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Abstract

UNDERSTANDING DESIGN SPACE EXPLORATION OF FPGAS FOR EFFI-
CIENT ACCELERATED CORE PROCESSING

Sara Bondi Ogburn

George Mason University, 2019

Thesis Director: Dr. Houman Homayoun

Field-Programmable Gate Arrays (FPGA) are powerful processing platforms to

support an efficient processing for a diverse range of applications. Recently, High-

Level Synthesis (HLS) tools emerged and shifted the paradigm of hardware design and

made the process of mapping high-level programming languages to hardware design

such as C to VHDL/Verilog feasible. HLS tools offer many techniques to optimize

designs for both area and performance, but resource usage and timing reports of

HLS tools mostly deviate from post-implementation results. In addition, to evaluate

a hardware design performance, it is critical to determine the maximum achievable

clock frequency. Obtaining such information using static timing analysis provided

by CAD tools is difficult, due to the multitude of tool options. Moreover, a binary

search to find the maximum frequency is tedious, time-consuming, and often does

not obtain the optimal result. To address these challenges, this thesis proposes a

framework, called Pyramid, that uses machine learning to accurately estimate the

optimal performance and resource utilization of an HLS design. For this purpose,

first a database of C-to-FPGA results from a diverse set of benchmarks was created.



To find the achievable maximum clock frequency, Minerva was used, which is

an automated hardware optimization tool. Minerva determines the close-to-optimal

settings of tools, using static timing analysis and a heuristic algorithm, and targets

either optimal throughput or optimal throughput-to-area. Pyramid uses the database

to train an ensemble machine learning model to map the HLS-reported features to the

results of Minerva. To this end, Pyramid re-calibrates the results of HLS’s report in

order to bridge the accuracy gap, and enables developers to estimate the throughput

or throughput-to-area of a hardware design by more than 95% accuracy, without

performing the actual implementation process.



Chapter 1: Introduction

The end of the Dennard Scaling [1] era and the thrive to achieve high performance

led to the evolution of new computer architecture designs. ASICs are not the best

hardware execution platform anymore due to the design complexity, involved cost,

and time-to-market challenges.

New platforms such as FPGAs emerged as the potential solution, despite the

fact that FPGAs are nearly one order magnitude slower than specialized ASICs

[10]. FPGAs enjoy other benefits such as on-the-fly programmability, reconfigurabil-

ity, energy-efficiency, and the development of hardware/software co-design platforms.

This also facilitates developers in designing hardware without requiring deeper in-

sights into such hardware [6].

HLS tools such as Xilinx’s Vivado HLS [19] and Intel’s HLS [14] are widely used to

simplify the design efforts and expedite time-to-market. HLS tools translate a design

written in high-level languages such as C/C++/SystemC into a low-level hardware

description language. However, HLS-generated register-transfer-level (RTL) models

are, in general, not human-readable. HLS has shortened the learning curve of hard-

ware accelerator design by obscuring the details of the hardware execution model.

Moreover, HLS enables quick modification of a design by adding directives such as

pipeline and unrolling factors that allow programmers to explore the design space.

Additionally, HLS tools report an estimation of the expected timing, latency, and

resource utilization of the design. These reports are important since most of the time,
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they are the only evidence that a designer can use to repeatedly modify the design

and achieve better results.

Throughput and throughput-to-area ratio are some of the most important metrics

used for hardware evaluation. In hardware, the maximum throughput depends on the

maximum clock frequency supported by the design. The maximum achievable clock

frequency of a given HLS design can be estimated or measured at different phases of

the design process. An estimation of the maximum clock frequency can be obtained

from HLS timing reports [23]. Despite the importance of these reports, many of them

are highly inaccurate, as final resource usage and timing reports of HLS depend on

the implementation phases (such as logic synthesis and place&route) that are beyond

HLS tool capability. Therefore, it is difficult for even state-of-the-art HLS tools to

accurately estimate the performance and resource utilization of a design.

On the other hand, it is also possible to calculate the maximum clock frequency

in the implementation process. Timing results can be obtained after synthesis, plac-

ing&routing, or using actual experimental testing on the board. The post-synthesis

and post-place&route results are determined by the FPGA tools using static timing

analysis. However, there are challenges associated with the static timing analysis of

digital systems designs: The latest version of CAD tools provided by Xilinx (Vivado),

do not have the capability to report the maximum frequency achievable for the corre-

sponding code. The user must request a target frequency, and the tool reports either

a ”pass” or ”fail” for its attempt to achieve this goal. While there are 25 optimiza-

tion strategies predefined in the tool, applying them sequentially or in a number of

combinations is extremely tedious and time consuming.

To address these challenges, this thesis proposes a framework called Pyramid

2



which uses an ensemble machine learning model to estimate the optimal throughput

or throughput-to-area of an HLS design only by using information extracted from

the reports of HLS tool. To this goal, first, Minerva [24] –an automated hardware

optimization tool that employs a unique heuristic algorithm which is customized for

frequency search using CAD toolsets, is used. By using Minerva, obtain results were

obtained in terms of throughput, and throughput-to-area ratio for the RTL code

generated by HLS tool. Then, using HLS reports and their corresponding results

from Minerva, a comprehensive dataset was built. This work leveraged hundreds of

features that can be readily extracted from the HLS reports to accurately estimate

the results of Minerva without actually running the implementation flow. By using

this dataset, the Pyramid framework trains an ensemble learning model to achieve

high accuracy (more than 95%) for the estimation tasks.

3



Chapter 2: Related Work

Early works [2] have long attempted to address the issue of expedited design space

exploration for a large number of input parameters toward the goal of a lower bound

for resource usage while satisfying performance constraints. In [10], the performance

prediction for Zynq-SoC is proposed, which estimates the performance based on the

execution time of an application on the FPGA. [26] utilizes linear programming apart

from machine learning, and focuses on device selection based on analyzed resource

usage. In [25], an analytic model is used for area estimation in HLS for SoCs, and

also explores HLS optimization pragmas. [12] focuses on a machine leaning solution

toward the selection of optimization for synthesis, map, and place-and-route tools

using sampling-based reduction of the parameter space. In [11], the authors present

InTime, a machine learning approach, supported by a cloud-based compilation in-

frastructure, to automate the selection of FPGA CAD tool parameters and minimize

the TNS (total negative slack) of the design. InTime does not have the capability to

find the actual maximum frequency with positive TNS near zero.

Recently, several studies applied machine learning for auto-tuning of frameworks

to explore design space of tool parameters for improving FPGA synthesis and im-

plementation [20], [27]. Machine learning was used in HLS to reduce the number of

design candidates required to run for implementation [16]. Others have used machine

learning for design space exploration by focusing on the regression inaccuracy, rather
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than its accuracy [18]. In [15], a three-layer ANN model was trained to estimate the re-

source usage of post-implementation from pre-characterized area models of a small set

of template-based designs. Different from prior work, this work uses machine learning

to re-calibrate the results of HLS reports to provide an accurate post-implementation

estimate of resource utilization and maximum supported frequency of HLS design for

developers.
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Chapter 3: Foundational Investigation

Prior to the solution proposed in this thesis, a number of foundational investigations

studying the impact of FPGA core processing relative to other processing methods

were conducted. This study bears significance to this work because it is important to

recognize the benefits and drawbacks of FPGA-accelerated processing before attempt-

ing to characterize its design space exploration. Additional study was conducted with

the goal of design space exploration in mind, but did not have the correct depth of

analysis to bear the same significance in ML training and outputs as is presented in

the main body of this work.

3.1 Image Processing Architecture Exploration

The first study involved a comparison among different processing architectures, in-

cluding CPU, GPU, and FPGA for a selection of 10 OpenCV applications. These

applications included filters, computational image processing, input processing, and

several general purpose image processing algorithms. This work was built upon the

analysis done in [17], and attempted to further understand how optimization of pro-

cessing cores could factor into performance against a baseline. This includes opti-

mization of the programmable logic (PL) to process several smaller cores in parallel

(described in Figure 3.1), and comparison of this optimization to the standard library

functions themselves with and without optimization.
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Figure 3.1: Implementation of Parallelized Accelerators [17]

These chosen library functions [29] were optimized for FPGA use with many HLS

optimization pragmas for loop unrolling, pipe-lining, etc. Figure 3.2 shows a small

subset of the data collected (for a single image size, 250x250 px) compared among

the different optimizations. The OpenCV applications were tested using a number of

image sizes in addition to the number of processing algorithms used.

While the main body of this work does not experiment with these types of opti-

mizations, it is important to note that it is a promising area for exploration to train a

ML model to the benefit of the developer. This would include considerations such as

the number and types of HLS optimizations and parallel processing cores that could

be added to the training feature set.
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Figure 3.2: FPGA Speedup over ARM A9 Core for OpenCV Applications

3.2 Cross-Platform Design Space Exploration

Another study focused on the gathering of HLS output metrics on a number of dif-

ferent devices as a means to train a ML model, similar to the work presented in the

main body of this thesis, as means of performance estimation for selection of devices

for a specified task. This work also used a sampling of 10 different FPGA-optimized

OpenCV image processing applications on a single image size. A total of 20 de-

vices from three main Xilinx families (Zynq, Artix, and Virtex) were used, including

among them 28nm, 20nm (UltraSCALE), and 16nm UltraSCALE+) technologies.

Many similar features were used for the training set, such as those associated with
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device utilization and performance. However, included was a measure of total esti-

mated execution time of the core and a ratio of how much of that time was spent only

in the processing core based on measurements from available tested SoCs, as well as

a speedup comparison with the execution time of the same core on an ARM Cortex

A9 processor (Figure 3.3).

0

1

2

3

4

5

6

X
 S

p
e

e
d

u
p

Figure 3.3: Single Accelerator Speedup over ARM for OpenCV Box Filter

Additionally, much like the first study, a theoretical number of parallel processing

cores was provided for the ML training set. This took into account the resource

utilization of the device under test, such utilization of LUTs, FFs, BRAM, DSPs,

and throughput using the maximum DRAM transfer bandwidth. Estimating the

number of parallel processing cores allowed for a inclusion of a speedup figure based

on either a single core or the total number of theoretical cores. Figure 3.4 shows a
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Figure 3.4: Max Accelerator Speedup over ARM for OpenCV Box Filter

sampling of the results obtained in this case. An Artificial Neural Network was used

as the ML model, with the end goal of being able to predict device utilization and

performance for devices beyond the training set (i.e., future devices that have not yet

come to market) for the benefit of designers.

While this work differed significantly in the metrics gathered and their distribution

across the selected devices, a major missing component in this work was the inclusion

of the post-implementation results. Results from this stage in the design process

allow a basis for comparison for the estimations reported by HLS, and without any

post-implementation results, it is simply a comparison among HLS reports which still

suffer from the inaccuracies of these reports, as discussed in a later section. The

main body of this thesis highlights the importance of this data in achieving accurate

estimation.
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Chapter 4: Challenges and Solution

In this section, two major challenges are explained: inaccuracy of HLS report, and

evaluation of hardware design that served as motivation to propose an ensemble

learning-based framework to improve the accuracy of HLS reports and minimize the

time required for finding the optimal resource utilization and timing of the design.

4.1 Inaccuracy of the HLS report

Figure 4.1: HLS design flow + the approach
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Figure 4.1 (the left part) shows HLS-based design flow which starts with a high-

level software program such as C, C++, or SystemC. The HLS tool translates these

high-level language programs into HDL models such as Verilog and VHDL. Addi-

tionally, HLS tools report the expected timing and estimated resource usage. At the

HLS stage, it is hard to accurately estimate the post-HLS (implementation) results

because the implementation process includes many non-trivial steps. Furthermore,

resource utilization (such as the number of LUTs, FFs, DSP, and block RAMs) and

timing reports depend on the target FPGA specification. HLS tools try to estimate

resource and timing of the design by characterizing functional units and instantiated

functional for each design. However, such estimation fails to capture the impact of

optimization during the implementation. Root Mean Squared Error (RMSE), pre-

sented in equation 4.1, was used to evaluate the accuracy of the estimation of HLS’s

report with respect to the results of post-implementation. This metric is used for

reporting of the error throughout this work.

RelativeRMSE =

√√√√ 1

N

N∑
n=1

(
pi − ai
ai

)2 × 100 (4.1)

where N is the number of samples, and pi and ai are the predicted and actual

values of the sample, respectively. Ideally, the percent relative RMSE should be

as low as possible. RMSE is a standard metric in regression which is sensitive to

scalability. Table 4.1 shows the Relative RMSE for timing and resource utilization

for the more than 90 studied benchmarks (details will be discussed later in this

paper). The results confirm the large gap between what is reported by HLS and the

implementation. This in fact is due to the implementation process, where the HDL

13



Table 4.1: Average HLS estimation error over 90 benchmarks

Devices Artix7 Kintex7 Virtex7
Targets Resource Timing Resource Timing Resource Timing

HLS Estimate 91.7% 23.6% 112.5% 28.1% 88.4% 17.2%

models go through logic synthesis, technology mapping, and placement and routing

which are not considered by the HLS tools. Therefore, post-implementation reports,

including the actual resource usage and timing on the target FPGA, significantly

differs from the HLS report.

4.2 Challenge of hardware evaluation

Throughput and throughput-to-area (Freq./#LUTs) are two of the most common

metrics for the evaluation of a hardware design. The calculation of these metrics is

complex, as there are several challenges in using static timing analysis for finding the

maximum clock frequency of a design. To show the challenge in finding maximum

clock frequency, synthesis and implementation were performed for the VHDL code of a

CAESAR Round 2 candidate (ICEPOLE). Worst Negative Slack (WNS) results were

generated for 128 different target clock frequencies in order to observe the trend. The

target clock frequency was set to 333 MHz, and the theoretically achievable frequency

(further referred to as the reference frequency) was calculated based on WNS, utilizing

the following equation:

MinimumClock = TargetClock −WNS (4.2)

In the next step, WNS results were generated for the requested clock frequency

14



varying from -64 to +64 MHz of the reference frequency, with a precision of 1 MHz.

Figure 4.2 shows the trend.

Figure 4.2: Dependence of WNS on the Requested Clock Frequency and graphical

representation of the binary search scheme

As observed in this Figure, there are fluctuations around the calculated reference

clock frequency. As can be observed, the result of binary search is 346 MHz (number

8 in the figure), which is not the correct maximum frequency. Based on the ICEPOLE

graph, the maximum frequency is 389 MHz. Therefore, based on the aforementioned

graph, designer cannot only rely on the above equation to calculate the actual maxi-

mum clock frequency. It is important to note that these results were obtained using

only default options of Vivado. Given the vast optimization strategies that exist in Vi-

vado, calculating the maximum clock frequency becomes more challenging. Another

challenge is that Vivado Design Suite offers 25 predefined optimization strategies,

which can be used to achieve a higher maximum frequency and a more optimized

15



design. Hence, incorporating all of these strategies leads to an even more tedious

navigation process. Therefore, a designer cannot reasonably be expected to navigate

all 25 optimization strategies due to the time-consuming process.

4.3 Solution

This work demonstrated that a commercial HLS tool targeting FPGAs incurs a large

error of 97.5% in estimating the resource usage. Similarly, the error for timing esti-

mation was found to be 22.9%. Such inaccurate estimates prevent developers from

applying the appropriate set of optimizations, leading to a poor trade-off. Moreover,

the static timing analysis of digital systems design provided in state-of-the-art CAD

tools is not able to report the maximum frequency achievable. Instead, the user

must deal directly with tens of optimization strategies available in the tools, which is

time-consuming and tedious. To circumvent such a brute-force approach to find the

maximum frequency, a recent work [24] proposed an automated hardware optimiza-

tion tool called Minerva. Minerva determines the close-to-optimal settings of tools

using static timing analysis and a heuristic algorithm developed by the authors, and

targets either optimal throughput (TP) or optimal throughput-to-area (TPA) ratio.

Minerva is designed to be used to automate the task of finding optimized results.

However, based on the size of the design, using Minerva may take a few minutes and

up to several hours.

Therefore, as a solution to these challenges, this work proposes a machine learning

based framework (called Pyramid) to re-calibrate the HLS reported results and map

them to the results of Minerva using the ensemble machine learning method. Fig-

ure 4.1 (the right part) shows the overview of Pyramid. In this way, without going

16



through the time-consuming process of full end-to-end implementation, using Pyra-

mid, developers can have an accurate post-implementation estimation of resource

utilization and maximum supported frequency of the design just after getting the

report of their HLS design.
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Chapter 5: Experimental Setup

For building a machine learning model, first a dataset for training the model is re-

quired. For this purpose, the results of HLS tool and its corresponding optimal

implementation’s results needed to be obtained. Here, this thesis presents the bench-

marks, FPGA devices, and the methodology of performing the experiments to collect

the required data.

5.1 Benchmarks and FPGA devices

The diversity of benchmarks is important in this study. Therefore, popular HLS

benchmark suites were used to make sure that the evaluation is comprehensive. The

selected benchmarks are from Machsuite [8], S2CBench [9], CHStone [4], and Rosetta

[28]. To increase the diversity and the size of the dataset, CAESAR Round 3 Candi-

dates’ HLS-ready codes [30] and a collection of 10 different image processing kernels

from Xilinx xfOpenCV [29] were used. A total of 90 benchmarks which include a

wide range of domains from simple kernels to machine learning and real-time video

processing that reflect the latest application trends wer used. Figure 5.1 shows a

detail of the benchmarks used.

The benchmarks are subdivided into four categories, such as machine learning, im-

age/video processing, cryptography, and mathematical applications to validate this

work’s hypothesis that the results of the machine learning techniques are applica-

tion dependent. The default version of HLS designs were used without applying
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Table 5.1: Benchmarks Used

Suite Benchmarks Abbreviations
Machsuite backprop, gemm, stencil, viterbi, nw M1, M2, M3, M4, M5
Rosetta digit-recognition, face-recognition, R1, R2, R3, R4, R5

3d-rendering, BNN, spam filtering
CAESAR Tiaoxin, KetjeSr, OCB, NORX, AEGIS C1, C2, C3, C4, C5
SHA-3 BLAKE, Groestl, Keccak, Skein H1, H2, H4, H5

any further directive to the designs. However, the dataset can be expanded by syn-

thesizing designs with additional HLS optimization directives. For selecting FPGA

devices, three different classes of FPGAs such as Low-end, Medium-end, and High-

end were targeted. All chosen devices were selected from Xilinx as follows: Artix7

(xc7a100tfgg484-3), Kintex7 (xc7k420tffv901-3), and Virtex7 (xc7vx980tffg1930-2).

The FPGA devices were chosen based on a wide array of available resources and

technologies across the spectrum of each family. The software used for the experi-

ments were Xilinx Vivado and Vivado HLS version 2017.2. Figures 5.1 and 5.2 show

examples of these outputs reports in the number of LUTs used.

5.2 Data collection

To build a dataset, first it is required to extract all possible features that can be

collected from HLS reports. Inputs of final machine learning models consist of HLS-

related features. To obtain the maximum achievable clock frequency of the design,

Minerva was used. Minerva executes Vivado in batch mode, utilizing the Vivado

batch mode TCL scripts provided by Xilinx. An XML-based Python program was

used to manage runs. This program launches Vivado with TCL scripts that are

19



0

10000

20000

30000

40000

50000

60000

70000

C1 C1 C1 C2 C2 C2 C3 C3 C3 C4 C4 C4 C5 C5 C5

Virtex7 Kintex7 Artix7 Virtex7 Kintex7 Artix7 Virtex7 Kintex7 Artix7 Virtex7 Kintex7 Artix7 Virtex7 Kintex7 Artix7

1ns 2ns 5ns 10ns 20ns

Figure 5.1: LUTs Used as reported by HLS for crypto. applications
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dynamically created during run-time and later modified to perform each step of the

optimization algorithm. Minerva’s output includes the maximum achievable clock

frequency for the design, the optimization strategy that lead to such a result, and

the resource utilization for that implementation. The output of Minerva was also

parsed. Minerva’s outputs are used as the target values in the dataset. Therefore,

the machine learning model will be trained to estimate resource usages for LUT, FF,

DSP, and BRAM, as well as maximum clock frequency (totally 5 targets) reported

by Minerva.
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As it is not possible to determine the importance of each feature in advance,

this work extracted as many relevant features as possible from HLS reports (total 183

features). The flow of obtaining the results for each design is as follows: 1) Set a timing

constraint (clock period) [1, 2, 5, 10, 20ns] and the FPGA device for HLS tool. 2)

Run HLS and get the VHDL files of design, and also extract all features from the HLS

report. 4) Use Minerva to find the maximum clock frequency and the corresponding

resource utilization for two different targets (throughput, and throughput-to-area).

Minerva uses out-of-context (OOC) implementation option to run Vivado. 5) Repeat

the whole process for the next clock period and also for the remaining FPGA devices.
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In this way, this work created a comprehensive dataset (90 × 5 × 3 × 2 = 2700

samples) that can be used for the training of machine learning models. The dataset

is separated into two parts: training/validation and testing. 20% of the dataset the

was randomaly selected for final testing as unseen data and the remaining 80% was

considered the training/validation part. 4-fold cross-validation was performed on the

training/validation set to train the ML models. This means that in each iteration

of training, a random 75% of the data were used for training and 25% were used for

validation. It took three months to create this dataset, using 10 servers, each of them

equipped with 16-core processors and 128GB memory. While this is the most time

consuming part of the solution, the entire training process is only done once. The ML

models described in Section 6 were implemented in Python leveraging the scikit-learn

[7] and TensorFlow [13].

5.3 Feature reduction

So far, as many relevant features as possible were extracted to build a comprehensive

dataset. However, this process produces a very highly dimensional dataset. This

high dimensionality may lead to complex models that require longer training time,

increase the chance of over-fitting, and are harder to interpret. Therefore, instead of

accounting for all extracted features, irrelevant and redundant features were identified

and removed and only a subset of features were selected. To remove redundant

features, the Pearson’s correlation coefficient (eq. 5.1) was computed for each pair

of extracted features x and y, and one feature from each group of correlated features

was selected.
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(5.1)

To eliminate irrelevant features, a linear model with L2 regularization (in section

6.1) was used to fit the data. The outcome of L2-regularized linear model is a sparse

estimator that zeros out the coefficients of unimportant features. By eliminating

unimportant features, the number of features was reduced from 183 to 72. Table 5.2

shows the features that were eventually selected from HLS reports.

Table 5.2: Description of features

Feature Category Brief Description # of features

Performance Requested clock period, estimated 3

clock period by HLS, Uncertainty

Resources Utilization and availability of LUT, 36

FF, DSP, and BRAM

Logic and arithmetic Bitwidth/resource statistics of 29

operation operations

Memory Number of memory words/banks/bits 2

Multiplexer Multiplexer input size/bitwidth 2
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Chapter 6: Solution Framework and Observations

In this section, this thesis presents the Pyramid framework, which uses popular ma-

chine learning models to enable fast and accurate resource and timing estimations

for HLS designs. Use of machine learning has become popular in design automation,

as it provides the means to accurately capture the factors impacting the accuracy

of timing and resource estimation. Moreover, analytical modeling [21] and statistic

reasoning have been used to construct the estimation models as a function of multiple

parameters for the evaluation of hardware design [22], [23]. This work investigated

whether the models built by machine learning techniques are sufficiently accurate for

timing and resource utilization of a design on a specific FPGA when the HLS tool

is used by taking into account 25 different optimization strategies available for the

implementation of a design.

6.1 Estimation models

For this purpose, a regression model, artificial neural network (ANN), support vector

machine (SVM), and random forest (RF) were employed. Each belongs to a different

branch of machine learning to construct a timing model and resource estimation

models for a diverse set of benchmarks targeting different FPGA devices. With

the appropriate dataset in hand, the complexity of the implementation process as a

practical solution to the HLS estimation problem can be modeled.
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Linear Regression For a given dataset {Yi, Xij} where Yi is the target and Xij

are features, a regression model is as follows: {Yi = W ×Xij}. The training goal of

this model is to find W (vector of coefficients) such that the loss between X and Y is

minimized. In this work, the Ridge regression model was used. By adding a degree of

bias to the regression estimates, Ridge regression reduces the standard errors. Ridge

regression solves the multicollinearity problem through the shrinkage parameter λ.

Also, it uses the L2 regularization method.

= argmin||Y −XW ||22 + λ||W ||22 (6.1)

This model was used to observe how much linearity existed among the chosen

features.

Artificial Neural Network Unlike regression and linear models, an artificial neu-

ral network (ANN) was selected to create a non-linear model between the target and

input features. Neural networks have an input layer and an output layer. The input

and output layers are connected to each other through a series of hidden layers. To

capture complicated non-linear functions, the depth of neural networks can be in-

creased. ANN has large tuning hyperparameters such as determining the number of

layers and neurons per layer. Figure 6.1 shows a simplified example of the algorithm

structure.

Support Vector Machine SVM analysis is a popular machine learning tool for

nonlinear functions. SVM is considered a nonparametric technique because it relies

on kernel functions. Some problems cannot adequately be described using a linear
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model. In such a case, the Lagrange dual formulation (Shown in eq. 6.2) in SVM

allows the technique to be extended to nonlinear functions.

maximize f(c1...cn) =
n∑

i=1

(ci)−
1

2

n∑
i=1

n∑
j=1

yici(xi · xj)yjcj,

subject to
n∑

i=1

ciyi = 0, and 0 ≤ ci ≤
1

2nλ
for all i.

(6.2)

Random Forest Random Forest (Figure 6.2) is a flexible and easy to use machine

learning method that most of the time, even without hyperparameter tuning, achieves

a high accuracy estimation. Random Forest is a supervised learning algorithm. One

of the advantages of the Random Forest model is that it enables the measuring of the

relative importance of each feature on the prediction.

For finding the best set of hyperparameters (λ for regression and number of layers

and neurons in ANN), Grid search [5] was employed. An ANN with four hidden layers

was decided upon, such that the number of neurons in each layer is as follows: 105,

60, 44, and 30. Figure 6.3 shows the error of machine learning models for resource

and timing estimation.

The results show that the average errors of models built by LR, ANN, SVM, and

RF are 23%, 14%, 19%, and 15%, respectively. For the estimation problem, the num-

ber of features is relatively high, and the amount of training data is limited. It is

important to note that collecting such a limited amount of data took more than 3

months. Given the tedious and time consuming process, full end-to-end implementa-

tion data collection for training ML models is a major challenge in this research, in
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Figure 6.3: ML Estimation Errors

addition to the high error rate when using general ML estimators. Machine learning

techniques such as NN, RF, and SVM can highly accurately represent complicated

non-linear functions when a large amount of training data is provided for the model

to converge. Given the available dataset, and reasonable amount of time for data col-

lection, these experiments demonstrate that merely using general machine learning

techniques fail to build accurate models. Therefore, this motivated this work to seek

an ensemble learning approach to improve the accuracy of estimation.
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6.1.1 Ensemble model

Ensemble learning is a branch of machine learning which is used to improve the accu-

racy and performance of general ML models by generating a set of base learners and

combining their outputs for final decision. It fully exploits complementary informa-

tion of different estimators to improve the decision accuracy and performance. This

work used the stacked regression [3] method, where a number of first level estimators

are combined using a second-level estimator. The key idea is to train a second-level

estimator based on the output of the first level estimators via cross-validation. It

is critical to ensure that the base estimators are formed using a batch of training

datasets that are different from the one used to form the new dataset. The second

step is to treat the new dataset as a new problem, and employ a learning algorithm

to solve it.

To use the stacking approach, two parameters must be determined: the threshold

for accuracy and the maximum number of iterations. After each stage, the accuracy

must be checked. If the model meets the target estimation accuracy, then the process

of model creation is stopped. Otherwise, the iterations are continued until reaching

the desired accuracy or the maximum number of iterations. When the parameters

of the first-order model are determined, the accuracy of the timing and resource

estimation can be evaluated. If the target accuracy is met, sub-models are no longer

created. Otherwise, a higher order model is required to further be created until the

threshold of iterations is reached.

Table 6.1 shows the estimation errors of timing and utilization models created by

Pyramid for two different optimization goals such as throughput (TP) and through-

put-to-area (TPA) using the stacking approach. Later in this section, this thesis
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Table 6.1: Average error of Pyramid estimations

Devices Artix7 Kintex7 Virtex7
Targets Resource Timing Resource Timing Resource Timing

Pyramid-TP 6.3% 3.8% 5.2% 4.1% 4.9% 4.4%
Pyramid-TPA 4.8% 3.5% 4.7% 4.6% 4.8% 4.9%

describes how the model is constructed. Results show that the average error of the

model is only 4.7%. Table 6.2 presents the estimation results of ML techniques with

regard to the benchmarks’ categories. The interesting observation is that the accuracy

of estimations for mathematical benchmarks are high even with linear regression.

On the other hand, the resource and timing estimation of machine learning and

cryptography benchmarks are lower with general ML techniques. However, ensemble

learning shows a good accuracy for all benchmarks.

Table 6.2: Average error of ML techniques for different benchmarks

Benchmark

category

Machine

Learning

Img/Vid

Processing

Crypto. Mathe.

Targets Res Tim Res Tim Res Tim Res Tim
LR 29% 25% 17% 16% 38% 22% 11% 8%
ANN 17% 14% 13% 11% 19% 14% 8% 7%
SVM 22% 19% 18% 17% 23% 18% 10% 7%
RF 16% 16% 14% 12% 20% 15% 9% 7%
Ensemble 6% 5% 4% 3% 5% 4% 4% 3%

While solely using a general machine learning technique incurs a large error, the

Pyramid framework helps to create an accurate model for estimating the optimal

throughput and throughput-to-area of an HLS design while also taking into account
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the size of the dataset and high dimensionality of the features.

One of the issues in using the stacking approach is actually finding the right

weights to combine the models, as the topology and hyperparameters of the model are

the keys for making the ensemble method works best. To address this challenge and

avoid putting the burden on the end-user, this work suggests the following guidelines

to be followed by developers in order to both facilitate adopting this framework and

make it possible to reproduce the results presented here.

P1

P1 P2

MPi-1 Pi

…

MPn-1

Stage 1

Stage 2

Stage i

Stage n

Figure 6.4: Overview of the stacking approach
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6.2 Guidelines

Figure 6.4 shows the overview of the stacking approach. In each stage, a sub-model

can be created by any arbitrary machine learning technique such as LR or NN, and

they can be considered as a black-box. As an example, this work employed a simple

three-layer fully connected neural network with 20 hidden neurons employed to create

the sub-models. The target accuracy and the threshold for the maximum number of

iterations were set to 99% and 50 respectively. In the first stage, a single sub-model

(P1) was created as a function of the features from Bootstrap samples of the main

dataset. Each time, 20% of samples were randomly selected with replacement. Boot-

strapping was important here as the dataset is relatively small. For the second stage,

another neural network (P2) was employed to model the variation in the estimation

of designs that was not modeled by P1. The boxes of different shades in Figure 6.4

signify the parts of dataset which have been modeled. Now, a primary mixed model,

MP1, can be built through the combination of the first two sub-models P1 and P2

as follows: MP1 = α1P1 + α2P2. P1 and P2 represent the estimated timing by

sub-models, and αs are the coefficients which corresponded to the learning rate. To

simplify the procedure, the α values were set to 0.1. Sub-models were repeatedly

created and added to the mixed model.

If the model achieves the desired accuracy before the total number of iteration,

the final model is obtained. This is called the first-order model (FM1). If the target

accuracy is not reached after the threshold on the number of iterations, the above

procedure can be repeated to create another mixed model (FM2), or the user can

end the process. In the case of this work, the target accuracy was not met after 50
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iterations. However, more than 95% accuracy was reached, which is acceptable for

this case and the training procedure was stopped.

It is noteworthy to consider the following rules of thumb: A lower value for the

learning rate increases the number of sub-models required to create the first-order

model at a specific accuracy. On top of that, changing the parameter of each sub-

model affects the total number of sub-models needed to create the first-order model.

Moreover, increasing the complexity of sub-models results in fewer sub-models re-

quired to achieve the maximum accuracy at a given learning rate.
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Figure 6.5: The relationship between parameters and errors

In regard to accuracy, Figure 6.5 demonstrates the relation among discussed pa-

rameters. It can be observed that when the number of neurons and the number of

sub-models is low, the error is always high. By increasing the complexity of the NN

or the number of sub-models, the minimum error decreases to under 5%. It can also

be observed that the convergence speed is much slower with a small learning rate

value. While a larger learning rate can converge faster, a fluctuation in the accuracy

is seen.

34



This approach is a sequential procedure in which the primary model remains

unchanged at each step. However, as the approach proceeds, the model becomes

more accurate. This approach helps to mitigate the over-fitting issue for a dataset

with a limited number of samples and high dimensionality of features.

6.3 Future Work

The most straightforward area for future improvement of this work includes the ex-

pansion of the training dataset. This task, however, is non-trivial given the amount

of time necessary to properly obtain the results needed for feeding to the ML model

proposed in this work. Because of the large disparity in resource/performance esti-

mation based on application dependence, study of an even larger set of benchmarks

can only provide benefit above the analysis presented here. Additionally, though the

three devices studied in this work provided high diversity in their specification, the

inclusion of even more devices with different resource availability and performance

specification would aid in a more comprehensively trained ML model for estimation.

Lastly, one of the largest and most interesting areas for exploration in the training

dataset is the inclusion of further optimizations available in the tools used to generate

results. Though Minerva provides a peak optimization strategy for a given design in

Vivado, the default optimization strategies were used in HLS. However, since the

nature of these optimization strategies can be far more expansive (i.e., a multitude of

different pragma directives at various points throughout the source code, or several

instances of a benchmark as described in section 3), this type of exploration adds an

additional level of complexity to what is already a time-consuming process. This type

of exploration would likely benefit an automated or highly systematic approach.
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Chapter 7: Conclusions

This thesis thoroughly studied one of the main challenges of evaluating an HLS de-

sign: the inaccuracy of HLS reports in both timing and resource utilization. Moreover,

HLS reports lack insights for finding the optimal throughput or throughput-to-area

of the generated RTL design. First, several foundational studies were carried out

to not only understand the impact of using FPGA core processing relative to other

processing architectures, but to more fully investigate the design space exploration

that can be accomplished using only HLS outputs. To address these challenges, this

work proposed Pyramid, a framework that uses an ensemble learning technique to

bridge the accuracy gap between HLS reports and the optimal achievable throughput

or throughput-to-area of the HLS design. To achieve this, first Minerva, an auto-

mated hardware optimization tool, was used to find the maximum clock frequency

and resource utilization of the RTL code of the design generated by HLS tool. Then

the stacking approach was used to map the features extracted from HLS reports to

Minerva’s output. Collecting data for fully implemented HLS designs in order to cre-

ate a training dataset is an extremely time-consuming task, making it impractical to

collect the large data needed to train general machine learning estimators. Therefore,

as the dimensionality of features is high and the sample size of the dataset is not

significantly large, the obtained accuracy of several studied ML estimators is found

to be low. In response, the model created by Pyramid framework using ensemble
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learning is shown to have more than 95% accuracy. Several ML techniques were uti-

lized for ensemble learning, including linear regression, ANN, support vector machine,

and random forest. Areas for future improvement of this work include a dataset with

more applications and a wider array of devices, as well as the exploration of HLS

optimizations and their impact on results used for analysis.
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