0.1527, 0.03, 0.012
1dtj(A) 0.1941, 0.0048, 0.0296 0.125, 0.0118, 0.0057 0.21, 0.0179, 0.0089 0.3345, 0.0782, 0.1081 0.166, 0.0043, 0.026
1dtd(B) 0.3528, 0.0042, 0.0041 0.245, 0.0026, 0.0022 0.75, 0.0061, 0.0091 0.5915, 0.0329, 0.0451 0.117, 0.0015, 0.0016
1wap(A) 0.3425, 0.0288, 0.0166 0.352, 0.0277, 0.0245 0.423, 0.0311, 0.029 0.6219, 0.0531, 0.04 0.2285, 0.021, 0.0123
1tig 0.0717, 0.003, 0.0053 0.496, 0.0035, 0.0065 0.479, 0.0032, 0.0061 0.6569, 0.0469, 0.0483 0.72, 0.13, 0.091
1hz6(A) 0.0936, 0.002, 0.0034 0.397, 0.0031, 0.0042 0.291, 0.0025, 0.0039 0.809, 0.0415, 0.0352 0.1248, 0.005, 0.006
1bq9 1.1992, 0.1677, 0.1389 0.745, 0.112, 0.0896 0.673, 0.103, 0.0749 1.3089, 0.1167, 0.0755 1.6362, 0.226, 0.1875
1c8c(A) 0.7991, 0.1092, 0.086 0.521, 0.0953, 0.077 0.444, 0.0887, 0.069 1.092, 0.0596, 0.0429 0.7991, 0.1092, 0.086
1fwp 0.5085, 0.0034, 0.0036 0.473, 0.0048, 0.0013 0.491, 0.0059, 0.0019 0.5319, 0.0471, 0.0616 0.2658, 0.0019, 0.0023
1hhp 2.1971, 0.0601, 0.0707 0.928, 0.073, 0.069 0.77, 0.0467, 0.0503 2.6835, 0.2939, 0.2828 2.3188, 0.0634, 0.075
1sap 0.5592, 0.074, 0.0417 0.719, 0.0637, 0.0398 0.875, 0.0714, 0.0416 2.075, 0.0989, 0.125 0.3229, 0.045, 0.0248
2ci2 0.3118, 0.007, 0.006 0.213, 0.0056, 0.0042 0.831, 0.013, 0.015 1.7897, 0.3246, 0.3462 0.3656, 0.01, 0.008
2h5n(D) 3.7028, 0.3178, 0.3215 0.917, 0.0475, 0.0276 0.839, 0.0465, 0.0315 3.3498, 0.0805, 0.0732 2.987, 0.267, 0.2708
1aoy 2.7896, 0.1136, 0.093 1.265, 0.0567, 0.0428 1.074, 0.0511, 0.0431 2.9788, 0.2918, 0.2788 2.346, 0.107, 0.089
1aly 5.7842, 0.0167, 0.0368 2.674, 0.0162, 0.027 2.733, 0.0193, 0.0325 7.9939, 0.1411, 0.1635 2.912, 0.015, 0.0345
1cc5 0.4732, 0.048, 0.0452 1.161, 0.0791, 0.0388 1.045, 0.0602, 0.0441 2.1843, 0.0565, 0.0573 0.539, 0.054, 0.0509
1isu(A) 2.9928, 0.2182, 0.2299 1.036, 0.072, 0.0705 1.124, 0.0733, 0.0717 2.5552, 0.081, 0.0887 0.8689, 0.112, 0.135
2ezk 2.9154, 0.0188, 0.0177 0.729, 0.0027, 0.0063 0.625, 0.0019, 0.0042 3.5136, 0.0229, 0.0296 2.986, 0.021, 0.023

CASP Targets

Target ID
RMSD Loss, TM-Score Loss, GDT-TS Loss

SNMF-DS ProQ3D ProQ4 NMF-MAD NTF-REL
T1008-D1 0.3656, 0.007, 0.0011 0.2838, 0.04, 0.035 0.326, 0.091, 0.088 1.0238, 0.0156, 0.0162 0.2717, 0.006, 0.005
T0886-D1 3.6714, 0.03, 0.0362 0.983, 0.12, 0.112 1.147, 0.172, 0.153 2.5984, 0.0331, 0.029 2.9813, 0.038, 0.034
T0953s1-D1 2.9398, 0.02, 0.0112 0.564, 0.053, 0.041 1.179, 0.022, 0.019 2.613, 0.0225, 0.0223 3.3869, 0.0293, 0.0289
T0960-D2 1.8595, 0.0307, 0.0268 0.765, 0.13, 0.125 0.634, 0.067, 0.081 2.6181, 0.0182, 0.0178 1.519, 0.031, 0.033
T0898-D2 1.4889, 0.003, 0.0071 1.186, 0.019, 0.078 0.917, 0.0159, 0.068 2.3824, 0.0108, 0.0181 1.0799, 0.004, 0.0053
T0892-D2 0.9038, 0.0119, 0.004 1.257, 0.189, 0.076 1.391, 0.263, 0.097 2.8416, 0.0242, 0.009 1.5471, 0.021, 0.0038
T0953s2-D3 1.4223, 0.01, 0.011 0.954, 0.161, 0.136 0.818, 0.0685, 0.078 1.8621, 0.0256, 0.0153 1.3667, 0.0218, 0.0108
T0897-D1 3.471, 0.0263, 0.0108 0.973, 0.033, 0.013 0.849, 0.029, 0.011 2.9413, 0.0158, 0.009 3.1845, 0.025, 0.0102
T0957s1-D1 1.18, 0.0027, 0.0047 1.161, 0.031, 0.096 1.294, 0.078, 0.173 1.6803, 0.018, 0.0076 0.7426, 0.002, 0.0045
T0859-D1 2.3755, 0.056, 0.045 1.925, 0.0752, 0.0853 1.972, 0.0734, 0.0771 3.5967, 0.0329, 0.0132 2.3317, 0.0265, 0.0124
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The above analysis suggests that ProQ3D and ProQ4 decidedly outperform ProQ2 and

ProQ3, confirming findings reported in [111]. Therefore, we narrow further comparisons

to ProQ3D and ProQ4. Since NTF-REL is a decomposition-based methods, like SNMF-

DS and NMF-MAD, we add the latter two to the comparative evaluation on loss. As

described earlier, we compute RMSD, TM-Score, and GDT-TS loss and relate these results

in Table 8.2 on both benchmark and CASP targets.

Table 8.2 shows the superiority of NTF-REL over other methods. For instance, on the

benchmark targets, the RMSD loss incurred by NTF-REL is below 1Å for 12/18 of the

benchmark targets and under 2Å for 6/10 of the CASP targets. The structure selected by

NTF-REL has the minimum loss compared to the structure selected by other methods in

terms of at least one of the three metrics (RMSD, TM-Score, and GDT-TS) on 8/18 of the

benchmark targets and 6/10 of the CASP targets.

8.2.4 Statistical Significance Analysis

Table 8.3: Statistical significance of various methods over all 28 targets (benchmark and
CASP) determined through Friedman’s tests with Hommel’s post-hoc analysis at α = 0.05.
The best rank on either TM-Score or GDT-TS loss is highlighted in boldface.

Method
TM-Score Loss GDT-TS Loss

Avg. p p Avg. p p
Rank value Hommel Rank value Hommel

NMF-MAD 3.107 0.063 0.0167 3.607 0.0425 0.0125

SNMF-DS 3.249 0.0562 0.0125 2.911 0.7037 0.025

ProQ3D 2.923 0.151 0.025 2.768 0.9663 0.05

ProQ4 2.893 0.177 0.05 2.965 0.6121 0.0167

NTF-REL 2.322 – – 2.75 – –

We carry out a statistical significance analysis on both TM-Score loss and GDT-TS loss
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combined over the benchmark and CASP datasets. We report the results of Friedman’s

statistical tests with Hommel’s post-hoc analysis [125]. We note that Friedman’s test is

ideal for conducting statistical significance of multiple methods contending over multiple

test cases. The test is non-parametric and evaluates the null hypothesis (The null hypothesis

states that there is negligible difference between the contending methods). Then, we conduct

Hommel’s post-hoc analysis to fully evaluate the performance of NTF-REL in comparison

to other methods. The statistical tests are performed on all the 28 (benchmark and CASP)

targets at α = 0.05. The results are related in Table 8.3. The lowest average rank are

reported in Columns 2 and 5 for TM-Score loss and GDT-Score loss, respectively. The

best rank is achieved by NTF-REL on either TM-Score loss or GDT-TS loss. These results

conclusively demonstrate the superiority of NTF-REL.

8.3 Summary

The work described in this chapter presents a complete EMA framework that leverages a

novel, tensor factorization-based method. The framework associates a score with an indi-

vidual structure, so it has attributes of single-model EMA method. In addition, the method

organizes structures into groups, so it has attributes of a multi-model method. The hybrid

framework is shown to outperform various SOTA methods, including distance-based meth-

ods currently considered to be the most accurate. Furthermore, this tensor factorization-

based method doubles as a non-parametric clustering method and so can support various

structure-function studies requiring identification of structural macrostates.
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Chapter 9: Summarizing Structural Dynamics of

Antibody-Antigen bound System

This chapter demonstrates the ability of some of the algorithms described in this dissertation

in handling systems that go beyond a single molecule. In particular, we focus on organizing

structures of antibody-antigen bound molecular system obtained via MD simulation to

generalize our approach summarized in Chapter 5. The work described here has been

disseminated in [141].

9.1 Application Setting and Objective

The specificity and affinity of antibody-antigen recognition are mainly decided by the vari-

able domains and, in particular, the complementarity-determining regions (CDRs). The

recognition process involves structure transitions mediated by the antibody’s inherent flex-

ibility [142, 143]. Markov state models (MSMs) can be utilized to organize the structure

space and to summarize the structural dynamics. As MD simulation is utilized to navigate

the energy landscape of the free antibody and the energy landscape of the antigen-antibody

complex, we can employ the approach (described in Chapter 5) for this complex system.

A computational method that takes into account both structure geometry and energetics

can detect energy basins and make the connection between basins and macrostates, the

method organizes collected structures into macrostates. That means, this method handles

the state space discretization. Then, an MSM construction tool can be utilized to reveal

the inter-conversions between the so-identified macro-states and compute the precise state-

to-state transition probabilities that provide a quantitative view of the structure dynamics,

allowing a more detailed understanding of the impact of the bound antigen on the structural

dynamics of the antibody.
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9.2 Organizing Structures of Antibody-antigen boundMolec-

ular System

We first provide an overview of the computational pipeline and then provide further details

on the MD trajectories employed to obtain conformations of the free and antigen-bound

antibody, as well as on the various settings employed to represent and prepare such confor-

mations for analysis.

9.2.1 From MD Trajectories to an MSM of Dynamics

At its core, the pipeline takes in MD trajectories and returns an MSM transition probability

matrix, where each entry specifies the probability of transition between a pair of identified

macrostates. The first objective is to identify such macrostates. Once such states are

identified, the second objective is to use the temporal information available in the MD

trajectories to extract information on the accessibility of macrostates in terms of state-

to-state probabilities of transition. The result is an MSM that summarizes the dynamics

captured in the MD trajectories. Various statistical techniques then inform on the quality

of the obtained MSM.

Each MD trajectory is a series of conformations accessed consecutively in an MD sim-

ulation. An important decision with implications for the ability of the pipeline to identify

macrostates relates to the degree of the retained conformation representation detail for the

purpose of assigning conformations to macrostates. We address it empirically, by consider-

ing several reasonable representations and analyzing their impact on the resulting MSMs.

The second important decision concerns the lag time. It is often not feasible to analyze

all the conformations obtained via MD simulation. Most MSM construction tool allow the

user to select a lag time. This can be a multiple of the original time step between two

successive conformations in an MD trajectory. Selection of the lag time is in its essence a

data reduction strategy, as it allows skipping over conformations; as it can result in loss

of temporal and spatial resolution of the constructed MSM, we analyze its impact on the
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quality of the resulting MSM, as well.

From MD Trajectories to Macrostates (Basins in the Landscape)

As per our earlier studies [89,90], a better strategy to identify macrostates is to utilize the

energies of conformations obtained via MD simulation. In fact, the energy landscape con-

tains information on how conformations with similar energies inter-convert into one another

and so provides an opportunity to quantitatively understand the underlying dynamics of a

system of interest [144]. Our definition of macrostates utilizes this energy landscape view

of dynamics. A macrostate, which is a thermodynamically-stable (or semi-stable) state

does not directly rely on geometric similarity but instead corresponds to basins/wells in the

energy landscape. So we leverage our earlier work on summarizing sampled conformation-

energy pairs via energy basins [27]. Identification of basins relies on embedding the confor-

mations collected over all MD trajectories into a nearest-neighbor graph [39], where each

vertex is a conformation-energy pair. The methodological details are available in sections

5.2.2 and 5.2.3.

In summary, the methodology groups conformations into distinct, non-overlapping en-

ergy basins. The conformation that sits at the very bottom of a basin is denoted as its

focal minimum and is used as a unique identifier of a basin. Since basins contain actual

conformations, a basin can be summarized in terms of energies of the conformations in it

(minimum, mean, maximum energy), as well as the geometric dissimilarity among confor-

mations, measured, for instance, via the maximum pairwise root-mean-squared-deviation

(RMSD) [145] between conformations in a basin. We consider the identified basins to be

the macrostates.

From Macrostates to State-to-State Transition Probabilities (The Construction

of the MSM)

The next step is to compute the state-to-state transition probabilities. The MD trajecto-

ries are utilized for this purpose. In a given MD trajectory, a conformation a is followed
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by a conformation b. Let us consider that the process of assigning the conformations into

macrostates, has assigned some conformation a to some macrostate Sti and some confor-

mation b to some macrostate Stj . The observed transition from a to b is the evidence of

the transition from macrostate Sti to macrostate Stj and thus contributes one count to

the total counts of transitions from Sti to Stj . In this way, MD trajectories contribute to

the “count” matrix of transitions between macrostates. The counts are normalized to turn

them into probabilities.

Let us assume that the basin identification process above has resulted in M disjoint

states St1, St2, . . ., StM . A matrix of conditional transition probabilities between these

states is estimated from the simulation trajectories xt [20]. The transition matrix, T ≡ (

Pij): Pij(τ) = Prob (xt+τ ∈ Stj | xt ∈ Sti), where τ is the chosen lag time. This transition

matrix is the tangible product of what is referred to as the construction of the MSM. It

contains all the information needed, as every entry in the transition matrix specifies the

probability with which two states inter-convert into one another, thus summarizing the

dynamics of the system under investigation.

The transition matrix can provide more information about the system under inves-

tigation through its eigen-decomposition into eigenvectors and eigenvalues. The high-

est eigenvalue (with a value of 1) and its corresponding eigenvector represents the equi-

librium/stationary distribution. The higher the population of a macrostate, the more

thermodynamically-stable the macrostate is.

Statistical Evaluation

The MSM resulting from the computational process described above is subjected to rig-

orous analysis in order to evaluate whether the constructed MSM is reliable to utilize for

making predictions regarding dynamics. As in other studies [90, 146], we employ two main

tests, the convergence analysis and the Chapman-Kolmogorov (CK) test. Both check for

the Markov property that the MSM is memory-less; that is, the conditional probability dis-

tribution of future macrostates depends only upon the current macrostate and not on prior
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macrostates [19]. In our analysis, we conduct both evaluations whether the state-space de-

composition (assignment of conformations into macrostates) results in a high-quality MSM.

Convergence Analysis: The convergence analysis tests whether the duration of the lag

time is sufficient to guarantee that the state space discretization maintains the Markov

property. If the state space decomposition is accurate, conformations within a state inter-

convert on timescales faster than the lag time and transition to other states on slower

timescales. It is standard practice to verify this property visually, via interpretation of

the generated implied timescale plot of the model relaxation timescale versus model lag

time. One expects to observe an exponential decay in the plot to system equilibrium.

With relaxation timescales being physical properties of the system, ideally, the implied

timescales need to be independent of the lag time. According to the variational principle of

conformation dynamics [147], it is desirable for the model to have a longer timescale. For

an ideal model with good discretization, the implied timescales plot exhibit convergence

within fewer steps.

CK Test: Discretization error can result in a deterministic fluctuation of the MSM dy-

namics from the actual dynamics that remains persistent even when excluding statistical

error by means of excessive sampling [148]. The propagation error on the discrete space is

measured by checking whether the approximation, [T̂(τ)]k ≈ T̂(kτ) holds within statistical

uncertainty where, T̂(τ) is the transition matrix estimated from the data at lag time τ , and

T̂(kτ) is the transition matrix estimated from the same data at longer lag times kτ . The

Python library we use for this purpose, PyEMMA, allows testing different models. Given

a model estimated at lag time τ , a prediction can be made of a model quantity for lag time

kτ ; the prediction can then be compared to an independently-estimated model at kτ . The

CK test computes the transition probability between meta-stable states for increasing lag

times. The determination is made visually; ideally, plots show that the estimated and the

predicted model exhibit negligible deviation.
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9.2.2 Conformation Generation and Preparation

MD Simulations for Conformation Generation

The free antibody molecule (PDB ID: 1IGT) contains 20, 544 atoms (1, 322 amino acids).

The antigen-antibody complex contains 21, 092 atoms (1, 356 amino acids). Initial anti-

body random conformations are generated by adjusting three sets of torsion angles: 231C-

232N-232CA-232C, 232N-232CA-232C-233N, and 232CA-232C-233N-233CA (numbering in

1IGT), each step with 60◦ rotation. During the conformation randomization, the Fc domain

is kept fixed, whereas the Fab domain moves freely, leading to 216 conformations. Exclud-

ing conformations with closed Fab domain or with Fc domain clashes, 12 conformations are

selected as the starting points for the MD simulations. That is, we perform 12 independent

MD simulations of the antibody with 12 different initial conformations. Each MD trajec-

tory is 53−54 nanoseconds long, with a time step of 4 picoseconds between two consecutive

frames/conformations. Thus, a total of 160, 000 conformations are generated for both the

free antibody and the antibody-antigen complex in this manner. The MD simulations are

conducted using the NAMD software [17] with CHARMM force field [142]. Further details

regarding the process of conformation generation can be found in [142].

9.2.3 Preparation of Conformations for Analysis

From a given trajectory file (.dcd format), conformations are extracted using the mdcon-

vert command-line script from the MDTraj python library. Considering a time lag of 128

picoseconds, which corresponds to selecting every 32nd frame in a trajectory file, we obtain

5, 000 conformations for the free antibody and the antigen-antibody complex, respectively.

We consider several options for representing conformations of each system.

Cartesian Coordinate-based Representations

Setting 1: In this setting, each conformation is simplified to a high-dimensional point

(CA1.x, CA1.y, CA1.z, CA5.x, CA5.y, CA5.z, CA10.x, CA10.y, CA10.z, . . . ), effectively
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skipping every 4 consecutive CA atoms. This makes it computationally feasible to compare

conformations, which is a central step to embedding conformations in a nearest-neighbor

graph for the purpose of identifying basins.

Setting 2: In this setting, we consider all CA atoms; it is more computationally costly

to compare conformations via this representation and identify basins but one does retain

more detail.

Principal Component-based Representations

We rely on Principal Component Analysis (PCA) to identify a few variance-preserving

dimensions along which to project collected conformations and obtain “reduced” coordinates

for them. PCA is popular to analyze protein conformations [88, 149–151]. Specifically, we

construct a matrix A3k×n, where n = 5, 000 conformations and k is the number of CA

atoms in the molecule of interest. All conformations are first optimally superimposed over

the first conformation (chosen arbitrarily to be the reference conformation). The reference

conformation is then “subtracted” from each of the conformations, and the matrix stores the

resulting deviations. The purpose for this is to capture internal conformation changes rather

than differences due to rigid-body motions (translations and rotations in three-dimensional

space). A singular value decomposition of 1
n−1 · A is then carried out to obtain the eigen-

decomposition 1
n−1 ·A3k×n = U3k×n · En×n ·V T

n×n. The eigenvectors/PCs are 3k-dimensional

vectors stored in the columns of U , in order of corresponding highest-to-lowest singular

values; these are stored in the diagonal of the E matrix. The singular values σi are square

roots of the eigenvalues ei, which provide the variance of the original (displacement) data

over the corresponding eigenvector PCi.

The main decision after utilizing PCA is to determine how many (projection) coordinates

to be employed for representing a conformation. Typically, an accumulation of variance

analysis is conducted. After ordering the PCs by corresponding eigenvalue (highest to

lowest), at each PCi, the cumulative variance of {PC1, . . . , PCi} is plotted. The individual

variance of each PC is its eigenvalue, normalized over all eigenvalues (of all n obtained PCs).
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For the free antibody, the first five PCs cumulatively cover 80.89% of the total variance.

The first eight PCs cover 90.51% of the variance, and the first 23 PCs cover 99.05% of the

variance. Similarly, for the antigen-antibody complex, the first five PCs cumulatively cover

82.01% of the variance; the first nine PCs cover 91.77% of the variance, and the first 24

PCs cover 99.09% of the variance.

Setting 3: We set our goal at capturing no lower than 90% of the total variance.

This means that for the free antibody, each conformation is represented with 8 coordinates

(projections of a conformation on the top 8 PCs); for the antigen-antibody complex, this

threshold means that each conformation is represented with 9 coordinates.

Setting 4: We set the goal at capturing no lower than 99% of the variance. This means

that for the free antibody, each conformation is represented with 23 coordinates; for the

antigen-antibody complex, this threshold means that each conformation is represented with

24 coordinates.

Time-lagged independent component-based Representations

TICA is a linear transformation method. In contrast to PCA, which finds coordinates of

maximal variance, TICA finds coordinates of maximal auto-correlation at the given lag

time. TICA is useful to find the slow components in a dataset and a reasonable choice to

transform MD data.

Setting 5: In this setting, our goal is to capture no lower than 90% of the total

variance. This means that for the free antibody, each conformation is represented with

2273 coordinates (projections of a conformation on the top 2273 components); for the

antigen-antibody complex, this threshold means that each conformation is represented with

2341 coordinates.

Setting 6: We now set the goal at capturing no lower than 99% of the variance. This

means that for the free antibody, each conformation is represented with 3189 coordinates; for

the antigen-antibody complex, this threshold means that each conformation is represented

with 3275 coordinates.
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9.2.4 Evaluation Setup

Whether for the free antibody or the antigen-antibody complex, we construct six different

MSMs corresponding to the described settings. Convergence analysis and CK tests are

utilized to evaluate the quality of each MSM. The best MSM (setting-1) obtained for each

system is investigated in greater detail in the results section, and comparisons are made

to understand the main differences in the conformation dynamics between the free and

antigen-bound antibody.

9.3 Evaluation Results

Out of the six settings, according to the convergence analysis and the CK test, the best

MSM obtained for the free antibody as well as for the antigen-antibody complex results

from Setting 1. The rest of the analysis in this section focuses on the basins and MSMs

resulting from this setting.

9.3.1 Visual Comparison of Embedded Landscapes

We first relate in Fig. 9.1(left panel) a two-dimensional embedding of the energy landscape of

the free antibody and the antigen-antibody complex, respectively. The 5000 conformations

sampled from the 12 MD trajectories for each system, are subjected to PCA. Each dot shows

the projection of a conformation on the top two (highest-variance) PCs; two PCs capture

close to 60% of the total variance for the free antibody and more than 60% of the variance

for the antigen-antibody complex. The color-coding relates the energies of the projected

conformations, with a blue-to-red color-scheme denoting low-to-high internal energies.

The energy landscape of the free antibody contains four main clusters with a diffused

distribution of low-energy conformations (top-left panel). After antigen binding, the dis-

tribution of the clusters becomes more diffusive (bottom-left panel), and the low-energy

conformations are enriched in only two clusters. These observations hold even when more
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conformations are included in the analysis; adding 5, 000 more conformations for each sys-

tem (selected every 16th frame over the MD trajectories) does not change the main features

of the embedded landscapes; existing clusters do not merge, and no new clusters emerge as

shown in Fig. 9.1(right panel).

Free Antibody Landscape Embedding

Antigen-antibody Landscape Embedding

Figure 9.1: Left panel: Embedding of 5, 000 sampled conformations (selected every 32nd
frame in MD trajectories over the top two PCs for (top panel) the free antibody and
(bottom panel) antigen-antibody complex; projections are color-coded by the energies of
corresponding conformations (low-to-high in a blue-to-red color scheme). Right panel: 5, 000
more conformations are sampled in each case, for a total of 10, 000 (selected every 16th frame
in MD trajectories); PCA is re-conducted, and projections are shown.
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9.3.2 Basin Analysis

Free Antibody Antigen-Antibody Complex

Figure 9.2: The minimum RMSD (Å) (over backbone atoms) between the focal minimum
conformation representing a basin and the conformations starting each of the MD trajecto-
ries is shown. The x-axis shows the pairs corresponding to the minimum RMSD values. B*
denotes (the focal minimum conformation of) a basin, numbered B1-13 for the free antibody
and B1-12 for the antigen-antibody complex. S* denotes the conformation starting an MD
trajectory, numbered S1-12.

Thirteen basins are identified over the free antibody landscape; twelve basins are iden-

tified over the antigen-antibody conformations. We evaluate whether the identification of

basins is biased by the starting conformation of the various MD trajectories as follows. The

focal minimum conformation that sits at the bottom of a basin is considered as an identifier

and representative conformation of a basin. The RMSD between this conformation and

each conformation starting an MD trajectory is calculated. This calculation is repeated

for each basin (representative conformation) against all starting conformations (of all MD

trajectories), and related in Fig. 9.2.

Fig. 9.2 shows that the identification of basins is not biased by the conformations starting
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the MD trajectories. The method does not trivially assign the conformation that initiates

an MD trajectory as the focal minimum of a basin. For the majority of the basins, the

focal minimum conformation that uniquely represents a basin (its deepest point) resides

on average more than 10Å away from the starting conformation of a trajectory. Some

lower values are noted: between 5 and 10Å for 3 of the focal minima identified for the free

antibody and for 2 of the focal minima identified for the antigen-antibody complex; in the

latter case, one of the focal minima resides closer than 5Å to the starting conformation of

an MD trajectory.

9.3.3 Summarization and Comparison of Dynamics

The best MSMs constructed for each system, free antibody versus antigen-antibody com-

plex, are related in Fig. 9.3. For each system, the equilibrium/stationary distribution is

shown first in the top panel via a pie chart limited to the 6 most populous macrostates (la-

beled as B1-6 for basins; the numbering of basins observes the basin size). In each pie chart,

the population of the remaining macrostates is accumulated and labeled as B*. The bottom

panel shows the transitions (again limited to the 6 most populous macrostates identified by

the stationary distribution analysis).

Interesting observations can be drawn for the free antibody from the left panel of Fig. 9.3.

One macrostate (largest basin), is significantly more thermodynamically-stable than the

others, with an equilibrium population (31%) close to being 1.5 times than that of the

next stable macrostate (23.95%). Three other macrostates have populations in the 8− 16%

range, and the rest are 5.04% or lower. The self-transition probabilities are large. For

four of the six basins, the self-transition probabilities are very high (above 0.94). Two

exceptions are noted. Basin 1 has a lower self-transition probability of 0.8412. Basin 5

has an even lower self-transition probability of 0.623. While the cumulative out-of-basin

transition probabilities for four basins (B2, B3, B4, B6) are just below 0.045; basin 5

transitions to basin 1 with a higher probability of 0.325, and basin 1 transitions to basin 5

with a probability of 0.1195.
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Free Antibody Antigen-Antibody Complex

Figure 9.3: Top Panel: Pie chart of adjusted state populations, showing the stationary
distribution for the 6 top-populated macrostates/basins, with the other states accumulated
in B*. Bottom Panel: MSM schematic. Basins are drawn as disks, with radii proportional
to size (number of conformations). Transitions between basins are drawn as arrows, and
transition probabilities are shown. The visual summary is restricted to the six top-populated
states. Trailing arrows indicate transitions to other states.

108



A similar analysis carried out over the MSM shown in the right panel of Fig. 9.3 for

the antigen-antibody complex. The stationary distribution is not as skewed as for the free

antibody. There is no single macrostate with a population significantly higher than others;

three macrostates (B1, B4, B6) have comparable populations in the 23 − 27% range. The

self-transition probabilities for the antigen-antibody complex are lower than those observed

for the free antibody. Basins 1-3 have self-transition probabilities between 0.92 and 0.93.

Basins 4-6 have much lower self-transition probabilities in the range 0.6-0.88. Basin 4

transitions to basin 1 with a probability of 0.11. Basin 5 transitions to basin 3 with a

probability of 0.13 and to basin 2 with a probability of 0.1. Basin 6 transitions to basin 1

with a probability of 0.3. This suggests that the energy landscape of the antigen-antibody

complex allows for more transitions among the various basins than the energy landscape of

the free antibody.

Free Antibody

Antigen-Antibody Complex

Figure 9.4: Focal minima conformations corresponding to basins B1-6 in the MSMs shown
schematically above are drawn here with VMD [152] for (top panel) the free antibody and
the (bottom panel) antigen-antibody complex, respectively. Chains are drawn in different
colors.
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9.3.4 Visualization of the Largest Basins.

Finally, we visualize the focal minima conformations corresponding to the 6 largest/most-

populous basins for the free antibody and the antigen-antibody complex. Fig. 9.4 visualizes

these conformations with the help of graphical representation in the VMD software [152]

using different colors for the various IgG domains.

9.3.5 Discussion

Based on the first two PCs and the conformational energies, we find that the conformational

energy landscape of the free antibody mainly contains four clusters with a diffused distribu-

tion of low-energy conformers. After antigen binding, the distribution of the four clusters

becomes more diffusive. However, the low-energy conformers’ distributions narrowed and

are enriched only in two of the four clusters. Such behavior provides new insights into

previous analyses. Previous studies found that the free antibody has one major cluster that

splits into two clusters after antigen binding. Both the current work and previous studies

agree on the two major clusters of antigen-antibody complexes, but the analysis presented

here provides a more detailed view of the energy landscape.

The MSM-based analysis in this study shows that, with antigen binding, there are

considerable conformation transitions among the different basins. These results suggest

that the antigen-bounded form with high energy may provide many dynamic processes to

further enhance co-factor binding of the antibody in the next step. We also observe that

antigen binding causes reduction in the number of macrostates/basins across all the settings.

Simulating the dynamics of large proteins and their complexes places large computational

demands. Analyzing their conformation dynamics poses additional difficulties.

9.4 Summary

This chapter demonstrates how one can extend application of the framework developed in

chapter 5 from small peptides to larger, even complexated biological systems and so makes
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a case for the broader utility and generalization of state space discretization via Markov

State models (MSM) of dynamics.
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Chapter 10: Conclusion and Future Work

This dissertation has made several contributions in developing and applying unsupervised

learning frameworks for organizing the structure space of peptides, uncomplexated, and

complexated protein molecules to reveal one or more functionally-important (biologically-

relevant) structural states. The major contributions can be summarized as:

• Chapter 4 demonstrated the utility of embedding computationally sampled tertiary

structures of a protein molecule in a graph and leveraging the graph embedding cou-

pled with community detection algorithms to elucidate the organization of the struc-

ture space by extracting groups that are highly likely to contain functionally-relevant

structures.

• Chapter 5 introduced and demonstrated the utilization of an energy landscape-based

framework to leverage the organization of the protein molecular structure space and

construct discrete models of structural dynamics.

• Chapter 6 marked the opening of a relatively new avenue of research for molecu-

lar structure modeling under the umbrella of matrix factorization in addressing the

challenges of identifying functionally-relevant structures from sparse datasets. Chap-

ter 7 followed this line of work with a more powerful, feature-free, and non-parametric

method with additional capabilities of not only extracting functionally-relevant groups

but also selecting a single biologically-relevant structure.

• Chapter 8 introduced a more robust hybrid framework relying on tensor factorization

which serves not only as a single-structure and multi-structure method but also as a

complete solution package for the hallmark EMA problem.
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• Chapter 9 investigated the applicability of the energy landscape-based approach on

organizing structures of an antibody-antigen bound molecular system obtained via

MD simulation to show the generalizability of the approach presented in Chapter 5.

Future Directions

We hope that the works presented in this dissertation will further inspire researchers along

several envisioned research directions.

• It would be worthwhile to investigate the applicability of different methods described

in this dissertation, especially the factorization-based techniques, in constructing dis-

crete models of dynamics capable of quantifying the state-to-state structure transitions

at equilibrium, revealing crucial mechanistic information about a molecule.

• Another interesting direction would be to figure out how different factorization-based

frameworks can be employed to support additional applications, such as molecular

docking, which is a vital component of the drug discovery and design process. It is

worth mentioning here that such settings go beyond a single molecule system and

hence this also comes with additional challenges, such as determining the role of

different types of energies (potential energy, interaction energy) in the underlying

process.

• On a more general note, finding the subset of structural coordinate dimensions that

reveal the most informative grouping corresponding to the functionally-relevant ones

warrants further exploration. One can consider dimension weighting and reduce the

problem to learning the weights of the different dimensions to optimize an objective

function that measures the quality of the biologically-relevant groups. Probably, a

more sophisticated way to approach this is to apply subspace clustering, which is a

relatively unexplored domain for these problem settings.
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Finally, while the presented frameworks and evaluation techniques focuses on the tertiary

structures of protein molecules, the methods and the selection strategies are general and

can be extended beyond the settings of protein molecular system and investigated more

generally for high-dimensional spaces.
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