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For a long time, engineering design research has been focused on the development of 
various design theories, methodologies, methods, tools, and procedures. The design methods 
have been subsequently used by engineers to more efficiently design artifacts.  However, as the 
artifacts have grown in complexity, the need for new methods has become obvious.  Also, in a 
nowadays world, increased competition and globalization require organizations to reexamine 
traditional product development strategies.  Traditional methods focused exclusively on the 
numerical optimality of produced artifacts, or their manufacturing processes, are no longer 
adequate.  Creativity and innovation of designed artifacts provide organizations not only with a 
competitive advantage but are, in fact, a matter of their survival. 

This dissertation addresses this problem by posing and answering the question: “How can 
one construct an effective method for designing engineering systems that would support 
development of novel/creative designs and their efficient optimization?”  It proposes a new and 
conceptually coherent design method, called Emergent Engineering Design.  The proposed 
design method is inspired by the fundamental processes occurring in nature, which has arguably 
created the most fascinating designs known to humankind.  All major phases of Emergent 
Engineering Design are represented by complex systems, including cellular automata and 
evolutionary algorithms, which have been successfully used to model the processes governing 
the complex behavior occurring in nature. 

In order to facilitate the development of the proposed design method, Emergent 
Engineering Design was implemented in a computer system called Emergent Designer.  It is an 
integrated research and design support tool which applies models of complex systems to 
represent engineering systems and analyze design processes.  Emergent Designer was used to 
conduct the empirical validation of the proposed design method for two classes of conceptual 
design problems in structural engineering.  The extensive design experiments reported in this 
dissertation have shown that Emergent Engineering Design not only generates novel design 
concepts exhibiting remarkable structural shaping patterns but it also efficiently optimizes them. 
 

 



 

1. INTRODUCTION 
 

“One of the foundations for change in our society comes from 
designing.  Its genesis is the notion that the world around us either 
is unsuited to our needs or can be improved.  The need for 
designing is driven by a society’s view that it can improve or add 
value to human existence well beyond simple subsistence.  As a 
consequence of designing the world which we inhabit is 
increasingly a designed rather than naturally occurring one.” 

 (John Gero) 

In this dissertation, I introduce a new engineering design method called Emergent 
Engineering Design (EED).  The method uses models based on complex systems to represent 
major elements of engineering design processes.  Combinations of several types of complex 
systems have been investigated in modeling design representations, actual design processes, as 
well as their evaluation.   

The goal of the research described in the dissertation was to establish a new design method 
that would satisfy two major engineering design objectives: 

• Develop novel designs, and 
• Optimize engineering designs. 

EED consists of state-of-the-art models and procedures that are inspired by complex 
phenomena occurring in nature.  Research that I present in this dissertation is an attempt to 
formulate a design method that is conceptually coherent and inspired by the fundamental 
processes occurring in nature.  Nature has arguably created the most fascinating designs known 
to humankind (French 1994). On the other hand, the fundamental processes governing the 
complex behavior occurring in nature have been successfully modeled using various complex 
systems.  It is my belief that this inspiration can be effectively used in solving a broad range of 
engineering design problems. 

1.1. Motivation 
The motivation for this work comes from my recent interests in the area of evolutionary 

design, dynamical systems, and cellular automata.  I frequently observed, in various design 
experiments involving evolution-guided generation of design concepts of steel structural systems 
in tall buildings, formation of emergent and novel structural shaping patterns (Kicinger et al. 
2002).  Countless examples of emergent phenomena generated by complex systems have been 
also reported by researchers from various disciplines (Gero 1992; Ilachinski 2001).  However, 
little has been done in terms of building a coherent engineering design method based on complex 
systems that emphasizes both aspects of a design process: novelty and optimization. 

Engineering design research has been focused on the development of various design theories, 
methodologies, methods, tools, and procedures for a long time (Newsome et al. 1988).  The 
design methods have been subsequently used by engineers to more efficiently design artifacts.  
However, as the artifacts have grown in complexity, the need for new methods has become 
obvious.  Also, in a nowadays world, increased competition and globalization require 
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organizations to reexamine traditional product development strategies.  Traditional methods 
focused exclusively on the quantitative/numerical optimality of produced artifacts, or their 
manufacturing processes, are no longer adequate.  Creativity and innovation of designed artifacts 
provide organizations not only with a competitive advantage but are, in fact, a matter of their 
survival. 

With the emergence of Information Technology, new design methods are being developed 
which are based on various computational models of design processes.  However, up until very 
recently, computers in design were used mostly and merely for various analytical design 
activities conducted in the final part of the engineering design process, namely in the detailed 
design stage (Arciszewski and De Jong 2001).  Today, we are finally witnessing the emergence 
of new design support tools applicable both in the conceptual and detailed design stages, i.e. 
tools that are suitable for both generation of novel design concepts and their subsequent 
optimization.  In order to fully benefit from this progress, these new tools require new design 
methods and computer tools. 

1.2. Research Justification 
Our understanding of engineering design has been recently undergoing significant changes.  

Not only was the previous focus on acquiring engineering knowledge replaced by the processing 
and utilization of available knowledge using advanced computer systems and design software, 
but also the traditional simplified (usually linear) models of physical and mathematical 
interactions are now being substituted with nonlinear models, which more accurately represent 
real-world phenomena (Arciszewski et al. 2003; Thompson 1999).  Currently, we are witnessing 
another emergent trend of replacing complicated models with distributed, or parallel, models 
based on simple rules/programs and interactions among elements that can also generate very 
complex behavior (Wolfram 2002).  Thus, even though the models studied in the conceptual 
design phase are becoming more and more complex, it is possible that this complexity can be 
modeled using only very simple rules and programs.  Hence, the complex systems approach to 
conceptual design seems to be a plausible way of capturing the complex nature of the design 
process and may enable us to use simple mathematical and computational models to simulate this 
process.  Also, presently available computing power opens new possibilities of designing and 
modeling complex engineering systems and their dynamic evolution.    

Complex systems are dynamical systems that consist of large numbers of mutually and, 
typically nonlinearly, interacting parts.  One of the characteristic properties of complex systems 
is their emergent behavior.  Complex systems can also be characterized by their adaptive 
behavior, i.e. an underlying mechanism to adapt and survive in uncertain environments.  From an 
engineering point of view, it is important to ensure that engineering designs can adapt to 
changing design requirements and constraints because that guarantees their robustness, a 
required property of almost all engineering products (Gen and Cheng 2000). 

Besides adaptation, another important and inherent property of complex systems is their 
spatio-temporal evolution.  The process of evolution can be understood in a very broad sense as a 
gradual transformation of a system over time, but it also has its narrower meaning in biology, 
namely as a Darwinian evolutionary system (Darwin 1859).  The Darwinian concept of evolution 
by means of natural selection provided inspiration for researchers in evolutionary computation 
(EC) and resulted in a family of modern heuristic search algorithms called evolutionary 
algorithms (EA).  The Darwinian evolutionary system is also one of the prominent examples of a 
complex adaptive system.  
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Computationally simulated evolution is an important basis for understanding life (Holland 
1975), but it has also been applied for studying and solving problems in other disciplines.  
Among newly developed computational paradigms, evolutionary computation is now recognized 
as particularly appropriate for various traditional and novel computational applications in 
engineering.  This paradigm has already been applied to many engineering design problems 
including both optimization as well as creative design problems.  This application has been done 
with much success, and even a subfield within EC community, called evolutionary design, has 
emerged (Bentley 1999a; Parmee 1999).   

Evolutionary design support tools allow researchers and engineers to produce thousands or 
even hundreds of thousands of feasible design concepts in a relatively short period of time.  On 
the contrary, human designers tend to limit the range of design concepts being considered to only 
a few alternatives.  The evolutionary design process is not merely a random search process; it is a 
fitness guided generation of design concepts.  Thus, two goals that are extremely important in 
engineering design are achievable.  First, one can build a collection of design points in a given 
representation space, or a so-called ‘big picture’ of a design representation space, and thus 
acquire a significant amount of design knowledge.  Second, an evolutionary guided intelligent 
search within this design space can support discovery of novel designs (Arciszewski et al. 2003). 

Another important type of an evolutionary complex adaptive system is a coevolutionary 
system.  Here again, the inspiration comes from biological processes encountered in many 
natural ecosystems.  Coevolutionary processes can be modeled by a class of coevolutionary 
algorithms.  Initial ideas of using coevolution as an optimization procedure were formulated by 
Axelrod (1984; 1987) in the context of competitive fitness functions.  Potter and De Jong (1994) 
proposed a cooperative coevolutionary model and developed a cooperative coevolutionary 
evolutionary algorithm (CCEA).  Complex adaptive coevolutionary approaches (both 
competitive and cooperative) have strong potential in engineering design but almost no work has 
been done in this area.   

Cellular automata (CAs) are examples of complex systems with enormous and still 
unexplored potential to develop novel designs. They are one of the simplest mathematical and 
computational representations of complex systems.   As such, they can be used as useful 
idealizations of the dynamical behavior of various systems. They appear to capture many 
essential features of complex self-organizing cooperative behavior observed in real world 
systems.  CAs have been devised to model complex systems and processes consisting of a large 
number of identical, simple, locally interacting components.  CAs can be used to study pattern 
formation and gain some insight into self-organization processes (Ilachinski 2001).  The CAs 
research has generated great interest over the last forty years because of their ability to exhibit 
complex patterns of behavior using a set of simple underlying rules.  However, very little has 
been done in terms of their application to engineering design problems.   

The significance of the CAs in engineering design can be explained considering several facts. 
First, they can inherently model spatial relations of various elements in an engineering system.  
Second, they can explicitly represent local interactions among elements of an engineering 
system.  Third, CAs are known to produce various kinds of emergent behavior. This property is 
highly relevant in many engineering design problems, e.g. novel structural shaping patterns.  
Finally, it is a fact that even designers of complex and sophisticated engineering systems 
(bridges, tall buildings, etc.) use only a small set of design/decision rules to develop design 
concepts.  This set of design/decision rules can be represented by the transformation rules of a 
CA.  From the engineering perspective, CAs can be viewed as “black-box” concept generators 
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that, given some input and a representation of an engineering system, use simple transformation 
rules and local interactions among design elements to produce an output (a final design concept), 
that possibly contains some interesting patterns. 

The behavior of complex systems is, as their name well suggests, very difficult to describe 
formally in terms of traditional mathematical models.  On the other hand, as it was shown in 
(Wolfram 2002), the apparent complexity of behavior does not imply the complexity of 
underlying mechanisms causing this complicated behavior.  On the contrary, in many cases the 
underlying rules can be extremely simple.  Some theoretical approaches have also been proposed 
to describe this seemingly random behavior.  They include dynamical systems theory and chaos 
theory (Alligood et al. 1996) which provide quantitative models of studying complex nonlinear 
phenomena well founded in traditional mathematics.  They identify and formally describe classes 
of dynamical behavior (fixed point behavior, periodic orbits, chaotic orbits), and provide 
appropriate measures to quantify this behavior, e.g. Lyapunov exponents.    On the other hand, 
Wolfram (2002) provides qualitative and computational models based on the iteration of simple 
programs.   

Using dynamical systems theory and chaos theory to describe evolutionary processes has 
profound justification.  First, evolution is an inherently dynamical process during which 
individuals change in both space and time.  We may express the complex behavior of an 
evolutionary system using available mathematical models, e.g. Lotka-Volterra (Lotka 1925; 
Volterra 1926) model of predator-prey evolution.  Also, evolutionary algorithms can be formally 
described using dynamical systems theory (Vose 1999b). Second, as it has been reported by 
some researchers (Packard 1988), the emergent patterns in complex systems occur at the stages 
of evolution when systems undergo phase transitions, which can be well described using 
bifurcation theory, a subfield of dynamical systems theory.   It has also been argued that the most 
interesting patterns occur when the system is about to change its behavior to chaotic, that is at 
“the edge of chaos” (Packard 1988).  It has already been discovered by design researchers that 
novel design concepts emerge when a significant change occurs; For example, a change in the 
representation space during the constructive induction process (Arciszewski et al. 1995). 

This last interpretation is consistent with a much broader philosophical discussion concerning 
the process of discovery.  Charles Peirce (1998), one of the most prolific American philosophers, 
has proposed the third kind of inferential process, called abduction, which he claimed was 
involved in the processes of discovery.  In some modern interpretations of Peirce’s abduction, 
the process of mental activity involved in discovery is considered to be chaotic in nature and 
consisting of various free associations that on the surface seem disorganized and unsystematic 
(Koestler 1990).  Koestler claims that flashes of insight, as suggested by Peirce to accompany 
episodes of discovery, can be explained by what he terms bisociation.  Bisociations represent 
intersections of two different frames of reference, or knowledge representations, or knowledge 
from two domains, which can be modeled as bifurcations.  Yet another outlook on the process of 
discovery is presented by Singer (1995).  He regards the process of discovery as an emergent 
phenomenon and claims that the new insights somehow emerge as a result of the nonlinear 
aggregations of an imaginably complex collection of interacting neural elements in the brain.   
Similar opinion is presented by Crutchfield (1994), who describes discovery as a result of 
synthesis of tools from dynamical systems, computation, and inductive inference.  The synthetic 
interpretation of the process of discovery is very close to the tradition of synesthesia (from 
Greek, syn = together + aisthesis = perception), proposed by Leonardo da Vinci, one of the 
greatest discoverers and creators in the history. 

 



5 

As it has been argued above, complex systems method for engineering design can be justified 
from various perspectives and might bring broader fundamental understanding of design 
processes as well as a new generation of design support tools.  Using the new method, it should 
be possible to model and implement the processes of creative design in many areas of 
engineering that traditionally use strictly defined sets of codes, or sophisticated rules due to 
complexity of their domains and developed through incremental experience.  This method 
considers both aspects of engineering design, i.e. novelty and optimality.  Potential for novelty in 
design is introduced by using state-of-the-art representations of engineering systems and 
mechanisms to generate design concepts.  Optimality can be achieved by using evolutionary and 
coevolutionary search processes guided by the fitness of design concepts.  This method might 
also be useful for building a global (holistic) picture of a given engineering domain and hence 
provide significant amounts of new domain knowledge, which can be subsequently utilized.  
Available theoretical foundations should provide useful mathematical models and quantitative 
methods of analysis of engineering design processes. 

1.3. Organization 
The remainder of the dissertation is organized as follows: 
Chapter 2 contains background material that is relevant for understanding the rest of the 

dissertation.  It contains state-of-the-art overviews of the disciplines related to this research.  It 
also serves as a helpful reference material to which I frequently point to in the remainder of this 
dissertation. 

Chapter 3 introduces Emergent Engineering Design, the major objective of this dissertation, 
and provides a description of its assumptions.  It also discusses the structure of the argument 
presented in this dissertation in the form of research questions and hypotheses and offers a 
detailed description of the validation methodology. 

Chapter 4 proposes novel design representations based on models of complex systems which 
are investigated in this dissertation.  Several types of design representations based on cellular 
automata are introduced and described in detail. 

In chapter 5, Emergent Designer, a unique design support tool, is introduced and presented.  It 
is an integrated research and design support tool which implements Emergent Engineering 
Design, the design method proposed in this dissertation. 

Chapter 6 begins the experimental part of this dissertation.  It investigates specific instances 
of complex systems, namely cellular automata, as design concept generators of structural 
systems and subsystems.  This chapter focuses on the aspects of novelty in design processes and 
does not discuss evolutionary based optimization mechanisms. 

Chapter 7, on the contrary, focuses exclusively on design optimization issues.  It describes 
evolutionary based optimization using standard parameterized representations.  Various design 
experiments reported in this chapter focus on optimization of several structural systems and 
subsystems.  The experimental results are accompanied with the quantitative analysis and 
presentation of the best design concepts. 

Chapter 8 presents a combined approach, called morphogenic evolutionary design, in which 
generative representations based on cellular automata are evolved using evolutionary algorithms.  
It describes results of applying this new design method to the same problems considered in the 
previous two chapters and compares the outcomes.  Also, the qualitative and quantitative 
analysis of the results is presented. 
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Extensive experimental work described in chapters 6 - 8 is divided into sections.  All 
experimental parameters and their values as well as obtained results are reported in individual 
sections while the summary of major findings can be found at the end of each section. 

In the final chapter 9, conclusions and discussion on the findings are presented.   Also, the 
contributions of this dissertation to the field of engineering design are discussed.  Finally, some 
recommendations for the most promising paths of future research are offered. 

Appendix A provides a chronological classification of applications of evolutionary 
computation in structural engineering.  Relevant publications since the beginning of the field 
were classified with respect to the application domain and the structural problem addressed. 

Appendix B contains a complete collection of 256 design concept generated using elementary 
cellular automata with periodic boundary conditions while Appendix C shows another set of 
design concepts of wind bracing systems developed using elementary cellular automata but this 
time with nonperiodic boundary conditions. 

A suggested sequence for reading this dissertation consists of the following chapters: 
Chapter 1 - Introduction 
Chapter 3 - Emergent Engineering Design 
Chapter 4 - Design Representations 
Chapter 6 - Design Concept Generation Using Cellular Automata 
Chapter 7 - Evolutionary Optimization 
Chapter 8 - Morphogenic Evolutionary Design 
Chapter 9 - Closure 

Chapter 2 may be skipped at first reading.  It provides background material to which I refer when 
necessary in the remainder of this dissertation.  Chapter 5 is very technical and discusses the 
implementation details and information flow in Emergent Designer.  It is recommended for 
readers interested in building modern design support tools. 

 
 

 



 

2. BACKGROUND 
 

“If I have seen further it is by standing on the shoulders of Giants" 
 (Isaac Newton) 

This chapter contains a background material that provides some context necessary for 
understanding the rest of the dissertation.  It describes recent developments in the disciplines 
relevant to Emergent Engineering Design, the design method proposed in this dissertation.  The 
interdisciplinary character of this dissertation influenced the extensiveness of the review.  It is 
aimed to provide an introductory material on the topics discussed in this dissertation to readers 
with different backgrounds and to present high-level overview of the current research 
developments in the relevant disciplines.  It will also serve as a useful reference to which I will 
frequently point to in the remainder of this dissertation. 

Figure 1 shows an organization chart of the background review included in this chapter.  It is 
divided into five major parts which are presented in five subsections.    First, a comprehensive 
survey of evolutionary computation (EC) and evolutionary design is provided in section 2.1.  EC 
is one of the key components of Emergent Engineering Design.  The goal of this survey is to 
show current research developments in this field with an emphasis on design optimization and 
creative design, two important objectives of engineering design addressed in this dissertation.  
The last part of section 2.1 provides a chronological overview of the applications of evolutionary 
computation in structural design and a discussion on the advantages and limitations of this 
approach when compared to traditional optimization methods.  Finally, open issues in the field 
are discussed as well as the most promising directions of future research. 

Section 2.2 contains a brief overview of another important component of Emergent 
Engineering Design, namely cellular automata (CAs).  CAs are proposed in this dissertation as 
design concept generators which produce novel design concepts.  The section introduces one-
dimensional and two-dimensional CAs and discusses the richness of behavioral patterns 
generated by these simple instances of complex systems.  CAs play an important role in a 
recently proposed the New Kind of Science (NKS) (Wolfram 2002) which is also briefly 
described. 

In this dissertation, I propose an engineering design method which uses models of various 
complex systems to represent major elements of engineering design processes.  I also propose 
dynamical systems approach to analyze design processes.  Hence, a high-level introduction to 
dynamical systems, chaos theory, and complex adaptive systems is offered in section 2.3.  It 
introduces definitions of dynamical systems and complex adaptive systems and provides some 
historical background.   Also, some applications of dynamical systems and chaos theory in 
structural engineering are presented at the end of the section. 

In order to better place the proposed design method in the context of state-of-the-art (SOTA) 
in engineering design, section 2.4 describes recent developments in this field.  The particular 
emphasis is put on design theories, methodologies, and methods.  The section also contains a 
classification of existing approaches to modeling engineering design processes.  The 
classification is subsequently used to define Emergent Engineering Design. 

7 



8 

  
Chapter 2 

Background Review

Overview of 
Evolutionary 
Computation 

Overview of 
Cellular 

Automata

Overview of 
Dynamical Systems, 

Chaos, and 
Complex Systems 

Overview of 
Engineering 

Design

Overview of 
Epistemology 

and Validation of 
Design Methods

Evolutionary 
Computation 

Cellular 
Automata 

Engineering 
Design 

Dynamical 
Systems 

and Chaos

Historical and 
Philosophical 
Perspective 

Numbering 
Scheme for 
CA Rules 

Evolutionary 
Design and 
Creativity 

Evolution
Design 

Complex 
Adaptive 
Systems 

Dynamical 

Engineering 
Design 

Methods

Validation 
Square – A 
Framework 

for 
Validation 

CA in 
Structural 

Conceptual 
Design 

Design of 

of Design 
Methods

ary 
Systems in 
Structural Representations Engineering 

Engineering

Dynamical Constraint-
Handling 
Methods 

Multiobjective 
Evolutionary 

Design 

Coevolutionary 
Design 

Evolutionary 
Computation 
in Structural 
Engineering 

Systems 
Model of the 
Simple GA 

Structural 
Systems in 

Tall 
Buildings

 
Figure 1. Organization of the background review 

This dissertation claims to add a new scientific knowledge to the field of engineering design.  
But in order to make such claims, the new scientific knowledge must be first verified.  
Throughout the history of science, many different views have been presented on how to best 
validate scientific knowledge.  They are briefly reviewed in the first part of section 2.5.  The 

 scientific knowledge is particularly relevant to the field of 
ainly concerned with open problems that involve both objective 

an

en validated empirically in the context of structural design 
pro

issue of validation of a new
engineering design which is m

d subjective elements and have no single right answer.  A recently introduced framework for 
validation of design methods, called Validation Square, is introduced in the second part of 
section 2.5.  The framework has been used in this dissertation to validate Emergent Engineering 
Design. 

The proposed design method has be
blems.  Thus, each section of this chapter contains a subsection that discusses relevance of the 
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major ideas presented in the section to structural engineering and presents current research 
developments. 

2.1. Overview of Evolutionary Computation 

2.1.1. Evolutionary Computation 
Evolutionary computation (EC) is a modern search technique which uses computational 

models of processes of evolution and selection.  Concepts and mechanisms of Darwinian (1859) 
ev

inology used by EC researchers.  It 
bo

quence of genes, i.e. attributes that 
de

rent population is replaced by offspring, the new population is 
cal

an initial population of individuals (solutions) is created.  Traditionally, the initial population is 

olution and natural selection are encoded in evolutionary algorithms and used to solve 
problems in many fields of engineering and science. 

Strong resemblance to biological processes as well as their initial applications for modeling 
complex adaptive systems (Holland 1975) influenced the term

rrows a lot from genetics, evolutionary theory and cellular biology.  Thus, a candidate solution 
to a problem is called an individual while an entire set (or more accurately a superset) of current 
solutions is called a population.  For some problem domains a population may be broken into 
several subpopulations.  The actual representation (encoding) of an individual is called its 
genome or chromosome.  Each genome consists of a se

scribe an individual.  A value of a gene is called an allele.  When individual solutions are 
modified to produce new candidate solutions they are said to be breeding and the new candidate 
solution is called an offspring or a child.  During the evaluation of a candidate solution, it 
receives a grade called fitness, which indicates the quality of the solution in the context of a 
given problem.  When the cur

led a new generation.  Finally, the entire process of searching for an optimal solution is called 
evolution (Luke 2000). 

Evolutionary Algorithms 
Evolutionary algorithms are a family of population-based search algorithms that simulate the 

evolution of individual structures by interrelated processes of selection, reproduction, and 
variation.  There is a variety of EAs that have been proposed and studied.  They all share a 
common set of underlying assumptions but differ in the breeding strategy to be used and 
representation on which EAs operate. 

Historically, three major EAs have been developed: evolution strategies (ES) (Rechenberg 
1965; Schwefel 1965), evolutionary programming (EP) (Fogel et al. 1966), and genetic 
algorithms (GAs) (Holland 1975).  These algorithms have been mostly used to evolve solutions 
to parameterized problem domains. On the other hand, the fourth major EA developed more 
recently, genetic programming (GP) (Koza 1992), has been used to evolve actual computer 
programs to solve a number of computational tasks (Luke 2000).  There are also many hybrid 
models incorporating various features of the above paradigms, including the CHC algorithm 
(Eshelman 1991), the structured GA (Dasgupta and MacGregor 1991),  the breeder GA 
(Mühlenbein and Schlierkamp-Voosen 1993), the messy GA (Goldberg et al. 1989), and many 
others. 

From the engineering point of view, EC can be understood as a search and optimization 
process in which a population of solutions undergoes a process of gradual changes.  This process 
depends on the fitness (a formal measure of perceived performance) of the individual solutions 
as defined by the environment (objective function).   

Figure 2 shows the structure of a canonical EA.  Before an actual evolutionary process begins, 
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created randomly but several other initialization techniques have also been used (e.g. starting 
from a set of previously known or arbitrarily assumed solutions).  Next, each individual in the 
ini

 commonly used selection strategies within EC community. Fitness-
proportional selection (Holland 1975) normalizes the fitness values of all individuals in the 
population and assigns these normalized values as probabilities that their respective individuals 
will be selected.  Ranked selection works by first ranking all individuals in the population by 
their fitness, and use these ranks, rather than actual fitness values, to determine selection 
probabilities of the individuals.  A common form of ranked selection is a linear ranking 
(Grefenstette and Baker 1989; Whitley 1989) where individuals are first sorted in an increasing 
order according to their fitness values.  Each individual is then selected with a probability based 
on some linear function of its sorted rank. Another popular selection strategy is a tournament 
selection.  In this strategy, a pool of n individuals is picked at random from the population.  Each 
of the individuals in the pool is selected independently and it might be the case that the same 
individual will be selected multiple times.  Next, an individual from the pool with highest fitness 
value is selected to form the new population.  This procedure is repeated as many times as 
necessary to create either an entirely new population or a subset of it.  The pool size is a 
parameter that controls the magnitude of the selection pressure.  Finally, the truncation selection 
chooses only a certain proportion of the best individuals in the population.  This strategy is most 
popular within the ES community, where it is used in two basic flavors: (µ, λ) and (µ+λ) 
(Schwefel 1977).  In the former case, the selection operates on the offspring population only, 
whereas in the latter case it selects individuals from a joint population of both parents and 
offspring. 

The two most popular variation operators are mutation and recombination.  Mutation acts on a 
single individual and works by applying some variation to one or more genes in the individual’s 
chromosome (similar to a variation operator used in other search mechanisms like hill climbing 
or simulated annealing).  Recombination, on the other hand, operates on multiple individuals 
(usually two) and combines parts of these individuals to create new ones.  

The newly created individuals are evaluated and assigned fitness values.  Then, either all or 
only a subset of the current population is replaced by these new individuals.  If the entire 
population is replaced by the new individuals then the algorithm is called a generational EA.  On 
the other hand, if only a subset of the original population is replaced then it is called a steady-
state EA.  Steps 3-6 of the canonical EA defined earlier are performed until an assumed stopping 
criterion is met, which is usually defined as an arbitrary number of generations or fitness 
function evaluations. 

 

tial population is evaluated and assigned a fitness value. 
Using the fitness scores, the selection mechanism chooses a subset of the current population 

as parents to create new individuals.  When the selection mechanism uses bias toward 
individuals with better fitness, the created offspring will, more likely, have higher fitness.  Once 
the set of parents has been selected, the new individuals are created by copying them and 
applying variation operators.   

There are several
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Figure 2. Structure of a canonical evolutionary algorithm 

 

Evolutionary Computation and Engineering Design 
This basic evolutionary process described above is called a ‘simple evolutionary algorithm’ in 

a sense that it contains the minimal set of features necessary to be a Darwinian evolutionary 
system.  These simple EAs have surprisingly useful properties, primarily related to solving 
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difficult global optimization problems.  They perform well when applied to problems with 
nonlinear, stochastic, temporal, or chaotic components, where traditional optimization 
techniques, like gradient descent, hill climbing, and purely random search, are generally 
unsatisfactory.  It is in this context that much of the work on engineering applications has taken 
place historically: using simple EAs for design optimization. 

The three main issues in applying EAs to an engineering design problem are:  
1. Selecting an appropriate representation for engineering designs.  
2. Defining efficient genetic operators. 
3. Providing an adequate evaluation function for estimating the ‘fitness’ of generated 

solutions (points in the search space). 
An appropriate representation of an engineering system is one of the most crucial elements of 

evolutionary design.  This issue is particularly important when creativity/novelty of designs 
produced by evolutionary processes is one of the major goals.  The process of creating an 
efficient and adequate representation of an engineering system for evolutionary design is 
complicated and involves elements of both science and art.  One has to take into account not only 
important aspects of understanding traditional modeling of an engineering system, but also 
relevant computational issues that include search efficiency, scalability, and mapping between a 
search space (genotypic space) and a space of actual designs (phenotypic space).  A more 
detailed discussion of EA representations is presented in section 2.1.3. 

An appropriate choice and implementation of genetic operators, i.e. mutation and 
recombination operators, and careful tuning of their rates is an important issue as it can have a 
big impact on the success of EAs.  This issue has therefore been a subject of both theoretical 
(Spears 2000) as well as experimental investigations (Fairley 1991; Fogarty 1989; Schaffer and 
Eshelman 1991).  Any particular implementation of a mutation or recombination operator is 
representation dependent.  Thus, for example GAs with binary string representations uses the bit-
flip mutation and 1-, or 2-point crossover, while ES with real-valued vectors use the Gaussian 
mutation and a recombination operator that swaps/averages parents’ alleles.  Genetic operators 
are primary sources of exploration in EAs.  On the other hand, selection mechanisms provide 
EAs with exploitative power.  Thus, by properly defining and controlling the variation 
mechanisms (genetic operators), one can achieve a higher level goal of finding “an effective 
balance between further exploration of unexplored regions of the search space and exploiting the 
regions already explored.” (De Jong to appear). 

Another important issue in successful application of EAs is to choose an adequate fitness 
evaluation function for a problem domain.  Evaluation functions provide EAs with feedback 
about the fitness of each individual in the population. EAs use this feedback to bias the search 
process in order to improve the population’s average fitness.  Naturally, the details of a particular 
fitness function are problem specific. 

Table 1 provides a description of all commonly used EAs in terms of decisions that are made 
during an implementation of a particular EA.  It is a modified table initially proposed in 
(Arciszewski and De Jong 2001).  The particular decisions are summarized in terms of attributes 
and their values. Using this characterization, it is then straightforward to describe a given EA, 
e.g. a GA or ES, and its relationship to other EAs (Arciszewski and De Jong 2001). 
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Table 1. Attributes describing commonly used EA implementations 

Attribute Attribute Value(s) 

Encoding Binary Real-
valued 

Graph-
based 

Compu-
ter code Other 1. Solution 

representation 
Length Fixed Variable    

Mechanism 
Random 
genera-
tion 

Selection 
from a 
group of 
known 
solutions 

User 
defined   2. Population 

initialization 

Population size 1 Fixed Variable   

3. Parent selection mechanism Trunca-
tion Ranking 

Fitness 
propor-
tional 

Tourna-
ment Uniform

Type Bit-flip Gaussian Subtree User 
defined  

Mutation 
Rate 0 Fixed Adaptive Random  

Type N-point Swap Uniform Subtree defined 
User 

4. Variation 
mechanism 

Crossover 
Rate 0 Fixed Adaptive Random  

5. Survival selection mechanism tion 
Trunca- Ranking 

Fitness 
propor- Tourna-

ment Uniform
tional  

 

Advanced Evolutionary Algorithms 
Various modern trends in EC relax some of the assumptions found in the canonical EA.  For 

ex
endent fitness criteria.  Another assumption of using a 

single e s well as in coevolutionary 
algorit l EA 
(Cohoo lving 
indepe e individuals among subpopulations.  CEAs 
typical ental assumption, 
namely tly of one another.  Two common 
models tter and De Jong 2000), where the fitness of an 
individ  other subpopulations, and 
co

ample, in multiobjective EAs, a requirement of a single fitness value determining the quality of 
an individual is replaced by several indep

volving population is relaxed in parallel, or distributed, EAs a
hms (CEAs).  In a fairly popular model of a parallel EA, called the island-mode
n et al. 1987), evolution occurs in multiple parallel subpopulations evo

ndently with occasional ‘migrations’ of som
ly use multiple subpopulations but additionally modify another fundam
 that individuals are no longer evaluated independen
 of CEAs include cooperative CEAs (Po
ual is assessed through ‘cooperation’ with individuals from

mpetitive CEAs (Angeline and Pollack 1993), where the fitness of an individual is determined 
by its competition against individuals from other populations.  Coevolutionary EAs are discussed 
in more detail in section 2.1.6. 

Next section presents a subfield of EC, called evolutionary design, which is directly related to 
engineering design problems. It also discusses the issues of creativity and emergence in 
engineering design processes. 
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2.1.2. Evolutionary Design and Creativity 
Evolutionary design is a branch of EC that integrates ideas from computer science 

(evolutionary algorithms), engineering (design science) and evolutionary biology (natural 
selection) to solve engineering design problems (Bentley 1999c).  Four major categories of 
problems considered by evolutionary design include evolutionary design optimization, creative 
evolutionary design, evolutionary art, and evolutionary artificial life forms. 

Common attribu
design processes inc

tes shared by evolutionary techniques, which are relevant to engineering 

s.  Current state-of-the-art (SOTA) reviews are 
pro

ngineering applications.  
Fro

g valuable).”  Gero concludes that an evolutionary design process is 
crea explores not only values of attributes (decision variables) within individual 
desi
repr
possible by going beyond the bounds of a represen
have
co-w
constructive induction (Arciszewski et al. 1995).  A detailed discussion of commonly used 

lude (Parmee 1999): 
• little, if any, a priori knowledge of the search environment 
• excellent search capabilities due to efficient sampling of the design search space 
• ability to avoid local optima 
• ability to handle high dimensionality 
• robustness across a wide range of problem classes 
• provision of multiple good solutions 
• ability to locate the region of the global optimum solution 

Research on evolutionary computation in engineering design has a relatively long history.  It 
was initiated in Europe in the early seventies by Rechenberg (1973) in the areas of fluid 
mechanics, pipe design and structural engineering.  Early applications of EC in structural 
engineering (Hoeffler et al. 1973; Lawo and Thierauf 1982) used ES which evolved from 
structural optimization approaches in the early 1960’s. Further significant progress in this area 
has taken place mainly during the last fifteen years.  In the United States, Goldberg (1987; 1989) 
did the first application of GAs, which emerged from the machine learning community, in 
engineering optimization in the area of complex gas pipeline systems.  Just about the same time, 
in the late 80’s and early 90’s, many researchers started applying this new optimization method 
to a large spectrum of engineering design problem

vided in (Arciszewski and De Jong 2001; Bentley 1999a; Bentley and Corne 2002; Chawdhry 
et al. 1998; Coello Coello et al. 2002; Cvetkovic and Parmee 1999; Dasgupta and Michalewicz 
1997; Gen and Cheng 1997; Gen and Cheng 2000; Parmee 1999; Parmee 2001; Parmee 2002).   

Creative Design 
Evolutionary design optimization and creative evolutionary design are the two categories of 

evolutionary design that are particularly relevant to civil and structural e
m a computational point of view, the dividing line between the two categories is not sharp 

and is mostly related to the potential of achieving novelty/creativity during the processes of 
generating design concepts as well as properties that novel/creative designs need to possess.  For 
Gero (1996) creativity in design “is not simply concerned with the introduction of something 
new into a design, although that appears to be a necessary condition for any process that claims 
to be labeled creative.  Rather, the introduction of ‘something new’ should lead to a result that is 
unexpected (as well as bein

tive when it 
gn spaces but also evolves the number of these attributes, i.e. when changes in the 
esentation space occur.  Similarly, Boden (1992) suggests that achieving creativity is only 

tation, and by finding a design that could not 
 been defined by that representation. The same concept was explored by Arciszewski and 
orkers in the context of Inferential Design Theory (Arciszewski and Michalski 1984) and 

 



15 

representations in evolutionary design, including generative representations supporting creative 
design processes can be found in section 2.1.3.   

L
sugg
to g
start
only

Evo
C

based on the theory of inventive problem solving (TRIZ) introduced by Altshuller (1969; 1999).  
Altshuller discovered that the evolution of engineering systems is not a random process, but is 
gov
syst
Alts
(Arc

m a group/class of known concepts in a given engineering 

er’s innovation taxonomy. 
 

ess restrictive definition of creativity in design was given by Rosenman (1997).  He 
ested that the distinguishing feature of all creative evolutionary design systems is the ability 

enerate entirely new designs starting from little or almost no knowledge (for example when 
ing with random initial conditions), and being guided throughout the evolutionary process 
 by performance criteria. 

lutionary Design and Theory of Inventive Problem Solving 
reativity in evolutionary design can also be analyzed from a broader perspective, namely 

erned by a class of paradigms. These paradigms can be subsequently used to develop a 
em considering its technical evolution, i.e. by determining and implementing innovations.  
huller introduced five levels of innovation in the context of an engineering design problem 
iszewski et al. 1995): 
1. Selection 
“A design concept is selected fro
domain.”   
This level of innovation corresponds to an EA using only selection operation and that is 
initialized with a population of known design solutions, rather than randomly generated 
ones. 
 
2. Modification 
“A design concept is produced as a combination and/or modification of known design 
concepts from a given domain.  The modification process can be performed either 
deterministically or using a random generation process.”   
This paradigm is equivalent to an EA searching for an optimal solution in a 
parameterized representation space of a class of engineering designs.  Rosenman’s 
definition of creativity in design is most closely related to this paradigm and hence it 
becomes obvious that his prerequisites of creativity are fairly weak when compared to 
Altshull
3. Innovation
“A design concept is produced as a combination of known concepts from a given domain 
and other domains.”   
This paradigm can be best represented as the island-model EA where various populations of 
designs evolve independently and occasionally exchange some individuals through a 
migration process.  The migrations can model injection of knowledge from other domains to 
a particular engineering domain. 
4. Invention 
“A design concept is produced as a combination of known concepts from a given domain 
and new concepts based on a new technology, which have been recently introduced.”   
EA can achieve this level when it evolves not only the values of attributes but also the 
attributes themselves (Rosenman and Gero 1999).  In other words, it can use various 
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transformation operators (Arciszewski et al. 1995) for a representation space including 
attribute addition (introduce new attributes/genes to the representation space), attribute 
elimination (removing unimportant attributes), attribute abstraction (combining attributes 
into larger units, or components, and subsequently exploring the component based 
representation (Bentley 2000)), and attribute construction (creating new attributes by a 
simple or complex transformation of the initial attributes).  This level of innovation is most 
closely related to Gero’s definition of creativity in design as well as changes in the 

ven domain 
oncepts based on new scientific principles.”   

ents of the representations during the 

lfram (2002) suggested that all scientific principles and natural 
 modeled in terms of simple programs that can nevertheless produce 

r.  EA using the generative representations will search both the space of 

(Arciszewski et al. 1995).   

 was originally proposed in the field of 
ma

representation space introduced in the constructive induction process (Arciszewski et al. 
1995). 
5. Discovery 
“A design concept is produced as a combination of known concepts from a gi
and new c
This highest level of innovation in Altshuller’s taxonomy can most likely be achieved by 
evolutionary design processes.  However, special types of representations, namely the 
generative representations (Hornby 2003) (described in section 2.1.3), seem to be necessary 
to accomplish it.  Generative representations use compact representations (genotypes) of 
existing design knowledge and mappings that translate these representations to actual 
designs (phenotypes).  The mappings can reuse elem
process of translation.  Thus, the compact representations can be thought of as storing 
existing knowledge on a given engineering domain, whereas mappings correspond to new 
scientific principles that can transform the known concepts to new, and possibly creative, 
design concepts.  The mappings are usually simple programs that take the compact 
representations as input and produce actual design concepts as output.  Despite their 
simplicity, they can generate designs that can be defined as creative (Bentley and Kumar 
1999).  Recently, Wo
processes can be
complex behavio
compact representations and the space of simple transformation programs (scientific 
principles) and will generate creative design concepts. 

The first two paradigms, i.e. selection and modification, can only produce routine designs. In 
both cases, no changes occur in the representation space (Arciszewski et al. 1995).  The last three 
paradigms, i.e. innovation, invention and discovery, can generate novel/creative designs. In all 
these cases, changes in the representation space do occur 

Emergence 
Emergence is an important property which is closely related to creativity in design.  Gero 

(1992) defines emergence as “a process of making features explicit, that were previously only 
implicit.”  He also suggests that emergence plays an important role in introducing new attributes 
to the representation space (Gero 1996).  Emergence can also be easily recognized through the 
visual examination of representations of structures, for example of structural patterns of steel 
structural systems in tall buildings (Kicinger et al. 2002). 

The notion of an emergent concept generation has also been introduced by Arciszewski et al. 
(1995) as a part of a constructive induction process that

chine learning.  An emergent design concept is defined as a constructed attribute (representing 
an unknown design concept) whose introduction may simplify and improve effectiveness or 
quality of a design process.  A constructed attribute is derived from the initial attributes by an 
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application of constructive induction operators. It is usually more abstract than the attributes 
from which it was derived. 

Integrated Design 
Most applications of evolutionary methods in civil and structural engineering were focused on 

a detailed design stage of a design process, where the objective was to find the optimal 
configuration of attribute values for a previously selected and parameterized design concept.  
Thus, only routine design concepts could be generated, even though they were optimized with 
respect to some objective.  An overview of the SOTA in evolutionary design applications in civil 
and structural engineering can be found in section 2.1.7. 

There has also been some work in applying evolutionary design methods at the conceptual 
stage of an engineering design process, where the emphasis is on the generation of novel and 
original design concepts, and not on finding the globally best solution in terms of numerical 
values in the context of a specific design concept.  Gero and Schnier (1995) worked on the 
evolution of a design knowledge representation, using genetic algorithms and Rosenman and 
Gero (1999) used genetic engineering to evolve architectural floor plans.  Arciszewski et al. 
(1999) used evolutionary computation to produce creative designs.  Bentley (1999b) developed a 
generic evolutionary design system, which was able to evolve a range of various designs from 
scratch.  The system performed evolutionary design with an emphasis on the evolution of 
creative design concepts rather than their optimization.   

The concept of integrated design utilizing various forms of evolutionary computation at each 
stage of a design process as well as incorporating designer’s knowledge and intuition within the 
search and exploration process has been pioneered by Parmee (1995; 2001).  In the mid-90’s, 
this research was initiated on the utility of evolutionary/adaptive search within the generic 
domain of an engineering design process as a whole.  Parmee, following Pahl and Beitz (1996), 
distinguishes three major stages of an engineering design process: conceptual design, 
embodiment design, and detailed design.  He considers conceptual design as “a search across an 
ill-defined space of possible solutions using fuzzy objective functions and vague concepts of the 
structure of the final solution.”  Embodiment design operates with a selected (during the 
conceptual design stage) initial design configuration and aims to further specify the subsets 
forming the whole system.  Design decisions at this stage are made based on both qualitative and 
quantitative criteria which usually are difficult to be formally defined using mathematical models 
and hence difficult to include in a scalar objective (fitness) function.  Finally, at a detailed design 
stage, design decisions are made based on solely quantitative criteria which are well described by 
mathematical models, even though they may be computationally expensive and may require 

nal and simplified definitions of engineering complex analysis techniques.  Contrary to traditio
design process which assume little or no interaction between the stages (Pahl and Beitz 1996), 
Parmee argues that considerable overlaps exist among the three stages and they should be taken 
into account in the integrated design model.  He suggests that a model of a design optimization 
process should be considered to “represent a long-term, highly complex process commencing 
with high-risk conceptual/whole-system design and continuing through the uncertainties of 
embodiment/preliminary design to the more deterministic, relatively low-risk stages of detailed 
design and the eventual realization of an optimal engineering solution.”   

The objective of Parmee’s integrated design was to develop co-operative frameworks 
involving a number of evolutionary/adaptive computing techniques and integrate them with each 
stage of the engineering design process.  During this research, various forms of evolutionary 
computation were considered in the context of integrated design, including structured genetic 
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alg

Parmee 2000). 

be

gineering design is a computational description of an engineering 
et exist) expressed in terms of attributes (Arciszewski et al. 1995).  

In 

bed in 
ter

orithms (Dasgupta and MacGregor 1991), GAANT algorithms (Parmee 1996), and ant colony 
algorithms (Bilchev and Parmee 1995; Colorni et al. 1992) as well as constraint satisfaction 
(Michalewicz et al. 1996).  Next, Parmee investigated evolutionary computation in the context of 
searching “whole-system design hierarchy” described by both nominal and numerical attributes 
(1998a), and he applied it to designing hydropower systems (1998b).  Later, Vekeria and Parmee 
(1996) proposed the use of evolutionary computation in conceptual design of structural systems, 
including the determination of the topology of their members.  Recently, he has been focused on 
the “innovative conceptual design” in the context of variable mutation cluster-oriented genetic 
algorithms (vmCOGA) and successfully used them in the area of aerospace engineering 
(Bonham and 

2.1.3. Evolutionary Design Representations 
Representations in engineering design incorporate both representation of an artifact being 

designed as well as representation of a design process, i.e. a process by which the design is 
completed.  The line distinguishing artifact representation and design process representation is 
often blurred.  Building a representation of an artifact is similar to the process of its 
numerical/mathematical modeling in engineering science.  It is, however, significantly broader 

cause it encompasses much more knowledge than can be set into mathematical formulas and 
their numerical realizations.  Generally, a representation of a designed artifact should describe its 
function, form, intent, legal requirements, etc.  Advances in computer science, and evolutionary 
computation in particular, made it possible to use symbolic representations to describe objects, 
attributes, relationships, concepts, etc.  Thus, it is now possible to capture more abstract and 
conceptual design knowledge (Dym 1994). 

A representation of an en
system (that usually does not y

the most straightforward EC representation, each gene corresponds to an attribute and 
represents a dimension of the search space.  Each such dimension can have an appropriate set of 
values (discrete or continuous) that a feature represented by this dimension can take on.  In the 
simplest case, these representations use binary genes denoting the presence, or absence, of a 
feature. In such representations each individual consists of a fixed-length binary string of genes, 
or a genotype, representing some subset of a given set of features.  Often, in complex 
engineering applications, multi-valued attributes are more natural to use (Arciszewski and De 
Jong 2001).   

A representation space for an engineering design is a multidimensional space spanned over 
attributes that are used to describe an engineering design (Arciszewski et al. 1995).  Attributes 
can be symbolic (when they take values from an unordered or partially ordered set) or numerical 
(when they take numerical values representing quantities or measurements).  Symbolic attributes 
that take values from an unordered set are called nominal attributes; when they take values from 
a partially ordered set, they are called structured.  Design concepts are typically descri

ms of symbolic attributes.  Numerical attributes are used for a detailed description of a design. 
A design concept is understood as a description of a future engineering system, actual or 

abstract, in terms of a feasible combination of symbolic attributes and their values.  After a 
conceptual design process is completed, a given design concept is used next in the detailed 
design process to produce a detailed design.  A detailed design is understood here as a detailed 
description of a future engineering system in terms of both symbolic and numerical attributes 
(dimensions, weights, etc.) (Arciszewski et al. 1995). 
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Optimality vs. Creativity 
A choice of a particular representation of an engineering system for an evolutionary design 

process is highly influenced by the designer’s goal, i.e. whether the emphasis is on optimality in 
terms of numerical values in the context of a specific design concept, or on generation of creative 
design concepts.  When the focus is on finding an optimal design, designers’ attention is usually 

oncepts of existing designs.  In this case, 

inimizes) given objective(s).  
Thus, for strictly engineering optimization problems, representations should be direct (i.e. they 
should or slight variations).  
Traditio
represe
categor
domain

Crea ore general and usually more complex 
representations.  Representations that have been used in creative design are diverse but 
neverth eneral and 
thus ca
togethe
based r
1995; K
not en
exampl
and Pollack 1999), shape gramm
Stiny 1980), graphs and matroids (Shai 2001), cellular automata (Frazer 1995; Hajela and Kim 
1999),  1994), and embryogenies (Bentley and 
Kumar

Selecting Appropriate Design Representations 
Gen ning good representations 

(genoty

use it corresponds to multiple phenotypic 
s case, an additional procedure would have to 

restricted to a particular concept or at most several c
design representations usually take a form of parameterizations of an engineering system, or its 
parts.  The parameters are then encoded as genes and their alleles are evolved using evolutionary 
algorithms in order to find the best design that maximizes (or m

encode possible solutions) and parameterized (allowing only f
nal representations frequently used in engineering optimizations problems, like binary 

ntations, integer representations, and real-valued representations can be included in this 
y. Additionally, representations used in optimization problems usually incorporate 
 knowledge, to smaller or larger extent, in order to make the search more efficient. 
tive evolutionary design requires, however, m

eless share some similarities.  Typically, phenotype representations are quite g
pable of representing large numbers of alternative shapes, forms, or morphologies (forms 
r with structures) (Bentley 1999c).  They range from direct representations, as in voxel-
epresentations (Baron et al. 1997) or array-based representations (Kane and Schoenauer 
ane and Schoenauer 1996), to highly indirect representations, i.e. representations that do 

code solutions but rather rules on how to build these solutions.  The most popular 
es of indirect representations are grammars (Roston 1994), trees (Bentley 1996; Funes 

ars (Grabska 1993; Schmidt and Cagan 1998; Shea et al. 1997; 

L-systems (Coates 1997; Hornby 2003; Jacob
 1999). 

 and Cheng (2000) discuss five major requirements for desig
pe-phenotype mappings) for evolutionary design problems: 
1. Non-redundancy 
“The mapping between encodings and solutions should be 1-to-1.” 
There should be a unique pairing of each element of a genotypic space with a 
corresponding element of a phenotypic space.  Out of all three possible cases, the 1-to-n 
mapping should be particularly avoided beca
representations of the same genome.  In thi
be employed to determine the actual phenotype. 
2. Legality 
“Any permutation or combination of an encoding corresponds to a solution.” 
It is important to distinguish between two basic concepts: infeasibility of a solution and 
its illegality.  Infeasible solution means that a phenotype decoded from a genotype lies 
outside of a feasible region (defined by the constraints) in the phenotypic space.  Illegal 
solution means that a genotype does not represent any phenotype for a given problem.  
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The implicit significance of the legality requirement is that it implies that standard 

e, and hence 
it is accessible to g
4. Lamarckian property  
“The meaning of alleles for a gene is not context dependent.” 
This requirement “concerns the issue of whether or not one chromosome can pass on its 
merits [learned traits] to future populations through common genetic operators” (Cheng et 
al. 1996).  If the meaning of alleles for a gene is interpreted in a context-dependent 
manner, as in the non-Lamarckian case, the offspring usually inherit nothing from 
parents.  Generally, the representation should have the Lamarckian property so that 
offspring can inherit goodness from parents.   
5. Causality (also known as Continuity) 
“Small variations on the genotype space due to mutation imply small variations in the 
phenotype space.” 
This requirement focuses on the preservation of neighborhood structures.  The 

genetic operators can be easily applied to a representation satisfying this requirement. 
3. Completeness 
“Any solution has a corresponding encoding.” 
This requirement guarantees that any phenotype has a corresponding genotyp

enetic search.   

appropriate choice of genotype-phenotype mapping in combination with the genetic 
operators is important for a successful evolutionary search process (Sendhoff et al. 1997).  
For a successful introduction of new information by an operator, the operator should 
preserve the neighborhood structure in the corresponding phenotype space.  Search 
processes that preserve the neighborhood structure are said to exhibit strong causality.   

Taxonomy of Representations 
Representations used in evolutionary design have been classified with respect to many 

different criteria.  Table 2 presents a compilation of classification schemes in which attributes 
and their values correspond to various categorizations of evolutionary design representations 
proposed by several researchers (De Jong to appear; Hornby 2003; Popovici 2003). 

Table 2. Classification of EA representations 

Attribute Attribute value(s) 
EA level Genotypic Phenotypic 
Structure Linear Nonlinear 
Length Fixed Variable 
Change during evolution Static Dynamic 
Encoding scheme Direct Indirect 
Accuracy of solution specification  Parameterization Open-ended 
Ability to reuse encoding Non-generative Generative 
Genotype-phenotype correspondence Explicit Implicit 

  
One of the most important representational issues is the choice between a genotypic and 

phenotypic representation.  This issue has some important consequences not only for EC in 
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general but also for evolutionary design.  When one decides to use a genotypic representation (as 
it is the case in the canonical GA) then an appropriate genotype-phenotype mapping has to be 
constructed, hopefully satisfying all five major requirements stated earlier.  A particular attention 
has to be paid to satisfy the causality requirement. The lack of correlation between variation at 
the genotype level and variation at the phenotype level can cause serious problems (De Jong to 
ap

, one can just use phenotype level encodings (as it is the case in the canonical 
ES

henotypic representations is that the genetic operators 
be

ivided into two groups: fixed-length and variable-length representations.  The length of a 
ge

 design (Bentley 1999a). 

s on how to construct these concepts.  Again, direct representations 
n optimization and indirect encodings for evolving 

pear).  When a genotypic representation is used, mutation and recombination operate at the 
genotypic level while the fitness evaluation and selection are performed at the phenotypic level.  
One of the advantages of using genotypic representations is the ability to reuse standard genetic 
operators for multiple problem domains. 

Alternatively
) to both explore and exploit a design space.  The significant advantage of this approach is that 

no mapping between genotype and phenotype is necessary and hence all five requirements stated 
earlier are automatically satisfied.  One can focus on achieving useful exploration only at the 
phenotypic level.  The disadvantage of p

come problem dependent and have to be carefully crafted for each individual problem domain 
(De Jong to appear).  Phenotypic encodings have been widely used within the ES community and 
applied to many engineering optimization problems. 

A structure of an evolutionary design encoding is another relevant criterion.  Generally, 
representations can be divided into linear and nonlinear.  A linear representation can be thought 
of as a 1-dimensional representation usually in a form of a string (binary, real-valued, integer-
valued), list, etc.  Nonlinear representations, on the other hand, have 2-, or higher- dimensional 
structure, e.g. trees, arrays, etc. 

Another distinguishing property of evolutionary design representations is their length.  They 
can be d

nome is constant during an entire evolutionary process when fixed-length encodings are used.  
It is not the case with variable-length representations where an individual can be represented by a 
genome that changes its length every generation.  Consequently, a population may consist of 
individuals whose genomes have different lengths.  Fixed-length representations have been 
widely used in evolutionary design optimization while variable-length representations have been 
applied to creative evolutionary

Depending on whether, or not, a representation can change during an evolutionary design 
process, one can divide representations into static and dynamic.  This is a more general 
classification than the one based on a change of the length of a genome because it considers not 
only a time-dependent change of the length of a genome but also time-dependent changes made 
to its structure. 

Direct representations encode essentially the actual design concepts, while indirect 
representations encode rule
are used mostly for evolutionary desig
creative design concepts (Hornby 2003). 

In the case, when the topology of a design is established in advance and specified in sufficient 
detail, i.e. it is parameterized; the representation is called a parameterization.  On the other hand, 
when the topology of a design is changeable then the representation is called open-ended.   

Representations that can reuse some parts of an encoded design from a genotype during the 
phenotype construction phase are called generative.  Generative representations are always 
indirect.  Non-generative representations can not reuse elements of the encoding.  They can be 
either direct or indirect.  Generative representations offer several advantages when compared to 
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non-generative ones.  Their ability to reuse elements of an encoded design improves the search 
efficiency in large design spaces as well as scalability by capturing design dependencies (Hornby 
20

rea

na

ply 
because it is not represented in the binary search space. 

03). 
Depending on the nature of a relationship between the elements of a genotype and the 

elements of a generated phenotype, generative representations can be further classified as 
implicit or explicit.  Implicit representations consist of a set of simple rules (e.g. cellular 
automata) that implicitly specify a design property, e.g. its shape, through an iterative 
construction process.  Explicit representations are like procedural programs for constructing 
designs in an explicit manner. 

Recently, there have been several attempts to coevolve representations of engineering systems 
during the evolutionary processes.  This corresponds to a process in which a learning system 
adapts its own representation.  De Jong and Oates (2002) proposed a coevolutionary approach to 
representation development where building blocks and their assemblies are coevolved.  Also, 
Gero and Schnier (1995) worked on the evolution of the design knowledge representation, using 
genetic algorithms, in the context of case–based design. Such evolution is often necessary to 
produce inventive designs. 

Traditional Design Representations 
The majority of evolutionary design applications in structural engineering reported in the 

literature used relatively straightforward representations consisting of either binary strings or 
l-valued vectors.  Thus, it is important to be aware of the strengths and weaknesses of both 

common approaches to represent engineering systems. 
Binary representations are standard representations for canonical GA.  The most 

straightforward and at the same time most common approach involves binary strings of fixed 
length.  This type of representation is best suited for problem domains where solutions can be 

turally represented as binary vectors, e.g. in some combinatorial optimization problems.  In 
engineering design this type of representations has been widely used in structural topology 
optimization, e.g. in the ground structure approach (Dorn et al. 1964). 

When a problem domain cannot be defined in terms of binary vectors, then a mapping from 
the binary space (genotypic space) to the domain space (phenotypic space) is necessary.  Using 
this principle, binary string representations have been applied to continuous parameter 
optimization problems (Michalewicz 1996).  In this case, a mapping between binary strings and 
real-valued parameters had to be specified.  This approach has been widely used in many 
engineering design applications.  Its advantage is that the standard GA operators (e.g. the bit-flip 
mutation, and one-, or two-point crossover) can be used.  There are, however, some important 
drawbacks of this approach, too.  Michalewicz (1996) argues that it is not appropriate because 
the problem space the GA is operating in is fundamentally different than that of the originally 
defined problem. Thus, search and optimization are conducted in a different space than the 
original one.  Hence, the optimal results obtained in the binary search space might in fact not be 
optimal for the original problem.  The genotype-phenotype mapping also introduces some 
additional nonlinearity to the objective function, and hence it may happen that the modified 
problem is more difficult to solve than the original one.  Bäck (1996) points out another serious 
drawback of mappings from continuous to binary spaces.  The mappings impose some 
granularity (resolution) and hence not all the points in the original continuous space can be 
expressed as binary vectors. So, it is possible that the optimal solution will not be found sim

 



23 

Another important problem with binary representations is related to the fact that one of the 
fiv

esign problems, specifically to various fine tuned optimization problems.  In ES, 
rea

 genotype and a phenotype is necessary.  Thus, the drawbacks associated with 
the ma n this case.  There are, however, two major problems with real-
valued rep ted.  First, real-valued encodings allow for 
represe ti ins, and that usually corresponds to fine-tuned 
optimiz uch, they are not applicable for creative design problems as I 
discuss it every design problem can be expressed as a 
real-valued vector.  There are many design problems, conceptual design problems being a good 
exampl f e symbolic or qualitative variables which cannot be encoded as real-

evolutionary design.  It also provides references to actual applications in structural 
en
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e major requirements on genotype-phenotype mappings, namely causality or continuity 
requirement, does not hold.  In other words small changes in the binary space correspond to large 
changes in the real-valued parameter values and vice-versa.  A frequently employed solution in 
this case is to use Gray encoding scheme (Bäck 1996). 

Real-valued representation spaces have been traditionally used by ES researchers to solve 
complex continuous parameter optimization problems.  Historically, they have been applied to 
engineering d

l-valued representations have traditionally been used as phenotypic representations, where no 
mapping between a

ppings are eliminated i
resentations which are somehow rela

nta on of only very specific problem doma
ation problems.  As s
ed  earlier.  The second problem is that not 

e o , that involve som
valued parameters. 

As stated earlier, representations are one of the three key elements in a successful 
implementation of evolutionary design.  Throughout the years, enormous amount of 
experimental work has been devoted to studying various types of evolutionary representations.  
Despite this fact, very little is known theoretically about their influence on the performance of an 
EA.  Initial framework for evolutionary representation theory has been recently proposed by 
Rothlauf (2002), but it is just the beginning of research on this important topic in EC. 

2.1.4. Constraint-Handling Methods in Evolutionary Design 
The vast majority of engineering design problems involves constraints of some kind.  Thus, 

appropriate methods of handling constraints are extremely important for any optimization/search 
mechanism exploring designs spaces.  Evolutionary algorithms, on the other hand, are 
unconstrained optimization procedures and hence it is necessary to somehow incorporate 
constraints into them.  This section reviews the SOTA in constraint-handling methods in the 
context of 

gineering. 
Coello Coello (2002) classifies constraint-handling methods used with EA into the following

jor groups: 

Penalty functions 
2. Special representations and operators 

Repair algorithms 
4. Separation of objectives and constraints 
5. Hybrid methods 

unctions 
alty functions have traditionally been the most common way of handling constraints 
rated in EA (Goldberg 1989; Michalewicz 1995).  This method was initially proposed in 

1940’s in the context of traditional mathematical optimization by Co
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later ex
McCormick 1968).  In the 1980’s, penalty functions have been adopted by EC researchers to 
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hibit EA from searching infeasible regions most of the time.  As a 
dings, several EC researchers proposed the ‘minimum penalty rule’ which 

sta

tended by the operation research (OR) community in the 1960’s (Caroll 1961; Fiacco and 

ve constrained optimization problems (Goldberg 1989; Goldberg and Samtani 1986) and since 
then have become the most popular, albeit not best as it has been shown in several studies 
(Richardson et al. 1989), method of handling constraints.  Penalty functions effectively transform 
a constrained design problem into an unconstrained one by augmenting the objective function 
with a penalty term whose value determines the amount of constraint violation present in a 
particular solution (Coello Coello 2002).  Contrary to classical optimization methods which use 
penalty functions of two kinds (i.e. exterior and interior), evolutionary design focused almost 
exclusively on exterior penalty functions because they do not require initial feasible solution to 
start with. 

Various types of penalty functions have been proposed and studied.  A general classification 
of the most commonly used types of penalty functions is presented below (Coello Coello 2002): 

1. Static penalty functions which remain constant during an entire evolutionary process 
(Carlson 1995; Goldberg and Samtani 1986). 

2. ynamic penalty functions which change throughout an evolutionary run (usually 
crease over time) (Joines and Houck 1994). 

3. nnealing penalty functions which use techniques based on simulated annealing 
Michalewicz and Attia 1994). 
daptive penalty functions 4. which change according to feedback received from the 
earch process (Bean and Hadj-Alouane 1992; Hadj-Alouane and Bean 1997; 
anakorn and Meesomklin 2001; Rasheed 1998; Smith and Tate 1993). 

5. oevolutionary penalty functions in which solutions are evolved in one population and 
enalty factors evolve in another population (Coello Coello 2000d). 
eath penalty functions which immediately reject infeasible solutions (Schwefel 
981). 

One of the major challenges in any application of penalty functions concerns achieving an 
appropriate balance of the penalty value.  Large penalty values discourage EAs from exploring 
infeasible regions and the search is quickly moved inside the feasible region.  On the other hand, 
low penalty values do not pro
result of these fin

tes that “penalty should be kept as low as possible, just above the limit below which infeasible 
solutions are optimal” (Coello Coello 2002).  The problem with this formulation, especially for 
structural design applications, is that usually the constraints are not expressed in an algebraic 
form but instead as outcomes produced by structural analysis packages.  Hence, an exact location 
of the boundaries between feasible and infeasible regions cannot be specified. 

Methods of designing/configuring penalty functions for EC applications have been studied by 
Richardson et al. (1989).  They offer several guidelines/heuristics that can be used to make 
evolutionary search in constrained design spaces more efficient: 

• “Penalties which are functions of the distance from the feasible region are better than 
those which are merely functions of the number of violated constraints. 

• For a problem having few constraints, and few solutions, penalties which are solely 
functions of the number of violated constraints are not likely to find solutions 

• Good penalty functions can be constructed from two quantities, the maximum 
distance and the expected distance to the feasible region. 

 



25 

• Penalties should be close to the expected distance to the feasible region, but should 
not frequently fall below it.  The more accurate the penalty, the better the solutions 
will be found.  When penalty often underestimates this distance, then the search may 
not find a solution.” 

A number of applications showed, however, that there are many difficulties associated with 
penalty functions (Richardson et al. 1989), including, for example, a problem of defining good 
penalty factors.  Thus, over the years, alternative approaches to handling constraints have been 
proposed by EC researchers.  

Other Methods 
Alternative attempts to handle constraints in evolutionary design include the development of 

special representations that simplify the shape of the search space and special genetic operators 
that preserve feasibility of generated solutions during the evolutionary run.  Examples of 
applications of these methods include Bean’s (1994) ‘random keys encodings’, Davidor’s (1989) 
‘analogous crossover,’ Michalewicz’s (1996) GENOCOP, and Kowalczyk’s (1997) constraint 
consistent GAs.  Schoenauer and Michalewicz (1996) proposed a method that restricts the search 
to the boundary of a feasible region.  It is based on a heuristic that in many cases the global 
solution lies on the boundary of a feasible region.  In this method, the search mechanism crosses 
the ea

 decoders (Michalewicz 2000a).  In this case, chromosomes 
encode
decoder i
Koziel an
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can be use objective function given 
in an al
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Mühlen
or not, a 
The spect
for evalua 991; 
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re replaced with some probability by the repaired 
solutions (Orvosh and Davis 1994).  In structural de
(Kicing
satisfying

 An
based on 
techniques in this category include: 

 f sibility boundary back and forth and special genetic operators are used to restrict the 
variation to the boundary of the feasible region (Schoenauer and Michalewicz 1997).  The last 
set of methods in this category uses

 instructions on how to construct feasible solutions (Koziel and Michalewicz 1999).  Each 
mposes a mapping between a feasible solution and a decoded solution (Kim 1998; 
d Michalewicz 1999).  Koziel and Michalewicz (1999) reported that decoders provided 
ter results than any other constraint-handling method on a representative set of  test 
 They seem to be a very promising area of research in structural design because they 
d with problems of any dimensionality and do not require the 

gebraic form (Coello Coello 2002). 
 algorithms are particularly well-suited for combina

lewicz 2000b).  They are particularly efficient when the cost of transformation of an 
 solution into a feasible one is low (Coello Coello 2002).  They have been applied to 
imization problems (Liepins and 

bein 1992; Tate and Smith 1995).  An interesting aspect of repair algorithms is whether, 
repaired individual should replace the original infeasible individual in the population.  
rum of possible choices ranges from no replacement (repaired individuals are used only 
tion and the original individuals remain in the population) (Liepins and Potter 1

pins and Vose 1990) to the full replacement (all infeasible individuals are replaced with the 
repaired ones) (Nakano and Yamada 1991).  Also, some intermediate approaches have been 
suggested where original infeasible solutions a

sign, repair algorithms have been used e.g. in 
er 2004) to repair design concepts of steel structural systems in tall buildings not 

 the symmetry requirement. 
other group of constraint-handling techniques can be broadly categorized as methods 
separation of constraints and objectives (Coello Coello 2002).   Most representative 

 



26 

1. Competitive coevolution in which potential solutions (possibly infeasible) are evolved 
in one population and constraints are contained (but not evolved) in another population 
(Paredis 1994).  Individuals representing potential solutions have high fitness when 
they satisfy a large number of constraints from the other population.  On the other 

2. 

3. que of ordering constraints in which the 

4. le-objective problem is 

Finally
EA

function with mathematical programming methods including the primal-dual method 
deli and Cheng 1994) that guarantees the 

the search (Kim and Myung 1997; Myung et al. 

strained optimization problems (Bilchev and Parmee 

hand, an individual representing a constraint has high fitness if this constraint is 
violated by many potential solutions. 
Superiority of feasible points which assumes that all feasible solutions are better than 
infeasible ones (Deb 2000; Powell and Skolnick 1993). 
Behavioral memory that uses a special techni
algorithm proceeds by sequentially satisfying the constraints imposed on the problem 
(Schoenauer and Xanthakis 1993). 
Multiobjective optimization methods in which an original sing
transformed into a multiobjective one by treating all constraints in the original 
problem as objectives in the transformed problem (Coello Coello 2000a; Coello Coello 
2000b; Parmee and Purchase 1994; Surry and Radcliffe 1997; Surry et al. 1995). 
, the last category of constraint-handling methods includes hybrid methods in which 

s are combined with other methods to solve constrained problems.  In this category, several 
interesting methods were proposed, including: 

1. Lagrangian multipliers in which a hybrid EA is formed by integration of a penalty 

and an augmented Lagrangian function (A
generation of feasible solutions during 
1995). 

2. Fuzzy logic in which an EA is combined with fuzzy logic.  In this method the original 
constraints are replaced by fuzzy constraints to allow a higher degree of tolerance for 
violating constraints that may occur close to the boundary of the feasible region (Le 
1995; Le 1996). 

3. Immune system models which have been initially proposed to maintain diversity in 
multi-modal optimization problems (Forrest and Perelson 1990; Smith et al. 1993) and 
later extended to solve constrained optimization problems (Hajela and Lee 1995b; 
Hajela and Lee 1996; Yoo and Hajela 1999). 

4. Cultural algorithms which have been initially used to model cultural evolution 
(Reynolds 1994) and later applied to numerical optimization problems involving 
constraints (Chung and Reynolds 1996; Reynolds et al. 1995). 

5. Ant colony algorithms inspired by colonies of real ants and initially proposed for 
solving combinatorial optimization problems (Colorni et al. 1991; Colorni et al. 1992) 
and subsequently extended to con
1995; Bilchev and Parmee 1996) 

Excellent state-of-the-art reviews presenting theoretical and practical aspects of constraint-
handling methods in evolutionary computation can be found in (Coello Coello 1999; Coello 
Coello 2002; Dasgupta and Michalewicz 1997; Michalewicz 1995; Michalewicz and Schoenauer 
1996). 
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2.1.5. Multiobjective Evolutionary Design 
Evolutionary multiobjective optimization (EMOO) is one of the most active research 

subfields within the EC community nowadays.  EMOO methods are also highly relevant to 
engine
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1. 
ultiplication, or any other combination of arithmetic operations 

2. 
 of the simple GA.  

 (Ritzel et al. 1994), 

3. 
 

Haleja and Lin (1992) to optimize a 10-bar plane truss in which weight and 

ering design problems because they were designed to handle multiple conflicting 
es which usually occur in real-world design problems.  This section introduces the SOTA 

onary multiobjective optimization and presents recent developments in applications of 
niques to structural design problems. 
are two major goals of multiobjective optimization. First, one wants to find a large 
f Pareto-optimal (Pareto 1896) solutions to a given problem.  Second, the solutions to 
m should be widely differentiated (Deb 1999).  Classical search and optimization 

(like weighted sum method (Chankong and Haimes 1983) or ε-constraint method 
s et al. 1971)) are not efficient for multiobjective problems because most of them cannot 
ltiple solutions in a single run, and even multiple runs do not guarantee finding different 

olutions.  On the other hand, EAs are well-suited to solve these kinds of problems 
ey are population-based and this property allows them to find an entire set of Pareto-
lutions in a single run.  Additionally, they are significantly more robust, compared to 

sical methods, particularly when issues like the shape or continuity of the Pareto front are 
r of concern (Coello Coello 2000c). 

research on using evolutionary methods for solving multiobjective problems was 
 by Rosenberg (1967).  He suggested, but did not implement, a genetic search method 

 multiple biochemical properties and objectives of a population of single-celled 
.  The first actual implementation was conducted by Schaffer (1984).  In his 
n, he proposed and successfully applied the vector evaluated genetic algorithm 

) to multiclass pattern discrimination tasks in machine learning.  Next significant 
s in the field came with Goldberg’s non-dominated sorting procedure outlined in 

 1989).  Since that time, many researchers have developed various versions of 
ctive optimization algorithms.  The most popular approaches reported in the literature 
oello Coello 2000c; Deb 1999; Deb 2001): 

Aggregating functions in which multiple objectives are combined into a single one 
using addition, m
(Syswerda and Palmucci 1991).  Frequently, the weighted sum approach is adopted in 
which the objectives are multiplied by weighting coefficients representing the relative 
importance of the objectives (Jakob et al. 1992; Yang and Gen 1994).  The major 
drawbacks of this method include difficulties in determining the appropriate weights 
and the fact that improper Pareto solutions may be generated in the presence of non-
convex search spaces regardless of the weights used (Coello Coello 2000c). 
Vector evaluated genetic algorithm (VEGA) proposed by Schaffer (1985).  It handles 
multiple objectives by modifying the survival selection mechanism
Several variations of the original VEGA have been proposed and applied to various 
problems, including a groundwater pollution containment problem
and conceptual design of airframes (Cvetkovic et al. 1998). 
Target vector approaches in which targets or goals have to be defined by a decision 
maker for each objective (Coello Coello 2000c).  This group of approaches includes
goal programming (Charnes and Cooper 1961), goal attainment (Chen and Liu 1994), 
and min-max approach.  This last method, the weighted min-max, has been used by 
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displacement were to be minimized, and by Coello Coello and Christiansen to 
optimize I-beams (1998) and truss designs (2000). 

4. Multiobjective genetic algorithm (MOGA) proposed by Fonseca and Fleming (1993).  
individual based on the number of individuals in the current 

methods and adds some new elements to the evolutionary multiobjective algorithm.  

ciplines, including economics, decision 
sci

or example in 
AI game-playing s ary algorithms to 
constrained optimi coevolve cellular 
automata and the training cases for the majori  classification problem (Pagie and Mitchell 
2002). 

It defines a rank of an 
population by which it is dominated.  MOGA has been used in many engineering 
design applications including for example a gas turbine controller (Chipperfield and 
Fleming 1995) and supersonic wings (Obayashi 1998; Obayashi 2002).  Grierson and 
Khajehpour applied a variation of MOGA (called MGA) to conceptual design of office 
buildings (2002). 

5. Non-dominated sorting genetic algorithm (NSGA) defined by Srinivas and Deb (1994) 
and based on Goldberg’s (1989) notion of non-dominated sorting with a niche and 
speciation method.  An improved version of this algorithm, called NSGA-II (Deb et al. 
2000), equipped with elitisms and parameter-free sharing approach has been recently 
applied to a topological optimum design problem by Hamda et al. (2002b).  In their 
approach, both the mass and the maximum displacement of a cantilever plate were 
minimized.  Deb and Goel (2001) used a hybrid approach, NSGA-II and a hill climber, 
to solve several engineering shape optimization problems. 

6. Niched Pareto genetic algorithm (NPGA) proposed by Horn and Nafpliotis (1993).  It 
uses a tournament selection scheme based on Pareto dominance.   

7. Strength Pareto evolutionary algorithm (SPEA) proposed by Zitzler and Thiele (1998) 
which integrates ideas from various existing evolutionary multiobjective optimization 

Comprehensive surveys of various evolutionary multiobjective optimization methods, 
including detailed discussion on their strengths and weaknesses, can be found in (Coello Coello 
1999; Coello Coello 2000c; Coello Coello et al. 2002; Deb 1999; Deb 2001; Van Veldhuizen and 
Lamont 1998). 

2.1.6. Coevolutionary Design 
Another important branch in evolutionary computation research that has recently received 

significant research attention is coevolution.  I refer to coevolution as a phenomenon occurring 
when two or more populations (some researchers also include in this category single population 
models) simultaneously evolve and where no objective fitness function exists but rather 
individual’s fitness is a subjective function of its interactions with individuals from coevolving 
populations (Rosin and Belew 1996; Wiegand 2003).  Biological coevolution encountered in 
many natural processes has been an inspiration for a class of coevolutionary algorithms.  Initial 
ideas of modeling coevolutionary behavior were formulated by Maynard Smith (1982) and 
Axelrod  (1984; 1987).  The competitive approach to coevolution has been since widely used in 
many game-theoretic models that arise in various dis

ences, social sciences, etc. Initial ideas were further extended by Hillis (1991), Paredis (1994; 
1995), and others and resulted in a new optimization procedure called coevolutionary genetic 
algorithm (CGA).  Competitive coevolutionary models are especially suitable for problem 
domains where it is difficult to explicitly formulate an objective fitness function, f

trategies, etc. Paredis (1994) applied competitive coevolution
zation problems.  Recently, they have been used e.g. to 

ty
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Potter and De Jong (1994) proposed another approach to coevolution, namely a cooperative 
coevolutionary model.  The motivation for this model comes from problem domains where 
explicit notions of modularity have to be introduced (Potter 1997).  This model also provides 
appropriate framework for evolving solutions in the form of co-adapted subcomponents, and 
hence is of crucial importance for many engineering design problems.  Usually, complex 
engineering design problems are decomposed into simpler problems and solved independently.  
This works fine for problem domains where the principle of superposition can be applied, i.e. for 
problems that can be linearly decomposed.  That is no longer the case, however, for complex 
designs where nonlinear interactions take place among the subcomponents and make interacting 
members highly dependent on one another.  For these domains cooperative coevolutionary 
model is more suitable because it allows for an explicit subcomponent coadaptation.  Potter and 
De Jong (2000) proposed a cooperative coevolution architecture for evolving coadapted 
sub

In general, coevolutionary design processes can be defined by 7 major attributes shown in 
 be set up (Wiegand 2003).  

Th

components and defined cooperative coevolutionary evolutionary algorithm (CCEA).  This 
architecture has been subsequently analyzed from the evolutionary dynamics perspective (Luke 
and Wiegand 2002; Wiegand 2003) as well as from the perspective of collaboration methods that 
have been used (Wiegand 2003; Wiegand et al. 2001).  

Table 3.  They describing ways in which coevolutionary systems can
e attributes include the payoff quality, methods of fitness assignment, methods of interaction, 

update timing, problem decomposition, spatial topology, and population structure. 

Table 3. Attributes describing coevolutionary architectures 

Attribute Attribute value(s) 
Payoff quality Cooperative Competitive Non-competitive 
Methods of fitness 
assignment 

Methods of interaction Sample size Selective bias Credit 
assignment 

Update timing Sequential Parallel  

Problem decomposition Partitioning 
methods 

Temporal 
decomposition   

Spatial topology Spatial 
embedding 

Non-spatial 
embedding  

Population structure Single Multiple  

Implicit Explicit  

  
 Coevolutionary models have been applied to several engineering design problems, 

n.  Maher and Poon (1996) suggested that it is often the case in 

(19
separat
1996; M
1997) 
processes occur.  The first one is the evolution of design solutions while the second one is the 
evoluti

particularly in architectural desig
a design process that requirements are reconsidered when a design solution is offered. Maher 

94) introduced the idea of coevolutionary design, where requirements and solutions evolve 
ely.  Maher and co-workers (Maher and Poon 1995; Maher and Poon 1996; Maher et al. 

her and Wu 1998; Poon and Maher 1996a; Poon and Maher 19a 96b; Poon and Maher 
have been working on coevolutionary design in which two interrelated evolutionary 

on of requirements.  In this case, the fitness function evolves with the requirements and it 
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is 

e coevolutionary algorithms in 
str

 

Engineering 
The history of evolutionary computation in structural engineering can be traced back to the 

mid 1970’s and early 1980’s (Goldberg and Samtani 1986; Hoeffler et al. 1973; Lawo and 
Thierauf 1982).  The vast majority, if not all, of early papers discussing EC applied to structural 
engineering were focused on structural optimization problems.  Strong emphasis on various 
aspects of structural optimization remained the major focus of research in this field until now 
with relatively few exceptions which mostly addressed the issues of creativity in structural 
design and more sophisticated forms of representations of structural systems (Hamda et al. 
2002a).  

Emergence of EC in structural optimization was a consequence of encountered problems and 
deficiencies of formal methods, including mathematical programming and the optimality criteria 
method (Berke and Khot 1987), when applied to more complicated structural design domains.  
Form
re d 
and fixed during an optimization process wh e the task was to find the optimal sizing 
(dim
con ’s 
co

tructural system 

rching for optimal cross-sections, or dimensions, of elements 

different (local) at various stages of the coevolutionary design process. Also, the fitness 
function is used to identify the surviving solutions, but its convergence simply means that there 
is no progress in the evolution since no new and better solutions are being produced. 

The only work known at this time which uses cooperativ
uctural optimization was conducted by Nair and Keane (2002).  They used CCEA to optimize 

cross-sections of members of planar truss systems (single objective weight minimization 
problem).  The optimized truss systems were decomposed and coevolved in separate populations.  

2.1.7. Evolutionary Computation in Structural 

al structural optimization methods based on the assumption of continuity worked well on 
latively well-formed problems in which the structural configuration of members was assume

il
ensions) of members’ satisfying at the same time imposed design requirements and 

straints.  The simple generalization of this problem by allowing variations of a system
nfiguration greatly increased the complexity of the optimization task and rendered many 

traditional methods inadequate.  This issue became a starting point for a development of two 
major approaches to structural optimization that exist today: enhanced formal methods and 
heuristic methods. 

Structural Design Problems 
The problems addressed by structural optimization can be divided into three major categories: 

• Topology (layout) optimization also known as topological optimum design (TOD) – 
looking for an optimal material layout of an engineering system 

• Shape optimization (SO) – seeking optimal contour, or shape, of a s
whose topology is fixed 

• Sizing optimization – sea
of a structural system whose topology and shape is fixed 

A structural design problem in each of the categories can be further classified as a continuum 
or discrete optimization problem.  Figure 3, a modified version of a figure presented in (Jakiela 
et al. 2000), shows the three categories of structural optimization for continuum design problems 
while Figure 4 shows the same categories for discrete problems. 

The three categories are closely related to three major stages of engineering design process 
described earlier, i.e. TOD is conducted in the conceptual design stage, SO in the embodiment 
design stage, and finally sizing optimization is performed in the detailed design stage.  As stated 
earlier, the three categories of structural optimization problems have been addressed by both 
formal optimization methods and heuristic methods.   
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Figure 3. Topology, shape, and sizing optimization for continuum structural design problems 

 
Figure 4. Topology, shape, and sizing optimization for discrete structural design problems 

Formal methods have been most successful when applied to sizing optimization problems 
which are usually well-defined in terms of mathematical models.  Mathematical programming 
methods (Schmit 1981) and optimality criteria method (Berke and Khot 1987) have been 
efficiently applied to solve these problems.  Heuristic methods, including EAs, have also been 
ap

et al. 1992) and EAs (Chapman et al. 1994; Hajela and Lee 1995a; Jensen 1992; 
996).  Structural shape optimization has been a kind of middle ground 
euristic methods are used and complement one another. 

plied to structural sizing problems (Lin and Hajela 1993; Schoenauer and Wu 1993).  On the 
other hand, TOD problems, located on the other end of the structural complexity spectrum, have 
been most successfully approached using heuristic methods, including simulated annealing 
(Anagnostou 
Kane and Schoenauer 1
where both formal and h

Topological Optimum Design 
TOD has been an area of significant research efforts for the last forty years.  Initial 

investigations in the late 1970’s and early 1980’s were conducted using formal methods. 
Generally, TOD problems can be divided into two major groups: continuum TOD and discrete 
TOD.  In the continuum TOD, the design domain is discretized into small, rectangular elements 
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(rectangular grid) where each element contains material or void.  Formal methods addressing this 
problem include the homogenization method (Bendsoe and Kikuchi 1988) in which each element 
in a grid contains composite material of continuously-variable density in [0,1] and orientation.  
Xie and Steven (1992) proposed evolutionary structural optimization (ESO) method which 
follows the concept of removing lightly stressed elements.  The name of this method is confusing 
because the method is not based on EC principles but rather evolution is understood in a more 
general context as a process of gradual removal of inefficient material from a structure. The EC 
approach to the continuum TOD problem based on GAs has been developed by Sandgren et al. 
(1990) and Jensen (1992).  In their approach, a GA determines the optimal layout of material and 
void in a cantilever plate (represented as a bit array) such that the structure’s weight is minimized 
subject to displacement and/or stress constraints.  This work has been subsequently extended by 
Chapman et al. (1994) to optimize finely-discretized design domains and to obtain families of 
highly fit designs.  Recently, more advanced forms of representations for continuum TOD 
problems have been proposed, including Voronoi-based representations (Periaux and Winter 
1995; Schoenauer 1996), which are based on concepts of Voronoi diagrams studied in 
co

s.  Initial applications of 
GA

lied GAs to optimize topologies of truss structures in 
pplied GAs to optimize topology, shape and member sizing of truss 

pro

mputational geometry, and IFS representations based on fractal theory (Hamda et al. 2002a).  
Also, Hamda et al. (2002b) considered a continuum TOD as an evolutionary multiobjective 
optimization problem. 

Discrete TOD problems consist in determining the optimal element connectivity from a finite, 
albeit large, number of possible connections (Topping 1983).  Two major problem domains 
addressed in early research in this area include truss structures and frame structures.  An initial 
problem formulation in the context of linear programming using the ground structure approach 
was proposed by Dorn et al. (1964).  While traditional linear programming methods proved to be 
successful in finding optimal topologies for small problems, they were rendered inadequate when 
the size of the problems considered was scaled up (increase in the number of design variables or 
the number of grid points in the ground structure approach). The discontinuous nature of this 
design problem was another reason for inefficiency of formal method

s to optimize topology of discrete-member trusses were conducted by Shankar and Hajela 
(1991), Hajela et al. (1993), Grierson and Pak (1993a), and Hajela and Lee (1995a).  Bramlette 
and Bouchard (1991) used EC to three-dimensional structures in the context of aircraft design.  
Koumousis & Georgiou (1994) applied GAs to the topology optimization of steel truss 
structures.  Bohnenberger et al. (1995)  app
pylons.  Rajan (1995) a
structures.  Nakanishi and Nakagiri (1996; 1997) used GAs to solve 2D topology optimization 

blems for both frames and panel structures.  Rajeev and Krishnamoorthy (1997) used 
variable-length string representations to optimize truss structures.  Murawski et al. (2001) and 
Kicinger et al. (2004) applied ES to optimize topology of steel structural systems in tall 
buildings.  Soh and Yang (2001) introduced a GP-based approach to TOD of truss structures.  In 
a subsequent work (2002), they proposed a GP-based methodology for the automated optimum 
design of structures.  Recently, Azid et al. (2002) applied a GA with real-valued representations 
to optimize topologies of three-dimensional trusses. 

SOTA reviews of current research in formal methods for TOD problems can be found in 
Rozvany et al. (1995), Bendsoe and Sigmund (2002), and Xie and Steven (1997) whereas recent 
research developments in applications of EC to TOD problems can be found in (Hajela and 
Vittal 2000). 
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Shape Optimization 
Shape optimization maintains a fixed topology of structural designs but changes their shape or 

 the TOD case, shape optimization problems can be divided into two 
ma

pe optimization problems is discussed in 
(So
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in form  problems can be found in (Bendsoe and Sigmund 2002; 

 Duggal 1990).  Recent developments in applications of GAs to design of steel 
str

whose topology and shape is fixed.  It is the easiest of the three 
stru r d relatively well-understood.  Research on 
formal 
availab

node locations.  Similar to
jor groups: continuum SO and discrete SO.  Continuum SO addresses shape optimization 

problems in the context of 2D or 3D continuum structures.  Traditionally, in continuum SO, “a 
shape is defined by the oriented boundary curves [2D structures] or boundary surfaces [3D 
structures] of the body … and the optimal form of these boundaries is computed” (Bendsoe and 
Sigmund 2002).  Formal methods for solving continuum SO problems are well-established and 
extensive literature is available (Bennet and Botkin 1986; Haslinger and Neittaanmaki 1996; 
Piro enn au 1984).  Sensitivity analysis for sha

kolowski and Zolesio 1992) and application of the homogenization method to this problem is 
 in (Allaire et al. 1997).  ESO, introduced earlier, has also been used to shape 
ation (Xie and Steven 1992). Evolutionary computation methods have also been applied 
e continuum SO problems.  Research on shape optimization of structural members has 
onducted by Jenkins (1991a; 1991b), Richards and Sheppard (1992), and Watabe and 
(1993).  Kita and Tanie (1998; 1999) and Annicchiarico and Cerrolaza (1999; Cerrolaza 
nicchiarico 1999) used GAs to optimize the shape of continuum 2D structures through B-

ons of knne functions.  A GA was used to find optimal locati
owo and Besari (1998) applied GAs to optimize shapes of oval axially symmetric shells.  

hiarico and Cerrolaza (2001) applied GAs to shape optimization of 3D finite element 
. Woon et al. (2001) investigated alternative encodings of GAs for continuum SO using 
al coordinates of boundary nodes. 
rete SO methods conduct shape optimization through variations in geometry of discrete 

nd frame structures introduced through changes in locations of nodes (Pedersen 1987; 
plaats 1975).  Various mathematical programming methods have been used to discrete 
blems, including linear, nonlinear, and dynamic programming (Topping 1983).  In the 
 shape optimization of truss structures, discrete TOD methods using the ground structure 
h have been extended to include optimization of the nodal point locations for a given 

soe be  and connectivity of nodal points (Bend
 methods to discrete SO problems have been conducted by Grierson and Pak (1993a; 1993b) 

ontext of truss structures.  Soh and Yang (1996) applied fuzzy controlled GAs to optimize 
pe of planar and spatial truss structures.  Bohnenberger et al. (1995) applied GAs to 
e shapes of truss structures in pylons.  Keane and Brown (1996) used GAs to optimize 
pe of a satellite boom with respect to its vibration performance.  
A reviews in traditional mathematical approaches to continuum shape optimization 
s are presented in (Allaire and Henrot 2001; Kawohl et al. 2000).  Recent developments 
al methods for discrete SO

Nishino and
uctures are described in (Pezeshk 2002). 

Sizing Optimization 
Sizing optimization problems involve finding optimal cross-sections, or thicknesses, of 

elements of a structural system 
ctu al optimization problems discussed earlier an

methods of solving these kinds of problems has a long history and extensive literature is 
le on the topic (Arora 1989).  First applications of EC to structural optimization problems 
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olutionary algorithms and improving the process of 
ems.  Researchers explored various kinds of 
cluding Voronoi-based representations and 

3. 
ion is a fully recognized structural optimization 
not only by researchers but also by practitioners.  

d these types of optimization problems.  Lawo and Thierauf (Lawo and Thierauf 1982) 
S to optimize members of a planar six-story frame subjected to earthquake loading.  
rg and Samtani (1986) applied a GA to optimize cross-sections of members of a 10-bar 
russ.  Hajela (1990; 1992) investigated cross-section optimization of discrete member 
using GAs.  Deb (1991) applied GAs to optimize designs of welded beams.  Jenkins 
proposed a GA-based design environment to optimize plane frame structures.  Rajeev and 
moorthy (1997) applied GAs to optimize cross-sections of generalized trusses.  Recently, 
et al. (2003) applied genetic algorithms to design welded I-section frames and compared 
erformance with other nonlinear optimization algorithms operating in a constrained 
ntation space. 

ical Perspective 
mmary of major applications of EC in structural design since its beginning in the mid 

 order in Appendix A. The applications are classified with 
e application domain and m

evolutionary algorithm used, the f
logical classification of the EC applications in structural design clearly shows three major 
 in the development of the field: 
Period of early explorations (1986-1995) 
During this initial stage, simple evolutionary algorithms (mainly, if not exclusively ES 
and GAs, sometimes combined with other traditional optimization methods) were applied 
to relatively simple structural engineering problems (sizing optimization of simple 2D 
engineering systems).  Researchers focused on using standard design representations, i.e. 
binary strings and real-valued vectors, single objective fitness functions (usually the 
minimization of weight), and fairly traditional constraint-handling methods involving 
various variations of the penalty functions (see section 2.1.4). 
Period of exploration & exploitation (1996-2000) 
This period can be best characterized as a period of exploring alternative choices for 
various components of the ev
optimization of more complex design probl
representations of engineering systems, in
integer-based representations.  Significant research efforts were also focused on tuning 
the genetic operators to particular problems, e.g. by adapting mutation and crossover 
rates during the evolutionary design processes.  Initial exploration of alternative 
constraint-handling methods has also been conducted, including immune networks, 
behavioral memory, and fuzzy logic.  Several multiobjective approaches to structural 
design problems have been reported as well. 
Period of rapid growth (2001-present) 
Currently, evolutionary computat
paradigm and is frequently used 
Nowadays, research efforts are focused on solving much more complex structural design 
problems and on studying more advanced evolutionary models, including parallel EA, 
multiobjective optimization, and variable-length representations, in the context of 
structural design.  Also, initial exploration of the potential of using coevolutionary 
models is being conducted. 
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Summ
The o engineering design is far from 

ma lop in many exciting new directions.  In this 
section
into the

1. 

reliminary, and detailed design, and developing separate tools for each stage 
owadays, however, the cost of computation continues 

y to persist in the future.  Second, parallel computer 
readily available.  Considering also the fact that EA have a natural 

otential of alternative 
r promising 

area for future research of vital importance to structural design. 

ary 
 field of evolutionary design and its applications t

turity and continues to rapidly grow and deve
, I summarize several of the most promising areas of new research.  They can be grouped 
 following five classes: 

Integrated structural design support tools 
As the size and complexity of structural problems in the field of evolutionary design 
continues to increase, there are several scaling-up issues that need to be addressed, 
including computation time and parallel architectures.  Computation time in evolutionary 
design mostly depends on the evaluation of the fitness of generated designs (frequently 
90-95%, or more, of computation time).  In the past, when computational costs were 
high, researchers developed a variety of techniques to minimize the computational effort.  
One of the most popular techniques involved separation of the stages of conceptual, 
p
(Arciszewski and De Jong 2001). N
to decrease and this trend is likel
architectures are now 
mapping onto parallel architectures, it is my belief that computational costs should not be 
the primary factor in developing new integrated evolutionary-based structural design 
support tools.  These tools will treat all the stages of a design process as phases of a 
single integrated design process.  Research efforts in this direction are led by Parmee and 
co-workers (Parmee 2001). 

2. Open-ended representations 
An appropriate representation of an engineering system is one of the key issues in any 
structural design application.  Today, it becomes even more important because the 
increased complexity of considered design problems raises some difficult internal EA 
issues on how to best represent and evolve complex designs (Arciszewski and De Jong 
2001).  Another motivation comes from the fact that there is an emerging trend to apply 
evolutionary design techniques not only to strictly optimization tasks but rather this 
technique is being gradually more and more useful in finding creative/novel design 
concepts.  Both issues lead to open-ended representations which don’t encode entire 
designs but rather rules on how to construct these designs (see section 2.1.3).  
Representations of this type are also inspired by the processes occurring in nature, where 
we observe evolution manipulating the genetic plans for complex objects rather than the 
objects themselves.  The organisms are then built from the plans via a developmental 
process called morphogenesis.   

3. Alternative constraint-handling methods 
Almost every structural design problem involves some kind of constraints.  Up to very 
recently, various variations of penalty functions were virtually the only method of 
handling constraints.  On the other hand, a number of applications showed that there are 
many difficulties associated with this approach when applied to highly constrained 
optimization problems.  Studies focused on estimating a true p
constraint-handling methods (discussed in section 2.1.4) constitute anothe
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4. Multiobjective structural design 
Structural design problems are inherently multiobjective and often involve a large 
number of conflicting criteria.  So far, research in evolutionary structural design 
concentrated almost exclusively, with few notable exceptions, on single objective 
problems.  At the same time, the field of evolutionary multiobjective optimization 
provides new and efficient methods, described in section 2.1.5, of solving these types of 

ight be particularly suitable for complex design spaces that can 
be relatively well decomposed and when the major goal is not the optimality of design 
solutions in a global sense, but rather their robustness (design for reliability) (Wiegand 
2003).  As stated earlier, very little has been done in this area and it is potentially one of 
the most promising paths of future research. 

Research reported in this dissertation is mostly related to points 1 and 2 described above, i.e. 
building integrated design support tools and using open-ended representations in engineering 
design.  

2.2. Overview of Cellular Automata 

2.2.1. Cellular Automata 
 

systems (Wolfram 1983).  A of a dynamical behavior of 
arious systems. They appear to capture many essential features of a complex self-organizing 
e

problems.  Multiobjective structural design may become one of the most promising areas 
of research in structural design, particularly when not a single optimal design solution is 
sought but rather a set of alternative optimal designs. 

5. Coevolutionary structural design 
Coevolutionary design is an emerging area of research with many unanswered questions.  
There is a lot to be done to understand the true potential of this paradigm in structural 
design.  Initial findings coming from evolutionary computation community suggest that 
coevolutionary models m

 Cellular automata are one of the simplest mathematical representations of complex
s such, they are useful idealizations 

v
b havior observed in real world systems.  CAs are prototypical models of complex systems and 
processes consisting of a large number of identical, simple, and locally interacting components.  
CAs can be used to study pattern formation and gain some insight into self-organization 
processes.  The CAs research has generated great interest over the last forty years because of 
their ability to exhibit very complex patterns of behavior using a set of relatively simple 
underlying rules.  Recently, Wolfram (2002) suggested that cellular automata and other simple 
programs may better model nature’s most essential mechanisms than traditional mathematical 
equations. 

The origins of CA research are commonly associated with two people: John von Neumann 
and Slanislaw Ulam.  Von Neumann proposed CAs as a reductionist model for biological 
evolution (1951).  Following suggestions by Ulam (1952; 1974), he used discrete rather than 
continuous dynamics to construct a two-dimensional self-replicating automaton.  It was the first 
discrete parallel computational model formally shown to be a universal computer as defined by 
Turing (1936). 

CAs have been successfully applied in physics, biology, chemistry, economy, geology, and 
other disciplines.  Some specific examples of modeled phenomena include fluid and chemical 
turbulence (d'Humieres and Lallemand 1986; Gerhadrt and Schuster 1989), growth of crystals 
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(Kessler et al. 1990), DNA evolution, social dynamics (Axtell and Epstein 1996), patterns of 
electrical activity in neural networks (Franceschetti et al. 1992), discrete versions of partial 
differential equations in one or more spatial variables, path planning for mobile robots (Marchese 
2002), etc.  There have also been several engineering applications of cellular automata, including 
models o l 2002).  
Str

ossi  but rarely used in practice). 
• Homogeneity: all cells are equivalent (although there are also models using non-uniform 

 finite number  p

e dimensional CA with binary states and with a local neighborhood of 
size  
CA e

f traffic flow and of transportation systems (Marinosson et al. 2002; Nage
uctural engineering applications of CAs are discussed in section 2.2.3. 
Following Ilachinski (2001), we can distinguish 5 generic characteristics of CAs: 
• Discrete lattice of cells: the system consists of usually 1-, 2-, or 3-dimensional lattice of 

cells (higher dimensional extensions are also p ble

CAs (Sipper 1997)). 
• Discrete states: each of the cells can be in one of the  of ossible discrete 

states. 
• Local interactions: each cell interacts only with cells contained in its local neighborhood. 
• iscrete dynamics: at each discrete time unit, each cell updateD s its current state according 

to a transition rule taking into account the states of cells in its neighborhood. 
The simplest possible CAs, called elementary CAs, consist of a one-dimensional lattice of 

cells, in which each cell can be in one of two possible states.  The value of each cell at a next 
time step is determined by a value of the cell itself and its two closest neighbors.  In other words, 
an elementary CA is a on

 3 (or a neighborhood radius equal to 1). Results of a process of iteration of an elementary 
 ar  presented in Figure 5a).  

 
Figure 5. a) Process of iteration of an elementary CA and b) a transformation rule determining 

the values of cells at a next time step 

 
 The top row of cells (step 1 in Figure 5a)) is iterated 14 times (steps 2-15) using a CA 

transformation (or update) rule shown in Figure 5b).  The CA transformation rule specifies all 
possible (8 in the case of an elementary CA) combinations of cell state values in a local 
neighborhood of size three (the top row) and the values achieved by the central cells at a next 
time step (bottom row).  Increasing the number of cell state values or the size of the local 
neighborhood causes a rapid growth in the number of possible CA rules.  For example, changing 
the number of cell state values to 3 with the same size of the local neighborhood yields 
7,625,597,484,987 possible CA rules compared 256 CA rules for elementary CAs.  There is, 
however, a way to significantly reduce it by introducing a concept of a totalistic CA.  In a 
totalistic CA, a new value of each cell depends only on the average value of the neighboring 
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cells and the cell itself, and not on their individual values (Wolfram 2002).  For example, due to 
averaging, there are only 2187 possible totalistic CAs with 3 values and the neighborhood of size 
three compared to 7,625,597,484,987 rules found in the corresponding standard CAs.  

Figure 6 shows a process of iteration of a totalistic CA with three state values (see Figure 6a)) 
and a totalistic CA transformation rule (see Figure 6b)).  In this particular example, the rule 
specifies all 7 possible local neighborhoods of size three corresponding to 7 possible average cell 
state values, i.e. 0, 0.33, 0.66, 1, 1.33, 1.66, and 2.  They are denoted graphically by various 
shades of gray (the top row).  The values achieved by the central cells at a next time step, i.e. 0, 
1, and 2 are shown in the bottom row.   

 
Figure 6. a) Process of iteration of a totalistic CA and b) its transformation rule 

Formally, a one-dimensional CA (1D CA) can be defined in the following way.  Let 
denote the value of the ith cell at time t. A CA evolves according to a rule F that is a function of 

 and other cells that are within a neighborhood r of : 

( )ic t  

( )ic t ( )ic t

1 1( 1) ( ( ), ( ),..., ( ), ( ))i i r i r i r i rc t F c t c t c t c t− − + + − ++ =  

Each cell can take on one of the k possible values, that is { }( ) 0,1,..., 1ic t k∈ − . Thus, the rule 
F is completely defined by specifying the value assigned to each of the k2r+1 possible (2r+1)-
tuple configurations for a given r neighborhood. Since F itself assigns any of k values to each of 
the k2r+1 possible (2r+1)-tuples, there are a total of 

2 1rkk
+

 possible rules.  
When looking at CAs from a dynamical systems perspective (see section 2.3), they can be 

treated as abstract discrete dynamical systems that produce inherently interesting, and potentially 
novel, behavioral patterns.  As Wolfram (1983) has shown, all one-dimensional CAs evolving 
from random initial configurations generate patterns that can be classified into one of only four 
basic behavioral classes: 

• Evolution leads to a homogenous state, in which all cells eventually attain the same value 
• Evolution leads to either simple stable states or periodic and separated structures 
• Evolution leads to chaotic nonperiodic patterns 
• Evolution leads to complex, localized propagating structures 

Figure 7 shows graphically the four classes of behavior defined above.  Dynamical behavior 
of an elementary CA presented in Figure 7a) represents a homogeneous state behavior, i.e. a 
class one behavior in the taxanomy defined above.  Figure 7b) presents periodic behavior in 
which the period’s length is equal to 2 (a class two behavior).  Figure 7c) shows much more 
complex behavior where no regularity and periodicity can be found (a class three behavior).  
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Fina ing 
str

lly, Figure 7d) shows a CA exhibiting a class four behavior with localized, propagat
uctures. 
The first three behavioral patterns qualitatively resemble behavior observed in continuous 

systems (see section 2.3).  Homogenous states are analogous to fixed-point attracting states, 
asymptotically periodic states are analogous to continuous limit cycles, and finally chaotic states 
are analogous to strange attractors.  More complex structures occurring in systems exhibiting a 
class four behavior do not seem to have obvious analogues in continuous systems.  Sometimes 
they are characterized as soliton-like structures in their appearance (Ilachinski 2001). 

 
Figure 7. Four classes of dynamical behavior produced by elementary CAs 

In the examples, even the complex, nonperiodic behavior shown in Figure 7c) was generated 
by the simplest possible cellular automata.  Thus, an apparent complexity of behavior does not 
necessarily imply the complexity of mechanisms generating that behavior.  Conversely, even the 
simple systems, like elementary cellular automata, can exhibit a very irregular and counter-
intuitive behavior.  This observation contributed to the development of a recently proposed New 
Kind of Science (Wolfram 2002). 

Two-dimensional cellular automata (2D CAs) are generalizations of one-dimensional systems 
in which the lattice of cells is no longer one-dimensional but it is extended to two dimensions.  
2D CAs can be defined using a set of parameters known from 1D CAs but with several 
additional properties.  These additional properties include an initial configuration of cells which 
is now two-dimensional aw well as CA transformation rules that now have to take into account 
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two-dimensional local lly define a 2D CA 
tra

 neighborhoods of a current cell.  In order to fu
nsformation rule one not only has to specify a radius of the local neighborhood r but also its 

shape.  Two most popular shapes of 2D local neighborhoods include von Neumann 
neighborhood (diamond-shaped neighborhood) and Moore neighborhood (square-shaped 
neighborhood).  Figure 8 shows the impact of the shape and radius on a two-dimensional local 
neighborhood in a 2D CA. 

 
Figure 8. Impact of the shape and radius parameters on a local neighborhood in a 2D CA 

 As it was the case with 1D CAs, the 2D CA transformation rules can be also defined based 
on average values of the cells in the local neighborhood.  In this way, so-called totalistc 2D CAs 

hat the number of 
possible transformation rules (and hence the size of the search space) rapidly increases.  Figure 9 

otalistic 2D CA started with a 2D lattice of 
cel

are defined.  In fact, this type of 2D CA is more common due to the fact t

shows several steps of a process of iteration of a t
ls with a single cell with the state value equal to 1 (a single black cell in the middle of the 2D 

lattice shown at step 0). 

 
Figure 9. Several steps of iteration of a two-dimensional cellular automaton 
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2.2.2. llular Automata Rules 
The num cheme presented here and used in the remainder of this dissertation has been 

initially proposed by Wolfram (1983) for elementary CA rules.  It can be, however, generalized 
ion of the scheme is given below. 
ation rule of an elementary CA.  Above, in the top 

ble combinations of values of three variables (neighborhood of size 
thr

A can be uniquely defined by a rule number from 0 to 
25

Numbering Scheme for Ce
bering s

to describe arbitrary CAs.  A detailed descript
Figure 10 shows an example of a transform

row, all 2 1 32 8rk + = =  possi
ee) are given.  Below, in the bottom row, values achieved by the central cells at a next time 

step are given.  Thus, if we assume the same ordering of the local neighborhoods as shown in 
the top row of Figure 10 then any elementary CA rule can be uniquely defined by a single eight-
digit binary number.  Each digit in this number specifies the value achieved by the central cell at 
a next time step for a given combinations of cells in a local neighborhood.  This binary number 
can be also written as a decimal value, and this is what I call in this dissertation a CA 
transformation rule number, or simply a CA rule.  An example of a CA rule shown in Figure 10 
defines the rule 110.  Any elementary C

5. A graphical representation of the numbering scheme is presented in the middle of Figure 10.  
Here, a black square denotes 1 and a white square denotes 0.   

 
Figure 10. Numbering scheme for elementary CAs 

As stated earlier, the numbering scheme can be generalized to describe an arbitrary type of a 
CA.  For example, for a CA with 3 possible state values the only difference in the numbering 
scheme would involve a change in the base.  In this case the base would not be binary but rather 
ternary.  The value in a ternary base can be subsequently written as a decimal value, as I 
discussed it earlier.  The scheme also works for totalistic CAs.  Figure 11 shows an exemplary 
totalistic CA with three possible state values and with a local neighborhood of size three. 

 
Figure 11. Numbering scheme for totalistic CAs 

In this particular case, a totalistic CA can be uniquely defined by a seven-digit ternary 
nu

ta and Toyoda used CAs to optimize both the shape and the 
topologies of two-dimensional elastic structures (2000) as well as to optimize cross-sections in 

mber, which can be subsequently converted to a decimal value. 

2.2.3. Cellular Automata in Structural Engineering 
As discussed earlier, CAs have been a subject of significant research interests in various 

disciplines of science.  There have also been several studies on using cellular automata in 
structural engineering.  One of the first applications of CAs to shape optimization is due to Inou 
et al. (1994; 1998).  They used local rules such as 'death', 'birth', and 'division' to investigate self-
organization of topologies in structural systems.  Kundu et al. (1997) applied CAs to optimize 
the shape of structural plates.  Ki
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truss structures (2001).  Hajela and Kim (2001) applied GAs to search the space of CA rules in 
str

 consisting of 
thr

middle of a chaotic 
mo

ogy, physiology, engineering, and many others. 
Th

uctural analysis of 2D elastic structures. 

2.3. Overview of Dynamical Systems, Chaos, and Complex Systems 

2.3.1. Dynamical Systems and Chaos Theory 
The beginnings of the field of dynamical systems and chaos theory are commonly associated 

with Henri Poincaré who in 1890’s studied a simplified model of a solar system
ee bodies.  Using his innovative methods of modeling dynamical systems (a qualitative 

approach) he discovered that even this very simplified model produced incredibly complicated 
behavior (1897).  Poincaré’s methods proved to be very useful for describing the behavior of a 
wide variety of physical systems.  After Poincaré, other important contributions were made by 
Birkhoff (1927), Cartwright (Cartwright and Littlewood 1951), Kolgomorov (1958), and others.  
A fast progress in the science of complexity, however, was possible only with the advent of 
personal computers in 1960’s and 1970’s.  

Lorenz (1963) published his famous work on deterministic nonperiodic flow occurring in his 
computer model of a global weather.  He discovered a surprising order in the 

tion, now called Lorenz attractor.  He was also able to identify another hallmark of chaos, 
namely the sensitivity to initial conditions.  Scientists equipped with a modern research tool, i.e. 
a personal computer, have started numerical explorations of chaotic dynamics in almost all 
disciplines of science: mathematics, physics, biol

e underlying rules proved to be universal for all fields. 
Formally, a dynamical system can be defined as a function :ϕ Τ×Μ→Μ  such that the 

following properties hold: 

1. ( )0, x xϕ =  for all x∈Μ  

2. ( )( ) ( ), , ,t s x t s xϕ ϕ ϕ= +  for all , ,t s x∈Τ ∈Μ  

where T is a time set, and M is a state space. 

2.3.2. Complex Systems 
A complex system is a dynamical system that consists of large number of mutually and 

typically nonlinearly interacting parts.  The field of complex systems is, however, a relatively 
young discipline of science and, as such, not yet well defined.  One of its distinguishing features 
is an emergent behavior, i.e. a type of global behavior of an entire system which exhibits some 
characteristics neither possessed by not directly derived from any of its parts (Ilachinski 2001).  
It is not enough to understand a complex system in terms of its components out of which it is 
constructed but one also has to include in the model both the topology of interconnections and 
interactions between these components. 

Complex systems can be found on many levels in nature and society.  On a micro level, they 
are found in spin systems as well as in reaction-diffusion systems which give rise to a complex 
spatio-temporal behavior.  On macro scales, they are present at various societal levels, for 
example in economic and social systems where the agents interact, compete for resources, and 
cooperate.  But, certainly the richest source of examples of complex systems is found in nature.  
Biological systems consist of a large number of small interacting components at one level and 
their interaction gives rise to new structures at a higher level, including e.g. bio-molecules, cells, 
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specific organs, organisms, populations, and finally entire ecosystems.  Morphogenesis, or 
for

ted spatial topology of neurons and richness of their 
int

of knowledge in this field is 
lar

developments in this field which are 
rel

2.3.  D
Eng

because
research progress in the context of dynamical systems approach to nonlinear engineering 
pro m
simp if
gra l
dynami

Elastic buckling is a nonlinear problem
en

em of elastic buckling of an inextensible rod 
wit was confined to the plane and subjected to 
dist
be writ reedom.  Numerical studies performed 
by Holm cal 
bif

excited heated plate systems.  Such systems are used for example in hypersonic skin panels in 

mation of structures in nature, is always produced by complex growth processes (Jacob 1994).  
Biological systems can also be characterized by their adaptive behavior, i.e. their underlying 
mechanism to adapt and survive in uncertain environments.  Hence, they are often referred to as 
complex adaptive systems that can appropriately adapt to the environmental changes.  From an 
engineering point of view, it is important to ensure that engineering designs can adapt to 
changing environmental conditions because that guarantees their robustness, a required property 
of almost all engineering products. 

One of the most prominent examples of a complex system is human brain.  It is arguably the 
most complex system on the Earth, regarded by many as the ‘cathedral of complexity’ (Schum 
2001).  It consists of the order of 1010 neurons, and each neuron is connected to 103-104 other 
neurons.  This extremely complica

erconnections can produce incredibly complex behavior that cannot be found nor derived from 
any set of neurons in the brain. 

After almost 40 years of intensive scientific research, the techniques of nonlinear dynamics 
have been relatively well developed.  Nevertheless, a current state 

gely limited to low-dimensional systems in which there are only a few important dynamical 
variables.  At present, scientific efforts are focused on much bigger, high-dimensional, 
dynamical systems.  Major areas of research include spatio-temporal chaos, synchronization, 
quantum chaos, pattern formation and complex growth, and time-series analysis.  It’s impossible 
to present recent developments in all of these fields even in a very general outline.  The 
following section presents only a short summary of recent 

evant to structural engineering. 

3. ynamical Systems in Structural Engineering 
ineers are often confronted with nonlinear phenomena and dynamical systems simply 
 they are confronted with nature.  Little has been done so far, however, in terms of 

ble s.  Due to complexity of the problems and available computational resources, usually 
l ied linear models were assumed rather than nonlinear ones.  This situation, however, is 

dua ly changing (Thompson 1999).  A short summary of several recent applications of 
cal systems and chaos theory in structural engineering is presented below. 

 of great importance for engineers. Almost all 
gineering structures that are designed and built nowadays must be checked against buckling 

resistance.  This problem is has been recently analyzed from a dynamical systems perspective by 
Holmes et al. (2000; 1999).  In their study, the probl

h free ends has been investigated.  The rod 
ributed body forces derived from a potential field.  This boundary value problem (BVP) may 

ten as a Hamiltonian system with three degrees of f
es et al. revealed that this system has chaotic solutions.  They have investigated lo

urcations of these solutions as well as homoclinic and heteroclinic orbits.   
In the example described above, dynamical systems and chaos theory have been successfully 

applied to a boundary value problem in nonlinear mechanics.  This new approach brings a 
broader/holistic understanding of mechanical phenomena in a sense that it generates a “global 
picture” of a behavior of an engineering system. 

Another interesting research problem, which is related to structural engineering, involves 
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transatmospheric vehicles and have been thoroughly studied by many scientific teams.  Recently, 
Fermen-Coker et al. (2000) conducted numerical simulations using dynamical systems approach 
to analyze chaotic oscillations that occur under various external loading and boundary 

e impact of the panels’ geometry on the system’s 
dynamic response.  Chaos has been detected through the computation of Lyapunov exponents 

 have also considered other parameters which affect the panels’ 
dy

stems has been mainly focused on the use of adaptive structural concepts (Hall II and 
Ha

sible, eliminated.  Their 
res

go

plex adaptive 
sys

uch models considers a simple version of a genetic algorithm, called a simple 
genetic algorithm (SGA), and is due to Vose (1999b).  The model establishes a mathematical 

etic operators like proportional selection, mutation, and 
cro

oves this population into another point in this 
spa

 the action of the SGA as a discrete dynamical system. 
The action of the SGA from generation to generation is determined by different genetic 

operators.  The action of the proportional selection, mutation, and crossover are modeled as 
mathem es) which act upon a population vector and move it to another 
po

conditions.  They have also examined th

(Alligood et al. 1996).  They
namical behavior: their size and aspect ratio as well as their thickness.  It has been found that 

the critical temperature increase varies significantly when the aspect ratio is close to 1, i.e. when 
the panels are square. The closer the panel to the square shape, the more sensitive the critical 
buckling temperatures are to the changes in the aspect ratio of the panel. This effect is increased 
if the plate dimensions are smaller. 

Research in aerospace engineering on controlling or prevention of chaotic oscillations in real-
world sy

nagud 1991). Fermen-Coker et al. study brings a new understanding and a global picture of 
this design space.  It is aimed to establish new design rules that can be incorporated at the design 
stage, so that the use of active control may be minimized, or if pos

earch resulted in discovering interesting relations between the panels’ geometry, the critical 
temperature, and the amplitude of the excitation force that can be used in a design process.  It is a 

od example of how this new approach can be successfully applied to engineering and may 
bring new tools for engineers. 

2.3.4. Dynamical Systems Model of a Simple Genetic Algorithm 
As I discussed it earlier, evolutionary algorithms are also instances of com
tems.  As such, they can be modeled and analyzed using available dynamical systems theory 

and tools.  One of s

framework in which actions of basic gen
ssover can be analyzed.  In its initial formulation (Vose 1990), the dynamical system model 

of an SGA considered only binary representations, mutation determined by rate, one-point 
crossover, and used a simplifying assumption of infinite population. Subsequently, the model has 
been extended and generalized to Random Heuristic Search, which is sufficiently general to 
describe a variety of search methods including genetic algorithms, simulated annealing, and 
genetic programming (Vose 1999a).  

Vose’s model of an SGA considers a population of solutions as a point in the space of 
population vectors.  Then the action of the SGA m

ce.  The points visited by subsequent generations of the SGA form a trajectory.  Hence, we 
can consider

atical operators (matric
int in the population space.  Thus, for example the action of the proportional selection is 

defined as a diagonal matrix, where each entry defines a ratio of the fitness of each individual 
and the average fitness of all individuals in the population.  

There are three principle conjectures concerning the dynamical model of the SGA (Rowe 
2001): 
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• “It is focused under reasonable assumptions about crossover and mutation, that is, given 
any population vector the sequence converges to a fixed point. This is known to be true if 
the mutation is defined bitwise with mutation rate < 0.5 and there is no crossover (Vose 
1997). 

• Fixed points are hyperbolic, meaning that the differential at the fixed point has no 
eigenvalue with modulus equal to 1.  

• Any operator on the population space is well-behaved, meaning that it always maps 

; Gero 2002; Newsome et al. 
ong and Sriram 1992a; Tong and Sriram 1992b; Tong and Sriram 

y applying a mathematical formula in a structured way. 
The in engineering design methods and 

conceptual design. 

volumes into other volumes (image of a volume never has fewer dimensions than that 
volume).” 

Assuming that an SGA is focused, well-behaved, and has hyperbolic fixed-points, the 
following properties hold (Rowe 2001): 

1. “There are only finitely many fixed-points. 

2. The probability of picking a population vector such that iterates of SGA applied to this 
vector converge to an unstable fixed-point is zero. 

3. The infinite population SGA converges to a fixed-point in logarithmic time.” 
Thus, the majority of infinite population models of the SGA always seem to converge to a 

fixed point.  However, as Wright and Bidwell (1997) have shown, the SGA can also exhibit a 
stable cyclic behavior corresponding to untypical mutation and crossover distributions.  In 
another paper, Wright and Agapie (2001) discovered that the infinite population model can 
exhibit a stable cyclic/chaotic behavior, which implies that the heuristic is not focused.  They 
also suggest that the chaotic behavior can be useful for restoring diversity in a run of a genetic 
algorithm that is not making any progress.  

2.4. Overview of Engineering Design 

2.4.1. Engineering Design 
Engineering design and design in general have a long history which can be traced back to the 

beginnings of the humankind.  A brief history of design and its distinction from a craft can be 
found in (Cross 1989).  SOTA reviews of engineering design, design theories, methodologies, 
and methods are discussed in (Antonsson and Cagan 2001; Cross 1984; Dym 1994; Dym and 
Little 2000; Finger and Dixon 1989a; Finger and Dixon 1989b
1988; Pahl and Beitz 1996; T
1992c). 

There are many definitions of engineering design that have been suggested by various 
researchers (Dixon 1987; Dym 1994; Mostow 1985; Simon 1981).  A definition that is most 
closely related to the proposed research was proposed by Dym (1994): 

“Engineering design is the systematic, intelligent generation and evaluation of specifications 
for artifacts whose form and function achieve stated objectives and satisfy specified constraints.” 

Dym (1994) describes engineering design problems as open-ended and ill-structured.  Design 
problems are said to be open-ended because they usually have many acceptable solutions, and 
hence the uniqueness assumption required by many traditional analysis techniques cannot be 
satisfied.  Ill structure of design problems is caused by the fact that their solutions cannot be 
normally found by routinel

 following two sections present recent developments 
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2.4.2. 
Resear

research i field can be found in 
(Dym a
1991).  T  research areas in this field include methods of representing artifacts 
(engine  processes, i.e. processes by which 
designs senting engineering systems in the 
contex
engineerin resented below. 

tablish engineering 
de

uggested by Stiny (1980) and applied to mechanical design 
pro

 are based on the generate-and-test, or trial-
an

onceptual design.  Protocol analysis based on empirical data was used 
by a
repr e
des  
Evo t
earlier ry 
alg th .  Chan et 
al.

ack to the mid 1990’s.  Shen and Barthes (1995) proposed a 
multi-agent environment for engineering design.  D’Ambrosio and Birmingham (1995) used 

Engineering Design Methods 
ch on design theories, methodologies, and methods is one of the most active fields of 
n various subfields of engineering.  Good introductions to the 

nd Little 2000; Finger and Dixon 1989a; Finger and Dixon 1989b; Waldron and Waldron 
wo main

ering systems) as well as methods of modeling design
 are completed.  I discussed SOTA in method of repre

t of evolutionary design in section 2.1.3.  Recent developments in methods of modeling 
g design processes are p

The proposed models of engineering design processes can be generally divided into three 
categories: 

• Formal models 
• Heuristic models 
• Agent-based models 

The goal of formal approaches to modeling design processes is to es
sign science (Dixon 1987; Suh 1990).  A systematic approach to engineering design has been 

first proposed by Pahl and Beitz (1984).  In their seminal work, four major phases of engineering 
design are distinguished: clarification of the task, conceptual design, embodiment design, and 
detailed design.  Other models of major phases of a design process were proposed by French 
(1992) and Cross (1989).  An axiomatic approach to engineering design process was introduced 
by Suh (1990).  He proposed axiomatic design theory (ADT) which is based on two axioms: 
independence axiom and information axiom.  Formal grammars, both context-free and context-
sensitive, have been introduced to engineering design by Mullins and Rinderle (1991; Rinderle 
1991).  Shape grammars have been s

blems by Schmidt and Cagan (1994).  Finally, TRIZ (a Russian acronym for the theory of 
inventive problem solving discussed earlier in section 2.1.2) proposed by Altshuller (1969; 1999) 
provides a systematic methodology of creative problem solving in engineering design. 

Heuristic models of an engineering design process
d-error, method.  Here, several methods have been proposed.  Arciszewski (1977) proposed 

morphological analysis in c
St uffer et al. (1987) in mechanical design.  Simulated annealing with shape grammar 
es ntations was introduced by Shea et al. (1997).  Roston (1994) proposed genetic design, a 

method based on formal grammars anign d genetic algorithms/genetic programming.  
lu ionary computation has a long history in modeling design processes which was introduced 

in section 2.1.2.  Cellular automata representations combined with evolutiona
ori ms have been proposed in the context of architectural design by Frazer (1995)
 (2000; 2002) have recently introduced an evolutionary framework with dynamic hierarchical 

representations to enhance design process. 
Agent-based models of an engineering design process provide modular, distributed, and 

knowledge-based approach to solving design problems.  Multi-agent design systems (MADS) 
can address some important issues in a design process, including constant evolution of standards 
and technologies, dynamic marketplace demands, and high degree of adaptability.  On the other 
hand, additional challenges have to be properly resolved, including interoperability among 
heterogeneous agents, coordination of design processes, and managing conflicts (Lander 1997).  
Research in MADS can be traced b
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pre

2.4.3. Conceptual Design 
s.  Pahl and Beitz (1996) define the 

co

aboration of a solution principle.  Conceptual design determines the 
pri

ferences and agents in conceptual design.  Parmee (1996) introduced a multi-agent system for 
design space decomposition.  Campbell et al. (1999) proposed agent-based approach to 
conceptual design in dynamic environments.  Cvetkovic (2000) used agents for a multiobjective 
decision support system in conceptual design.  Gero and Kannengiesser (2003) proposed a 
function-behavior-structure framework for situated agents.  Current SOTA reviews can be found 
in (Gero and Brazier 2002; Lander 1997; Shen and Norrie 1999). 

Conceptual design forms an initial stage of a design proces
nceptual design in the following way: 
“Conceptual design is that part of the design process in which, by the identification of the 

essential problems through abstraction, by the establishment of function structures and by the 
search for appropriate working principles and their combination, the basic solution path is laid 
down through the el

nciple of a solution.”  
Dym (1994) defines conceptual design from a more computational perspective.  He considers 

the conceptual design phase of a design process as a phase that “… has as its output a concept.  
This goal is achieved by:  

• identifying the most crucial or essential problems 
• establishing a function structure, i.e. a framework in which the artifact will perform its 

primary function, including a decomposition of the primary function into subfunctions 
that will be performed by subsystems or individual components 

• formulation of a solution procedure that can be successfully applied to the design 
problem 

• preparing concepts or skeleton designs or schemes 
• evaluating candidate schemes against the relevant criteria, including both economic 

and technical matters.” 
Recently Arciszewski et al. (2003) proposed a new approach to conceptual design in the 

context of chaos.  They distinguish two types of conceptual design processes based on the 
number of design concepts generated.  The first type (Type I) occurs when only a limited number 
(one or a few) of design concepts are produced.  This type corresponds to a traditional approach 
to conceptual design.  The second type (Type II) appears when many design concepts are 
generated, on the order of thousands or even hundreds of thousands.  The latter type is equivalent 
to a situation when a designer uses various conceptual design support tools.   

When conceptual design process is analyzed as a process of learning, or acquiring engineering 
knowledge, then a Type I process results in a limited amount of additional background 
knowledge.  Therefore, this type can be called a point design, because only a limited number of 
points in the design space can be identified, where each point corresponds to a single design 
concept.  On the other hand, a Type II process allows one to acquire significant amount of 
additional background knowledge.  Thus, it can be called apicture building design.  This picture 
is created considering together a large number of points in the design space.  All these points 
taken together form an invaluable picture of a given engineering design domain and give a new 
insight into it on a conceptual level. 

The Type I conceptual design process has been the subject of design research for the last 30 
years that resulted in many design theories and methods (see section 2.4.2). However, very little 
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is 

s point of view.  
When one uses a dynamical systems approach to analyze a design process, then the well-

 space.  It has been 
proved (Clarke 2000) that such well-known design concepts attract the attention of human 

n inertia vector.   Chaos-based model of 
co

ings 

dded to columns and beams to increase the flexural rigidity of the entire 
sys

known about the Type II process, although, as Arciszewski et al. suggest, it will become soon 
a predominant type of a conceptual design process.   

They also propose a chaos-based model for the Type II conceptual design process.  It has 
three major assumptions:  

• “It is a search process, conducted through the design space, for design concepts that 
satisfy given requirements and constraints. 

• It can be classified at the Type II conceptual design process, which involves the 
generation of a large number of design concepts and acquiring background knowledge. 

• It can be analyzed using concepts and models developed in the field of chaos.” 
In their view, a conceptual design process can be considered as a dynamical search process 

iterated many times, and each time a design concept is produced (corresponding to a single point 
in the design space).  The generation of the individual design concepts is driven by a specific 
mechanism, which can be a heuristic method or an evolutionary computation algorithm.  Such a 
single concept generation can be assumed as occurring on the local level of the conceptual 
design process.  When all generated points in the design space are analyzed together, then the 
global picture of the conceptual design process emerges.  This picture can be assumed as 
appearing on the global level of the conceptual design process, and it can be studied from the 
dynamical system

known design concepts can be treated as attractors in the design (search)

designers. This phenomenon has been described as a
nceptual design implemented in a design support tool could be then focused on minimizing the 

influence of inertia vector (avoiding the basin of attraction of a well-known design concept) and 
searching the design space for novel designs. 

2.4.4. Design of Structural Systems in Tall Build
The empirical validation of the design method proposed in this dissertation (see section 3.6 

for a detailed description of the entire validation process) was conducted using two classes of 
design problems in the domain of steel structural systems in tall buildings.  Hence, in this section 
I introduce the problem of designing steel structural systems in tall buildings and discuss its 
major characteristics. 

Steel skeleton structures in tall buildings are considered the most complicated structures 
designed and built.  Their conceptual and physical complexity can only be compared to such 
complex structural systems as, for example, large span bridges or large span space structures.  
Usually, steel structural systems in tall buildings are designed as a system of vertical members 
called columns, horizontal members called beams, and various diagonal members called wind 
bracings, since they are a

tem and that is driven mostly by stiffness requirements related to wind forces. 
Skeleton structures are designed to provide a structural support for tall buildings.  They have 

to satisfy numerous requirements regarding the building’s stability, transfer of loads, including 
gravity, wind and earthquake loads, deformations, vibrations, etc.  For this reason, the design of 
structural systems in tall buildings requires the analysis of their behavior under various 
combinations of loading and the determination of an optimal configuration of structural 
members.  It is difficult, complex, and still not fully understood domain of structural engineering.   
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The two design problems considered in this dissertation represent two classes of design 
problems characterized by distinct levels of their structural complexity.  First, a relatively 
simpler problem of designing a wind bracing system in a tall building is investigated.  In this 
problem, an optimal configuration (topology) of wind bracing members in a steel structure is 
sou

within adjacent vertical 
an

 optimization, identifies an optimal configuration (topology) of a structural 
system, the nature of connections, materials, etc. Finally, the third stage (sizing optimization), 

numerical 
op

r, due to 
the

d their optimization based on models of complex systems 
(se

ective 

ght assuming the same configurations of beams, columns, and supports throughout an entire 
design process.  In this case, however, cross-sections of all members (including beams, columns, 
and wind bracings) are optimized during the detailed design stage (sizing optimization).  Next, 
this problem was extended, and novel as well as optimal configurations of the entire structural 
system, which includes beams, columns, wind bracings and supports, were sought.   

The two design problems described above exhibit some important properties shared by a 
much larger class of problems in structural engineering and engineering design in general.  First, 
both classes of investigated engineering systems consist of a relatively large number of identical, 
simple, and locally interacting structural members.  For example, in the problem of designing an 
optimal wind bracing system, a configuration of wind bracing members is represented by 
attributes which assume identical sets of possible values.  Also, the configuration of wind 
bracing members forms a simple and uniform structural grid contained 

d horizontal grid lines defined by columns members and beam members, respectively.  The 
wind bracing members locally interact with each other and with the column and beam members 
placed in their neighborhood.  A global behavior of the structural system emerges from the local 
interactions of all structural members from which the steel structure is formed. 

In the conducted design experiments, the process of design is considered as a three-stage 
process.  The first stage, design concept generation, produces a design concept, or a class of 
design concepts.  By this term, an abstract description of a future structural system is understood, 
and it is provided in terms of qualitative, or symbolic, attributes.  The second stage, 
topology/shape

produces a detailed design, and it involves the structural analysis, dimensioning, and 
timization.  A detailed discussion on the phases of the design process assumed in this 

dissertation is presented in section 3.4. 
One of the most difficult and important parts of the design process is the determination of an 

appropriate configuration (topology) of a structural system for a given building.  In terms of 
novelty and weight of a structural system, the optimization of its configuration is much more 
important than the final numerical optimization of individual structural members, or even of an 
entire structural system, if an incorrect design concept is selected.  Traditionally, howeve

 complexity of this problem, a structural system configuration is selected considering only 
very few design concepts which are not necessarily optimal for a given building (Mustafa and 
Arciszewski 1992).  In this dissertation, I address this problem by proposing novel mechanisms 
of generation of design concepts an

e chapter 3). 

2.5. Overview of Epistemology and Validation of Design Methods 

2.5.1. Historical and Philosophical Persp
Epistemology (the theory of knowledge) has a long history that can be traced back to Phyrro 

and his skeptics in ancient Greece.  Historically, two major philosophical schools emerged 
regarding the criterion for truth and the validation of new scientific knowledge: 
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Foundationalist/Formalist/Reductionist School of Epistemology and Holistic/Social/Relativist 
School of Epistemology (Barlas and Carpenter 1990). 

Founda n re absolute truths 
that are ind e within this school, 
inc

61), the 
father o
judged tru ing [analytically true] or true by virtue of experience [synthetically true]” 
(Peders

Foundationalist views were first questioned by Kant ([1781] 1933) who asserted that “all 
knowle
suggest
([1

knowle
verificatio list view was 
challen
and argued that a change to a new paradigm in science cannot be based strictly on logical reason.  
The sec
philosoph d Carpenter 1990). 

y, is a “strictly formal, 
lgorithmic, reductionist, and ‘confrontational’ process, where new knowledge is either true or 

false.  The validation becomes a matter of formal accuracy rather than practical use.  This 
approach is iated with 
them, like m validation, 
on the other hand, is based on the Holistic/Social/Relativist School of Epistemology, and can be 
defined as a “semiformal and communicative process, where validation is seen as a gradual 

ng confidence in the usefulness of the new knowledge (with respect to a 
pu

A detailed description of the validation methodology (based on the Validation Square 
fra

tio alist school started by Aristotle and Plato assumes that there a
ged ep ndent of time, place, and context.  Two major trends emer

luding rationalism and empiricism.  Rationalism was founded by Descartes ([1641] 1931) 
who asserted that “the truth is innate and prior to all experience” and “human knowledge about 
the truth is based on reasoning.”  The latter assertion was challenged by Locke ([1690] 1894), the 
father of the empiricism, who argued that “all human knowledge about the truth is based on 
experience rather than reasoning.”  More recently, foundationalist view was reintroduced by 
Russell (Russel 1962; Slater 1988) and his logical atomism, and Wittgenstein ([1921] 19

f logical positivism.  Logical positivism asserted that “knowledge can only be claimed if 
e by mean

en et al. 2000).   

dge starts from experience” but “not all knowledge arises out of experience.”  Kant first 
ed that not all truths are innate and absolute.  His views were later extended by Hegel 

817] 1959) who totally rejected the idea of innate truths and introduced a new logic, called the 
coherence theory.  In Hegel’s logic conflict and contradictions are regarded as necessary 
elements of truth.  He regarded truth as a process and not as a fixed state of things.  In his view 

dge is socially, culturally, and historically dependent and hence entirely objective 
n of knowledge claims in not possible.  More recently, foundationa

ged by Kuhn ([1962] 1970) who presented a historical analysis of how science progresses 

ond part of the last century brought further attacks on empiricism and led to the relativist 
ies of science (Barlas an

The two schools of epistemology discussed earlier formed two opposing philosophies of 
validating new scientific knowledge.  First, logical empiricist validation, founded by the 
Foundationalist/Formalist/Reductionist School of Epistemolog
a

 appropriate for closed problems that have right or wrong answers assoc
athematical expressions or algorithms” (Pedersen et al. 2000).  Relativist 

process of buildi
rpose).  This approach is appropriate for open problems, where new knowledge is associated 

with heuristics and non-precise representations“ (Pedersen et al. 2000).   
As I discussed it in section 2.4.2, engineering design problems are open-ended (have many 

acceptable solutions) and ill-structured (solutions cannot be normally found by routinely 
applying a mathematical formula in a structured way).  Thus, relativist approach is more 
appropriate for validation of design methods (Pedersen et al. 2000) and hence it was selected to 
validate Emergent Engineering Design, the design method proposed in this dissertation.  The 
follwoing section introduces a framework for validating design methods, called the Validation 
Square.  

mework) which I use in this dissertation to validate the proposed design method is presented 
in section 3.6. 
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2.5.2. Validation Square – A Framework for Validation of Design Methods 
Validation of traditional analytical engineering research, based on mathematical modeling, 

has been mostly conducted using a logical empiricist validation approach.  Design methods for 
engineering design, however, rely not only on mathematical modeling but also on subjective 
sta

n strategy assumed in this dissertation 
is 

es a process of building confidence in its usefulness with 
res

• Accepting the individual constructs constituting the method (Theoretical Structural 
Validity) 

• Accepting the internal consistency of the way the constructs are put together in the 
method (Theoretical Structural Validity) 

• Accepting the appropriateness of the example problems that will be used to verify the 
performance of the method (Empirical Structural Validity) 

Efficiency of a design method can be realized by conducting the quantitative process of 
performance validation.  This process also consists of three major stages (Pedersen et al. 2000): 

• Accepting that the outcome of the method is useful with respect to the initial purpose 
for some chosen example problem(s) (Empirical Performance Validity) 

• Accepting that the achieved usefulness is linked to applying the method (Empirical 
Performance Validity) 

• Accepting that the usefulness of the method is beyond the case studies (Theoretical 
Performance Validity) 

tements and various heuristics.  Engineering design is mainly concerned with open problems 
that involve both objective and subjective elements and have no single right answer (non-
uniqueness).  It requires both science and art to achieve its goal (Pedersen et al. 2000). Hence, 
relativist validation approach seems to be better suited for validation of design methods. 

Hence, research validation in this dissertation is conducted using the relativist approach, and 
more specifically using the Validation Square methodology recently proposed to validate design 
methods and research (Pedersen et al. 2000).  The validatio

based on the following statement: 
“Scientific knowledge in the field of engineering design is defined as socially justifiable belief 

according to the Relative School of Epistemology.  It is due to the open nature of design method 
synthesis, where new knowledge is associated with heuristics and non-precise representations.  
Thus, knowledge validation becom

pect to a purpose” (Pedersen et al. 2000). 
The process of validation of a design method, according to the Validation Square framework, 

is shown in Figure 12 (adapted from (Pedersen et al. 2000)).  As stated earlier, the validation of 
new scientific knowledge is a process of building confidence in the usefulness of the proposed 
design method with respect to a purpose.  The usefulness of a design method is associated with 
the two major criteria:  

• Effectiveness - the method provides design solutions correctly. 
• Efficiency - the method provides correct design solutions. 

Correct solutions are understood in this context as solutions with acceptable performance.  
Effectiveness provides a qualitative evaluation of the design method while efficiency gives its 
quantitative assessment. 

Effectiveness of a design method can be realized by conducting the qualitative process of 
structural validation.  This process consists of three major stages (Pedersen et al. 2000): 
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A detailed description of how the Validation Square methodology was used in this dissertation to 
validate Emergent Engineering Design is presented in section 3.6. 
 

 
Figure 12. Validation Square framework for validation of design methods 

 

2.6. Summary 
In this chapter, I presented relevant background knowledge to provide some context necessary 

for understanding the rest of this dissertation.  The first part of this chapter introduced current 
research developments in the fields corresponding to the components of the proposed design 
method, i.e. evolutionary computation, cellular automata, and complex systems.  The second part 
provided an overview of engineering design in general as well as introduced the classes of design 
problems considered in this dissertation.  Finally, the last part of this chapter gave a historical 
perspective on the problem of validation of new scientific knowledge and described the 
validation methodology which was used in this dissertation to validate Emergent Engineering 
Design. 

The first section of this chapter introdu putation and canonical 
evolutionary algorithms.  It also provided description of the current research developments in the 

ced evolutionary com
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subfields of evolutionary computation related to engineering design.  The topics discussed in this 
sec

be

 

tion included evolutionary design and creativity, new ways of representing design, methods of 
handling constraints, multiobjective evolutionary design, and coevolutionary design.  Also, 
together with a comprehensive review of the applications of evolutionary computation in 
structural engineering, open issues and most promising research directions were discussed. 

The second section of this chapter introduced cellular automata and the New Kind of Science.  
It showed that even very simple programs can produce complex behavior. Four classes of the 
dynamical behavior exhibited by elementary cellular automata were discussed: fixed-point 

havior, periodic behavior, chaotic behavior, and localized propagating structures.  Also, a 
numbering scheme of cellular automata rules was introduced as it will be used extensively in the 
remaining part of this dissertation. The last part of this section reported several examples of 
applications of cellular automata in structural engineering. 

The third section provided a high-level material on dynamical systems, chaos theory, and 
complex adaptive systems.  Also, a few applications of dynamical systems and chaos theory in 
structural engineering were presented.  The last part of this section introduced a dynamical 
systems model of a simple genetic algorithm to show applicability of these theoretical tools to 
model complex adaptive systems. 

The fourth section of this chapter introduced engineering design and presented a classification 
of existing design methods.  It also presented in more detail an initial stage of the design process, 
called conceptual design, which will be specifically addressed in this dissertation.  Finally, two 
conceptual design problems in structural engineering, namely conceptual design of wind bracing 
systems and conceptual design of the entire steel structural systems in tall buildings, we 
described.  They will be used in the remainder of this dissertation to empirically validate 
Emergent Engineering Design. 

The last section of this chapter provided philosophical and historical perspective on validation 
of new scientific knowledge.  Also, the Validation Square, a framework for validation of design 
methods, was introduced and described in detail.  This framework will be used in this 
dissertation to validate Emergent Engineering Design. 

Having provided relevant background knowledge, I can now introduce Emergent Engineering 
Design, the design method proposed in this dissertation.  It will be described in detail in the next 
chapter. 
 

 



 

3. EMERGENT ENGINEERING DESIGN 
 

“Living organisms are examples of design strictly for function, the 
product of blind evolutionary forces rather than conscious thought, 
yet far excelling the products of engineering.  When a designer 
looks at nature he sees familiar principles of design being 
followed, often in surprising and elegant ways.  Sometimes, as in 
the case of flight, he is inspired to invention: more commonly, he 
discovers his ideas embodied in some animal or plant.”  

 (Michael French) 

In this chapter, I propose and define Emergent Engineering Design, a design method based on 
models of complex systems and the main objective of this dissertation.  In the first part of this 
chapter, in sections 3.1 and 3.2, I state the problem addressed by the proposed design method and 
relate it to the open issues in the field of engineering design which I identified in the background 
review presented in chapter 2.  Next, I define Emergent Engineering Design and introduce the 

ertation in the form of research questions and the 
co
structure of the argument presented in this diss

rresponding research hypotheses.  I start section 3.3 with the fundamental question and the 
fundamental hypothesis of this dissertation and subsequently decompose them into research 
questions and research hypotheses corresponding to the major phases of a conceptual design 
process. 

Furthermore, in section 3.4, I discuss the scope of research reported in this dissertation and 
provide a detailed description of the assumptions incorporated in the proposed design method.  I 
also provide an outline the conducted research in section 3.5.  In the last part of this chapter, in 
section 3.6, a detailed description of the validation methodology which was used to validate 
Emergent Engineering Design is presented.  Figure 13 shows an organization chart of chapter 3 
with all sections discussed above. 

  Chapter 3 
Emergent Engineering Design

Problem 
Statement 

Open  
Issues 

Research 
Questions and 

Hypotheses 

Research 
Assumptions 

Research 
Outline 

Validation 
Methodology

WHAT? WHY? HOW?

Theoretical 
Structural 
Validation 

Empirical 
Structural 
Validation 

Empirical 
Performance 
Validation 

Theoretical 
Performance 
Validation 

 
Figure 13. Organization of chapter 3 
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3.1. Problem Statement 
The underlying problem I addressed in this dissertation can be stated in the following way: 

how to establish a method for designing engineering systems based on models of complex 
systems and inspired by the processes occurring in nature? If such a method can be discovered, 
developed, and implemented, it may be applied to a broad spectrum of engineering design 
problems.  It may also provide a new understanding of engineering design as well as 
significantly enhance traditional engineering design processes and achieve their two important 
objectives: development of novel designs and their optimization. 

Development of a new design method implies a general framework for doing design of 
en

e proposed method 
should also encourage its use at all stages of a design process, i.e. it must be applicable to 
conceptual design, embodiment design, as well as detailed design (see section 2.1.2).  The only 
modifications required at each stage would involve appropriate tuning of the representation 
accuracy (granularity) and its nature (symbolic, symbolic + numerical, numerical), concept 
generation mechanisms (more generative and creative versus more parameterized and 
optimization oriented), and an evaluation procedure. 

gn method requires some domain specific knowledge in a form of a design 
represe
representa  not be as tedious as it is the case with some 
previou
Cagan 1998).  Also, the issue of providing a proper design evaluation procedure can be handled 
quite e , a single structural analysis package 
would b
com

ssertation.  Hence, several decisions were made to restrict the scope of 
research and to make it more manageable.  Thus, in this dissertation I investigate Emergent 
Engineering Design in the context of conceptual design problems only (see section 2.4.3).  
Furthermore, the applications and empirical validation of the proposed design method are 
restricted to structural engineering problems (see section 2.4.4). 

3.2. Open Issues 
As I discussed it in sections 2.1.3 and 2.4.2, there have been many suggested approaches to 

develop methods for engineering design.  However, in my opinion, most of them were focused 
exclusively on only one of the two important aspects of engineering design, i.e. either on
creativity or on optimization.  Hence, there is a need to develop a method that could account for
both of these aspects. 

gineering systems.  Thus, it cannot be limited to a particular sub-domain but it must be 
applicable to a broad spectrum of engineering problems.  Generality of th

At first, the problem statement and scope of the research seem to be too ambitious and 
difficult to achieve.  It is my opinion, however, that all the required pieces necessary to succeed 
are already available and they have to be properly assembled and integrated.  It is the appropriate 
synthesis/fusion of knowledge coming from computer science (algorithms, data structures), 
engineering (design representation spaces, design evaluation), mathematics (dynamical systems 
theory, chaos theory, models of various complex systems), and biology (processes of natural 
selection, evolution and coevolution) that made this goal achievable. 

The proposed desi
ntation as well as a design evaluation procedure.  However, the process of building a 

tion of an engineering system should
s approaches, e.g. formal grammars (Roston 1994), or shape grammars (Schmidt and 

fficiently.  In structural engineering, for example
e able to evaluate many design concepts, including simple frames and trusses as well as 

x steel structural systems in tall buildings. ple
It is, of course, impossible to investigate the proposed design method in its entirety within the 

timeframe of the di
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Another issue is that many of the proposed design methods tended to be assembled from 
conceptually diverse components and thus not giving a coherent view of a design process.  It is 
my belief that it is important, and at the same time possible, to develop a coherent engineering 
design method based on models of complex systems. 

Yet another relevant, and so far unexplored, issue is the possibility of modeling natural 
phenomena using simple programs rather than systems of complicated partial differential 
equations, as it has been done in traditional science.  As suggested by Wolfram (2002), complex 
systems modeled by simple programs might provide completely new understanding of many
processes and phenomena. 

One of the major properties of complex systems is the richness of local interactions among the 
sys

own 
to exhibit large sensitivity to local interactions among structural elements.  Thus, further 
investigation of the potential of representing structural systems using simple rules that model 
local interactions is highly justifiable.  It may provide a more qualitative and holistic approach to 
this traditionally strictly quantitative and optimization-oriented field. 

3.3. Research Questions and Hypotheses 
The argument for this dissertation is structured in a way that corresponds to the Scientific 

Method.  The structure of this argument has been adapted from (Pedersen 1999).  Research 
questions are used to determine research issues.  Research hypotheses provide an intellectual 
value to the research supporting answers to research questions.  Hypothesis testing is employed 
to justify claims of contribution to the field in which the research is conducted (Pedersen 1999).  
When presented in the context of Natural Science, research questions correspond to observations 
(articulating the ‘truth’), hypotheses correspond to explaining the observations (understanding 
the ‘truth’), and hypothesis testing corresponds to validating the explanation (accepting 
knowledge about the ‘truth’) (Pedersen 1999).  Hence, as it is argued in Pedersen (1999), “in the 
context of engineering design, hypothesis-testing becomes the vehicle by which new scientific 
knowledge is accepted and added to the current pool of knowledge.  This ties research validity 
discussion strongly to a fundamental problem addressed early in epistemology and later in the 
philosophy of science: what is scientific knowledge, and what constitutes confirmation of a
kn

ing way:  

 

Correspondingly, the formulation of the fundamental research hypothesis of this dissertation 
is based on the concepts of complex systems discussed in section 2.3.2 and inspired by the 

 

tems’ elements and their emergent behavior.  This issue has been investigated by several 
researchers in the context of engineering design, mainly in architectural design (Chan et al. 2002; 
Frazer 1995; Poon and Maher 1996b).  There are, however, very few applications of these ideas 
in civil and structural engineering.  On the other hand, structural engineering systems are kn

 
owledge claim?” 
The formulation of the fundamental research question this dissertation attempted to answer 

was motivated by the problem stated in section 3.1, the nature of the problem outlined in 
chapters 1 and 2, as well as open issues in the field of engineering design discussed in section 
3.2.  The fundamental research question can be expressed in the follow

Fundamental Research Question 
How can one construct an effective method for designing engineering systems that would 

support development of novel designs and their efficient optimization? 
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processes and phenomena occurring in nature.  The fundamental hypothesis is formulated in the 
following way: 

 

Given the fundamental research question and the fundamental research hypothesis, the 
ultimate objective of this dissertation can be expressed in the following way: 

 

The proposed design method has been named Emergent Engineering Design (EED).  The 
method is understood here as a basic conceptual system consisting of a class of models, 
procedures, and algorithms for engineering design.  The validity of the proposed method will 
provide an answer to the fundamental question. 

The ultimate dissertation objective is, out of necessity, very general.  In order to facilitate the 
development of the proposed method in a more structured way, it has been divided into four sub-
issues pertaining to: 

• Identification of mechanisms to accomplish design novelty (see discussion on 
creativity and design in section 2.1.2) 

• Determination of effective ways of decomposing complex design problems into sub-

• Selection of e

Ultimate Dissertation Objective 
Develop an engineering design method based on models of complex systems that provides a 

conceptually coherent framework for producing novel designs and their efficient optimization. 

Fundamental Research Hypothesis 
Emergent Engineering Design, a design method in which all major elements of engineering 

design (i.e. design representation, actual design process, and design evaluation) are modeled 
as complex systems, can effectively produce novel designs and efficiently optimize them. 

problems  
fficient optimization mechanisms 

• Establishing mechanisms to evaluate designs in a way to guarantee their robustness 
The four issues discussed earlier are addressed in the following research questions numbered 

1 to 4, respectively. 

 

 

Research Question 1 (Represent): 

Based on the existing knowledge on how to represent engineering systems;  
what mechanisms and models can be used to produce novel designs? 

Research Question 2 (Decompose): 

Knowing that complex engineering design problems are usually decomposed into sub- 
problems; how can a decomposition of an engineering system be defined and how can a 
decomposed system be effectively designed? 
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Research Question 3 (Generate and Optimize): 

One of the major objectives of almost all engineering design processes is achieving 
hould be used to efficiently optimize engineering designs? 

R

optimality; what mechanisms s

esearch Question 4 (Evaluate): 

Evaluation of design concepts is one of the most important stages of a design process; how 
can the evaluation process be performed to accomplish robustness of designs? 
Finding answers to these questions is coupled with a successful development of the proposed 
ethod of engineering design.  The models, procedures, and algorithms discussed in chapters 1 

nd 2 form hypotheses upon which the EED is built.  The formulation of the four research 
ypotheses, corresponding to the previously stated research questions, is presented below.   

 

pters 1 and 2.   In the Scientific Method, research 
uestions are answered when the corresponding research hypotheses are tested and resist being 

d.  In this dissertation, the research questions and corresponding research hypotheses 
re incorporated in the structure of EED, as it is shown in Figure 14.   

Research Hypothesis 1 (Represent): 

Evolutionary design and complex systems provide a framework for defining generative 
representations, i.e. representations of engineering systems based on simple programs, which 
can successfully produce novel designs. 

Research Hypothesis 2 (Decompose): 

Cooperative coevolutionary models provide an efficient framework for a decomposition of 
complex design problems and conducting design processes using cooperative coevolutionary 
algorithms. 

Research Hypothesis 3 (Generate and Optimize): 

Evolutionary computation provides a framework for conducting engineering design processes 
and optimizing engineering designs. 

Research Hypothesis 4 (Evaluate): 

Competitive coevolutionary models are suitable for adaptive testing and evaluation of 
engineering design concepts and can successfully increase robustness of generated designs. 

Selection of the research hypotheses in relation to the posed research questions is based on the 
iscussion and justification presented in cha

nvalidate
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Figure 14. Phases of Emergent Engineering Design and their relationship to four research 

validation of the supporting research hypotheses, which in turn is coupled with the validation of 
Emergen
presente

Even though the fundamental research question and the fundamental research hypothesis have 
been considerably refined, the resulting four research questions and four research hypotheses are 
still quit
manner 
them, so
we mean
6-8 show
(structur onceptual design of wind bracing 

and conceptual design of steel structures in tall buildings).  The refined research 
ill be sufficiently precise to form the basis for hypotheses that can be tested and 

po

questions and corresponding research hypotheses 

Figure 14 shows that answering the fundamental research question is coupled with the 

t Engineering Design.  A detailed description of the validation methodology will be 
d later in section 3.6. 

e general and rather vague.  However, at this stage, they need to be formulated in this 
due to the intended generality of the proposed design method.  In other to further refine 
me domain and problem specific information must be added, e.g. we have to define what 
 by a novel, or optimal, design, and an effective, or efficient, design process.  Chapters 
 the process of refinement of the research questions 1 and 3 for a specific domain 

al engineering) and specific design problems (c
systems 
questions w

ssibly falsified. 
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I r of this dissertation, I investigate the core of the proposed design method, i.e. 
phases 1
become 

3.4.
This section presents research assumptions in

major p
represen

First 
EED ass
similar p

n the remainde
 (represent) and 3 (generate and optimize).  Phases 2 (decompose) and 4 (evaluate) will 
a part of the future work. 

rch Assumptions  Resea
corporated in the proposed method regarding the 

hases of an engineering design process and a level of generality of design 
tations.   
set of assumptions is related to the process of modeling of a conceptual design process.  
umes four major phases of conceptual design in engineering.  The phases correspond to 
hases in traditional conceptual design, as it is shown in Figure 15.  

 
ajor phases of Emergent Engineering Design and their relationship to phases of 

traditional conceptual design 

ription and comparison of the identified phases in traditional conceptual design 

Figure 15. M

A brief desc
and the p

Phase 1

roposed EED is presented below.   

 

In this phase, an abstract description of an engineering system to be designed is prepared. 
Traditional:  

Appropriate model of an engineering system is defined, including all requirements and 
constraints. 

EED: 
A design representation space is created, and the requirements as well as constraints on 
the values representing specific attributes are defined. 
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Phase 2 

This phase involves a decomposition of a design problem.  This phase is optional and is 
usually conducted only for complex design problems. 

A decomposition of an engineering system can be established at two levels. First, an 
engineering system’s geometry might suggest a possible decomposition of a problem.  In this 
case, the design problem can be divided into a set of decoupled sub-problems which are 
independently solved and finally assembled together to form a complete design concept.  
Second, sep st ano her 
plausible d erforming 
dif

n to a sub-problem as a separate individual and subsequently coevolving the 
individuals in several populations. 

d 2 are combined together and treated as one phase of the conceptual 
de

ng systems that can be decomposed. 

Ph

arate functions of various parts of an engineering system might sugge
ecomposition.  In that case, design components can be identified by p

t

ferent functions in an engineering system.  For example, in a domain of steel structural 
systems of industrial buildings designers traditionally decompose the problem into two sub-
problems, i.e. design of the main structural system is performed separately from design of a 
system of wind bracings that assure the rigidity of the structure (usually done after the main 
structural system is complete). 

Traditional:  
Design decomposition is performed manually by designers based on geometric or 
functional criteria using various heuristics and simplifying assumptions. 

EED: 
Design decomposition is explicitly specified at a representational level by representing 
each solutio

Frequently, phases 1 an
sign, called problem formulation (Arafat et al. 1992).  In the proposed method, however, they 

are treated separately because different models and algorithms are used to design complex 
engineeri

ase 3 

In this phase, feasible design concepts, represented by models/representations specified in 
ases 1 and 2, are generated and optimal solutions are sought. 

Traditional:  
Selection of feasible concepts is performed.  Usually, a human designer considers only a 
few alte

ph

rnative design concepts. 

ary algorithms to perform design 

Ph

 
EED: 

Thousands of designs concepts are generated automatically.  Here, various complex 
systems modeled by simple programs, e.g. one-dimensional and two-dimensional 
cellular automata, are used to generate design concepts (representations of engineering 

erative coevolutionsystems) and evolutionary and coop
optimization (representations of design processes). 

ase 4 

In this phase, evaluation of design concepts, generated earlier in phase 3, is conducted.  
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Traditional:  
A structural analysis package is used to perform simulation of behavior of an 

s represented by design 
aluation scenarios.  They can be 

  In this process, called adaptive testing, competitive coevolutionary 
d. 

ms against the evaluation 

generating and 
optimizing design concepts, as it is shown in Figure 15. 

The four phases described earlier can be related to existing engineering design methods 
described in section 2.4.2.  Phases 1 and 2 correspond to formulating representations of artifacts, 
phase 3 to modeling design processes, and phase 4 to modeling design evaluation processes. 

Another set of assumptions considers the generality of representations of engineering systems.  
When building a representation space, the assumed level of generality is of great importance and 
may significantly affect the quality of obtained solutions.  As mentioned earlier, in this 
dissertation, conceptual design of structural engineering systems is considered.  The spectrum of 
possible choices of generality of representations in structural engineering is presented in Figure 
16.   

engineering system represented by a design concept.  Its subsequent evaluation is 
performed by the designer. 

EED: 
The evaluation process is combined with generation and optimization of engineering 
design concepts.  When a new generation of design concepts is produced, the behavior 
of individual designs is analyzed/simulated by a structural analysis package.  The 
process of analysis/simulation of behavior of engineering system
concepts requires one, or sometimes more, ev
determined in the following ways:  

• Standard evaluation scenarios which are used in practice, e.g. types, locations, 
and magnitudes of loads and load combinations determined by structural design 
codes. 

• Coadapted evaluation scenarios which are coevolved together with design 
concepts.
algorithms are use
In the competitive coevolutionary model, two competing populations are 
coevolved: a population of design concepts (topologies of structural systems) 
and a population of evaluation scenarios (locations, types, and magnitudes of 
loads and load combinations).  The two populations coevolve in the following 
way.  The fitness of each individual design in the population of design concepts 
is determined by measuring how well it perfor
scenarios from the population of scenarios.  On the other hand, the fitness of 
each scenario depends on the number of design concepts it “defeated,” i.e. how 
many designs didn’t succeed to satisfy design requirements (like max. stresses, 
max. horizontal displacement, etc.) under this loading case.   
This approach seems more natural than standard load tables, codes, and loading 
combinations traditionally used in structural engineering.  It might be 
indispensable when robustness of designs is one of the key issues. Robustness of 
the design concepts can be improved, e.g. by testing sensitivity of various 
engineering systems to certain classes of scenarios that would never be applied 
by human designers. 

In EED thousands of designs concepts are generated and subsequently evaluated.  In 
this case, evaluation phase provides feedback to the algorithm 
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Figure 16. Spectrum of generality of representations of structural systems  

The most general representation would consider engineering systems as consisting of 
individual atoms and a search mechanism would navigate through the space of possible 
configurations of atoms.  This approach is, of course, infeasible with computational power 
available today.  The other end of the representational spectrum consists of entire structures.  In 
this case, the representation simply parameterizes the structure and an optimal set of parameter 
values is being sought. 

One of the major objectives of EED is to accomplish novelty in generation of design 
concepts.  Thus, the level of generality of the representation of an engineering system has to be 
rather high.  It is believed that appropriate results can be achieved when the representation 
consists of single members, or small sets of members, as basic representational units.  On the 
other hand, emergent structural shaping phenomena are expected to appear at the component, or 
substructure, level. 

3.5. Research Outline 
Research described in this dissertation has been divided into four parts, which partially 

overlap with the major phases of Emergent Engineering Design described in the previous 
section. 

• Part One – Selection of an Engineering Domain and Building Representations 
Part one was devoted to choosing a structural engineering domain and building appropriate 
representations of engineering systems.  The issues involved at this stage of research included 
selection of engineering systems and building their structural as well as computational 
models.  Particular attention was paid to choose appropriate representations which would 
enhance the search for novel design concepts.  The results produced in this part are described 
in chapter 4. 

• Part Two – Implementation of the EED 
This part consisted in developing a design support tool, named Emergent Designer, that 
implemented the proposed design method as well as representations of structural systems 
defined in part one.  Emergent Designer is an integrated research and design support tool 
which applies models of complex systems to represent engineering systems and to analyze 
design processes.  It is described in detail in chapter 5. 

As stated in section 3.3, in t he core of the proposed design 
method, i.e. on phases 1 and 3 shown in Figure 15.  Phase 1 is related to the research question 
1 and phase 3 is linked to the research question 3 as it is shown in Figure 14.  Hence, the two 
research questions have been further refined to address conceptual design problems in 

• Part Three – Experimental Work 
his dissertation I focused on t
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structural engineering.  When the questions were precise enough, they formed the bases for 

on.  They involved empirical validation of design concept generation mechanisms 

ancement of scientific knowledge in the field of engineering 
ology used in this dissertation is presented in Figure 

A d
down by e

hypotheses that could be tested empirically. 
The third part of this dissertation included experimental work performed using Emergent 
Designer.  The conducted experiments were directly related to the process of the empirical 
validation of Emergent Engineering Design which will be described in detail in the next 
secti
(chapter 6), evolutionary optimization mechanisms (chapter 7), and morphogenic evolutionary 
design, a combined approach in which design concept generation mechanisms (generative 
representations) were evolved by evolutionary algorithms (chapter 8). 

• Part Four – Analysis of the Experimental Results 
The results obtained in the conducted experiments have been analyzed both qualitatively 
(chapters 6 and 8) and quantitatively (chapters 7, 8).  The qualitative analysis involved visual 
inspection of generated design concepts and a search for interesting and emergent structural 
shaping patterns.  The quantitative analysis considered statistical properties of the design 
processes.  Here, the performance of generated designs and efficiency of the design processes 
were investigated. 

3.6. Validation Methodology 
Emergent Engineering Design was validated using the Validation Square (Pedersen et al. 

2000), a framework for validation of design methods, introduced in section 2.5.2.  The validity of 
EED supports the claim of the adv
design.  The outline of the validation method
17.  It is an extended version of Figure 12 in which all major stages of the validation process 
have been exemplified with specific tasks required to validate EED. 

 The bottom part of Figure 17 shows four elements of the Validation Square framework, i.e. 
Theoretical Structural Validity (TSV), Empirical Structural Validity (ESV), Empirical 
Performance Validity (EPV), and Theoretical Performance Validity (TPV).  The four elements 
were used to evaluate effectiveness and efficiency of EED.  TSV and ESV provided qualitative 
measures of EED’s effectiveness, while EPV and TPV gave quantitative measures of EED’s 
efficiency.  Both qualitative and quantitative measures were utilized to demonstrate the 
usefulness of EED.  The usefulness of EED supports the claim that the new scientific knowledge 
is significant.  On the other hand, novelty of the proposed design method was justified based on 
the literature reviews presented in chapter 2 as well as a discussion on the open issues in 
enginee grin  design offered in section 3.2. 

etailed description of the tasks involved to validate Emergent Engineering Design, broken 
ach of the four elements of the Validation Square, is presented below. 
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Figure 17. Outline of the validation methodology of Emergent Engineering Design using the 
Validation Square framework 
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3.6.1. Theoretical Structural Validation 
Theoretical Structural Validity was supported by accepting the individual components 

constituting EED and accepting the internal consistency of the way the components were 
integrated.  The validity of the individual components and their synthesis pertain to structural 
soundness of the proposed design method in a general, or theoretical, sense (Pedersen et al. 
20

he flow of information in 
, called Emergent Designer, implementing 

the design method.   
As a

design r
from the 
a tall u
descri io
sectio

Th c
pe

er, each section in 
r 2 contains a subsection presenting structural engineering applications, if any, 

00). 
The confidence in validity of the individual components of EED was built based on the 

available scientific literature.  It included evolutionary design and complex systems defining 
generative representations (see Phase I in Figure 14 and Hypothesis 1 in section 3.3), and 
evolutionary computation defining mechanisms of generation and optimization of design 
concepts (see Phase III in Figure 14 and Hypothesis 3 in section 3.3).  One of the major goals of 
the literature review presented in chapter 2 was to establish confidence in validity of individual 
components of the proposed design method.  On the other hand, the goal of chapter 4 was to 
establish confidence in validity of the way the components were integrated. 

The confidence in internal consistency of EED was built using flow-chart representations of 
information flow within the proposed design method and within each of its components.  It was 
demonstrated that for each component there was an adequate input available, that the anticipated 
output from the component was likely to occur based on the input and that the anticipated output 
is an adequate input for the next component.  A detailed description of t
the proposed design method and in a computer system
the method is offered in chapter 5. 

3.6.2. Empirical Structural Validation 
Empirical Structural Validity of EED was supported by accepting the appropriateness of 

example problems that were used to test the proposed design method.  The validity of the 
example problems pertains to the empirical soundness of 

 st ted in section 3.1, this dissertation investigates the proposed method only for conceptual 
 p oblems in structural engineering.  Hence, two classes of conceptual design problems 

structural engineering domain were selected, namely design of a wind bracing system in 
 b ilding and design of the entire steel structural system in a tall building.  A brief 
pt n of the two classes of design problems and justification of their choice is offered in 
n 2.4.4. 
e onfidence in appropriateness of the example problems chosen to evaluate EED’s 

rformance was built by (Pedersen et al. 2000): 
1. Documenting that the example problems are similar to the problems for which EED’s 

components are generally accepted. 
SOTA overviews of all components of the proposed design method are included in 
chapter 2.  The overviews discuss current research developments in these fields from 
the perspective of their relevance to engineering design.  Moreov
chapte
of the main ideas discussed there.  In this way, the confidence in accepting the 
applicability of the components to the example problems was built. 

2. Documenting that the example problems represent the actual problems for which 
EED is intended. 
The justification for the choice of the two example problems is presented in section 
2.4.4.  Moreover, chapter 4 demonstrates that the selected problems exhibit the 
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properties of problems for which EED is intended, e.g. they consist of a relatively 
large number of identical, simple, and locally interacting structural members. 

complex and time-consuming design tasks in 

 was divided into: 
 two subtasks in which the empirical performance of the individual components of EED 

was measured for the example problems  
 a third subtask in which the empirical performance of integrated components of EED 

was measured for the example problems 
As stated in section 3.3, this dissertation investigated only the research questions 1 and 3 
corresponding to phases 1 and 3 of the proposed design method.  Hence, the first two subtasks 
tested the individual research hypotheses (the first subtask tested the research hypothesis 1 and 
the second subtask tested the research hypothesis 3) by measuring the performance of the 
corresponding component of EED, i.e. the generative representations component and the 
evolutionary computation component, for the example problems.  The third subtask tested the 
fundamental hypothesis of this dissertation by measuring the performance of the integrated 
components of EED for the example problems. 

The process of the empirical performance validation of EED was conducted in the following 
way.  First, the usefulness of the generative representations component of EED in producing 
novel design concepts was tested empirically for the example problems (see chapter 6).  In this 
subtask, no optimization algorithms were applied.  Instead, various complex systems, modeled 
by simple programs, were used to explore the space of generative representations of structural 
systems.  The produced design concepts were qualitatively and quantitatively compared to both 
randomly generated design concepts and to the best designs known from the structural 
engineering literature. 

Second, the performance of the evolutionary computation component of EED was measured 
in optimizing the designs of engineering systems.  Here, on the other hand, the emphasis was put 
on strictly optimization issues. Hence, the optimized engineering systems were represented by 
standard parameterized representations rather than by the generative ones (see chapter 7).  
Evolutionary-based optimization was initialized with a randomly generated initial population of 
solutions or with a set of design concepts that included state-of-the-art solutions known from the 
structural engineering literature.  The design concepts optimized by the evolutionary 
computation component were compared to the solutions incorporated in the initial population of 

3. Documenting that the data associated with the example problems can support a 
conclusion. 
As discussed in section 2.4.4, the example problems investigated in this dissertation 
are considered as one of the most 
structural engineering.  Therefore, they are of suitable complexity for the 
demonstration of the usefulness of the proposed design method. 

Theoretical Structural Validity and Empirical Structural Validity qualitatively validate EED.  
The quantitative validation of the design method was tested by several performance measures 
which are described in the following sections. 

3.6.3. Empirical Performance Validation 
Empirical Performance Validity was supported by accepting that the outcome of EED is 

useful with respect to the initial purpose for the example problems.  It was also accepted that the 
achieved usefulness was linked to the application of EED.   

The purpose of the proposed design method for the example problems was directly related to 
the ultimate objective of this dissertation, i.e. generation of novel design concepts and their 
efficient optimization.  The task of validating EED’s performance empirically
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designs (thus, the improvement of the generated solutions was measured) and to the best designs 
known from the structural literature.  The goodness/fitness of generated designs was measured in 
terms of the following eva l structural system (which 
gives a reasonable estimate of the cost of the maximum horizontal 
displacement stiffness). 

Finally, th y measuring 
their performa ptimization.  
The obtained p evolutionary-

ethods meterized representatio te the state-of-the-
rt in conceptual design of structural systems (topology Although traditional 

topology optimization methods based on linear programming techniques proved to be successful 
in 

er 8). 

ternal consistency of EED.  
• Empirical Structural Validity shows that the components of EED are applied within 

their accepted ranges. 
• Empirical Performance Validity demonstrates the usefulness of EED for the example 

problems as well as that the usefulness is achieved due to the application of the method. 
Based on that, the generality of EED was claimed, which is understood in this dissertation as 

its usefulness beyond the example problems (see chapter 9).  Hence, Theoretical Performance 
Validity involved a ‘leap of faith’ to produce belief in a general usefulness of the proposed 
design method.  The purpose of the previous steps in the Validation Square was to show 
‘circumstantial’ evidence to facilitate this leap of faith (Pedersen et al. 2000). 

3.7. Summary 
In this chapter, I proposed and defined Emergent Engineering Design, the major objective of 

this dissertation, and described the structure of the argument presented in this dissertation.  
Initially, in the first section of this chapter I defined the problem considered in this disserta on, 
i.e. a need for a conceptua engineering systems which 
addresses both important obj pment of novel designs and 

luation criteria: the total weight of a stee
a steel structure), and 

 of a steel structural system (which gives an estimate of the structure’s 
e usefulness of the integrated components of EED was determined b
nce both in producing novel design concepts and in their subsequent o
erformance measures were compared to the results obtained using 
 utilizing standard parabased m ns which constitu

a optimization).  

finding optimal topologies for small design problems, they were rendered inadequate when the 
size of the problems considered was scaled up (see a detailed discussion presented earlier in 
section 2.1.7).  Additional difficulties of traditional methods arise due to discontinuous nature of 
the design problems considered in this dissertation which was another reason for not including 
them in EED’s empirical performance validation process.  The obtained performance measures 
were analyzed statistically using appropriate statistical tests.   Also, various experimental 
analyses and comparisons with state-of-the-art methods were conducted to demonstrate that the 
achieved usefulness was due to the application of EED (see chapt

3.6.4. Theoretical Performance Validation 
Theoretical Performance Validity was supported by accepting that the usefulness of EED 

extends beyond the example problems.  The confidence in generality of the EED was built by 
induction that involved results from all previous validation steps, i.e. Theoretical Structural 
Validation, Empirical Structural Validation, and Empirical Performance Validation.  The 
inductive argument was structured in the following way: 

• Theoretical Structural Validity demonstrates that the individual components of EED are 
generally accepted for the applications the design method is intended.  It also shows the 
in

ti
lly coherent method for designing 
ectives of engineering design: develo
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their optimization.   In the following section, I showed that this problem is closely related to the 
op

ection defined Emergent Engineering Design, a design method based on models of 
comp d the structure of 
the a m eses.  I also described the 

he assumptions 
inc

rical Structural Validation, 
Em

en issues in the field of engineering design.   
The third s

lex systems and inspired by the processes occurring in nature.  I presente
rgu ent in the form of research questions and research hypoth

scope of research conducted in this dissertation. 
The fourth section of this chapter provided a detailed description of t
orporated in the proposed design method.  First, an assumption of four phases of the 

conceptual design process (representation space definition, representation space decomposition, 
generation and optimization of design concepts, and fitness evaluation and adaptive testing) was 
debated and subsequently related to the corresponding phases in traditional design.  Second, a 
discussion on the choice of the appropriate level of generality of representations of engineering 
systems (single structural elements or small sets of elements) was presented. 

The fifth section outlined the conducted research while the sixth section of this chapter 
provided a detailed description of the validation methodology that was used to validate EED.  
The process of validation was based on the Validation Square framework (see section 2.5.2) and 
consisted of four major parts: Theoretical Structural Validation, Empi

pirical Performance Validation, and Theoretical Performance Validation.  Each of them was 
described in detail and linked to the appropriate chapters of this dissertation. 

 



 

4. DESIGN REPRESENTATIONS 
 

“… the key element of design is representation. … representation in 
design incorporates both representation of the artifact being 
designed as well as representation of the process by which the 
design is completed.” 

 (Clive L. Dym) 

In this chapter, I introduce computational representations of two classes of structural systems: 
wind bracing systems in tall buildings and entire steel structural systems in tall buildings.  In 
doing that I conduct the first stage of the Theoretical Structural Validation process of EED (see 
section 3.6.1), in which I want to establish confidence in validity of the way the components of 
the proposed design method are integrated at the representational level.  I will demonstrate that 
by first proposing several design concept generation mechanisms based on models of complex 
sys

define several types of design 
co

tems and then showing how these mechanisms can be encoded in the generative 
representations suitable for evolutionary optimization processes. 

Figure 18 shows organization of this chapter.  First, I present a general overview of 
representations of structural systems and a brief discussion on the level of their generality that is 
suitable for conceptual design.  Next, I discuss traditional approaches to represent engineering 
systems in the form of parameterized representations of steel structural systems in tall buildings.  
At this point, I am ready to propose a new approach based on models of complex systems and 
inspired by the processes of morphogenesis occurring in nature.  I 

ncept generation mechanisms based on cellular automata and discuss their computational and 
representational advantages and disadvantages.  I also show how these mechanisms can be 
encoded as the generative representations which are suitable for evolutionary optimization 
processes. 

Chapter 4 
Design Representations 

Representations of 
Structural Systems 

in Conceptual 
Design 

Parameterized 
Representations 

Design 
Representations 

Inspired by Nature

Generative 
Representations of 

Engineering 
Designs 

Single 1D 
Embryo and a 

Single CA 
Rule

Multiple 1D 
Embryos and 

CA Rules 

Single 2D 
Embryo and a 
Single 2D CA 

Rule

Multiple 1D 
Embryos and 
1D CA Rules 

 
Figure 18. Organization of chapter 4 
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4.1. Representations of Structural Systems in Conceptual Design 
As I discussed it earlier in section 2.1.3, representations in engineering design incorporate 

(Dym 1994): 
• representation of an artifact (engineering system) being designed, and 
• representation of a process by which the design is produced 

In this chapter and in chapter 6, I focus on the new ways of representing engineering systems 
(artifacts) while in chapters 7-8 I introduce representations of design processes.  

A representation of an engineering system can be defined as its computational description 
expressed in terms of attributes (Arciszewski et al. 1995).  Attributes describing the system can 
be defined as a formal representation of its various characteristics including the structure’s 
topology, its weight, etc.  These attributes can be divided into two major groups: quantitative and 
q  
c  
stage of a design proc  a general form of an 
engineering system and its characteristics that can not be explicitly measured, like shape, color, 
material used, etc.  These attributes are usually multi-valued and take values from an unordered 
or partially ordered set of symbols  (Arciszewski and De Jong 2001). 

In general, a representation of an engineering system is a significantly broader description 
compared to its traditional model in engineering science because it encompasses much more 
knowledge than can be set into mathematical formulas and their numerical realizations (Dym 
1994).  This is particularly important in conceptual design, where most of the attributes 
describing a future engineering system are qualitative rather than quantitative and their selection 
involves significant amount of background knowledge.  Hence, representations of structural 
systems in conceptual design usually consist of symbolic attributes. 

In section 2.4.4, I introduced the two design problems considered in this dissertation to 
validate the proposed design method.  They include the problem of designing a wind bracing 
sy l 
building.  Both proble they can be naturally 
rep

 form of parameterizations.  These types of 

cepts, more general and usually 
 engineering systems 

based on models of complex systems and inspired by the processes of morphogenesis occurring 
in nature are introduced in section 4.4.  They are investigated experimentally in chapters 6 and 8. 

4.2. Parameterized Representations 
Parameterized representations are examples of direct representations (see section 2.1.3) in 

which each gene corresponds to an attribute encoding a dimension of the search space.  Each 

ualitative.  Quantitative attributes describe detailed characteristics of an engineering system that
an be measured (Arciszewski 1988).  These attributes are mostly considered in the analytical

ess.  On the other hand, qualitative attributes describe

stem in a tall building and the problem of designing an entire steel structural system in a tal
ms are examples of conceptual design problems and 

resented in terms of attributes taking appropriate set of symbolic values (see section 2.1.3). 
A choice of a particular type of representation of an engineering system is highly influenced 

by a designer’s goal, i.e. whether the emphasis is on optimality in terms of numerical values in 
the context of a specific design concept, or on generation of novel design concepts.  In the 
former case, the attention is usually restricted to a particular concept or at most several concepts 
of existing designs and representations usually take a
representations have been traditionally used in evolutionary structural optimization (Kicinger et 
al. 2004b).  I introduce parameterized representations of engineering systems in section 4.2.  I 
will also investigate them experimentally in chapter 7 in which I empirically validate 
evolutionary optimization component of EED. 

When a designer focuses on generation of novel design con
more complex representations are used.  Generative representations of
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such dimension represents an appropriate set of values, discrete, or continuous, which the 
attribute represented by this dimension can assume.  As discussed earlier, in conceptual design, 
discrete values are usually preferred because they naturally encode symbolic values of attributes.  
In the simplest case, these representations use binary genes denoting the presence, or absence, of 
a feature.  In such representations each individual consists of a fixed-length binary string of 
genes representing some subset of a given set of features.  Often, in more complex engineering 
applications, as is the case with engineering design problems investigated in this dissertation, 
multi-valued attributes are used.  In this dissertation representations of steel structural systems in 
tall buildings are encoded using integer-valued attributes.  Parameterized representations 
described in this section are generalized versions of the encodings used in Inventor 2001 
(Murawski et al. 2001). 

In the design problems studied in this dissertation, a structural system of a tall building is 
considered as a system of identical parallel planar transverse structures, which are the subject of 
d  
s  
respectively) into units, or cells.  A  
within the adjacent vertical and horizontal grid lines (Murawski et al. 2001). 

Representations of steel structural systems in tall buildings considered in this dissertation 
encode the following types of structural members: bracings, beams, columns, and supports.  
Depending on the investigated design problem, either only a subset of the structural members or 
the entire set of all structural members was considered.  Thus, in the wind bracing system design 
problem only bracings were used.  In this case, all other structural members were assumed the 
same during the entire design process.  On the other hand, in the problem of designing the entire 
steel structural system in a tall building, all structural members, including bracings, beams, 
columns, and supports, were considered and subjected to changes. 

Figure 19 shows the values of the attributes representing wind bracing elements in a steel 
structural system at a phenotypic, symbolic, and genotypic level.  Each such attribute can have 
up to seven symbolic values (see Figure 19b)) encoding various types of bracings (no bracing, 

 
Their phenotypic, or desi 9a).  Figure 19c) shows 
ge

esign.  The representation space has been developed using the concept of division of the
tructural grid of the building (the system of vertical and horizontal lines of columns and beams,

cell can be described as a part of the structural grid contained

diagonal bracing \, diagonal bracing /, K bracing, V bracing, simple X bracing, and X bracing). 
gn, representation is presented in Figure 1

notypic values of the attributes representing bracing elements where alleles take on subsequent 
integer values from 0 to 6.  

In Figure 20, phenotypic (see Figure 20a)), symbolic (see Figure 20b)), and genotypic (see 
Figure 20c)) values of attributes representing beam elements are presented.  Each attribute 
representing a beam in a steel structural system can have up to five symbolic values encoding 
various types of beams (no beam, pinned-pinned beam, fixed-fixed beam, pinned-fixed beam, 
and fixed-pinned beam).  The phenotypic (design) representation of beam attributes is presented 
in Figure 20a) while their genotypic values taking on subsequent integer values from 0 to 4 are 
shown in Figure 20c). 

 



73 

 
Figure 19. Values of the attributes describing bracing elements a) phenotypic representation, b) 

symbolic representation, c) genotypic representation 

 
Figure 20. Values of the attributes describing beam elements a) phenotypic representation, b) 

symbolic representation, c) genotypic representation 

Phenotypic, symbolic, and genotypic values of attributes representing column elements are 
presented in Figure 21.  Here, similar to beam attributes, up to five symbolic values (see Figure 
21b)) encoding various types of columns (no column, pinned-pinned column, fixed-fixed 
column, pinned-fixed column, and fixed-pinned column) can be used.  Design representation of 
column attributes is presented in Figure 21a) while their genotypic values taking on subsequent 
integer values from 0 to 4 are shown in Figure 21c). 

Finally, Figure 22 shows phenotypic, symbolic, and genotypic values of attributes 
representing supports.  Here, four possible types of supports are allowed and encoded by four 
symbolic values (no support, pinned support, fixed support, and roller support) as it is shown in 
Figure 22b).  Design representation of support attributes is presented in Figure 22a) and their 
genotypic values ranging from 0 to 3 are shown in Figure 22c). 
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Figure 21. Values of the attributes describing column elements a) phenotypic representation, b) 

symbolic representation, c) genotypic representation 

 
Fi

nts in a steel structure which represents a design concept.  

n 

it

gure 22. Values of the attributes describing supports a) phenotypic representation, b) symbolic 
representation, c) genotypic representation 

When parameterized representations are employed, a given structural system can be encoded 
as a sum of representations of its individual cells, each described an attribute identifying the 
existence and the type of a structural member.  Figure 23 shows a simple example of this 
approach.  10-story building with 4 bays is divided into 40 cells contained within the adjacent 
vertical and horizontal grid lines (see Figure 23a)).  In this problem, only wind bracing elements 
are the subject of design and all other structural elements of the steel structure, i.e. beams, 
columns, and supports, are assumed the same during the entire design process.  Figure 23a) 
shows a configuration of bracing eleme
The representation of a design concept at this level is called a phenotypic representation, or 

ply a phenotype.  The phenotype is created (decoded) from a genotypic representatiosim
involving 40 integer-valued attributes that represent 40 bracing elements in the steel structure as 

 is shown in Figure 23b).  
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Figure 23. a) Phenotypic representation of a wind bracing system, b) The same system 

represented by multi-valued integer attributes, c) Linear genome representation of the system 

 
evolutionary algorithm, ticular example, it is a 
string of integer values (see Figure 23c)).  All genotypic representations considered in this 

ction of all such genotypes forms a genotypic space of the domain.  

s 
disse ary 
search operates in the genotypic space uation is performed in the phenotypic 
spa

ts discussed earlier, i.e. beams, bracings, columns, and supports. 
e used as representations of various steel 

de n 
the number of cells in the structural system being considered.  The number of cells is obviously 
related to the number of stories and the number of bays in a tall building.  Once the design 

that is manipulated by an evolutionary algorithm 

Usually, the actual genotypic representation, or genome, that is manipulated by an
 is linearized and encoded as a string.  In this par

dissertation are linear.  A colle
A collection of all phenotypes corresponding to all combinations of attribute values (all 
genotypes), forms a phenotypic space of the domain. 

As is it discussed above and shown in Figure 23, in the design problems considered in thi
rtation a clear distinction between genotypic and phenotypic spaces is made.  Evolution

but fitness eval
ce.   
As mentioned earlier, the two design problems investigated in this dissertation include 

conceptual design of wind bracing systems in tall buildings, and conceptual design of the entire 
steel structures in tall buildings.  In the former case, the subject of design is the placement and 
type of bracing elements only.  In the latter case, design involves the placement and type of all 
structural elemen

In this dissertation, fixed-length genotypes ar
structural systems.  The length of a genotype used in a given situation, however, depends on the 

sign problem being studied (wind bracing system or the entire steel structural system) and o
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prob the 
genotype is completely define

s are represented.  This configuration forms a phenotype of a particular design concept.  
Th

system in this 
parameterized representation is equal to 135.  The structure of the actual linear genome 
manipulated by an EA and consisting of 135 genes is presented in Figure 24c). 

Emergent Designer, which will be introduced in chapter 5, allows for a choice of: 
• Structural elements considered in design, 
• Values of attributes defining types of structural elements.   

Thus, one can, for example, consider only bracings and beams and assume all columns and 
supports the same during the entire design process.  Similarly, one can choose, for instance, that 
during the design process the only allowed values for beam attributes are pinned-pinned beams 
and fixed-fixed beams.  

4.3. Design Representations Inspired by Nature 
Parameterized representations discussed in the previous section have been widely used in 

engineering optimization.  This dissertation, however, emphasizes both novelty and optimality in 
engineering design.  To achieve the ultimate objective of this dissertation, i.e. generation of 
novel design concepts and their efficient optimization, other types of representations of 
engineering systems had to be proposed.  The inspiration for the design representations 
introduced in this section comes again from nature which manipulates rules for growing complex 
organisms, called ‘genetic plans’, rather than the complex organisms themselves.  The organisms 
are then built from the plans via a developmental process called morphogenesis (Thompson 
1942).  Morphogenesis can be described in several ways, including the following 3 definitions 
(adapted from Principia Cybernetica): 
Definition 1. Morphogenesis 

“Morphogenesis is an evolutionary development of the structure of an organism or a part.” 
Definition 2. Morphogenesis 

“Morphogenesis is an embryological development of the structure of an organism or a part.” 
 

lem and topological properties of a tall building are determined, then the length of 
d and does not change. 

When the parameterized representations are used, the lengths of genotypes for the wind 
bracing system design problem are simply equal to the number of cells in a given tall building.  
For example, in the simple design problem described earlier and shown in Figure 23, the genome 
representing a parameterized design concept of a 10-story building with 4 bays has the length of 
40 genes (bracing attributes).  The situation is more complicated when design of the entire steel 
structure is considered.  In this case, all structural elements, including beams, bracings, columns, 
and supports are represented.  Figure 24 shows the same 10-story building with 4 bays for which 
the entire steel structural system is being designed. 

Figure 24a) shows a configuration of a steel structure in a tall building in which all structural 
element

e phenotype is created (decoded) from a genotypic representation involving 40 integer-valued 
attributes that represent 40 bracing elements, 40 integer-valued attributes that represent 40 beam 
elements, 50 integer-valued attributes that represent 50 column elements, and 5 integer-valued 
attributes that represent 5 supports in the steel structure (see Figure 24b)).  Hence, the total 
number of genes (attributes) that completely define this steel structural 
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4. a) Phenotypic representation of an entire steel structural system, b) The same system 
nted by multi-valued integer attributes, c) Linear genome representation of the system 

Figure 2
represe

 
Definitio
“Mor o
a system the growth of an animal from a fertilized ovum, 

b

design.  By combining the definitions of morphogenesis and engineering design 
(introduced earlier in section 2.4.1), I can define morphogenic engineering design in the 

De

that is manipulated by an evolutionary algorithm 

n 3. Morphogenesis 
ph genesis is the process in complex system-environment exchanges that tends to elaborate 

's given form or structure. Examples are 
iological evolution, learning, and societal development. A morphogenic system is capable of 

maintaining its continuity and integrity by changing essential aspects of its structure or 
organization.” 

The definitions 1 and 2 are most closely related to the ideas presented in this dissertation. 
Due to the lack of appropriate terminology describing the use of generative representations 

within the field of engineering design, this dissertation introduces a new term morphogenic 
evolutionary 

following way. 
finition 4. Morphogenic Evolutionary Design1 

Morphogenic evolutionary design is the systematic generation and evaluation of representations 
of engineering systems or their parts whose form and function achieve stated objectives and 

                                                 
1 I would like to thank Prof. Tomasz Arciszewski and Dr. Sanjeev Kumar for their comments and suggestions that 
helped me improve this definition. 
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satisfy specified constraints. It is done using the mechanisms inspired by the processes of 
developmental biology and evolution. 

One of the key aspects of morphogenic engineering design is representation of an engineering 
system being designed.  Recently, several researchers investigated the potential of using indirect 
and generative representations inspired by the processes of morphogenesis in creative design 
(Bentley and Kumar 1999; Hornby 2003).  As discussed in section 2.1.3, indirect representations 
do not encode complete design concepts, as do parameterized representations, but rather rules on 
how to develop, or grow, these designs.  Generative representations are examples of indirect 
representations that can reuse some parts of an encoded design during the phenotype 
construction phase. Their ability to reuse elements of an encoded design improves the search 
efficiency in large design spaces as well as scalability by capturing design dependencies (Hornby 
2003). 

Figure 25 illustrates the concept of design inspired by nature in the context of designing steel 
structural systems in tall buildings.  Similarly as in nature (see the bottom part of Figure 25), a 
building is developed from an initial seed (called here the design embryo) and then ‘grown’ to its 
fully-developed form.  This process, called morphogenic design, is inspired by the processes of 
morphogenesis occurring in nature, e.g. in the process of development of plants. 

 
Figure 25. Process of development of a steel structural system in a tall building inspired by the 

processes of morphogenesis occuring in nature 
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Next section further extends the ideas presented here and proposes specific examples of 
generative representations of steel structures in tall buildings based on various models of 
complex systems, including one-, and two-dimensional cellular automata.  It also proposes the 
generative representations of the entire steel structural systems in tall buildings. 

4.4. Generative Representations of Engineering Designs 
In this section, I propose and define generative representations of the two design problems 

considered in this dissertation.  These representations are based on models of complex systems.  
The generative representations proposed here, and inspired by the processes of biological 
development, consist of two parts: encoding of a ‘design embryo’ and encoding of a ‘design 
rule,’ which is applied to the design embryo to develop a design concept from it. 

A design embryo is understood in this dissertation as an ordered set of cell values representing 
an initial configuration (one-, or two- dimensional) of structural members (e.g. wind bracing 
typ

e design rules. Thus, it is possible to provide a 
mo

uely define every design 

s of 
development of design concepts using various kinds of design embryos and the corresponding 
design rules. 

4.4.1. Single 1D Embryo and CA Rule Representing Wind Bracings 
One of the simplest instances of generative representations proposed in this dissertation 

consists of a design embryo formed by a single one-dimensional initial configuration of cells and 
a design rule represented by a single 1D CA rule.  This rule is applied to the design embryo and 
develops a design concept of a wind bracing system in a tall building.  In this case, the design 
embryo is the configuration of the first story in a wind bracing system of a tall building.  The 

es) from which a design concept is developed. 
A design rule, on the other hand, is a formal description of a transformation that changes the 

current configuration of structural members into a new configuration.  This transformation 
defines a unit time step.  In this dissertation, various types of one- and two-dimensional cellular 
automata are considered as representations of th

re specific definition of a design rule in this context.  It is defined as a systematic definition of 
a transformation that updates the current configuration of cell values (representing the 
corresponding types of structural members) into a new configuration of cells at a subsequent 
time step.  This transformation consists of three major components: 

• A complete set of decision rules whose conditions incorporate all possible 
combinations of cell values (types of structural members) in the given local 
neighborhoods and their outcomes specify the values of the central cells of these 
neighborhoods at a next time step, 

• Assigned sequence/ordering of the individual decision rules, which is assumed the 
same for the entire class of the design rules and hence can uniq
rule belonging to this class, 

• A complete set of outcomes associated with individual decision rules and having the 
same ordering as for the decision rules. 

The genomes encoding the generative representations proposed in this dissertation have, in 
general, the following structure.  The first part of each genome encodes the design embryo while 
the second part encodes the corresponding design rule.   

The following sections introduce several types of generative representations and instantiate 
the ideas presented above. They also provide detailed descriptions of the processe

 



80 

design rule is applied to the design embryo and iterated for the number of times that is one less 
than the number of stories in a tall building.   

The process of applying this type of generative representation to develop, or grow, a design 
concept of a wind bracing system is illustrated graphically in Figure 26.  First, Figure 26a) shows 
the process of iteration of an elementary CA.  In this case, the individual cell states have only 
binary values and local neighborhoods affecting the iteration of a considered cell are formed by 
this cell and its immediate left and right neighbors.  Therefore, groups of three cells are 
considered in each local neighborhood and such situation is called a ‘local neighborhood of size 
3’.  The bottom row of Figure 26a) consists of 6 squares (cells) denoting an initial configuration 
of cells (t=0).  In this particular case, the initial configuration consists of cell state values 
0 0 0 1 1 0.  White squares in Figure 26 denote cell state values equal to 0 while black squares 
represents cell state values equal to 1.  A graphical representation of the particular CA rule used 
to iterate this initial configuration for 15 time steps is presented in Figure 26b).  As discussed 
earlier, a CA rule can be understood in the context of this dissertation as a complete set of 
decision rules whose conditions incorporate all possible combinations of cell state values in a 
given local neighborhoods (here of size 3) and the outcomes determine the values of the 
considered cells (usually central cells in a local neighborhood) at the next time step.  If the 
ordering of the individual decision rules shown in Figure 26b) is assumed the same, then any CA 
rule can be uniquely defined by the outcome values (the top row in Figure 26b)) associated with 
individual decision rules. 

 
Figure 26. a) Process of iteration of a 1D CA starting with an initial configuration consisting of 6 

cells, b) Graphical representation of a 1D CA rule assigning values to a central cell in a local 
neighborhood (the top row) at a next time step (the bottom row), c) Process of generation of a 
wind bracing design concept from a design embryo using a 1D CA design rule, d) Graphical 

representation of a design rule based on a 1D CA which assigns values to a central cell in a local 
neighborhood (the top row) at a next time step (the bottom row) 
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A design concept of a wind bracing system is created analogically.  Figure 26c) shows a 
process of development of a design concept from its design embryo (the initial configuration of 
bracings at the first floor) using a design rule presented in Figure 26d).  The design rule 
represented by a 1D CA can be thought of as a complete set of decision rules whose conditions 
(the bottom part of Figure 26d)) incorporate all possible combinations of types of bracings in the 
given local neighborhoods and the outcomes specify the values of the central cells of these 
neighborhoods at a next time step (the top part of Figure 26d)).  In this case, only two values of 
the attributes representing bracing elements are used: no bracing (empty cell) and K bracing.  
The design embryo forms the first story in the generated design concept (t=0).  As it is shown in 
Figure 26c), the 1D CA design rule is iterated the number of times that is one less than the 
number of stories in a tall building.  The process starts at the bottom level and gradually moves 
upwards.  This choice, however, is arbitrary and other starting conditions can be specified, e.g. a 
design concept can be built downwards starting from the design embryo located at the top level. 

c .  
T s 
of

configuration of cells as in Figure 26a).  The process of generation of subsequent configurations 
at 

d, meaning that the rightmost 
cel

Figure 26 illustrates an incremental mechanism of generation of design concepts using a 
design embryo and a 1D CA design rule.  It does not explicitly show, however, how subsequent 
onfigurations of stories are obtained, or in other words, it does not show how a 1D CA works
hat is presented in Figure 27 which demonstrates the process of determining the configuration
 cells at subsequent time steps in more detail.  
Figure 27b) shows the same 1D CA rule as in Figure 26b) that is applied to the same initial 

time steps t=1, 2, 3 … is presented graphically in Figure 27a). First, a set of local 
neighborhoods of size 3 (it is an elementary CA) is constructed by taking each cell from the 
initial configuration together with its left and right neighbors and placing them respectively in 
the middle, left, and right of the lattice defining each local neighborhood (see the set of 6 local 
neighborhoods of size 3 placed above the initial configuration in Figure 27a)).  In this particular 
example, so-called cyclic (or periodic) boundary conditions are use

l in the initial configuration becomes the left neighbor of the leftmost cell in the initial 
configuration, and vice versa (denoted by dashed lines in Figure 27a)). 

Next, the local neighborhoods created that way are compared to the local neighborhoods 
shown in the bottom row of Figure 27b).  When the two match, the value shown in the top row of 
Figure 27b) defines the new value of the central cell at the next time step.  This process is 
repeated for each local neighborhood and the values obtained are placed in appropriate positions 
in the new configuration of cells at time t=1, thus completely defining this configuration.  The 
process is repeated for an arbitrary number of steps.  Figure 26a) shows the results of the 
iteration process for the first 15 steps.  Figure 27a) gives a detailed representation of the process 
of determining the new configuration at a subsequent time step of the first 3 iterations only. 
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Figure 27. a) Generation of subsequent configurations (t=1, 2, 3, ..) of the lattice of cells during 

ined. 

the process of iteration of a 1D CA starting with an initial configuration (t=0) consisting of 6 
cells, b) Graphical representation of a 1D CA rule used in part a) 

 
Representations defined in this section can be used as design concept generators (see chapter 

6).  They can be also evolved using evolutionary algorithms (see chapter 8).  In this case, 
however, a design embryo and a design rule used to develop a design concept of a wind bracing 
system have to be appropriately encoded in a genome that is manipulated by an evolutionary 
algorithm.  Figure 28a) shows a schematic view of the structure of such genome.  It consists of 
two parts: a design embryo encoded in the first part of the genome (gray cells) and a design rule 
occupying the second part of the genome (white cells).  The number of genes encoding the 
design embryo is equal to the number of bays in a tall building.  On the other hand, the number 
of genes encoding the design rule depends on the number of possible cell state values (types of 
bracing elements) and the size of the local neighborhood.  In order to encode a design rule in a 
genome in this way, one also has to assume an ordering of the individual decision rules making 
up the design rule.   This ordering must be the same for the entire class of the design rules so that 
every design rule belonging to this class can be uniquely def
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Figure 28. a) Schematic view of the structure of a genome encoding the generative representation 

of a wind bracing system consisting of a single design embryo (gray cells) and a single design 
rule (white cells), b) graphical illustration of an encoding of a design concept using the design 
embryo shown in part e) and the design rule shown in part d), c) encoding of the same design 

Figure 28b) graphically illustrates the genome encoding a design concept of a wind bracing 
systems presented earlier in Figure 26c).  Here, the design embryo is represented by genes a-f in 
Figure 28b).  As it is shown in Figure 28e), the design embryo encoded in the first part of the 
genome defines the configuration of the first story in a wind bracing system of a tall building 
(cells a-f at t=0).  This choice, however, is arbitrary and other starting configurations can be 
used, e.g., the design embryo located at the top of a tall building.   

The design rule, encoded in the second part of the genome (genes 1-8 in Figure 28b)), is 
represented by a 1D CA rule (see Figure 28d)).  In this case, the design rule uses only two 
possible cell state values (empty cell denoting no bracing, and non-empty cell denoting K 
b  
de e 
com
values of the central cells of 

).  Here, genes 1-8 encode the outcome values produced by the design rule presented 
in Fig e

Th
in this se
elements.  As it was shown in Figure 19, the attributes representing types of bracing elements 

values (types of wind bracing elements) are used and 349 genes long when 7 cell state values are 

concept as in part b) but in an actual numerical form that is manipulated by an evolutionary 
algorithm 

racing), and the neighborhood of size 3.  As defined earlier, it consists of a complete set of
cision rules whose conditions (the bottom part of Figure 28d)) incorporate all possibl

binations of types of bracings in the given local neighborhoods and the outcomes specify the 
these neighborhoods at a next time step (the top part of Figure 

28d)).  All possible combinations of conditions of the design rule (see Figure 28d)) are ordered 
from 1 to 8.  If this ordering is assumed the same for the entire class of the design rules with 
binary cell state values and the local neighborhood of size 3, then the outcome values (shown in 
the top part of Figure 28d)) uniquely define every rule belonging to this class.  This important 
feature has been used in the definition of the encoding of the design rule in the genome shown in 
Figure 28b

ur  28d) and, given the assumed ordering, uniquely define it. 
e genome encoding the representations of wind bracing systems in tall buildings described 

ction consists of homogeneous genes representing integer-valued attributes of bracing 

can have up to 7 values. 
The advantages of this representation include compactness and excellent scalability.  A 

genome encoding a wind bracing system shown in  Figure 26c) is 14 genes long when 2 cell state 
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used.  The representation can be even more compact when the design rule is represented by a 1D 
totalistic CA rule.  In a totalistic CA the value of the current cell at the next time step depends on 
the

rts of a wind bracing system.  Generative 
representations introduced in this section are aimed to remedy this problem.  These 

nd a set of 1D 
CA

concept of a wind 
bra

0 shows a schematic view of the structure of the genome manipulated by an 
evolutionary algorithm.  The genome consists of twice as many parts as the number of stories in 
a tall building.  Gray cells in Figure 30 encode design embryos for various stories, while white 
cells encode design rules applied to these embryos.  Similar to the representation introduced in 
the previous section, the number of genes defining any design embryo depends only on the 
number of bays in a tall building.  Also, the number of genes encoding a design rule represented 
by a 1D CA rule is determined by the number of possible cell state values (types of bracing 
elements) and by the size of the local neighborhood.  The encoding of all design rules in the 
genome is analogical to the one described in the previous section.  The genome consists of 
homogeneous genes representing integer-valued attributes. 

 average value of cells in the local neighborhood, and not on their individual values.  Figure 6 
(page 38) illustrates the process of iteration of a totalistic CA with three cell state values (see 
Figure 6a)) and the structure of a corresponding totalistic CA rule used in this process (see 
Figure 6b)).  If the design rule is represented by a totalistic CA rule, then the genome encoding 
the design concept of a wind bracing system is 10 genes long when 2 types of bracings are used 
and 25 genes long when all 7 types of bracings are utilized. 

The disadvantage of this approach is that a single design rule is applied at each story of a 
wind bracing system and hence it is impossible to diversify design rules for various parts of the 
wind bracing system, e.g. in traditional design different design rules may be used in the bottom 
part of the structure, where internal forces are the largest, compared to the upper part of the 
structure where internal forces are the smallest but local stiffness requirements are the same. 

4.4.2. Multiple 1D Embryos and CA Rules Representing Wind Bracings 
One of the limitations of the generative representations described in the previous section is the 

lack of diversification of design rules for various pa

representations consist of a set of one-dimensional initial configurations of cells a
 rules.  Similar to the representations introduced in the previous section, each initial 

configuration, or design embryo, consists of a lattice of cells whose length is equal to the number 
of bays in a tall building.  This representation also assumes that both the number of design 
embryos and the number of corresponding design rules (represented by 1D CA rules) are equal 
to the number of stories in a tall building.  Figure 29 shows how a design 

cing system is developed using this type of generative representations.  In this case, a concept 
of a wind bracing system for a 16-story tall building is developed from 16 design embryos and 
16 design rules (1D CA rules).  In this particular example, only 3 cell state values (denoted by 3 
colors: white, gray, and black) are used and correspond to three types of wind bracing elements, 
e.g. no bracing (empty cell), K bracing, and X bracing. 

Each design rule is applied to its own design embryo, e.g., design rule 1 is applied to design 
embryo 1, design rule 2 to design embryo 2, etc., and iterated an arbitrary number of times, 
denoted in Figure 29 by iteration_max.  Thus, the number of iterations of design rules 
(iteration_max) becomes an additional parameter for this representation.  The iteration of all 
design rules is performed synchronously.  The final configuration obtained during this process, 
i.e. configuration at t=iteration_max, forms a design concept which is subsequently evaluated. 

Figure 3
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Figure 29. Process of generation of a design concept of a wind bracing system from a set of 

design embryos and a set of design rules 

 
Figure 30. Schematic view of the structure of a genome encoding the generative representation 
of a wind bracing system and consisting of multiple design embryos (gray cells) and multiple 

design rules (white cells) 

The advantages of this type of representation include mentioned earlier diversification of the 
design rules in various parts of the wind bracing system.  The main disadvantage of this 
representation is the fact that it does not scale well with neither the number of cell state values 
(types of bracing elements) nor with the number of stories and bays in a tall building.  The 
genome encoding the wind bracing system shown in Figure 29 consists of the following number 
of genes: 

• Each design embryo is represented by a string of ternary values consisting of 6 genes, 
• Each design rule is represented by a string of ternary values consisting of 27 genes 

(when a 1D CA rule with 3 cell state values and the local neighborhood of size three is 
used). 

Hence, the entire genome of a 16-story building is encoded as a string of 528 genes.  Increasing 
the number of cell state values to 7 would lengthen the genome to 5,584 genes.  In this case, a 
more feasible approach involves design rules represented by 1D totalistic CA rules (see a brief 
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discussion of totalistic 1D CA rules in the previous section and on page 38).  Then, the length of 
the genome would be equal to 208 and 400, when 3 and 7 cell state values are used, respectively. 

Generative representations described in this and previous sections form two extreme cases of 
representations of wind bracing systems involving one-dimensional embryos and the design rules 
represented by 1D CA rules.  The generative representation introduced in the previous section 
develops the entire design concept of a wind bracing system from a single design embryo and a 
single design rule.  On the other hand, this section defines the representation with the maximum 
possible (limited by the number of stories in a tall building) number of design embryos and 
design rules.  One can, of course, easily define generative representations located somewhere in 
between the two extremes, i.e., a design concept of a wind bracing system can be developed 
from, for example, three design embryos and three design rules.  In such a case, the first embryo 
and the first design rule would develop the bottom part of the structure, where the internal forces 
are the largest, the second embryo and rule would build the middle part of the structure, and 
finally the last embryo and rule would generate the upper part of the structure where internal 
forces are the smallest.  Such representations would constitute a knowledge-driven engineering 
design in which available background knowledge on the design problem is incorporated in the 
representation of the considered engineering system. 

4.4.3. Single 2D Embryo and 2D CA Rule Representing Wind Bracings 
Representations of a wind bracing system proposed in this section are based on two-

dimensional cellular automata (2D CAs).  Here, a design rule is represented by a 2D CA and acts 
upon a design embryo which is now a two-dimensional array.  This array represents an initial 
configuration of an entire wind bracing system.  Figure 31 shows a process of developing a 
design concept of a wind bracing system using this generative representation. 

A design embryo, in the form of a 2D array, is iterated an arbitrary number of times 

re ) 
be o 

define the design rule.  The two quently used shapes of the local 
ne

(iteration_max times) using a design rule represented by a 2D CA rule. Here, similar to the 
presentation introduced in the previous section, the number of iteration steps (iteration_max
comes an additional parameter that needs to be defined.  Moreover, one more parameter has t

be defined for this representation, namely the shape of the local neighborhood, to completely 
most popular and fre

ighborhood include von Neumann neighborhood (von Neumann 1966) and Moore 
neighborhood (Moore 1962) (see a detailed description of these neighborhoods in section 2.2.1).  
Several other shapes of local neighborhood were considered in this dissertation.  They will be 
described in chapter 6.  The final configuration obtained during this process of iteration, i.e. 
configuration at the time step t=iteration_max, defines a design concept which is subsequently 
evaluated. 
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Figure 31. Process of generation of a design concept of a wind bracing system from a single 2D 

esign embryo in this representation is a two-dimensional array encoding the entire initial 
configuration of a wind bracing system in a tall building (see Figure 32d)).  The initial part of the 
genome encodes a linearized version of this array and its length is equal to the total number of 
cells in the configuration of a wind bracing system in a tall building, i.e., number of bays * 
number of stories.  In the particular example of a tall building with 6 bays and 30 stories shown 
in Figure 32d), the initial configuration consists of 180 cells, and hence 180 leftmost genes in the 
genome (genes denoted e1-e180 in Figure 32b)) encode the design embryo, as it is shown in 
F

design embryo and a single design rule based on a 2D CA 

Figure 32a) shows a schematic view of the structure of the genome that encodes the design 
embryo (gray squares) and the design rule represented by a 2D CA rule (white squares).  Similar 
to the generative representations described in the previous sections, one has to assume an 
ordering of individual decision rules making up the design rule (in this case represented by a 2D 
CA rule) in order to uniquely define it and encode it in the genome.  Figure 32c) shows an 
example of the ordering (denoted by r1-r19683) of all possible combinations of cell state values 
in the given local neighborhoods (here two-dimensional 3 by 3 square neighborhoods consisting 
of 9 cells, i.e. Moore neighborhoods). 

The d

igure 32b).  
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Figure 32. a) Schematic view of the structure of a genome encoding the generative representation 

of a wind bracing system and consisting of a single design embryo (linearized 2D array) and a 
single design rule based on a 2D CA, b) specific instance of the genome encoding the initial 

configuration shown in part d) (genes e1-e180) and the design rule (a 2D CA rule) shown in part 
c) (genes r1 - r19683) 

The design rule consists of a complete set of decision rules whose conditions (bottom rows 
representing 3 by 3 squares of cells in Figure 32c)) incorporate all possible combinations of cell 
state values in the given local neighborhoods (here Moore neighborhoods) and the outcomes 
(cells placed above the corresponding squares in Figure 32c) specify the values of the central 
cells in these neighborhoods at a next time step.  As discussed above, all possible combinations 
of conditions for the design rule shown in Figure 32c) are ordered from r1 to r19683.  If this 
ordering is assumed fixed for the entire class of the design rules, then the outcome values 
uniquely define every rule belonging to this class.  This fact has been used in previous sections to 
define encodings of the design rules represented by 1D CA rules.  It has been generalized here to 
uniquely define design rules represented by 2D CA rules.  The actual encoding of the design rule 
shown in Figure 32c) in the genome is presented in Figure 32b).  Here, genes r1-r19683 encode 
the corresponding outcome values produced by the design rule presented in Figure 32c) and, 
giv

s 
it ll 
state values and the size of the local neighborhood signifi

en the assumed ordering, uniquely define it. 
The number of genes necessary to encode the design rule depends on several parameters.  A

was the case with the design rules represented by 1D CA rules, the number of possible ce
cantly affect the length of the encoding 
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of 

 cases, the only feasible approach 
inv

 sections 6.4 and 8.2.3). 

1D Embryos and 1D CA Rules Representing Steel Structures 

teel structures in tall buildings is 
pre

a design rule.  Besides, the length is also linked to the shape of the local neighborhood.  In the 
case of the design rule shown in Figure 32c) with 3 cell state values, the neighborhood radius 
equal to 1, and Moore neighborhood, the number of genes necessary to encode this rule in the 
genome is equal to 19,683 genes.  Increasing the number of cell state values to 7 causes a rapid 
growth of the length of the genome.  For example, 40,353,787 genes are necessary compared to 
19,863 genes when 3 cell state values were used.  In such

olves design rules represented by totalistic 2D CAs.  Then, the genome length is equal to 199 
and 235 genes, when 3 and 7 cell state values are used, respectively. 

One of the major advantages of this representation is the fact that it allows for an explicit 
representation of two-dimensional interactions among design elements.  It is possible to 
investigate various ranges of interaction among elements by selecting different shapes of the 
local neighborhood as well as by changing its radius.  This property might be particularly 
important in modeling complex engineering systems where local and highly nonlinear 
interactions among structural members are impossible to describe using traditional mathematical 
formulas. 

Major disadvantage of this approach is the problem of scalability.  As discussed earlier, 
increasing the number of cell state values or the size of the local neighborhood causes a rapid 
growth in complexity.  Hence, the design rules represented by totalistic 2D CA rules will be used 
in majority of the design experiments reported in this dissertation (see

4.4.4. Multiple 
Previously described representations of steel structural systems in tall buildings were focused 

only on one, albeit important, part of the system, i.e., a system of wind bracings.  A complete 
design concept of a steel structural system, however, should represent not only the system of 
wind bracings, but also beams, columns, and supports.  

An approach to encode complete design concepts of s
sented in this section.  It makes use of an idea of combining several generative representations 

of various subsystems of a steel structure into one genome.  In order to achieve it, an approach 
similar to the one described in section 4.4.1 is employed.  Figure 33 shows a schematic view of 
the structure of the genome representing a complete design concept of an entire structural 
system. 

 
Figure 33. Schematic view of the structure of a genome encoding the generative representation 
of an entire steel structural system in a tall building and consisting of multiple design embryos 

and multiple design rules represented by 1D CAs 

The linear genome encodes design embryos of a wind bracing system, a beam system, and a 
column system (gray cells) and design rules represented by 1D CA rules (white cells).  The 
design rules generate the systems of wind bracings, beams, and columns from the corresponding 
design embryos.  Additionally, a configuration of supports is also encoded at the end of the linear 
genome (gray cells) but it is not iterated because there is no need to develop a two-dimensional 
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str

ly encodes the entire steel 
structural system but it also consists of non-homogenous genes.  Various parts of the genome 
encode different subsystems of the steel structure and hence different attributes are used to 
represent them.  These attributes, in general, can have different number of possible values, e.g., 
attributes representing bracing elements can have up to seven values while the attributes 
representing beams and columns can have up to five values.  The attributes representing supports 
in a steel structure can have up to 4 values (see section 4.2). 

The process of development of a complete design concept from its generative representation 
is presented in Figure 34.   

ucture of supports (building supports are completely defined by a one-dimensional 
configuration of support types).  Significant differences of this representation compared to the 
representations discussed earlier include the fact that it not on

 
Figure 34. Process of developing the entire steel structural system in a tall building from a 

genome consisting of multiple design embryos and multiple design rules represented by one-
dimensional cellular automata 
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 Each design rule is applied to its corresponding design embryo and iterated the number of 
times that is one less than the number of stories in a tall building.  In this way, the systems of 
wind bracings, beams, and col on of supports represented by 
the rightmost genes is not iterated. s are 
developed, th sign concept.  
At this point

The advant n 4.4.1, i.e. 
compactness a cept of a tall 

 with 3 types of 
racings, a beam system with 2 types of beams, pes of columns, and 

with 2 types of supports has 69 genes.  When all possible types of structural elements are 
co

4.5

l 
structural systems in conceptual design.  For these types of representations, called parameterized 

 represents an attribute corresponding to a dimension of the search 
spa

cepts, as in the parameterized 
rep

ted how each type of a design concept 
ge

umns are formed.  The configurati
  Once the complete configurations of all subsystem

ey are assembled together and form a complete representation of a de
, the complete design concept can be evaluated. 

ages of this approach are similar to the ones described in sectio
nd excellent scalability.  A genome encoding a complete design con

building with 30 stories and 6 bays and consisting of a wind bracing system
b  a column system with 2 ty

nsidered in the representation, i.e. 7 types of wind bracing elements, 5 types of beam elements, 
5 types of column elements, and 4 types of supports, then the length of the genome is equal to 
683 genes.  In the case when totalistic 1D CA rules are used, the length of the genome is reduced 
to 81 genes compared to 683 genes required for standard 1D CA rules. 

The disadvantage of this representation is also similar to the one described in section 4.4.1, 
namely the lack of diversification of design rules.  Additional drawback involves the necessity to 
create a specialized mutation operator, even though the modifications required in adapting a 
standard mutation operator to this representation should be minimal. 

. Summary 
In the first section of this chapter, I provided a general overview of representations of 

structural systems and discussed what distinguishes them from traditional models of structural 
systems used in engineering science.  I also argued that representations consisting of attributes 
with symbolic values are suitable for the conceptual design problems.  Thus, they could be used 
for the two design problems investigated in this dissertation. 

The second section of this chapter introduced state-of-the-art representations of stee

representations, each gene
ce.  I also described in detail the attributes representing major elements of steel structural 

systems in tall buildings, including bracings, beams, columns, and supports.  
In the third section, I proposed a new approach to represent engineering systems based on 

models of complex systems and inspired by the processes of morphogenesis occurring in nature.  
These new representations do not encode complete design con

resentations, but rather rules on how to develop, or grow, these designs.  At the end of this 
section, I also provided a definition of morphogenic evolutionary design. 

The fourth section of this chapter extended the ideas presented in the preceding section and 
proposed several types of design concept generation mechanisms based on one-dimensional and 
two-dimensional cellular automata. It also discussed their computational and representational 
advantages and disadvantages.  Furthermore, I demonstra

neration mechanism can be encoded in a generative representation consisting of two parts: a 
design embryo and a design rule.  The design embryo defines an initial configuration of 
structural elements and the design rule defines a transformation that changes the current 
configuration of structural members into a new configuration.  A complete design concept of an 
engineering system is developed by applying the design rule to the corresponding design 
embryo. 
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In the next chapter, I will introduce Emergent Designer, an integrated research and design 
support tool, which implements the design method proposed in this dissertation as well as the 
representations of steel structural systems discussed in this chapter. 

 

 



 

5. EMERGENT DESIGNER 

In this chapter, I introduce Emergent Designer, an integrated research and design support tool 
which implements Emergent Engineering Design.  The system was used to conduct all design 
experiments reported in this dissertation (see chapters 6-8).  The chapter also discusses the flow 
of information within EED and within the individual phases which constitute the proposed 
design method.  It describes the results of the second stage of the Theoretical Structural 
Validation (see section 3.6.1) whose objective was to build confidence in the internal consistency 
of EED.  The discussion of the information flow within EED and within its individual phases is 
instantiated by detailed descriptions of the flow of information within Emergent Designer and its 
components   

Emergent Designer is a unique research and design support tool which applies models of 
complex systems to represent engineering systems and design processes, and to analyze their 
results.  A high-level overview of the system and its architecture is provided in section 5.1.  
Section 5.2 provides diagrams of the flow of information within EED/Emergent Designer as well 
as the input/output relationships among the individual phases of the design method/components 
of the system.  Finally, s  Emergent Designer.  
Figure 35 shows organization of chapter 5 as well as major components of Emergent Designer. 

5.1

to represent engineering systems 
an

nts/modules of the system 
im

and time 
ser

 
“Our minds are finite, and yet even in these circumstances of 

finitude we are surrounded by possibilities that are infinite, and 
the purpose of human life is to grasp as much as we can out of the 
infinitude.” 

 (Alfred North Whitehead) 

ection 5.3 describes the actual implementation of

. General Overview 
Emergent Designer is an integrated research and design support tool that implements 

Emergent Engineering Design, the design method proposed in this dissertation.  It is based on the 
ideas proposed in this dissertation, including the ideas on how 

d design processes using various models of complex systems.  As discussed in section 9.2, the 
system forms one of the major contributions of this dissertation. 

Emergent Designer’s architecture, discussed in section 5.1.1, has been built upon the structure 
of the proposed design method.  Consequently, major compone

plement major phases of EED described in section 3.4.  Further, the components/modules of 
the system implement models, procedures, and algorithms directly related to the research 
hypotheses posed in this dissertation and presented in section 3.3. Therefore, they are directly 
linked to the fundamental hypothesis of this dissertation. 

Emergent Designer is intended for conducting design experiments in the area of structural 
design and for analysis of their results using methods, models, and tools from statistics 

ies analysis.  Thus, it can be used as a design support tool equipped with state-of-the-art 
mechanisms for the generation of novel design concepts and for conducting their optimization.  
It is at the same time a versatile research tool that implements advanced methods and tools for 
the analysis of the design processes and of the obtained experimental results. 
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Chapter 5 
Emergent Designer 

General 
Overview 

System 
Components 

Implementation 

Design 
Components 
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Components 

Visualization 
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Report 
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Figure 35. Organization of chapter 5 

The following subsection provides a high-level overview of the system’s architecture and 
briefly describes its major components/modules.  Subsection 5.1.2 presents the flow of 
information within the system and discusses integration of its components and their interactions. 

5.1.1. Architecture 
Emergent Designer consists of 10 major components/modules which can be divided into three 

major groups: 
• Design components 

They implement Emergent Engineering Design, the design method proposed in this 
dissertation. They form the core of the system and conduct the actual design processes. 

• Analysis components 
They implement tools and methods for the analysis of the experimental results and 
design processes. The components included in this group are aimed to provide 
quantitative information about the conducted design processes as well as statistical 

thod.  They are also intended to provide estimates of the performance of the design me

 



95 

deeper understanding of the dynamics of design processes and the structure of the 
design spaces from a global/holistic perspective. 

• Visualization components 
These components implement various visualization methods and report generation 
mechanisms.  They include tools which support visualization of the results of various 
analyses, e.g. statistical or time series, conducted by the system’s components.  Also, 
automated tools for the generation of experimental reports that include detailed 
descriptions of experimental parameters and obtained results are implemented. 

shows 
They w on 5.2. 

A high-level overview of the architecture of Emergent Designer is presented in Figure 36.  It 
the individual components of the system contained in each of the groups discussed above.  
ill be discussed in more detail in secti

 
Figure 36. Architecture of Emergent Designer 

gent Designer has been started, a user has a choice of conducting a new design 
ex

ne of the several decomposed representations.  On the other hand, if the design problem 

5.1.2. Information Flow 
The flow of information in Emergent Designer is presented in Figure 37. It provides an 

overview of the relationships among the components discussed in the previous section and shows 
where user input/decisions are expected.  It doesn’t show, however, the information flow within 
the individual components which are discussed in section 5.2.   

Once Emer
periment or using advanced statistical and time series analysis tools to analyze experimental 

data saved from previous experiments.  By default, a new design experiment is selected and the 
Problem Definition Component is called to define a design problem. 

Problem Definition Component is intended to select a domain of interest, e.g. steel skeleton 
structures in tall buildings, and a specific design problem that will be solved, e.g. design of a 
wind bracing system.  This component allows for specification of values of the parameters 
defining the considered design problem, e.g. the number of stories in a tall building, or the height 
of a story.  Problem Definition Component also implements mechanisms for saving the system’s 
parameters and their values to a file, and retrieving previously saved values from a file. 

When the design problem is completely defined, a user has to decide whether, or not, to 
decompose the problem into several sub-problems.  Representation and Decomposition 
Component is used for this purpose.  If the design problem is to be decomposed, then a user 
selects o
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is considered as a whole, then one the representations of the entire engineering systems can be 
chosen.  In this case, the spectrum of possible representations includes parameterized 
representations and generative representations (see section 5.2.2).  Representation and 
Decomposition Component also supports the specification of values of representation specific 
parameters, e.g. the shape of the local neighborhood in generative representations based on 
cellular automata. 

 
Figure 37. Information flow in Emergent Designer 
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When the design problem and its representation have been fully defined, the Concept 
Generation and Optimization Component is used to specify the type of a concept generation 
mechanism and to determine whether, or not, the topology optimization and/or sizing 
optimization should be conducted.  If only a concept generation mechanism is selected, i.e. no 
optimization is performed, then the design concepts are produced by the design concept 
generators based on generative representations, e.g. iteration of 1D or 2D cellular automata (see 
chapter 6).  On the other hand, when the optimization of engineering systems is to be performed 
then a user has two possible choices: 

1. If the focus is on design optimization issues then only an optimization mechanism, e.g. an 
evolutionary algorithm, is used together with traditional parameterized representations of 
engineering systems (see chapter 7). 

2. If both generation of novel design concepts and their subsequent optimization are 
considered as important objectives then an optimization mechanism is combined with 
generative representations (see chapter 8). 

The design concepts produced by the design concept generation and/or optimization 
mechanisms are transferred to the Evaluation and Simulation Component which evaluates them 
and assigns fitness value(s) (multiple fitness measures are used in the multiobjective evaluation).  
This component is used to select an evaluation model assumed in a given design experiment and 
the values of evaluation specific parameters, e.g. methods for the determination of wind loads 
acting on structural system, or magnitudes of dead and live loads, etc.  Also, simulation 
parameters, including the number of runs, the termination criteria, etc., need to be defined in 
order to run a design experiment. 

The four components described earlier, i.e. Problem Definition Component, Representation 
and Decomposition Component, Concept Generation and Optimization Component, and 
Evaluation and Simulation Component, form a group of design components that implements the 
actual design method. 

Once the values of all the parameters implemented in this group of components have been 
determined (default values are also used where possible), the actual design experiment can be 
initiated.  Basic Statistical Analysis Component and Basic Dynamical Systems Analysis 
Component support online monitoring of design processes by providing best-so-far fitness values 
and trajectories of points (design concepts) in the design spaces.  Basic Statistical Analysis 
Component also provides the mechanisms for collecting relevant experimental data and saving 
them in files. 

When a design experiment is finished, Basic Statistical Analysis Component can be used to 
calculate and display average best-so-far fitness values with corresponding 95% confidence 
intervals.  At that point, a user can also generate a complete experimental report listing all the 
parameters and their values used in the design experiment as well as its results.  Report 
Generation Component and Visualization Component are employed during the process of the 
automatic ge  the 
nam

sign experiments.  When 
all ailable, Report Generation Component 
co uently displayed as an experimental 
rep

neration of an experimental report.  Report Generation Component gathers
es and values of the parameters used in the experiment and extracts relevant experimental 

results.  It also collects important statistical data calculated by the Basic Statistical Analysis 
Component.  Visualization Component can be used to produce a landscape visualization graph, if 
applicable, and charts representing progress of individual runs in the de

 the textual, numerical, and graphical data are av
mpiles them together into a single document that is subseq
ort. 
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At this point, the user can choose to start a new design experiment, or to analyze the 
ex ced s ply exit the 
sy ent lled again 
an scri ed abo  statistical 
an

 within each of the system’s 
components and describes the parameters and their allowable values set by each component.  

ents. 

es the input data 
wh   
perform

 lection, e.g. steel skeleton structures in tall buildings. 
stem, or design of the entire steel 

 
Figure 38 shows the flow of information within the Problem Definition Component.  The 

ex

e following parameters and their values:  

is type: analysis, optimization, verification 
rst-or ∆  

 Cross-section database:  AISC, 
 Unit system:   metric,

perimental data using advan tatistical and time series analysis tools, or sim
stem.  If a new design experim  is selected, Problem Definition Component is ca
d the entire process de b ve is repeated.  On the other hand, if advanced
alysis, or advanced time series analysis, is chosen then Advanced Statistical Analysis 

Component or Advanced Time Series Analysis Component is utilized, respectively. 

5.2. System Components 
This section describes in detail each of the system’s components that were briefly introduced 

in the previous section.  It discusses the information flow

Section 5.3 discusses the actual implementation of the compon

5.2.1. Problem Definition Component 
Problem Definition Component implements the preliminary phase of the proposed design 

method in which a design problem is defined.  The output of this component, i.e. a complete 
description of a design problem in terms of parameters and their values, becomes the input to the 
Representation and Decomposition Component.  This component provides necessary domain 
knowledge and specifies parameters of the considered design problem.  It defin

ich are transferred to the components implementing the actual design method.  It is used to
 the following tasks: 
Domain se

 Problem selection, e.g. design of a wind bracing sy
structural system. 
Specification of the problem parameters, e.g. the number of stories, or story height. 

ternal input to the component defines the overall purpose (what to design), requirements, and 
constraints (feasibility criteria) the design should satisfy.  Based on this input, a design domain is 
selected.  If it is necessary to define domain specific parameters and their values, then they are 
defined in the next step.  For example, when a domain of steel skeleton structures has been 
selected, it is necessary to specify th

 Dimensionality:    2D, 3D 
 Design type:    truss, frame, other 
 Structural analys
 Behavior type:   fi der, P-
 Sidesway:   prevented, permitted 

CISC, other 
 U.S. customary 

 Length unit:   mm, m, in, ft 
 Force unit:   N, kN, lbs, kips 

As discussed in more detail in section 5.3, Problem Definition Component assumes some 
default values of the parameters listed above but gives the user flexibility to adjust them 
appropriately. 
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Figure 38. Information flow within the Problem Definition Component 

 When the domain and its parameters have been defined, a design problem can be selected, 
e.g. conceptual design of steel structural systems in tall buildings.  Here again, some problem 
speci

 Number of stories:  30 (default) 
fic parameters and their values have to be defined.  They include: 

 Number of bays:   7 (default) 
in Story height:   14.0  (default) 

 Bay width:   20.0 in (default) 
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 Types of bracing elements: a t of the bracing types shown in Figure  subse 19 

em.  They can be 
arbitrarily changed and can take on any feasible value in the context of the problem domain.  

ave been defined, a complete 
de

ation and Decomposition Component 
to conduct the first and second phases 

of D (see 
Figure and its decomposition, if any, are 
def d m 
which oblem Definition Component.  The output produced by the 
Rep s neering 
system ct the following tasks: 

lection of a decomposition of a given problem. 

n 
of 

etermined, it is usually necessary to define some 
additional parameters and their values.  For example, when generative representations based on 
one-dimensional cellular automata (see section 4.4.1) have been selected, the following encoding 
specific parameters must be defined: 

 Types of beam elements: a subset of the beam types shown in Figure 20 
 Types of column elements: a subset of the column types shown in Figure 21 
 Types of supports:  a subset of the support types shown in Figure 22 

The values of the first 4 parameters are default values assumed by the syst

When all the parameters defining a domain and design problem h
finition of a design problem has been established.  It forms the output of the Problem 

Definition Component which subsequently becomes an input to the Representation and 
Decomposition Component and Report Generation Component. 

5.2.2. Represent
Representation and Decomposition Component is used 
EE , i.e. Representation Space Definition and Representation Space Decomposition 

15), in which representation of an engineering system 
ine .  The input to this component consists of a complete definition of the design proble

is obtained from the Pr
re entation and Decomposition Component defines the representation of the engi

 being designed.  This component is used to condu
 Selection of a representation for the design problem, e.g. a parameterized representation, 

or a generative representation based on one-dimensional or two-dimensional cellular 
automata. 

 Se
 Specification of parameters for a given type of representation (e.g., resolution for binary 

representations, or the neighborhood shape and the neighborhood radius for generative 
representations). 

The flow of information within the Representation and Decomposition Component is shown 
in Figure 39.  The complete description of the design problem is a starting point of the 
development of a representation of the engineering system being designed.  When the design 
problem is complex, it might be decomposed into sub-problems.  In this case, the decompositio

the problem has to be specified.  
Decomposition specific parameters and their values, if any, are defined in the next step.  

Examples of decomposition specific parameters for the problem of designing steel structures in 
tall buildings include: 

 Number of sub-problems:  2, 3, 4 
 Types of elements in sub-problems: [(bracings), (beams, columns, supports)], 

[(bracings), (beams,  columns), (supports)], 
[(bracings), (beams), (columns), (supports)]  

When all the decomposition parameters have been specified, or when there is no 
decomposition, the actual encoding of the engineering system has to be defined.  Here, several 
types of encodings can be used as discussed in chapter 4.  The encodings supported by the 
Representation and Decomposition Component can be divided into two major groups: 
parameterized and generative (see section 2.1.3).   

When the encoding type has been d
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Figure 39. Information flow within the Representation and Decomposition Component 

 
 CA type :    regular, totalistic 
 Local neighborhood radius:  1 (default) 
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 Number of cell state values:  determined by the problem definition 
When all the decomposition and encoding parameters have been defined, the representation of an 
engineering system is completely specified.  The representation becomes the output of the 
Representation and Decomposition Component which is subsequently utilized by the Concept 
Generation and Optimization Component and Report Generation Component. 

5.2

various types of 
orithms. 

 Specification of parameters of optimi
population sizes, types of genetic ope

Representation of an engineering s Representation and 
Decomposition Component forms the i
Component.  The produced output consists ned fitness 
va (

The internal structure of this component i
in this group.  The flow of information within the Concept Generation and Optimization 
Co
Generation Component, Topology/Shape Optimization Component, and Sizing Optimization 
Co
input and the decisions made regarding timization mechanisms, either only one 
su s. 

e produced 
sol

ss.  Thus, in this case the focus of the design processes is shifted towards novelty.  
De

ues.  Design optimization mechanisms can be applied at the topology/shape level 
(co e he Topology/Shape Optimization Component and/or the 
me hese 
me a

.3. Concept Generation and Optimization Component 
Concept Generation and Optimization Component is utilized to conduct the third phase of the 

proposed design method, namely Generation and Optimization of Design Concepts (see Figure 
15).  This component defines representations of engineering design processes.  As discussed in 
chapter 3, EED assumes the model of the design process based on generate-and-test, or trial-and-
error, principle.   

The following tasks are handled using this component: 
 Selection of the mechanisms for generation of design concepts, e.g. various types of 

cellular automata (1D, totalistic 1D, 2D, totalistic 2D). 
 Selection of the mechanisms for optimization of design concepts, e.g. 

evolutionary alg
zation mechanisms, i.e. parent and offspring 
rators, etc. 
ystem obtained from the 
nput to Concept Generation and Optimization 
 of feasible design concepts with assig

lue s). 
s much more complex than of the other components 

mponent is shown in Figure 40.  It consists of three major subcomponents: Concept 

mponent.  Depending on the type of a representation of an engineering system provided as 
 the op

bcomponent, or two, and even all three subcomponents, can be utilized in the design proces
If merely the Concept Generation Component is used, then the design concepts ar
ely by the concept generation mechanisms, e.g. 1D or 2D cellular automata.  In this case, no 

optimization mechanisms are employed during the design process.  Generated design concepts 
are evaluated, given some evaluation criteria, and the best designs are identified at the end of a 
design proce

sign concept generation mechanisms are studied experimentally in chapter 6. 
On the other hand, if an engineering system is represented using a parameterized encoding 

then no concept generation mechanism is necessary to produce the design concept from its 
representations (there is a direct mapping between the representation and the attributes 
describing an engineering system).  In this case, the design processes focus exclusively on 
optimality iss

nc ptual/embodiment design) using t
mber sizing level (detailed design) utilizing the Sizing Optimization Component.  T
ch nisms are investigated in chapter 7. 
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Figure 40. Information flow within the Concept Generation and Optimization Component 
 

It is also possible to combine design concept generation mechanisms with design optimization 
mechanisms, which is one of the key ideas presented in this dissertation.  This corresponds to the 
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situation in which novelty of generated design concepts and their optimality are equally 
important design objectives.  To achieve both objectives, the concept generation mechanisms 
ne

utionary design (see section 4.3), are investigated in chapter 8. 
If the representation of an engineering system, obtained from the Representation and 

mechanisms of producing design concepts 
fro

fine cellular automata: 
C n 

system; higher-dimensional CA can 
re 

 C (regular or totalistic) determined by the 

 L ined by the 

r of cell state values: determined by the representation of an engineering 

D nerated, arbitrarily assumed 
Design embryo (initial configuration): 

entations of engine s to fully 
de

e defined by the Topology/Shape Optimization 
Co

 population size:  5 (default) 
tion size:  

ed to be specified using the Concept Generation Component and optimization mechanisms 
must be determined using the Topology/Shape Optimization Component and/or the Sizing 
Optimization Component.  The combined mechanisms utilizing generative representations, 
named morphogenic evol

Decomposition Component, is generative, then the 
m this representation have to be defined using the Concept Generation Component.  For 

example, when 1D or 2D CA representations are used, then cellular automata need to be 
determined to develop design concepts from their representations.  The parameters required here 
include the parameters used in the process of defining the representation of an engineering 
system which is obtained as input.  Additionally, the values of two more parameters, namely the 
Design rule and the Design embryo, must be defined.  They determine a specific CA rule and 
initial configuration of cells used to generate design concepts.   

The following parameters are necessary to fully de
 A dimension:  (1D or 2D) determined by the representation of a

engineering 
also be used for some problem domains but they a
not studied in this dissertation 

A type : 
representation of an engineering system 

ocal neighborhood shape: (Moore, von Neumann, etc.) determ
representation of an engineering system (2D CA 
only) 

 Local neighborhood radius: determined by the representation of an engineering 
system 

 Numbe
system 

 esign rule (CA rule):   randomly ge
 randomly generated, arbitrarily assumed 

Some types of repres ering systems require additional parameter
termine the concept generation mechanism.  An example of such a parameter is the maximum 

number of iterations of a cellular automaton (iteration_max), which was defined in sections 4.4.2 
and 4.4.3.   

When the combined approach is used (generative representation and optimization 
mechanisms), or when parameterized representations of engineering systems are employed, then 
the parameters defining optimization mechanisms need to be specified.  For example, when an 
evolutionary algorithm is employed to optimize topology/shape of an engineering system, the 
following parameters and their values must b

mponent: 
 Type of evolutionary algorithm:  GA, ES, EP, or unified EA 
 Generational model: overlapping, non-overlapping 
 Parent
 Offspring popula 25 (default) 
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 Parent selection mechanism: uniform deterministic, uniform stochastic, fitness 
proportional,  binary tournament 

 Survival selection mechanism: uniform stochastic, fitness proportional,  binary 
tournament, truncation 

 Mutation type: none, bitflip,  Gaussian, delta,  integer-based 
 Mutation frequency: one gene, all genes 
 Mutation step size: 1.0 (default) 
 Mutation adaptation value: 0.1 (default) 
 Crossover type: none, one-point, two-point, uniform 
 Crossover frequency (uniform only): 0.2 (default) 

Sizing optimization, if used, solves the problem of finding the optimal cross-sections of all 
structural members of an engineering system being designed.  This type of structural 
optimization is conducted when the topology/shape of a given design concept has been already 
determined, or when it is assumed constant.  Sizing optimization has been traditionally, and 
successfully, performed using mathematical optimization methods (see section 2.1.7).  It is also 
possible to employ evolutionary algorithms to solve this task and, in fact, one of the earliest 
applications of EA considered the sizing optimization of simple truss systems (see the survey in 
section 2.1.7).  When sizing optimization is conducted, the optimization mechanism needs to be 
specified first by the Sizing Optimization Component.  Once it is defined, additional sizing 
optimization parameters and their values, if any, have to be determined.  When an evolutionary 
algorithm is used to solve the sizing optimization problem, the parameters and their values are 
similar to the ones used for topology/shape optimization.  On the other hand, when a traditional 
mathematical optimization method is employed, then parameters specific to this method must be 
defined. 

When all the parameters defining the design concept generation, topology/shape optimization, 
and sizing optimization are set, the feasibility check conditions and methods of handling 
constraints (see section 2.1.4) need to be specified.  They define mechanisms of determining 
feasibility of produced design concepts and mechanisms that are applied when an infeasible 
design concept is identified.  The constraint-handling method can be defined using the following 
parameters and their values: 

 Constraint-handling method type:  penalty function, repair algorithm, etc. (see section 
2.1.4) 

Depending on the type of a selected constraint-handling method, some additional 
parameters might be necessary.  For example, when a penalty function method is used, then 
additional parameter values might be required, including: 

 Penalty function type: static, dynamic, death penalty, etc. (see section 
2.1.4) 

 Value of the penalty factor: constant, determined by a formula (penalty term), 
etc. 

Each generated design concept is tested for feasibility.  When it satisfies all feasibility criteria 
defined by the Problem Definition Component, then it is passed to the Evaluation and Simulation 
Component where it is evaluated and assigned fitness value(s).  On the other hand, when a 
produced design concept is proved infeasible, then constraint-handling methods need to be 
employed, e.g. a repair algorithm or a penalty method.  In the case when a repair algorithm is 
used, an attempt is made to repair the design concept and, if successfu , the design concept is 
passed to e repair 

l
 the Evaluation and Simulation Component and assigned a fitness value(s).  If th
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is 

subsequently passed to the Basic 
Sta

and general mechanisms of 
ma mponent consists 
of obtained from the Concept 
Generation and Optimization Component Evaluation and 
Sim la as input but this time with 
an

he load conditions considered during an evaluation process, e.g. wind 

esign concepts, e.g. a structural analysis package to calculate the total weight 
of the structural system. 

rs, e.g. the number of runs, lengths of 

nsidering the following 
parame

N
 N

T
 T , summing to 1, etc. 

ather 
mu

ned weights. 
The next step defines a loading model which is applied to the structural system being 

designed.  Several parameters describe types of loads considered in a given design situation as 
well as the number and types of load combinations.  They include the following parameters and 
their values: 

 Types of loads: dead, live, wind, etc. 
 Number of load combinations: 1, 2, 3, etc. 
 Types of load combinations: (wind + live + dead), etc. 

unsuccessful though, the design concept is determined infeasible and assigned worst possible 
fitness value(s) (death penalty method). 

The output of the Concept Generation and Optimization Component consists of feasible 
design concepts with assigned fitness values which are 

tistical Analysis Component, Basic Dynamical System Analysis Component, and Report 
Generation Component. 

5.2.4. Evaluation and Simulation Component 
Evaluation and Simulation Component implements the last phase of EED, namely Fitness 

Evaluation (see Figure 15).  It defines design evaluation models 
naging and monitoring simulations of design processes.  The input to this co

 a phenotypic representation of a design concept which is 
.  The output produced by the 

u tion Component consists of the same design concept provided 
 assigned fitness value, or fitness values in the case of multiobjective evaluation.  The 

following tasks are conducted using this component: 
 Specification of t

loads acting on a steel structure in a tall building. 
 Selection of an evaluation model and mechanisms used to measure goodness/fitness of 

generated d

 Specification of general simulation paramete
individual runs, etc., and monitoring of the simulation progress. 

The flow of information within the Evaluation and Simulation Component is shown in Figure 
41.  First, an evaluation model needs to be selected.  The model defines the number of objectives 
and the number and type of evaluation criteria that will be used to determine goodness of a 
design concept provided as input.  The evaluation model is defined by co

ters:  
 umber of objectives: 1, 2, 3, etc. 

umber of evaluation criteria: 1, 2, 3, etc. 
 ype of evaluation criteria: total weight, maximal deflection, total cost, etc. 

ype of weights: uniform, non-uniform
The value of the parameter specifying the number of objectives determines whether a standard 

single-objective evaluation should be conducted (when the value is equal to 1), or r
ltiobjective evaluation methods ought to be employed (when the value is greater than one).  

The parameters specifying the number and type of evaluation criteria define the quantities that 
are measured and subsequently utilized by the evaluation model.  It is worth mentioning that 
multiple evaluation criteria may be used even when a single-objective evaluation is performed.  
In this case, the evaluation criteria are combined into a single objective function through the 
normalization and arbitrarily assig
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When the types of loads considered in a given design situation are set, then the magnitudes 
and locations of specific loads need to be determined.  Also, specific loading model parameters 
have to be defined, including coefficients applied to various load types for a given load 
combination, etc. 

 
Figure 41. Information flow within the Evaluation and Simulation Component 
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When the evaluation and loading models are established, the evaluation method must be 
specified.  Here, several types of structural analysis methods can be considered, including the 
displacement method, finite elements method, etc.  If the selected evaluation method requires 
add

Finally, general simulation settings need to be determined.  They describe the overall length 
of a e rocesses are 

ied 
sta

When all evaluation and simulation parameters are specified, then all phases of the proposed 
design method are completely defined.  The system is ready to conduct a design experiment as it 
is shown in Figure 37.   

The remaining components of Emergent Designer, described below, implement methods, 
models, and tools for the analysis of experimental results, their visualization and automatic 
report generation. 

5.2.5. Basic Statistical Analysis Component 
Basic Statistical Analysis Component implements basic statistical tools for the analysis of the 

results of design processes.  The input to this component is obtained from the Concept 
Generation and Optimization Component and consists of design concepts with their fitness 
values as well as their data regarding when they were generated during the simulation (their 
“birth dates”).  The following tasks are performed using this component: 

 Collection of the experimental data and calculation of the best-so-far fitness statistics. 
 Calculation of various statistical estimates that quantitatively describe design processes, 

including average best-so-far fitness and confidence intervals around the mean. 
 Comparison of statistical estimates (means and confidence intervals) calculated from the 

results obtained in design experiments with multiple runs. 
The first two tasks described above are performed online, i.e. during the actual design 

processes while the last task is conducted offline, when no design experiments are running. 
The flow of information within the Basic Statistical Analysis Component is shown in Figure 

42.  When a new design concept has been generated and evaluated, its fitness value(s) and birth 
date are collected.  These data are subsequently saved in the files storing the experimental 
results.  Next, the data are analyzed and best-so-far statistics are calculated.  They are also saved 
in the files storing statistical analysis results.  At the same time, best-so-far statistics are passed 
to the Visualization Component.  

itional parameters, they are defined at a subsequent step. 

 d sign experiment in terms of the number of runs (evolutionary based design p
stochastic in nature and any inferences based on the experimental results have to be justif

tistically).  They also specify initialization and termination criteria for individual runs in terms 
of random seed values used during the initialization process and the maximum number of fitness 
evaluations, respectively.  The following parameters need to be set: 

 Number of runs: 10 (default) 
 Number of fitness evaluations: 1000 (default) 
 Random seed values used (name of the file storing the seeds) 
 Number of CA iterations: 30 (default) 
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Figure 42. Information flow within the Basic Statistical Analysis Component 

 When the design process is finished, the average best-so-far statistics for the entire 
experiment are calculated and saved in a file.  At the same time, they are also transferred to the 
Visualization Component.  The output produced by the Basic Statistical Analysis Component 
consists of basic statistical analysis results, which are subsequently passed to the Visualization 
Component and the Report Generation Component. 

5.2.6. Basic Dynamical Systems Analysis Component 
Basic Dynamical Systems Analysis Component implements basic tools and methods for the 

analysis of the results of the design processes from the dynamical systems perspective.  In this 
type of analysis, the design processes are considered as dynamical systems operating in the 
design spaces.  Its input consists of design concepts, their fitness values, and their birth dates and 
is obtained from the Concept Generation and Optimization Component.  The subjects of analyses 
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are the properties of trajectories (coordinates of the generated points in the design space) of 
design processes and identification of attractors in the design spaces.  The following tasks are 
conducted using this component: 

 Collection of the trajectories data (coordinates of the generated points in the design 
space). 

 Reconstruction of attractors in the design spaces from the experimental data. 
These tasks are also performed online and show the actual dynamics of the design processes. 

The flow of information within the Basic Dynamical Systems Analysis Component is shown 
in Figure 43.  First, the experimental results data are collected.  The trajectory information is 
extracted from the collected data and passed to the Visualization Component.  Further, the 
trajectory data are analyzed and methods and tools of attractor reconstruction are employed, e.g. 
delay coordinates.  The results of these analyses are subsequently transferred to the Visualization 
Component.   The output produced by the Basic Dynamical Systems Analysis Component 
consists of basic dynamical systems analysis data and is utilized by the Visualization Component. 

 
Figure 43. Information flow within the Basic Dynamical Systems Analysis Component 

5.2.7. Advanced Statistical Analysis Component 
Advanced Statistical Analysis Component implements advanced statistical analysis methods, 

models, and tools for the analysis of the experimental results.  The statistical analysis conducted 
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by this component is performed offline, i.e. after the design experiments have been conducted.  
The input is obtained from the files storing the experimental results which were previously saved 
using the Basic Statistical Analysis Component.  Advanced Statistical Analysis Component 
contains the tools for the analysis of the sample distributions and making inferences about their 
means and medians.  The following types of tasks are performed using this component: 

 Reading the experimental data from file(s). 
 Qualitative and quantitative analysis of the sample distributions, e.g. histograms, normal 

scores plots, skewness and kurtosis estimates, etc. 
 Estimation of statistical quantities from the data (e.g. means and medians) using various 

point estimates and interval estimates. 
 Saving the analyses results in files. 

The flow of information within the Advanced Statistical Analysis Component is shown in 
Figure 44.  First, the experimental results data are read from the files.  Next, the qualitative and 
quantitative analysis of the sample distributions is conducted, if desired.  This type of analysis 
involves various histograms, normal scores plots, and skewness and kurtosis estimates.  It helps 
to determine the overall qualitative properties, e.g. the shape of a sample distribution.  

When the shape of a sample distribution is better known, then appropriate methods and tools 
for estimation of various statistical quantities, i.e. means, medians, etc., can be employed.  The 
results of these analyses are transferred to the Visualization Component and subsequently 
displayed in a form of charts, graphs, and histograms and/or saved in files. 

5.2.8. Advanced Time Series Analysis Component 
Advanced Time Series Analysis Component implements advanced tools and models from the 

linear and nonlinear time series analysis.  The analysis, similar to the one performed by the 
Advanced Statistical Analysis Component, is conducted offline.  Also, the input consists of the 
experimental results stored in previously saved files.  The following types of tasks can be 
conducted using this component: 

 Reading the time series data from a file(s). 
 Qualitative and quantitative analysis of the time series data using various methods and 

tools, e.g. delay coordinates, power spectrum, autocorrelation, etc. 
 Saving the analysis results in a file. 

The flow of information within the Advanced Time Series Analysis Component is shown in 
Figure 45.  First, the experimental data need to be read from files.   Next, a method of the time 
series analysis must be selected.  If the chosen analysis method requires some additional 
parameters, e.g. time lag and embedding dimension in the delay coordinates plot, they are 
specified at the next step.  When all the parameters have been defined, the time series analysis of 
the experimental data can be conducted.  The results of these analyses are subsequently 
transfe

 
rred to the Visualization Component and/or saved in a file. 
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Figure 44. Information flow within the Advanced Statistical Analysis Component 
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Figure 45. Information flow within the Advanced Time Series Analysis Component 

5.2.9. Visualization Component 
Visualization Component implements various methods of data visualization.  It supports a 

qualitative analysis of the experimental results and offers necessary functionality to save 
produced graphs and charts in files and experimental reports.  The input to this component 
consists of the experimental data and it is obtained from various components of the system.  The 
following types of tasks can be conducted using this component: 

 Display of generated design concepts. 

 



114 

 Interactive display of simple three-dimensional fitness landscapes. 
 Display of statistical, dynamical, and time series analyses conducted using various 

components of the system. 
The flow of information within the Visualization Component is presented in Figure 46.  First, 

the experimental results obtained as input are collected and information relevant to display and 
visualization purposes is extracted from the data.  Next, depending on the data source, 
appropriate graphs and charts are produced including line charts, scatter plots, histograms, and 
renderings.   The produced graphs are displayed by Emergent Designer’s graphical user interface 
(GUI).  Each generated graph may also be saved in a file. This last option is implicitly used by 
the Report Generation Component which utilizes various graphs produced by the Visualization 
Component during the process of automatic generation of experimental reports.  The graphs 
included in the reports are first saved in files and subsequently read by the Report Generation 
Component. 

 
Figure 46. Information flow within the Visualization Component 
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5.2

 C e sults of various runs in a given experiment. 
 C e ta and various graphs illustrating progress of 

individual runs and average performance during the entire design experiment. 
 A o containing all above mentioned elements. 

e initial part 
of 

 values obtained in individual runs.   Thus, each run of a design 
ex

 file. Hence, the output produced by the Report Generation Component consists 
of 

 Java.  
Mo

.10. Report Generation Component 
Report Generation Component supports the automatic generation of experimental reports.  It 

is intended to provide complete information about the experimental parameters and their values 
as well as the obtained results.  The input to this component is obtained from various 
components of the system. The following types of tasks are conducted using this component: 

 Collection of the experimental parameters and their values used in the experiment. 
oll ction of the numerical re
oll ction of statistical analysis da

ut matic generation of a full report 
The flow of information within the Report Generation Component is presented in Figure 47.  

First, the parameters and their values used in the experiment are collected from the components 
implementing the proposed design method, i.e., Problem Definition Component, Representation 
and Decomposition Component, Concept Generation and Optimization Component, and 
Evaluation and Simulation Component.   They are grouped together and placed in th

the experimental report.  Next, Basic Statistical Analysis Component provides quantitative 
data on the results obtained in various runs as well as simple statistics, e.g. best-of-run fitness, 
etc.  The quantitative data describing the individual runs are accompanied by the qualitative 
information received from the Visualization Component in the forms of graphs displaying the 
best, average, and worst fitness

periment is described both quantitatively and qualitatively.  This analysis concludes the 
section two of the experimental report.  In the last section, a ‘global’ analysis of the entire design 
experiment is reported in which average best-so-far fitness values and the corresponding 
confidence intervals are given.  Also, graphs showing best-so-far fitness of all runs as well as 
average fitness values are included.  An experimental report containing all data mentioned above 
is automatically generated and may be subsequently saved in a file.  Each generated graph may 
also be saved in a

a complete experimental report which is displayed in the system’s GUI and/or saved in a file. 

5.3. Implementation 
Emergent Designer has been implemented with a fully functional graphical user interface 

using Java. The decision to use this particular programming language was made due to the fact 
that several of the system’s components were built upon existing packages written in

reover, Emergent Designer integrates several commercially available systems (e.g., 
Mathematica© (Wolfram 2003) and OpenOffice.org) and communicates with them using 
available Java APIs. 

Another important aspect that influenced the choice of the programming language was the 
fact that Java is portable and network-oriented.  Portability offers the flexibility of running the 
system on various platforms.  Built-in networking capabilities open the possibility of using 
distributed architectures.  Both of these issues are particularly important in structural design 
where the process of evaluation of generated design concepts is usually computationally 
expensive and conducted using specialized structural analysis software. 
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Figure 47. Information flow within the Report Generation Component 

 

5.3.1. Design Components 
Components implementing the proposed design method constitute the core of Emergent 

Designer.  Their functionality, described in sections 5.2.1 - 5.2.4, was either directly 
implemented or borrowed from several existing packages and commercial systems that were 
integrated with Emergent Designer.   
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Two domains have been implemented in the Problem Definition Component the domain of 
steel structural systems in tall buildings and the domain of real-valued functions (added for 
testing purposes and analysis of the behavior of various components of the system).  The domain 
of steel structural systems includes two major classes of design problems: design of a wind 
bracing system in a tall building and design of an entire steel structural system in a tall building. 

Representation and Decomposition Component supports four types of representations:  
y (parameterized) 

 problems while the latter two are applied 
to 

   

oying a 
un

ization system developed by 
W

of designs and their sizing optimization.  A detailed description of the 
optimization algorithm and some theoretical background can be found in (Grierson 1989). 

Evaluation and Simulation Component implements evaluation models used to determine 
fitness of generated solutions.  Current status of the system supports a single objective evaluation 
of individual design concepts only using one of the two evaluation criteria: the total weight (an 
estimate of the cost) or the maximal horizontal displacement (an estimate of the stiffness) of the 
steel structural system.   The determination of a least-weight structure is performed by SODA 
and is conducted in conformance with the strength (stability) and stiffness (displacement) 
provisions of several commonly used steel codes, including AISC-ASD-89, AISC-LRFD-86, 
AISC-LRFD-93, CSA-Sl6.1-M89, or CSA-Sl6.1-94.  Loading model required for evaluation of 
generated design concepts includes dead, live, and wind loads determined in conformance with 
the corresponding design codes.  Wind forces are calculated for a given design case using a 
modified version of a commercial system Wind Load© V2.2.S developed by Novel CyberSpace 
Tools. 

 binar
 real-valued (parameterized) 
 integer-valued  (parameterized) 
 cellular automata (generative)  

The first two types are used mostly for real-valued
encode the designs concepts of steel structural systems in tall buildings.  Real-valued and 

binary representation implementations were inherited from the existing evolutionary 
computation package called ec3 (De Jong to appear).  On the other hand, integer-valued and 
cellular automata representations were directly implemented in the system. 

Concept Generation and Optimization Component has been built upon four major existing 
packages and commercially available systems.  Design concept generation utilizing various types 
of cellular automata is conducted by Mathematica© kernel which was integrated with Emergent 
Designer via JLink™.  All major types of CA are supported, including 1D CA, totalistic 1D CA, 
2D CA, and totalistic 2D CA.

Topology/shape optimization using evolutionary algorithms is supported by ec3 package (a 
Java-based evolutionary computation toolkit (De Jong to appear)).  Here, all canonical 
evolutionary algorithms can be utilized, including genetic algorithms, evolutionary 
programming, and evolution strategies.   The system also offers a possibility of empl

ified EA (De Jong to appear) in which all major elements of an EA, i.e. generational model, 
parent selection, offspring selection, population sizes, operators, etc., can be tuned to a particular 
design problem. 

Sizing optimization, if applied, is conducted using a sophisticated optimization algorithm 
based on traditional mathematical programming method and implemented in SODA©.  It is a 
commercially available structural analysis, design and optim

aterloo Systems in Waterloo, Ontario, Canada.  It was integrated with Emergent Designer to 
perform evaluation 
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5.3.2. Analysis Components 
Methods and models of basic statistical and dynamical systems analysis, described earlier in 

secti are 
conducted online, i.e. during the actual design processes.  Basic statistical analysis involves best-
so-far fitness  statistics and 
95% confide alysis is also 
automatically s

Implemente nalysis which 
shows the dynam ates analysis.  
Delay coordinates are computed from the best-so-far fitness ed 
tim

apes can be produced for simple 
real-valued functions.  These types of visualizations are produced using Mathematica’s advanced 
graphical capabilities and their display in the system’s GUI is supported by JLink. 

Automatic report generation capabilities, described in section 5.2.10, have been achieved 
through the integration of Emergent Designer with OpenOffice.org© and its Java API.  Report 

ons 5.2.5-5.2.6, have been implemented directly in Java.  These analytical processes 

 statistics calculated for individual runs and average best-so-far fitness
nce intervals computed for the entire design experiment.  This an

aved in files. 
d methods of simple dynamical systems analysis include trajectory a

ics of the processes in the design spaces as well as delay coordin
 values with an arbitrarily assum

e lag. 
Contrary to the basic analyses described above, advanced statistical and time series analyses 

are performed offline.  Advanced statistical analysis includes estimation of sample distributions 
using histograms, normal scores plots, symmetry plots, and estimators of sample kurtosis and 
sample skewness.  Advanced Statistical Analysis Component also implements various estimators 
of means and medians (e.g. the sample mean, the sample median and the trimmed mean) and the 
corresponding confidence intervals (normal approximation, Student’s t test, Johnson’s modified t 
test, and the sign test).  Several advanced statistical analysis tools and methods have been 
implemented directly and but some of them were borrowed from JMSL© Numerical Library 
which was integrated with Emergent Designer. 

Advanced Time Series Analysis Component implements the following methods of analysis of 
the experimental data: visual analysis of the time series data, delay coordinates plots with 
adjustable parameters (e.g. the embedding dimension and the time lag), power spectrum analysis, 
autocorrelation analysis with a flexible specification of autocorrelation lag and standard error 
bars according to either Barlett’s or Moran’s formula, and two types of recurrence plots (i.e. 
regular and thresholded) with a flexible specification of the embedding dimension, time lag, and 
the norm to calculate the distances between the points of a time series.  As it was the case with 
the Advanced Statistical Analysis Component, several tools and methods of advanced time series 
analysis were directly implemented in the system while several of them have been borrowed 
from JMSL© Numerical Library. 

5.3.3. Visualization Components 
There are three major methods of visualizing experimental data in Emergent Designer.  First, 

line plots and scatter plots (or more generally signal plots) are used to visualize experimental 
data transferred from the Basic Statistical Analysis Component and Basic Dynamical Systems 
Analysis Component. The plots are produced by a Java-based signal plotter called PtPlot 
developed at UC Berkeley.  They are embedded in the Emergent Designer’s GUI and can be 
subsequently saved as bitmap files.  Second, histograms are employed to visualize sample 
distributions.  They are produced by the Advanced Statistical Analysis Component.  These types 
of graphs are created using JMSL© Graphical Library integrated with Emergent Designer.  They 
are also embedded in the system’s GUI and provide functionality to save the produced graphs as 
bitmap files.  Finally, interactive renderings of fitness landsc
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Generation Component collects and organizes textual, numerical and graphical data produced 
during the design processes and includes them in an experimental report.  This report is 
subsequently displayed as an OpenOffice.org document.  The report can be later saved in a file in 
any of the supported formats.  In this way, it provides a complete summary of the parameters and 
the obtained results produced in the design experiments. 

5.4. Summary 
In this chapter, I conducted the second stage of the Theoretical Structural Validation of 

Emergent Engineering Design.  By presenting and discussing information flow among the phases 
of the EED and within its individual components, I have attepmpted to build confidence in 
internal consistency of the proposed design method.   

At the same time, I introduced Emergent Designer, an integrated reseach and design support 
tool that implements EED.  In the first section of this chapter, I described the overall architecture 
of Emergent Designer and related individual components of the system to the phases of the 
proposed design method.  The components of Emergent Designer were divided into three major 
groups: design components implementing the actual design method, analysis components 
offering various tools and methods for the analysis of the experimental results and design 
processes, and visualization components implementing various visualization methods and report 
generation tools.  Also, a detailed description of the information flow within EED/Emergent 
Designer has been provided. 

The second section of this chapter individually discussed each of the 10 components of 
Emergent Designer.  In each case, the tasks performed by the component were listed and 
described.  Also, the diagrams of the flow of information within the individual components were 
provided with detailed descriptions of the input/output relationships among components. 

Finally, in the third section  implementation of Emergent 
Designer.  It is a Java-based system with a fully-functional GUI that implements the proposed 
design method.  It also integrates several open source and commercially available packages, e.g. 

em using available Java APIs.  

 of this chapter, I discussed the actual

Mathematica and OpenOffice.org, and communicates with th
Implementation specific issues, i.e. algorithms, methods, functionality, etc., were discussed 
separately for each group of components of Emergent Designer. 

The actual design experiments conducted using Emergent Designer are described in the 
following chapters. 

 
 

 



 

6. D R AUTOMATA 

 this chapter, I begin the experimental part of this dissertation.  I report results of various 
design experiments focused on generating novel design concepts of steel structural systems in 
tall buildings.  In order to achieve this goal I utilize several types of concept generator 
mechanisms based on generative representations proposed earlier in chapter 4.  The experiments 
described here have been conducted using Emergent Designer, an integrated research and design 
support tool introduced earlier in chapter 5.   

The experimental results reported in this chapter constitute the first stage of the Empirical 
Performance Validation process, as discussed in section 3.6.3, in which the usefulness of the 
generative representations component of Emergent Engineering Design has been tested 
empirically for producing novel design concepts of wind bracing systems and the entire steel 
structural systems in tall buildings. 

Figure 48 shows organization of this chapter. First, in introductory section 6.1, I revisit the 
research question 1 and the research hypothesis 1 (see section 3.3) and refine them in the context 

f the design problems considered in this dissertation.  I also describe the types of experiments 

rep
 more complex types of generative represtations are studied 

1D CAs (subsection 6.3.2).  Secti
based on two-dimensional CAs. A particular emphasis in this case was put on explicit modeling 
of planar interactions among structural members by using various shapes and radii of the 2D 
local neighborhoods. As in the previous section, two types of 2D CAs were investigated: 
standard 2D CA (subsection 6.4.1) and totalistic 2D CA (subsection 6.4.2).   

Finally, in section 6.5, I scale up the difficulty of the considered design problems and 
experimentally study design concept generators of the entire steel structural systems in tall 
buildings.  I discuss the results of the experiments with generative representations consisting of 
multiple one-dimensional CAs (standard and totalistic) in which individual 1D CAs were 
employed to generate various subsystems of steel structures.   

ESIGN CONCEPT GENERATION USING CELLULA
 

“Order is not sufficient. What is required is something much more 
complex.  It is order entering upon novelty; so that the massiveness 
of order does not degenerate into mere repetition; and so that the 
novelty is always reflected upon a background system” 

(Alfred North Whitehead) 
 

In

o
reported in this chapter.  Next, sections 6.2 - 6.4 describe the results of the experiments in which 
design concepts of wind bracing systems in tall buildings were generated using types of 
generative representations based on cellular automata.  Section 6.2 investigates the simplest 
generative representations based on elementary CAs and tests the impact of several 

resentational parameters on the quality of generated design concepts.   
Furthermore, in section 6.3,

involving two types of one-dimensional CAs: standard 1D CAs (subsection 6.3.1) and totalistic 
on 6.4 considers even more complex generative representations 
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6.1. Novel Design Concepts of Steel Structural Systems 
As stated earlier, in this chapter I describe results of the first stage of t

Performance Validation process in which I empirically test the usefulness of t
representations component of EED for producing novel design concepts.  First, how
to define what I mean by a novel design concept in the context of conceptual de
structural systems in tall buildings.  Earlier in section 2.1.2, I discussed the issue of c
design and provided several definitions of what makes a design concept creative.  In
and in the remainder of this dissertation, I will employ the definition given by Ger
concludes that creativity in design “is not simply concerned with the introduction 
new into a desi

be labeled creative.  Rather, the introduction of ‘something new’ should lead to a result that is 
unexpected (as well as being valuable).”   

Thus, according to this definition, there are three important aspects of a novel design concept: 
1. Something new 
2. Something unexpected 
3. Something valuable 

In the context of conceptual design of steel structural systems in tall buildings we can translate 
these 3 conditions into the following criteria that a novel design concept must satisfy: 

• It should be an unknown design concept. 
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• The introduced newness cannot be a mere random variation of a known design concept, 
or a design concept generated completely at random.  On the contrary, a novel design 
concept must exhibit an unexpected structural shaping pattern. 

• The value/quality of a design concept can be measured by its performance and 

ceptual design of steel structural systems in tall 
build s

 

 
 
T
e
i
s

t

feasibility.  In the case of a steel structural system this performance can be measured by 
the total weight of a steel structure (a good estimate of its cost) and/or its maximum 
horizontal displacement (a good estimate of its stiffness).   

Based on the discussion above, I can refine the research question 1 and the research 
hypothesis 1 in the specific context of a con

ing . 

d
d

 

 

Res r

Based on the existing knowledge on how to represent engineering systems;  

Evolutio  
representations, i.e. representations of engineering systems based on simple programs, which 
can successfully produce novel design concepts exhibiting interesting structural shaping 
patterns and good performance in terms of the total weight of the structural systems and/or 
their maximum horizontal displacements. 

ea ch Question 1 (Refined): 

what mechanisms and models can be used to produce novel design concepts of steel structural
systems in tall buildings? 

Research Hypothesis 1 (Refined): 

nary design and complex systems provide a framework for defining generative
he refined research hypothesis 1 is more precise and can be tested empirically.  The design 
xperiments with generative representations of steel structural systems in tall buildings reported 
n this chapter were conducted to test this hypothesis.  Also, the influence of some representation 
pecific parameters on the quality of obtained design concepts was investigated experimentally.   

In general, the experiments reported in this chapter can be classified using the parameters and 
heir values shown in Table 4.   

Table 4. Parameters and their values describing the types of experiments reported in this chapter 

 
Generative representations for both design problems, i.e. design of a wind bracing system and 

esign of an entire steel structural system in a tall building, were studied experimentally.  The 
esign concept generation mechanisms based on one-dimensional and two-dimensional CAs 
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(described earlier in chapter 4) were used in the conducted experiments.  Additionally, the 
influence of several representation specific parameters on the obtained results was investigated, 
including the location of the design embryo (top vs. bottom), the type of boundary conditions 
(periodic vs. nonperiodic), the type of the rule (standard vs. totalistic), and the way the design 
embryo is initialized (arbitrarily vs. randomly generated).  Finally, I studied the possibility of 
adding specific domain knowledge, in this case the symmetry requirement which should improve 
designs’ performance, and the impact of accuracy of the conducted structural analysis (first-order 
vs. P-Delta) on the quality of generated design concepts.  The results of these parameter 
sensitivity studies were later considered in planning morphogenic evolutionary design 
experiments reported in chapter 8. 

A small icon, similar to the one shown on the right, is placed at the 
beginning of each section of this chapter to indicate the values of the 
experimental parameters (defined in Table 4) which were used in the 
experiments reported in that section.  For example, the icon shown on the right 
indicates that in the reported experiments the following values were used: 

• design of a wind bracing system was considered, 
• arbitrarily assumed design embryos were employed, 
• design embryos were located at the bottom of the structural system,  
• design rules based on standard 1D CA rules were used,  

 Cellular Automata 
In this

wind bracing system proposed earlier in section 4.4.1.     I investigate one-
dimensional cellular automata with only 2 possible cell values and the local 
neighborhood of size 3.  These CAs are commonly called elementary CAs (see 
section 2.2).  Elementary CAs were used to generate design concepts of wind 
bracing systems in tall buildings.  The design concept generation mechanism used 
here is based on the generative representation consisting of a single design 
embryo and a single design rule.  In the conducted experiments, the concept 
generation mechanisms based on elementary CAs defined the 
topologies/configurations of a wind bracing system in a tall building.  On the 
other hand, the topologies/configurations of the beam system and the column 
system in a tall building were arbitrarily assumed and kept the same in all 
experiments.   

 structural members were allowed to change every three stories in a steel 
structural system.  In other words, cross-sections of each type of structural members were 

• no symmetry constraint and periodic boundary conditions were 
imposed, 

• structural analysis was conducted using the first-order analysis only. 

6.2. Design Concept Generators Based on Elementary
 section, I begin with the simplest possible generative representation of a 

When the topology/configuration of a wind bracing system was defined, the sizing 
optimization algorithm implemented in SODA and described in (Grierson 1989) was used to 
determine the optimal cross-sections of structural members in the entire steel structural system.  
In other words, the sizing optimization was conducted not only for the wind bracing elements but 
also for beams and columns.  The optimal cross-sections of structural members were selected 
from the catalog of standard shapes specified in (American Institute of Steel Construction 1989).  
An arbitrary assumption was made, motivated by manufacturability issues, that the cross-
sections of each type of
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assu teel 
structural system.  For example, all K bracings located from story 1 to story 3 were assigned the 
same cross-sections, all K bracings located from story 4 to story 6 had the same cross-sections 
that could be, in general, different than the cross-section of K bracing located below, etc. 

In the structural analysis conducted by SODA, dead, live, and wind loads were considered.  
The magnitudes of loads used in the design experiments reported in this dissertation are provided 
in Table 5.  Five load combinations were considered, following the design specifications for 
steel, concrete, and composite structures in tall buildings given in (Taranath 1998).   They 
included the following combinations of loads: 

• Dead + Live 
• 0.75(Dead + Live + Wind) 
• 0.75(Dead + Live – Wind) 
• 0.75(Dead + Wind) 
• 0.75(Dead – Wind) 

The negative sign placed in front of the wind loads indicates that the wind forces considered in a 
given load combination act in the opposite direction, i.e. wind pressure is replaced by wind 
suction and vice versa, when compared to the case when the plus sign is used. 

iments 

med the same if the members were located within the same 3-story segment of the s

Table 5. Magnitudes of dead, live, and wind loads used in design exper

Load Parameter Value(s) 
Dead load magnitude 50 psf (2.39 kN/m ) 2

L
2

   -  roof 30 psf (1.43 kN/m ) 

ive load magnitude:  

-  building    100 psf (4.78 kN/m ) 
2

Wind load:  

   -  Wind speed 100 mph (160.9 km/h) 

   -  Wind importance factor 1.0 

   -  Wind exposure category C  
∆ analysis.  In 
rmed and the 

optimal cross-sections of 
all structural members have been computed, the total weight of the steel structure and the 
maximum horizontal displacement (sway) of the steel structure (measured at the top rightmost 
node of the structural system as shown in Figure 49) were calculated.  This sizing optimization 
process was conducted without imposing any maximum displacement constraints (serviceability 
conditions).  The obtained values are reported in this section together with the topologies of the 
steel structural systems. 

 In SODA, the structural analysis can be conducted using either first order or P-
the experiments reported in this section, both types of structural analysis were perfo
differences in obtained values subsequently compared. 

When the topology of a wind bracing system has been defined and 
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Figure 49. Sway: measuring maximum horizontal displacement of a struct

The values of the param

ural system 

eters defining the domain, as discussed earlier in section 5.2.1, are 
sho ll have the same 

riments 

wn in Table 6.  The majority of the parameters included in this table wi
values in all design experiments reported in this dissertation. 

Table 6. Domain parameters and their values used in the reported expe

Domain Parameter Value(s) 
Design code AISC-LRFD-93 
Problem dimensionality 2D 
Design type Frame 
Behavior (analysis) type First-or
Sidesway Permitte
Cross-sections database AISC 
Unit system U.S. customary 
Length unit ft 
Force unit lbs 

der, or P-∆ 
d 

 
Table 7 shows the parameters of the design problem considered in this section.  As discussed 

earlier, elementary CAs, i.e. CAs with two cell state values and the neighborhood of size three, 
oncepts of wind bracing systems in tall buildings.  Thus, two types were used to generate design c

of wind bracing elements could be used in each design experiment utilizing elementary CA.  In 
the reported experiments, two groups of wind bracing elements were employed.  The group No.1 
included no bracing (empty cell) and simple X bracing while the group No.2 contained no 
bracing and K bracing. 
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Table 7. Problem parameters and their values used in experiments with elementary CAs 

Problem Parameter Value(s) 
Problem type Design of a wind bracing system in a tall building

Number of stories 30 

Number of bays 5 

20 feet (6.01 m) Bay width 

Story height 14 feet (4.27 m) 

Distance between transverse systems 20 feet (6.01 m) 

Types of bracing elements None and simple X bracings, None and K bracings 

Types of beam elements Fixed-Fixed beams (only) 

Types of column elements Fixed-Fixed columns (only) 

Types of supports Fixed supports (only) 
 

The design experiments with elementary CAs were divided into three parts:  
1. Experiments with arbitrarily assumed design embryos.  
2. Experiments with randomly generated design embryos.  
3. Experiments with the symmetry constraint.  In this case, the symmetry constraint was 

imposed on the design rules which were subsequently applied to a set of symmetric 
design embryos. 

The obtained results are discussed in the following subsections. 

6.2.1. Arbitrarily Assumed Design Embryos 
In the first group of experiments utilizing elementary CAs as design concept 

generators, arbitrarily assumed design embryos were used.  The design embryos 
consisted of five cells due to the fact that 5-bay buildings were considered here 
(see problem parameters in Table 7).  Depending on the group of types of wind 
bracing elements used in the experiments, either group No.1 (no bracings and 
simple X bracings), or group No.2 (no bracings and K bracings), the central cell 
in the design embryo had a value representing either simple X bracing (group 
No.1) or K bracing (group No.2).  The remaining four cells had values 
representing no bracings (for both groups), as it is shown in Figure 50. 

 

 
Figure 50. Design embryos iterated by elementary CAs when bracings from a) the group No. 1, 

b) the group No. 2 are used 

There are 256 design rules based on elementary CAs (see explanations in section 2.2).  All of 
them were applied to the design embryos and iterated the number of times which is one less than 
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the number of stories in a tall building, i.e. 29 times for 30-story buildings considered here.  In 
this way the entire configuration of a wind bracing system was developed from the design 
embryo shown in Figure 50a), or Figure 50b), using the corresponding design rule.  When the 
topology of the wind bracing system was defined, the sizing optimization was performed as 
discussed in the previous section.  Finally, the total weight of the steel structure and its maximum 
horizontal displacement were calculated using both first-order analysis and P-∆ effects.  

he impact of several representation specific parameters on the quality of obtained design 
c

 Type o
 Initial experiments considered elementary CA rules with periodic boundary conditions and 

the design embryo located at the bottom of a structural system.  Next, the same elementary CA 
rules were employed but this time, the design embryo was located at the top.  Finally, the third 
set of experiments investigated elementary CA rules with nonperiodic boundary conditions.  The 
results of these experiments are reported in the following subsections. 

Design Embryo at the Bottom and Periodic Boundary Conditions 
The experiments reported in this subsection involved the design embryo 

(see Figure 50) located at the bottom of a steel structural system and periodic 
boundary conditions (see section 4.4.1).  The results of all these experiments, 
i.e. the complete set of all 256 design concepts of wind bracings systems, are 
presented in Appendix B.   

Table 8 shows only the 12 best designs with respect to the total weight of 
the steel structural systems obtained in these experiments.   Each cell in Table 
8 contains the number of a design rule at the top (see the explanation of the 
numbering scheme of cellular automata rules in section 2.2.2), the actual 
design developed from the design embryo by this rule (center), and four values 
arranged in 2 x 2 array (the bottom part) as shown on the right.  This array 
contains four values representing the total 
weight of the steel structural system (first row) 
and its maximum horizontal displacement 
(second row).  The first column contains 
measurements obtained using the first-order 
structural analysis while the second column 
contains the values produced by a more accurate and at the same time more computationally 
expensive P-∆ analysis.  The values of the total weight of the steel structural system presented in 
the first row are measured in lbs. whereas the values of the maximum horizontal displacement, 
shown in the second row, are measured in inches.   

All 256 design concepts of wind bracing systems presented in Appendix B were generated by 
the simplest possible design rules represented by elementary CA rules.  
Structural Shaping Patterns 

Appendix B shows a great diversity of structural shaping patterns generated by the design 
rules based on elementary CA rules.  All these diverse patterns were created using the simplest 
possible design embryo (single simple X bracing located in the central bay) and simplest possible 
design rules (elementary CA rules).  Thus, there is a great potential for developing novel designs 
of structural systems even using this simplest type of generative representations.  In fact, the set 

T
oncepts was tested experimentally in this section, including the following parameters: 

 Location of the design embryo (bottom vs. top of a structural system) 
f boundary conditions (periodic vs. nonperiodic) 
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o  
bracing systems.  Some shaping patterns found in Appendix B repeat due to the simplicity of the 
arbitrarily chosen design embryo and imposed periodic boundary conditions. 

 

Table 8. Best designs in terms of the total weight of the steel structural system (calculated using 
the P-∆ analysis) produced by elementary CA rules with periodic boundary conditions and the 

design embryo located at the bottom 

f 256 design concepts in Appendix B contains 144 unique structural shaping patterns of wind

 
Several interesting structural shaping patterns found in Appendix B are presented in Table 9.  

A few design concepts generated by the design rules based on elementary CAs and shown in 
Table 9 are similar, and sometimes even identical, to the shaping patterns known from the 
structural engineering literature and presented in Table 10.  For example, the structural pattern 
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developed by rules 4, 12, etc. shown in Table 9 is identical to the concept of a vertical truss (see 
Design 6 in Table 10).  Similarly, the pattern generated by rules 151, 159, etc. presented in Table 
9 is similar to the concept of a fully braced frame (see Design 1 in Table 10).  As it is shown in 
Table 9, elementary CAs can produce not only shaping patterns known from the structural 
engineering literature (first four designs in row 1 in Table 9) but also many novel configurations 
of bracing elements that exhibit good performance. 

 

Table 9. Interesting structural shaping patterns produced by elementary CA rules with periodic 
boundary conditions and the design embryo located at the bottom 
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Ta g ble 10. Examples of design concepts of wind bracing systems from the structural engineerin
literature 

 
 

Classification of Structural Shaping Patterns 
One can attempt to categorize structural shaping patterns in many ways, e.g. in terms of the 

quality of produced design concepts, their physical appearance, etc.  A classification presented 
below exploits the dynamical properties of the design concept generation mechanism based on 
cellular automata.  It divides the structural shaping patterns into four distinct classes, based on 
four classes of dynamical behavior of cellular automata.  This classification was initially 
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prop  to 
structural design problems in this 

This classification of structural shaping patterns is presented in Table 11.  It is based on four 
distinct classes of dynamical behavior of cellular automata that generate shaping patterns: fixed-
point behavior, periodic behavior, apparently ‘chaotic’ behavior, and localized propagating 
structures.  The first class (fixed-point behavior or class 1) includes uniform patterns produced 
by the design rules 0, 4, 8, etc. (see Table 11).  These patterns correspond to the fixed-point 
behavior in dynamical systems, i.e. configurations of wind bracings at subsequent stories in a tall 
building (eventually) converge to an identical configuration of wind bracings.  The second class 
(periodic behavior or class 2) consists of periodically repeating patterns generated by the design 
rules 1, 23, 33, etc.  Repetition periods of the shaping patterns vary depending on the design rule 
used.  This group of patterns corresponds to periodic/cyclic behavior in dynamical systems, i.e. 
configurations of wind bracings at subsequent stories in a tall building (eventually) repeat with a 
constant repetition period. 

The third class (apparently ‘chaotic’ behavior or class 3) includes shaping patterns of apparent 
irregularity/randomness produced by the design rules 26, 82, 154, etc.  This group can be related 
to the chaotic behavior produced by some classes of dynamical systems.  Of course, in the case 
of structural shaping patterns generated by the simplest elementary CA, the actual chaotic 
behavior cannot be obtained due to discreteness and finiteness of this design space.  On the other 
hand, the shaping patterns generated by rules 26, 82, etc. have no apparent regularity or 
periodicity, as it was the case with the patterns discussed earlier.  Hence, they have been placed 
in class 3 because the shaping patterns are characterized by apparent irregularity/randomness. 

Interestingly, these apparently ‘chaotic’ structural shaping patterns exhibit very good 
pe

archy.  
Fro

racings.  Rule 143 generates the macro bracing of 
equal to 4 bracings.  

Table 8).  Finally, an interesting macro 
bra

osed by Wolfram (1983) (see section 2.2.1 for more details) and has been adapted
dissertation.  

rformance.  For example, the shaping pattern generated by rule 82 (and at the same time by 
rule 210) is the 8th best design concept (see Table 8) with respect to the total weight of the steel 
structural system.   

Finally, the last group consists of shaping patterns characterized by localized and propagating 
structures, e.g. as the ones generated by the design rules 2, 14, 38, 46, 57, etc.  This group 
corresponds to so-called localized propagating structures behavior in Wolfram’s hier

m the structural design point of view, the localized propagating structures, shown in Table 11 
(and also many others in Appendix B), form emergent concepts of so-called macro bracings, or 
super diagonals. The macro bracings shown in Table 12 have various widths measured by the 
number of adjacent bracing elements forming the macro bracing.  For example, the macro 
bracing generated by the rule 2, 10, etc. has the width equal to 1 bracing, the one produced by 
rule 14, 46, etc. has the width equal to 2 b
width equal to 3 bracings and rule 175 produces one with the width 

Another interesting design concept of a macro bracing emerges from the design rules 177, 
163, 99, 57 (see Table 8 and Table 12) in which the macro bracing pattern has the width of 2 but 
the adjacent bracing elements are located at a distance equal to one story.  In fact, these design 
concepts exhibit very good performance in terms of both the total weight of the steel structural 
system and its maximum horizontal displacement (see 

cing pattern is generated by rule 227 (see Table 12) in which 2 macro bracings, one of width 
1 and the other of width 2, are interwoven.   
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Table 11. Categorization of structural shaping patterns based on four classes of dynamical 
behavior of cellular automata 
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Table 12. Emergent shaping patterns of macro bracings (super diagonals) generated by 
elementary cellular automata 

 
As is it shown in Table 8, the design concepts with emergent macro bracings form 2nd, 3rd, 4th, 

and 5th best designs generated by elementary CA rules.  The overall best design (with respect to 
the total weight of the structural system) produced by elementary CA rules is generated by rule 
51.  It develops another interesting structural shaping pattern consisting of two subpatterns: the 
emergent pattern of crossed diagonal bracings located in the center of the structural system and 
the emergent pattern of horizontal trusses located every two stories in a structural system.  

th 
be d 
design concepts of a rmance (8th and 9th 
bes rd 
pattern) wh  horizontal 
displacement of the steel structural system. 
Elementary Cellular Automata vs. Randomly Generated Designs 

The design concepts shown in Appendix B were also compared qualitatively and 
quantitatively with randomly generated configurations of wind bracings systems.  In order to do 
that a comparable sample of configurations of wind bracing systems was randomly generated 
and evaluated using the first-order structural analysis.  Examples of 12 designs (out of 250) from 
this randomly generated sample are shown in Table 13. 

It is clear that there are large qualitative differences between designs generated by elementary 
CA rules (see Table 8 and Appendix B) and randomly generated ones (see Table 13).   In the 
quantitative comparison of both samples, i.e. the sample of designs generated by elementary CAs 
and the sample generated randomly, the total weight of the structural systems and their 
maximum horizontal displacement calculated using the first-order analysis were considered.  

Rule 105 generates an intriguing structural shaping pattern with good performance (see 7
st design in Table 8).  Previously mentioned rules 82, 210, 26, and 154 produce mirrore

pparently ‘chaotic’ patterns which exhibit good perfo
t).  Finally, rules 50 and 178 develop an interesting macro pattern (a type of a checkerboa

ich proves to perform well in terms of the total weight and the maximum
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Table 13. Examples of randomly generated design concepts of wind bracing systems in tall 
buildings  

 
 In the analysis of the distribution of the total weight of generated structural systems, only 

feasible design concepts were considered.  The design concept was included in the group of 
feasible designs if its total weight was less than 1,000,000 lbs. (this value was arbitrarily 
assumed). The number of designs generated by elementary CAs satisfying this criterion was 
equal to 172 while the number of randomly generated designs satisfying the same criterion was 
equal to 221. The dotplot displaying both sample distributions is presented in Figure 51.  Basic 
descriptive statistics for both sample distributions are shown in Table 14. 
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Figure 51 and Table 14 show that the two distributions differ.  Elementary CAs produce 
structural shaping patterns that exhibit better performance (in terms of the reduced total weight) 
compared to randomly generated design concepts.  In fact, no randomly generated design 
concept has the total weight smaller than 570,000 lbs. while there are 22 such designs in the 
sample generated by elementary CAs.   

Advantages of elementary CAs in producing design concepts of better performance are 
further supported by the analysis of the distributions of the maximum horizontal displacement 
for both sample distributions. Figure 52 and Table 15 provide qualitative and quantitative 
comparison of both sample distributions.  Again, elementary CAs generate structural shaping 
patterns that exhibit better performance with respect to maximum horizontal displacement than 
the design concepts generated randomly. 

 
Figure 51. Dotplot comparing the distributions of the total weight of steel structural systems 

generated by elementary CAs and generated randomly 

Table 14. Descriptive statistics summarizing the sample distributions of the total weight of 
structural systems generated by elementary CAs and generated randomly 

Quantity Elementary CA Randomly Generated 
Sample size 172 221 
Minimum weight 560,646 571,922 

x
Mea
Median weight 590,875 598,269 
Standard Deviation 29,247 28,091 

Ma imum weight 707,354 733,310 
n weight 598,517 605,285 

  

 



136 

 
Figure 52. Dotplot comparing the distributions of the maximum horizontal displacement of steel 

structural systems generated by elementary CAs and generated randomly 

Table 15. Descriptive statistics summarizing the sample distributions of the maximum horizontal 
displacement of structural systems generated by elementary CAs and generated randomly 

Quantity Elementary CA Randomly Generated 
Sample size 172 221 
Minimum displacement 3.892 4.2407 
Maximum displacement 10.939 6.5566 
Mean displacement 5.593 5.1296 
Median displacement 4.955 5.1075 
Standard Deviation 0.153 0.0256 

  
  

Finally, Figure 53 compares both distributions with respect to the two objectives, i.e. the total 
weight of structural systems and their maximum horizontal displacements.  It is clear that the 
design concepts produced by elementary CAs are better than the design concepts produced 
randomly with respect to both objectives.  In other words, using the multiobjective optimization 
terminology (see section 2.1.5), design concepts generated by elementary CAs dominate the ones 
produced randomly. 
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Figure 53. Comparison of both sample distributions with respect to two objectives: the total 

weight of steel structures (horizontal axis) and their maximum horizontal displacements (vertical 
axis) 

K Bracings 
The design experiments reported above were repeated with the second group of bracing 

elements consisting of K bracings and no bracings (empty cells).  In these experiments, the 
design embryo shown in Figure 50b) was used.  As before, it was located at the bottom of a steel 
structural system.  Also, periodic boundary conditions were imposed.  As in the previous 

d to develop design concepts 
of 

ttern of horizontal trusses located every two stories (designs 6-9) 

experiments, the entire set of 256 elementary CA rules was employe
wind bracing systems.  Table 16 shows the best designs (in terms of the total weight 

calculated using the P-∆ analysis) obtained in these experiments. 
The twelve best design concepts shown in Table 16 exhibit four distinct structural shaping 

patterns, including: 
• fully braced pattern (designs 1-5), similar to the one in Design 1 shown in Table 10 
• pa
• checkerboard pattern (designs 10 and 12) 
• combined pattern consisting of crossed diagonal bracings located in the center of the 

structural system and horizontal trusses located every two stories (design 11) 
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Table 16. Best designs of wind bracing systems consisting of K bracings produced by elementary 
CA rules with periodic boundary conditions and the design embryo located at the bottom 

 
 

Simple X bracings vs. K Bracings 
Table 16 also shows that a significant reduction of the total weight of the produced structural 

systems can be obtained when K bracings are used instead of simple X bracings.  At the same 
time, however, the stiffness of structural systems is reduced as they exhibit larger horizontal 
displacements.  These observations have been further confirmed by simple statistics reported in 
Table 17.  In this table, design concepts developed using the same elementary CA rules were 
compared, i.e. design concepts with identical structural shaping patterns which differed only in 
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the group of bracing elements used (group No.1 or group No.2).  In other words, pairs of design 
concepts (one with simple X bracings and one with K bracings) developed using identical 
elementary CA rules were compared in terms of the total weight of the generated structural 
system and its maximum horizontal displacement.  Then, based on the results of these 
comparisons, some simple statistics were calculated. 

Table 17. Comparison of design concepts generated by elementary CA rules utilizing simple X 
bracings and K bracings 

Quantity 1st order P-∆ 
Number of design concepts with reduced weight 192 203 
Number of design concepts with increased 
horizontal displacement 

173 187 

Median weight reduction 72,896 lbs. 77,055 lbs. 
Median percentage of weight reduction 13.0% 14.3% 
Median displacement increase 0.8484 in. 0.9393 in. 
Median percentage of displacement increase 13.6% 17.1% 

  
Table 17 shows that 192 out of 256 design concepts (75 percent), or 203 out of 256 design 

concepts (79 percent) in the case of the P-∆ analysis, developed using elementary CA rules with 
K bracings have reduced total weight compared to the same design concepts constructed with 
simple X bracings.  At the same time, 173 design concepts (67 percent) consisting of K bracings, 
or 187 (73 percent) in the case of the P-∆ analysis, have increased horizontal displacements 
compared to design concepts constructed with simple X bracings.  When K bracings are used in 
place of simple X bracings, the median reduction of the total weight of the structural systems 
from the sample of 256 designs developed using elementary CA rules is larger than 70,000 lbs.  
This corresponds to 13 percent (median) reduction of steel consumption.  On the other hand, the 
use of K bracings instead of simple X bracings causes a median increase of horizontal 
displacement of about 0.85 inch, or 13.6 percent. 
Elementary Cellular Automata vs. Randomly Generated Designs 

Further, 256 design concepts developed by elementary CA rules were compared to a 
comparable sample of 250 randomly generated designs with respect to two objectives, i.e. the 
total weight of the steel structural system and its maximum horizontal displacement, as it is 
shown in Figure 54.  It shows only design concepts whose total weight was less than 800,000 
lbs., i.e. 197 design concepts developed by elementary CA rules, and 232 designs generated 
randomly. 

Also in this case, design concepts developed by elementary CA rules dominate the ones 
generated randomly with respect to both objectives.  One can easily recognize in Figure 54 three 
distinct regions in this performance space.  On the left hand side, there is a very small region of 
high performance with respect to both objectives.  Only the design concepts developed by 
elementary CA rules can be found in this region.  In the middle, there is a large region composed 
of both designs developed by elementary CA rules and designs generated randomly.  It is also 
clear that in this region designs developed by CA rules dominate designs produced randomly.  
Finally, a medium-sized region of designs characterized by good performance with respect to 
horizontal displacement but rather poor performance with respect to the total weight of the 
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structural systems.  Also in the latter region, the designs developed by elementary CA rules 
dominate designs produced randomly. 

 
Figure 54. Comparison of design concepts with K bracings generated randomly and developed 

by elementary CA rules with respect to two objectives: the total weight of steel structures 
(horizontal axis) and their maximum horizontal displacements (vertical axis) 

 

Design Embryo at the Top and Periodic Boundary Conditions 
eriments reported in the previous section, the location of the design 

em

) are presented in Table 18.  
W

 2 out of 
12 design rules that repeat in both tables, namely rule 50 (and at the same time rule 178 which 

In the exp
bryo was arbitrarily chosen at the bottom of the steel structural system.  In this 

section, the results of the experiments are described in which the design embryo 
was located at the top of the structural system, and the design concepts of wind 
bracing systems were developed downwards.  They were subsequently compared 
with the design concepts obtained in the experiments reported in the previous 
section.  As earlier, the experiments were conducted for two groups of bracings 
elements, i.e. the group consisting of simple X bracings and no bracings (empty 
cells), and the other group with K bracings and no bracings. 
Best Design Concepts 

The 12 best design concepts (in terms of their total weight calculated using the P-∆ analysis) 
produced by elementary CA rules with the design embryo located at the top and with the first 
group of wind bracing elements (simple X bracings and no bracings

hen we compare the design concepts shown in Table 18 with the ones included in Table 8 
(where the design embryo was located at the bottom), we clearly see that there are only
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produced exactly the same design concept) and rule 51.  Incidentally, the 2 repeating design rules 
xactly switched order when we compare Table 18 to Table 8, i.e. rule 51 produces the

th
have e  best 
design when the design embryo is located at the bottom (Table 8) and 11  best design when the 
design embryo is located at the top (Table 18) whereas rule 50 (and rule 178) develops 11th best 
design when the design embryo is located at the bottom (Table 8), and the best design when the 
design embryo is located at the top (Table 18).  

 

Table 18. Best designs of wind bracing systems consisting of simple X bracings produced by 
elementary CA rules with periodic boundary conditions and the design embryo located at the top 

 
 The best design developed using the design embryo located at the top of the structural system 

(rule 50 and 178) in better than the one generated using the design embryo located at the bottom 
(rule 51) by about 6,350 lbs.  Also, when we compare two design concepts developed using the 
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sa  
and a etter 
design concept in terms of the total weight of the structural system by about 14,000 lbs. 
(calculated using P-∆ analysis), or 2.4 percent. The reduced steel consumption is achieved at a 
cost of increasing maximum horizontal displacement of the structural system by 0.07 inch, or 1.7 
percent. 
Design Embryo at the Top vs. at the Bottom 

However, when we compare all pairs of the design concepts developed using the same design 
rules but with different locations of the design embryo (top and bottom) we observe no 
significant differences, as it is shown in Table 19.  The median total weight reduction and 
horizontal displacement reduction are close to 0.  138 design concepts out of all 256 design 
concepts (or 147 when the P-∆ analysis is conducted) developed by elementary CA rules from 
the

nd at the top of a steel 

me rule 50, or rule 178, but with different locations of the design embryo, i.e. at the bottom
t the top, we observe that when the design embryo is placed at the top, we obtain a b

 design embryo located at the top, have a reduced total weight of the structural system, when 
compared to the design concepts developed using the same rules but from the design embryo 
located at the bottom.  This roughly corresponds to half of the design concepts with a reduced 
total weight and half of the design concepts with an increased total weight. 

Table 19. Comparison of the design concepts composed of simple X bracings and generated by 
elementary CA rules with the design embryo located at the bottom a

structural system 

Quantity 1st order P-∆ 
Number of design concepts with reduced weight 138 147 
Number of design concepts with increased 85 116 
horizontal displacement 
Median weight reduction 0 lbs. 0 lbs. 
Median percentage of weight reduction 0 % 0 % 
Median displacement reduction 0.0073 in. 0.0001 in. 
Median percentage of displacement reduction 0.43 % 0.01 %  

K Bracings 
The same experiments were repeated with the second group of bracing elements (K bracings

ings).  The 12 best designs produced in these experiments are shown in Ta
 

and no brac ble 20.  11 
designs shown in this table represent various variations of the fully braced frame.  The 12th best 
design, the design developed by rule 179, is the only design that exhibits qualitatively different 
structural shaping pattern, i.e. the checkerboard pattern.  When we compare Table 20 with Table 
16, we observe that 6 out of 12 best designs shown in both tables are generated by the same 
rules, i.e. rule 151 (and others generating the same pattern), 222 (and 254), 251, 235, 249, and 
179.  In both cases, i.e. when the design embryo is located at the bottom and at the top, the best 
design produced by elementary cellular automata is developed by rule 151.  Rule 151 develops a 
better design concept (in terms of the total weight of the steel structural system calculated using 
P-∆ analysis) when the embryo is located at the bottom.  The reduction of the steel consumption 
is, however, almost negligible and equal to 879 lbs., or 0.2 percent.  

The comparison of all pairs of design concepts developed using the same design rules but 
ith different locations of the design embryo (top and bottom) is presented in Table 21. 

 
w
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Table 20. Best designs of wind bracing systems consisting of K bracings produced by elementary 
 at the top CA rules with periodic boundary conditions and the design embryo located

 
 
 
 
 
 
 

 



144 

Table 21. Comparison of design concepts with K bracings generated by elementary CA rules 
with the design embryo located at the bottom and at the top of a steel structural system 

r Quantity 1st orde P-∆ 
Number of design concepts with reduced weight 124 148 
Number of design concepts with increased 
horizontal displacement 

134 104 

Median weight increase 1,204 lbs. 0 lbs. 
Median percentage of weight increase 0.23 % 0.0 % 
Median displacement reduction -0.0003 in. 0.0016 in. 
Median percentage of displacement reduction -0.004 % 0.082 %  

 Table 21 shows that about half of the design concepts (124 for the first order structural 
analysis and 148 for P-∆ analysis) have a reduced total weight when the design embryo is located 
at the top.  Roughly the same proportions are obtained with respect to the number of designs with 
an increased horizontal displacement.  The median estimates for the total weight increase and the 
horizontal displacement reduction are close to zero, similarly as it was the case with the first 
group of wind bracing elements (simple X bracings and no bracings).   

Concluding, the experimental results presented in this subsection show that the location of 
the design embryo has no impact on the quality of the obtained design concepts.  Both in the 
case of the first group (simple X bracings and no bracings) and the second group (K bracings and 
n  
Table 19 and T
o bracings) of wind bracing elements, the obtained median estimates are close to zero (see

able 21).   
On the other hand, as it was discovered in the previous subsection (see Table 17), there are 

significant differences between the design concepts composed of simple X bracings and the 
design concepts consisting of K bracings.  This fact is further confirmed by Table 22 which 
shows that the design concepts developed from the design embryo located at the top and 

bout 13 percent less steel than the same design concepts consisting composed of K bracings use a
of simple X bracings.  At the same time, they exhibit about 22 percent larger horizontal 
displacements. 

Table 22. Comparison of design concepts generated by elementary CA rules utilizing simple X 
bracing and K bracing elements with the design embryo located at the top 

Quantity 1st order P-∆ 
Number of design concepts with reduced weight 204 172 
Number of design concepts with increased 
horizontal displacement 

195 185 

Median weight reduction 103,791 lbs. 72,972 lbs. 
Median percentage of weight reduction 12.9% 12.0% 
Median displacement increase 0.9891 in. 0.9852 in. 
Median percentage of displacement increase 23.0% 22.4%  
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D

with periodic boundary conditions.  However, nonperiodic boundary 
conditions seem more natural for the design problems considered in this 
dissertation.  For example, it is hard to imagine from a structural design point 
of view that a wind bracing element located in the rightmost bay strongly 
interacts with the wind bracing element located in the leftmost bay, and vice 
versa.  Thus, elementary CAs with nonperiodic boundary conditions seem to 
be more appropriate to represent interactions among structural members in the 
considered design problems.  The results of the design experiments 
investigating these types of concept generation mechanisms are reported in 
this subsection. 

In the design experiments with elementary CAs and nonperiodic boundary 
conditions the following assumptions regarding the boundaries were made: 

• The value of the left neighbor of the leftmost cell in the initial configuration of wind 
bracing elements (design embryo) was assumed to be equal to no bracing, i.e. it had 
value of 0 (see Figure 19). 

•  Similarly, the value of the right neighbor of the rightmost cell in the initial 
configuration of wind bracing elements was assumed to be equal to no bracing. 

• The same boundary conditions (no bracing as a left neighbor for the leftmost cell and as 
a right neighbor for the rightmost cell) were applied to all configurations of wind 
bracings at subsequent stories which were obtained during the process of iteration of an 
elementary CA. 

A graphical illustration of this process is presented in Figure 55.  Even though the design 
embryo and the design rule are exactly the same as the ones used in Figure 26 where elementary 
CAs with periodic boundary conditions were investigated, the developed structural shaping 
pattern shown in Figure 55 is different than the one presented in Figure 26. 

Similarly as in the previous two subsections, the experiments conducted with elementary CAs 
with nonperiodic boundary conditions used both groups of wind bracings elements.  Depending 
on the group of wind bracing elements, the entire set of 256 elementary CA rule were applied to 
either the design embryo shown in Figure 50a) or the one shown in Figure 50b).  The collection 
of 256 design concepts developed by all elementary CAs with nonperiodic boundary conditions 
and the first group of types of wind bracing elements, i.e. no bracings and simple X bracings, is 
presented in Appendix C.  In these experiments, the design embryo was located at the bottom of 
the steel structure. 
Best Designs 

Table 23 shows twelve best design concepts in terms of the total weight of the steel structural 
system (calculated using P-∆ analysis) developed using elementary CAs with nonperiodic 
boundary conditions and with the design embryo located at the bottom.  

It shows that the best design was generated by rule 51, similarly as it was the case with 
elementary CAs with periodic boundary conditions.  Also, when nonperiodic boundary 
cond tly the same structural shaping pattern as 
rule 5
with the 
in Table 

esign Embryo at the Bottom and Nonperiodic Boundary Conditions 
Design experiments reported so far involved exclusively elementary CAs 

itions are imposed, then rule 179 develops exac
1.  When we compare the design concept developed by rule 179, as shown in Table 23, 

designs concept developed by the same rule and the same design embryo and presented 
8, we can see that we obtain a dramatically different structural shaping pattern. 
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Fig

 There
elementa
nonperio
develope  178), 23 (and 55), and 7.   
Structur

Half 
boundary riodic 
boun
compare s that 3 , 
4th, and 6
pattern.  
Table 12
condition he best 12 designs 
in 

In general, when we compare the structural shaping patterns generated by the same 
elementary CA rules with imposed nonperiodic boundary conditions (see Appendix C) to the 
ones with periodic boundary conditions (see Appendix B), we can divide the developed  design 
concepts into the following 3 groups: 

 
 

ure 55. Graphical illustration of a process of generating a design concept of a wind bracing 
system using elementary CAs with nonperiodic boundary conditions 

 are only 5 design concepts that appear in the group of best design generated by 
ry CA rules with periodic boundary conditions and the group of designs produced with 
dic boundary conditions.  They include the previously mentioned design concept 
d by rule 51 as well as designs generated by rules 19, 50 (and
al Shaping Patterns 
of the design concepts in the group of 12 best designs developed with nonperiodic 
 conditions exhibit the horizontal trusses pattern.  Elementary CAs with nonpe

dary conditions generate many more design concepts with the checkerboard pattern 
d to the case when periodic boundary conditions are imposed.  Table 23 show rd

th best design concepts developed by a total of 12 rules exhibit this structural shaping 
Another interesting finding is the fact that many macro bracing patterns identified in 
 are locally disrupted and sometimes even completely changed by nonperiodic boundary 
s.  The only two examples of macro bracings patterns found among t

Table 23 are two mirror design concepts (11th and 12th best) that exhibit the macro bracing 
pattern of width equal to 1 bracing which is locally disrupted at the boundaries. 
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T
elementary CAs with mbryo located at the 

bottom 

able 23. Best designs of wind bracing systems consisting of simple X bracings produced by 
nonperiodic boundary conditions and the design e

 
 

1. Design concepts in both cases are identical. 
Examples of elementary CA rules that generate the same design concepts with periodic 
and nonperiodic boundary conditions include rules 0, 1, 12, 18, 19, 23, 50, 51, etc.  
There are 55 designs in the entire set of 256 designs that are identical in both cases.  
Table 24 shows several designs concepts belonging to this group. 
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Table 24. Examples of design concepts which are identical no matter if periodic or nonperiodic 
boundary conditions are used 

 
2. Design concepts developed with nonperiodic boundary conditions have some local 

disruptions of the pattern near the structural system’s boundaries. 
The disruption of the pattern can be localized within a limited space of the structural 
system or they can persist throughout the entire boundary region.  Table 25 shows 
several examples of design concepts where the disruptions of the pattern are restricted 
to a small region close to the boundary, or close to both boundaries.  Such design 
concepts are generated for example by rules 7, 37, and 203. 
In several instances, the local disruptions of the pattern are propagated throughout the 
entire boundary region of the structural system.  Table 26 presents 3 examples of design 
rules that can be included in this group.  They include rules 5, 31, 47, and others. 

3. Design concepts developed with nonperiodic boundary conditions exhibit completely 
different pattern than the ones generated with periodic boundary conditions. 
In several cases, the local disruption of the pattern is propagated beyond the boundary 
region and produces a qualitatively different structural shaping pattern.  Table 27 shows 
several examples of design concepts which exhibit completely different structural 

 used. 

 

shaping patterns depending on the type of boundary conditions
But what is the impact of the nonperiodic boundary conditions on the performance, i.e. the 

total weight and the maximum horizontal displacement, of the steel structural systems?  
 
 
 
 
 
 

 



149 

Table 25. Examples of design concepts with some small and local disruptions of the pattern 
when nonperiodic boundary conditions are used 

 
 

Table 26. Examples of design concepts with local disruptions of the pattern propagating 
ughout the boundary region when nonperiodic boundary conditions are used thro
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Table 27. Examples of design rules generating completely different patterns when periodic and 
nonperiodic boundary conditions are used 

 
  

Periodic Boundary Conditions vs. Nonperiodic Boundary Conditions 
The best design concept developed by elementary CA rules with nonperiodic boundary 

conditions, i.e. the design concept generated by rule 51, is exactly the same as the one produced 
with periodic boundary conditions.  When we compare the corresponding pairs of design 
concepts presented in Table 8 (periodic boundary conditions) and Table 23 (nonperiodic 
boundary conditions), i.e. 2nd best in Table 8 with 2nd best in Table 23, etc., we conclude that all 
design generated with periodic boundary conditions are better in terms of the total weight of the 
steel structural system (calculated using the P-∆ analysis) than the ones developed with 
nonperiodic boundary conditions. 
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However, when we take into consideration all 256 pairs of design concepts and calculate basi
no significant differences between the two samples Table 28 shows that 

c 
statistics, we observe 
when nonperiodic boundary conditions are imposed then 100 out of 256 design concepts have 
reduced total weight and 99 design concepts have increased total weight (55 designs are exactly 
the same as discussed earlier).  The median reduction of the total weight and median reduction of 
the horizontal displacement are either very close to or even equal to 0.  The negative sign at the 
median displacement reduction value calculated using the first-order analysis means that the 
horizontal displacement was increased rather than reduced.  Thus, there are no significant 
advantages for using nonperiodic boundary conditions over periodic boundary conditions 
for the design problem considered in the experiments. 

 

Table 28. Comparison of design concepts with simple X bracings generated by elementary CA 
rules with nonperiodic and periodic boundary conditions 

r Quantity 1st orde P-∆ 
Number of design concepts with reduced weight 100 100 
Number of design concepts with reduced horizontal 
displacement 

65 91 

Median weight reduction 0 lbs. 0 lbs. 
Median percentage of weight reduction 0 % 0 % 
Median displacement reduction -0.0218 in. 0.0000 in. 
Median percentage of displacement reduction 0.50 % 0.00 % 

  
K Bracings 

Similar experimental work has been conducted with the second group of wind bracing 
elements, i.e. no bracings and K bracings.  Table 29 shows the 12 best designs produced in these 
experiments.  Contrary to the experiments with the first group of wind bracings, the majority of 
ele

t and horizontal displacements) 
by

 conditions.  The 
tab

mentary CA rules that produced best designs with nonperiodic boundary conditions also 
proved to perform well when periodic boundary conditions were imposed (compare designs in 
Table 16 with the ones in Table 29).  Major differences between the contents of Table 29 and 
Table 16 include significantly larger number of design concepts exhibiting the checkerboard 
pattern produced by nonperiodic boundary conditions.  Also, the design concept produced by 
rule 95 (and 127) has been improved (by reducing the total weigh

 imposing nonperiodic boundary conditions which change the pattern along the structure’s 
boundaries. 

Table 30 presents some basic statistical estimates comparing two samples of 256 design 
concepts with K bracings developed using nonperiodic or periodic boundary

le shows that there are some differences when using nonperiodic boundary conditions 
compared to the case when periodic boundary conditions are imposed.  They can be easier 
identified when the P-∆ analysis is conducted.  Elementary CAs with nonperiodic boundary 
conditions generate design concepts with an increased total weight (by about 4%) and at the 
same with a reduced horizontal displacement (by about 1%). 
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Table 29. Best designs of wind bracing systems consisting of K bracings produced by elementary 
t the bottom CAs with nonperiodic boundary conditions and the design embryo located a
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Table 30. Comparison of design concepts with K bracings generated by elementary CA rules 
with nonperiodic and periodic boundary conditions 

Quantity 1st orde P-∆ r 
Number of design concepts with reduced weight 73 48 
Number of design concepts with reduced horizontal 
displacement 

112 126 

Median weight reduction -53 lbs. -21,195 lbs. 
Median percentage of weight reduction 0 % -4.14 % 
Median displacement reduction 0.0000 in. 0.0123 in. 
Median percentage of displacement reduction 0.0000 % 1.31 % 

  
Summary 

In the last three subsections I investigated the simplest generative representations studied in 
this dissertation and composed of the design rule based on an elementary CA rule and the design 
embryo consisting of a single simple X bracing, or K bracing, located in the central bay.  Even 
these extremely simple generative representations produced novel structural shaping patterns 
with good performance.  I also classified the obtained structural shaping patterns with respect to 
the dynamical behavior CA rules that generated these patterns.  In this way, four classes of the 
shaping patterns were identified: fixed-point behavior, periodic behavior, apparently ‘chaotic’ 
behavior, and localized propagating structures.   

I compared the design concepts of wind bracing systems with the design concepts generated 
randomly and found out that they proved to perform better in terms of both the total weight of 
the steel structural system and its maximum horizontal displacement.  The developed design 
concepts were also compared to designs known from the structural engineering literature.  I also 
discovered that many traditionally known designs were generated by the simple generative 
representations based on elementary CAs. 

In the conducted experiments, I compared two groups of wind bracing elements.  The first 
group consisted of simple X bracings and no bracings (empty cells) while the second group 
included K bracings and no bracings.  The results of the experiments have shown that the same 
structural shaping patterns consisting of simple X bracings were heavier than the ones composed 
of K bracings.  On the other hand, simple X bracings produced structural designs with 
significantly better stiffness (smaller horizontal displacements).   

The results of the design experiments investigating the impact of the representation 
parameters have shown that there is no difference in terms of performance of generated designs 
when the design embryo is located at the top.  Hence, in the remainder of this dissertation, I will 
assume the location of the design embryo at the bottom of a structural system. 

Another set of design experiments has shown that there is no benefit in using nonperiodic 
nditions when simple X bracings are used.  On the contrary, they may increase the 

tot

dissertation. 

boundary co
al weight of the steel structural systems by several percent when K bracings are used.  Their 

usage can be justified only when better stiffness performance of wind bracing systems consisting 
of K bracings is desired.  In this case, however, usually simple X bracings are preferred because 
they provide better stiffness of a steel structural system as it was shown earlier in Table 17.  
Thus, periodic boundary conditions have been assumed in further experiments reported in this 
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6.2.2. Randomly Generated Design Embryo 
So far, I have investigated the simplest design rules based on elementary 

In this section, I will consider sli ental 
settings in which the design embryos are no longer restricted to assume the 
simplest configuration described above but may take on any possible 
configuration of wind bracing elements.  In fact, in the experiments reported in 
this section, the configurations of design embryos were generated randomly.  
The design rules investigated here were exactly the same as before, i.e. based 
on elementary CA rules. 

The design experiments involved the entire set of 256 elementary CA rules.  
Each rule was applied to 5 randomly generated design embryos and developed 
5 design concepts of wind bracing systems from them.  As before, the experiments were 
conducted with two groups of wind bracing elements, i.e. group No.1 consisting of no bracing 
and simple X bracing and group No.2 containing K bracings and no bracings.  This time, 
however, each developed design concept was evaluated using the first-order analysis only.  The 
values of the total weight of the steel structural system and its maximum horizontal displacement 
were recorded. 
Best Designs 

The best design concepts (in terms of the total weight of the steel structural system) produced 
by the group No.1 are presented in Table 31.  The overall best design concept found in this group 
of experiments was generated by rule 154.  Its total weight was equal to 550,336 lbs.  When we 
compare the total weight of this design with the total weight of the best design generated from 
the simple design embryo (see Table 8), we observe that the weight was reduced by more 10,000 
lbs.  In fact, 8 out of 12 best designs shown in Table 31 have better performance, i.e. smaller 
total weight, than the best design generated by rule 51 from a simple design embryo. 
Structural Shaping Patterns 

Design concepts shown in Table 31 exhibit all four major types of structural shaping patterns.  
The most common pattern occurring in this group is the previously identified pattern of macro 
bracings of width 2 in which the simple X bracings are located at a distance equal to 1 story.  7 
out of 12 best designs found in Table 31 exhibit several variations of this pattern.  The 
checkerboard pattern occurs in 3 design concepts shown in Table 31, including the concepts 
generated by rules 186, 178, and 58. 

There are also two novel structural shaping patterns of very good performance in the group of 
design concepts shown in Table 31.  First, rule 154 generated the best design concept with an 
intriguing ‘tree like’ pattern.  Second, rule 19 developed an interesting pattern in which 
horizontal trusses located every two stories are connected through simple X bracings situated in 
the outer bays of the intermediate stories. 

Examples of several other interesting structural shaping patterns produced by elementary CA 
rules with randomly generated design embryos are presented in Table 32.  The group of design 
concepts shown here includes diverse structural patterns of reasonable performance.  It is worth 

diversity of generated structural shaping patterns was obtained by 
rel

CAs and the simplest design embryos consisting of a single simple X bracing 
(or a K bracing) in the middle of the initial configuration of cells.  

ghtly more complicated experim

mentioning that even greater 
axing the assumption of using only the simplest design embryo. 
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Table 31. Best designs of wind bracing systems consisting of X bracings produced by elementary 
CAs with a randomly generated design embryo located at the bottom 

 
 

K Bracings 
Another set of experiments with the second group of wind bracing elements also showed that 

elementary CA rules applied to randomly generated design embryos produce superior results.  
The best design concepts generated in these experiments are presented in Table 33.  The total 
weight of the best design concept was equal to 449,521 lbs.  It was the best design generated by 
elementary CA rules.  In fact, all 12 best design concepts shown in Table 33 outperformed the 
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best design concepts generated by elementary CA rules with an arbitrarily assumed design 
embryo. 

Table 32. Interesting structural shaping patterns produced by elementary CA rules with randomly 
generated design embryos 

 
 

Structural Shaping Patterns 
All design concepts presented in Table 33 exhibit the fully braced pattern in which all cells 

from the second story up to the topmost story are occupied by K bracings.  The differences 
among the design concepts are restricted to various configurations of the design embryo.  
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I
includ e the 
optimal design concept with respect to the total weight of the structural system.  Its total weight 
was more than 8,500 lbs. larger than the best design concepts shown in Table 33. 

 

Table 33. Best designs of wind bracing systems composed of K bracings produced by elementary 
CA rules with a randomly generated design embryo located at the bottom 

nterestingly, the fully braced pattern in which the entire configuration of a wind bracing system, 
ing all cells of the design embryo, is composed of K bracings turned out not to b
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The design experiments with randomly generated design embryos and the second group of 
wind bracing elements also generated interesting structural shaping patterns of good 
performance.  Several examples of such patterns are presented in Table 34.  Similarly as before, 

bryos, they produce even 
gre

produced by 
he bottom 

when elementary CA rules are applied to randomly generated design em
ater diversity of interesting structural shaping patterns. 

 

Table 34. Interesting structural shaping patterns composed of K bracings and 
elementary CA rules with randomly generated design embryos located at t
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Table 34 cont. Interesting structural shaping patterns composed of K bracings and produced by 
elementary CA rules with randomly generated design embryos located at the bottom 

 
Thus, the design experiments with both groups of wind bracing elements have shown that by 

making the generative representation based on elementary CA slightly more general (and less 
constrained), not only the qualitative difference has been achieved (larger selection of structural 
patterns) but also the performance of generated design concepts has been improved.  This fact 
will be utilized in the morphogenic design experiments reported in chapter 8 in the following 
way.  Instead of using fixed design embryos and evolving only design rules which are 
subsequently applied to the design embryos both the embryo and the rule will be evolved.  The 
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optimal configurations of both elements of the generative representation, i.e. the embryo and the 
rule, will be sought. 

6.2.3. Design Concept Generators with Symmetry Constraint 
In this section, I will demonstrate how we can make use of background 

knowledge on the design problem and incorporate it in the generative 
representation.  The domain knowledge effectively reduces the size of the 
design space and acts as a constraint.  I will illustrate that with a simple 
example of a symmetry constraint.  In this case, I will apply the structural 
design knowledge that symmetric structural systems usually outperform 
asymmetric ones.  Next, I will show how we can incorporate this knowledge in 
the generative representation of a wind bracing system in order to develop 
symmetric design concepts.  Furthermore, I will demonstrate that elementary 
CA rules with an imposed symmetry constraint develop symmetric design 
concepts f
sy
and their maximum horizontal displaceme

Symmetry of structures is an important property from a structural engineering perspective.  
etric and that is considered highly desirable for 

va

the CA rule must give the same outcome value for the local neighborhoods 
.  Graphical illustration of the reflection symmetry property is presented in Figure 

56

rom the symmetric design embryos.  I will also compare the 
mmetric design concepts with asymmetric ones in terms of their total weight 

nts. 

Almost all steel structural systems are symm
rious reasons (aesthetics, constructability, structural behavior, etc.). Thus, symmetry is one of 

the most frequently used requirements in structural design. 
The process of imposing a symmetry constraint on the design rules based on elementary CA 

rules is straightforward and consists of two steps: 
1. Imposing a so-called reflection symmetry on CA rules (Wolfram 1983), and 
2. Imposing symmetry on the design embryos. 

In the case of elementary CA rules, the reflection symmetry introduces two constraints on the 
CA rule.  First, the CA rule has to yield the same outcome value for the local neighborhoods 100 
and 001.  Second, 
110 and 011

.  

 
Figure 56. Graphical illustration of the reflection symmetry of a design rule based on an 

elementary CA rule 

When the reflection symmetry is imposed, the space of design rules based on elementary CA 
rules is restricted to 64 rules (compared to 256 rules when no constraint is imposed) of the form: 

1 2 3 4 2 5 4 6α α α α α α α α , 
where { }0,1iα ∈  and the same ordering of the local neighborhoods is assumed as in Figure 56. 

Symmetry of the design embryo is another necessary condition in order to produce symmetric 
design concepts.  Even symmetric design rules do not necessarily produce symmetric design 
concepts when they are applied to asymmetric design embryos, as it is shown in Figure 57.  In 
this case, rule 19, or in binary form 00010011, was applied to a symmetric design embryo (left) 
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and le 
develops an asym

In the design experiments reported in this section, the entire set of 64 symmetric design rules 
was investigated.  Each rule from the set was applied to 8 symmetric design embryos shown in 
Figure 58 and generated 8 design concepts of wind bracing systems from them.  As before, the 
experiments were conducted using both groups of wind bracing elements.  The developed design 
concepts were evaluated using both the first-order and the P-∆ analysis.  The values of the total 
weight of the steel structural system and its maximum horizontal displacement calculated during 
these analyses were recorded. 

 an asymmetric design embryo (right).  It is clear that even this symmetric design ru
metric design concept when applied to an asymmetric embryo.  

 
Figure 57. Design concepts developed from the symmetric rule 19 when a symmetric design 

embryo is used (left) and an asymmetric design embryo is used (right) 

 Best Designs 
Table 35 shows the best results generated by elementary CA rules with the symmetry 

constraint.  The three best design concepts developed by elementary CA rules with symmetry 
constraint were produced by rule 50.  They exhibit various variations of the previously identified 
checkerboard pattern.  The differences among the three design concepts occur only in the lowest 
part of the steel structure (3 lowest stories) due to different configurations of the design embryos 
used in the experiments.  In fact, rule 50 developed the checkerboard pattern starting from all 
design embryos shown in Figure 58 except for two extreme cases when the design embryo 
consisted of all no bracings (empty cells) (see Figure 58a)) and all simple X bracings (see Figure 
58h)).  All design concepts developed by rule 50 from symmetric design embryos are shown in 
Table 36.   
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Figure 58. Eight types of symmetric design embryos used in the experiments with symmetric 

design rules 

  
Symmetric Designs vs. Asymmetric Designs 

When we compare the best symmetric design concepts (see Table 35) with the ones generated 
from random design embryos (see Table 31), we observe that there are no significant differences 
in their performance.  The overall best design concept was produced from a randomly generated 
design embryo by rule 154 (see Table 31) but two best symmetric designs shown in Table 35 
outperform the second best design produced from a random design embryo. Only 2 out of 12 
design concepts shown in Table 31 are symmetric, namely the 7th and the 8th best designs 
developed by rules 19 and 178, respectively.  In fact, the same design concepts can be found in 
Table 35.  Rule 19 generates the 4th best symmetric design while rule 178 generates the 7th best 
symmetric design. 
K bracings 

The best design concepts produced by elementary CA rules with the second group of wind 
bracing elements are shown in Table 37.  All of them exhibit the fully braced pattern in which all 
cells from the second story up to the topmost story of the structural system are occupied by K 
bracings.  The differences among the design concepts shown in Table 37 are limited to the 
configurations of the design embryo. 

The total weight of the best design concept was equal to 449,376 lbs. (calculated using the 
first-order structural analysis) and was slightly better than the weight of the best design concept 
produced in the experiments with randomly generated design embryo (see Table 33).  In general, 
the best design concepts produced in the experiments with the symmetry constraint were of 
similar, if not identical, performance as the best design concept produced with randomly 
generated design embryos. 
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Table 35. Best symmetric designs of wind bracing systems consisting of simple X bracings 
produced by elementary CA rules with the symmetry constraint 
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Table 36. Symmetric designs of wind bracing systems produced by elementary rule 50 

 
 

Configuration of the Design Embryo 
Both Table 35 and Table 37 show that better design concepts are develo

general configurations of the design embryo than the simplest design embryo st
6.2.1.  In fact, only 1 out of 12 best design concepts presented in Table 35 and
des

ped from more 
udied in section 
 1 out of 6 best 
bryo consisting 

emaining design 
ign concepts shown in Table 37 were generated from the simplest design em

of either a single simple X bracing or K bracing located in the middle bay.  The r
concepts presented in Table 35 and Table 37 were developed from more general configurations 
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of the design embryo.  Thus, it is beneficial to employ more complex configurations of the 
design embryos in order to generate design concepts of better performance.  This result 
ex

 

racings and 
 

actly corresponds to the findings discussed in the previous section in which I found that it is 
not sufficient to use the simplest design embryos and search only the space of the design rules.  
One should rather search both the space of design embryo configurations and the space of the 
design rules applied to these embryos. 

Table 37. Best symmetric designs of wind bracing systems composed of K b
produced by elementary CA rules with the symmetry constraint

 
 

6.2

ed on an elementary CA rule and a design embryo determining the initial 
co

of wind bracing systems developed by elementary CAs with the 
de

.4. Summary 
In this section, I empirically investigated the simplest generative representations of wind 

bracing systems based on elementary cellular automata.  These representations consist of a 
design rule bas

nfiguration of wind bracings. 
In the first subsection, I described the results of design experiments in which I exhaustively 

searched the space of the design rules and applied them to an arbitrarily assumed design embryo.  
The simplest configuration of the design embryo was assumed which consisted of a single simple 
X bracing, or K bracing, located in the central bay.  Even these extremely simple experimental 
settings were able to produce novel structural shaping patterns of good performance.  I also 
compared the design concepts 

sign concepts generated randomly and found out that the former perform better in terms of 
both the total weight of the steel structural system and its maximum horizontal displacement.  I 
compared the developed design concepts with the designs known from the structural engineering 
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literatu ld be 
generated by elementary CA rules. 

Furthermore, I investigated the impact of various representation specific parameters on the 
quality of generated design concepts.  I found that the location of the design embryo (bottom vs. 
top of the steel structure) has on average no influence on the performance of the produced design 
concepts. On the other hand, the use of nonperiodic boundary conditions may increase the total 
weight of the steel structural systems by several percent when K bracings are used and has no 
impact on the quality of produced design concepts when X bracings are employed. 

In the second subsection, I empirically studied more general configurations of the design 
embryo.  Here, the design embryos were no longer restricted to assume the simplest possible 
configuration but were instead generated randomly.  The results of the experiments have shown 
that these more complex configurations of the design embryo produced better results.  This result 
shows that both the space of the design embryos and the space of the design rules should be 

rrently.  

f the design experiments with the symmetry constraint.  
Th

employed to 
estimate the quality of the produced design concepts.  It might be the case that the results will be 
differe
the symme
the design 

In the 
bracing sys n 
2.  The I entally investigate the design rules based on both standard and totalistic 
CAs (s
two-dimen

6.3. Desig
All exp n section 6.2 considered only two types of wind 

bracing

we cannot restrict the design space to only two types of 
he contrary, majority of structural elements 

co

one-dimensional cellular automata (1D CAs) are studied where each cell may have in general 

re.  I discovered that many traditionally known structural shaping patterns cou

searched concu
In the third subsection, I demonstrated how we can incorporate domain knowledge in the 

generative representations.  I illustrated that with the symmetry requirement frequently applied in 
structural design.  I showed how we can constrain both components of the generative 
representation, i.e. the design embryo and the design rule, so that it develops symmetric design 
concepts.  I also described the results o

ey showed that on average no performance gain is achieved (in terms of the total weight of the 
structural system) when the symmetry constraint is imposed compared to the situation when no 
symmetry constraint is used and the design concepts are developed from random design 
embryos.  In these experiments, however, only a single objective measure was 

nt when more complex evaluation models will be assumed.  The design experiments with 
try constraint also confirmed the previous results that more complex configurations of 
embryo produce on average better results. 
following sections, I will further investigate more general representations of wind 
tems.  First, I will extend the number of types of wind bracing elements to more tha

n,  will experim
ee explanations in section 2.2).  Finally, I will empirically study the design rules based on 

sional CAs which are applied to 2D design embryos. 

n Concept Generators Based on 1D Cellular Automata 
eriments reported i

 elements at a time.  For these types of problems, elementary CAs were 
adequate to generate design concepts of wind bracing systems.  However, for 
many design problems, 
structural elements.  On t

nsidered in ‘real-world’ design problems will have more than 2 possible 
types.  From the representational point of view this corresponds to attributes 
having multiple values (see for example Figure 19 which graphically illustrates 
the values of attributes representing wind bracing elements with 7 possible 
values).   

For these types of problems design concept generators based on elementary 
CAs are not sufficient and more general CAs must be used.  In this section, 
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more than two values.  One can also vary the size of the local neighborhood and thus control the 
radius of local interactions among cells. 

Two types of 1D CAs have been studied.  First, section 6.3.1 investigates standard 1D CAs as 
design concept generators of wind bracing systems in tall buildings.  Here, cells representing 
wind bracing attributes have 7 possible values as shown in Figure 19.  The following section 
ex

6.3.1. Standard 1D Cellular A
In this section, the results of the experiments are reported in which standard 

1D CA were used to develop design concepts of wind bracing systems.  Each 
cell had 7 possible values representing 7 types of wind bracing elements: no 
bracing, diagonal bracing \, diagonal bracing /, K bracing, V bracing, simple X 
bracing, and X bracing (see Figure 19). 

As discussed earlier in section 2.2.1, increasing the number of possible cell 
values causes a rapid growth in the number of possible 1D CA rules.  For 
example, when there are only 2 possible cell values then the size of the rule 
space is equal to  rules.  When we increase the number of cell states 
(and keep the sam  size of the local neighborhood, i.e. equal to 3) to 7 then 
there are  possible 1D CA rules. When we also increase 

to 2, then the rule spaces become even larger.  In this case, 
there are  possible 1D CA rules!   

When the radius of the local neighborhood is equal to 1 and the number of cell states is equal 
to 7, then there are 343 (i.e. ) possible combinations of cell values in the local 
neighborhood of size 3 compared to 8 possible combinations corresponding to binary cell values.  
Thus, assuming a fixed ordering of the local neighborhoods, we can represent any 1D CA rule 
with 7 possible cell values and the radius equal to 1 as a string of 343 digits.  Each digit in this 
string can have a value from 0 to 6.  The string contains the outcome values determined by a 1D 
CA rule and, given the assumed ordering of the local neighborhoods, uniquely defines each 1D 
CA rule.  Similarly, we can represent any 1D CA rule with 7 possible cell values and the radius 
equal to 2 as a string of 14,203 digits. 

In any case, the size of the 1D CA rule space with 7 possible cell values is truly enormous.  It 
is impossible to search this space exhaustively, as I did in the previous sections with elementary 
CAs.  Hence, only a random search of this vast space was conducted and its results are reported 
in this section. 

Table 38 shows the parameters and their values used in the design experiments reported in 
this section.  As stated earlier, 1D CAs with 7 cell values representing 7 types of wind bracings 
were used.  A randomly selected design rule was applied to a randomly generated design embryo 
and developed a design concept of a wind bracing system from it.  Two radii of the local 
neighborhood were studied: 1 and 2.  They correspond to the sizes of the local neighborhood 
equal to 3 and 5, respectively.  All experiments reported in this section used CA rules with 
periodic boundary conditions. 

Two samples of 10,000 design concepts each (one sample for each radius length) were 
developed in this way and evaluated using the first-order analysis.  The values of the total weight 
of the structural system and its maximum horizontal displacement were recorded.  The results of 
the experiments are presented below separately for each radius. 

plores the space of design rules based on totalistic 1D CAs (see section 6.3.2).  

utomata 

322 256=
e

37 343 2897 7 7.4 10= = ⋅
the radius of the local neighborhood 

57 16807 142037 7 3.6 10= = ⋅

7 7 7⋅ ⋅
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Table 38. Parameters and their values used in the design experiments with 1D CAs 

Experimental Parameter Value(s) 
Number of cell values  7 

Radius of the local neighborhood  1, or 2 

Embryo generation mechanism Random 

Design rule search mechanism Random 

Random sample size 10,000 

Boundary conditions Periodic 

  
Best Designs 

Table 39 shows 12 best design concepts developed by 1D CA rules when the radius of the 
local neighborhood was equal to 1.  Four best designs presented in Table 39 exhibit various 
stages of development of a fully braced pattern in which either K bracings or V bracings were 
used.  The best design concept exhibits the most developed fully-braced pattern covering the 
majority of the height of the structure.   

As I discussed earlier, each design rule based on a 1D CA rule with 7 possible cell values can 
be expressed as a number consisting of 343 digits in base 7 or, when we use the numbering 
scheme introduced in section 2.2.2, as a number in base 10.  Thus, using this convention we can 
represent the design rule that developed the best design concept shown in Table 39: 

• In base 7 (343 digits):  
 545424016642342320424165131406366022446402234265021410423614042121051

331221632254010664300221413632410526110465544133323530533241332233604
355205233401513516364151313501116364250165353441123466640412666131401
200413235553540210402560315154002505466264024054236631205530054635654
3156022355051311542240044113016304213122315110415253064214554553504 

• In base 10: 
 600277640749251490111461707339861568437408432431431112142452964393652

349072790748987865666957215330331863709429633064657691093016999508397
425187657229731217052211026584365118722738548997128368028323939157875
755782157066793619622057542688580843881427759962485663904990076208822
32169303078198 

When we know the number of the design rule and the configuration of the design embryo, 
i.e. in this case the string consisting of 5 digits - 06640, we can uniquely define a design concept 
developed by this rule. 
Structural Shaping Patterns 

Table 39 contains several interesting structural shaping patterns of good performance.  First, 
the 5th and the 12th best designs concepts exhibit two variations of the horizontal truss pattern.  
The former pattern was formed by V bracings located every two stories and it covers almost the 
entire height of the structural system.  The latter one was generated by an interesting 
combination of K and V bracings which form two-story horizontal trusses.  The two-story tru es 
cover m re than half of the height of the structural system.  Second, the 6th, 7th, and 10th design 
concepts exhibit elaborate versions of the macro bracing pattern.  Here, the widths of the macro 

ss
o
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bracing patterns are equal to either 3 or 4 stories.  The macro bracings are formed from a 
combination of various types of wind bracing elements, e.g. diagonal /, K, and V bracing in the 
case of the 7th design concept.  Finally, the 8th design concept exhibits a new pattern which is 
formed by a combination of simple X bracings, V bracings, and K bracings. 

 

Table 39. Best designs of wind bracing systems developed by 1D CAs with the radius of the 
local neighborhood equal to 1 
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Impact of an Increased Size of the Local Neighborhood 
In the second group of design experiments, the impact of the increased size of the local 

neighborhood was investigated.  The best design concepts produced by 1D CA rules with the 
radius equal to 2 are shown in Table 40. 

 

Table 40. Best designs of wind bracing systems developed by 1D CAs with the radius of the 
local neighborhood equal to 2 
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In this case, the best design concept exhibits the fully-braced pattern formed by V bracings
 of the structural system.  The total w

 
which spans the entire height eight of the steel structure is 
comparable to the best design found in the experiments with K bracings (see Table 16).  Various 
stages of the development of this pattern can also be found in the 3rd, 4th, and 7th design concept 
shown in Table 40.   

The macro bracing patterns can be identified in the 2nd, 6th, 11th, and 12th design concept.  The 
first two design concepts exhibit relatively simple versions of this patterns consisting of either V 
and diagonal \ bracings, or V, K, and diagonal \ bracings.  The latter two macro bracing patterns 
are much more complex and formed by all 7 types of wind bracings elements. 

Finally, the 7th, 9th, and 10th design concepts exhibit apparently chaotic patterns where no 
regularity can be found.  It is worth mentioning that even the design concepts with the ‘chaotic’ 
patterns have better performance than the best design concepts composed of produced simple X 
bracings and by elementary CA rules. 
One-dimensional CAs vs. Elementary CAs 

When we compare the performance of the design concepts generated by 1D CA rules (see 
Table 39 and Table 40) with the ones developed by elementary CA rules (see Table 8 and Table 
16), we observe that they are better than designs produced by X bracings but worse than 
designs consisting of K bracings.  This statement, however, cannot be generalized too far 
because the two rule spaces were not sampled equally.  In the case of elementary CA rules, the 
entire rule space has been exhaustively searched.  In the case of 1D CA rule, only a tiny portion 
of the design rule space was sampled.  

I demonstrated earlier in this section that the rule space is enormous even when the smallest 
radius of the local neighborhood is used.  It grows even more rapidly when we increase the 
radius.  Thus, it is impossible to search this space exhaustively.  We need to find ways to 
improve our possibilities of identifying good design rules in these vast rule spaces.   

One of possible ways to achieve this goal is described in the following section.  It discusses 
the use of totalistic 1D CAs instead of standard 1D CAs.  Totalistic 1D CAs significantly reduce 
the size of the rule spaces.  Another possibility is described in chapter 8, in which more 
intelligent search mechanisms (evolutionary algorithms) are used to search the vast rule spaces 
for good design rules. 

6.3.2. Totalistic 1D Cellular Automata 
In the previous section, I demonstrated that the number of 1D CA rules 

grows rapidly when we increase the number of possible cell values and/or the 
radius of the local neighborhood.  There is a way, however, to substantially 
reduce the number of 1D CA rules by using totalistic 1D CA.  The idea of a 
totalistic CA is to take the new value of each cell to depend only on the 
average value of the neighboring cells, and not on their individual values (see 
section 2.2.1 and Figure 6).   

By using totalistic 1D CAs, we can reduce the size of rule space from 

 the rule space by hundreds, or even 

In the case of a totalistic 1D CA with 7 possible cell values, there are only 19, i.e. 

37 2897 7.4 10= ⋅  to 3 7 2 19 167 7 1.1 10⋅ − = = ⋅  when the radius is equal to 1 and from 
57 142037 3.6 10= ⋅  to 5 7 4 31 267 7 1.5 10⋅ − = = ⋅  when the radius is equal to 2.  Thus, 

totalistic 1D CAs can reduce the size of
thousands, orders of magnitude.   

3 7 2⋅ − , 
possible combinations of cell values in the local neighborhood of size 3.  Similarly, there are 
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5 7 4 31− =  possible combinations of cell values in the local neighborhood of size 5.  Thus, b
A instead of a standard 1D CA, we reduc

⋅ y 
applying a totalistic 1D C e the representation of a 
design rule from 343 digits to only 19 digits and from 14,203 to 31 digits when the radius of the 
local neighborhood is equal to 1 and 2, respectively.  Similarly as before, each of the 19 or 31 
digits can have a value from 0-6.  Given the assumed ordering of the local neighborhoods, each 
string of 19 or 31 digits uniquely defines a totalistic 1D CA rule. 

Even though the space of totalistic 1D CA rules is significantly smaller than the space of 
standard 1D CA rules, it is still vast and cannot be searched exhaustively.  Hence, as before, a 
random search of this rule space was performed.  Randomly selected design rules based on 
totalistic 1D CAs were applied to randomly generated design embryos.  Also in this case, two 
samples of 10,000 design concepts (one for each radius length) were produced in this way. 
Best Designs 

The best design concepts developed by totalistic 1D CA rules with the radius of the local 
neighborhood equal to 1 are shown in Table 41.  All design concepts presented in the table 
exhibit the fully braced pattern in which either K bracings or V bracings were used.  The only 
differences among the design concepts occur in the lowest part of the building (first 3 stories of 
the structural system).   

When we compare the performance of the developed design concepts we observe that all of 
them outperform (in terms of the total weight of the steel structural system) the best design 
concept developed by standard 1D CA rules with the neighborhood radius equal to 1 (see Table 
39).  They are also better than all design concepts, except for the best one; generated by standard 
1D CA rules with the radius equal to 2 (see Table 40).  Thus, due to reduced size of the rule 
(search) space, totalistic 1D CA can much easier produce design concepts of good performance.   
Structural Shaping Patterns 

Totalistic 1D CA rules not only produced design concepts of good performance but also 
generated several interesting structural shaping patterns.  The fully braced pattern outperformed 
other structural shaping patterns in terms of the total weight of the steel structural system.  
Moreover, it was produced by a relatively large number of design rules based on totalistic 1D 
CA rules. Hence, all design concepts shown in Table 41 exhibit this pattern.  There were, 
however, many examples of the design rules that generated novel shaping patterns of good 
performance which were only slightly inferior to the designs exhibiting the fully braced pattern.  
Several such patterns are presented in Table 42.  

Among the patterns shown in Table 42, we can find elaborate versions of the horizontal truss 
pattern in which multi-story trusses are formed.  For example, the 9th and 10th design concepts 
presented in the table exhibit horizontal truss pattern in which trusses formed by a combination 
of X and K bracings span two stories of a structural system.  The 2nd design in Table 42 contains 
three-story horizontal trusses produced by a combination of 3 types of wind bracing elements, 
namely K, V, and simple X bracings.   

The 4th design shown in the table exhibits an interesting variation of the fully-braced 
pattern.  Here, both V bracings and K bracings are used interchangeably every two stories.  More 
complex patterns produced by a large number of wind bracing elements (virtually every cell is 
braced!) can be found in 4 design concepts shown in Table 42, i.e. in the 5th, 6th, 11th, and 12th 
designs.  On the other hand, the 7th design contains very few wind bracing elements and 
nevertheless exhibits comparable performance. 
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Table 41. Best designs of wind bracing systems developed by totalistic 1D CAs with the radius 
of the local neighborhood equal to 1 

 
 
Totalistic 1D CA rules with an increased size of the local neighborhood (the radius equal 

to 2) produced similar results to the ones reported above for the radius equal to 1.  Hence, only 
the 3 best designs produced in these experiments are shown in Table 43 and a detailed discussion 
of the obtained results has been omitted. 
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Table 42. Interesting structural shaping patterns produced by totalistic 1D CA rules with the 
radius of the local neighborhood equal to 1 
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Table 43. Best designs of wind bracing systems developed by totalistic 1D CAs with the radius 
of the local neighborhood equal to 2 

 

6.3.3. Summary 
In this section, I extended the number of possible types of wind bracing elements to 7 and 

used more general types of cellular automata, namely 1D CAs to generate design concepts of 
wind bracing systems.  Also, I tested the impact of an increased size of the local neighborhood 
(increased radius of local interactions) on the performance of the produced design concepts. 

In the first subsection, I investigated the design rules based on standard 1D CA rules which 
work in a similar way as elementary CA rules studied in the previous section.  I discussed a rapid 
growth of the sizes of 1D CA rule spaces when the number of cells states and the radius of the 
local neighborhood increase.  This property prevents one from conducting an exhaustive search 
of the rule spaces, as it was the case with elementary CAs.  Hence, only a random search in these 
vast spaces was performed. 

The conducted experiments have shown that 1D CA rules with 7 types of wind bracing 
ing patterns.  The patterns are even more elaborate 

than th formance of the 
s composed of X 
t impact of the 
n concepts was 

ic 1D CA rules.  
hat they can be 
ules have shown 
 produced design 

significantly better performance than standard 1D CA rules.  The best design 
concepts generated in these experiments are of comparable performance to the best design 

elements generate interesting structural shap
e ones discovered in the experiments with elementary CAs.  The per

produced design concepts of wind bracing systems was better than the concept
bracings but worse than the ones consisting of K bracings.  No significan
increased radius of the local neighborhood on the performance of the desig
observed. 

In the second subsection, I introduced the design rules based on totalist
Totalistic 1D CA rules substantially reduce the sizes of the rule spaces so t
searched more efficiently.  The conducted experiments with totalistic 1D CA r
that they not only generated intriguing structural shaping patterns but they also
concepts of 

 



176 

concepts produced by elementary CA rules and composed of K bracings (see Table 33) and 
mu

dissertation and the obtained results are reported in sections 6.4.1 and 6.4.2, respectively. 
When using generative representations based on 2D CAs, one has to specify not only the 

radius of the local neighborhood (2D neighborhood in this case) but also its shape.  Two most 
frequently used shapes of the local neighborhood in scientific literature include Moore 
neighborhood and von Neumann neighborhood (see section 2.2.1 and Figure 8).  In this 
dissertation, a larger selection of shapes of the local neighborhood was studied, including Moore 
neighborhood, von Neumann neighborhood, diagonal neighborhood, north-south neighborhood, 
and east-west neighborhood (see Figure 59).   

 

ch better than the concepts consisting of simple X bracings. 

6.4. Design Concept Generators Based on 2D Cellular Automata 
Design concept generators studied so far in this chapter investigated only 

one-dime ata.  The structural systems considered in this nsional cellular autom
dissertation are, however, inherently two-dimensional.  There also exist planar 
interactions among structural elements that are not accounted for using concept 
generators based on 1D CAs. 

The underlying motivation behind the experiments reported in this section 
is that the planar interactions among structural members are important from 
the structural engineering/design point of view and should be explicitly 
modeled.  In order to achieve it, two-dimensional cellular automata (2D CAs) 
have been proposed as design concept generators in section 4.4.3.  

Similarly as it was the case with 1D CAs, there are two types of 2D CAs: 
standard and totalistic.  Both types of 2D CAs have been investigated in this 

 
Figure 59. Shapes of the two-dimensional local neighborhoods used in the experiments with 

design concept generators based on 2D CAs 

An additional experimental parameter that had to be specified for the generative 
representations based on 2D CAs is the number of iterations of a 2D CA rule.  This parameter 
was introduced earlier in section 4.4.3 and named iteration_max.  Several sensitivity analyses 
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w  
obtained results. 

Table 44 shows the experimental parameters and their values used in the design experiments 
with 2D CAs.  The number of types of wind bracing elements was restricted to 3 only: no 
bracing, K bracing, and simple X bracing in order not to cause an explosion of the size of the 
rule spaces (which were anyway vast).  This resulted in a significant reduction of the search 
space.  On one hand, a large number of potentially fit design concepts were omitted because they 
could not be represented.  On the other hand, this assumption helped me focus on various aspects 
of representing spatial interactions among structural elements.  They were investigated 
experimentally by varying the shape and radius of the local neighborhood of 2D CA rules.   

Similarly as in the previous sections, a random sample of 10,000 design concepts was 
generated for each shape of the local neighborhood.  Randomly selected design rules based on 
2D CA were applied to randomly generated design embryos (now in the form of 2D 
configurations) of wind bracing elements (see section 4.4.3).  The design rules were 
subsequently iterated the number of times equal to the value of the iteration_max parameter.  At 
each step, a new design concept was produced and evaluated using the first-order structural 
analysis. 

Table 44. Parameters and their values used in the design experiments with 2D CAs 

ere performed to determine the impact of the value of this parameter on the performance of

Experimental Parameter Value(s) 
Number of cell values  3 

Shape of the local neighborhood Moore, von Neumann, diagonal, north-
south, east-west 

Radius of the local neighborhood  1 or 2 

Emb  c ism ndom 

Desig r ism 

Num a 2D 
(itera n

0, 20, 50, 100, 1000 

Rand 000 

ryo generation me han Ra

n ule search mechan Random 

ber of iterations of CA rule 5, 1
tio _max) 

om sample size 10,
 

6.4.1. Standard 2D Cellular Automata 
In this section, experimental results obtained using standard 2D CAs 

are presented.  In these experiments, design rules based on standard 2D CA 
rules were applied to 2D design embryos and developed design concepts of 

 As stated earlier, the number of types of 
wi

neighborhood was in

wind bracing systems from them. 
nd bracing elements was restricted to 3 only.  5 shapes of the local 

neighborhood were investigated experimentally.  Due to enormous sizes of the 
standard 2D CA rule spaces, only one length of the radius of the local 

vestigated, i.e. the radius equal to 1.  Obtained results are 
reported separately for each of the considered neighborhoods in the following 
subsections. 
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Moore Neighborhood 

his case, the initial 

The experiments reported in this subsection involved randomly generated design embryos in a 
form of 2D configurations of wind bracing elements and randomly selected design rules based on 
2D CA rules with Moore neighborhood (see Figure 59).  The size of this 2D CA rule space was 
equal to 

93 19683 93913 3 1.5 10= = ⋅  (cells had 3 possible values and the radius was equal to 1). 
of the local neighborhoods, we can represent any 2D CA rule with Assuming a fixed ordering 

3 possible cell values and Moore neighborhood as a string of 19,683 digits where each digit can 
have a value from 0 to 2.  As described before, the string contains the outcome values 
determined by a 2D CA rule and, given the assumed ordering of the local neighborhoods, 
uniquely defines each such rule. 

Several values of the iteration_max parameter, i.e. the parameter defining the number of 
iterations of a 2D CA rule, were investigated.  Figure 60 shows typical results obtained in the 

 iteration_max parameter equal to 5.  In tdesign experiments with the value of
2D configuration of wind bracing elements was generated randomly (t=0) and a 2D CA rule was 
applied 4 times.  In this way, 5 design concepts were generated and subsequently evaluated.   

 
Figure 60. Design concepts of wind bracing systems generated by 5 iterations of a 2D CA rule 

with Moore neighborhood 

Best Designs 
The best design concepts developed by 2D CA rules with Moore neighborhood are shown in 

Table 45.  The best design concept had the total weight equal to 537,086 lbs. whereas the median 
total weight of the entire sample of design concepts was equal to 570,751 lbs.  It is difficult to 

entify any structural shaping patterns shared by several design concepts shown in Table 45.  
er exhibit randomly looking configurations of K and simple X 

id
On the contrary, they rath
bracings. 
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Table 45. Best design concepts of wind bracing systems developed by 2D CA rules with Moore 
neighborhood 

 
Impact of the Number of Iterations 

Also, no significant differences were detected in terms of the impact of the number of 
iterations (iteration_max) on the performance of generated design concepts.  For example, the 
fol e 
number of iterations specified by the ax parameter were obtained: 

• 5 iterations:  570,229 lbs. 
• 10 iterations:  574,777 lbs. 
• 20 iterations:  571,047 lbs. 
• 50 iterations:  568,925 lbs. 
• 100 iterations:  574,188 lbs. 
• 1000 iterations: 569,721 lbs. 

In this case, the best median value was achieved for the design concepts generated after 50 
iterations of a 2D CA rule with Moore neighborhood.   However, the differences between the 
median values are small and insignificant.  Hence, it is difficult to uniquely point out to a 
specific value of the iteration_max parameter which produces the best results for 2D CAs with 
Moore neighborhood. 

Von Neumann Neighborhood 
In this subsection, the same experimental parameters were used with one exception: von 

Neumann neighborhood (see Figure 59) was employed instead of Moore neighborhood.  In this 
case, the size of the 2D CA rule space was significantly smaller and equal to 

15  (but still very large!).  Each 2D CA rule with 3 cell values and von 
Neumann neighborhood could be represented as a string of 243 digits (in 0-2 range), given the 
same assumption on the ordering of the local neighborhoods. 

lowing median values of the total weight of the steel structural systems produced after th
 value of the iteration_m

53 243 13 3 8.7 10= = ⋅

 



180 

Best Designs 
Table 46 shows the best designs produced by 2D CA rules with von Neumann neighborhood.  

The best design concept found had the total weight equal to 536,390 lbs. and was only slightly 
better (by 696 lbs. or 0.1 percent) than the best design concept produced using Moore 
neighborhood.  The median total weight of the entire sample of design concepts was equal to 
572,063 lbs., which is slightly more than the median value obtained for Moore neighborhood. 
Structural Shaping Patterns 

 
iterations of a 2D CA rule, 2 design concepts in the experiments with 10 iterations of the rule, 
and 1 in the experiments with 100 iterations of the design rule.  The differences between the 
median values of the total weight of steel structural systems obtained after various numbers of 
iterations of 2D CA rules were, again, small.  The lowest median (565,826 lbs.) was obtained 
when the iteration_max parameter was equal to 100 and the largest value (575,093 lbs.) was 
achieved when it was equal to 50. 

Table 46. Best design concepts of wind bracing systems developed by 2D CA rules with von 
Neumann neighborhood 

Similarly as it was the case with Moore neighborhood, most of the design concepts shown in 
Table 46 have randomly looking configurations of K and simple X bracings.  There are, 
however, two exceptions. Namely, the 4th and 6th design concepts exhibit some forms of 
emergent macro bracing patterns, particularly in the lower and middle parts of the structural 
system.  The 6th design concept has more wind bracing elements located in the outer bays of the 
structural system and hence, the macro bracing pattern is not readily visible.   
Impact of the Number of Iterations 

Half of the design concepts presented in Table 46 were generated in the experiments with 50

 
 

Diagonal Neighborhood 
In this group of experiments, design rules based on 2D CA rules with the diagonal 

neighborhood (see Figure 59) were investigated.  The diagonal neighborhood was selected 
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because it explicitly models the interactions among the current cell and its neighbors located 
along the diagonals, a pattern that frequently occurred in so-called macro bracings.   

In this case, the size of the 2D CA rule space was exactly the same as in the case of von 
Neumann neighborhood (but this is only true when the radius of the local neighborhood is equal 
to 1!), i.e.  

53 243 1153 3 8.7 10= = ⋅ .  Hence, each 2D CA rule with 3 cell values and the diagonal 
neighborhood could also be represented using a string of 243 digits. 

edian values obtained for the two previously 

f the structural system. 
Im

The differences between the medians obtained for various values of the iteration_max 
parameter were, as before, insignificant and oscillated between 568,485 lbs. (20 iterations) and 
578,041 lbs. (1,000 iterations).   

Table 47. Best design concepts of wind bracing systems developed by 2D CA rules with the 
diagonal neighborhood 

Best Designs 
Best design concepts obtained in this group of experiments are presented in Table 47.  The 

total weight of the best design was equal to 542,354 lbs. and was slightly worse (by about 5,000-
6,000 lbs.) than the best design concepts generated by 2D CA rules with Moore and von 
Neumann neighborhoods.  The overall median total weight (572,311 lbs.) of the entire sample of 
design concepts was almost identical to the m
investigated shapes of the local neighborhood. 
Structural Shaping Patterns 

Table 47 also shows that there are no qualitative differences with respect to the structural 
shaping patterns exhibited by the best design concepts.   As before, most of them show fairly 
random looking configurations of K and simple X bracing.  In three cases, namely 2nd, 5th and 6th 
design concepts shown in Table 47, emergent macro bracing patterns are being formed mainly in 
the central part o

pact of the Number of Iterations 
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North-South Neighborhood 

shows 6 best design concepts developed by 2D CA rules with the north-south 
ne

concepts shown in Table 48 
ha

The design rules based on 2D CA rules with the north-south neighborhood explicitly modeled 
vertical interactions among wind bracing elements in a structural system.  Here, the size of the 
rule space was equal to 

33 27 123 3 7.6 10= = ⋅  (as before, 3 possible cell values were used).  In this 
case, any 2D CA rule with the north-south neighborhood could be represented by a string of 27 
digits. 
Best Designs 

Table 48 
ighborhood.  The best design concept had the total weight equal to 458,274 lbs. and was 

significantly better than the best design concepts produced by 2D CA rules with other shapes of 
the local neighborhood described previously.  In fact, all design 

ve better performance then any of the best design concepts generated using 2D CA rules with 
Moore, von Neumann, or diagonal neighborhoods. 

Table 48. Best design concepts developed by 2D CA rules with the north-south neighborhood 

 
The overall median value of the total weight of the entire sample of design concepts generated 

using 2D CA rules with the north-south neighborhood was equal to 573,875 lbs. and almost 
identical to the median values reported previously for various shapes of the local neighborhood.  
Also, as before, no significant differences were detected in terms of the performance of the 
design concepts generated using the range of values of the iteration_max parameter.  The 
medians changed from 564,626 lbs. (100 iterations) to 575,601 lbs. (10 iterations). 
Structural Shaping Patterns 

Design concepts shown in Table 48 exhibit qualitatively different structural shaping patterns 
than the ones produced previously by 2D CA rules with other shapes of the local neighborhood.  
The 5 best design concepts have the fully-braced pattern composed of K bracings.  The best 
design concept exhibits a fully developed pattern in which all structural cells are occupied by K 
bracings.  The other 4 design concepts exhibit slight variations of the fully braced pattern in 
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which some cells contain either simple X bracing or no bracings.  The 6th best design concept 
shown in Table 48 has an interesting structural shaping pattern which is similar to (but not 
exactly the same) the checkerboard pattern identified previously in the design experiments with 
elementary CA.  The exact checkerboard pattern has been developed only in the middle part of 
the structural system while two different variations of this pattern are visible in the lower and 
upper parts of the structure. 

East-West Neighborhood 
The east-west local neighborhood explicitly modeled horizontal interaction among the 

structural elements.  In this case, the size of the rule space and the length of its representation, as 
a string of digits, were exactly the same as for the north-south neighborhood and equal to 

12  and 27, respectively. 
Best Designs 

Best design concepts developed by 2D CA rules with the east-west neighborhood are shown 
in Table 49.  The total weight of the best design concept found was equal to 476,944 lbs. and was 
worse than the total weight of the best design concept generated by the north-south neighborhood 
by more than 18,500 lbs.  On the other hand, it was significantly better (by about 60,000 lbs.) 
than the total weight of the design concepts generated by Moore, von Neumann, and diagonal 
neighborhoods. 

Table 49. Best design concepts developed by 2D CA rules with the east-west neighborhood 

33 273 3 7.6 10= = ⋅

 
The overall median value of the total weight of the entire sample of design concepts generated 

using 2D CA rules with the east-west neighborhood was equal to 580,460 lbs.  It was the highest 
(worst) value obtained in all design experiments with standard 2D CA rules.  Also, the observed 
variations in median total weights of the design concepts developed for different values of the 
iteration_max parameter were the largest (more than 20,000 lbs.) and ranged from 567,947 lbs. 
(50 iterations) to 588,841 lbs. (100 iterations). 
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Structural Shaping Patterns 
The structural shaping patterns shown in Table 49 are similar to the ones prod

rules with the north-south neighborhood.  All 6 design concepts presented in 
slight variations of the fully braced pattern in which most of the cells are 
bracings.  It is, however, interesting to observe the influence of the sha
neighborhood in this case.  All disruptions of the uniform pattern produced by K
along the horizontal direction (within a single story of the tall building). 

Summary 
In this section, I empirically investigated generative representations based 

CAs.  These representations consist of a design rule based on a standard 2D CA ru
embryo in a form of a 2D configuration of wind bracing elements. 

Five subsections reported the results of the experiments in which I studied th
different shapes of the local neighborhood on the performance of design concepts of 
bracing systems in tall buildings.  I also investigated the impact of the number of iterations of a 

uced by 2D CA 
the table exhibit 
occupied by K 

pe of the local 
 bracings occur 

on standard 2D 
le and a design 

e influence of 5 
wind 

this dissertation by the iteration_max parameter, on the quality of 
pro

esses. 

he remaining two shapes of the local neighborhood, namely 

ed the 
hborhood. 

2D CA rule, denoted in 
duced design concepts.  The experimental results reported in this section focused on the 

qualitative (patterns) and quantitative (best and median performance) aspects of the design 
generation proc

In the first 3 subsections, I investigated Moore, von Neumann, and diagonal neighborhoods.  
The conducted design experiments have shown that these 3 neighborhood shapes produce 
generally inferior results in terms of the total weight of the design concepts compared to 
generative representations based on 1D CA.  The best design concepts generated in these 
experiments exhibited mainly random looking configuration of K and simple X bracing.  In 
several cases, however, some emergent macro bracing patterns were formed. 

n was different for tThe situatio
the north-south neighborhood and the east-west neighborhood.  The best design concepts 
generated by standard 2D CA rules with these two shapes showed good performance, which is 
comparable to the performance of the best design concepts generated by 1D CA rules. 

These findings are illustrated graphically in Figure 61 which shows the median and best 
performance of the design concepts generated by 2D CA rules with 5 different shapes of the 
local neighborhood. 

Figure 61 clearly shows that the differences among median values of the total weight of 
design concepts generated using various shapes of the local neighborhood are small and 
negligible.  The differences, however, do occur for the best design concepts developed by 2D CA 
rules with the north-south and east-west neighborhoods which substantially outperform
other 3 shapes of the local neig

Figure 62 illustrates the influence of the value of the iteration_max parameter on the median 
performance of the generated design concepts.  It shows that there is no preferred value of this 
parameter which produces the best design concepts.  On the contrary, for some shapes of the 
local neighborhood (von Neumann, north-south) a large number of iterations of a 2D CA rule 
was preferred while for other shapes (diagonal, east-west) smaller values produced better results. 

In this figure, only the median values of the total weight of the structural systems were 
considered.  The values of the iteration_max parameter had a significant impact of the dynamics 
of the design processes.  Their influence on the dynamics of design processes also changed with 
the shape of the local neighborhood.  
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Figure 61. Comparison of the median and best performance of the design concepts generated by 

standard 2D CA rules with 5 shapes of the local neighborhood 

 
Figure 62. Impact of the v max parameter on the median total weight of 

generated design t shapes of the local neighborhood 
alue of the iteration_
 concepts for differen
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6.4.2. Totalistic 2D Cellular Automata 
As I showed in the previous section, the sizes of the standard 2D CA rule 

rmous even for moderate values of cell states (3) and radii of the 
loc

ms from them.  Also, only 3 types of wind bracing elements were 
co

 2D CA rule space with 3 possible cell values and Moore 
ne

t design concept produced by a standard 2D CA rule with Moore 
ne

hown in Table 50 exhibit the fully-braced structural shaping pattern 
consisting of K bracings.  The two best design concepts, one for each radius, exhibit a fully 
developed pattern with all cells occupied by K bracings.  The remaining 10 design concepts 
display some variations of the fully braced pattern.  The influence of the increased radius of the 
local neighborhood on the generated patterns can be observed in the bottom row of Table 50.  
Specifically, the disruptions of the uniform pattern of K bracings by either simple X bracings or 
no bracings spread across the entire stories.  This is not the case with the patterns generated by 
tot tic 2D CA rules with the radius equal to 1 (see the top row of Table 50).  Here, the 
disruptions are localized to 2, or utmost 3, cells within a single story. 

spaces are eno
al neighborhood (1).  When a larger number of cell states needs to be 

considered or when the radius of the local neighborhood is larger than 1 then 
the only computationally feasible approach involves totalistic 2D CAs.  In this 
section, I report the experimental results obtained using design rules based on 
totalistic 2D CA rules.   Similarly as in the previous section, the design rules 
were applied to 2D design embryos and developed design concepts of wind 
bracing syste

nsidered.  This time, however, 2 values of the radius of the local 
neighborhood were studied experimentally, i.e. the radius equal to 1 and 2.  As 
before, the obtained results are divided with respect to the shapes of the local 
neighborhood that were used in the experiments and reported in the following subsections. 

Moore Neighborhood 
The size of the totalistic

ighborhood was equal to 9 3 8 19 93 3 1.1 10⋅ − = = ⋅  when the radius of the local neighborhood was 
equal to 1 and 25 3 24 51 243 3 2.1 10⋅ − = = ⋅  when the radius equaled 2.   

Thus, we can represent any totalistic 2D CA rule with 3 possible cell values and Moore 
neighborhood as a string of 19 digits and 51 digits, when the radius is equal to 1 and 2, 
respectively.  This corresponds to the reduction of the length of the representation of a design 
rule by several orders of magnitude.  In the case of standard 2D CA rules with the radius of 1 and 
3 possible cell values we needed 19,683 digits whereas for a totalistic 2D CA rule with the same 
parameters we need only 19 digits. 
Best Designs 

Best design concepts developed by totalistic 2D CA rules with Moore neighborhood are 
shown in Table 50.  The top row presents the 6 best design concepts generated with the radius of 
the local neighborhood equal to 1 while the bottom row shows the 6 best concepts produced with 
the radius equal to 2. The total weight of the best design concept was equal to 458,274 lbs. for 
both lengths of the radius of the local neighborhood.  It was significantly better (more than 
78,000 lbs.) than the bes

ighborhood.  The overall median values for both radii were, however, larger than the overall 
median value obtained for standard 2D CA rules.  They were equal to 581,002 lbs. and 615,461 
lbs. for the radius equal to 1 and 2, respectively.   

 
Structural Shaping Patterns 

All 12 design concepts s

alis
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Table 50. Best design concepts of wind bracing systems developed by totalistic 2D CA rules 
ith Moore neighborhood and the radius of the local neighborhood equal to 1 (the top row) and

2 (the bottom row) 
w  

 
 

Von Neumann Neighborhood 
When von Neumann neighborhood was employed instead of Moore neighborhood, the size of 

the totalistic 2D CA rule space was even smaller and equal to  when the 
radius was equal to 1 and 0  when the radius was equal to 2.  Thus, each 

5 3 4 113 3 177,147⋅ − = =
13 3 12 27 123 3 7.6 1⋅ − = = ⋅
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totalistic 2D CA rule with 3 possible cell values and von Neumann neighborhood could be 
represented as a string of 11 digits and 27 digits, respectively. 
Best Designs 

Best design concepts developed by totalistic 2D CA rules with von Neumann neighborhood 
are shown in Table 51.  Similarly as before, the top row contains the best design concepts 
generated by the design rules with the radius equal to 1 while the bottom row shows the best 
designs produced with the radius equal to 2.  The best design concepts developed in both cases 
were identical and their total weight was equal to 458,274 lbs.  These concepts were also the 
same as the best concepts produced by totalistic 2D CA rules with Moore neighborhood (see 
Table 50).   

The best concepts shown in Table 51 were significantly (more than 78,000 lbs. or 14 percent) 
better than the best design concepts produced by standard 2D CA rules with von Neumann 
neighborhood (see Table 46).  The overall median total weights of the two samples of design 
concepts generated with the radii 1 and 2 were equal to 574,208 lbs. and 576,644 lbs., 
respectively.  They were slightly larger (by 2,000-4,000 lbs.) than the overall median obtained 
for standard 2D CA rules with von Neumann neighborhood. 
Structural Shaping Patterns 

All design concepts shown in Table 51 exhibit variations of the fully-braced pattern composed 
of K bracings.  The best design concepts had a fully developed pattern consisting exclusively of 
K bracings.  The remaining design concepts presented in Table 51 contain some localized 
disruptions of the pattern in which K bracings are replaced by simple X bracings or no bracing. 
An interesting pattern was formed in the central part of the 6th best design produced by a 
totalistic 2D CA rule with the radius equal to 2 (see the bottom row and sixth column of Table 
51).  Here, an emergent ‘circular’ pattern, whose width is equal to 2 stories/bays, is surrounded 
by simple X bracings located on the diagonals and no bracings located in the horizontal/vertical 
directions.  The entire structural shaping pattern is symmetric.  

Many other interesting structural shaping patterns have been identified during the process of 
iteration of totalistic 2D CA rules with von Neumann neighborhood.  Figure 63 shows the 
process of iteration of the design rule 7366334203861 applied to a random configuration of wind 
bracing elements.   The design rule produced more than 30 different design concepts, some of 
good performance, until it reached the configuration of the fully developed braced pattern 
consisting of K bracings. 

During the process of iteration, some unique patterns emerged, particularly in the central part 
of the structural system.  For example, at the iteration step t=29, a structural shaping pattern 
emerges which consists of 3 qualitatively diverse parts.  The top and bottom parts contain the 
f  
a pattern in the form  
central bays and stories. 

 
 
 
 
 
 
 

ully braced pattern consisting of K bracings.  The situation is different in the central part where
 of letter 8 emerges.  It consists mostly of simple X bracings located in the
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Table 51. Best design concepts of wind bracing systems developed by totalistic 2D CA rules 
with von Neumann neighborhood and the radius of the local neighborhood equal to 1 (the top 

row) and 2 (the bottom row) 
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Figure 63. Process of iteration of a totalistic 2D CA rule with von Neumann neighborhood and 

the radius of the local neighborhood equal to 2 
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Figure 63 cont. Process of iteration of a totalistic 2D CA rule with von Neumann neighborhood 

and the radius of the local neighborhood equal to 2 
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Figure 63 cont. Process of iteration of a totalistic 2D CA rule with von Neumann neighborhood 

and the radius of the local neighborhood equal to 2 

 

Diagonal Neighborhood 
In yet another group of experiments, I investigated totalistic 2D CA with 3 cell values and the 

diagonal neighborhood.  They formed the design rule space of size 5 3 4 113 3 17⋅ − = = 7,147  when 
the radius was equal to 1 and 9 3 8 19 93 3 1.1 10⋅ − = = ⋅  when the radius equaled 2.  Thus, totalistic 2D 
CA rules with 3 cell values and the diagonal neighborhood were represented by strings of 11 
(radius = 1) and 19 digits (radius = 2). 
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B
 

shown in Table 52.   
 

Table 52. Best design concepts of wind bracing systems developed by totalistic 2D CA rules 
with the diagonal neighborhood and the radius of the local neighborhood equal to 1 (the top row) 

and 2 (the bottom row) 

est Designs 
Best design concepts developed by totalistic 2D CA rules with the diagonal neighborhood are
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The best design concept generated by 2D CA rules with the diagonal neighborhood and th
dius of 1 had the total weight equal to 450,209 lbs..  It outperformed all design concepts foun

fact, there were 4 other de

e 
ra d 
so far by about 8,000 lbs.  In sign concepts which had better 
performance than the best fully-braced design concept found previously (see the top row of 
Table 52).  The overall median values of the total weight of the entire samples of generated 
design concepts were equal to 590,924 lbs. and 580,407 lbs. for the radius equal to 1 and 2, 
respectively.  They were larger by more than 8,000 lbs. and 18,000 lbs. than the overall median 
value produced in the experiments with standard 2D CA rules and the diagonal neighborhood. 
Structural Shaping Patterns 

The influence of the shape of the local neighborhood can be observed in several design 
concepts shown in Table 52.  For example, the 2nd and 5th design concepts have disruptions of 
the uniform pattern of K bracings by either simple X bracings and no bracings occurring in the 
diagonal directions (see the bottom row of Table 52). 

North-South Neighborhood 
The north-south neighborhood and the east-west neighborhood defined the totalistic 2D CA 

rule spaces with smallest sizes.  When the design rules based on totalistic 2D CA rules with 
north-south neighborhood and 3 cell values were used, then the size of the rule space was equal 
to  (the radius of 1) and  (the radius of 2).  In this case, 
each totalistic 2D CA rule was represented by a string of 7 and 11 digits, respectively. 
Best Designs 

The best design concepts developed by totalistic 2D CA rules with the north-south 
neighborhood are shown in Table 53.  Here, the design concept produced by a totalistic 2D CA 
rule with the radius equal to 2 (the bottom row) is slightly better than the design concept 
produced with the radius equal to 1.  It has the total weight of 458,274 lbs. and exhibits the 
previously identified fully-braced pattern consisting of K bracings.   

The overall median values obtained for totalistic 2D CA rules with the radius equal to 1 and 2 
were equal to 578,711 lbs. and 590,746 lbs., respectively, and were again larger and the value 
obtained for the corresponding standard 2D CA rule. 
Structural Shaping Patterns 

All the best design concepts presented in Table 53 exhibit various variations of the fully 
braced pattern.  The influence of the shape of the local neighborhood can also be identified here 
because the disruptions of the uniform pattern mostly occur along vertical directions. 

East-West Neighborhood 
The final group of design experiments with totalistic 2D CA rules involved the east-west 

neighborhood.  Here, the sizes of the rule spaces were exactly the same as in the case of the 
north-south neighborhood (see the previous subsection). 
Best Designs 

Table 54 shows the best design concepts developed by totalistic 2D CA rules with the east-
west neighborhood.  Here, the best design concept of a wind bracing system found so far has 

ed.  Its total weight was equal to 449,776 lbs.  It exhibits the same fully-braced 
sting of K bracings but with a different configuration of the first story. 

3 3 2 73 3 2,187⋅ − = = 5 3 4 113 3 177,147⋅ − = =

been identifi
pattern consi

The overall median values obtained for the radii of 1 and 2 were equal to 606,918 lbs. and 
622,112 lbs., respectively.  They were significantly larger (by 26,000 lbs. and 42,000 lbs.) than 
the overall median value obtained for the corresponding standard 2D CA rule. 
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Table 53. Best design concepts of wind bracing systems developed by totalistic 2D CA rules 
with the north-south neighborhood and the radius of the local neighborhood equal to 1 (the top 

row) and 2 (the bottom row) 

 
 

ns Structural Shaping Patter

s of the uniform pattern which spanned the entire 
stories. 

Similarly as before, the best design concepts exhibited slight variations of the fully-braced 
pattern.  Also, the shape of the local neighborhood had an impact on the properties of the 
disruptions of the uniform pattern which occur mostly along horizontal directions.  The increased 
radius length produced longer disruption
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Table 54. Best design concepts of wind bracing systems developed by totalistic 2D CA rules 
with the east-west neighborhood and the radius of the local neighborhood equal to 1 (the top 

row) and 2 (the bottom row) 

 
 

Summary 
The results reported in this section describe experimental studies of generative representations 

based on totalistic 2D CAs.  As it was the case with generative representations based on standard 
2D CAs, they consist of a design rule and a design embryo in a form of a 2D configuration of 
wind bracing elements.  The design rule, however, was based on a totalistic 2D CA rather than 
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on a standard 2D CA.  This resulted in a significant reduction of the size of the rule space, in 
some cases by several orders of magnitude. 

Similarly as in the previous section, this section was divided into five subsections which 
described results of the experiments obtained with 5 different shapes of the local neighborhood.  
Figure 64 compares the best design concepts generated by totalistic 2D CA rules with 5 different 
shapes and 2 radii of the local neighborhood.  It also relates these results to the best design 
co

t design concepts when totalistic 2D 
CA rules were employed.  The results reported in this section also showed that the radius of the 

 design 
co ring the iterative 

ncepts produced using standard 2D CA rules discussed in the previous section. 
Figure 64 clearly shows that there are no longer significant differences among the results 

produced by Moore, von Neumann, and diagonal neighborhoods and the north-south and the 
east-west neighborhoods, as it was the case with standard 2D CA rules.  On the contrary, all 
shapes of the local neighborhood produced comparable bes

local neighborhood does not have a large impact on the performance of the produced
ncepts but it influences the structural shaping patterns which are formed du

processes. 

 
Figure 64. Comparison of the performance of the best design concepts generated by totalistic 2D 

CA rules with 5 shapes and two radii of the local neighborhood and their relationship to the 
results obtained using standard 2D CA rules 

Even though the performance of totalistic 2D CA rules was similar, significant differences did 
exist in dynamical properties of the design processes generated by totalistic 2D CA rules ith 
various shapes of the local neighborhood. 

 w
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Figure 65 shows median total weight values of the entire samples of design concepts 
pro eighborhood.  It 

ign experiments 
duced using totalistic 2D CA rules with 5 shapes and 2 radii of the local n

also compares the median values to the corresponding values obtained in the des
with standard 2D CA rules. 

 
Fi ated by totalistic 

ationship to the 

 heavier design 
es.  Besides, the 

al neighborhood in totalistic 2D CA rules the heavier the structural 

As significantly 
es of cells in the 
ous variations of 

les generate much larger changes in 2D 
configurations of wind bracings from iteration to iteration.  This, in many cases, may produce 
inferior design concepts and thus, the median total weight values are larger for totalistic 2D CAs 
rules than for standard 2D CAs.  When we increase the radius of the local neighborhood, then the 
changes from iteration to iteration are even larger and hence the overall median value increases 

gure 65. Comparison of the median performance of the design concepts gener
2D CA rules with 5 shapes and two radii of the local neighborhood and their rel

results obtained using standard 2D CA rules 

Figure 65 clearly shows that there is a tendency to generate on average
concepts when we use totalistic 2D CA rules instead of standard 2D CA rul
larger the radius of the loc
systems produced.  The second trend occurs for all shapes of the local neighborhood with an 
exception of the diagonal neighborhood.  

My hypothetical explanation of these results is the following:  Totalistic 2D C
reduce the size of the rule spaces by taking into consideration only average valu
local neighborhood.  This property allows them to more quickly generate vari
the fully braced pattern which exhibit good performance.  Hence, for all 5 shapes of the local 
neighborhood, the design concepts with this structural shaping pattern were found.  On the other 
hand, by the same property, totalistic 2D CA ru
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again.  The only exception to this trend, which is produced by the diagonal neighborhood, may 
of macro bracings whibe related to the emergent pattern ch proved to correspond to design 

concepts of good performance.  In this case, the increased radius of the local neighborhood may 
provide additional spatial information in the diagonal directions along which the macro bracing 
patterns are being formed.  Hence, the median value obtained for totalistic 2D CAs with the 
radius equal to 2 is smaller (better) than the value obtained when the radius is equal to 1. 

I also investigated the impact of the number of iterations of a totalistic 2D CA rule, denoted 
earlier by the iteration_max parameter, on the quality of produced design concepts.  Similarly as 
in the previous section, there was no preferred value of this parameter which corresponds to 
better design concepts.  The graphs showing these results were qualitatively the same as the ones 
presented in Figure 62.  Thus, they have been omitted here. 

6.5. Cellular Automata Generating Designs of the Entire Structural Systems 
So far, I have only studied the design concept generators of wind bracing 

systems.  In this section, I consider a more complex design problem and 
investigate design concept generators of the entire steel structural systems in 
tall buildings.  They are based on multiple one-dimensional cellular automata 
and each 1D CA develops a separate subsystem of a steel structure, e.g. one 
1D CA generates a subsystem of beams, another one a subsystem of columns, 
etc.  A detailed description of the representations studied in this section was 
presented earlier in section 4.4.4.   

As in the previous sections, two types of 1D CA rules have been studied.  
First, in section 6.5.1, I investigate the design concept generators based on 
multiple standard 1D CAs.  Next, section 6.5.2 explores the space of design 
rules based on multiple totalistic 1D CAs.  In both cases, I investigate only one 
length of the radius of the local neighborhood for each 1D CA, namely the radius equal to 1.  
The parameters and their values used in the experiments reported in this section are presented in 
Table 55. 

 

Table 55. Parameters and their values used in the design experiments with 1D CAs generating 
the entire steel structural systems in tall buildings 

Experimental Parameter Value(s) 
Number of cell values (bracings) 7 
Number of cell values (beams) 2 
Number of cell values (supports) 2 

Radius of the local neighborhood  1 

Boundary conditions Periodic 

Embryo generation mechanism Random 

Design rule search mechanism Random 

Random sample size 10,000  
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6.5

 entire steel 
str

supports.  As it is shown in Table 55, the design 
em ryo and the design rule generating a wind bracing subsystem had 7 

supports had also 2 possible cell values.  The best design concepts of the entire 
steel structural system produced in these experiments are shown in Table 56. 

 
Structural Shaping Patterns 

Table 56 shows that the best design concepts generated by multiple 1D CA rules exhibit 
several interesting structural shaping patterns.  The overall best design, whose total weight was 
equal to 523,247 lbs., exhibits a uniform pattern consisting of V bracings and pinned beams.  The 
third best design concept exhibits yet another type of the macro bracing pattern composed of 3 
types of wind bracing elements: X bracings, diagonal bracings and V bracings.  In this case, the 
beam subsystem is mostly composed of fixed beams with occasional occurrences of pinned 
beams.  The macro bracing pattern can be also identified in the 6th best design concept.  In this 
case, it emerges from a combination of X bracings, and K and V bracings.  The remaining design 
concepts shown in Table 56 exhibit more elaborate structural shaping patterns composed of all 7 
types of wind bracings elements.  The majority of these design concepts have a beam subsystem 
composed of fixed beams only.  There is, however, no predominant pattern in terms of the 
preferred configurations of supports.  In some cases, only fixed supports were used but a vast 
majority of support configurations include one or more pinned supports. 

6.5.2. Multiple Totalistic 1D Cellular Automata 
In this subsection, I describe results of the experiments in which exactly the 

same parameters were used as in the previous subsection (see Table 55) but 
with one exception: the design rules were based on totalistic 1D CA rules 
rather than on standard 1D CA rules.  As before, the subsystems of wind 
bracings, beams, and supports were developed from the corresponding design 
embryos and design rules. 
Best Designs 

The best design concepts of the entire steel structural systems produced in 
these experiments are shown in Table 57.  It is clear that there are large 
qualitative and quantitative differences between the design concepts produced 
by totalistic 1D CA rules (see Table 57) and standard 1D CA rules (see Table 
56).  The best design concept of the entire steel structural system in a tall 
building developed by totalistic 1D CA rules is more than 64,000 lbs., or 12 percent, better than 
the best concept produced by standard 1D CA rules. 

 
 
 

.1. Multiple Standard 1D Cellular Automata 
In this section, I describe the results of the experiments in which multiple 

standard 1D CAs were used to develop design concepts of the
uctural systems.  The concept generators studied here used separate design 

embryos and separate design rules based on 1D CA to develop the subsystems 
of beams, wind bracings, and 

b
possible cell values, the design embryo and the design rule developing a beam 
subsystem had 2 possible cell values, and the design embryo encoding the 

 



201 

Table 56. Best designs of the entire steel structural systems in tall buildings produced by multiple 
standard 1D CA rules 

 
  
Structural Shaping Patterns 

Table 57 also shows that totalistic 1D CA rules produced qualitatively different structural 
shaping patterns than the standard 1D CA rules.  In this case, the most successful design 
concepts exhibited uniform patterns consisting of either V bracings or K bracings.  Also, 
generally two types of beam subsystems were developed: composed of fixed beams only, or 
composed of pinned beams only.  The design concepts exhibiting these patterns were of 
comparable performance with the total weights from about 460,000 lbs. to 480,000 lbs.  
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In the group of 12 best design concepts shown in Table 57, there is only one design concept 
which exhibits a qualitatively different structural shaping pattern, namely the 11th best design.  It 
exhibits the pattern of horizontal trusses composed of V bracings. 

Similarly as in the previous section, no clear pattern in terms of the best configuration of 
supports was identified.  Support configurations shown in Table 57 include various combinations 
of fixed and pinned supports. 

 

Table 57. Best designs of the entire steel structural systems in tall buildings produced by multiple 
totalistic 1D CA rules 
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6.5.3. Summary 
In this section, I investigated design concept generators of the entire steel structural systems.  

Th

The experimental results confirm the findings reported in the previous sections in which a 
design of wind bracing systems was considered.   Namely, standard 1D CA rules develop more 

teresting structural shaping patterns than totalistic 1D CA rules.  The former, however, are of 
inferior performance (total weight) than the latter. 

The design experiments have also shown that good design concepts of the entire structural 
systems emerge when uniform bracing patterns composed of either V bracings or K bracings are 
combined with uniform configurations of beams.  Also, the uniform configuration of beams 
composed of either pinned beams or fixed beams produce comparable results. 

On the other hand, no clear patterns in terms of the best configurations of supports were 
observed in the conducted experiments. 

6.6. Summary 
In this chapter, I conducted the first stage of Empirical Performance Validation of Emergent 

Engineering Design, as discussed in section 3.6.3.  By presenting and discussing the results of 
the design experiments with various types of concept generation mechanisms based on cellular 
automata, I have attempted to build confidence in the usefulness of the generative representations 
component of EED.  I have also shown that generative representations based on one- and two-
dimensional cellular automata can produce novel design concepts of steel structural systems in 
tall buildings.   

In the first section of this chapter, I revisited the research question 1 and the research 
hypothesis 1 and refined them in the context of the design problems considered in this 
dissertation.  I also defined the criteria which were used in this dissertation to determine whether 
a generated design concept is novel.  

In the second section of this chapter, I empirically investigated the simplest generative 
representations of wind bracing systems based on elementary CAs.  First, I exhaustively 
searched the space of the design rules and applied them to the simplest configuration of the 
design embryo which was arbitrarily assumed.  Even these very simple experimental settings 
produced novel structural shaping patterns of good performance.  I compared the design concepts 
of wind bracing systems with the design concepts generated randomly and found that they 
perform better in terms of both the total weight of the steel structural system and its maximum 
horizontal displacement.  I also compared the developed design concepts with the designs known 
from the structural engineering literature.  I discovered that many traditionally known designs 
could be generated by the design rules based on elementary CA. 

Furthermore, I investigated the impact of various representation specific parameters on the 
quality of generated design concepts.  I found that the location of the design embryo (bottom vs. 
top of a steel structure) has on average no influence on the performance of produced design 
concepts. On the other hand, the use of nonperiodic boundary conditions may increase the total 
weight of steel structural systems by several percent when K bracings are used and has no impact 
on the quality of produced design concepts when X bracings are employed. 

Next, I slightly generalized these generative representations by allowing more general 
configurations of the design embryo.  Here, the design embryos were no longer restricted to 

ey consisted of multiple design embryos and multiple design rules based on 1D CAs which 
generated various subsystems of the steel structure.   Two types of design rules were 
investigated: based on standard 1D CA rules and based on totalistic 1D CA rules. 

in
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assume the simplest possible configuration but they were generated randomly.  The experimental 
results have shown that these more complex configurations of the design embryo produce better 
results and that both the e design rules should be 
searched concurrently.  

Furthermo ledge in the 
generative re tructural 
design.  I show sentation, i.e. 
the design em ncepts.  The 
design experim nstraint h ormance gain 
is achieved (in terms of the total weight of the t 
is 

ped more interesting patterns than totalistic 1D CA rules 

space of the design embryos and the space of th

re, I demonstrated how we can incorporate some domain know
presentation by imposing the symmetry constraint frequently used in s

ed how we can constrain both components of the generative repre
bryo and the design rule, so that it develops symmetric design co
ents with symmetry co ave shown that, on average, no perf

 structural system) when the symmetry constrain
imposed compared to the situation when no symmetry constraint is used and the design 

concepts are developed from random design embryos. 
In the third section of this chapter, I studied empirically even more generalized 

representations based on 1D CAs.  Here, the number of wind bracing types was no longer 
restricted to 2.  In fact, in the design experiments with 1D CAs, 7 types of wind bracings 
elements were used.  Two types of 1D CA rules were introduced and studied empirically: 
standard 1D CA rules and totalistic 1D CA rules.  In both cases, novel design concepts of good 
performance were found.  Also, interesting structural shaping patterns were discovered in many 
cases. 

In the fourth section of this chapter, generative representations based on two-dimensional CAs 
were investigated experimentally.  Also here, two types of 2D CA rules were studied: standard 
2D CAs and totalistic 2D CAs.  Additional parameters that needed to be specified in this type of 
representation included the shape of the local neighborhood and the number of iterations of the 
design rule.   

The experiments with 2D CAs have shown that the shape of the local neighborhood has a 
significant influence on the performance of best design concepts only when the standard 2D CA 
rules are used.  Totalistic 2D CA rules generated design concepts of comparable performance no 
matter what shape of the local neighborhood was employed.  2D CA rules produced several 
interesting structural shaping patterns which could not be generated by 1D CA rules due to their 
limitations.  

The empirical studies on the impact of the number of iterations of 2D CA rules on the 
performance of generated design concepts have shown that there was no preferred value of this 
parameter which produced the best design concepts.   On the contrary, for some shapes of the 
local neighborhood, large numbers of iterations of a 2D CA rule were preferred while for other 
shapes smaller values produced better results.   There were, however, significant differences in 
the dynamical properties of the design processes when small or large numbers of iterations of the 
design rules were tried.  The dynamics was also affected by the shape of the local neighborhood. 

Finally, in the fifth section of this chapter, I investigated design concept generators of the 
entire steel structural systems in tall buildings.  They consisted of multiple design embryos and 
multiple design rules based on 1D CAs which generated various subsystems of the steel 
structure.  As in the previous sections, two types of design rules were investigated: standard 1D 
CA rules and totalistic 1D CA rules. 

The experimental results confirmed my previous findings on the impact of type of 1D CA 
rules on generated structural shaping patterns and on the performance of the produced design 
concepts.  Standard 1D CA rules develo
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but at the same time showed inferior performance measured in terms of the total weight of the 
structural system. 

The design experiments have also shown that very good design concepts of the entire 
structural systems emerge when uniform bracing patterns composed of either V bracings or K 
bracings are combined with uniform configurations of beams (either pinned or fixed). 

 
 

 

 



 

7. EVOLUTIONARY OPTIMIZATION 
 

“I have seen something else under the sun: the race is not to the 
swift or battle to the strong, nor does food come to the wise or 
wealth to the brilliant or favor to the learned; but time and chance 
happens to them all.” 

(King Solomon, Ecclesiastes 9:11) 
 

In this chapter, I empirically investigate the evolutionary computation component of 
Emergent Engineering Design and its usefulness in optimizing steel structural systems in tall 
buildings.  I describe results of a large number of design experiments which were focused strictly

algorithms, is 
inv i

Exp
results 
pro s

u
the crit
questio
of the 
experim

ion processes in 
 the total weight 
arly relevant for 
.  Usually, these 
ry optimization 
ned weights and 

 
on design optimization issues.  Due to emphasis on optimization, this chapter studies only 
parameterized representations of structural designs described earlier in section 4.2.  The 
com in evolved by evolutionary b ed approach, i.e. the generative representations 

est gated in chapter 8. 
eriments reported in this chapter have been conducted using Emergent Designer.  The 
presented here constitute the second stage of the Empirical Performance Validation 

ces  as discussed earlier in section 3.6.3. 
Fig re 66 shows how this chapter is organized. First, in an introductory section 7.1, I discuss 

eria of optimality of steel structural systems in tall buildings.  I also revisit the research 
n 3 and the research hypothesis 3, similarly as in chapter 6, and refine them in the context 
design problems considered in this dissertation.  I also provide an overview of types of 
ents reported in this chapter. 

In section 7.2, I describe results of design optimization experiments in which the topology of 
wind bracing systems was optimized using evolutionary algorithms.  The experiments reported 
in this section are divided in two groups: experiments in which only two types of wind bracings 
elements were used (subsection 7.2.1) and experiments with seven types of wind bracings 
elements (subsection 7.2.2).   

The usefulness of the evolutionary computation component of EED in optimizing more 
complex engineering systems, i.e. the entire steel structural systems in tall buildings, is 
investigated in the remainder of this chapter.  Section 7.3 reports the results of single-objective 
optimization experiments in which the entire steel structural systems in tall buildings were 
optimized (minimized) with respect to the total weight.  The impact of the initialization method, 
i.e. random initialization vs. initialization with a set of designs known from the structural 
engineering literature, is investigated in subsections 7.3.1 and 7.3.2, respectively. 

On the other hand, section 7.4 discusses multiobjective evolutionary optimizat
which steel structural systems were optimized with respect to two objectives, i.e.
of the steel structure and its maximum horizontal displacement.  This is particul
engineering design because many design problems have more than one objective
objectives are conflicting.  In this section, a simple multiobjective evolutiona
method was employed in which the two objectives were assigned arbitrarily defi
combined into a single fitness function. 
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Figure 66. Organization of chapter 7 

 

7.1. Optimal Design Concepts of Steel Structural Systems 
In chapter 6, I introduced two measures of performance of steel structural systems in tall 

buildings: the total weight of the steel structure and its maximum horizontal displacement.  The 
total weight of a steel structure provides a good estimate of the cost of a steel structural system 
whi
measures can be used as an objective with o which the produced design concepts are 
optimized (minimized).  However, the two objectives are usually conflicting.  The reduction of 
the weight of a steel structure increases its maximum horizontal displacement (and thus reduces 
its stiffness) and vice versa. 

The mutual interaction of the two objectives is particularly visible in steel structural systems 
with a large aspect ratio (see section 7.3.2).  In this case, excessive reduction of the weight of a 
steel structural system may yield horizontal displacements that exceed provisions of the design 
code.  Thus, the maximum horizontal displacement should be controlled when the total weight of 

as a result of the topology optimization. 
In the experiments reported in the following two sections of this chapter, design concepts of 

ind bracing systems and the entire steel structural systems in tall buildings were optimized with 
espect to the total weight of the steel structure only.  The maximum horizontal displacements 
ere, however, monitored so that the design code provisions were satisfied.  Later, in section 

7.4, both objectives were assigned arbitrarily defined weights and multiobjective evolutionary 
optimization processes were investigated.  

le the maximum horizontal displacement estimates its stiffness.  Each of the two performance 
respect t

the steel structural system is reduced 

w
r
w
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Similarly as I did in chapter 6, I can now refine the research question 3 and research 
hy di

d

a

pothesis 3 in the specific context of design problems considered in this 
conceptual design of steel structural systems in tall buildings. 

ssertation, i.e. 
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Research Question 3 (Refined): 

One of the major objectives of almost all engineering design processes is achi
optimality; what mechani

eving 
sms should be used to efficiently optimize steel structural systems in 

tall buildings? 

Research Hypothesis 3 (Refined): 

Evolutionary computation provides a framework for conducting engineering design processes 
and efficient optimization of steel structural systems in tall buildings with respect to given 
objective(s). 
hms were compared to the state-

gn concepts at the end of evolutionary optimization processes 
was compared to the performance of initial design concepts from which the evolutionary 

involved the best design concepts 
ver a number of 

re conducted to 
ents reported in 

ination criteria 

uations).  This 
iew because evaluations of generated 

e

experiments.  The performance 

d their values shown in Table 59.  Also, 
n con ilar to the one shown on the right, is placed at the beginning of 

his refined hypothesis is more precise and can be tested empirically.  The efficiency of 
volutionary optimization processes was determined by the following two criteria: 
• Performance of the produced design concepts  

The design concepts optimized with evolutionary algorit
of-the-art designs known from the structural engineering literature and to the best designs 
produced by the generative representations (see chapter 6). 

• Improvements of the average best performance of the designs concepts 
The performance of the desi

optimization processes were started.  The comparisons 
found in these processes as well as average performance improvements o
evolutionary optimization runs. 

Design experiments with parameterized representations (see section 4.2) we
est the research hypothesis 3.  Table 58 presents the layout of design experim
his chapter.  All sections in this chapter are organized to follow this layout.   

The experiments were divided into two major groups depending on the term
sed in individual evolutionary optimization runs, namely short-term experiments (up to 1,000 
itness evaluations) and long-term experiments (up to 10,000 fitness eval
istinction is important from the structural design point of v
sign concepts are usually very expensive (more than 99% of computational time).   
Extensive sensitivity analyses were conducted during the short-term experiments. They 

nvolved the following evolutionary computation parameters: mutation rates, crossover rates, 
izes of parent and offspring populations, the type of the generational model, and the type of an 
volutionary algorithm. Optimal settings for these parameters were sought and, 
nce found, later utilized in the long-term 
nalysis of evolutionary optimization processes was conducted for both the 
hort-term and the long-term experiments.  It included four performance 
riteria presented in the bottom part of Table 58. 

Similarly as I did in the previous chapter, I categorized all experiments 
eported here using the parameters an

i , sim
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each section to indicate the values of the parameters used in the experiments reported in that 
section. 

Table 58. Overview of evolutionary optimization experiments reported in this chapter 

 Short-term Experiments Long-term Experiments 

Mutation rates 

Crossover rates 

Size of parent population 

Size of offspring population 

Generational model 

Se
ns

iti
vi

ty
 A

na
ly

si
s 

Evolutionary algorithm 

 

Performance comparison of best design concepts produced in 
evolutionary optimization processes and best designs known from the 
structural engineering literature 

Performance comparison of best design concepts produced in 
evolutionary optimization processes and best designs produced by 
generative representations (chapter 6) 

Performance improvement of the best design concept at the end of an 
evolutionary optimization process compared to the best design from 
an initial population 

Pe
rf

or
m

e 
A

na
ly

si
s 

Performance improvement of an average design concept at the end of 
an evolutionary optimization process compared to an average design 
from an initial population 

an
c

  
  

Table 59. Parameters and their values describing the types of experiments reported in this 
chapter 
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7.2

term optimization processes.  The analysis involved the sizes of 
pa

 were studied) or all 7 types of wind bracings were employed (as in section 6.3 in 
wh

o groups of wind bracing elements 
we cings.  The group 

 (empty cells) while the 
gro

ameters and their 
va

 in the long-term evolutionary optimization processes.  The 
res

nts reported in this 
subsection are presented in Table 61. 

 
 

. Optimization of Wind Bracing Systems 
In the experiments reported in this section, the evolutionary computation 

component of EED was employed to optimize the topology of wind bracing 
systems in tall buildings.  The fitness of the produced design concepts was 
determined by the total weight of the steel structural system (single-objective 
optimization) represented by these concepts.  It was calculated using the first-
order structural analysis.   

Both the short-term and the long-term evolutionary optimization processes 
were conducted.  By short-term evolutionary optimization processes, I 
understand design processes in which up to 1,000 fitness evaluations were conducted.  The long-
term design experiments involved significantly larger number of evaluations, even as many as 
10,000.  Evolutionary optimization processes were repeated several times for all combinations of 
parameter values and each time initialized with a different random seed value. 

As mentioned earlier, an extensive evolutionary parameter search (sensitivity analysis) was 
conducted during the short-

rent and offspring populations, the type of the generational model, and rates of mutation and 
crossover operators.  The optimal combination of parameters’ values found in the short-term 
processes was subsequently used in the long-term experiments. 

The following subsections report the results of the evolutionary optimization experiments in 
which either only 2 types of wind bracing elements were used (as in section 6.2 in which 
elementary CA

ich 1D CA were investigated).  

7.2.1. Optimization with Two Types of Wind Bracings 
The experiments reported in this subsection involved two types of wind 

bracing elements.  As in section 6.2, tw
re considered, each consisting of two types of wind bra

No. 1 consisted of simple X bracings and no bracings
up No. 2 included K bracings and no bracings (see Figure 19).  The 

remaining types of elements of steel structural systems in tall buildings, i.e. 
columns, beams, and supports, were kept the same during the entire 
evolutionary optimization processes.  Table 60 shows par

lues of the design problem considered in this subsection. 
As discussed earlier, the design experiments with 2 types of wind bracings were divided into 

two groups.  First, the short-term design processes were employed to conduct the sensitivity 
analysis involving various types of evolutionary computation parameters.  Next, the optimal 
values of these parameters were used

ults of both groups of experiments are reported in the following two subsections. 

Short-term Evolutionary Optimization 
In this group of experiments, the short-term evolutionary optimization 

processes involving two types of wind bracing elements were conducted.  
Evolutionary computation parameters used in the experime
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Table 60. Problem parameters and their values used in the evolutionary optimization experiments 
with two types of wind bracing elements 

Problem Parameter Value(s) 
Problem type Design of a wind bracing system in a tall building

Number of stories 30 

Number of bays 5 

Bay width 20 feet (6.01 m) 

Story height 14 feet (4.27 m) 

Distance between transverse systems 20 feet (6.01 m) 

Types of bracing elements No and Simple X, or No and K 

Types of beam elements Fixed-Fixed 

Types of column elements Fixed-Fixed 

Types of supports Fixed 
  

 

Table 61. Evolutionary computation parameters and their values used in the short-term 
optimization experiments with two types of wind bracing elements 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies (ES), Genetic Algorithm (GA)
Generational model 

Constraint handling method Death penalty (infeasible designs assigned 0 
fitness) 

Termination criterion 1,000 fitness evaluations 
Number of runs 5 in each experiment 

Overlapping for ES(µ+λ), 
Nonoverlapping for ES(µ,λ) and GA 

Population sizes (parent, offspring) (1,5), (5,25), or (50,250) for ES(µ+λ) 
(5,25), or (50,50) for GA 
(5,25) for ES(µ,λ) 

Selection (parent, survival) (uniform stochastic, truncation) for ES, 
(fitness proportional, uniform stochastic) for GA 

Mutation rate 0.025, 0.1, 0.3, or 0.5 
Crossover (type, rate) (uniform, 0), (uniform, 0.2), (uniform, 0.5) 
Fitness Total weight of the steel structure (determined by 

the first-order analysis) 
Initialization method Random 
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Table 61 shows that two types of evolutionary algorithms were employed in the short-term 
experiments: evolution strategies (ES) and genetic algorithms (GA). Furthermore, two kinds of 
ES were applied, namely ES(µ+λ) and ES(µ,λ).  ES(µ+λ) uses the overlapping generational 
model in which the survival selection acts on a combined population of parents and offspring.  
On the other hand, ES(µ,λ) employs the nonoverlapping generational model in which the 
survival selection considers only the population of offspring to choose the members of the 
population that will survive to the next generation (see section 2.1.1). 

An extensive parameter search was conducted involving the following evolutionary 
parameters and their values: parent and offspring population sizes, the rate of mutation operator, 
and the rate of crossover operator.  For all combinations of parent and offspring population sizes 
shown in Table 61, an exhaustive search for optimal rates of mutation and crossover was 
conducted.  In each case, 12 combinations of mutation and crossover rates were considered, i.e. 
(mutation rate 0.025, crossover rate 0), (mutation rate 0.025, crossover rate 0.2), etc.  The design 
processes were repeated 5 times for each combination of parameter values using a different value 
of a random seed each time. 

The initial population of parents was generated randomly in every experiment reported in this 
section.  Each design concept was represented by a fixed-length genome.  The genome consisted 
of 150 genes (30 stories ⋅ 5 bays) with binary values.  The genes represented binary attributes in 
which the value of 0 denoted no bracing (empty cell) and the value of 1 encoded either simple X 
bracing or K bracing dependi
e

 
system calculated usin  an infeasible design 
concept was generated, it was assigned the fitness value of 0.  In other words, the death penalty 
method was used to handle infeasible solutions (see section 2.1.4).  Finally, each experiment was 
conducted for 1,000 fitness evaluations.   

The following subsections describe the obtained results. 
Optimal Rates of Mutation and Crossover Operators 

Initial experiments focused on finding the optimal rates of mutation and crossover operators 
understood here as the rates which produced the best progress of evolutionary optimization 
processes.  An extensive parameter search was conducted to determine the optimal rates.  It 
involved 12 combinations of mutation and crossover rates.   

The obtained results differed for various types of evolutionary algorithms.  Typical results for 
ES are presented in Figure 67 which shows the average best-so-far fitness values and 95% 
confidence intervals (vertical lines) calculated using Johnson’s modified t test (Johnson 1978) 
obtained in a series of design experiments with ES(5+25).  In these experiments, the rate of 
uniform crossover was equal to 0.2. 

A clear pattern can be identified in Figure 67 regarding the impact of the mutation rate on the 
fitness of produced design concepts: the lower the mutation rate the better fitness (i.e. lower 
because it is a minimization problem) of design concepts produced.  This pattern was observed in 
all design experiments involving ES with various parent and offspring population sizes, and 
crossover rates, as it is illustrated graphically in Figure 68. 

ng on the group of wind bracing elements used in a specific design 
xperiment.   

The fitness of a design concept was determined by the total weight of the steel structural
g the first-order structural analysis.  Whenever
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Figure 67. The influence of the mutation rate on the progress of the short-term evolutionary 
optimization processes when two types of wind bracing elements (no bracing and simple X 

bracing) were used 

Figure 68 clearly shows that the best performance of ES(µ+λ) in the short-term evolutionary 
design processes was obtained when the mutation rate was the lowest and equal to 0.025.  The 
same pattern was observed in the design experiments with the second group of wind bracing 
elements, i.e. the group consisting of no bracings and K bracings.  Figure 69 shows a typical 
example of the impact of various mutation rates on the performance of the evolutionary 
optimization process.  It specifically shows the results of the experiments in which ES(5,25) was 
used and the crossover rate was equal to 0.2. 

A search for the optimal rate of the crossover operator was conducted by analyzing the results 
of the design experiments in which various crossover rates were used but the mutation rate was 
kept the same.  Figure 70 presents typical results obtained in these experiments.  It shows the 
average best-so-far fitness values and 95% confidence intervals obtained in the design 
experiments with ES(5+25) and 3 different rates of crossover, i.e. 0.0, 0.2, and 0.5.  The 
mutation rate was kept the same and equal to 0.025. 
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Figure 68. Average fitness values (and 95% confidence intervals) obtained after 1,000 

evaluations using ES with the overlapping generational model and various parent and offspring 
population sizes, and mutation and crossover rates 

 
gure 69. The influence of the mutation rate on the progress of the short-term evolutionar

optimization processes when K bracings were used 
Fi y 
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Figure 70. The influence of the crossover rate on the progress of the short-term evolutionary 
optimization processes when two types of wind bracing elements (no bracing and simple X 

bracing) were used 

Figure 70 shows that various crossover rates yielded only slight differences in the fitness of 
produced design concepts.  No clear pattern could be observed, as it was the case with the 
mutation operator.  These observations were further confirmed by the results presented in Figure 
71.  It shows that there was no trend which favored specific crossover rates.  On the contrary, in 
some cases the best results were achieved with no crossover at all and sometimes the best results 
were obtained when very high crossover rates are used, i.e. when the rate was equal to 0.5.  
Figure 71 also shows that even if there were differences among the fitness values obtained with 
various crossover rates, they were not significant (confidence intervals overlap in all cases).  
These results were consistent for both groups of wind bracing elements used in the experiments. 

As I mentioned earlier, the results obtained using GAs were quite different than the ones 
produced by ES.  Figure 72 compares the results produced by the two algorithms.  Here, the 
graphs produced by ES(5,25) (left), using this time the nonoverlapping generational model, are 
compared to the graphs produced by GA(5,25) (center) and GA(50,50) (right).  GAs traditionally 
employ the nonoverlapping generational models.  Hence, the nonoverlapping generational model 
was used in all experiments involving GA. 
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Figure 71. Average fitness values (and 95% confidence intervals) obtained after 1,000 

evaluations using ES with the overlapping generational model and various parent and offspring 
population sizes, and mutation and crossover rates (sorted with respect to the mutation rate) 

 
Figure 72. Average fitness values (and 95% confidence intervals) obtained after 1,000 

pping generational model and various parent evaluations using ES and GA with the nonoverla
and offspring population sizes, and mutation and crossover rates 
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It is clear that ES with the nonoverlapping generational model exhibits the same pattern as the 
one produced by ES with the overlapping generation model shown earlier in Figure 67.  On the 
other hand, the results produced by GAs suggest the opposite trend: higher mutation rates 
produce better results, particularly when low crossover rates are used.  In this case, however, the 
differences among the results produced by GAs with various rates of mutation are small.  
Finally, similarly as in the case of ES, GAs do not exhibit any clear pattern in terms of preferred 
crossover rates.  The graph showing these results was, however, omitted. 

Concluding, ES seem to produce the best results when low rates of mutation operator are 
ary, higher rates of mutation seem to be preferred by GAs but the 

dif

 and two combinations for GAs.   
Typical results obtained for ES are presented in Figure 73.  It shows the results of the 

evolutionary optimization experiments in which three combinations of the parent and offspring 
population sizes were used, including ES(1+5), ES(5+25), and ES(50+250).  Mutation and 
crossover rates were kept the same in all experiments shown in Figure 73 and equal to 0.025 and 
0.2, respectively. 

used, e.g. 0.025.  On the contr
ferences in the obtained results are not as significant as in the case of ES.  Neither ES nor GAs 

exhibit any pattern in terms of optimal crossover rates. 
Optimal Sizes of Parent and Offspring Populations 

The next group of experiments focused on determining the optimal sizes of populations of 
parents and offspring.  Three different combinations of sizes of parent and offspring populations 
were considered for ES

 
Figure 73. The influence of the sizes of parent and offspring populations on the progress of the 

short-term evolutionary optimization processes when ES with the overlapping generational 
model are used 
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It is clear that ES using large population sizes, i.e. ES(50+250), produced inferior results 
compared to the other two ES with smaller population sizes.  On the other hand, it also produced 

o ES with smaller population sizes achieved almost the same 
op

25) which preserves the top 5 
ind

g GA(5,25) and GA(50,50). The specific results presented in this 
fig

the smallest variance.  The other tw
timization progress in terms of the average best-so-far fitness of the produced design concepts.  

However, ES(1+5), i.e. the ‘greedy’ ES which preserves only the best individual to the next 
generation, exhibited much larger variance compared to ES(5+

ividuals to the next generation.  Thus, in this case parallel search conducted by ES(5+25) 
reduces the variance of the obtained results without decreasing the performance of the algorithm.  
On the other hand, when we increase the size of the populations too much, e.g. as in ES(50+250), 
the reduction of variance comes at a cost of a substantial decrease of the performance of the 
algorithm. 

The outcomes were again different for GAs.  In both cases, i.e. for GA(5,25) and GA(50,50), 
the performance of the algorithm was almost identical.  Figure 74 shows typical results of the 
design experiments involvin

ure were produced by the two algorithms with the same mutation and crossover rates equal to 
0.3 and 0.5, respectively. 

The two best-so-far curves are almost identical.  The only difference between the two curves 
is the reduction of variance for the algorithm with larger population sizes, i.e. for GA(50,50).  
Similar behavior was also observed for ES. 

 
Figure 74. The influence of the sizes of parents and offspring populations on the progress of the 

short-term evolutionary optimization processes when GAs are used 
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 Concluding, small population sizes seem to be preferred by ES in this problem domain.  
However, too small population sizes increase the variance of the obtained results.  Good results 
in terms of both performance and variance were produced when moderate sizes of population 

yed, e.g. 5 in the case of the parent population and 25 in the case of the 
off
sizes were emplo

spring population.  The impact of the sizes of parent and offspring populations on the 
performance of GAs seems to be negligible and related only to the reduction of variance of the 
obtained results.  It didn’t influence the actual performance of the algorithm in this problem 
domain. 
Optimal Generational Model 

The influence of the type of the generational model (overlapping vs. nonoverlapping) was 
tested in a series of design experiments involving two kinds of ES: ES(5+25) and ES(5,25).  The 
design experiments included a total of 24 design experiments (12 for each algorithm) utilizing all 
12 combinations of mutation and crossover rates (see Table 61).  Figure 75 shows typical results 
obtained in these experiments.  Here, mutation and uniform crossover rates were equal to 0.025 
and 0.2, respectively. 

 
Figure 75. The influence of the type of the generational model on the progress of short-term 

evolutionary optimization processes 

Figure 75 shows that there are no significant differences between ES(5,25) and ES(5+25).  
This type of behavior was observed in all conducted experiments.  In several cases ES(5+25) 
slightly outperformed ES(5,25) (as in Figure 75) but in other cases it produced inferior results.  
The differences between the two generational models were, however, small both in terms of 
variance and fitness of the generated design concepts.  Generally, it can be concluded that ES 
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with the overlapping and nonoverlapping generational model produce comparable results in this 
problem domain. 
Optimal Evolutionary Algorithm 

rt-term experiments with two types of wind bracing elements 
inv

 GA(5,25) and GA(50,50).  In both cases the mutation rate was equal to 0.3 
and crossover rate was equal to 0.5.  The results produced by GAs are compared to the average 
b  
(  
0.025 and 0.2, respectively. 

Figure 76 clearly shows that ES outperformed GAs in this problem domain.  The average 
fitness value produced by GA(5,25) after 1,000 evaluations was equal to 569,056 lbs. compared 
to 542,029 lbs. achieved by ES(5+25).  This corresponds to almost 5% better results, on average, 
produced by ES.  The performance improvement (see Table 58) between an average design 
concept produced after 1,000 fitness evaluations and an average initial parent was equal to 
19,434 lbs., or 3.3%, for GA(5,25).  On the other hand, for ES(5+25) these values were equal to 
46,461 lbs. and 7.9%, respectively. 

As discussed earlier, sho
olved two types of evolutionary algorithms: ES and GAs.  Sensitivity analyses were 

conducted for various parameters in the case of both algorithms. 
Figure 76 shows a comparison of the behavior of the two algorithms optimizing a wind 

bracing system in a tall building.  Two average best-so-far curves in the upper part of Figure 76 
correspond to the best results obtained with GAs with two combinations of parents and offspring 
population sizes, i.e.

est-so-far performance produced by ES with the overlapping (ES(5+25)) and nonoverlapping
ES(5,25)) generational model.  In this case, the rates of mutation and crossover were equal to

 
Figure 76. Comparison of the performance of GAs and ES in the optimization of a wind bracing 

system 
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Concluding, the results of the design experiments revealed that ES performed better than GAs 
problem domain.  Hence, they were employed in the design experiments reportedin this  in the 

remainder of this dissertation. 
Optimal Designs 

Optimal design concepts produced by the short-term evolutionary optimization processes with 
2 types of wind bracing elements are presented separately for each group of wind bracing 
elements.  First, results of the experiments are reported in which the group No.1 was used, i.e. no 
bracings and simple X bracings.  Subsequently, I discuss the best design concepts obtained with 
the second group of wind bracing elements, i.e. no bracings and K bracings. 

Short-term experiments with the group No.1 produced design concepts which outperformed 
not only the best design concepts produced by elementary CA rules (see Table 18 and Table 31) 
but also the design concepts known from the structural engineering literature (see Table 10).  
Table 62 shows 6 best design concepts of wind bracings systems consisting of simple X bracings 
and produced in the short-term experiments.  The fitness of the best design found in short-term 
experiments was equal to 531,790 lbs. and was better by more than 18,500 lbs., or 3.5 percent, 
than the best design generated by elementary CA rules (see Table 31).  It also outperformed the 
design concepts known from the structural engineering literature and shown in Table 10 by more 
than 15,500 lbs., or 2.8 percent.   

 

Table 62. Best design concepts of wind bracing systems produced in the short-term evolution ry 
optimization experiments with two types of bracings (no bracings and simple X bracings) 

a

 
 
All design concepts shown in Table 62 satisfy provisions of the design codes regarding the 

maximum allowed horizontal displacement.  Most rigorous provisions restrict the maximum 

horizontal displacement to 1  of the hei
600

ght of the tall building.  In these experiments, 30 story 

buildings were considered and the story height was equal to 14 feet.  Thus, the maximum 
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allow able 
62 have the m s, satisfy the 
provisions of the design codes. 
Structural Shaping Patterns 

Table 63 shows another interesting phenomenon.  Several design concepts shown in the table 
exhibit an emergent pattern of crossed macro bracings in the lower and/or middle part of the 
structural system.  This pattern is similar to the one known from the structural engineering 
literature (see Design 5 in Table 10).  Table 63 identifies several emergent patterns of crossed 
macro bracings shared by the best design concepts.  They occur in 5 out of 6 design concepts 
shown in this table. 

 

Table 63. Emergent patterns of crossed macro bracings in the best design concepts found in the 
short-term experiments 

ed horizontal displacement was equal to 8.4 inches.  All design concepts presented in T
aximum horizontal displacements smaller than this value and thu

 
The experimental results obtained with the group No.2 were quite different.  The best design 

 by evolutionary optimization processes were worse than the ones generated 
by

orse than the best design found in the experiments with elementary CAs (see 
Table 16 and Table 33).  It is also difficult to identify any emergent pattern shared by several 
design concepts shown in Table 64.   

When we compare the best design concepts consisting of simple X bracings with the ones 
composed of K bracings, we observe that the latter produce design concepts of a significantly 
reduced total weight.  On the other hand, they also exhibit larger horizontal displacements than 
the design concepts consisting of simple X bracings.  These results are consistent with the 
previous findings reported in section 6.2.1. 

 
 

concepts produced
 elementary CA rules.  Table 64 shows the best design concepts found in the short-term 

experiments.  The fitness of the best design was equal to 489,876 lbs. and was about 40,000 lbs., 
or 9 percent, w
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Table 64. Best design concepts of wind bracing systems produced in the short-term evolutionary 
optimization experiments with two types of bracings (no bracings and K bracings) 

 
 
In the next subsection, I will investigate the impact of the length of evolutionary

rocesses on the performance of the produced design concepts.  Speci
 

optimization p fically, I will 
be interested in determining whether evolutionary optimization processes can find better design 
c
a
processes can produce better desi
than the ones produced by elementary CAs.  

Long-term Evolutionary Optimization 
In this group of experiments, long-term evolutionary optimization 

processes involving two types of wind bracing elements were conducted.  As 
before, two groups of wind bracing elements were considered.  The length of 
the long-term evolutionary optimization processes was significantly larger 
than the short-term processes and involved 10,000 fitness evaluations. 

Extensive sensitivity analyses conducted during the short-term optimization 
processes were aimed to identify the best combination of evolutionary 
computation parameters for this problem domain.  The results of these 
analyses were reported in the previous subsection.  Based on that, the best combination of the 
evolutionary computation of parameters and their values was selected.  It is presented in Table 
65. 

The same experimental parameters were used for both groups of wind bracing elements.  The 
results of the long-term evolutionary optimization experiments are discussed below separately 
for each group of wind bracing elements. 

 
 

oncepts of wind bracing systems composed of simple X bracings and what performance gain, if 
ny, they can achieve.  I will also try to determine whether longer evolutionary optimization 

gn concepts of wind bracings systems consisting of K bracings 
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Table 65. Evolutionary computation parameters and their values used in the long-term 
evolutionary optimization with two types of wind bracing elements 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies 
Population sizes (parent, offspring) (5,25) 
Generational model Overlapping (µ+λ) 
Selection (parent, survival) (uniform stochastic, truncation) 

0.025 Mutation rate 
Crossover (type, rate) (uniform, 0.2) 
Fitness Total weight of the steel structure (determined by 

the first-order analysis) 
Initialization method Random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 10,000 fitness evaluations 
Number of runs 5 in each experiment 

  
Performance Improvement 

Figure 77 shows the progress of the long-term evolutionary optimization process for the first 
group of wind bracing elements.  It also compares the average best-so-far performance of the 
long-term optimization process to the average best-so-far fitness obtained after 1,000 evaluations 
(the short-term process).  Figure 77 clearly shows that there is a significant performance 
improvement when evolutionary optimization processes are conducted for a larger number of 
fitness evaluations.  However, sufficient computational resources must be available because the 
long-term processes take, in this case, 10 times longer than the short-term optimization 
processes2. 

The average performance improvement of the long-term processes with respect to the short-
term processes was equal to about 15,500 lbs., or 3 percent.  The improvement between the 
average fitness after 10,000 fitness evaluations and the average fitness of initial parents was 
equal to almost 62,000 lbs., or 10.5 percent. 
Optimal Designs 

Table 66 shows 6 best design concepts produced in the long-term experiments with the group 
No.1.  They were produced in two independent runs (designs 1-4 in one run and designs 5-6 in 
the other run). 

 

                                                 
2 Average computation time for the long-term experiments with 5 independent runs and 10,000 fitness evaluations 
was equal to 25 days on computers with Pentium4 2.0GHz processors and 512MB RAM. 
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Figure 77. Average performance of the long-term evolutionary optimization processes with 2 

types of wind bracing elements (no bracings and simple X bracings) 

 

Table 66. Best design concepts of wind bracing systems produced in the long-term evolutionary 
optimization experiments with two types of bracings (no bracings and simple X bracings) 
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The fitness of the best design concept was equal to 520,349 lbs. and was more than 11,000 
lbs., or 2 percent, better than the fitness of the best design produced in the short-term 
experiments (see Table 62).  In general, all 6 best design concepts shown in Table 66 had better 
fitness than the best design concept produced in the short-term experiments.   
Structural Shaping Patterns 

Table 62 shows another interesting phenomenon, namely the emergence of two distinct 
patterns in different parts of the structural system.  The previously identified crossed macro 
bracing pattern emerges in the lower part of the structure.  A new pattern, which is similar to the 
pattern produced by rule 105 (see Table 35), emerges in the central part of the structural system. 
Performance Improvement 

Figure 78 shows the progress of the long-term evolutionary optimization in the experiments 
with the second group of wind bracing elements.  Here, as before, the long-term processes 
produced better design concepts than the short-term processes.  The average performance 
improvement between the long-term process and the short-term process was equal to 8,500 lbs., 
or 1.7 percent.  It is only about half of the improvement which was achieved in the case of the 
first group of wind bracing elements.   

 
Figure 78. Average performance of the long-term evolutionary optimization processes with 2 

types of wind bracing elements (no bracings and K bracings) 

Optimal Designs 
Figure 78 also shows that the long-term evolutionary optimization processes were not able to 

produce as good designs as the ones produced by elementary CAs.  In fact, they were 
substantially inferior to the best design concept shown in Table 16.  The best designs produced in 
the long-term experiments are presented in Table 67. 

 



227 

Table 67. Best design concepts of wind bracing systems produced in the long-term evolutionary 
optimization experiments with two types of bracings (no bracings and K bracings) 

 
The fitness of the best design concept was equal to 482,276 lbs.  It was more than 32,000 lbs. 

worse than the best design concept developed by an elementary CA.  It is also difficult to 
identify any patterns which shared by several design concepts shown in Table 67. 

ind bracings in 
air comparisons 
es produced by 
ents considered 
rly as in section 
 bracings, were 

f several evolutionary computation parameters on 
the

mall sizes of parent of offspring populations significantly 
outperformed the ones with large populations. 

Summary 
In this section, I described the results of the experiments in which systems of w

tall buildings were optimized using evolutionary algorithms.  In order to make f
of the results produced by evolutionary optimization processes and the on
elementary CAs (see section 6.2), the number of types of wind bracing elem
during the optimization processes was restricted to 2 in each experiment.  Simila
6.2, two groups of wind bracing elements, each consisting of two types of wind
separately investigated in the evolutionary optimization experiments.  

Besides, I also investigated the influence o
 performance of the optimization processes, including the rates of mutation and crossover 

operators, sizes of parent and offspring populations, the type of the generational model 
(overlapping vs. nonoverlapping), and the type of the evolutionary algorithm (ES vs. GA).  An 
extensive sensitivity analysis was conducted during the short-term processes to identify the 
optimal values of these parameters.  They were later applied in the long-term evolutionary 
optimization processes. 

The sensitivity analysis showed that the rate of mutation operator had a strong impact on the 
performance of the optimization processes when ES were employed.  The lowest rate of the 
mutation operator, equal to 0.025, produced the best results.  On the other hand, the impact of the 
crossover rate was negligible.  Also, the sizes of parent and offspring populations significantly 
affected the performance of ES but had limited impact on the performance of GAs in this 
problem domain. Generally, ES with s
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The impact of the type of the generational model was studied in the context of two kinds of 
ES: ES(5+25) (overlapping) and ES(5,25) (nonoverlapping).  The results of these experiments 
revealed that both algorithms produce comparable results.  Finally, the performance of two 
evolutionary algorithms was compared, namely ES and GAs.  The experimental results showed 
that ES outperformed GAs by a large margin in this problem domain. 

O ents 
were  in 
average perform ation processes 
and of the initial parents) achieved in the short-term optimization processes was equal to 46,461 
lbs., or 7.9 percent, in the case of the first group of wind bracing elements (simple X bracings).  
The results produced with the group No.2 (K bracings) were slightly worse and equal to 26,633 
lbs., or 5.1 percent.  Later, in the final subsection, I reported that the average performance 
improvement increased in the long-term processes and exceeded 61,000 lbs., or 10 percent, in the 
case of simple X bracings, and 35,000 lbs., or 6 percent, for K bracings.  These results are 
illustrated in Figure 79.  

ptimal design concepts of wind bracing systems produced in the short-term experim
 also presented and discussed.  The average performance improvement (difference

ance of the design concepts at the end of evolutionary optimiz

 
Figure 79. Comparison of the average performance improvements produced in the evolutionary 

with 2 types of bracing elements in the short-term and optimization of wind bracing systems 
long-term experiments 

During the performance analysis phase, I also compared the best design concepts produced in 
the evolutionary optimization processes with the ones generated using generative representations 
based on elementary CAs (see section 6.2).  The obtained results differed for each group of wind 
bracing elements.  Evolutionary optimization processes produced better results than generative 
representations for simple X bracings.  However, the opposite results were achieved for K 
bracings.  Here, the best design concept generated by elementary CAs significantly outperformed 
(by more than 8 percent) the best design concept found in the evolutionary optimization 
experim nts.  As reported in the final subsection, even the long-term processes did not produce 
better design concepts composed of K bracings than the ones generated by elementary CA rules.  
These comparisons are presented graphically in Figure 80. 

e
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Figure 80. Comparison of the performance improvements between the best designs produced in 
the evolutionary optimization experiments and the best designs generated by elementary CAs 

(negative values correspond to situations in which elementary CAs produced better design 
concepts than evolutionary optimization processes) 

In the next section, I will empirically test whether better design concepts of wind bracing 
systems can be produced when the entire selection of 7 types of wind bracing elements is used 
dur

7.2.2
In this section, I describe results of the design experiments in which 7 types 

were used (see Figure 19) in the evolutionary 
op

+ ) and ES( , ). 
evious section have shown that large population sizes produce 

inferior results in this problem domain.  Hence, only small population sizes were used in the 
design experiments with 7 types of wind bracing elements.  Two combinations of parent and 
offspring population sizes, i.e. (1,5) and (5,25), were investigated for ES(µ+λ) and one 
combination, i.e. (5,25), for ES(µ,λ).  

ing the optimization process. 

. Optimization with Seven Types of Wind Bracings 

of wind bracing elements 
timization processes.  As it was the case with the experiments reported in the 

previous section, a sensitivity analysis was conducted first during the short-
term processes in order to determine the most suitable combination of 
evolutionary computation parameters.  Once this combination of parameters 
has been found, it was used in the long-term optimization experiments. 

Short-term Evolutionary Optimization 
Table 68 shows the evolutionary computation parameters a used in the short-term 

experiments.  Only one type of evolutionary algorithm was used in the design experiments with 7 
types of wind bracing elements.  Experimental results reported in the previous section indicated 
that GAs produce inferior results to ES in this problem domain. Thus, ES were selected as the 
only evolutionary algorithm which conducted evolutionary optimization processes.   Two kinds 
of ES were used: ES(µ λ µ λ

The results reported in the pr
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Six combinations of mutation and crossover rates were studied experimentally in the short-
term experiments.  High mutation and crossover rates, i.e. mutation and crossover rates equal to 
0.5, were excluded from the set of rates investigated in this section because they previously 
produced inferior results. 

 

Table 68. Evolutionary computation parameters and their values used in the short-term 
optimization experiments with 7 types of wind bracing elements 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies (ES) 
Generational model Overlapping for ES(µ+λ), 

Nonoverlapping for ES(µ,λ) 
Population sizes (parent, offspring) (1,5), or (5,25) for ES(µ+λ) 

(5,25) for ES(µ,λ) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.025, 0.1, or 0.3 
Crossover (type, rate) (uniform, 0), (uniform, 0.2) 
Fitness Total weight of the steel structure (determined by 

the first-order analysis) 
Initialization method Random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
1,000 fitness evaluations Termination criterion 

ns 5 in each experiment Number of ru
  

The same fitness measure was used, i.e. the total weight of the steel structural system 
calculated using the first-order structural analysis.  As before, infeasible designs were assigned 
the fitness value of 0.  Each design experiment involving a single combination of parameter 
values consisted of 5 independent runs.  Each run was terminated after 1,000 fitness evaluations. 
Optimal Mutation and Crossover Rates 

Figure 81 shows typical results regarding the impact of the mutation rate on the performance 
of the evolutionary algorithm.  In this case, experimental results obtained using ES(5,25) are 
presented with the crossover rate equal to 0.2. As before, the lowest mutation rates produced the 

 best optimization progress was achieved when the 
mutatio
best results.  Figure 81 clearly shows that the

n rate was equal to 0.025 and it decreased when higher mutation rates were applied.  No 
such pattern was observed for crossover rates.  On the contrary, similar results were obtained 
with various crossover rates.  These findings are analogical to the ones reported in the previous 
section for evolutionary optimization processes with 2 types of wind bracing elements. 
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Figure 81. The influence of the rate of mutation operator on the progress of the short-term 

evolutionary optimization processes when 7 types of wind bracing elements were used 

 
Performance Improvement 

Figure 82 compares the performance of the short-term evolutionary optimization with 7 types 
of wind bracing elements to the results achieved when 2 types of bracing elements were used.  
Here, ES(5+25) was used with the mutation and crossover rates equal to 0.025 and 0.2, 
respectively.  It is clear that when 7 types of wind bracing elements are used, the fitness of 
produced design concepts is, on average, better than the design concepts consisting of simple X 
bracings and worse than the design concepts composed of K bracings.   

The average fitness obtained after 1,000 evaluations in the experiments with 7 types of 
bracing elements was equal to 511,480 lbs. and was more than 30,500 lbs. better than the average 
fitness obtained in the experiments with simple X bracings.  At the same time, it was more than 
18,500 lbs. worse than the value obtained in the experiments with K bracings. 

The overall performance improvements in the short-term experiments shown in Figure 82 for 
7 types of wind bracings, simple X bracings, and K bracings were equal to 6.1%, 7.9%, and 5.1% 
percent, respectively. 
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Figure 82. Comparison of the performance of the evolutionary optimization when 2 types and 7 

types of wind bracing elements were used 

Optimal Designs 
These findings were further confirmed by the results presented in Table 69.  It shows the best 

design concepts produced in the short-term experiments with 7 types of wind bracing elements.  
The fitness of the best design concept found in the short-term experiments was equal to 504,162 
lbs. and was more than 27,500 lbs better than the fitness of the best design concept produced in 
the experiments with simple X bracings (see Table 62).   On the other hand, it was more than 
14,000 lbs. worse than the best design concept composed of K bracings (see Table 64). 

All design concepts shown in Table 69 exhibit rather random-looking configurations of wind 
bracing elements.  It is hard to identify any structural shaping patterns shared by the design 
concepts. 

Long-term Evolutionary Optimization 
The sensitivity analysis conducted in the short-term experiments helped identify the best 

combination of evolutionary computation parameters and their values.  It revealed that the best 
combination included exactly the same parameters and values as the ones used in the long-term 
processes with 2 types of wind bracing elements.  Thus, the parameters shown in Table 65 were 
also used in the long-term experiments with 7 types of wind bracing elements. 
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Table 69. Best design concepts of wind bracing systems produced in the short-term evolutionary 
optimization experiments with 7 types of bracing elements 

 
 

Performance Improvement 
Figure 83 shows the progress of the long-term evolutionary optimization in the experiments 

with 7 types of wind bracing elements and compares it to the average fitness obtained after 1,000 
evaluations.  The average performance improvement between the long-term processes and short-
term processes was equal to about 21,900 lbs., or 4.3 percent, and it was the largest performance 
improvement in the long-term experiments reported so far.  The difference between the average 

10,000 fitness evaluations and the average fitness of the initial parents was equal to 
,500 lbs., or 10.2 percent.  

ress during the entire run when 7 types of wind bracing elements 
are

s.  This suggests that there is much larger amount of 
ex

ows that the average best-so-far curves for the experiments involving 2 
typ

fitness after 
more than 55

There are two major qualitative differences between the average best-so-far curve shown in 
Figure 83 and the curves obtained in the long-term experiments with 2 types of wind bracing 
elements (see Figure 77 and Figure 78).  First, Figure 83 shows that there is a sustained 
evolutionary optimization prog

 used.  On the contrary, the best-so-far curves in the optimization experiments with 2 types of 
wind bracing elements level off much faster during the long-term runs.  Second, the experimental 
results obtained with 7 types of wind bracing elements show much larger variance than the ones 
with 2 types of wind bracing element

ploration of the design space being performed even in the late stages of the optimization 
process.   

These differences can be easily identified in Figure 84 which compares the 3 long-term 
experiments.  It clearly sh

es of wind bracing elements level off after about 7,000 fitness evaluations.  It is not the case 
with the curve representing the results of the experiment with 7 types of wind bracing elements 
which shows steady optimization progress throughout the entire run. 
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Figure 83. Average best-so-far performance of the long-term evolutionary optimization 

processes with 7 types of wind bracing elements 

 
Figure 84. Comparison of the evolutionary optimization progress in the long-tem experiments 

with 2 and 7 types of wind bracing elements 
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Op

sign produced in the short-term experiments.  It was only 
slightly worse (about 3,000 lbs.) than the fitness of the best design concept produced in the long-

m evolutionary 

timal Designs 
Table 70 presents 6 best designs produced in the long-term experiments with 7 types of wind 

bracings.  The fitness of the best design was equal to 485,081 lbs. and was more than 19,000 lbs. 
better than the fitness of the best de

term experiments with K bracings. 
 

Table 70. Best design concepts of wind bracing systems produced in the long-ter
optimization experiments with 7 types of bracing elements 

 
Summary 

In this section, I reported the results of the design experiments in which the entire selection of 
7 types of wind bracing elements was used to optimize the topology of a wind bracing system in 
a tall building.  Similarly as in the previous section, both short-term and long-term design 
experiments were performed. 

The sensitivity analysis conducted during the short-term processes revealed that the same 
ked well in the design experiments with 2 types 

 also produced the best results in the experiments 
wi

by evolutionary 
s of the total 

we esign concepts 

he evolutionary 
 shows that the 
of wind bracing 

ts locates them in the middle of a performance improvement range achieved for simple X 
bracings (7.9 percent) and K bracings (5.1 percent).  The performance significantly increases in 

evolutionary computation parameters which wor
of wind bracing elements (see section 7.2.1)

th 7 types of wind bracing elements. 
The short-term experiments showed that the best design concepts produced 

optimization processes with 7 types of wind bracing elements are better (in term
ight) than the ones consisting of simple X bracings but worse than the d

composed of K bracings. 
Figure 85 compares the average performance improvements achieved in t

optimization experiments with 7 and 2 types of wind bracings elements.  It
improvement of 6.4 percent obtained in the short term-experiments with 7 types 
elemen
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the lon e level 
obtained in the long-term experiments with simple X bracings (10.5 percent). 

g-term experiments (the improvement exceeds 10 percent) and almost reaches th

 
Figure 85. Comparison of the average performance improvements produced in the evolutionary 
optimization of wind bracing systems with 7 and 2 types of bracing elements in the short-term 

and long-term experiments 

Fi epts 
produ cing 
elements) with the best ones generated using gene entary and 
one-dimensional CAs (sections 6.2 and 6.3).  It shows that also in the case of the optimization 
with 7 types of bracing elements, evolutionary algorithms produced inferior design concepts as 
the ones generated by one-dimensional CAs.  The differences exceeded 12 and 8 percent in the 
short-term and the long-term experiments, respectively. 

gure 86 compares the performance improvements between the best design conc
ced in the evolutionary optimization processes (with 7 and 2 types of wind bra

rative representations based on elem

 
Figure 86. Comparison of the performance improvements between the best designs produced in 

the evolutionary optimization experiments and the best designs generated by elementary and 
one-dimensional CAs 
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In the next section, I will experimentally investigate the evolutionary computation component 
of EED in optimizing the entire steel structural systems in tall buildings.  In these experiments, 
not only the topology of the wind bracing system was optimized but also optimal configurations 
of 

In lness of the 
 optimizing more complex 

en

tigate whether or not domain knowledge encoded in the initial 
pa

iterature was be used as the 
initial population of parents.  The results produced in both groups of experiments will be 
subsequently compared. 

7.3.1. Starting from Randomly Generated Designs 
Experiments reported in this subsection considered the optimization of the 

entire steel structural systems in tall buildings.  The evolutionary optimization 
processes were initialized, as before, with randomly generated parents.  Thus, 
no domain knowledge was added in this section to start evolutionary 
optimization processes. 

In the conducted experiments, 7 types of wind bracing elements (see Figure 
19), two types of beams (see Figure 20), and two types of supports (see Figure 
22) were considered.  Columns, however, were kept the same during the entire 
evolutionary optimization processes.  Table 71 shows parameters of the design problem studied 
in this subsection.   

As in the previous sections, 30 story buildings with 5 bays were considered. Also, two groups 
of experiments were performed: short-term and long-term. Results of both groups of experiments 
are reported in the following subsections. 

Short-term Evolutionary Optimization 
In this group of experiments, the short-term evolutionary optimization of the 

entire steel structural systems in tall buildings was conducted.  Evolutionary 
computation parameters used in these experiments are presented in Table 72. 

Table 72 shows that ES with the overlapping generational model, i.e. 
ES(µ+λ), was employed in the experiments reported in this subsection. 
Fu
investigate
sea

beams and supports were sought. 

7.3. Optimization of the Entire Steel Structural Systems 
this section, I will empirically investigate the usefu

evolutionary computation component of EED in
gineering systems, namely the entire steel structural systems in tall 

buildings.   
The experimental work reported in this section has been divided into two 

parts to inves
rents improves the performance of the evolutionary optimization processes.  

First, in subsection 7.3.1, I will investigate evolutionary optimization 
processes which were initialized with randomly generated parents.  On the other hand, in 
subsection 7.3.2, I will experimentally study evolutionary optimization processes in which 
background knowledge of the problem domain was used to initialize evolutionary algorithms.  
Specifically, a set of designs known from the structural engineering l

rthermore, three combinations of parent and offspring population sizes were 
d.  For each combination of population sizes, an extensive parameter 

rch was conducted involving 9 combinations of mutation and crossover 
rates. 
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Table 71. Problem parameters and their values used in the conducted experiments 

Problem Parameter Value(s) 
Problem type Design of the entire steel structural system in a 

tall building 

Number of stories 30 

Number of bays 5 

Bay width 20 feet (6.01 m) 

Story height 14 feet (4.27 m) 

Distance between transverse systems 20 feet (6.01 m) 

Types of bracing elements No, Diagonal \, Diagonal /, K, V, Simple X, and X 

Types of beam elements Pinned-Pinned, and Fixed-Fixed 

Types of column elements Fixed-Fixed (only) 

Types of supports Pinned, and Fixed 
  

optimizatio l buildings 

 

Table 72. Evolutionary computation parameters and their values used in the short-term 
n experiments of the entire structural systems in tal

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies (ES) 
Generational model Overlapping for ES(µ+λ) 
Population sizes (parent, offspring) (1,5), (5,25), or (50,250) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.025, 0.1, or 0.3 
Crossover (type, rate) (uniform, 0), (uniform, 0.2), or (uniform, 0.5) 
Fitness Total weight of the steel structure (determined by 

the first-order analysis) 
Initialization method Random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 1,000 fitness evaluations 
Number of runs 5 in each experiment 

  
The design processes were repeated 5 times for each combination of parameter values using a 

different value of the random seed each time.  Each run was terminated after 1,000 fitness 
evaluations.  The initial population of parents was generated randomly in every experiment 
reported in this subsection.  Each design concept was represented as a fixed-length genome with 
306 genes.  In this case, however, the genome was nonhomogeneous, i.e. it contained genes 
which encoded attributes that didn’t have the same number of possible values.  More 
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specifically, 150 genes representing types of wind bracing elements had 7 possible values, 150 
ge senting types of 

ht of the 
rst-order structural analysis.  Whenever an 

eath penalty). 

mine the optimal 

 
The average best-so-far fitness curves shown in Figure 87 are very similar to the ones obtained in 
the short-term optimization of wind bracing systems (see Figure 73). 

nes representing types of beams had 2 possible values, and 6 genes repre
supports had 2 possible values.  

As previously, the fitness of each design concept was determined by the total weig
ulated using the fisteel structural system calc

infeasible design concept was generated, it was assigned the fitness value of 0 (d
The following subsections describe the obtained results. 

Optimal Evolutionary Computation Parameters 
As before, one of the major goals of the short-term experiments was to deter

values of the evolutionary computation parameters, i.e. the values which provided the best 
optimization progress.  These values were subsequently used in the long-term optimization 
experiments. 

The results of the short-term experiments revealed that the same parameters which proved to 
perform well in the evolutionary optimization of wind bracing systems also worked best in 
optimizing the entire steel structural systems in tall buildings.  For example, Figure 87 shows the 
impact of the parent of offspring population sizes on the fitness of produced design concepts. 

 
Figure 87. Influence of the sizes of parents and offspring populations on the progress of the 

short-term optimization of the entire steel structural systems in tall buildings 

Figure 87 shows that ES with smaller population sizes significantly outperformed the ones 
with large population sizes in the short-term experiments.  On the other hand, there are no 
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significant differences between ES(5,25) and ES(1,5) in terms of the average best-so-far 
pe

ious results obtained in the 
e

 
rates were used.  The een the mutation 
rates and the average best-so-far fitness of the produced design concepts, as the ones presented 
earlier in Figure 67.  The graph showing these findings was, however, omitted.  Thus, the same 
parameter values as the ones included in Table 65 were selected for the long-term experiments. 
Optimal Designs 

Table 73 shows the best design concepts of the entire steel structural systems in tall buildings 
produced in the short-term evolutionary optimization experiments.  The fitness of the best design 
concept was equal to 518,448 lbs. and was more than 58,500 lbs., or 12 percent, worse than the 
best design produced by the generative representations based on multiple 1D CAs (see Table 57 
in section 6.5.2). 

Similarly as in Table 69, the best design concepts of the entire steel structural systems 
presented in Table 73 exhibit randomly looking configurations of structural members.  In a few 
cases, however, in the middle part of the structural system, a macro bracing patterns formed by 
simple X bracings and X bracings begin to emerge. 

 

Table 73. Best design concepts of the entire structural systems in tall buildings produced in the 
short-term evolutionary optimization experiments 

rformance of the produced design concepts.  The latter, however, introduced much larger 
variance than the former.  These findings fully agree with the prev
volutionary optimization of wind bracing systems (see section 7.2). 

Similarly, the best evolutionary optimization progress was achieved when the lowest mutation
experimental results showed similar relationships betw
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Long-term Evolutionary Optimization 
In this group of experiments, the long-term optimization of the entire steel 

structural systems in tall buildings was conducted using the evolutionary 
computation parameters presented in Table 65. 
Performance Improvement 

Figure 88 shows the average best-so-far performance of the long-term 
evolutionary optimization processes.  It also compares the obtained results to 
the average outcomes produced in the short-term optimization experiments 
(after 1,000 evaluations) and the fitness of the best design concept generated 
by multiple 1D CAs (see Table 57). 

The average fitness of the design concepts produced in the long-term experiments equaled 
502,879 lbs. and was more than 21,500 lbs., or 4.1 percent, better than the average fitness 
obtained in the short-term experiments.  The overall progress rate gained in the long-term 
experiments was, on average, equal to more than 58,000 lbs., or 10.3 percent, compared to about 
36,000 lbs., or 6.4 percent, achieved in the short-term optimization experiments. 

 
Figure 88. Average best-so-far fitness of the entire steel structural systems in tall buildings 

obtained in the long-term evolutionary optimization processes 

On the other hand, the long-term evolutionary optimization processes did not produce design 
c
ex
oncepts of steel structural systems whose fitness was even close to the total weight found in the 

periments with generative representations based on multiple 1D CAs (see section 6.5). 
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Op

 design concepts of the entire structural systems in tall buildings produced in the 
nary optimization experiments 

timal Designs 
The best design concepts of the entire steel structural systems produced in the long-term 

evolutionary optimization experiments are presented in Table 74.     

Table 74. Best
long-term evolutio

 
The fitness of the best design concept was equal to 498,917 lbs. and was about 39,000 lbs., or 

8.5 r n concept generated by multiple 1D CA rules 
(see a
experim l shaping patterns in Table 74.  All of them 
exh t ams, and supports. 

Sum
I h l structural systems in tall 

bui n orted here were initialized 

6 pe
10 percen

 pe cent, worse than the fitness of the best desig
 T ble 57).  Similarly as it was the case with design concepts produced in the short-term 

ents, it is difficult to identify any structura
ibi  randomly looking configurations of wind bracings, be

mary 
n t is section, I studied evolutionary optimization of the entire stee

ldi gs.  As in the previous section, the optimization processes rep
randomly.  Also, short-term and long-term design experiments were conducted.  The short-term 
processes showed that the same evolutionary computation parameters identified as optimal in the 
previous sections can be successfully used to optimize the entire steel structural systems in tall 
buildings. 

The average performance improvement achieved during the short-term experiments exceeded 
rcent while the corresponding improvement for the long-term experiments was greater than 

t.  They were almost identical to the improvement levels achieved during the 
optimization of the wind bracing systems with 7 types of wind bracing elements (see section 
7.2.2).  Figure 89 compares the average performance improvements obtained in the experiments 
reported in this section with the ones reported earlier in the evolutionary optimization of wind 
bracing systems. 
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Figure 89. Comparison of the average performance improvements produced in the short- and 
long-term evolutionary optimization of the entire steel structural systems and wind bracing 

systems 

Even though the performance improvement exceeded 10 percent in the long-term 
experiments, the best designs produced in the evolutionary optimization processes were 
substantially inferior to the best designs generated by multiple 1D CAs.  Figure 90 graphically 
illustrates these results and compares them the performance improvements obtained in the 
evolutionary optimization of wind bracing systems and reported in the previous sections. 

 
Figure 90. Comparison of the performance improvements between the best designs produced in 

the evolutionary optimization experiments and the best designs generated by the generative 
representations base on cellular automata 
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In th ge can 
improve the evolutionary optimization processes.  The structural engineering knowledge will be 
added in a form of a set of structural designs known from the literature, which will be used as 
initial parents. 

7.3.2. Starting from Known Designs 
In this section, the impact of applying domain knowledge on the 

performance of evolutionary optimization processes has been investigated.  
The structural engineering knowledge was incorporated in the initialization 
method which utilized a set of designs known from the engineering literature 
as the initial population of parents.  The optimization processes initialized with 
known designs were subsequently compared with the ones that were initialized 
randomly. 

The set of initial parents, shown in Table 75, included 12 designs that were 
considered as appropriate (called here ‘sub-optimal’) for the class of tall buildings considered in 
this section, e.g. designs No. 7 and 11, as well as designs that could be characterized as rather 
inappropriate (called here ‘poor’), e.g. designs No. 1, 2, 4, and 5.  The individual designs within 
the group can be described as: 

• Design No.1: one-bay centrally located rigid frame 
 located in outer bays 

s
 
vertical trusses 

ntal truss and 

al trusses located in outer bays 

ility of generated design concepts.  
um horizontal displacement of structural systems to be no more than 

e next section, I will empirically investigate whether, or not, the domain knowled

• Design No.2: two one-bay rigid frames
• Design No.3: three-bay rigid frame 
• Design No.4: one-bay centrally located rigid frame with one horizontal tru
• Design No.5: one-bay centrally located rigid frame with one vertical truss
• Design No.6: two one-bay rigid frames located in outer bays with two 

located in outer bays 
• Design No.7: three one-bay vertical trusses 
• Design No.8: one-bay centrally located rigid frame with one horizo

centrally located vertical truss 
• Design No.9: one-bay centrally located vertical truss 
• Design No.10: two one-bay vertic

s 

• Design No.11: three-bay rigid frame with three vertical trusses 
• Design No.12: three-bay rigid frame with one horizontal truss 

Table 76 shows the problem parameters and their values used in the experiments reported in 
this section.  As it is shown in Table 75, 36-story buildings with 3 bays were studied.  For this 
class of tall buildings, i.e. for buildings with a large value of the aspect ratio, the serviceability 
conditions play an important role in determining the feasib
They constrained the maxim

1
600

 of the height of a tall building.  These constraints were imposed on the sizi

algorithm, implemented in SODA, which adjusted the sizes of all structural mem
serviceability conditions were sati

ng optimization 

bers so that the 
sfied.  If a produced design concept did not satisfy the 

serviceabil  le and assigned 0 fitness value (death 
penalty).  A i ced design concepts was determined by 
the total w  using the first-order structural analysis.  
Also, 7 ty s beams, and 2 types of supports were 
considered. 

ity conditions, it was regarded as infeasib
s n the previous sections, the fitness of produ

eight of the steel structural systems calculated
pe  of wind bracings elements, 2 types of 
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Table 75. Set of 12 designs known from the structural engineering literature and used as initial 
parents in the experiments 

 
 
 
As before, the design experiments were divided into two groups: the short-term and the 

long-term optimization processes.  Their results are reported in the following subsections. 
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Table 76. Problem parameters and their values used in the conducted experiments 

Problem Parameter Value(s) 
Problem type Design of the entire steel structural system in a 

tall building 

Number of stories 36 

Number of bays 3 

Bay width 20 feet (6.01 m) 

Story height 14 feet (4.27 m) 

Distance between transverse systems 20 feet (6.01 m) 

Types of bracing elements No, Diagonal \, Diagonal /, K, V, Simple X, and X 

Types of beam elements Pinned-Pinned, and Fixed-Fixed 

Types of column elements Fixed-Fixed (only) 

Types of supports Pinned, and Fixed 
  

Short-Term Evolutionary Optimization 
In this subsection, I investigate short-term evolutionary optimization 

processes in which, as before, a relatively low budget of 1,000 fitness 

parameters: mutation and crossover rate  offspring population 
siz

ossover rates was 
ions of parent and offspring population sizes to determine their 

optima

ree parents.  
All po

• Population No.1: designs No.1, 5, and 9 
• Population No.2: designs No.2, 6, and 10 
• Population No.3: designs No.3, 7, and 11 
• Population No.4: designs No.4, 8, and 12 

evaluations per run was used.  A sensitivity analysis conducted during the 
short-term experiments included the following evolutionary computation 

s, and parent and
es.  Also, two methods of initialization of evolutionary optimization 

processes were studied in order to compare the advantages of applying domain 
knowledge (initialization using a set of known designs) over traditionally used 
random initialization.  Table 77 shows the evolutionary computation parameters used in the 
experiments reported in this subsection. 

First, the short-term optimization processes were started with small populations consisting of 
3 designs.  Next, a larger population of all 12 parents was used to optimize the steel structural 
systems in tall buildings.  An extensive parameter search of mutation and cr
conducted for all combinat

l values. The results of these experimental studies were later compared and the optimal 
experimental setups were used in the long-term experiments. 
Small Population Sizes 

In this group of experiments, the set of 12 known designs shown in 
Table 75 was arbitrarily divided into four populations, each of th

pulations were then independently evolved.  The four populations 
consisted of the following designs: 
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Table 77. Evolutionary computation parameters used in the short-term optimization experiments 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies 
Population sizes (parent, offspring) (3,15) or (12,60) 
Generational model Overlapping (µ+λ) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.025, 0.1, 0.3, or 0.5 
Crossover (type, rate) (uniform, 0), (uniform, 0.2), or (uniform, 0.5) 
Fitness Total weight of the steel structure (determined by 

the first-order analysis) 
Initialization method Known designs, or random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 1,000 fitness evaluations 
Number of runs 15 in each experiment 

 
 As discussed earlier, in this chapter parameterized representations of the entire steel 

structural systems were studied (see section 4.2).  For the problem parameters shown in Table 

types of wind bracings), 108 genes had two values (attributes representing beams), and four 
genes had two values (attributes representing supports). 
Optimal Mutation and Crossover Rates 

Typical experimental results are presented in Figure 91 which shows the average best-so-far 
performance of evolutionary algorithms optimizing population No.1.  Specifically, the results of 
four experiments are presented in which 4 different rates of mutation were used.  The uniform 
crossover rate was kept the same and equal to 0.2.  The vertical lines represent 99.9% confidence 
intervals calculated using Johnson’s modified t test. 

Figure 91 clearly shows that there exists a pattern regarding the influence of the mutation rate: 
The higher the mutation rate the faster the optimization progress in the initial stages of evolution 
(see the zoom in window on the left hand side in Figure 91).  Even though the lowest mutation 
rates produced inferior results in the initial stages of the optimization process, they eventually 
outperformed higher mutation rates at the end of the run (see the zoom in window on the right in 
Figure 91).  High mutation rates turned out to be too disruptive at the end of the run and finally 
produced inferior results.  The best evolutionary optimization progress in the short-term 
experiments was obtained when the rate of mutation was equal to 0.1.  Thus, the most successful 
rate was higher than the optimal rate identified in the experiments reported in the previous 
sections.  

On the other hand, the impact of the crossover operator was limited only to an increase, or 
reduction, of variance of the fitness of the produced design concepts.  It did not influence the 
average progress of the evolutionary optimization processes.  The results with smallest variance 
were obtained when the crossover rate equaled 0.2 whereas the largest variance occurred when 
t
findings was

76, the genotypes consisted of 220 genes.  108 genes had seven values (attributes representing 

he crossover operator was not applied at all (crossover rate 0).  The graph showing these 
, however, omitted. 
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Figure 91. The influence of the mutation rate on the progress of the evolutionary optimization of 

population No.1 

Experimental results have shown that conclusions drawn for population No.1 were also valid 
for populations No.2 and No.4.  However, the situation was different in the case of population 
No.3 which contained the sub-optimal designs No.7 and 11.  Figure 92 shows the impact of the 
rate of mutation on the progress of evolutionary optimization of population No.3.  In this case, 
high mutation rates, i.e. 0.3 and 0.5, did not produce almost any optimization progress (less than 
1 percent in the case of mutation rate equal to 0.5).  The best results were obtained when the 
lowest mutation rate was used, i.e. 0.025.  As before, no significant impact of various crossover 
rates on the average performance of the evolutionary algorithm was observed. 
Pe

tions.  Vertical lines in this figure represent 99.9% confidence 
int

rformance Improvement 
The average performance improvements obtained in the design experiments were highly 

dependent on the fitness of the initial parents.  The biggest improvement was achieved when 
evolutionary optimization processes were started with poor parents, i.e. when populations No.1 
and No.2 were used.  The smallest optimization progress rates were produced by population 
No.3 which already contained sub-optimal designs No.7 and 11.   

Figure 93 compares the average best-so-far fitness curves obtained in the short-term 
experiments with 4 popula

ervals. 
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Figure 92. The influence of the mutation rate on the progress of the evolutionary optimization of 

population No. 3 

 
Figure 93. Comparison of the average best-so-far fitness of the entire steel structural systems in 

tall buildings obtained in the short-term experiments with 4 populations 
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Figure 93 shows than even though populations No.1 and No.2 achieved the biggest 
optimization progress during the short-term processes, they did not outperform design concepts 
generated by population No.3.  Optimization of population No.3 produced significantly better 
end results compared to the other 3 populations.  In fact, the end results produced by populations 
No.1, No.2, and No.4 were similar in terms of the average fitness of the best design concepts. 
Optimal Designs 

The best design concepts generated by population No.4 are presented in Table 78.  As 
mentioned above, the best design concepts produced by populations No.1 and No.2 were 
qualitatively and quantitatively similar to the ones shown below.  The fitness of the best design 
concept was equal to 958,189 lbs. and was almost 315,000 lbs., or 25 percent, better than the 
fitness of the best initial parent (see design No.12 in Table 75). 

 

Table 78. Best design concepts produced by population No.4 in the short-term experiments 

 
The best design concepts generated by population No.3 are shown in Table 79.

 gene
  They not only 

rated by other populations but also exhibited 
able 79 show 

ation No.3 was equal to 933,245 lbs.  

outperformed the best design concepts
qualitatively different structural shaping patterns.  All design concepts in T
variations of the fully braced pattern composed of K bracings.  Occasionally, single K bracings 
were replaced by other types of wind bracing elements but the overall pattern composed of K 
bracings could be easily identified.  Thus, all best concepts produced during the evolution of 
population No.3 were restricted to slight mutations of the sub-optimal initial parents (designs 
No.7 or No.11 in Table 75). 

ncept generated by populThe fitness of the best design co
It was more than 80,000 lbs., or 8 percent, better than the fitness of the best initial parent (design 
No.7 in Table 75).  This performance improvement is more than 3 times smaller than the one 
achieved by population No.4 but in this case evolutionary optimization processes were initialized 
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with already sub-optimal designs.  The average performance improvement of 8 percent for such 
fit designs constitutes quite a good achievement. 

Table 79. Best design concepts produced by population No.3 in the short-term experiments 

 
 

Known Designs vs. Random Initialization 
The short-term evolutionary optimization processes started from known designs were also 

compared to the processes initialized randomly.  Figure 94 shows a typical average best-so-far 
curve obtained for randomly initialized populations and compares it to the corresponding cu es 
(pro  It 
clear itial 
parents from populati  initial parents from 

On the other hand, the end results obtained in the short-term experiments were 

, it was worse than the best design 
concepts produced by both population No.4 (see Table 78) and population No.3 (see Table 79). 

rv
duced using exactly the same parameters) generated by populations No.3 and No.4. 
ly shows that the fitness of randomly initialized parents is, on average, better than the in

on No.4 (and also No.1 and No.2) but worse than the
population No.3.  
only slightly better than the end results achieved by population No.4 (statistically insignificant 
when 95% confidence intervals are considered, see Figure 94).  The randomly initialized 
population did not produce design concepts comparable to the ones generated by population 
No.3. 

The performance improvement achieved by the randomly initialized population in the short-
term experiments exceeded 100,000 lbs., or 9 percent.  The fitness of the best design concept 
produced by this population was equal to 967,642 lbs.  Thus
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F  

obtained in the shor .4 and a population 
initialized randomly 

In the following subsection, I will investigate the impact of increasing the size of the 
parent population on the fitness of produced design concepts. 
Large Population Sizes 

In the design experiments reported in this subsection, the entire set of 12 
known designs was employed is a single large population of initial parents.  
Also, in order to compare the impact of the initialization method on the fitness 
of produced design concepts, another group of design experiments was 
conducted in which exactly the same parameters were used but the initial 
population of parents was generated randomly. 
Optimal Mutation and Crossover Rates 

A sensitivity analysis involving mutation and crossover rates revealed that 
the same mutation rates that worked well in the case of population No.3 also generated the best 
results for the large population initialized with the entire set of 12 known designs.  The best 
evolutionary optimization progress was obtained when the rate of mutation equaled 0.025.  As 
before, various crossover rates did not influence the fitness of the produced design concepts.  
Graphs showing these results have been, however, omitted. 
Large vs. Small Population Sizes 

Figure 95 compares the average best-so-far curves obtained in the experiments with the large 
population initialized with known designs, the large population initialized randomly, and 
population No.3.  It shows that both small and large populations initialized with known design 

igure 94. Comparison of the average best-so-far fitness of the entire steel structural systems
t-term experiments with populations No.3 and No
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concepts significantly outperform the large population which was initialized randomly.  The 
dif

have been identified between small and 
lar

ferences in the optimization progress between population No.3 and the large population occur 
mainly in the initial stages of evolution.  The end results, however, are similar and the 
differences between average fitnesses are statistically insignificant.  In fact, the average fitness of 
the best design concepts generated by the large population slightly outperformed the value 
produced by population No.3.  Similar relationships 

ge populations initialized randomly. 

 
Figure 95. Comparison of the average best-so-far performance obtained in the short-term 
experiments with the large population initialized with known design concepts, the large 

population initialized randomly, and population No.3 

 

Optimal Designs 
The best design concepts produced during the evolutionary optimization of the large 

population initialized with known designs are presented in Table 80.  As it was the case with the 
best design concepts generated by population No.3 (see Table 79), all designs shown in Table 80 
exhibit various mutations of the fully-braced pattern composed of K bracings.  They were 
qualitatively different than the design concepts produced during the evolutionary optimization of 
the large population initialized randomly (see Table 81). 
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Ta e ble 80. Best design concepts produced in the short-term design experiments by the larg
population initialized with 12 known designs 

 
Table 81. Best design concepts produced in the short-term design experiments with a large 

population of randomly generated initial parents 
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Pe

s slightly better than the fitness of the best design 
co

ters, described above, were employed. 

ul rates of mutation 

with known designs, this time using the mutation rate of 0.025 (previously identified as the 
optimal rate for population No.3 and the large population). 
Optimal Mutation and Crossover Rates 

Figure 96 compares average fitness values obtained at the end of the short-term and long-term 
experiments for all populations investigated in this section.  Vertical lines in this figure represent 
95% confidence intervals.  The average fitness values and confidence intervals corresponding to 
the short-term processes were taken from the experiments in which optimal crossover and 
mutation rates were employed for each population.  On the other hand, the results corresponding 
to the long-term processes come from experiments in which the rates of mutation and crossover 
were uniform across all populations and equal to 0.1 and 0.2, respectively. 

Figure 96 illustrates several interesting phenomena which occurred in this group of 
experiments.  First, all populations, for which the optimal values of mutation and crossover 
values were employed, produced significantly better results in the long-term experiments than in 
the short ones.  However, population No.3 and the large population initialized with known 
designs produced worse results in the long-term experiments than in the short-term processes. 

For these two populations, the optimal rate of mutation was equal to 0.025.  Thus, by using 
inappropriate rates of genetic operators in evolutionary optimization experiments, inferior results 
might be obtained even when significantly longer evolutionary optimization processes are 
conducted. 

 
 

 

rformance Improvement 
The performance improvements achieved in the short-term experiments with the population 

initialized with known designs and the population initialized randomly exceeded 8 percent and 
9.5 percent, respectively.  The fitness of the best design concept produced by the former 
population was equal to 932,216 lbs. and wa

ncept produced by population No.3 (see Table 79).   
In the next subsection, I will describe results of the long-term evolutionary optimization 

experiments with populations initialized with known design concepts.  In this group of 
experiments, the optimal evolutionary computation parame

Long-Term Evolutionary Optimization 
In this subsection, I describe results of the long-term design experiments 

involving both small and large populations initialized with known design 
concepts.  Next, I compare them with the results produced by evolutionary 
optimization processes with exactly the same parameters but initialized 
randomly. 

Table 82 shows the evolutionary computation parameters that were used in 
ported in this section.  The most successfthe experiments re

and crossover, identified in the short-term experiments, were employed here in 
the long-term optimization processes. 

In the first group of experiments, all populations (both small and large) were evolved with the 
mutation rate equal to 0.1 (this rate was identified as optimal for populations No.1, No.2, No.4 
and the populations initialized randomly).  In the second group of experiments, evolutionary 
optimization experiments were repeated for population No. 3 and the large population initialized 
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Table 82. Evolutionary computation parameters and their values used in the long-term 
optimization experiments of the entire steel structural systems in tall buildings 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies 
Population sizes (parent, offspring) (3,15) or (12,60) 
Generational model Overlapping (µ+λ) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.1 for all populations 

0.025 for population No.3 and the large population
Crossover (type, rate) (uniform, 0.2) 
Fitness Total weight of the steel structure (determined by 

the first-order analysis) 
Initialization method Known designs, or random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 10,000 fitness evaluations 
Number of runs 5 in each experiment 

 

 
Figure 96. Comparison of the average best-so-far fitness obtained in short-term and long-term 

experiments 
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Finally, Figure 96 clearly shows dissimilarities between variances obtained using the two 
initialization methods.  The variance of the obtained results was substantially larger when 
populations had been initialized randomly.  However, as the rightmost part of Figure 96 shows, it 
wa

term experiments were equal to 22,600 
lbs. (2.3 percent) and 21,900 lbs. (2.3 percent) for population No.3 and the large population, 
respectively.  Figure 97 also shows that large population produced better results than population 
No.3 for both mutation rates.  It outperformed population No.3, on average, by almost 7,000 lbs., 
or 0.7 percent, and at the same time produced smaller variance.  This is different from the results 
obtained in the evolutionary optimization of wind bracing systems (see section 7.2) where 
smaller population sizes proved to be more efficient. 
Optimal Designs 

The best design concepts produced in the long-term experiments are presented in Table 83. 5 
out of 6 design concepts in this table were produced by the large population initialized with 
known design concepts while the remaining one was generated by population No.3.  The fitness 
of the best design concept was equal to 926,268 lbs. and was almost 90,000 lbs., or 8.8 percent, 
better than the fitness of the sub-optimal initial parent, i.e. design No.7 in Table 75. 

s significantly reduced in the long-term evolutionary optimization processes involving the 
randomly initialized population of large size. 

Figure 97 illustrates the impact of the rate of mutation on the performance of the evolutionary 
optimization of population No.3 and the large population.  It clearly shows that when optimal 
values of the mutation rate are used, i.e. 0.025, the produced results are significantly better than 
in the case when inappropriate rate is applied (here 0.1).   
Performance Improvement 

The average performance improvements in the long-

 
Figure 97. The impact of the mutation rate of the performance of the long-term evolutionary 

r population No.3 optimization processes fo and the large population 
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None of the populations initialized randomly produced design concepts of comparable 
performance.  The fitness of the best design concept produced by the large population initialized 
randomly was equal to 947,859 lbs. and was more than 21,500 lbs., or 2.3 percent, worse than 
the overall best design concept found in the long-term experiments (see Table 83). 

he long-term Table 83. Best design concepts of the entire steel structural systems produced in t
experiments 

 
 

Summary 
In this section, I investigated the impact of the domain knowledge on the performance of 

evolutionary optimization processes.  The structural engineering knowledge was applied in a 
form of a set of 12 known designs of the entire steel structural systems in tall buildings which 
were used as the initial parents.  As in the previous sections, short-term and long-term design 
experiments were conducted and the impact of selected evolutionary computation parameters 
was tested empirically in the sensitivity analysis phase. 

First, the short-term evolutionary optimization processes were investigated with both small 
and large population sizes.  The experiments have shown that the optimal rates of mutation 
which produced the best optimization progress are related to the quality of initial parents.  When 
poor design concepts are used in the initial population of parents then higher mutation rates, i.e. 
0.1, are preferred.  On the other hand, if the initial population contains a highly fit design concept 
then significantly lower mutation rates produce better results.  The results were consistent for 
both small and large population sizes.  The long-term experiments have also shown that the 
optimal rates of genetic operators should be carefully determined during the short-term 
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pro m 
optimization processes may much shorter optimization 
processes. 

Evolutionary optimization processes started from poor design concepts achieved superior 
average performance improvements.  However, the overall best design concepts were produced 
by populations that contained the sub-optimal design concepts as initial parents.  Also, 
evolutionary algorithms with larger population sizes proved to perform better in this problem 
domain.  These findings are illustrated in Figure 98 and Figure 99.  Figure 98 shows a 
comparison of the average performance improvements produced in the short-term and long-term 
experiments by all populations considered in this section while Figure 99 compares the fitness of 
the best design concepts produced by these populations. 

cesses.  Otherwise, when inappropriate rates are used the results produced by the long-ter
 be inferior to the results obtained in 

 
Figure 98. Comparison of the average performance improvements achieved in the evolutionary 
optimization of the entire steel structural systems in the short-term and long-term experiments 

 
Figure 99. Comparison of the fitness of the best design concepts produced in the long-term 

optimization experiments by all populations considered in this section (lower values correspond 
to better designs) 
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In the next section, I will extend the fitness evaluation from single-objective models to 
multiobjective approaches.  I will achieve it by including the maximum horizontal displacement 
of the structural system as the second objective with respect to which the design concepts are 
optimized. 

7.4. Multiobjective Optimization of the Entire Steel Structural Systems 
So far, evolutionary optimization processes considered only one objective, 

namely the total weight of a structural system.  The second performance 
measure, i.e. the maximum horizontal displacement, was either only monitored 
(see sections 7.2 and 7.3.1) or treated as a constraint for structural systems 
with high aspect ratios (see section 7.3.2).  In this section, I investigate more 
general evaluation models in which both performance measures are considered 
as objectives with respect to which the entire steel structural systems are 
optimized.   

A simple multiobjective evolutionary algorithm based on aggregating functions (see section 
2.1.5) was used in the experiments reported here.  Both objectives were combined into a single 
fitness function using a set of arbitrarily assigned weights which determined the relative 
importance of each of the two objectives.  By considering several combinations of the weights I 
have attempted to identify the changes of the optimal topologies of steel structural systems when 
the im e the 
ap

e 
ex n 
7.3.2, two methods of initialization of mu olutionary optimization were considered: 
a random initialization and an initialization using a set of known designs.  In this section, only 
the long-term multiobjective evolutionary optimization experiments were conducted.  The values 
of evolutionary computation parameters, i.e. population sizes and mutation and crossover rates, 
were assumed based on the results of the short-term experiments reported in section 7.3.2. 

Table 84 shows the evolutionary computation parameters and their values used in the long-
term multiobjective evolutionary optimization experiments. 

As discussed earlier, the fitness of a design concept was calculated as a weighted average of 
the normalized total weight of a structural system and the related normalized maximum 
horizontal displacement.  6 combinations of weighting coefficients were used in the 
multiobjective design experiments, including 0.0⋅W+1.0⋅D, 0.2⋅W+0.8⋅D, etc., where W denotes 
the total weight of the structural system and D its maximum horizontal displacement.  Each 
design concept was represented by a fixed-length genome consisting of 220 genes.  108 genes 
encoded attributes defining types of wind bracing elements.  These genes had 7 possible values 
representing 7 types of wind bracing elements.  108 genes encoded attributes representing 
beams.  These genes had binary values.  Finally, 4 genes encoded types of supports and also had 
binary values. 

The experimental results are presented in the following subsections. 
 
 
 

portance of each of the two objectives was modified.  I also tried to determin
proximate shape of the Pareto front in this two-objective performance space.  
The problem parameters and their values used in the experiments reported in this section wer

actly the same as the ones used in section 7.3.2.  They are presented in Table 76.  As in sectio
ltiobjective ev
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Table 84. Evolutionary computation parameters and their values used in the multiobjective 
evolutionary optimization experiments 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies 
Population sizes (parent, offspring) (12,60) 
Generational model Overlapping (µ+λ) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.1 
Crossover (type, rate) (uniform, 0.2) 
Fitness Weighted average involving two objectives: 

the total weight of the structural system 
the maximum horizontal displacement of the 
structural system (‘sway’) 

Weighting coefficients 0.0, 0.2, 0.4, 0.6, 0.8, or 1.0 
Initialization method Known designs, or random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 10,000 fitness evaluations 
Number of runs 5 in each experiment 

  
 

7.4.

multi-o s and 
kn

arents did not always produce superior results. 
Figure 101 shows the normalized average best-so-far curves for another combination of 

nary design processes produced 
sim

mly.  However, when the value of this 
coefficient was increased (and the value of the coefficient associated with the maximum 
displacement was decreased) then both initialization methods produced similar results.  In some 
cases, random initialization slightly outperformed the initialization with known designs. 

1. Impact of the Initialization Method 
Figure 100 shows two normalized average best-so-far fitness curves obtained in the 
bjective evolutionary optimization experiments with randomly initialized parent

own designs used as initial parents.  The vertical lines represent 95% confidence intervals 
calculated using the modified Johnson’s t test. In this case, the fitness of the design concepts was 
calculated using the following coefficients: 0.2 for the total weight and 0.8 for the maximum 
displacement. Figure 100 clearly shows that in this case the evolutionary processes initialized 
with known design concepts outperformed the ones initialized randomly.  However, evolutionary 
optimization processes initialized with known p

weighting coefficients.  Here, both multiobjective evolutio
ilar results.  In general, the following pattern was observed in the conducted experiments.  

For low values of the weighting coefficient associated with the total weight of the steel structural 
system, the evolutionary optimization processes initialized with known design concepts 
significantly outperformed the ones initialized rando
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Figure 100. Comparison of the normalized average best-so-far fitness obtained in the 

multiobjective evolutionary optimization experiments with randomly initialized parents and 
known designs used as the initial parents (here the fitness was calculated using the formula: 

0.2W+0.8D) 

 
Figure 101. Comparison of the normalized average best-so-far fitness obtained in the 

multiobjective evolutionary optimization experiments with randomly initialized parents and 
known designs used as the initial parents (here the fitness was calculated using the formula: 

0.6W+0.4D) 
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7.4.2. Approximate Shape of the Pareto Front 
The best design concepts of steel structural systems produced in all design experiments 

involving various combinations of weighting coefficients were analyzed with respect to the 
values of both objectives.  The results of this analysis are presented in Figure 102.   

 
Figure 102. Approximate shape of the Pareto front in the performance space spanned over of the 

total weight of the steel structural system and its maximum horizontal displacement 

It shows an approximate shape of the Pareto front spanned over the performance space 
formed by the total weight of the structural system and its maximum horizontal displacement.  It 
clearly shows that the total weight of the optimal structural designs varied from about 500,000 
lbs. to more than 6,500,000 lbs.  At the same time, the maximum horizontal displacements of the 
structural systems ranged from 4 inches to almost 22 inches.  Figure 102 also shows that there is 
a strong trade-off between the two objectives. 

7.4.3. Optimal Topologies of Steel Structural Systems 
The best design concepts shown in Figure 102 were also analyzed qualitatively for changes in 

their topologies occurring when the importance of each of the two objectives was modified.  
Figure 103 shows the topologies of the structural systems associated with the approximate Pareto 
front which was discussed in the previous subsection. 
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Figure 103. Topologies of the optimal structural systems associated with various regions of the 

approximate Pareto front 

Figure 103 clearly shows that there are significant qualitative differences among the 
topologies of structural systems located in various parts of the Pareto front.  The leftmost design, 
which corresponds to the region of the Pareto front with the smallest horizontal displacements 
and the largest total weight, exhibits a dramatically different structural shaping pattern than the 
second design shown to the left.  In the former case, a fairly uniform pattern of K bracings can be 
identified with occasional occurrences of X bracings.  In the latter case, wind bracing elements 
appear only occasionally and the stiffness of the structural system is provided by the increased 
cross-sections of beams and columns.   The three rightmost designs in Figure 103 are again 
different than the previously described designs.  Here, combinations of relatively large numbers 
of X and K bracings can be identified.  The topologies of the three rightmost design concepts are 
much more similar than the leftmost designs. 

When we compare the design concepts shown in Figure 103 to the ones generated in the 
design experiments in which the total weight of the structural system was used as the only 
objective and the maximum horizontal displacement was imposed as a constraint (see Table 83), 
we can identify significant qualitative and quantitative differences.  The designs shown in Table 
83 are almost 50% heavier than the rightmost designs shown in Figure 103.  At the same time 
they exhibit substantially smaller (also about 50%) horizontal displacements.   

The quantitative characteristics of the structural systems shown in Table 83, i.e. their total 
weights and the maximum horizontal displacements, show that these designs are located close to 
the central region of the Pareto front.  If we use this information we can more accurately 
approximate the shape of the Pareto front in this two-objective performance space, as it is shown 
in Figure 104. 
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Figure 104. More accurate approximation of the shape of the Pareto front in the performance 

space spanned over of the total weight of the steel structural system and its maximum horizontal 

7.4.4
In this tructural 

syste
functions .  In the experiments, two objectives were considered: 
the

ong trade-off between the two objectives.  I also found that the topologies 
of the steel structural systems corresponding to various regions of the Pareto front exhibit quite 
different structural shaping patterns.  

The conducted experiments provided new insights on the ranges of variability of the two 
objectives in which the optimal design concepts of the entire steel structural systems can be 
found. They also provided a broader understanding of this complex structural design problem by 
identifying the optimal topologies for various regions of the Pareto front. 

7.5. Summary 
In this chapter, I described the results of the second stage of the Empirical Performance 

Validation process (see section 3.6.3) in which I investigated the evolutionary computation 
component of Emergent Engineering Design.  I have attempted to build confidence in the 

displacement 

. Summary 
 section, I studied multiobjective evolutionary optimization of the entire steel s

ms in tall buildings.  A simple multiobjective evolutionary algorithm based on aggregating 
 was used in these experiments

 total weight of a structural system and its maximum horizontal displacement.  Both 
objectives were combined into a single fitness function using a set of arbitrarily assigned weights 
which determined the relative importance of each of the two objectives.   

I identified the approximate shape of the Pareto front in this two-objective performance space 
by considering several combinations of weighting coefficients.  The conducted analysis has 
shown that there is a str
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usefulness of this component of EED by presenting and discussing the results of a large number 
of evolutionary optimization experiments. 

In the first section of this chapter, I discussed criteria of optimality of steel structural systems 
in tall buildings and revisited the research question 3 and the research hypothesis 3.  I also 
refined them in the context of design problems considered in this dissertation. 

In the second section of this chapter, I described results of the design experiments in which 
wind bracing systems in tall buildings were optimized.  I investigated the impact of various 
evolutionary computation parameters on the performance of the evolutionary algorithm in this 
problem domain and defined optimal values of these parameters. I also reported that evolutionary 
algorithms achieved significant performance improvements (more than 10 percent) in the long-
term optimization experiments.  In some cases, however, they produced substantially inferior 
designs to the ones generated by the generative representations (see the results reported in 
chapter 6). 

In the third section of this chapter, I investigated evolutionary optimization of a more complex 
design problem, namely conceptual design of the entire steel structural systems in tall buildings.  
I empirically showed that evolutionary algorithms performed well in this complex problem 
domain and achieved significant performance improvements which again exceeded 10 percent.  I 
also described how one can add domain knowledge to the evolutionary optimization processes in 
a form a set of known design concepts used as the initial parents.  I demonstrated that adding this 
knowledge improves the performance of the evolutionary optimization processes. 

In the fourth section of this chapter, I extended the traditional single-objective evaluation 
models and investigated the multiobjective evolutionary optimization of the entire steel structural 
systems in tall buildings in which the design concepts were minimized with respect to both the 
total weight and the maximu lly showed the approximate 
shape of the Pareto front. It p ective performance space.  I 
also found that there were strong trade-offs between the two objectives.  Furthermore, I 
demonstrated how the optimal topologies of the steel structural systems change in various 

m horizontal displacement.  I empirica
rovided a ‘big picture’ of this two-obj

regions of the Pareto front. 
In the next chapter, I will empirically investigate integrated components of EED, i.e. the 

generative representations combined with evolutionary algorithms. 

 



 

8. MORPHOGENIC EVOLUTIONARY DESIGN 
 

“The most extensive computation known has been conducted over 
the last billion years on a planet-wide scale: it is the evolution of 
life.” 

 (David Rogers) 
 

In this chapter, I discuss results of the design experiments in which integrated components of
Emergent Engineering Design, i.e. the generative representations component and the 
ev

 

olutionary computation component, were tested to effectively generate novel design concepts 
of steel structural systems in tall buildings and to efficiently optimize them.  The results 
presented here constitute the third stage of the Empirical Performance Validation process, as 
discussed earlier in section 3.6.3.  Similarly as before, the design experiments reported in this 
chapter have been conducted using Emergent Designer. 

Figure 105 shows the organization of this chapter.  First, in section 8.1, I revisit the 
fundamental research question and the fundamental research hypothesis of this dissertation and 
refine them in the context of the considered design problems.  I also provide an overview of the 
morphogenic evolutionary design experiments reported in this chapter. 

Next, section 8.2 describes the results of the morphogenic evolutionary design of wind 
bracing systems in tall buildings.  The experiments reported in this section were divided into 
three groups:  

1. Experiments in which the generative representations of wind bracing systems based on 
elementary CAs were evolved using evolutionary algorithms (see subsection 8.2.1). 

2. Experiments with one-dimensional CAs with 7 cell values representing 7 types of wind 
bracings elements evolved by evolutionary algorithms (see subsection 8.2.2).  

3. Experiments in which generative representations based on two-dimensional CAs were 
evolved (see subsection 8.2.3). 

Finally, the experimental results of the morphogenic evolutionary design of the entire steel 
structural systems in tall buildings are reported in section 8.3.  Here, the generative 
representations of all subsystems of the steel structural system in a tall building, i.e. the wind 
bracing subsystem, the beam subsystem, and the supports, were evolved by evolutionary 
algorithms.  The generative representations investigated in this section were based on multiple 
one-dimensional CAs. 

267 
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Chapter 8
Morphogenic Evolutionary 

Design 

Novel and Optimal 
Designs of Steel 

Structural Systems 

Morphogenic 
Evolutionary 

Design of Wind 
Bracing Systems 

Evolution of 
Elementary Cellular 

Automata 

Evolution of 1D 
Cellular Automata 

Morphogenic 
Evolutionary Design 

of the Entire Steel 
Structures 

Evolution of 2D 
Cellular Automata 

 
Figure 105. Organization of chapter 8 

 

8.1. Novel and Optimal Designs of Steel Structural Systems 
As stated earlier, in this chapter, I describe results of the third and last stage of the Empirical 

Performance Validation process in which I empirically test the usefulness of the integrated 
components of EED for producing novel design concepts of steel structural systems and for 
efficiently optimizing them.  By measuring the performance of the integrated components for the 
example problems, I will test the fundamental research hypothesis of this dissertation (see 

ental research hypothesis in 
n order to do that, I will use 
esign concepts and the same 

lso use the same performance 
system, as the objective with 

will be optimized.   
amental research hypothesis 

tems in tall buildings in the 

section 3.3). 
Similarly as I did in chapters 6 and 7, I will now refine the fundam

the context of the design problems considered in this dissertation.  I
the same criteria as in chapter 6 to determine novelty of generated d
performance criteria as in chapter 7 to test their optimality.  I will a
measure as in chapters 6 and 7, i.e. the total weight of the structural 
respect to which the design concepts 

Thus, I can refine the fundamental research question and the fund
in the specific context of conceptual design of steel structural sys
following way: 
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Fundamental Research Question (Refined): 

How can one construct an effective method for conceptual design of steel structural systems 
in tall buildings that would support development of novel designs and their efficient 
optimization? 

Fundamental Research Hypothesis (Refined): 

Eme e
desi  
syst s ng interesting structural 

rg nt Engineering Design, a design method in which all major elements of engineering 
gn (i.e. design representation and actual design process) are modeled as complex 
em , can effectively produce novel design concepts exhibiti

shaping patterns and efficiently optimize them with respect to a given objective(s). 
tested empirically.  The 

eel structural systems in tall 
estigated the 

 computation parameters on 

this chapter.  All sections in 
e experiments were divided 
 in individual evolutionary 

ve sensitivity 
representation 

evolutionary 

hborhood, and the shape 

at

 

 
This refined fundamental research hypothesis can now be 

orphogenic evolutionary design experiments reported in this chapter were conducted to test this 
ypothesis.  In these experiments, generative representations of st
uildings were evolved by evolutionary algorithms.  I have also empirically inv
mpact of several representation specific parameters and evolutionary
he quality of produced design concepts.   

Table 85 presents the layout of design experiments reported in 
his chapter are organized to follow this layout. As in chapter 7, th
nto two major groups depending on the termination criteria used
ptimization runs: short-term experiments and long-term experiments.  Extensi
nalyses involving both evolutionary computation parameters and generative 
arameters were conducted during the short-term experiments. The following 
omputation parameters were considered: mutation rates, crossover rates, sizes of parent and 
ffspring populations, and the type of the generational model.  Only one type of evolutionary 
lgorithm was used in all morphogenic evolutionary design experiments, namely ES, because the 
xperiments reported in chapter 7 have shown that ES significantly outperformed GAs in this 
roblem domain.   

The generative representation parameters investigated in the short-term experiments included 
he type of CA rules (standard vs. totalistic), the radius of the local neig
f the local neighborhood (2D CAs only).  These parameters were identified in chapter 6 as 
aving the biggest impact on the quality of the generated design concepts. 

Optimal settings for both evolutionary computation and generative representation parameters 
ere sought in the short-term experiments and, once found, later utilized in the long-term 

xperiments.  The performance analysis of morphogenic evolutionary design processes was 
onducted for both the short-term and the long-term experiments.  It included the four 
erformance criteria presented in the bottom part of Table 85. 

In general, I will use the same parameters and their values as in chapters 6 and chapter 7 to 
egorize morphogenic evolutionary design experiments reported in this chapter.  Also, two 

mall icons, which were previously introduced in chapters 6 and 7, will be placed at the 
eginning of each section to indicate the values of the experimental parameters (defined in Table 
 and Table 59) used in the experiments reported in that section. 
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Table 85. Overview of morphogenic evolutionary design experiments reported in this chapter 

  Short-term Experiments Long-term Experiments 

Mutation rates 

Crossover rates 

Size of parent population 

Size of offspring population 

E
vo

lu
tio

na
ry

 
co

m
pu

ta
tio

n 

Generational model 

CA rule type 

Radius of the local neighborhood Se
ns

iti
vi

ty
 A

na
ly

si
s 

G
en

er
at

iv
e 

re
pr

es
en

ta
tio

ns
 

Shape of the local neighborhood 
(2D CA only) 

 

Performance comparison of best design concepts generated in morphogenic 
evolutionary design experiments and best designs produced in evolutionary 
optimization processes (chapter 7) 

Performance comparison of best design concepts generated in morphogenic 
evolutionary design experiments and best designs produced by generative 

entations (chapter 6) repres

Performance improvement of the best design concept at the end of an 
morphogenic evolutionary design process compared to the best design from an 
initial population 

Pe
rf

or
m

an
ce

ys
is

 

Performance improvement of an average design concept at the end of an 
morphogenic evolutionary design process compared to an average design from an 
initial population 

 A
na

l

  
  

8.2. Morphogenic Evolutionary Design of Wind Bracing Systems 
In this section, I describe results of the design experiments 

involving various types of generative representations of wind 
bracing systems in tall buildings.  These representations were 
evolved by evolutionary algorithms in order to find optimal design 
concepts.  All types of representations considered in this section 
we

ic evolutionary design (see 
De

the parameterized representations of engineering systems (see section 4.2) evolved 

re introduced earlier in chapter 4. 
In the design experiments reported in this section, I 

experimentally investigated the new engineering design paradigm 
inspired by the developmental processes occurring in nature (generative 
representations) and the processes of evolution (evolutionary algorithms).  It 
was defined in section 4.3 and named morphogen

finition 4).  The obtained results were subsequently compared to the results 
produced by 
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by evolutionary algorithms (see chapter 7) which constitute the state-of-the-art in engineering 
de th

xperiments reported in chapter 

rphogenic evolutionary design 
tions were used: 
gs elements (as in section 6.2),  

ents (as in section 

 algorithms. 

the group No.2 contained K bracings and no bracings.  The 
rema
buildings, i.e. 
morphogenic evolutionary design processes.   

The problem parameters and their values that were used in the design 
experiments described in this section are given in Table 86.  As earlier, 30-story 
buildings with 5 bays were the subject of design.  The geometry of the steel structural systems, 
i.e. heights of the stories and bay widths, were also the same as in the experiments reported in the 
previous chapters. 

The generative representations considered in this subsection consisted of a single 1D design 
embryo and a single design rule based on an elementary CA rule.  A detailed description of this 
type of generative representation was presented earlier in section 4.4.1. 

The experimental results with design concept generators reported in chapter 6 provided some 
guidance as far as the choice of the most appropriate parameters’ settings is concerned.  Based 
on the previous research findings, both elements of the generative representation, i.e. the design 
embryo and the design rule, were evolved using evolutionary algorithms.  Also, only periodic 
boundary conditions and one location of the design embryo (at the bottom of the structural 
system) were investigated.  Table 87 shows all generative representation parameters and their 
values which were used in the morphogenic evolutionary design experiments with elementary 
CAs. 

The generative representations based on elementary CAs were evolved by evolutionary 
algorithms.  Similarly as in chapter 7, both short-term and long-term morphogenic evolutionary 
design processes were conducted.  In the short-term processes, the experiments were terminated 
aft

sign.  I also compared the best design concepts produced in 
design experiments to the best design concepts generated in the e
6. 

The following three subsections describe the results of the mo
experiments in which the following types of generative representa

 elementary cellular automata with 2 types of wind bracin
 one-dimensional cellular automata with 7 types of wind bracing elem

e morphogenic evolutionary 

6.3), and 
 two-dimensional cellular automata (as in section 6.4). 

In all three cases, the generative representations were evolved using evolutionary

8.2.1. Evolution of Elementary Cellular Automata 
The experiments reported in this subsection involved 

elementary CAs with 2 possible cell values representing 2 types of 
wind bracing elements.  As before (see sections 6.2 and 7.2.1), 
two groups of wind bracing elements were considered, each 
consisting of two types of wind bracings.  The group No.1 
included simple X bracings and no bracings (empty cells) while 

ining members of the steel structural systems in tall 
beams, columns, and supports, were kept the same during the entire 

er 1,000 fitness evaluations.  The long-term morphogenic evolutionary design experiments 
involved as many as 10,000 fitness evaluations per run. 
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Table 86. Problem parameters and their values used in the morphogenic evolutionary design 
experiments with elementary CAs 

Problem Parameter Value(s) 
Problem type Design of a wind bracing system in a tall building

Number of stories 30 

Number of bays 5 

Bay width 20 feet (6.01 m) 

Story height 14 feet (4.27 m) 

Distance between transverse systems 20 feet (6.01 m) 

ments Types of bracing ele No and Simple X, or No and K 

Types of beam elements Fixed-Fixed 

Types of column elements Fixed-Fixed 

Types of supports Fixed 
  

 

Table 87. Generative representation parameters and their values used in the morphogenic 
evolutionary design experiments with elementary CAs 

Representation Parameter Value(s) 
Representation type Cellular automata 

CA dimension 1D 

Number of cell states 2 

CA rule type Standard CA rule, or totalistic CA rule 

Neighborhood radius 1, or 2 

Boundary conditions Periodic 

Design embryo location Bottom 

Design embryo initialization Random 
  

 
An extensive parameter search was conducted during the short-term processes.  It involved 

not only evolutionary computation parameters (i.e. parent and offspring population sizes, 
mutation and crossover rates, and the type of the generational model) but also the generative 
representations parameters (the type of the CA rule and the radius of the local neighborhood).  
As in chapter 7, the optimal values of these paramerts were identified and later used in the long-
term morphogenic evolutionary design processes. 

The results of the short-term and the long-term processes are described in the following 
subsections. 
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Short-term Morphogenic Evolutionary Design 
In this group of experiments, short-term morphogenic 

evolutionary design of wind bracing systems in tall buildings 
was investigated.  Table 88 presents evolutionary computation 
parameters used in the design experiments reported in this 
subsection.  It shows that two kinds of ES were employed: 
ES(µ+λ) with the overlapping generational  model and ES(µ,λ) 
with the nonoverlapping generational model.  

The sensitivity analysis conducted during the short-term 
experiments involved the following evolutionary computation and generative 
representation parameters and their values: parent and offspring population 
sizes,  mutation and crossover rates, types of CA rules (standard or totalistic), 
and the length of the radius of the local neighborhood (1 or 2).  The 
morphogenic evolutionary design processes were repeated 5 times for all combination of 
parameter values, each time using a different value of the random seed. 

The fitness of each design concept was determined, as before, by the total weight of the 
structural system calculated using the first-order structural analysis.  Whenever an infeasible 
concept was generated, it was assigned a fitness value of 0 (death penalty). 

 

Table 88. Evolutionary computation parameters and their values used in the short-term 
morphogenic evolutionary design experiments with elementary CAs 

Value(s) EC Parameter 
Evolutionary algorithm Evolution Strategies (ES) 
Generational model Overlapping for ES(µ+λ), 

Nonoverlapping for ES(µ,λ) 
Population sizes (parent, offspring) (1,5), (5,25), or (50,250) for ES(µ+λ) 

(5,25) for ES(µ,λ) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.025, 0.1, or 0.3 
Crossover (type, rate) (uniform, 0), (uniform, 0.2), (uniform, 0.5) 
Fitness Total weight of the steel structure (determined by 

the first-order structural analysis) 
Initialization method Random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 1,000 fitness evaluations 
Number of runs 5 in each experiment 

  
The initial population of parents was initialized randomly in all experiments reported here.  

E  
in
encoding of the design embryo and th gn rule based on an elementary CA 

ach individual was represented as a fixed-length genome.  The structure of the genome was
troduced earlier in section 4.4.1 (see Figure 28).  It consisted of two concatenated parts: the 

e encoding of the desi
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rule.  Thus, the genome did not encode a complete design concept, as it was the case with the 
pa

tness of a design concept encoded using this type of generative 
rep

dius equal to 1 and 2, respectively.  The obtained results are 
presented in the following subsections. 
Optimal Mutation Rates 

The initial experiments investigated evolutionary computation parameters in  order to 
determine their optimal values for morphogenic evolutionary design processes.  First, an 
extensive parameter search was conducted to identify the optimal rates of mutation and crossover 
operators.  Table 88 shows that 9 combinations of mutation and crossover rates were considered. 

Figure 106 shows typical results regarding the impact of various mutation rates on the fitness 
of generated design concepts in the short-term experiments with the group No.1 of wind bracing 
elements (simple X bracings and no bracings).  The results presented in this figure were 
produced in the experiments with ES(5+25) and the generative representation based on standard 
elementary CA rules with the neighborhood radius equal  to 1.  The rate of the uniform crossover 
operator equaled 0.2.  The vertical lines represent 95% confidence intervals calculated using 
Johnson’s modified t test. 

Figure 106 shows that higher mutation rates were preferred in the short-term morphogenic 
evolutionary design experiments.  Specifically, the best and comparable results were obtained 
when mutation rates were equal to 0.1 and 0.3.  When the lowest mutation rate was employed, 
i.e. 0.025, then not only the worst results were obtained but they also showed the highest 
variance.  Similar results were observed in the majority of the short-term morphogenic 
evolutionary design experiments, as it is illustrated graphically in Figure 107.  It shows the 
average fitness values obtained after 1,000 evaluations in the morphogenic evolutionary design 
experiments with the group No.1 of wind bracing elements (simple X bracings and no bracings). 
The results presented in this figure were produced by ES(5+25) with two types of elementary CA 
rules (standard or totalistic) and two lengths of the radius of the local neighborhood (1 and 2).   
In all cases, the average end-of-run results produced by 9 combinations of mutation and 

n 
the fitness of the produced design concepts: the higher the mutation rate the better design 
co

tion was different when the radius was increased to 2 and 
ed.  In this case, all mutation rates produced the same results.  An 

ex

rameterized representations studied in chapter 7, but instructions (encoded in the design rule) 
on how to develop a complete design concept from the initial seed (encoded in the design 
embryo).   

In order to evaluate fi
resentation, a complete configuration of a wind bracing system had to be first fully developed 

from the design embryo by the application of the design rule. A detailed description of the 
developmental process was presented in section 4.4.1 (see also Figure 26).   

The length of the genome depended on the type of the CA rule (standard vs. totalistic) and the 
radius of the local neighborhood.  In the experiments reported in this section, the genomes had 
the following lengths: 13 genes and 37 genes for standard CA rules and 9 genes and 11 genes for 
totalistic CA rules with the ra

crossover values are presented and sorted with respect to the crossover rate. 
A clear pattern can be identified in Figure 107 regarding the impact of the mutation rate o

ncepts produced.  This pattern was observed in all experiments with standard CA rules with 
one exception: when the radius equaled 2 and mutation and crossover rates were equal to 0.1 and 
0, respectively.  The same pattern was observed in the experiments with totalistic CA rules and 
the radius of 1.  However, the situa
totalistic CA rules were employ

planation of this fact will be presented later at the end of this section. 
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Figure 106. The influence of the mutation rate on the fitness of design concepts generated in the 
short-term morphogenic evolutionary design experiments with elementary CAs (group No.1 of 

wind bracing elements) 

 
Figure 107. Comparison of the average fitness values (and 95% confidence intervals) obtained 
after 1,000 fitness evaluations in the short-term morphogenic evolutionary design experiments 

with elementary CAs  
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Optimal Crossover Rates 
No such pattern was observed for crossover rates.  In some cases the best results were 

obtained when high rates of crossover operator were applied and sometimes when the crossover 
operator was not used at all.  The graph showing these results was, however, omitted. 
Optimal Population Sizes 

In another group of experiments, the impact of the sizes of parent and offspring populations 
on the fitness of generated design concepts was tested.  Figure 108 shows the results of the 
experiments in which 3 combinations of parent and offspring population sizes were used: 
ES(1+5), ES(5+25), and ES(50+250).  All other evolutionary computation parameters and 
generative representation parameters had the same values in these experiments.  Specifically, the 
mutation and crossover rates were equal to 0.3 and 0.2, respectively, and standard CA rules with 
the radius of 1 were employed. 

 
gure 108. The influence of the sizes of parents and offspring populations on the progress of th

 morphogenic evolutionary design processes with the group No.1 of wind
Fi e 

short-term  bracing 
elements 

Figure 108 shows that all combinations of the population sizes produced comparable results in 
terms of the average best-so-far fitness.  The substantial differences occurred only in the level of 
variance.  Small population sizes, i.e. ES(1+5) and ES(5+25) showed higher variance than the 
large population sizes ES(50+250). 
Optimal Generational Model 

Finally, Figure 109 compares the results of experiments in which the impact of the type of the 
generational model on the fitness of produced design concepts was investigated.  Here, two kinds 
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of ES were employed: ES(5,25) with the nonoverlapping generation model and ES(5+25) with 
the overlapping generational model.  As earlier, all other parameters’s values were kept the 
same. 

Figure 109 clearly shows that ES with the overlapping and nonoverlapping generational 
mo

 was dramatically different for each group of wind 
results are discussed separately for the group No.1 

(si

dels produced almost identical results in terms of both the average best-so-far fitness and the 
variance of produced results. 
Optimal Generative Representation Parameters 

The impact of the generative representation parameters, i.e. the type of the CA rule and the 
length of the radius of the local neighborhood,
bracing elements.  Hence, the obtained 

mple X bracings) and the group No.2 (K bracings). 

 
Figure 109. The influence of the type of the generational model on the short-term morphogenic 

evolutionary design processes with the group No.1 of wind bracing elements 

Simple X Bracings 
Figure 110 shows typical results regarding the impact of both generative representation 

mu e 
intervals. 

parameters on the average best-so-far fitness obtained in the design experiments with the first 
group of wind bracing elements.  Specifically, these results were produced by ES(5+25) with the 

tation rate equal to 0.1 and crossover rate equal to 0.2.  Vertical lines denote 95% confidenc

Figure 110 clearly shows that standard CA rules produced better results than totalistic CA 
rules in the morphogenic evolutionary design experiments with the first group of wind bracing 
elements.  It also revealed that the impact of the increased length of the radius of the local 

 



278 

neighborhood on the fitness of design concepts was distinct for each type of elementary CA 
rules.  Standard CA rules with the radius equal to 2 produced significantly better results than the 
ones with the radius equal to 1.  The situation was, however, different for totalistic CA rules.  In 
this case, the design experiments with the smaller radius produced slightly better results 
compared to the results generated with the radius equal to 2.  

Interestingly, there were also significant differences among variances obtained in the design 
experiments shown in Figure 110.  The results with the largest variance were produced by 
standard CA rules with the radius equal to 2.  On the other hand, the smallest variance (in fact, 
no variance at all because all 5 runs produced exactly the same best design concept) was 
obtained in the design experiments with totalistic CA rules and the radius equal to 2. 

 

 
Figure 110. The influence of the type of the CA rule and the radius of the local neighborhood on 

the fitness of design concepts generated in the short-term morphogenic evolutionary design 
experiments with elementary CAs (group No.1 of wind bracing elements) 

K Bracings 
As I mentioned earlier, the results were different when the second group of wind bracing 

elements (K bracings and no bracings) was employed.  Figure 111 shows typical results obtained 
in these experiments.  Here, ES(5+25) was used with the mutation rate equal to 0.1 and the 

learly shows that both standard and totalistic CA rules produced 
the
crossover rate equal to 0.2.  It c

 design concepts of almost identical fitness.  The differences among the design processes 
utilizing standard and totalistic CA rules occurred only in the initial stages of evolution (up to 
100 fitness evaluations).  Specifically, totalistic CA rules generated better solutions faster than 
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standard CA rules.  The impact of the increased radius of the local neighborhood was also 
restricted to the initial stages of the design processes only (first 100 fitness evaluations).  The 
longer radius did not influence the average fitness of the best design concepts obtained in the 
short-term experiments. 

 
K  
of the  to 50 
fitness evaluations), particularly for totalistic CA rules, but it was quickly reduced and after 300 
fitness evaluations became almost negligible. 
K Bracings - Performance Improvement 

As discussed earlier, the results of the morphogenic evolutionary design processes with 
elementary CAs substantially differed for the two groups of wind bracing elements.  These 
differences could also be identified when the performance improvements and optimal design 
concepts produced in the morphogenic evolutionary design experiments were compared to the 
ones obtained in the evolutionary optimization processes (see chapter 7). 

 

Unlike the experiments with the group No.1 of wind bracing elements, the experiments with
 bracings did not show any significant differences among variances of the results.  The variance

fitness of generated design concepts was high in the initial stages of evolution (up

 
Figure 111. The influence of the type of the CA rule and the radius of the local neighborhood on 

e fitness of design concepts generated in the short-term morphogenic evolutionary design 
experiments with elementary CAs (group No.2 of wind bracing elements) 

igure 112 compares the average best-so-far fitness of the design concepts produced in the 
evolutionary optimization experiments (see section 7.2.1) and the morphogenic evolutionary 
design experiments with the group No.2 of wind bracing elements (K bracings).  In the former 

th

F
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case  In 
the d 
totalistic CA rules) were employed.  In ses, the optimal values of evolutionary 
computation parameters were applied, i.e. ES(5+25) with the mutation rate equal to 0.025 and 
the crossover rate equal to 0.2 for the parameterized representations and ES(5+25) with the 
mutation rate equal to 0.1 and the crossover rate equal to 0.2 for the generative representations. 

, the parameterized representations of wind bracing systems were used (see section 4.2). 
 latter case, the generative representations based on elementary CAs (standard CA rules an

 both ca

 
Figure 112. Comparison of the average best-so-far fitness produced in the evolutionary 

optimization experiments (parameterized representations) and morphogenic evolutionary design 
experiments with elementary CAs (standard CA rules and totalistic CA rules) for the group No.2 

of wind bracing elements 

Figure 112 shows that the morphogenic design processes significantly outperformed the 
evolutionary optimization processes when the group No.2 of wind bracing elements was 
employed.  The performance improvement obtained after 1,000 evaluations beetween the 
generative representations based on elementary CAs and the parameterized representations 
exceeded 43,000 lbs., or 8.5 percent.  The average performance improvement achieved in the 
morphogenic evolutionary design experiments was equal to about 68,200 lbs., or 13.2 percent, 

ent, for totalistic CA rules compared to 26,600 for standard CA rules and 59,700 lbs., or 11.7 perc
lbs., or 5.1 percent, obtained in the evolutionary optimization processes. 
K Bracings - Optimal Designs 

The best design concepts of wind bracing systems composed of K bracings are presented in 
Table 89.  The fitness of the best design concept found in the morphogenic design experiments 
was equal to 449,376 lbs.  It was about 40,500 lbs., or 8.2 percent, better than the best design 
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produced in the short-term evolutionary optimization experiments (see Table 64).  At the same 
time, it achieved the same fitness as the best design concept found in the exhaustive search of 
elementary CA rules reported in chapter 6 (see Table 37). 

 

Table 89. Best design concepts of wind bracing systems composed of K bracings generated in 
the short-term morphogenic evolutionary design experiments with elementary CAs 

 
K Bracings - Structural Shaping Patterns 

Thus, morphogenic evolutionary design processes significantly outperformed evolutionary 
optimization processes in this problem domain.  They also generated interesting structural 
shaping patterns of good performance that were qualitatively different than the patterns obtained 
in the optimization experiments reported in chapter 7.  Several examples of the design concepts 
of wind bracing systems with interesting structural shaping patterns composed of K bracings are 
presented in Table 90. 

Table 90 contains sev
t  
p

described in chapter 6.  On the othe g patterns exhibited by the 6th, 7th, 
duced by the standard CA rules with the radius equal to 

2 r

eral interesting patterns which were previously identified in chapter 6 in 
he design experiments with elementary CAs as well as a few novel ones.  For example, the
atterns of horizontal trusses (see the 1st and 12th design concepts in Table 90) and of macro 

bracings (see the 2nd, 4th, and 5th design concepts in Table 90) have been previously found and 
r hand, the structural shapin

8th, 9th, and 10th design concepts and pro
epresent novel configurations of K bracings. 
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Table 90. Interesting structural shaping patterns generated in the short-term morphogenic 
evolutionary design experiments with elementary CAs and the group No.2 of wind bracing 

elements 

 
 

Simple X Bracings - Performance Improvement 
nary design processes with the 
 bracings) produced somewhat 

 systems. Figure 
 in morphogenic 
 the radii of the 

As discussed earlier, the results of the morphogenic evolutio
group No.1 of wind bracing elements (simple X bracings and no
different results, particularly with respect to the optimization of wind bracing
113 compares the average best-so-far fitness of the design concepts produced
evolutionary design experiments with elementary CAs (standard CA rules with
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local neighborhood equal to 1 or 2) to the results obtained in evolutionary optimization 
experiments reported in chapter 7.  In both cases, the optimal values of evolutionary  
computations parameters were employed. 

 that even though the morphogenic evolutionary design processes 
ou

Figure 113 clearly shows
tperformed the evolutionary optimization processes in the initial stages of evolution (up to 200 

evaluations), they later produced inferior results.  The average performance improvement after 
1,000 fitness evaluations was about 14,700 lbs., or 2.7 percent, worse (i.e. negative) for standard 
CA rules with the radius equal to 1 and about 8,600 lbs., or 1.6 percent, worse when the radius 
was equal to 2 compared to the average fitness obtained in the evolutionary optimization 
experiments. 

 
Figure 113. Comparison of the average best-so-far fitness produced in the evolutionary 

optimization experiments (parameterized representations) and morphogenic evolutionary design 
experiments with elementary CAs (standard CA rules and totalistic CA rules) for the group No.1 

of wind bracing elements 

 Simple X Bracings – Optimal Designs 
The best design concepts generated in the morphogenic design experiments with the group 

No.2 of wind bracing elements are presented in Table 91.  It shows four best design concepts 
produced in the experiments with four combinations of the generative representation parameters.  
The overall best design concept produced in the short-term morphogenic design experiments was 
genera tness 
was gn 
c  

ted by standard CA rules with the radius of  the local neighborhood equal to 2.  Its fi
 548,243 lbs. and it was more than 16,000 lbs., or 3 percent, worse than the best desi

oncept produced in the short-term evolutionary optimization experiments (see Table 62 in
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ch

short-term morphogenic evolutionary design experiments with elementary CAs 

apter 7).  At the same time, it slightly outperformed (by about 2,000 lbs., or 0.4 percent) the 
best design concept generated by elementary CAs (see Table 31 in chapter 6). 

 

Table 91. Best design concepts of wind bracing systems composed of X bracings generated in 
the 

 
Th  the 

desig  the 
evolutionary optim
structural shaping patterns, including the checkerboard pattern, the horizontal truss pattern, a the 
pattern identical to the one which was generated by the elementary rule 105 (see Table 35). 

In the next subsection, I will investigate the long-term morphogenic evolutionary design 
processes and test whether they can produce better design concepts than the long-term 
evolutionary optimization processes described in chapter 7.  I will also compare the results of the 
long-term and the short-term morphogenic evolutionary design experiments. 

Long-term Morphogenic Evolutionary Design 
In this subsection, the results of the long-term morphogenic 

evolutionary design processes involving elementary CAs are 
described.  As before (see chapter 7), the length of the long-
term processes was siginifcantly larger than of the short-term 
processes and involved 10,000 fitness evaluations.  The 
obtained results are presented below. 

e remaining 3 design concepts had worse fitness than the best concepts generated in
n experiments with elementary CAs and the best design concepts produced in

ization experiments.  On the other hand, they exhibited interesting and diverse 

In the previous subsection, I reported that the short-term 
morphogenic evolutionary design experiments with the two 
groups of wind bracing elements produced dramatically different results.  The 
short-term morphogenic design experiments with the group No.2 (K bracings) 
significantly outperformed the short-term evolutionary optimization processes 
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by producing on average 8.5 percent fitter design concepts.  Moreover, the optimal design 
concepts were found very quickly, i.e. within the first 100 fitness evaluations when totalistic CA 
rules were used.   
Performance Improvement 

Figure 114 compares the results of the short-term morphogenic evolutionary design 
experiment with totalistic CA rules to the results produced in the long-term evolutionary 
op

 evolutionary design processes not only produced 
significantly better results than the evolutionary optimization processes but they also achieved 
this performance in a fraction of a computational effort required by the latter. 

The short-term morphogenic evolutionary design experiments with the group No.1 of wind 
bracing elements (simple X bracings) showed that the obtained results were worse than the ones 
obtained in the short-term evolutionary optimization experiments.  In the experiments described 
below I investigated if and by how much the performance of the morphogenic evolutionary 
design processes can be improved in the long-term processes. 

timization using parameterized representations (see section 7.2.1).  It is clear that even the 
long-term evolutionary optimization processes were significantly inferior to the short-term 
morphogenic evolutionary design processes in this problem domain.  The average fitness 
achieved in the long-term evolutionary optimization experiment was more than 35,000 lbs., or 
7.8 percent, worse than the average fitness produced in the short term morphogenic evolutionary 
design experiment.  Thus, the morphogenic

 
Figure 114. Comparison of the average best-so-far fitness produced in the long-term 

evolutionary optimization experiments (parameterized representations) and the short-term 
morphogenic evolutionary design experiments with elementary CAs (totalistic CA rules) with 

the group No.2 of wind bracing elements (K bracings) 
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The optimal values of evolutionary computation and the generative representation parameters
ed in the short-term experiments, were employed in the long-term processes wi

, 
identifi th the 
group No.1 of wind bracing elements.  The evolutionary computation parameters and their 
values are presented in Table 92 while the generative representation parameters are shown in 
Table 93. 

Table 92. Evolutionary computation parameters and their values used in the long-term 
morphogenic evolutionary design experiments with elementary CAs 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies (ES) 
Generational model Overlapping for ES(µ+λ) 
Population sizes (parent, offspring) (5,25) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.1 
Crossover (type, rate) (uniform, 0.2) 
Fitness Total weight of the steel structure (determined by 

the first-order structural analysis) 
Initialization method Random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 10,000 fitness evaluations 
Number of runs 5 in each experiment 

  
Table 93. Generative representation parameters and their values used in the long-term 

morphogenic evolutionary design experiments with elementary CAs 

Representation Parameter Value(s) 
Representation type Cellular automata 

CA dimension 1D 

Number of cell states 2 

CA rule type Standard CA rule 

Neighborhood radius 2 

Boundary conditions Periodic 

Design embryo location Bottom 

Design embryo initialization Random 
  

Figure 115 compares the results of the long-term morphogenic evolutionary design 
experiment to the long-term evolutionary optimization experiment with the group No.1 of wind 
bracing elements.  It clearly shows that, as in the short-term processes, the latter significantly 
outperformed the former in the long-term experiments.  The difference between the average best-
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so-far fitness obtained after 10,000 evaluations exceeded 21,500 lbs., or 4.1 percent.  Also, the 
average performance improvement between the long-term and the short-term morphogenic 
design experiments was very small and equal to about 2,300 lbs., or 0.4 percent.  It was a 
significantly smaller improvement than the one obtained in the evolutionary optimization 
experiments where the corresponding improvement level was equal to 15,500 lbs., or 2.8 percent. 
Optimal Designs 

The best design concepts generated in the long-term morphogenic evolutionary design 
experiments are presented in Table 94.  The fitness of the overall best design concept was equal 
to 547,428 lbs. It was more than 27,000 lbs., or 5.2 percent, worse than the best design concept 
produced in the evolutionary optimization experiments (see Table 62 in chapter 7).  However, it 
was almost 3,000 lbs., or 0.5 percent, better than the best design concept generated by 
elementary CAs (see Table 31 in chapter 6). 

 
Figure 115. Comparison of the average best-so-far fitness produced in the long-term 

evolutionary optimization experiments (parameterized representations) and the long-term 
morphogenic evolutionary design experiments with elementary CAs and the group No.1 of wind 

bracing elements 

 Structural Shaping Patterns 
Even though the best design concepts in the morphogenic evolutionary design experiments 

with the group No.1 of wind bracing elements did not represent better solutions in terms of the 
total weight of the steel structural system, they generated interesting and qualitatively different 
structural shaping patterns.  A prominent example of that is the best design shown in Table 94 in 
which an emergent pattern of crossed macro bracings can be easily identified.  The two other 

i
design concepts exhibit interesting variations of the macro bracing pattern which were not found 
n the design experiments with elementary CAs (see chapter 6). 
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Table 94. Best design concepts of wind bracing systems composed of X bracings generated in 
the long-term morphogenic evolutionary design experiments with elementary CAs 

 
Summary 

wi of 
wind bracing ele  Similarly as in 
sec

 length of radius of the local 
neighborhood was employed.  In this case, standard CA rules with the radius of 2 produced the 
overall best results.  At the same time, totalistic CA rules with the radius equal to 2 produced the 
overall worst results.  My hypothetical explanation of these facts is presented below. 

In this section, I described the results of the morphogenic evolutionary design experiments 
th the simplest generative representations based on elementary CAs.  The number of types 

ments considered in the experiments was limited to 2 only. 
tions 6.2 and 7.2.1, two groups of wind bracing elements, each consisting of two types of 

wind bracings, were studied separately in the morphogenic evolutionary design processes.  The 
obtained results were dramatically different for these two design problems. 

Initial sensitivity analyses conducted in the short-term experiments have shown that higher 
mutation rates, i.e. 0.1 or 0.3, were preferred in the morphogenic evolutionary design processes 
for both design problems.  No such pattern was observed for the crossover operator.  In some 
cases the best results were produced when high crossover rates were used and sometimes when 
crossover was not applied at all.  It was also found that neither the size of the parent and 
offspring populations nor the type of the generational model had any significant impact on the 
average fitness of the generated design concepts. 

The impact of the generative representation parameters, i.e. the type of CA rules and the 
radius of the local neighborhood, on the fitness of produced design concepts was different for 
each of the two design problems.  For K bracings, both types of CA rules generated the same end 
results but totalistic CA rules found the optimal solutions much faster (within 100 fitness 
evaluations) than standard CA rules.  For simple X bracings, standard CA rules produced 
significantly better results than totalistic CA rules.  Moreover, there were important differences 
in the fitness of generated design concepts when the increased

 



289 

The two design problems, i.e. design of a wind bracing system composed of simple X 
bracings and design of a wind bracing system composed of K bracings, represent two different 
classes of problems.  The optimal solutions for the latter problem have a form of regular 
configurations of K bracings (variations of the fully-braced pattern).  On the contrary, the 
optimal design concepts for the former problem exhibit very elaborate configurations/shaping 
patterns of simple X bracings.   

The generative representations based on elementary CAs reduce the sizes of the design spaces 
and thus significantly limit the number of possible configurations of wind bracing elements that 
can be generated.  The amount of the reduction of the design space is affected by two 
parameters: the type of the CA rule and the radius of the local  neighborhood.  Standard CA rules 
offer much bigger potential for developing elaborate patterns but at a cost of significantly larger 
sizes of CA rule spaces.  Thus, they are oriented more towards novelty.  On the contrary, 
totalistic CA rules rapidly decrease the sizes of the CA rules spaces but at a cost of generating 
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Figure 116 shows the average performance improvements o
term morphogenic evolutionary design experiments for both grou
clearly illustrates that the morphogenic evolutionary design pro
performance improvement in the initial stages of evolution (th

ost the same as the long-term improvements).  Hence, they much faster 
results than the parameterized representations discussed in the previous chap
achieved siginificantly higher levels of performance improvement in the case
Figure 116 shows that in this case the improvement level exceeded 11.5% i
experiments. 

 
Figure 116. Comparison of the average performance improvements produced in the morphogenic 
evolutionary design of wind bracing systems with 2 types of bracing elements in the short-term 

and long-term experiments 
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Th ents 
were also c ments (see 
chapter 7).  Figure 117 shows the averrage performance improvements between the morphogenic 
evolutionary design and evolutionary optimization achieved in the conducted experiments.  It 
clearly shows that morphogenic evolutionary design processes significantly outperformed the 
evolutionary optimization processes in the design problem in which K bracings were used.  
They, however, produced inferior results (shown in this figure as negative values of the 
performance improvements) when simple X bracings were employed.  

e results of the short-term and the long-term morphogenic evolutionary design experim
ompared to the results obtained in the evolutionary optimization experi

 
Figure 117. Comparison of the average performance improvements produced in the morphogenic 

tion of wind bracing systems with 2 types of 

enic evolutionary design processes generated 

evolutionary design and evolutionary optimiza
bracing elements in the short-term and long-term experiments 

Finally, Figure 118 illustrates the performance improvements between the best design 
concepts of wind bracing systems produced in morphogenic evolutionary design experiments 
and the best designs generated by elementary CAs (see section 6.2).  It shows that the 
morphogenic evolutionary design experiments produced slightly better  (by about 0.5%) designs 
of wind bracing systems composed of simple X bracings than elementary CAs.  On the other 
hand, both morphogenic evolutionary design processes and elemenatry CAs produced exactly the 
same best design concepts composed of K bracings (performance improvement was equal to 0 in 
both the short-term and the long-term experiments). 

owed that morphogIn this section, I also sh
interesting structural shaping patterns for both design problems.  In the case of design concepts 
composed of simple X bracings, a unique structural shaping pattern of crossed macro bracings 
has been discovered.  This pattern has not been found in the design experiments with elementary 
CAs reported in chapter 6. 

In the next section, I will slightly scale up the design problem considered by the  
morphogenic evolutionary design processes by using the entire selection of 7 types of wind 
bracing elements rather than only 2 types, as I did in this section. 
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Figure 118. Comparison of the performance improvements between the best designs produced in 
the morphogenic evolutionary design experiments and the best designs generated by elementary 

CAs 

8.2.2. Evolution of 1D Cellular Automata 
In this section, I report the results of the morphogenic 

evolutionary design experiments in which 7 types of wind 
bracing elements were used (see Figure 19).  The generative 
repres
dimen
generalized versions of the generative representations studied 
in the previous section. A detailed description of this type of 
generative representations was presented in section 4.4.1. 

As before, the experiments were divided into groups: the short-term 
processes and the long-term processes.  In the short-term experiments the 
optimal values of the generative representation parameters, i.e. the type of CA 
rules and the radius of the local neighborhood, were sought.  On the other 
hand, the values of the evolutionary computation parameters were assumed based on the results 
of the short-term morphogenic evolutionary design experiments with elementary CAs (see Table 
92) reported in the previous section. 

Short-term Morphogenic Evolutionary Design 
Table 95 shows the generative representation parameters and 

their values which were used in the short-term morphogenic 
evolutionary design experiments.  As in the previous section, 
two types of CA rules were investigated: standard and totalistic.  
In both cases, two lengths of the radius of the local 
neighborhood were studied experimentally to determine the 
optimal combination of the generative representation 
parameters for this design problem. 

 
 
 

entations used in these experiments were based on one-
sional CAs with 7 possible cell values.  They are 
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Table 95. Generative representation parameters and their values used in the short-term 
morphogenic evolutionary design experiments with 1D cellular automata 

Representation Parameter Value(s) 
Representation type Cellular automata 

CA dimension 1D 

Number of cell states 7 

CA rule type Standard CA rule, or totalistic CA rule 

Neighborhood radius 1, or 2 

Design

Design embryo initialization Random 

Boundary conditions Periodic 

 embryo location Bottom 

  
The lengths of genomes encoding the generative representations of wind bracing systems with 

7 types of wind bracing elements were quite different for standard CA rules and totalistic CA 
rules.  In the former case, they consisted of 348 and 16,812 genes for the radius of the local 
neighborhood equal to 1 and 2, respectively.  In the latter case, the corresponding lengths were 
equal to 24 and 36 genes.  In all cases, the genomes were homogenous, i.e. all genes had the 
same number of possible values (i.e. 7, encoded as integers from 0 to 6) which represented 
various types of wind bracing elements (see Figure 19). 
Optimal Generative Representation Parameters 

Figure 119 compares the average best-so-far fitness curves obtained in the short-term 
morphogenic evolutionary design experiments with 7 types of wind bracing elements.  It clearly 
shows that totalistic CA rules significantly outperformed standard CA rules in this problem 
domain.  The overall best results were produced by totalistic CA rules with the radius of the local 
neighborhood equal to 2.  The average end-of-run fitness obtained in this experiment was equal 
to 449,194 lbs. and was more than 45,500 lbs., or 9.2 percent, better than the average fitness 
produced by standard CA rules (with the radius = 1).  The difference between the average end-

ic CA rules with two different radii of the local neighborhood of-run fitness produced by totalist
was small and equaled about 2,800 lbs., or 0.6 percent.  Thus, both design experiments with 
totalistic CA rules produced comparable results. 
Performance Improvement 

Figure 120 compares the results of the short-term morphogenic evolutionary design 
experiments (standard CA rules and totalistic CA rules) to the ones produced in the evolutionary 
optimization experiments (see section 7.2.2).  It shows that the average best-so-far fitness of the 
design concepts generated by standard CA rules and totalistic CA rules was better than the 
average best-so-far fitness obtained in the evolutionary optimization processes.  However, the 
results produced by standard CA rules exhibited significantly higher variance (by an order of 
magnitude) than the results of the other two design experiments.  The overall best results were 
produced by totalistic CA rules.  The average performance improvement achieved in this case 
exceeded 56,000 lbs., or 11 percent. 
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Figure 119. Comparison of the average best-so-far fitness produced in the short-term 
morphogenic evolutionary design experiments with 7 types of wind bracing elements 

 
Figure 120. Comparison of the average best-so-far fitness produced in the short-term 

evolutionary optimization experiments (parameterized representations) and morphogenic 
evolutionary design experiments with 7 types of wind bracing elements 
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Optimal Designs 
Table 96 presents the best design concepts generated in

evolutionary design experiments.  The fitness of the best design w
the best design of a wind bracing system found so far.  In fact
Table 96 were better than the best design concept produced in
experiments (see Table 70 in chapter 7) and the best design conc
with 1D cellular automata (see Table 43 in chapter 6).  All design
exhibit the fully braced pattern consisting of K bracings.  The differences am
only in the configurations of the design embryo.  The fitness o
Table 96 was improved by introduction of a single or several simple X 
configuration of the design embryo.  

Table 96. Best design concepts of wind bracing systems generated in the short-te
evolutionary design experiments with 7 types of wind bracing elem

 the short-term morphogenic 
as equal to 448,597 lbs.  It was 
, all design concepts shown in 
 the evolutionary optimization 

ept produced in the experiments 
 concepts presented in Table 96 

ong them occur 
f all design concepts shown in 

bracings in the 

rm morphogenic 
ents 

 
Structural Shaping Patterns 

The morphogenic evolutionary design processes with 7 types of wind bracing elements 
generated many interesting structural shaping patterns.  Several examples of such patterns are 
shown in Table 97.  The first 5 patterns were generated by standard CA rules.  Majority of them 
can be classified as elaborate versions of the macro bracing pattern utilizing several types of 
wind bracing elements.  The remaining 7 structural shaping patterns were produced by totalistic 
CA rules.   

Table 97 clearly shows that there are substantial qualitative differences among the patterns 
produced by these two types of CA rules.  Standard CA rules generate more sophisticated macro 
bracings patterns or checkerboard patterns which propagate throughout the structural system.  
Totalistic CA rules, on the other hand, produce fairly uniform or periodic patterns in which the 
entire configurations of individual stories are occupied by a single type of wind bracings. 

In the next subsection, I will investigate the long-term experiments and test if and how much 
they can improve the performance of morphogenic evolutionary design processes.  I will also 
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compare the results of the long-term and the short-term morphogenic evolutionary design 
experiments as well as results of the long-term evolutionary optimization processes with 7 types 
of wind bracing elements (see section 7.2.2). 

 

Table 97. Interesting structural shaping patterns generated in the short-term morphogenic 
evolutionary design experiments with 7 types of wind bracing elements 
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Long-term Morphogenic Evolutionary Design 

e radius equal to 2.  This choice was motivated by the 
results of the short-term morphogenic evolutionary design experiments reported in the previous 

exactly the s
Figure 121 compares the average best-so-far fitness curves obtained in the two long-term 

morphogenic evolutionary design experiments with 7 types of wind bracing elements.  It clearly 
shows that totalistic CA rules outperformed standard CA rules by a wide margin.  They also 
exhibited several orders of magnitude smaller variance than standard CA rules.  The average 
fitness of design concepts after 10,000 evaluations produced using totalistic CA rules was equal 
to 448,785 lbs. compared to 482,821 lbs. obtained by standard CA rules.  Thus, totalistic CA 
rules outperformed, on average, standard CA rules by more than 34,000 lbs., or 7 percent. 
Performance Improvement 

Figure 122 compares the results of the long-term morphogenic evolutionary design 
experiments (totalistic CA rules with the radius equal to 2) to the ones produced in the 
evolutionary optimization experiments (see section 7.2.2).  It shows that the average best-so-far 
fitness of the design concepts generated by totalistic CA rules was far better than the average 
best-so-far fitness obtained in the evolutionary optimization processes.  Also, the results 
produced by totalistic CA rules exhibited significantly smaller variance than the results of the 
evolutionary optimization experiments.  The average performance improvement achieved in the 
long-term morphogenic evolutionary design processes exceeded 56,500 lbs., or 11.2 percent.  It 
was only slightly better (by about 500 lbs. or 0.1 percent) than the average performance 
improvement obtained in the short-term morphogenic evolutionary design experiments with 
totalistic CA rules.   

th 2 types of wind bracing elements and the 
K bracings). 

The short-term experiments with 1D CAs showed that 
generative representations with both standard and totalistic CA 
rules outperformed parameterized representations of wind 
bracing systems with 7 types of wind bracing elements.  There 
were, however, significant differences between the two types 
of CA rules in terms of the variance and the average best-so-far 
fitness.  The performance of both types of CA rules was further 
investigated in the long-term experiments and compared to the 
results of the long-term evolutionary optimization experiments.  Hence, the 
same generative representation parameters were used in the long-term 
experiments as the ones used in the short-term experiments (see Table 95).  
The only exception was that only one radius of the local neighborhood was 
investigated for each type of CA rules.  Standard CA rules were evolved with the radius equal to 
1 whereas totalistic CA rules used th

subsection.  Evolutionary computation parameters used in the long-term experiments were 
ame as the ones used in the short-term processes (see Table 92).   

At the same time, the long-term morphogenic evolutionary design processes outperformed the 
long-term evolutionary optimization processes by more than 42,500 lbs., or 8.6 percent.  Thus, 
the performance improvements achieved in the long-term morphogenic evolutionary design 
experiments with 7 types of wind bracing elements were similar to the ones obtained in the long-
term morphogenic evolutionary design processes wi
group No.2 (
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Figure 121. Comparison of the average best-so-far fitness produced in the long-term 
morphogenic evolutionary design experiments with 7 types of wind bracing elements 

 
f the average best-so-far fitness pFigure 122. Comparison o roduced in the long-term 

evolutionary optimization experiments (parameterized representations) and morphogenic 
evolutionary design experiments with totalistic CA rules and 7 types of wind bracing elements 
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Optimal Designs 
The best designs produced in the long-term morphogenic evolutionary design experiments 

with 7 types of wind bracing elements are presented in Table 98.  The fitness of the best design 
was equal to 448,414 lbs.  It was the best design of a wind bracing system (as far as the total 
weight of the structural system is concerned) found in the design experiments reported in this 
dissertation.  It was slightly better (by about 180 lbs.) than the best design concept found in the 
short-term morphogenic evolutionary design processes (see Table 96).  It also outperformed the 
best design concept produced in the long-term evolutionary optimization experiments (see Table 
70 in chapter 7) by about 36,600 lbs., or 7.5 percent, and the best design concept produced in the 
experiments with 1D CAs (see Table 43 in chapter 6) by 670 lbs., or 0.15 percent.   

Similarly as in the previous subsection, all design concepts presented in Table 98 exhibit the 
fully-braced pattern consisting of K bracings.  The differences among them occur only in the 
configurations of the design embryo.  Here, the performance improvements were achieved by an 
introduction of a single simple X bracing, or a combination of two diagonal bracings, into the 
configurations of the design embryos. 

 

Table 98. Best design concepts of wind bracing systems produced in the long-term morphogenic 
evolutionary design experiments with 7 types of wind bracing elements 

 
Thus, these results confirm my previous assumption of evolving/optimizing both parts of the 

generative representation, i.e. the design embryo and the design rule.  When the well performing 
design rules have been found, the morphogenic evolutionary design processes finely tuned the 
configurations of the design embryos.  This resulted in an improved performance of the 
generated design concepts of wind bracing systems. 

Summary 
In this section, I described the results of both the short-term and the long-term morphogenic 

evolutionary design experiments with the generative representations based on one-dimensional 
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CAs.  The number of types of wind bracing elements considered in the experiments was 
increased to 7 and it included all types of wind bracings shown in Figure 19. 

The sensitivity analysis conducted in the short-term experiments focused on the generative 
representation parameters only.  It included the type of the CA rules and the radius of the local 
neighborhood, i.e. the parameters that had been previously identified as having the biggest 
impact on the quality of generated design concepts (see chapter 6).  On the other hand, the 
optimal values of the evolutionary computation parameters were assumed based on the results of 
the short-term morphogenic evolutionary design experiments with elementary CAs (see section 
8.2.1)  

Both the short-term and the long-term morphogenic evolutionary design experiments have 
shown that the totalistic CA rules produced significantly better results than the standard CA 
rules.  As in the previous section, they also found the optimal solutions much faster (within 700-
800 fitness evaluations).  On the other hand, standard CA rules produced more interesting 
structural shaping patterns. 

Figure 123 shows the average performance improvements obtained in the short- and long-
term morphogenic evolutionary design experiments with 7 types of wind bracing elements and 
compares them to the improvements achieved in the experiments with 2 types of wind bracing 

d   
These result see section 
8.2.1).  Also, the performance improvements achieved in the short-term experiments and the 

hich means that the optimial solutions were 
pro ign processes, i.e. the optimal 

elements reported in the previous section.  It clearly illustrates that the morphogenic evolutionary 
esign processes achieved high levels of performance improvement (more than 11 percent).

s are similar to the ones obtained in the experiments with K bracings (

long-term experiments are almost identical w
duced in the early stages of the morphogenic evolutionary des

solutions were found quickly. 

 
Figure 123. Comparison of the average performance improvements produced in the morphogenic 
evolutionary design of wind bracing systems with 2 and 7 types of bracing elements in the short-

term and long-term experiments 

As in the previous section, I compared the results of the short-term and the long-term 
morphogenic evolutionary design experiments to the results obtained in the evolutionary 
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optimization experiments (see chapter 7).  Figure 124 shows the average performance 
improvements between the morphogenic evolutionary design and the evolutionary optimization 
achieved in the conducted experiments.  It also compares them to the corresponding values 
obtained in the experiments with 2 types of wind bracing elements reported in the previous 
section.  Figure 124 clearly shows that morphogenic evolutionary design processes significantly 
outperformed the evolutionary optimization processes.  The obtained performance improvement 
levels were even higher than in the case of morphogenic evolutionary design experiments with K 
bracings.  They exceeded 12 percent and 8 percent in the short-term and the long-term processes, 
respectively. 

 
Fig

erformance improvements between the best design concepts of 
wi

 experiments.  However, in the long-term experiments they 
ge imensional CAs. 

her investigate morphogenic evolutionary design of wind 

ure 124. Comparison of the average performance improvements produced in the morphogenic 
evolutionary design and evolutionary optimization of wind bracing systems with 2 and 7 types of 

bracing elements in the short-term and long-term experiments 

Finally, Figure 125 shows the p
nd bracing systems produced in morphogenic evolutionary design experiments with 2 and 7 

types of wind bracing elements and the best designs generated by elementary and one-
dimensional CAs (see sections 6.2 and 6.3).  It shows that the morphogenic evolutionary design 
experiments with 7 types of wind bracing elements produced only slightly worse designs (by 
about 0.02 percent) in the short-term

nerated better design concepts (by about 0.1 percent) than one-d
In the next section, I will furt

bracing systems in tall buildings.  This time, however, 2D cellular automata and 2D design 
embryos will be studied empirically.  Particular emphasis will be put on explicit modeling the 
local interactions among the structural members using various shapes and radii of the local 2D 
neighborhood. 

 



301 

 

 
Figure 125. Comparison of the performance improvements between the best designs produced in 
the morphogenic evolutionary design experiments with 2 and 7 types of wind bracing elements 

and the best designs generated by elementary and one-dimensional CAs 

8.2.3. Evolution of 2D Cellular Automata 
So far, morphogenic evolutionary design processes involved 

only generative representations based on one-dimensional 
CAs.  But as I discussed it in section 6.4, the structural systems 
considered in this dissertation are inherently two-dimensional.  
The planar interactions among structural elements cannot be 
explicitly modeled using 1D CAs.  Hence, generative 
representations based on two-dimensional cellular automata 
(2D CAs) were proposed in section 4.4.3 to account for these 
interactions.  Initial studies with design concept generators based on 2D CAs 
were reported in section 6.4.  In this section, I will describe the results of 
morphogenic evolutionary design experiments in which the generative 
representations based on 2D CAs were evolved by evolutionary algorithms. 

Similarly as it was the case with 1D CAs, two types of 2D CAs rules were investigated: 
standard and totalistic.  Besides, in the case of generative representations based on 2D CAs, one 
has to specify not only the radius of the local neighborhood (2D neighborhood in this case) but 
also its shape. As in section 6.4, five shapes of the local neighborhood were studied, including 
Moore, von Neumann, diagonal, north-south, and east-west neighborhoods (see Figure 59).  One 
length of the radius of the local neighborhood (equal to 1) was used in the experiments with 
standard 2D CA rules while the experiments with totalistic 2D CA rules considered two lengths 
of the radius (equal to 1 and 2). 

The generative representation parameters and their values used in the experiments reported in 

section 6.4).  The values corresponded to 3 ty ents: no bracings (empty 

this section are presented in Table 99.  It shows that 2D CAs with 3 possible cell values were 
used similarly to the design experiments with design concept generators based on 2D CAs (see 

pes of wind bracing elem
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cel

 design experiments with 2D CAs 

ls), X bracings, and K bracings.  The design embryos had a form of 2D configurations of wind 
bracing elements and they were initialized randomly in all design experiments reported in this 
section.  The design rules based on 2D CA rules were applied to these 2D design embryos and 
iterated 50 times.  Hence, the value of the iteration_max parameter was equal to 50.  A detailed 
description of this type of generative representation and the developmental process during which 
the design concepts of wind bracing systems were produced from the design embryos is 
presented in section 4.4.3. 

 

Table 99. Generative representation parameters and their values used in the morphogenic 
evolutionary

Representation Parameter Value(s) 
Representation type Cellular automata 

CA dimension 2D 

Number of cell states 3 

CA rule type Standard CA rules, or totalistic CA rules 

Neighborhood radius 1, or 2 

Boundary conditions Periodic 

Shape of the local neighborhood Moore, von Neumann, diagonal, north-south, 
or east-west 

Design embryo initialization Random  
On the other hand, Table 100 presents the evolutionary computation parameters and their 

values used in the design experiments.  It shows that the values of the evolutionary computation 
parameters were selected based on the results of morphogenic evolutionary design experiments 
reported in the previous sections. 

Thus, no sensitivity analyses were conducted in the case of evolutionary computation 
parameters but the most successful values of these parameters determined in the previous 
morphogenic evolutionary design experiments were employed.  Hence, only the long-term 
experiments were conducted with the generative representations based on 2D CAs and they 
involved 10,000 fitness evaluations. 

The obtained results are reported in the following subsections. 

Optimal Type of 2D CA Rules 
In this group of experiments, I investigated the impact of the type of the 2D CA rules on the 

fitness of produced design concepts.  As discussed above, two types of 2D CA rules were 
employed in these experiments: standard 2D CA rules and totalistic 2D CA rules.  Figure 126 
shows typical results obtained in these experiments.  Specifically, the results of two design 
experiments are presented, each involving the diagonal neighborhood and the radius of the local 
neighborhood equal to 1. 
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Table 100. Evolutionary computation parameters and their values used in the morphogenic 
evolutionary design experiments with 2D CAs 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies (ES) 
Generational model Overlapping for ES(µ+λ) 
Population sizes (parent, offspring) (5,25) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.1 
Crossover (type, rate) (uniform, 0.2) 
Fitness Total weight of the steel structure (determined by 

the first-order structural analysis) 
Initialization method Random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 10,000 fitness evaluations 
Number of runs 5 in each experiment 

  

 
Figure 126. Impact of the type of a 2D CA rule on the average best-so-far fitness of the produced 

design concepts of wind bracing systems 
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The results shown in Figure 126 are similar to the ones observed in the morphogenic design 
ex

Op

periments with 1D CAs (see for example Figure 119).  Specifically, morphogenic evolutionary 
design processes with totalistic 2D CA rules produced design concepts of better fitness than the 
ones with standard 2D CA rules.  At the same time, totalistic 2D CA rules found the optimal 
design concepts much faster than standard 2D CA rules.  Figure 126 also shows that there were 
significant differences between the variances generated in these two morphogenic evolutionary 
design processes.  Standard 2D CA rules produced results with much higher variance than 
totalistic 2D CA rules.  Thus, the results obtained in the morphogenic evolutionary design 
experiments with standard and totalistic 2D CA rules were consistent with my previous findings 
described in sections 8.2.1 and 8.2.2. 

timal Shape of Local 2D Neighborhood 
In this group of experiments, the impact of the shape of the local neighborhood on the average 

best-so-far fitness of morphogenic evolutionary design processes was investigated.  As discussed 
above, 5 shapes of the local neighborhood were studied experimentally, including Moore, von 
Neumann, diagonal, north-south, and east-west neighborhoods. 

Figure 127 illustrates the average best-so-far fitness curves obtained in the morphogenic 
evolutionary design experiments with 4 different shapes of the local neighborhood (the east-west 
neighborhood produced virtually identical results as the north-south neighborhood and hence 
was omitted in this figure).  It clearly shows that the differences among the curves occurred only 
in the initial stages of evolution up to 1,500 fitness evaluations (see the zoom in window on the 
left hand side in Figure 127).  At the end of the long-term design processes all shapes of the local 
neighborhood produced comparable results.   

 
Figure 127. Impact of the shape of the local neighborhood on the average best-so-far fitness of 

design concepts of wind bracing systems produced by morphogenic evolutionary design 
experiments with 2D CAs 
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The fastest progress in the initial stages of evolution was achieved when von Neumann 
neighborhood and the north-south neighborhood were used.  On the other hand, 2D CA rules 
with Moore neighborhood achieved the smallest progress in the initial part of the morphogenic 
evolutionary design process but at the end of the run generated the overall best results (see the 
zoom in window on the right hand side in Figure 127).  However, the differences among the end-
of-run fitness produced by various shapes of the local neighborhood were small and not 
statistically significant. 

In the next subsection, I will investigate another important parameter defining the extent of 
the interactions in the local neighborhoods, namely the radius of the local neighborhood. 

Optimal Radius of Local 2D Neighborhood 
In this group of experiments, the impact of the radius of the 2D local neighborhood on the 

average best-so-far fitness of generated design concepts was investigated.  As described earlier, 
two sizes of the radius of the local neighborhood were studied for totalistic 2D CA rules. 

Figure 128 shows typical results regarding the impact of the length of the radius on the 
progress of morphogenic evolutionary design processes.  In this case, 2D CA rules with the 
diagonal neighborhood were employed and two lengths of the radius investigated, namely 1 and 
2.  Figure 128 clearly shows that the differences in the performance were limited only to the 
initial stages of evolution, similarly as it was the case with the shape of the local neighborhood 
discussed in the previous subsection.  After about 1,500 fitness evaluations the two morphogenic 
evolutionary design processes produced almost identical results in terms of the average best-so-
far fitness of generated design concepts as well as its variance. 

 
Figure 128. Impact of the radius of the local 2D neighborhood (here the diagonal neighborhood) 

concepts of wind bracing systems produced by 
morphogenic evolutionary design experiments with 2D CAs 

on the average best-so-far fitness of design 
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Summary 
In this section, I described the results of the long-term mor

experiments with 2D CAs.  The experiments reported in this s
local interactions among structural members using various sh
neighborhoods and on testing their impact on the progress of m
processes.  Hence, I investigated two important generative representation param
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8.2 4. Summary 

involving various  
These generative representations were evolved by evolutionary algorithms in order to find 
optimal design rules and optimal design embryos which subsequently developed optimal design 
concepts.  All types of representations considered in this section were introduced earlier in 
chapter 4. 

In the first subsection, I described the results of the morphogenic evolutionary design 
experiments in which the simplest generative representations based on elementary CAs were 
studied.  The number of types of wind bracing elements considered in these experiments was 
limited to 2 only.  Even these simple generative representations produced design concepts of 
very good performance.  They also exhibited interesting structural shaping patterns which were 
qualitatively different than the patterns produced in the evolutionary optimization experiments 
(see chapter 7).  Initial sensitivity studies conducted during the short-term experiments have 
shown that optimal mutation rates for morphogenic evolutionary design porcesses are higher 
than the ones used in the evolutionary optimization procesees.  They also showed that totalistic 
CAs usually produce better design concepts in this problem domain and at the same time find the 
optimal solutions faster than standard CAs.  

The average performance improvements achieved in the short-term and the long-term 
experiments varied between 5 and 11 percent depending on the group of wind bracing elements 
used in the design process (simple X bracings or K bracings).  Morphogenic evolutionary design 

tions 8.2.1 and 8.2.2) regarding the impact of the type of CA
morphogenic evolutionary design processes.  Totalisti
CA rules both in producing design concepts of better fitness
solutions faster.  They also showed significantly smaller variance

The remaining two subsections investigated the parameters wh
the local neighborhoods.  The conducted experiments showed
parameters on the progress of morphogenic evolutionary desig
initial stages of evolution.  Specifically, 2D CA rules with 
neighborhoods found better solutions faster than the 2D CA rule
neighborhood.  Similarly, 2D CA rules with a longer radius o
optimal solutions faster than the 2D CA rules with the smaller radius.  The av
results were,  however, comparable for all shapes and radii of the local neigh
significant differences could be identified. 

.
In this section, I described the results of morphogenic evolutionary design experiments 

types of generative representations of wind bracing systems in tall buildings. 
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pro

 processes.  In this case, morphogenic 
evolutionary design  processes employed the generative representations based on one-
dime that 
two cal 
neighborhood s.  Both the 
short-term and the long-term morphogenic evolutionary design experiments have shown that 
totalistic CA rules produced significantly better results than standard CA rules.  As in the 
previous section, they also found the optimal solutions much faster (within 700-800 fitness 
evaluations).  On the other hand, standard CA rules produced more interesting structural shaping 
patterns. 

The performance improvements achieved in the morphogenic evolutionary design processes 
exceeded 11 percent both in the short-term and in the long-term experiments.  These processes 
significantly outperformed evolutionary optimization processes (see section 7.2.2).  They also 
generated better design concepts of wind bracings systems than the design concepts generators 
studied in section 6.3. 

In the final subsection, I reported the results of the long-term morphogenic evolutionary 
design experiments with 2D CAs.  The experiments focused on modeling the local interactions 
among structural members using various shapes and radii of the local 2D neighborhoods and on 
testing their impact on the progress of morphogenic evolutionary design processes.  The 
experiments showed that totalistic 2D CA rules produce better design concepts than standard 2D 
CA rules in this problem domain and they find these optimal solutions faster.  Thus, these results 
were consistent with the findings reported in the previous subsections.  The experiments also 
sho

several 
ments to test these types of generative representations.  

s in tall buildings. 

cesses also found better design concepts of wind bracing systems than the ones found in the 
experiments with design concept generators (see section 6.2).  They also produced significantly 
better results than evolutionary optimization experiments when the second group of wind bracing 
elements was employed, i.e. K bracings.  They, however, produced inferior results to the 
evolutionary optimization processes when the first group of wind bracing elements was used 
(simple X bracings). 

In the second subsection, I considered a more general design problem in which all 7 types of 
wind bracing elements were used in the design

nsional CAs.  The sensitivity analysis conducted in the short-term experiments showed 
generative representation parameters, i.e. the type of CA rules and the radius of the lo

, have the biggest impact on the quality of generated design concept

wed that the impact of the shape and the radius of the local neighborhood is limited to the 
initial stages of evolution.   The end-of-run results were comparable for all shapes and radii of 
the local neighborhood. 

In the experimental part of this dissertation, I also studied the generative representations of 
wind bracing systems based on multiple 1D CAs (see section 4.4.2).  I conducted 
morphogenic evolutionary design experi
The obtained results were,  however, significantly inferior to other types of generative 
representations discussed in this section and hence not included in this chapter.  These types of 
generative representations turned out to be too disruptive to create structural shaping patterns of 
good performance.  Besides, the morphogenic evolutionary design processes involving these 
representations exhibited very high variance. 

In the next section, I will scale up the difficulty of the design problem and consider 
morphogenic  evolutionary design of the entire steel structural system
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8.3. 
In this 

morphogenic evolutionary design processes in the context of 
the entire steel structural systems in tall buildings.  As before, 
the experiments reported in this section were divided into two 
groups: the short-term experiments and the long-term 
experiments.  During the short-term experiments an extensive 
search of the evolutionary computation parameters and the 
generative representation parameters was conducted in order to 
find their optimal values.  The optimal values of these parameters were later 
used in the long-term experiments. 

The obtained results are reported in the following subsections. 

Short-term Morphogenic Evolutionary Design 
In this group of experiments, the short-term morphogenic 

evolutionary design processes of the entire steel structural 
systems in tall buildings were conducted.  In the experiments, 
7 types of wind bracing elements, 2 types of beams, and 2 
types of supports were considered.  As in the experiments 
reported in chapter 7, the columns were kept the same during 
the entire morphogenic evolutionary design processes.  Table 
101 shows the parameters of the problem investigated in this 
subsection.  Here, 30-story buildings with 6 bays were considered.  The 
heights of stories and bay widths were exactly the same as in the experiments 
reported in previous sections and equal to 14 feet and 20 feet, respectively. 

 

Table 101. Problem parameters and their values used in the short-term morphogenic evolutionary 
design of the entire steel structural systems in tall buildings 

Morphogenic Evolutionary Design of the Entire Steel Structures 
section, I will empirically investigate the 

Problem Parameter Value(s) 
Problem type Design of the entire steel structural system in a 

tall building 

Number of stories 30 

Number of bays 6 

Bay width 20 feet (6.01 m) 

Story height 14 feet (4.27 m) 

Distance between transverse systems 20 feet (6.01 m) 

Types of bracing elements No, Diagonal \, Diagonal /, K, V, Simple X, and X 

Types of beam elements Pinned-Pinned, and Fixed-Fixed 

ixed-FixeTypes of column elements F d (only) 

Types of supports Pinned and Fixed 
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The evolutionary computation parameters and their values are presented in Table 102.  As in 
the experiments reported in the previous sections, ES with the overlapping generational model, 
i.e. ES(µ+λ), were employed.   Four combinations of parent and offspring population sizes were 

tions of mutations and crossover rates were investigated to find their 
op
studied.  Also, nine combina

timal rates.  The experiments were repeated 30 times for each combination of mutation and 
crossover rates, using a different value of the random seed each time.  As before, the fitness of 
the generated design concepts was determined by the total weight of the steel structural system 
and calculated by the first-order structural analysis.   

 

Table 102. Evolutionary computation parameters and their values used in the short-term 
morphogenic evolutionary design of the entire steel structural systems 

EC Parameter Value(s) 
Evolutionary algorithm Evolution Strategies (ES) 
Generational model Overlapping for ES(µ+λ) 
Population sizes (parent, offspring) (1,25), (1,125), (5,25), or (5,125) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 1/L, 0.025, 0.1, 0.3, or 0.5 
Crossover (type, rate) (uniform, 0), or (uniform, 0.2) 
Fitness Total weight of the steel structure (determined by 

the first-order structural analysis) 
Initialization method Random 
Constraint handling method Death penalty (infeasible designs assigned 0 

fitness) 
Termination criterion 1,000 fitness evaluations 
Number of runs 30 in each experiment 

  
The generative representation parameters and their values are presented in Table 103.  It 

shows that both standard CA rules and totalistic CA rules were studied in the experiments 
reported in this section.  Unlike the experiments described in the previous section, only one 
length of the radius of the local neighborhood was investigated, i.e. the radius equal to 1. 

 
Optimal Mutation and Crossover Rates 

The sensitivity analysis conducted during the short-term morphogenic evolutionary design 
experiments was aimed to determine the optimal rates of mutation and crossover operators as 
well as parent and offspring population sizes.  Typical results regarding the impact of the 
mutation rate on the progress of evolution are presented in Figure 129.  It shows the results of the 
experiments in which the generative representations based on standard CA rules were used.  The 
r

 
 
 
 

ate of the crossover operator was equal to 0.2. 
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Table 103. Generative representation parameters and their values used in the short-term 
morphogenic evolutionary design of the entire steel structural systems 

Representation Parameter Value(s) 
Representation type Cellular automata 

CA dimension 1D 

Number of cell states 7 (wind bracings), and 2 (beams) 

CA rule type Standard CA rules, or totalistic CA rules 

Neighborhood radius 1 

Boundary conditions Periodic 

Design embryo location Bottom 

Design embryo initialization Random 
  

 
Figure 129. The influence of the mutation rate on the fitness of the design concepts generated in 

the short-term morphogenic evolutionary design experiments with the entire steel structural 
systems 

Figure 129 shows that the best evolutionary progress was achieved when the mutation rate 
was equal to 0.1.  Similar results were obtained in the design experiments with the generative 
representations with totalistic CA rules. The impact of the crossover rate was insignificant on the 
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average best-so-far fitness of the produced design concepts.  In some cases, better results were 
produced when the rate was equal to 0.2 and sometimes the best evolutionary progress was 
achieved when the crossover operator was not applied at all. 
Optimal Population Sizes  

In another group of experiments, the impact of the sizes of parent and offspring populations 
on the fitness of produced design concepts was investigated.  As it is shown in Table 102, 4 
combinations of parent and offspring population sizes were considered: ES(1+5), ES(1+125), 
ES(5+25), and ES(5+125).  Figure 130 shows typical results obtained in these experiments.  
Here, the generative representations based on totalistic CAs were used with these four 
combinations of parent and offspring population sizes.  All other evolutionary computation 
parameters, i.e. mutation and crossover rates, were the same in the experiments shown in this 
figure.  

Figure 130 clearly shows that the best results were produced with the parent population size 
equal to 5 and the offspring population size equal to 25.  On the other hand, the worst results 
were produced by the ‘greedy’ ES(1+25) in which only the best individual in the population 
survives to the next generation.  Thus, ES(5+25) were subsequently used in the long-term 
morphogenic evolutionary design of the entire steel structural systems. 

 
Figure 130. The impact of the parent and offspring population siz

concepts generated in the short-term morphogenic evolutionar
structural systems 

es on the fitness of the design 
y design of the entire steel 
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Optimal Type of CA rules 
The sensitivity analysis conducted during the short-term morphogenic evolutionary design 

experiments also involved the generative representation parameters. Specifically, the impact of 
the type of the CA rules, i.e. standard vs. totalistic, was investigated.  Figure 131 present typical 
experimental results produced by standard CA rules and totalistic CA rules.  It clearly shows that 
totalistic CA rules outperformed standard CA rules in this problem domain.  They also produced 
the optimal design concepts of the entire structural systems faster than standard CA rules.  The 
results shown in Figure 131 were produced in morphogenic evolutionary design processes in 
which ES(5+25) was employed and the mutation and crossover rates were equal to 0.1 and 0.2, 
respectively.  The difference between the average best-so-far fitness after 1,000 fitness 
evaluations between totalistic CA rules and standard CA rules was equal to 35,000 lbs., or 6.2 
percent.  The results shown in Figure 131 are consistent with the findings reported in the 
previous section in which the morphogenic evolutionary design of a wind bracing system was 
considered. 

 
F  

Perf
Figure 132 compares ced in the morphogenic 

 design processes (standard CA rules and totalistic CA rules) to the results obtained 

igure 131. The impact of the type of the CA rule on the fitness of the design concepts generated
in the short-term morphogenic evolutionary design of the entire steel structural systems 

ormance Improvement 
the average best-so-far fitness curves produ

evolutionary
in the evolutionary optimization experiments.  It shows that both types of the generative 
representations significantly outperformed the parameterized representations in this problem 
domain.  The average end-of-run fitness of design concepts produced by totalistic CA rules was 
equal to 526,592 lbs.  It was more than 57,000 lbs., or 9.7 percent, better than the average end-
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of-run fitness produced by the parameterized representations.  Also, standard CA rules 
generated, on average, better design concepts than the parameterized representations by almost 
35

genic evolutionary design of wind bracing systems (K bracings and 7 types of wind 
bra

,000 lbs., or 6.6 percent. The average performance improvement of the morphogenic 
evolutionary design processes in the short-term experiments was equal to 68,300 lbs. (11.5 
percent) and 59,050 lbs. (9.5 percent) for totalistic CA rules and standard CA rules, respectively.  
Thus, it was comparable to the average performance improvements achieved in the short-term 
morpho

cings) reported in the previous section. 

 
Figure 132. Comparison of the average best-so-far fitness produced in the evolutionary 

optimization experiments (parameterized representations) and morphogenic evolutionary design 
experiments with standard CA rules and totalistic CA rules 

generative representations 
rul

Long-term Morphogenic Evolutionary Design 
The short-term experiments with 1D CAs showed that 

with both standard and totalistic CA 
es outperformed parameterized representations of the entire 

steel structural systems in tall buildings.  The performance of 
both types of CA rules was further investigated in the long-term 
experiments and compared to the results of the long-term 
experiments with parameterized representations.  Hence, the 
same generative representation parameters were used in the 
long-term experiments as the ones used in the short-term experiments (see 
Table 103).  Evolutionary computation parameters used in the long-term 
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experiments involved ES(5+25), the mutation rate 0.1, and the crossover rate equal to 0.2. 
Figure 133 compares the average best-so-far fitness curves obtained in the two long-term 

morphogenic evolutionary design experiments with standard and totalistic CAs and compares 
them to the results produced in the long-term evolutionary optimization experiments.  It clearly 
shows that totalistic CA rules outperformed standard CA also in the long-term processes by 
about 11,500 lbs., or 2.1 percent.  Both long-term morphogenic evolutionary design processes 
were significantly better than the long-term evolutionary optimization process (parameterized 
representations).  The average fitness of design concepts after 10,000 evaluations produced using 
totalistic CA rules was equal to 531,830 lbs. compared to 621,425 lbs. obtained in the 
evolutionary optimization experiment.  Also, standard CA rules outperformed the parameterized 
representations by more than 78,000 lbs., or 12.5 percent.  Again, these results are consistent 
with the previous findings from the morphogenic evolutionary design of wind bracings systems 
and the short-term morphogenic evolutionary design of the entire steel structural systems. 

 
Figure 133. Comparison of the average best-so-far fitness of design concepts of the entire steel 

structural systems produced in the long-term morphogenic evolutionary design experiments 
(standard CA rules and totalistic CA rules) and the long-term evolutionary optimization 

experiments (parameterized representations) 

Summary 
In this section, I described the results of both the short-term and the long-term morphogenic 

evolutionary design experiments with the generative representations of the entire steel structural 
systems in tall buildings.  The sensitivity analysis conducted in the short-term experiments 
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focused on the optimal evolutionary computation parameters and one generative representation 
parameter (the type of the CA rules).   

In the short-term experiments, I identified the optimal rates of mutation (equal to 0.1) and the 
sizes of parent and offspring populations (5 and 25, respectively).  The experiments with 
totalistic and standard CA rules showed that the former significantly outperformed the latter both 
in the short-term and in the long-term experiments.  They also found the optimal solutions much 
fas

cesses achieved high levels of 
pe

ntical for the totalistic CA 
rules which means that the optimial solutions were produced in the early stages of the 
morphogenic evolutionary design processes.  On the other hand, standard CA rules exhibited a 
steady progress and ultimately produced the performance improvement levels close the the ones 
achieved by totalistic CA rules. 

ter. 
Figure 134 shows the average performance improvements obtained in the short- and long-

term morphogenic evolutionary design experiments with the entire steel structural systems.  It 
clearly illustrates that the morphogenic evolutionary design pro

rformance improvement (almost 20 percent in the case of totalistic CA rules).  These results 
were even  better than the ones obtained in the experiments with K bracings and 7 types of wind 
bracings (see sections 8.2.1 and 8.2.2).  Also, the performance improvements achieved in the 
short-term experiments and the long-term experiments are almost ide

 
Figure 134. Comparison of the average performance improvements produced in the morphogenic 
evolutionary design of the entire steel structural systems with standard and totalistic CA rules in 

the short-term and long-term experiments 

As in the previous section, I compared the results of the short-term and the long-term 
morphogenic evolutionary design experiments to the results obtained in the evolutionary 
optimization experiments.  Figure 135 shows the average performance improvements between 
the morphogenic evolutionary design and the evolutionary optimization achieved in the 
conducted experiments.  It clearly shows that both morphogenic evolutionary design processes 
significantly outperformed the evolutionary optimization processes both in the short-term and in 
the long-term experiments.  The obtained performance improvement levels were higher than any 
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achieved in the experiments reported in this dissertation.  They exceeded 16 percent and 14 
percent in the short-term and the long-term processes, respectively. 

 
Figure 135. Comparison of the average performance improvements produced in the morphogenic 

evolutionary design and the evolutionary optimization of the entire steel structural system with 

In the design experiments reported in this chapter, I experimentally investigated the new 
m inspired by the developmental processes occurring in nature 

(ge

the results of 
a large number of morphogenic evolutionary design experiments. 

velty and optimality of steel 
str

damental research question and the fundamental research 
hypo n problems considered in this dissertation. 

In orphogenic evolutionary 
desig f enic evolutionary 
de

  I conducted extensive sensitivity analyses in the short-
term morphogenic evolutionary design experiments to determine the optimal values of the 
evolutionary computations parameters and the generative representations parameters.  The 
results showed that the optimal values found here were different than the ones identified in the 
evolutionary optimization experiments.  They also showed that the morphogenic evolutionary 

standard and totalistic CA rules in the short-term and long-term experiments 

8.4. Summary 

engineering design paradig
nerative representations) and the processes of evolution (evolutionary algorithms).  It was 

named morphogenic evolutionary design (see chapter 4).   
The experimental results reported in this chapter constitute the third and last stage of the 

Empirical Performance Validation process (see section 3.6.3) in which I investigated the 
integrated components, i.e. the generative representation component and the evolutionary 
computation component, of Emergent Engineering Design.  I have attempted to build confidence 
in the usefulness of the integrated components of EED by reporting and discussing 

In the first section of this chapter, I restated criteria of no
uctural systems in tall buildings which were previously defined in chapters 6 and 7).  As 

before, I also revisited the fun
thesis and refined them in the context of desig
 the second section of this chapter, I reported the results of the m
n o  wind bracing systems.  In three subsections, I investigated morphog

sign processes with different types of generative representations: based on elementary CAs, 
based on 1D CAs, and based on 2D CAs.
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design processes achieved high level of performance improvement.  They produced better design 
concepts than design concept generators studied in chapter 6.  Also, in most of the cases (with 
one exception only), they outperformed evolutionary optimization processes in optimizing wind 
bracing systems.  At the same time, morphogenic evolutionary design processes generated 
interesting structural shaping patterns which were qualitatively different than the patterns 
produced in the evolutionary optimization processes.   

In the third section of this chapter, I investigated morphogenic evolutionary design of the 
entire steel structural systems in tall buildings.  I showed empirically that the integrated
components of EED performed well in this complex problem domain and achieved very high
levels o

approach as well as the most promising directions of future research. 
 

 
 

f performance improvement which exceeded 20 percent. 
In the next chapter, I will discuss the final stage of the validation process of EED, namely 

Theoretical Performance Validation.  I will also describe the contribution of this dissertation to 
the field of engineering design.  Finally, I will briefly discuss the limitations of the proposed 

 



 

9. CLOSURE 
 

“By wisdom a house is built and through understanding it is 
established, through knowledge its rooms are filled with rare and 
beautiful treasures.” 

(King Solomon, Proverbs, 24:3) 
 

In this dissertation, I proposed, presented, developed, and tested a new design method, called 
Emergent Engineering Design, which uses models based on complex systems and inspired by the 
processes occurring in nature to represent major phases of engineering design processes.  The 
objective of this chapter is to bring the development of Emergent Engineering Design to a 
closure by demonstrating that I have accomplished the fundamental research objective of this 
dissertation and have answered the research questions posed (see chapter 3). 

I will do it by first showing that new scientific knowledge has been added to the field of 
engineering design (see section 9.1).  The Validation Square methodology will be used to 
demonstrate that.  Next, I will describe the contributions of the research presented in this 
dissertation by discussing the new knowledge added to the field of engineering design (see 
section 9.2.1), showing its originality and significance (see section 9.2.2), and presenting 
research deliverables (see section 9.2.3).  

Furthermore, I will discuss the limitations of Emergent Engineering Design (see section 9.3) 
and suggest most promising directions of the future research (see section 9.4).  Finally, in section 
9.5, I will provide concluding remarks. 

9.1. Research Validity   
In this section, I will again use the Validation Square methodology to show that Emergent 

Engineering Design adds new knowledge to the field of engineering design.  First, in section 
9  
section 3.3.  Next, in section 9.1.2 w of the procedure for validating 
Em

Conformity of the answers with the research hypotheses 
rspective  

.1.1, I will revisit the research questions and the research hypotheses which were posed in
, I will provide an overvie

ergent Engineering Design.  In sections 0 through 9.1.6, I will report the results of the four 
stages of the validation process (described in the previous chapters of this dissertation) and 
demonstrate that new knowledge has been added to the field of engineering design. 

9.1.1. Revisiting the Research Questions and Hypotheses 
The validation of new scientific knowledge in the context of Ph.D. research rests on three 

major elements (Pedersen 1999): 
1. Answering the posed research questions 
2. 
3. Acceptability of the answers from the Ph.D. requirement pe

Hence, I will begin with revisiting the fundamental research question and the fundamental 
research hypotheses of this dissertation.  
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a

 
As discussed in section 3.3, the fundamental research question has been divided into 4 

research questions in order to facilitate the development of the proposed method in a more 
structured way.  The research questions and the corresponding hypotheses are presented below. 

 

How can one construct an
support developm

Emergent Engineering Desi
design (i.e. design represent

as complex systems, can e
 

 

Research Question 1 (Represent): 
Based on the existing knowledge on how to represent engineering systems;  
w

 of engineering systems based on simple programs, which 
c

ing that complex engineering design problems are usually decomposed into sub- 
pro m
decomp
Res rc
Cooper
complex design problems and conducting design processes using cooperative coevolutionary 
algorith
Resear
One of 
optimal
Resear te and Optimize): 
E

h Question 4 (Evaluate): 
Evaluation of design concepts is one of the most important stages of a design process; how 
can the evaluation process be performed to accomplish robustness of designs? 
Research Hypothesis 4 (Evaluate): 
Competitive coevolutionary models are suitable for adaptive testing and evaluation of 
engineering design concepts and can successfully increase robustness of generated designs.  

hat mechanisms and models can be used to produce novel designs? 
Research Hypothesis 1 (Represent): 
Evolutionary design and complex systems provide a framework for defining generative 
representations, i.e. representations
an successfully produce novel designs. 

Research Question 2 (Decompose): 
Know

ble s; how can a decomposition of an engineering system be defined and how can a 
osed system be effectively designed? 

ea h Hypothesis 2 (Decompose): 
ative coevolutionary models provide an efficient framework for a decomposition of 

ms. 
ch Question 3 (Generate and Optimize): 
the major objectives of almost all engineering design processes is achieving 
ity; what mechanisms should be used to efficiently optimize engineering designs? 
ch Hypothesis 3 (Genera

volutionary computation provides a framework for conducting engineering design processes 
and optimizing engineering designs. 
Researc
 
The relationship of the pha

nd hypotheses is presented in
Fundamental Research Question 
 effective method for designing engineerin
ent of novel designs and their efficient op

Fundamental Research Hypothesis 
gn, a design method in which all major el

ation, actual design process, and design e
ffectively produce novel designs and efficien

g systems that would 
timization? 

ements of engineering 
valuation) are modeled

tly optimize them. 
 

ses of Emergent Engineering Design to the four research questions 
 Figure 136. 
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Figure 136. Phases of Emergent Engineering Design and their relationship to the four research 

questions and hypotheses 

In this dissertation, I specifically addressed the research questions No.1 and No.3.  The 
research questions No.2 and 4 will become part of the future work, as discussed in section 9.3.  
As stated earlier, the validation of the research in the context Ph.D. requirements is based on 
answering the research questions according to the hypotheses in a satisfactory manner.  In this 
dissertation, the answers correspond to the research hypotheses and the hypotheses were tested 
for validity according to the process described in section 3.6.  An overview of the validation 
process and its relationship to the chapters of this dissertation is presented in the following 
section. 

9.1.2. Validating New Scientific Knowledge – an Overview 
 

v  
question, each of the supporting o.1 and 3, had to be validated.  
The validation methodology used in this dissertation and based on the Validation Square was 
discussed in section 3.6.  The four quadrands of the square shown to the right represent four 

The process of answering the research questions posed is directly related to the process of
alidating the corresponding hypotheses.  Hence, in order to answer the fundamental research

 hypotheses, i.e. the hypotheses N
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steps of the validation process, i.e. Theoretical Structural Validity, 
Em

rize 
the EED.  Figure 137 shows the 
relationship
where the on process were 
reported. 

9.1.3. Te
Theore

discussed nstituting 
the d gn 
method.  By accepting TSV we ca
obtained i
output. 

The ‘c
demo tra
was s w
chart repr

Specifi
componen
way: 

trated in section 2.1 in 
f ctural engineering 

them with separate flow-charts emphasizing the information flow among and 

Thu ,
the propo ergent Engineering Design is 
Valid  

pirical Structural Validity, Empirical Performance Validity, and 
Theoretical Performance Validity.  Each of these steps was applied to 
test the supporting hypotheses.  The following subsections summa

 results of the validation process of 
s between the chapters of this dissertation and places 

 results of each of the steps of the validati

sting the Theoretical Structural Validity 
tical Structural Validity (TSV) was the first stage of the validation process.  As 
 in section 2.5.2, it is based on ‘correctness’ of the individual components co

esi method and the internal consistency of the way the components are integrated in the 
n assert that the results produced by the design method are 

n a correct and consistent manner, i.e. for a valid input the method produces a valid 

orrectness’ of the individual components of Emergent Engineering Design was 
tns ed by providing extensive literature references while the internal consistency of EED 

ho n by demonstrating how the components were integrated together and presenting flow-
esentations of the method. 
cally, TSV of the individual components of EED, i.e. the generative representation 
ts and the evolutionary computation component, was demonstrated in the following 

• TSV of the generative representation component was demonstrated in sections 2.1.3 
(Design Representations), 2.2 (Cellular Automata), and 2.3 (Complex Systems). 

• TSV of the evolutionary computation component was demons
general and in section 2.1.7 in the specific context o  stru
applications. 
The internal consistency of EED was demonstrated in chapters 4 and 5.  Chapter 4 
showed how the generative representation and evolutionary computation components 
are integrated.  Chapter 5 described in detail all phases of the design method and 
illustrated 
within its components. 

s  by taking TSV of the hypothesized components of EED and the internal consistency of 
sed method, I can assert that Em Theoretical Structural 

. √
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F

 

igure 137. Overview of the relationships between the chapters of this dissertations and places 
where the hypotheses were tested 
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9.1.4. Testing the Empirical Structural Validity 
Empirical Structural Validity (ESV) formed the second stage of the validation process.  As 

discussed in section 2.5.2, ESV is based on accepting the appropriateness of the example 
problems that are used to verify the performance of the method.   

This was done in the following way: 
• By demonstrating that the example problems are similar to the problems for which 

EED components are generally accepted.   
This was achieved by providing state-of-the-art overviews of all components of the 
proposed design method in chapter 2.  The overviews discussed current research 
developments in these fields from the perspective of their relevance to engineering 
design.  Moreover, each section in chapter 2 contained a subsection presenting 
structural engineering applications, if any, of the main ideas discussed there. 

• By showing that the example problems represent the actual problems for which EED 
is intended. 
The justification for the choice of the two example problems was presented in section 
2.4.4.  Also, chapter 4 demonstrated that the selected problems exhibit the properties 
of problems for which EED is intended.   

• Documenting that the data associated with the example problems can support a 
conclusion. 
As discussed in section 2.4.4, the example problems investigated in this dissertation 
were considered as one of the most complex and time-consuming design tasks in 
structural engineering.  Therefore, they were of suitable complexity for the 
demonstration of the usefulness of the proposed design method. 

Given that the example problems of conceptual design of wind bracing systems and 
conceptual design of the entire steel structural systems are appropriate for testing Emergent 
Engineering Design, I assert that EED is Empirical Structural Valid. √ 

9.1.5. Testing the Empirical Performance Validity 
 

is based on accepting that EED produces useful results for the selected example problems and 
positively to this usefulness.  EPV was demonstrated in 

the

tation component in optimizing design 

hem was demonstrated in chapter 8. 

Empirical Performance Validity (EPV) formed the third stage of the validation process.  EPV

that the components of EED contribute 
 following way: 
• The usefulness of the generative representations component in generating novel design 

concepts of wind bracing systems and the entire steel structural system in tall buildings 
was demonstrated in chapter 6. 

• The usefulness of the evolutionary compu
concepts of wind bracing systems and the entire steel structural system in tall buildings 
was demonstrated in chapter 7. 

• The usefulness of the integrated components of EED in producing novel design 
concepts and efficiently optimizing t

Having demonstrated that Emergent Engineering Design is useful in producing novel design 
concepts and efficiently optimizing them, and that the components of the EED positively 
contribute to this usefulness, I can assert that EED is useful at least for the example problems.  
Hence, I can assert that EED is Empirical Performance Valid. √ 
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9.1

 is more general.  
TPV of EED will be demonstrated as follows. 

t Engineering Design can produce useful results beyond the 
ex

• ore general class of problems 

• blems. 
Th ap 

of fai
TP

of the res
so assert that I have accomplished the ultimate 

sertation, i.e. I have developed an engineering design method based on 
mo

mergent Engineering Design will be discussed in the 
follow

9.2. Con
This s

design.  T
method o sefulness, and novelty.    

9.2.1. C
The m

are listed

• 

• It introduces a design method that is inspired by the processes occurring in nature. All 
 involved in generation, evolution, and evaluation of engineering designs 

.6. Testing the Theoretical Performance Validity 
Theoretical Performance Validity (TPV) is the last stage of the validation process.  It is based 

on building confidence that EED is valid beyond the example problems, i.e. it

The confidence that Emergen
ample problems, i.e. the conceptual design of wind bracing systems and  the conceptual design 

of the entire steel structural systems in tall buildings, will be build based on the results of the 
previous validation steps, namely: 

• TSV of EED demonstrated that the components of EED are applicable beyond the 
example problems (see sections 2.1 and 2.2). 
ESV showed the selected example problems represent a m
for which EED is intended. 
EPV demonstrated that EED was at least useful for the selected example pro

e final acceptance that EED is Theoretical Performance Valid requires, however, a ‘le
th’ (Pedersen et al. 2000). √ 
V concludes the validation of the hypotheses of this dissertation and hence, the answering 

earch questions posed.  Thus, it can be accepted that new scientific knowledge has been 
added to the field of engineering design.  I can al
objective of this dis

dels of complex systems that provides a conceptually coherent framework for producing novel 
designs and their efficient optimization. √ 

The originality and significance of E
ing section. 

tributions 
ection outlines the contributions this dissertation makes to the field of engineering 
he contributions from the successful development and implementation of the proposed 

f engineering design can be expressed in terms of its validity, u

ontributions to the Field of Engineering Design 
ajor contributions of Emergent Engineering Design to the field of engineering design 
 below: 

It establishes an integrated and conceptually coherent framework for engineering 
design based on complex systems. 

the processes
model processes occurring in nature. 

• It emphasizes both important aspects of the design process, i.e. novelty and 
optimization.  

• It proposes novel ways of representing engineering systems based on cellular automata. 
A graphical representation of the contributions of Emergent Engineering Design and the 

foundations it is built on is shown in Figure 138. 
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Figure 138. Contributions of Emergent Engineering Design and the foundations it is based on 

9.2.2. Originality and Significance 
As it was discussed in sections 2.1.3 and 2.4.2, there have been suggested many approaches to 

develop methods for engineering design.  However, in my opinion, most of them were focused 
exclusively on only one of the two important aspects of engineering design, i.e. either on 
creativity, or on optimization.  In this dissertation, I proposed, developed and implemented a 
design method which addresses both of these aspects. 

Another issue is that many of the proposed design methods tended to be assembled from 
conceptually diverse components and thus not giving a coherent view of the design process.  On 
the contrary, Emergent Engineering Design represents an integrated approach to engineering 
design based on models of complex systems. 

Yet another significant contribution of this dissertation is a demonstration that engineering 
design processes can be greatly enhanced by nature.  Models of processes occurring in nature can 
be successfully used to represent engineering systems and design processes.  Thus, this 
dissertation builds a bridge between design by nature and engineering design. 
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The generality of models, procedures, and algorithms proposed in this dissertation makes 
them well-suited for a wide range of engineering design applications.  Some of the potential 
applications of Emergent Engineering D d in the next section. 

9.2

g engineering design 
s on both novelty and optimization. 

A s based on models of complex systems of both engineering 
sses inspired by the processes occurring in nature. 

rt tool implementing the proposed design method. 

ility, novelty, and potential practical value of the proposed design method. 

9.3. Limitations   
Extensive empirical studies c llow o ide veral 
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ig ace bias the rocess 
ting inter ns.  In som  cases, 

r eduction of the search space may be disadvantageous and optimal design 
ts t because they simply cannot be generated by these representations 

(see for example the results of morphogenic evolutionary design of wind bracing 
systems composed of simple X bracings presented in section 8.2.1). 

9.4. Future Work   
The work presented in this dissertation can be extended in many ways.  First, the remaining 

two phases of the engineering design process, i.e. design decomposition and design evaluation, 
will be studied and answers to the research questions presented in section 3.3 will be sought. 

Another potential area of further development of Emergent Engineering Design is in the 
exploration of various types of simple programs, including L-systems, mobile automata, and 
more elaborate versions of cellular automata (e.g. non-uniform CAs, continuous CAs), to model 
engineering systems and design processes.   

Finally, as mentioned in the previous section, the generality of this method makes it well-
suited for a wide range of engineering design problems.  Thus, Emergent Engineering Design 

esign are discusse

.3. Research Deliverables 
The ultimate dissertation objective was stated in section 3.3.  Hence, the design method based 

on models of complex systems is the major deliverable of this research.  The method has been 
implemented in a design support tool called Emergent Designer.  Thus, apart from the major 
deliverable, the dissertation produced the following results that can be divided into four groups: 

1. A consistent system of models, procedures, and algorithms regardin
with a strong emphasi

2.  class of representation
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3. Emergent Designer, a design suppo
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will be applied to other types of discrete design problems, e.g. design of space structures, or 
design of bridges.  It offers also a great potential for continuum design problems, e.g. topology 
optimization of plates or shell structures.  In this case, it can be easily combined with 
traditionally used design evaluation methods based on finite element analysis. 

9.5. Concluding Remarks 
It is my hope that the work on Emer ring Des continued and will 

provide some inspiration as well as new questions and problems for other researchers working in 
this field.  I believe that na red r enormous potential for many fields of 
engineering and other disciplines.  They m a new paradigm of engineering design in 
which nature’s potential for novelty and optimality will be successfully used to better design the 
world we inhabit. 

gent Enginee ign will be 

ture inspi methods offe
ay introduce 

 



 

APPENDIX A 
 

In this appendix, a chronological overview of the major applications of evolutionary 
computation in structural design is presented.   The overview begins with the initial applications 
of evolutionary algorithms in sizing optimization of simple truss systems in the mid 1980’s and 
provides a summary of major developments in this area until now.  A detailed discussion of the 
field and its most promising future research directions was presented earlier in section 2.1.7. 

The applications are classified with respect to several criteria, including: 
• application domain,  
• representation type,  
• evolutionary algorithm,  
• fitness function, and  
• methods of handling constraints.  

A detailed discussion on the importance of these criteria for structural design applications was 
provided in chapter 2. 

 

Reference Domain Problem Represen-
tation 

EA 
used 

Fitness 
function 

Con-
straint-

handling 
method 

(Hoeffler et al. 
1973) 

Shape 
optimization 

Location of 
joints in truss 
systems 

Fixed-length, 
real-valued 
vectors 

ES 
Single objective, 
weight 
minimization 

N/A 

(Lawo and 
Thierauf 1982) 

Sizing 
optimization 

Planar frame 
under 
earthquake 
loading 

Fixed-length, 
real-valued 
vectors 

ES 
Single objective, 
weight 
minimization 

N/A 

(Goldberg and 
Samtani 1986) 

Sizing 
optimization 

Cross-sections 
in planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

Penalty 
function 

(Hajela 1990)  Sizing 
optimization 

Cross-sections 
in planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Sandgren et al. 
1990) 

Continuum 
TOD 

Planar cantilever
plates 

Fixed-length, 
2D binary arrays 
(bitarrays) 

GA 
Single objective,  
weight 
minimization 

N/A 

(Deb 1991) Sizing 
optimization Welded beams Fixed-length, 

binary strings GA 
Single objective,  
weight 
minimization 

N/A 

(Jenkins 1991b) 
and (Jenkins 
1991a) 

Continuum 
SO 

Shape of 
structural 
members 

Fixed-length, 
2D binary arrays 
(bitarrays) 

GA 
Single objective,  
weight 
minimization 

Penalty 
function 

(Shankar and 
Hajela 1991) 

Discrete 
TOD 

Planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

N/A 

(Hajela 1992) Sizing 
optimization 

Cross-sections 
in planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

328 
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(Hajela and Lin 
1992) 

Sizing 
optimization 

Planar truss 
systems 

Fixed-length, 
binary strings GA Multiobjective, 

min-max  N/A 

(Jensen 1992) Continuum 
TOD 

Planar cantilever
plates 

Fixed-length, 
2D binary arrays 
(bitarrays) 

GA 
Single objective,  
weight 
minimization 

N/A 

(Rajeev and 
Krishnamoorthy 
1992) 

Sizing 
optimization 

Cross-sections 
in planar trusses

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Richards and 
Sheppard 1992) 

Continuum 
SO 

Shape of 
structural 
members 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization N/A 

(Sandgren and 
Jensen 1992) 

Continuum 
TOD 

Planar cantilever
plates 

Fixed-length, 
2D binary arrays 
(bitarrays) 

GA 
Single objective,  
weight 
minimization 

N/A 

(Adeli and 
Cheng 1993) 

Sizing 
optimization 

Spatial truss 
systems 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

Penalty 
function  

(Chapman et al. 
1993) 

Continuum 
TOD 

Planar cantilever
plates 

Fixed-length, 
2D binary arrays 
(bitarrays) 

GA 
Single objective,  
weight 
minimization 

N/A 

(Lin and Hajela 
1993) 

Sizing 
optimization 

Cross-sections 
in planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Hajela et al. 
1993) 

Discrete 
TOD 

Planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

Penalty 
function 

(Grierson and 
Pak 1993a) 

Discrete 
TOD, SO, 
and sizing 
optimization 

Planar frame 
systems 

Fixed-length 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Schoenauer and 
Xanthakis 1993) 

Sizing 
optimization 

Planar truss 
systems 

Fixed-length, 
real valued 
vectors 

GA 
Single objective,  
weight 
minimization 

Behavioral 
memory 

(Watabe and 
Okino 1993) 

Continuum 
SO 

Shape of 
structural 
members 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Sakamoto and 
Oda 1993) 

Discrete 
TOD and 
sizing 
optimization 

Planar truss 
systems 

Fixed-length, 
binary strings 

GA + 
optimali
ty crite-
ria me-
thod 

Single objective,  
weight 
minimization 

N/A 

(Adeli and 
Cheng 1994) 

Sizing 
optimization 

Spatial truss 
systems 

Fixed-length 
binary strings GA  

Single objective,  
weight 
minimization 

Penalty 
function and 
augmented 
Lagrangian 

(Chapman et al. 
1994) 

Continuum 
TOD and SO 

Planar cantilever
plate 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 

(Coello Coello 
et al. 1994) 

Sizing 
optimization 

Planar and 
spatial truss 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 

(Koumousis and 
Georgiou 1994) 

Discrete 
TOD and SO 

Planar steel 
truss roofs 

Fixed-length, 
binary strings 

GA + 
logic 
program

Single objective, 
weight 
minimization 

N/A 
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(Keane 1994) Discrete SO 
Planar truss 
system (satellite 
boom) 

Fixed-length, 
binary strings GA 

Single objective, 
minimization of 
vibration 

Penalty 
function 

(Bohnenberger 
et al. 1995) 

Discrete 
TOD Pylon structures Fixed-length, 

binary strings 
GA and 
ES 

Single objective, 
weight 
minimization 

N/A 

(Rajan 1995) 

Discrete 
TOD , SO 
and sizing 
optimization 

Spatial truss 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 

(Hajela and Lee 
1995a) 

Discrete 
TOD 

Planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 

(Ohsaki 1995) Discrete 
TOD 

Planar truss 
systems 

Fixed-length, 
binary strings 
 

GA Single objective, 
total cost 

Penalty 
function 

(Hajela and Lee 
1995b) and 
(Hajela and Lee 
1996) 

Discrete 
TOD 

Planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Immune 
network 

(Keane and 
Brown 1996) Discrete SO 

Spatial truss 
systems 
(satellite boom)

Fixed-length, 
binary strings GA 

Single objective, 
minimization of 
vibration 

N/A 

(Soh and Yang 
1996) Discrete SO 

Planar and 
spatial truss 
systems 

Fixed-length, 
binary strings 

GA + 
fuzzy 
logic 

Single objective,  
weight 
minimization 

Fuzzy logic 

(Ramasamy and 
Rajasekaran 
1996) 

Discrete 
TOD and 
sizing 
optimization 

Planar truss 
systems 

Fixed-length, 
binary strings 

GA + 
neural 
net-
work 

Single objective,  
weight 
minimization 

Penalty 
function 

(Nakanishi and 
Nakagiri 1996) 
and (Nakanishi 
and Nakagiri 
1997) 

Discrete 
TOD 

Planar frame 
and panel 
structures 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

N/A 

(Cheng and Li 
1997) 

Sizing 
optimization 

Planar truss 
systems 

Fixed-length, 
binary strings 

Pareto 
GA, 
MOGA 

Multiobjective, 
with 2 or 3 
objectives 

Fuzzy 
penalty 
function 

(Parmee et al. 
1997) and 
subsequent 
papers 

Discrete 
TOD, SO, 
and sizing 
optimization 

Various 
problems 
considered 

Various 
encodings 
(binary, real, 
etc.) 

(GA, 
CHC,  
and ES)

Single and 
multiobjective 
approaches 

Various 
constraint-
handling 
methods 

(Yang and Soh 
1997) Discrete SO Planar truss 

systems 
Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Rajeev and 
Krishnamoorthy 
1997) 

Discrete 
TOD, SO, 
and sizing 
optimization 

Planar truss 
structures 

Variable-length, 
binary strings GA 

Single objective,  
weight 
minimization 

N/A 

(Jenkins 1997) 
Discrete SO 
and sizing 
optimization 

Planar 
multistory frame
structure with 
truss-supported 
hangers 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 
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(de Barros Leite 
and Topping 
1998) 

Discrete 
TOD and 
sizing 
optimization 

Welded beam, 
planar truss 
systems, and 
prestressed  
I-sections 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 

(Camp et al. 
1998) 

Sizing 
optimization 

Planar truss and 
frame structures

Fixed-length, 
binary strings GA 

Single objective, 
various fitness 
functions 

Penalty 
function 

(Chen and Rajan
1998) 

Discrete 
TOD, SO, 
and sizing 
optimization 

Planar frame 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Adaptive 
penalty 
function 

(Nair et al. 
1998) 

Sizing 
optimization 

Planar truss 
system N/A 

GA + 
approxi-
mation 
model 

Single objective, 
weight 
minimization 

Penalty 
function 

(Ohmori and 
Kito 1998) 

Discrete 
TOD 

Planar and 
spatial truss 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 

(Hajela et al. 
1998) 

Discrete 
TOD 

Planar and 
spatial grillage 
structures 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Penalty 
function 

(Soh and Yang 
1998) 

Discrete 
TOD, SO, 
and sizing 
optimization 

Planar bridge 
trusses 

Fixed-length, 
binary strings 

GA + 
domain 
know-
ledge 

Single objective, 
weight 
minimization 

Penalty 
function 

(Shrestha and 
Ghaboussi 
1998) 

Discrete 
TOD 

Planar truss 
systems 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

N/A 

(Topping and de 
Barros Leite 
1998) 

Sizing 
optimization 

Cable-stayed 
bridge 

Fixed-length, 
binary strings 

Parallel 
GA Single objective N/A 

(Wibowo and 
Besari 1998) 

Continuum 
SO 

Oval axially 
symmetric shells

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

N/A 

(Kita and Tanie 
1998) and (Kita 
and Tanie 1999) 

Continuum 
SO Planar structuresFixed-length, 

binary strings GA 
Single objective,  
weight 
minimization 

N/A 

(Annicchiarico 
and Cerrolaza 
1999) 

Continuum 
SO Planar structuresFixed-length, 

binary strings GA 
Single objective,  
weight 
minimization 

Penalty 
function 

(Hajela and Kim 
1999) 

Continuum 
structural 
elasticity 
analysis 

Planar structuresCellular 
automata GA 

Single objective,  
strain energy 
minimization 

Penalty 
function 

(Coello Coello 
and Christiansen 
2000) 

Sizing 
optimization 

Planar and 
spatial truss 
systems 

Fixed-length, 
binary strings 

GA + 
min-
max 
strategy

Multiobjective, 
weight, 
displacement, and 
stress minimization 

Penalty 
function 
(death 
penalty) 

(Pezeshk et al. 
2000) 

Sizing 
optimization 

Planar multi-
story frame 
systems 

Fixed-length, 
binary strings GA 

Single objective,  
weight 
minimization 

Penalty 
functions 
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(Arciszewski 
and De Jong 
2001) 

Discrete 
TOD and 
sizing 
optimization 

Steel skeleton 
structures in tall 
buildings 

Fixed-length, 
integer 
encodings 

Parallel 
EA, 
island 
model 

Single objective,  
weight 
minimization 

Penalty 
function 
(death 
penalty), 
repair 
mechanisms

(Woon et al. 
2001) 

Continuum 
SO 

2D spanner head
and flange 
webbing 

Fixed-length, 
binary strings GA 

Single objective, 
weight and  
deflection 
minimization  

None 

(Greiner et al. 
2001) 

Sizing 
optimization 

Planar frame 
structures 

Fixed length, 
binary strings 

GA, 
CHC, 
and 
NSG 

Single objective 
(weight), and 
multiobjective 
(weight and number 
of member cross-
sections) 

Penalty 
functions 

(Murawski et al. 
2001) 

Discrete 
TOD and 
sizing 
optimization 

Steel skeleton 
structures in tall 
buildings 

Fixed-length, 
integer 
encodings 

ES 
Single objective, 
weight 
minimization 

Penalty 
function 
(death 
penalty), 
repair 
mechanisms

(Annicchiarico 
and Cerrolaza 
2001) 

Continuum 
SO 

3D cantilever 
plate with 
circular hole 

Fixed-length, 
binary strings GA 

Single objective, 
minimization of 
volume 

Penalty 
function 

(Hajela and Kim 
2001) 

Continuum 
structural 
elasticity 
analysis 

Planar structures

Binary and real 
encodings and 
cellular 
automata 

GA 
Single objective,  
strain energy 
minimization 

Penalty 
function 

(Nanakorn and 
Meesomklin 
2001) 

Sizing 
optimization 

Planar truss 
systems and 
frame 

Fixed-length, 
binary strings GA 

Single objective, 
weight 
minimization 

Adaptive 
penalty 
function 

(Deb and Gulati 
2001) 

Discrete 
TOD , SO 
and sizing 
optimization 

Planar and 
spatial truss 
systems 

Fixed-length, 
real valued 
vectors 

GA 
Single objective, 
weight 
minimization 

Penalty 
function 

(Deb and Goel 
2001) 

Continuum 
SO 

Planar plate 
structures 

Fixed-length, 
binary strings 

NSGA-
II + hill 
climber 

Multiobjective, 
weight and 
displacement 
minimization 

(Sarma and 
Adeli 2001) 

Sizing 
optimization 

Spatial 
multistory frame
structures 

Fixed-length, 
binary strings 

Parallel 
GA, 
island 
model 

Single and 
multiobjective 

(Yang and Soh 
2002) 

Discrete 
TOD 

Planar truss 
systems 

Variable-length, 
parse trees GP 

Single objective, 
weight 
minimization 

Penalty 
function 

(Nair and Keane 
2002) 

Sizing 
optimization 

Planar truss 
systems 

Fixed-length, 
binary strings CCEA 

Single objective, 
weight 
minimization 

Penalty 
function 

(Azid et al. 
2002) 

Discrete 
TOD 

Planar and 
spatial truss 
systems 

Fixed-length, 
real valued 
vectors 

GA 
Single objective, 
weight 
minimization 

Penalty 
function 
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(Hamda et al. 
2002a) 

Continuum 
TOD 

Planar and 
spatial 
cantilever plates

Variable-length, 
Voronoi-based, 
and fractal-
based 

GA 
Single objective, 
weight 
minimization 

Penalty 
function 

(Hamda et al. 
2002b) 

Continuum 
TOD 

Planar cantilever
plate 

Variable-length, 
Voronoi-based 

NSGA-
II 

Multiobjective, 
weight and 
displacement 
minimization 

(Kicinger et al. 
2003) 

Discrete 
TOD 

Steel skeleton 
structures in tall 
buildings 

Fixed-length, 
integer 
representations 

ES 
Single objective, 
weight 
minimization 

Penalty 
function 
(death 
penalty), 
repair 
mechanisms

(Dimou and 
Koumousis 
2003) 

Sizing 
optimization 

Planar truss 
systems 

Fixed-length, 
binary strings 

Parallel 
GA  

Single objective for 
individuals in each 
population – total 
cost  

Penalty 
function 

(Pullmann et al. 
2003) 

Discrete 
TOD 

Reinforced 
concrete tall 
buildings 

Fixed-length, 
integer strings 

Unified 
EA and 
fuzzy 
sets 

Single objective, 
total cost Fuzzy logic 

(Kicinger et al. 
2004d) 

Discrete 
TOD and 
Sizing 
optimization 

Wind bracing 
systems  in  tall 
buildings 

Generative 
representations 
based on 
cellular 
automata (1D 
and 2D) 

ES Single objective,  
the total weight 

Penalty 
function 
(death 
penalty), 
repair 
mechanisms

(Kicinger et al. 
2004c) 

Discrete 
TOD and 
Sizing 
optimization 

Steel structural 
systems in tall 
buildings 

Generative 
representations 
based on 1D 
cellular 
automata 

ES Single  objective,  
the total weight 

Penalty 
function 
(death 
penalty), 
repair 
mechanisms

(Kicinger et al. 
2004a) 

Discrete 
TOD and 
sizing 
optimization 

Steel structural 
systems in tall 
buildings 

Fixed-length, 
integer 
representations 

Distribu-
ted EA 
(island-
model) 

Single  objective,  
the total weight 

Penalty 
function 
(death 
penalty), 
repair 
mechanisms

(Kicinger and 
Arciszewski 
2004) 

Discrete 
TOD and 
sizing 
optimization 

Steel structural 
systems in tall 
buildings 

Fixed-length, 
integer 
representations 

ES 

Multiobjective 
(aggregate 
function), the total 
weight and the 
maximum 
horizontal 
displacement 

Penalty 
function 
(death 
penalty), 
repair 
mechanisms
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APPENDIX B 
 

In this appendix, the entire set of 256 design concepts of wind bracing systems in tall 
buildings generated by elementary CAs is presented.  The designs have been generated from the 
simplest design embryo consisting of a single X bracing located in the central bay.  All designs 
shown in the following table were generated by elementary CAs with periodic boundary 
conditions.   

Each cell in this table contains the number of the design rule at the top, the actual design 
developed from the design embryo by this rule (center), and four values arranged in a 2 x 2 array 
(the bottom part) as shown on the right.  This array contains four values representing the total 
weight of the steel structural system (the first row) and its maximum horizontal displacement 
(the second row).  The first column contains measurements obtained using the first-order 
structural analysis while the second column contains the values produced by a more accurate and 
at the same time more computationally 
expensive P-∆ analysis.   The values of the 
total weight of the steel structural system 
presented in the first row are measured in lbs. 
whereas the values of the maximum horizontal 
displacement, shown in the second row, are 
measured in inches. 
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APPENDIX C 
 

In this appendix, the entire set of 256 design concepts of wind bracing systems generated by 
elementary CAs with nonperiodic boundary conditions is presented.  As in Appendix A, the 
designs have been generated from the simplest design embryo consisting of a single X bracing 
located in the central bay.   

Each cell in this table contains the number of a design rule at the top, the actual design 
developed from the design embryo by this rule (center), and four values arranged in a 2 x 2 array 
(the bottom part) as shown on the right.  This array contains four values representing the total 
weight of the steel structural system (the first row) and its maximum horizontal displacement 
(the second row).  The first column contains measurements obtained using the first-order 
structural analysis while the second column contains the values produced by a more accurate and 
at the same time more computationally 
expensive P-∆ analysis.   The values of the 
total weight of the steel structural system 
presented in the first row are measured in lbs. 
whereas the values of the maximum horizontal 
displacement, shown in the second row, are 
measured in inches. 
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