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Abstract

A TREE SEARCH APPROACH TO DETECTION AND ESTIMATION WITH APPLI-
CATION TO COMMUNICATIONS AND TRACKING

Hossein Roufarshbaf, PhD

George Mason University, 2011

Dissertation Director: Dr. Jill K. Nelson

We propose complexity efficient tree search approaches to detection and estimation

problems, and we consider both communication and target tracking applications in this

regard. We formulate the problems of interest using a dynamic state space model, where

we seek to estimate the system state from sensor observations. The proposed tree search

approach initializes a search tree from a given initially estimated system state. With each

new observation, the algorithm expands the search tree to find the best possible system

state. The paths through the search tree correspond to sequences of system states. They

are evaluated by their associated path metrics, which are proportional to the posterior

probability of the system state. The stack algorithm and the M-algorithm, two tree search

approaches that were originally used for decoding convolutionally-encoded sequences, are

applied to reduce the complexity of the tree search.

In wireless communication applications, we have considered blind channel equalization of

time-varying channels and modulation classification of an unknown received signal. For both

applications, tree search approaches are implemented to find the transmitted information

sequence that maximizes the posterior probability distribution function of the system state.



For blind channel equalization of time-varying channels, an exponentially decaying window,

matched to the variation rate of the channel, is implemented in the path metric calculation

to successfully equalize an unknown time-varying channel. For modulation classification of

challenging high-density QAM (Quadrature Amplitude Modulation) schemes, the statistical

properties of the mean square error are derived analytically and compared with those of the

estimated sequence to identify the modulation scheme of the received signal. The proposed

tree-search approaches provide superior performance in comparison with other competitive

approaches.

In target tracking applications, the proposed stack-based tree search approach sequen-

tially tracks multiple targets in high clutter density with low observable targets and can

be applied to both linear and nonlinear target models. The proposed technique is able to

retain previously strong track candidates and may refer to them to refine the estimated

track if the current track estimate is not satisfactory. A likelihood ratio track management

technique has been embedded in the search tree to identify false tracks, and the sensitivity

of the proposed tracker to different system parameters has been evaluated analytically.

The results of empirical performance evaluation conducted for the detection and esti-

mation problems described above reveal that the proposed tree search technique performs

well in challenging detection and estimation environments with severely non-linear dynamic

state space models.



Chapter 1: Introduction

Applications of detection and estimation theory appear in many scientific problems such

as statistical signal processing, time series analysis, econometrics, finance etc. [1, 2]. In

statistical signal processing, detection theory deals with identifying, detecting or classifying

signals while estimation theory deals with estimating the values of parameters based on

observations or measurements. Many statistical problems are modeled using a dynamic

state space model. In dynamic state space modeling, variations of the system state over

time are modeled by a hidden Markov process, and a measurement model relates the noisy

observations to the hidden system state. The Bayesian filter provides the optimum so-

lution with respect to maximum a posteriori (MAP) criteria to the dynamic state space

model, but a closed form estimate of the posterior distribution exists only for a small set

of scenarios [3]. The most important closed form solution for the Bayesian filter, known as

the Kalman filter (KF) [4], is applicable when the state transition and observation models

are linear and the additive noise in each model is Gaussian. In nonlinear/non-Gaussian

state space models, however, the posterior density function may not have a closed form

mathematical expression; in such cases, implementation of the Bayesian filter requires that

the posterior density function be approximated by discrete points, an approach that may

be computationally impractical. The conventional approach to solving detection and es-

timation problems involving nonlinear models is to implement the Kalman filtering and

linearize the models when the nonlinear models cannot be applied. While these approaches

maintain low complexity and may perform satisfactorily for mildly nonlinear systems, their

performance suffers dramatically for severely nonlinear systems.

In this work, we propose complexity feasible approaches to detection and estimation

problems using partial tree search algorithm techniques that approximate the Bayesian

filter by computing the posterior distribution only in regions in which it has significant

1



mass. In tree search algorithms, the solution is found by navigating a tree of all possible

solution candidates and evaluating the likelihood of each candidate based on observations.

In order to reduce the complexity of tree search, rather than expanding the tree with all

solution candidates, only some of the branches of the tree (those which are more likely to

be the solution), are expanded and evaluated. The stack algorithm and the M-algorithm,

used in decoding convolutional codes, are two techniques for reducing the complexity of

tree search decoders. We have adapted these algorithms to solve detection and estimation

problems through partial tree-search techniques.

For demonstration, we have applied the partial tree search techniques to problems in

communication systems and to sonar target tracking. In communication systems, we apply

a tree search approach based on the stack algorithm for joint blind channel equalization and

data detection. We also apply a tree search classifier based on the M-algorithm to perform

modulation classification of unknown signals. In the target tracking application, we apply a

tree search tracker, based on the stack algorithm, that navigates a tree of most likely target

locations to track a moving target in clutter. Our simulation results show that partial tree

search techniques can achieve significant performance gains over conventional techniques

while maintaining feasible complexity.

This thesis is organized as follows: Dynamic state space models of detection and esti-

mation problems and a review of existing solutions based on these models are discussed in

Chapter 2. In Chapter 3 we review the tree search techniques that are used in coding theory,

and we expand their applications to general detection and estimation problems. We apply

the tree search solutions to communication applications including blind channel equaliza-

tion and modulation classification in Chapter 4. The proposed tree search technique for

target tracking applications is explained and evaluated in Chapter 5. The conclusions and

future work are presented in Chapter 6.

2



Chapter 2: Background and Related Work

In this chapter, we provide background relevant to the work presented in this thesis. We

first describe the dynamic state space model that is used to model many detection and

estimation problems. In Section 2.2, we discuss existing solutions to problems in this class

and their practical limitations with an emphasis on nonlinear state space models.

2.1 Dynamic State Space Model

Many statistical problems can be modeled by sequentially estimating the system state vec-

tor, denoted by x, from a vector of noisy observations, denoted by y. For example, in

estimating time-varying wireless channels, the system state is given by the time-varying

channel vector, and the observation is the signal observed at the receiver. In sonar target

tracking systems, the system state vector may contain information about the location and

speed of the target; observations are the signal strength, bearing, and arrival time of the

returned signal. The dynamic state space model formulates variations of the system state

and observations (or measurements) using two processes: the system state process and the

observation process.

2.1.1 System State Process

In the system state process, variations of the system state x at time index k are modeled

using a first order Markov process given by

xk = fk(xk−1,vk), (2.1)

where fk(.) is the known state transition function and vk denotes the state transition noise,

which is modeled by a random vector with known statistics.

3



2.1.2 Observation Process

The observation model or measurement model relates the observed or measured signal y to

the system state vector x by

yk = hk(xk,wk), (2.2)

where hk(.) represents the observation function and wk denotes the observation noise, as-

sumed to be independent of the state transition noise vk. Our objective is the sequentially

estimation of the system state vector (xk) from the observation vector (yk) using the given

models in (2.1) and (2.2). In the following section, we review the existing approaches to

sequential estimation under this model.

2.2 Existing Approaches to Detection and Estimation Prob-

lem Using Dynamic State Space Models

In the general case, the optimum solution to the state space model with respect to the

maximum a posteriori criteria is provided by the Bayesian filter [5], [3]. The Bayesian

filter approach provides a general solution using Bayes rule to combine the predefined

prior distributions with the likelihood functions of the observation sequences on the sys-

tem states [3]. Using the Bayesian filter approach, the posterior distribution of the system

state P (xk|y1 , · · · ,yk) is derived and propagated as the observations are obtained. The

Bayesian filter results in closed-form solutions for only certain classes of systems, however;

the most notable are linear models with additive Gaussian noise. In this special case, the

Bayesian filter results in the well known Kalman filter [4] approach which provides the effi-

cient and optimum solution in the senses of the minimum mean square error (MMSE), the

maximum likelihood (ML), and the maximum a posteriori (MAP) criteria [4], [5]. Under

nonlinear/ non-Gaussian state space models, a variety of techniques for nonlinear estima-

tion have been proposed. We review some of the approaches that are frequently used in

4



digital communication and target tracking applications.

Because of the efficiency and simple implementation of the Kalman filter, many ap-

proaches have been developed that focus on applying the Kalman filtering technique and

linearizing the state space model when the nonlinear model cannot be applied. The most

popular approach in this group is the well known extended Kalman filter (EKF) [1] which

linearizes the state space model using Taylor series expansions of the nonlinear functions.

While the EKF performs well under mild nonlinearity, it suffers from performance loss under

sever nonlinearities. Another approach to linearize the state space model, presented in [6],

implements the polynomial approximation of a nonlinear function. This technique, known

in the literatures as the central-difference Kalman filter (CDKF), can replace the EKF in

some practical applications in which linearization using Taylor series is not accurate. Note

that for both EKF and CDKF techniques, because Kalman filtering is applied, there is an

implicit Gaussian prior assumption on the posterior density function.

Another group of proposed techniques assume an explicit prior form (normally Gaussian)

for the posterior density function. Perhaps the most famous approach in this group is the

unscented Kalman filter (UKF) [7], [8] which uses a novel nonlinear transformation of the

mean and covariance matrices. In this approach, the mean and covariance matrices of

the assumed Gaussian posterior density are parametrized by a set of samples, and these

samples are updated through processing by a nonlinear filter. In the Quadrature Kalman

filter (QKF) [9], [10] the assumed Gaussian posterior density is parametrized through a set

of Gauss-Hermite quadrature points, and the nonlinear process and observation functions

are linearized using statistical linear regression (SLR). The Cubature Kalman Filter (CKF)

[11] uses a spherical-radial cubature rule for numerical computation of the multivariate

moment integrals that appear in the Bayesian filter formulation. The key assumption in

this numerical computation is the Gaussianity of the posterior density function.

Some existing approaches do not have explicit assumptions on the posterior distribution.

Instead, they estimate a discrete set of parameters and used them to approximate the

posterior density function. The Gaussian mixture filter [12], for example, estimates a set

5



of discrete weight parameters and implements these weights to approximate the posterior

density function using a weighted sum of Gaussian density functions. It is shown in [13] that

any practical density function can be represented by a weighted sum of Gaussian density

functions and as the number of Gaussian densities increases, the approximation will converge

uniformly to the desired density function. Recently, particle filtering (PF) [14] has become

popular in many applications of statistical signal processing. In particle filtering, a desired

posterior density function is estimated through a set of particles and associated weights. At

each time update, new particles are generated via sampling from an importance function,

and the weight associated with each particle is updated. In some applications (sequence

detection in communications, for example), the parameters to be estimated are drawn from

a known and finite set of possible values. In these cases, it is possible to select particles in a

deterministic fashion. This approach is known as deterministic particle filtering (DPF) [15]

and has been shown to achieve better performance than traditional (stochastic) PF schemes

when applied to blind equalization [16]. With fast development of powerful computational

systems, the numerical approach to solving the Bayesian inference equation that was first

introduced in [17] has renewed its attraction through the point mass approach [18]. In the

point mass approach, the system state is discretized by a regular grid, and the Bayesian

filter is evaluated numerically on the discrete points.

Although the general approaches that do not assume an explicit prior form on the

posterior distribution perform well under non-linear and non-Gaussian conditions, they

often suffer from extremely high computational complexity. In Chapter 3, we address

this challenge by implementing the stack-based [19] and the M-algorithm [20] tree search

techniques to evaluate the posterior density only in the regions that appear most likely.

6



Chapter 3: Tree Search Algorithms

In the previous chapter, we discussed general approaches for solving detection and esti-

mation problems that do not assume any prior form on the posterior distribution. Tree

search-based techniques can be viewed as general approaches that navigates a tree to ap-

proximate the maximum likelihood or maximum a posteriori solution. In this chapter, we

first describe Bayesian tree search techniques that were originally developed for applications

in coding theory. We discuss a full tree search, as well as partial tree search techniques such

as the stack algorithm and the M-algorithm that have been developed to decrease the com-

plexity of the tree search technique. We then address the implementation of these techniques

to solve general detection and estimation problems.

3.1 Bayesian Tree Search Decoder

Orthogonal tree codes (convolutional codes) in digital communication systems have been

widely implemented for decades to allow for robust transmission of information sequence

over dispersive noisy channels [21]. A variety of algorithms have been developed for decoding

convolutional codes. An exhaustive tree search decoder provides the optimum decoding

solution with respect to maximum likelihood (ML) or maximum a posteriori (MAP) criteria.

In convolutional codes, because of the memory imposed on the coded sequence by the

constraint length of the encoder, the current state depends only on limited number of the

previous states. Using this property, the tree search technique can be implemented in the

trellis format using Viterbi algorithm.

The exhaustive tree search decoder generates all possible transmitted sequences through

a tree and evaluates the likelihood (stored in a metric) of each sequence using Bayes rule. At

each time step, all new possible sequences are generated, and the metric is updated for each

7



Figure 3.1: An example of the first three iterations of the exhaustive tree decoder algo-

rithm for a rate-12 code.. We assume that the encoder polynomials are x2+1 and x2+x+1

and the sequence 101 is transmitted. At each iteration, the decoder makes a tree of all
possible transmitted sequences and makes a decision based on the highest metric of each
possible transmitted sequence. For this example, the highest metric is shown in red, and
the decoder output is correct.

sequence using the new observation. Figure 3.1 shows an example of the tree search decoder

for a convolutionally encoded sequence. In this example, we assume that the encoder uses

the coding polynomials of x2 + 1 and x2 + x + 1 on the information sequence 101. The

encoded sequence that is transmitted through the channel is 110100. As we can see in this

figure, each branch of the tree represents one possible transmitted sequence; its associated

metric is updated each time a new observation is received. In our example, we see that

m6(3) is the highest metric among all the metrics at time stage 3 and 101 is declared as the

transmitted sequence. ,

Since the number of possible states (tree branches) increases exponentially with time,

implementation of the exhaustive tree search will be computationally complex even when

the number of states is small. Due to the structure of the encoder, convolutional decoders

8



inherently require a finite number of prior states to make a decision. This allow us to imple-

ment a trellis decoder (Viterbi algorithm) instead of the tree search. Since the number of

states grows exponentially with the constraint length of the encoder, for encoding systems

with large constraint length, the trellis decoder may still be prohibitively computationally

complex. The stack algorithm and the M-algorithm have been suggested as decoding meth-

ods that reduce the complexity of tree search decoding by only partially expanding the

search tree.

3.2 Stack-Based Tree Search

The stack algorithm navigates a tree in search of the path, or equivalently the data sequence,

with the largest likelihood, or metric. A set of possible paths and their associated metrics

are stored in a list (or stack), and at each iteration, the algorithm extends the path with

the largest metric.

As a simple case, consider a data sequence drawn from a binary alphabet. Starting from

a known initial state, the stack algorithm considers both possible path extensions from the

initial node, i.e., the single-element path segments b1 = 1 and b1 = 0. The metrics of these

two paths are computed, and the paths are stored in the stack along with their metrics.

The algorithm then selects from the stack the path with the largest metric and extends it

to both children. The two extended paths are placed in the stack, and the parent path is

removed. This process continues; in each iteration, the algorithm finds the most likely path

in the stack, extends it to all possible children, and places the extended paths in the stack.

The stack algorithm terminates when the most likely path in the stack reaches a leaf of the

tree, i.e., when a full-length path has the largest metric of any path in the stack. In order

to impose a fixed limit on complexity and on memory requirements, a maximum stack size

L is typically specified. If L paths have been explored and are stored in the stack, the paths

with the lowest metrics are purged to allow for new path extensions.

In Figure 3.2, the stack search algorithm is shown as a partial tree search approach. The

same example as Figure 3.1 is used for comparison between the exhaustive tree search and

9



Figure 3.2: An example of the first three iterations of the stack algorithm for a rate-12
code. Iteration 1: The first two paths are placed in the stack along with their associated
metrics. Iteration 2: Path [1] is extended to [1 0] and [1 1], which are placed in the stack.
Iteration 3: Path [1 0] is extended to [1 0 0] and [1 0 1], which are placed in the stack.
The sequence [1 0 1] has the largest metric at the end of the third iteration and will be
extended in iteration 4.

the stack algorithm. At each time stage, rather than extending all possible sequences, only

the most likely sequence is extended, and its associated metric is updated. In stage 1, the

lower path has the largest metric, and hence it is extended to its two children in stage 2. At

stage 3, the path associated with the largest metric m2(2) is extended and since the path

with the largest metric m3(3) has the full sequence length, it is declared as the decoded

path sequence.

Note that the various paths contained in the stack at a particular time are not all of the

same length. The algorithm may extend a path of length l in one iteration and in the next

iteration find the most likely path to be one of length j for some j ≪ l. For blocks with

low SNR, the tendency of the stack algorithm to jump around the tree during the detection

process causes the number of required computations to be quite large [22]. Because paths of
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unequal length may be compared, the path metric must include a bias term to compensate

for differences in path length.

3.3 M-Algorithm Tree Search

The M-algorithm decoding technique differs from the stack algorithm in that, at each time

update, rather than extending only the most likely path, all stored paths are extended to all

possible children. After extension, only the M most likely paths are retained. For example,

suppose that there are M stored path, and that each node has L children. Therefore, at

each time update ML sequences will be generated. The metrics are updated for all ML

new paths, and only the M most likely paths are retained for the next time update.

Recently, deterministic particle filtering has been proposed [15] as an alternative ap-

proach to the conventional particle filtering [14] for the systems in which the solution to the

system state estimation lies in a deterministic set of possible solutions. In this algorithm,

each particle represents one possible solution candidate and the weight associated to each

particle shows its likelihood. At each time update, all the retained candidates are extended

and the weight is updated for each candidate. Only M particles with highest weights are

retained. Deterministic particle filtering is the same as the M-algorithm tree search when

the number of particles at each time update are limited to M . In Section 4.2, we apply the

deterministic particle filtering algorithm to modulation classification of an unknown signal.

3.4 Tree Search Approaches for Detection and Estimation

Problems

In the previous section, we described tree search approaches for decoding convolutionally

encoded sequences. Now we extend the applications of these techniques to a general de-

tection and estimation problem using the dynamic state space modeling. The idea behind

the tree search technique is to approximate the Bayesian inference solution by using a tree
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Figure 3.3: An example of the first three iterations of the M-algorithm with M equal to

4 and a rate-12 code. At the first and second iteration, the algorithm performs similar to

full tree search since the number of paths does not exceed M. At the third iteration, all
previously stored paths are expanded but the tree is pruned and only the M most likely
paths are retained, thereby reducing complexity for iterations that follow.

search algorithm to explore and evaluate only likely regions (e.g. regions with higher ampli-

tude) of the posterior distribution on the system state. Modeling using dynamic state space

model represented in (2.1) and (2.2), the tree search technique must evaluate the posterior

density function and estimate the solution using MAP criteria:

[x̂1 · · · x̂k] = arg max
l

P(x
(l)
1 , · · · ,x

(l)
k |y1, · · · ,yk), (3.1)

where l denotes the lth solution candidate within the search tree.

Applying tree search techniques to a general detection and estimation problem requires

three steps:

1. Defining a search tree structure.

2. Discretization of the system state process.
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3. Metric derivation.

In the following, we discuss each of these steps in more detail.

3.4.1 Search Tree Structure

To apply a tree search technique for a general problem modeled by (2.1), and (2.2), the

search tree must be able to generate all possible solution candidates. When the appropriate

tree is generated, the solution x̂ defined in (3.1) can be found by navigating the tree and

comparing the metric associated to each solution candidate. To make a search tree, each

node of the tree at time stage k must represent a possible value of the system state at that

time, e.g. a possible value of xk. At each time update, the tree is extended from a present

state or tree node xk, to all possible system states that can be produced according to (2.1).

In order to initiate the search tree, additional information about the initial point is

required. In communication systems, when the transmitted information sequences are con-

sidered as the systems state, the initial state is usually assumed to be zero or the tree

is started from the initial rest condition. In tracking applications, the initial state of the

tree may denote the initial target location that is estimated by an external track initiation

algorithm and is assumed to be available for the tracker.

Each path of the search tree starts from the initial point of the tree and ends to a unique

leaf of the tree, so the number of full-length paths in the search tree is equal to the number

of leaves. Each path represents a unique sequence of the system states [x1,x2, · · · ,xk] and

the tree search algorithm navigates the tree by exploring the sequences of states that appear

most likely based on noisy observations.

3.4.2 Discretization of the System State Process

Application of the tree search algorithm always requires a discrete (or discretized) system

state process, since the number of possible states must be finite in order to map each possible

system state value to a branch of the search tree. By discretizing the system state process,
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the continuous posterior distribution on the state is replaced by a probability mass function

(PMF).

In some applications like digital communications, the system state process denotes the

transmitted information sequence and is inherently discrete. For expansion of each tree

node, the number of new generated branches from each node of the tree is equal to the

number of symbols in the constellation scheme of the transmitted symbols.

In tracking applications, however, the system state contains the target location infor-

mation in the space and must be discretized. Figure 3.4 shows an application of the tree

search technique (stack algorithm) for target tracking. In this example, each element of

the system state vector is represented only by 3 discrete values, and hence 32 new branches

are generated from each node of the tree. We can see that by increasing the number of

discretized values in each dimension, the number of branches emanating from each node

increases exponentially. On the other hand, decreasing the number of discrete values in-

creases the estimation error due to the discretization error. In Chapter 5, we discuss this

challenge in more detail, and we propose a dynamic discretization approach to decrease the

discretization error without increasing the tree size.

3.4.3 Metric Evaluation

As stated before, the goal of the tree search technique is to find (or approximate) the

MAP solution through navigating a tree of possible solutions. Since the state space must

be discrete or discretized, the possibly continuous posterior distribution on the state is

evaluated as a probability mass function (PMF). Each path of the tree represents a point

in which the PMF is evaluated, and the metric associated to each path is proportional to
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Figure 3.4: An example of the stack algorithm for target tracking application. The
state vector that denotes the location of the target in a surface is discretized in the 2-
dimensional Cartesian coordinates. Each dimension of a new generated state can take 3
discrete values that totally generates 9 new states for each extension.

the PMF value. The general approach to derive a path metric is through Bayes Theorem:

P(x
(l)
0 , · · · ,x

(l)
k |y0, · · · ,yk) =

P(y0, · · · ,yk|x
(l)
1 , · · · ,x

(l)
k )P(x

(l)
0 , · · · ,x

(l)
k )

P(y1, · · · ,yk)

=

(∏k
i=0P(yi|x

(l)
i )
)(∏k

i=1P(x
(l)
i |x(l)

i−1)
)
P(x

(l)
0 )

P(y1, · · · ,yk)
, (3.2)

where the second line is derived using the fact that the observation vector at each time (yl),

only depends on the system state vector of the current time (xl) (2.2) and the system state

process follows the first order Markov process (2.1).

The metric evaluated in (3.2) can be applied to the full tree search algorithm or the

M-algorithm in which all the retained paths in the tree are extended to the same time k.

In the stack-algorithm, however, the paths within the search tree are extended to different

time indices; the metric of each path must contain a compensation, or bias, term to allow

fair comparison between paths of different lengths.
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The tree search technique with the metric defined by (3.2) approximates the MAP solu-

tion to the dynamic state space model. Some applications require the maximum likelihood

(ML) solution that can be derived through the tree search technique if only the likelihood

term of the metric presented in (3.2) is considered for the path metric:

P(y0, · · · ,yk|x
(l)
1 , · · · ,x

(l)
k ) =

k∏
i=0

P(yi|x
(l)
i ). (3.3)

In Chapter 4 and Chapter 5, we apply tree search approaches to communication and

tracking applications. In communication systems, we apply the stack algorithm for se-

quential detection of the transmitted sequence in the presence of a time-varying multipath

channel. We also apply the M-algorithm for modulation classification of unknown signals.

In tracking applications, we apply the stack algorithm for tracking a moving target in

the presence of clutter; the stack algorithm estimates the target location through partially

navigating of a tree of all possible target locations.
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Chapter 4: Implementation of Bayesian Tree Search

Approaches in Wireless Communication Systems

In modern telecommunication systems, the demand for fast services in which the end user

is able to remain mobile is increasing. An important and challenging problem in these sys-

tems is transmission of information over time-varying multipath fading channels. Multipath

fading may generate intersymbol interference (ISI) in the time domain, and equivalently fre-

quency selectivity in the frequency domain; time variation generates fast fading in the time

domain and doppler shift in the frequency domain of the received signal [23]. While ISI

provides time diversity for communication systems, it may degrade the performance of the

system if not completely compensated at the receiver. The traditional way to combat ISI is

through channel equalization techniques. To set up an appropriate equalizer, the commu-

nication channel should be estimated using a training sequence [24]. The training sequence

is a sequence of bits that is transmitted by the transmitter and is known at the receiver.

The receiver estimates the channel parameters based on the observations from the training

period. Transmitting a training sequence wastes useful bandwidth, however, and in time

varying channels the training sequence must be transmitted repeatedly. Thus it wastes

bandwidth and decreases the efficiency of the communication system. Additionally, in new

technologies such as ad hoc mobile networks and packet radios, data sequences are trans-

mitted with differing packet lengths, and the channel may vary during the transmission of a

packet and also from packet to packet. Channel estimation based on transmitting a training

sequence is not efficient in these scenarios. In applications like modulation classification of

an unknown signal, the receiver may not have access to the training sequence of the signal

and implementation of blind equalization techniques, in which the receiver combats the ISI

without using the training sequence, is inevitable.
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In this chapter, we consider two applications of Bayesian tree search in wireless commu-

nications systems, in which for both scenarios the receiver implements blind equalization

techniques. In Section 4.1, we expand the Bayesian tree search approach for joint blind

equalization and sequence detection to time-varying multipath channels. In Section 4.2,

we propose an M-algorithm for modulation classification of an unknown received signal

transmitted over a multipath channels.

4.1 Stack Tree Search for Maximum Likelihood Sequence

Detection in Multipath Rayleigh Fading Channels

4.1.1 Introduction

The problem of channel equalization and decoding appears in many communication systems.

The traditional approach to channel equalization is through either estimating the channel

vector or adjusting the equalizer coefficients using a transmitted training sequence. As

discussed, however, transmitting a training sequence is not possible in all systems

The first idea of channel equalization without using a training sequence was introduced

by Sato [25]. Since then, many blind channel equalization techniques have been considered

in communication systems, but most of them use estimation of higher order statistics (HOS)

of the received signal [26,27]. The drawback of HOS approaches is the estimation of higher

order statistics which require a large sequence of the received signal and increases the

delay at the receiver. Additionally, in the case of fast time varying channels, due to non-

stationarity of the received signal, these statistics can not be estimated precisely.

Among all the algorithms that have been proposed so far, those that are able to detect

the transmitted data based on few received symbols are more promising for many new

wireless applications, particularly those allowing packet transmission. Tong et. al. [28]

proved that in the case of either multiple receivers or oversampling of the received signal, it

is possible to estimate the channel coefficients from second order statistics. Since then, many

approaches based on a single input multiple output (SIMO) model have been introduced,
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the most recent of which can be found in [29]. For systems that can not be modeled as

SIMO, these second-order based equalization techniques do not apply.

Joint channel equalization and sequence detection is introduced by Forney [30] in which

he uses the Viterbi algorithm (VA) for maximum likelihood sequence detection in ISI con-

ditions. However, the proposed algorithm requires channel estimation through transmitting

the training sequence. Since then, many Viterbi-based approaches for blind channel equal-

ization and sequence detection have been proposed. Seshadri [31] applies a minimum mean

square error based approach for blind channel equalization and proposes a Viterbi-based

blind algorithm that allows an increase in the number of surviving sequences retained in the

Viterbi trellis. When the channel is known in the Viterbi algorithm, only the sequence with

the highest likelihood is retained at each state. When the channel is unknown, Seshadri

suggests keeping multiple possible sequences for each state and estimating the channel based

on each possible sequence. At the next time update, all the retained sequences for each

state are updated; only the M sequences with highest path metrics are retained. Kubo et

al. [32] proposed an adaptive maximum likelihood sequence detection (MLSD) approach

for combined channel equalization and decoding in fading environments. In this approach

that is a Viterbi based algorithm, the channel is estimated separately for each respective

state of the VA using the analytically derived least mean square (LMS) algorithm. Xiaohua

[33] introduced a channel independent Viterbi algorithm (CIVA) in which the path metrics

are evaluated from a bank of test vectors that are designed off-line. Yet another Viterbi

based approach proposed in [34] uses the Viterbi algorithm and Kalman filtering for channel

estimation on the surviving paths.

The optimum solution for both blind channel equalization and sequence detection is

to generate all possible data sequences and evaluate the posterior density of each gener-

ated sequence given the observation signal. Tree search algorithms can be implemented to

generate all possible transmitted sequences, but the tree expands exponentially and it is

not practical to evaluate all possible transmitted sequences. Recently, a particle filtering

approach has been suggested [35] that estimates the posterior density of the transmitted
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symbols using a set of particles and their associated weights. Deterministic particle filter-

ing (DPF), proposed in [16], is similar to the tree search approach when only the M most

probable paths are retained. DPF shows good performance in the presence of time-varying

channels, but it suffers from complexity issues since at each time step, all possible new

generated paths from the M previously retained paths, must be extended and the metric

must be updated for all new paths. For example, if a transmitted sequence comes from a

QPSK constellation, there are 4 new paths from each retained path, and in total 4M paths

must be generated and evaluated at each time update.

The stack like tree search algorithm presented in [36], which forms the basis for this

work, allows unequal path lengths within the tree and extends only the path with the

highest metric. Therefore, it can find the best path more quickly by avoiding unnecessary

path extensions. Additionally, in comparison with [31], this algorithm has the ability to

retain more possible sequences for situations in which signal to noise ratio is low. In this

section, we have extended the stack-like tree search algorithm to be used for joint sequence

detection and blind equalization in time-varying Rayleigh fading channels.

4.1.2 System Model

We consider the baseband equivalent of the telecommunication system as depicted in Figure

4.1. In order to model the communication system as its baseband equivalent, we assume

that the receiver is synchronized to the transmitter and knows the pulse shaping filters. The

information bits are assumed to be transmitted in blocks of length N that are denoted by

bN
1 . The information bits are encoded through a rate R = 1

r convolutional encoder prior to

transmission over the channel. The encoder parameters such as constraint length, encoding

polynomial, and initial state are assumed to be known at the receiver. The transmitted

signal is a block of symbols with length of rN denoted by xrN
1 . These encoded sequences

are passed through a linear time-varying (LTV) complex channel denoted by vector ht =

[ht,0 · · ·ht,L−1] where t is the time index and L is the cardinality of the channel vector

(channel length). We have assumed that the channel variation is slow during transmission
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of one symbol of the transmitted sequence (slow fading channel). The complex channel

vector ht can be written as ht = hc
t +jh

s
t , where h

c
t and hs

t are the in-phase and quadrature

components, respectively. The noise wt is assumed to be additive white Gaussian noise

(AWGN) with in-phase and quadrature components wc
t and ws

t , where ws
t and ws

t are

uncorrelated white Gaussian noise processes with variance σ2 = N0/2. We assume that the

receiver knows the variance of the additive white Gaussian noise (AWGN).

For simplicity, the modulation of the transmitted sequence is assumed to be binary

phase shift keying (BPSK) . The received signal can be written as

zn = zcn + jzsn =

[
L−1∑
k=0

ht,kxt−kTs + wt

]
t=nTs

(4.1)

=

[
L−1∑
k=0

hct,kxt−kTs + wc
t

]
t=nTs

+ j

[
L−1∑
k=0

hst,kxt−kTs + ws
t

]
t=nTs

,

where zn denotes the nth sample of the channel output and Ts is the sampling time period

at the receiver. To find the statistical properties of the Rayleigh fading channel, we use

the famous Jakes’ channel reference model [23] where each channel tap is comprised of Q

propagation paths as

ht,l = hct,l + jhst,l (4.2)

= E0

Q∑
q=1

Cq,l cos(ωdt cosαq + ϕq) + jE0

Q∑
q=1

Cq,l sin(ωdt cosαq + ϕq).

E0 is a scaling constant, Cq,l, αq and ϕq are the random path gain, angle of incoming

wave, and initial phase associated with the qth propagation path, respectively, and ωd is

the maximum radian Doppler frequency [37]. Based on these assumptions, the channel
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Figure 4.1: Block diagram of communication system. The information bits are encoded
through a rate R convolutional encoder. The encoded sequence x[n] is transmitted over a
multipath linear time-varying (LTV) channel. The additive noise is assumed to be white
and Gaussian. The role of the Bayesian detector and decoder is to estimate the transmit-
ted information bits from the observed signal.

autocorrelation functions, consistent with Jakes’ reference model (4.2), are equal to

E[hct,lh
c
t+τ,l] = E[hst,lh

s
t+τ,l] = J0(ωdτ) (4.3)

E[hct,lh
s
t+τ,l] = E[hst,lh

c
t+τ,l] = 0,

where J0(.) denotes the zero-order Bessel function of the first kind.

The block of the received samples z[1], · · · , z[rN ] is denoted by zrN1 and serves as input

to the detection and decoding block. The detection and decoding block uses a stack-based

algorithm to estimate the transmitted data sequence bN
1 by navigating a tree generated by

the transmitted data state. The channel is implicitly estimated through the metric of each

path. In what follows, we explain the Bayesian stack algorithm and its implementation

issues for the LTV channel.

4.1.3 Implementation of Bayesian Stack Tree Search

When channel information is present at the receiver, MLSD can be performed via the Viterbi

algorithm [23]. The key observation in the Viterbi algorithm is that the memory in the

encoder can be represented by a finite state machine. When the channel information is not

available at the receiver, the sequence likelihood no longer factors onto a trellis, and hence

the Viterbi algorithm cannot be directly applied. As an alternative, the Bayesian stack
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detector that is discussed in Chapter 2 traverses a tree to find the most likely sequence

detector. The stack algorithm simplifies the tree search so that, at each time update, rather

than expanding all branches of the tree, only the most probable branch is extended. The

associated metric calculated at each time update is compared with the metric of the other

paths in the tree, and only the most likely path is selected for extension the next time

update. When the number of stored paths in the stack exceeds the size of the stack, the

paths with lower metrics are dropped from the stack. The algorithm finishes when the path

with highest metric is of full length, e.g. reaches a leaf of the tree.

To calculate the metric for the proposed stack algorithm, we have to evaluate the prob-

ability of each possible transmitted information bit sequence in the stack based on the

received signal

m ∝ p(bn
1 |zrN1 , C) (4.4)

where C denotes the explored tree at the current iteration. Assuming a prior over the

channel taps, the conditional likelihood of a bit sequence bn
1 is averaged over the unknown

quantities,

p(bn
1 |zrN1 , C) =

∫
ht

p(bn
1 ,ht|zrN1 , C)dht. (4.5)

Using Bayes Theorem, (4.5) can be written as

∫
h
p(bn

1 ,h|zrN1 , C)dh =

∫
h
p(bn

1 |h, zrN1 , C)p(h)dh

=

∫
h

p(zrN1 |h,bn
1 , C)p(h)p(b

n
1 )dh

p(zrN1 |h, C)

∝
∫
h
p(zrN1 |h,bn

1 , C)p(h)dh. (4.6)
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In order to evaluate the integral in (4.6), we first assume that the channel is time-invariant

(ht = h) and the number of channel taps (channel length) is known at the receiver. After

that we extend our results to incorporate time-varying channels and unknown channel

length. The key assumption in deriving a closed-form metric is that the likelihood function

p(zrN1 |h,bn
1 , C) can be written as the product of the likelihood function of each observed

symbol as

p(zrN1 |h,bn
1 , C) =

rN∏
k=1

p(zk|h,bn
1 , C). (4.7)

In other words, the received symbols, when conditioned on the channel and the transmit-

ted data, are independent. Although, this is not a valid assumption in general since the

transmitted symbols are correlated due to the convolutional channel encoder and the mul-

tipath channel, it simplifies the calculation of the stack metric. In practice, a scrambling

technique employed in turbo-style minimized correlation between successive transmitted

symbols. This technique reduces the correlation between successive symbols by reorder-

ing the transmitted symbols using the specific scramble generation polynomial. Given the

channel state vector and the transmitted sequence, p(zk|h,bn
1 , C) follows the probability

distribution function of the additive noise

p(zk|h,bn
1 , C) = N (0, σ2). (4.8)

Substituting (4.7) and (4.8) in (4.6) and assuming a Gaussian prior over the channel vector,
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the integral in (4.6) has a closed form and can be calculated as [36]

p(bn
1 |zrN1 , C) (4.9)

∝
σLh
2n

(
(σ2 + 1)

r(n−N)
2

σrn

)∣∣∣∣∣R̂rn
xx

σ2
+

I

σ2h

∣∣∣∣∣
−1/2

×

exp

−R̂
rn
zz [0]

2σ2
+

1

2σ4
r̂rnTzx

(
R̂rn

xx

σ2
+

I

σ2h

)−1

r̂rnzx

×

exp

{
− 1

2(σ2 + 1)

rN∑
i=rn+1

zi
2

}
,

where

Rk
zz[0] =

k∑
i=1

z2i (4.10)

rkzx =

k∑
i=1

zix
i
i−L+1 (4.11)

Rk
xx =

k∑
i=1

(xi
i−L+1)(x

i
i−L+1)

H. (4.12)

When the channel response varies with time, equations (4.10)-(4.12) estimating the auto-

correlation and cross-correlation functions are no longer valid, since the ensemble estimate

of Rzz, rzx and Rxx is not equal to the time average estimate. To allow for a time-varying

channel, we incorporate a forgetting factor λ (0 ≤ λ ≤ 1) to control the excessive lag error

of the estimates of Rzz, rzx and Rxx with channel variation rate. With this adjustment, the
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auto-correlation and cross-correlation estimates in (4.10)-(4.12) can be rewritten as

R̂k
zczc [0] =

1− λ

1− λk+1

k∑
i=1

λk−izc2i (4.13)

r̂kzcx =
1− λ

1− λk+1

k∑
i=1

λk−izcix
i
i−L+1 (4.14)

R̂k
xx =

1− λ

1− λk+1

k∑
i=1

λk−i
(
xi
i−L+1

) (
xi
i−L+1

)H
. (4.15)

The scaling factor (1− λ)/(1− λk+1) has been incorporated to compensate for the case in

which only a short sequence is available and the memory imposed by the forgetting factor is

greater than the number of available symbols used for estimating the correlation matrices.

Note that

1− λ

1− λk+1

k∑
i=1

λk−i = 1.

For the stationary (time-invariant) channel, the expected value of (4.13)-(4.15) is the same

as the expected value of (4.10)-(4.12).

The following two subsections address (1) the relationship between the forgetting factor

and the channel coherence time, and (2) the challenge of unknown channel order at the

receiver.

Setting the Forgetting Factor

Reliable estimation of the correlation matrices in (4.13)-(4.15) requires appropriate selection

of the forgetting factor value. To achieve this, we first model the channel variations in time.

We assume that the time-varying channel follows a first-order Markov model given by

hnTs = h(n−1)Ts
+ vn, (4.16)
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where vn is a zero-mean Gaussian random vector with diagonal covariance matrix σ2I. The

optimum channel estimate based on the minimum mean square error (MMSE) criteria is

the one that minimizes the mean square error (MSE) of the estimated observation data

with the actual observation data, which gives [1]

ĥ
T
= E{zx∗} (E{xx∗})−1 .

Note that R̂rn
xx and r̂rnzx are the scaled estimate of the autocorrelation and cross correlation

matrices up to time rn. The MSE of the system using the estimated channel is given by

ϵ = E{zz∗} − E{zx∗}E{xx∗}−1E{xz∗} (4.17)

∝ R̂rn
zz [0]−

1

σ2
r̂rnTzx

(
R̂rn

xx

σ2
+

I

σ2h

)−1

r̂rnzx. (4.18)

The first exponential term of the metric derived in (4.9) contains the MSE of the channel

estimator. When the channel is perfectly known, the MSE is equal to the noise variance,

σ2. When the channel is both unknown and time-varying, additional MSE is introduced via

estimation and lag error through the auto- and cross- correlation expressions. The estima-

tion error depends on how much data is employed for approximating the auto-correlation

and cross-correlation matrices. The minimum value of the estimation error is equal to

the variance of the additive noise, and the estimation error decreases by increasing the

forgetting factor. The lag error reflects the excess MSE component that comes from the

non-stationarity of the channel. Lag error decreases by selecting a smaller forgetting factor.

Therefore, the forgetting factor must be chosen to achieve a balance between estimation

error and lag error. A similar result for excessive estimation error and lag error is derived for

the recursive least squares algorithm (RLS) tracking a time varying system in [38]. Using

the result of this work, the excessive MSE component due to estimation error and lag can
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be approximated by

ϵest ≈ 1− λ

1 + λ
Lσ2 (4.19)

ϵlag ≈ 1

2(1− λ)
Lσ2xσ

2
v , (4.20)

where σ2x is the variance of the transmitted signal, L denotes the cardinality of the channel

vector, and σ2v is the variance of the channel transition noise vector. The total excessive

MSE is then defined by

ϵtot ≈
1− λ

1 + λ
Lσ2 +

1

2(1− λ)
Lσ2xσ

2
v . (4.21)

The optimum λ can be derived by differentiating (4.21) with respect to λ, and the result is

given by

λopt =
1−

(
σx

2σv
2

4σ2

) 1
2

1 +
(
σx

2σv
2

4σ2

) 1
2

. (4.22)

The variance of the channel transition noise, σ2v , is the parameter that relates to the channel

coherence time of the time-variant Rayleigh fading channel. To find this relationship, from

(4.16) we have

v = (hnTs − h(n−1)Ts
)

and

σ2v = E{(hnTs − h(n−1)Ts
)(hnTs − h(n−1)Ts

)H}.
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Using the result of (4.3) and the fact that h = hc + jhs, we have

σ2v = J0(0)− J0(ωdTs) + J0(0)− J0(ωdTs) + J0(0)− J0(ωdTs) + J0(0)− J0(ωdTs)

= 4J0(0)− 4J0(ωdTs), (4.23)

where ωd is the maximum radian doppler frequency and the coherence time of the channel

is approximated by [23]

Tc ≈
2π

ωd
. (4.24)

Equations (4.22), (4.23), and (4.24) relate the coherence time of the channel to the optimum

forgetting factor.

Addressing Unknown Channel Length

In the derivation of the path metric for the stack algorithm, we have assumed that the

receiver knows the channel vector length. This is not true in general, so the receiver should

be capable of estimating the order of the channel. Estimating the channel length plays an

important role in blind equalization techniques since many blind equalization techniques

are sensitive to overestimating the channel length. Common approaches for estimating

channel order are through the well known Akaike information criterion (AIC) [39] and

minimum description length (MDL) [40] approaches. From these two approaches, MDL is

preferable since it avoids over-estimation of the channel length. Implementing the AIC or

MDL methods requires a good estimate of the covariance matrix of the observation sequence.

The stack algorithm, particularly in its early stages, does not have a good estimate of

this covariance matrix. The other limitation of implementing AIC or MDL is that their

performance degrades with the symbol correction introduced by the encoder.

To overcome uncertainty of the channel order, we calculate the path metric given in (4.9)

under different channel length assumptions. In communication systems, some statistical

channel information such as the power delay profile is often available. From the power
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delay profile, we can estimate the maximum channel duration (Lmax) for a communication

system. Given the range of possible channel lengths, we can average over all the possible

values of channel length to evaluate the metric. Through simulation experiments, we have

observed that the stack algorithm is sensitive to over-estimating the channel length, and

hence averaging over all possible values of L does not perform well. From this experiment,

we decided to use only the maximum metric that is generated from each possible value of

L as follows:

P (bn1 |zrn1 , Ck) (4.25)

= max{P (bn1 |ZrN
1 , C(k), l)} l = 1, .., Lmax,

In the next section, we evaluate the performance of the proposed algorithm and com-

pare it with some competitive approaches for joint sequence detection and blind channel

equalization.

4.1.4 Simulation Results

To evaluate the performance of the proposed algorithm, we have simulated the communi-

cation system model of Figure 4.1. The information bits are randomly generated and are

encoded using convolutional encoder shows in Figure 4.1 using a rate R = 1/2 convolutional

code with generator matrix G(x) = [x+1 x2+x+1]. We have simulated a time-varying

channel using the corrected statistics simulator of a Rayleigh fading channel as published

in [41]. Each tap of the channel vector is generated as follows:

hl(t) = hcl (t) + jhsl (t) (4.26)

hcl (t) =
2√
M

M∑
n=1

cos(ψn). cos(ωdt cosαn + ϕ) (4.27)

hsl (t) =
2√
M

M∑
n=1

sin(ψn). cos(ωdt cosαn + ϕ), (4.28)
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Figure 4.2: 5000 samples of a 3 taps time-varying channel with maximum Doppler shift
of fD = 40Hz, sampling frequency of Ts = 10µsec and carrier frequency of 900MHz.

with α = 2πn−π+θ
4M , where ϕ, θ and ψns are statistically independent random variables

following uniform distributions over [−π, π] [41]. The generated channel vector contains

three independent taps with maximum Doppler shift of fD = 40 Hz, sampling frequency of

Ts = 10 µsec and carrier frequency of 900 MHz. In the channel simulator model given by

(4.27), and (4.28), M is selected as 100. For each realization of the information block an

independent time varying channel is generated. The randomly generated channel taps are

weighted by [0.407 0.815 0.407] respectively, and the average channel energy is normalized

to unity. Figure 4.2 shows one sample of the generated 3-tap channel over the duration of

5000 transmitted symbols.

Figure 4.3 shows the performance of the proposed algorithm as a function of the forget-

ting factor calculated in (4.22); average SNR is held constant at 7 dB. The performance of

the Bayesian stack-detector is compared with that of the optimum MLSD with full channel

knowledge. The optimum forgetting factor based on the above channel parameters is calcu-

lated from (4.22) and is equal to λ = 0.99. The simulation shows that when the time-varying
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Figure 4.3: Algorithm performance v.s. forgetting factor. SNR is 7dB and the size of
information bit block (N) is 50.

channel taps are in good condition (e.g. not in a deep fade), the optimum forgetting factor

matches with its theoretical value. An example of the deep fade condition of the channel

in Figure 4.2 is the third channel tap between the symbol indices of 1200 to 1300. Figure

4.3 also shows the effect of the forgetting factor on the algorithm performance when the

channel taps may possibly be in deep fade condition. This plot shows that choosing a larger

forgetting factor improves the performance in deep fade conditions. This is because we

have selected the forgetting factor based on the average variance of the channel taps, σ2v ,

in (4.22). In deep fade conditions, (4.22) suggests choosing a larger forgetting factor due

to rapid variations of the channel taps, or larger σ2v . Choosing λ = 0.97 results in strong

performance for both good and deep fade channel conditions. We have fixed the forgetting

factor (λ) to 0.97 for all simulations presented here.

Figure 4.4 shows the simulated performance of the proposed algorithm (BMLSD) across

varying block lengths for channels not in a deep fade. The performance is compared to
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Figure 4.4: Simulated performance of the stack-based Bayesian MLSD algorithm with
different data block sizes N transmitted over ”good” channels.

that of the VA algorithm with full channel knowledge. The simulation shows that the

algorithm performs well with information block sizes as small as 50 bits. The performance

is not good for blocks of 10 bits as sufficient observations are not available to reliably

estimate the covariance and cross-covariance matrices in (4.13) and (4.14). As the block

size increases beyond the 50 bits, performance remains relatively constant due to the finite

memory imposed by the forgetting factor.

Figure 4.5 shows the simulated performance across information block length when the

channel may experience a deep fade. The performance is also shown for the case in which

the channel length is unknown. In this case the algorithm calculates the metric using

(4.25) where Lmax is assumed to be 5. We can see that our proposed algorithm performs

approximately 4 dB better relative to the LMS Viterbi algorithm [31]. It can also work on

block sizes of 20 bits, which makes it suitable for applications like packet transmission in

which the data block size may be very small.
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Figure 4.5: Simulated performance of the stack-based Bayesian MLSD (BMLSD) algo-
rithm with different block sizes where the channel may possibly be in deep fade condition.
The performance is evaluated for both known and unknown channel length information
and the results are compared with LMS-Viterbi algorithm.
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4.2 Modulation Classification of QAM Signals via Tree Search

In this section, we address the challenge of modulation classification in an unknown dis-

persive environment. A bank of M-algorithm tree search blocks, or deterministic particle

filters (DPF), is used to jointly estimate the communication channel and data sequence for

each possible modulation scheme, and the best path metrics from each DPF form a feature

vector. Maximum likelihood modulation classification is performed and makes use of the

statistics of the feature vector under different modulation schemes. Simulation results show

that the algorithm can successfully classify the observed modulation schemes with as few as

50 symbol observations, making the algorithm practical under time-varying conditions, as

well. Additionally, since the communication channel and the transmitted sequence are esti-

mated in the modulation classification process, the proposed algorithm is a natural choice

for joint channel estimation, data detection, and modulation classification.

4.2.1 Introduction

AMC has been studied for decades considering both analog and digital modulation, as

well as single and multi-carrier signals. AMC approaches are categorized in to two main

classes [42, 43] : likelihood-based (LB) approaches and feature-based (FB) approaches. In

likelihood-based approaches, likelihood functions of the received signal are evaluated based

on different possible modulation scheme assumptions, and the likelihood values are used for

classification. In feature-based approaches, one or several features of the unknown signal

are used in neural network (NN) or hidden Markov model (HMM) classifiers. Many of the

proposed approaches for modulation classification cannot be implemented for classification

of different QAM constellations. As an example, cyclostationary based approaches that

implement cyclic autocorrelation function (CAF), spectral correlation density (SCD), and

spectral correlation function (SCF) as features for classification, generate the same feature

values for different type of QAM signals [43].

Early work on QAM modulation classification can be found in [44] and [45]. Polydoros
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[44] considers modulation classification of binary phase shift keying (BPSK) and quadrature

phase shift keying (QPSK) signals in the presence of additive white Gaussian noise using

a square-law classifier and a phase-based classifier. Benvenuto [45] considers modulation

classification of voice band data signals in a time-dispersive environment using the constant

modulus algorithm (CMA) for channel equalization. The amplitude change at the output

of the blind equalizer is used for classification. A likelihood ratio test technique for classi-

fication of M symbol phase shift keying (MPSK) signals in additive white Gaussian noise

is proposed in [46]. Wei et al. [47, 48] propose a maximum likelihood approach for QAM

modulation classification in which unknown QAM signals are classified in additive white

Gaussian noise conditions. Higher order statistics for QAM modulation classification have

been implemented in [49,50] where in [49], fourth order cumulants are used for classification

of QAM signals in the presence of dispersive channels and in [50], eighth order cumulants

have been used for classification of high density QAM modulation schemes in AWGN condi-

tions. While HOS approaches are robust with respect to carrier phase, frequency offset, and

impulsive non-Gaussian noise, they require a large sequence of observations for higher or-

der statistics estimation. Statistical moments for QAM modulation classification have been

introduced in [51] and [52] where [51] uses power moments for modulation classification

in AWGN conditions. Cyclostationary based blind equalization techniques that implement

second order statistics of the signal for channel estimation are used in [52] to combat the

channel effects, and Zernike moments of the equalized signal are used for classification. The

algorithm proposed in [52] works well with a small number of signals, but it uses a SIMO

model that may not be applicable to all problems. Recently, statistical sampling and Gibbs

sampling have been implemented for QAM constellation classification under ISI conditions

[53], [54]. Because of the similarities between Bayesian tree search algorithms and Gibbs

sampling, we have compared our proposed approaches with a Gibbs sampling classifier [54].

Among all the approaches proposed for AMC, only a few are designed under ISI condi-

tions. Since wireless signals are often observed over frequency selective channels, we consider
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modulation classification in a dispersive environment. The most common approach to miti-

gating inter-symbol interference is through channel equalization. In this scenario, however,

the channel cannot be estimated using conventional channel estimation approaches since

there is no training sequence between the transmitter and the receiver. Blind equalization

techniques provide solutions for these scenarios, but most of the developed blind equalization

approaches require knowledge of the signal modulation scheme, which is not available. This

makes the AMC problem especially challenging, particularly for dense modulation schemes

such as 8QAM and 16QAM. We have considered the problem of joint classification, equal-

ization and sequence detection of a QAM signal with an unknown constellation scheme.

We use a tree search algorithm that searches through possible transmitted sequences from

a bank of possible modulation schemes. The feature required for classification is extracted

from the best path metric, and based on statistical properties of the feature under different

conditions, we classify the constellation scheme.

In what follows, we first explain the system model and our assumptions. We then explain

the proposed DPF algorithm that is used for joint channel equalization, data detection,

and modulation classification of the received signal. The feature extraction from the most

probable path is then discussed, and the analytical statistics of the features are evaluated.

Finally, classification of the extracted features using a likelihood ratio test is explained.

4.2.2 System Model

Figure 4.6 shows the block diagram of a typical communication system with a modulation

classifier in the presence of an unknown dispersive channel. The transmitted sequence is

observed at the output of an unknown dispersive channel with additive noise. The receiver

does not have information about the modulation type of the transmitted signal. The first

step is to remove the channel effects from the received signal. This must be accomplished

through blind equalization, since there is no training sequence for setting up the equalizer

parameters. The blind equalizer should be able to function without knowledge of the signal

modulation scheme. When the inter-symbol interference is compensated, data is transferred
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Figure 4.6: Block diagram of the overall system that shows the role of a modulation clas-
sifier in a typical receiver. The transmitted symbols are observed at the output of an un-
known dispersive channel with additive noise. The blind equalizer compensates channel
inter-symbol interference and the classifier identifies the modulation scheme. The demod-
ulator demodulates and extracts the transmitted information bits using the information
from the classifier units.

to the modulation classifier unit. The modulation classifier identifies the modulation scheme

of the received signal, which is necessary for detection of transmitted information bits.

We have implemented DPF as a technique for blind equalization. Since DPF needs

information about the modulation scheme of the transmitted sequence, a bank of DPF

blind equalizers is used, and each is tuned to a different possible modulation scheme. The

likelihoods of the data sequences detected by each DPF module form the feature vector

used for modulation classification.

Assuming that the channel is static or varying slowly with time and that the receiver

has perfectly estimated the carrier frequency and the symbol rate of the received signal,

we can employ a discrete-time baseband-equivalent model. Figure 4.7 shows the baseband

model of the channel, as well as the blind equalizer and classifier in the baseband-equivalent

model. The received signal for a block of N symbols z = [z1 z2 . . . zN ]T is given by

z = XHh+w, (4.29)

where h = [h0 h1 · · ·hL−1]
T is the length-L channel impulse response, X = [x1 x2 . . .xN ],

xn = [xn xn−1 · · ·xn−L+1]
T is formed from the transmitted symbols in the time interval
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[n−L+1, n], the superscript H denotes the Hermitian operator, and w = [w1 w2 . . . wN ]T

denotes additive noise. We make the following assumptions in our model and throughout

this section:

• The transmitted symbols have unit energy and are independent and identically dis-

tributed (i.i.d.), e.g.

E{xnx∗m} = δnm

for all n and m, where ∗ denotes the complex conjugate operator, and δnm is the

Kronecker delta.

• The additive noise samples wn are i.i.d. and follow a Gaussian distribution with mean

zero and known variance σ2w.

• The receiver has a reliable estimate of the channel length L.

• The constellation scheme of the transmitted signal, denoted by A and composed of

M symbols, belongs to a known space Ω of possible constellation schemes, e.g.

A ∈ Ω, where Ω = {A1, · · · ,AK}.

• The vector of channel coefficients h follows a multivariate complex Gaussian distri-

bution with unknown expected value h and covariance matrix C and unit energy

E{hHh} = 1. We use Nc( h ; h , C) to denote the probability density function

(PDF) of h.

In our model, the receiver classifies the modulation scheme of the transmitted signal

based on observation of a block of N transmitted symbols. Given the observed signal

vector z, the maximum likelihood estimate of the modulation scheme is given by

Â = max
i=1,..K

P (Ai|z), (4.30)
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Figure 4.7: The transmitted symbols at time n, denoted by xn, are observed at the out-
put of an unknown dispersive channel with additive noise. h denotes the unknown ISI
channel, wn denotes additive white Gaussian noise (AWGN) with variance σ2w, and zn
denotes the received signal. A bank of DPF-based blind equalizers, each assuming a dif-
ferent modulation scheme, is used to generate the elements fi, i = 1, . . . ,K, of the feature

vector F . The modulation scheme of the received signal is classified as Â based on the
values in F .

where Ai denotes the ith of K possible modulation schemes. Using Bayes’ Theorem, (4.30)

can be written as

P(Ai|z) =
p(z|Ai) P(Ai)

p(z)
(4.31)

=
P(Ai)

p(z)

MN
i∑

j=1

p(z|x(i,j)
1:N ,Ai) P(x

(i,j)
1:N |Ai),

where x
(i,j)
1:N = [x

(i,j)
1 x

(i,j)
2 . . . x

(i,j)
N ]T , j = 1, . . . ,MN

i , denotes all possible length-N symbol

sequences drawn from modulation scheme Ai. Assuming that all modulation schemes are

equally likely to be observed a priori and that all symbols within each modulation scheme

are equally likely to be transmitted, we have P(Ai) = 1/K, and P(x
(i,j)
1:N |Ai) = 1/MN

i .

Since p(z) is constant across all modulation schemes, it can be eliminated without loss of
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information, and (4.31) can be written as

P(Ai|z) ∝
MN

i∑
j=1

1

MN
i

p(z|x(i,j)
1:N ,Ai). (4.32)

Exact computation of (4.32) as a metric for classification requires computation of the

received sequence likelihood conditioned on each of theMN
i possible transmitted sequences,

which results in an impractically high level of computational complexity. In order to main-

tain a feasible complexity level in the proposed algorithm, we replace the sum over all

possible transmitted sequences with the maximum element in the summation:

mi = max
(j=1..MN

i )
p(z|x(i,j)

1:N ,Ai). (4.33)

While the DPF-based blind equalizer is not guaranteed to find the maximum in (4.33), the

value of mi is well approximated by the metric of the most likely path identified by the

DPF algorithm.

For blind equalization, the particles propagated by the DPF algorithm at time n are

given by the set {x(i,j)
1:n } for j = 1, . . . , P . The metric mi is approximated for each possible

modulation scheme, e.g. for i = 1, . . . ,K, using a bank of DPF modules, each of which

propagates a reduced number P of possible transmitted sequences, or particles, through

the detection process. The feature vector element fi, which represents the ith possible

modulation scheme for classification, is extracted from the particle that has the largest

metric in the ith DPF block.

4.2.3 Feature Extraction

When (4.33) is approximated using stochastic PF, the new sample x
(i)
n that is added to the

particle x
(i,j)
1:n−1 at each time update n is drawn stochastically from an importance function
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that is proportional to the conditional likelihood of zn [14]. When x
(i)
n comes from a discrete

sample space, however, it has been recommended that x
(i,j)
1:n−1 be updated deterministically

by appending all possible sample values and generating all possible updated particles [16].

In the proposed modulation classification scheme, we employ DPF to find the specific par-

ticle (transmitted sequence) for each possible modulation scheme Ai, i = 1, . . . ,K, that

maximizes the metric defined in (4.33). At each stage of the DPF algorithm, only a fixed

number P of particles, x
(i,j)
1:n , j = 1, . . . , P , are retained. Each time a new observation is

obtained, the existing particles (sequences) are extended to all possible children, and the

metrics of the extended paths are computed. The P particles with the largest metrics are

retained for further extension.

Under the assumption of a Gaussian channel, the update to the sequence likelihood

(metric) with observation zn can be written as

p(zn|x(i)n ,x
(i,j)
1:n−1, z1, z2, . . . , zn−1,Ai)

=

∫
p(zn|x(i)n ,x

(i,j)
1:n−1, z1, z2, . . . , zn−1,Ai,h)

× p(h|zn, x(i)n ,x
(i,j)
1:n−1, z1, z2, . . . , zn−1,Ai)dh

=

∫
Nc(zn; x̃

(i,j)H
n h, σ2w)×Nc(h; ĥ

(i,j)

n , C(i,j)
n )dh

= Nc(zn; x̃
(i,j)H
n ĥ

(i,j)

n , σ2w + x̃(i,j)H
n C(i,j)

n x̃(i,j)
n ), (4.34)

where x̃
(i,j)
n = [x

(i)
n x

(i,j)
n−1 · · ·x(i,j)n−L+1]

T denotes the new children generated by appending x
(i)
n

to the jth previously existing particle, andNc(µ, σ
2) denotes the probability density function

of a complex Gaussian random variable with mean µ and variance σ2. The estimated mean

and covariance matrix of the channel, denoted by ĥ
(i,j)

n and C
(i,j)
n respectively, are computed
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using a one-step prediction Kalman filter [1]:

ĥ
(i,j)

n = ĥ
(i,j)

n−1 +
C

(i,j)
n−1 x̃

(i,j)
n (zn − x̃

(i,j)H
n ĥ

(i,j)

n−1)

x̃
(i,j)H
n C

(i,j)
n−1 x̃

(i,j)
n + σ2w

(4.35)

C(i,j)
n = C

(i,j)
n−1 −

C
(i,j)
n−1 x̃

(i,j)
n x̃

(i,j)H
n C

(i,j)
n−1

x̃
(i,j)H
n C

(i,j)
n−1 x̃

(i,j)
n + σ2w

. (4.36)

Using (4.34), the updated metric at time n, denoted by m
(i,j)
n for a new generated particle

x
(i,j)
1:n , is given by

m(i,j)
n = p(zn|x(i,j)

1:n , z1, . . . , zn,Ai)×m
(i,j)
n−1. (4.37)

Once the DPF modules have reached n = N and identified the most likely full-length

sequence for each possible modulation scheme, we must extract from the results of each

DPF module a feature that allows us to distinguish among the possible modulation schemes.

We have selected as our feature the squared Euclidean distance between the true received

sequence vector and the expected noise-free received sequence vector associated with the

most likely full-length particle:

fi = ∥z−X(i)H ĥ
(i,j)

N ∥2 i = 1, . . . ,K, (4.38)

whereX(i) = [x
(i)
1 x

(i)
2 . . . x

(i)
N ] is the estimated signal matrix, and x

(i)
n = [x

(i)
n x

(i)
n−1 . . . x

(i)
n−L+1]

T

is the estimated signal vector The feature vector F = [f1 f2 · · · fK ] is given as input to the

maximum likelihood classifier. Table 4.1 summarizes the proposed algorithm used in each

of the K DPF modules.
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Table 4.1: Feature Generation as Performed in the ith DPF Module

- for n = 1, . . . , N ,
- for j = 1, . . . , P ,
- for l = 1, . . . ,Mi,

- extend x
(i,j)
1:n−1 with the lth symbol of

constellation Ai

- update the channel estimate using (4.35) and (4.36)
- update the particle (sequence) metric using (4.37)

- retain the P particles with the largest metrics
- extract the feature element fi from the metric of the most
probable particle using (4.38).

4.2.4 Classification

Following generation of the feature vector, modulation classification is performed based on

the maximum likelihood estimate of the feature vector:

Â = argmax
Ak

p(F |Ak) k = 1, . . . ,K. (4.39)

Using (4.39) requires approximation of the conditional pdf p(F |Ak). One approximation

method is to train the classifier and empirically estimate the conditional pdf based on the

training results. This approach has some disadvantages in practice, however, since training

is not available in many scenarios (surveillance and cognitive radio, for example). Addition-

ally, a change in any parameter, such as the set of possible modulation schemes, requires

that the classifier be retrained. To avoid these disadvantages, we develop an analytical ap-

proximation to the conditional pdf in (4.39). Each element of the vector F is generated by

a separate DPF block, as shown in Figure 4.7. Assuming independence among the elements

of F , we have

p(F |Ak) =

K∏
i=1

p(fi|Ak). (4.40)
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The problem is thus simplified to approximating p(fi|Ak) for i = 1, . . . ,K and k = 1, . . . ,K.

The model used to derive the statistical properties of the feature vector elements fi is

shown in Figure 4.8. The transmitted symbols are from modulation scheme Ak, and the

DPF module generates data sequences (particles) from modulation scheme Ai. Note that k

is not necessarily equal to i. The DPF identifies the most likely sequence and the associated

MMSE channel estimate. For our analysis, we assume that the DPF has found the best

achievable MMSE channel estimate, which is true when infinite observations are available

and all possible particles are propagated. This assumption is reasonable in practical scenar-

ios when the observation window and number of propagated particles are sufficiently large.

Under these conditions, the MMSE channel estimate ĥ
(i)

and the associated mean square

error (MSE) generated by the most likely particle (transmitted sequence) under assumed

constellation Ai are given by [1]

ĥ
(i)

= Σ−1
x(i)Σx(i)xh ≈ ĥ

(i)

N (4.41)

and

MMSE = hH (Σx − Σx(i)xΣ
−1
x(i)Σxx(i))h+Nσ2w, (4.42)

where Σx denotes the auto correlation matrix of the matrix X and Σxx(i) denotes the cross

correlation matrix of the matrices X and X(i), defined as

Σx = E{XXH} (4.43)

Σxx(i) = E{XX(i)H}. (4.44)

Assuming the average energy of each signal constellation is equal to 1 and that the
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n ∈ Ai

-

�
�

�
�>

en

Figure 4.8: MMSE channel estimation model. The particles from Ai are filtered by the
adaptive channel estimator, and the result is compared to the observed signal. Mean
square error is used to update the channel estimate.

elements of the true transmitted sequence and the estimated sequence are i.i.d. such that

E{xnx∗m} = δ[n−m] (4.45)

E{x(i)n x(i)∗m } = δ[n−m] (4.46)

E{x(i)n x∗m} = ρ
(i)
k δ[n−m], (4.47)

we have

Σx = NIL and (4.48)

Σx(i)xΣ
−1
x(i)Σxx(i) = ρ

(i)
k NIL, (4.49)

where IL denotes the identity matrix (L × L), and we define ρ
(i)
k as the normalized cross

correlation between the true symbols xn from Ak and those estimated from Ai. With the

additional assumption of unit channel energy, the MMSE calculated in (4.42) simplifies to

MMSE = N(1− ρ
(i)
k + σ2w).
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As shown in (4.34), p(zn|x(i)1:n, z1, z2, . . . , zn−1,Ai) has a Gaussian distribution. Since the

channel estimate is generated based on the same conditioning, the error term zn−x
(i)T
n ĥ

(i)

N

that appears in (4.38) also follows a Gaussian distribution. The error term at time n has

mean zero and variance equal to a scaled version of the MMSE, e.g.

p(zn − x(i)H
n ĥ

(i)

N |x(i)1:n, z1, z2, . . . , zn−1,Ai)

= Nc(zn − x(i)H
n ĥ

(i)

N ; 0 , 1− ρ
(i)
k + σ2w).

Given the form of the feature fi in (4.38), we can conclude that the normalized feature

fi/(1− ρ
(i)
k + σ2w) has a Chi-square distribution with 2N degrees of freedom. Hence, (4.40)

is the product of K Chi-square PDFs.

The only remaining unknown parameter is ρ
(i)
k , which depends upon the relative ge-

ometries of the assumed modulation scheme and the true modulation scheme. We consider

three possible cases, which are detailed below.

Case I: When the assumed modulation scheme Ai is equal to the true modulation scheme

Ak, we can assume (under sufficiently large P and with sufficient window size) that the

best particle generated by the PDF is equal to the true transmitted sequence up to a phase

ambiguity, e.g.

X(i) = ejθX where X(i) ∈ Ai , X ∈ Ak , and i = k. (4.50)

For example, suppose that the constellation scheme (A) of the transmitted sequence is

4QAM with symbols defined by s1 = (1 + j)/
√
2, s2 = (1− j)/

√
2, s3 = (−1− j)/

√
2 and

s4 = (−1 + j)/
√
2. If the transmitted sequence is {s3 s1 s2 s3 s2 s4}, then the following
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particles may become the particles with the highest metric:

{s3 s1 s2 s3 s2 s4} for θ = 0

{s1 s3 s4 s1 s4 s2} for θ = π

{s4 s2 s3 s4 s3 s1} for θ = π/2

{s2 s4 s1 s2 s1 s3} for θ = −π/2.

We see that for all the above particles, we have

Σx(i)x = N × IL×L and Σ−1
x(i) = Σ−1

x =
1

N
× IL×L.

The channel estimated for these particles using (4.41) is then given by

ĥ
(i)

= (ejθ)−1h,

and feature fi in (4.38) has its minimum possible value as

∥z−X(i)H ĥ
(i)

N ∥2 = ∥z− (ejθ)−1XHh(ejθ)∥2

= ∥w∥2.

Additionally, by the definition of ρ
(i)
k (4.47), we have ρ

(i)
k = ρ

(k)
i = 1 for i = k.

Case II: When the assumed modulation scheme is related to the true modulation scheme

in a manner such that, for every sequence matrix X ∈ Ak, there exists a particle matrix

X(i) ∈ Ai that satisfies X(i) = αejθX, then we can assume that the best particle is given
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by X(i) = αejθX. In this case

Σx(i)x = αejθN × IL×L and Σ−1
x(i) =

1

α2N
× IL×L.

The associated channel estimate (4.41) is then given by

ĥ
(i)

= (αe−jθ)−1h

and the feature fi in (4.38) is given by

∥z−X(i)H ĥ
(i)

N ∥2 = ∥z− (ejθ)−1XHh(ejθ)∥2

= ∥w∥2.

In this case, the true symbol constellation is equal to a scaled and rotated version

of a subset of the assumed symbol constellation. Hence, the size of the assumed signal

constellation must be at least as large as the size of the true constellation. For example,

BPSK as the true modulation scheme with symbols of {+1,−1} and 4QAM as the assumed

modulation scheme with symbols of {(1 + j)/
√
2, (1 − j)/

√
2, (−1 − j)/

√
2, (−1 + j)/

√
2}

would fall within this case. In this case, for α =
√
2 and each value of θ in {0, π, π/2, π/2}

there are particles from the 4QAMmodulation scheme that minimize the value of the feature

to its global minimum ∥w∥2 .

Note that, in the case that DPF finds the global minimum, we have ρ
(i)
k = 1. However,

ρ
(i)
k is not necessarily equal to ρ

(k)
i , since every symbol in the larger assumed constellation

scheme cannot be written as a scaled and rotated version of a symbol in the smaller true

constellation scheme.
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Case III: When the symbols of the true modulation scheme cannot be written as a scaled

and rotated version of symbols in the assumed modulation scheme Ai, the DPF module

searches for a sequence of symbols within the assumed modulation scheme that is highly

correlated with the transmitted sequence. For any symbol in Ak, the most highly correlated

symbol in Ai is the one that is closest in Euclidean distance. For example, if the true symbol

constellation is from 4QAM (A2) and the assumed constellation is BPSK (A1), then the

BPSK symbol {+1} will be most highly correlated with 4QAM symbols whose real part is

positive. In this case we only have four possible cases for transmitted symbol and estimated

symbol as follows

• transmitted symbol is +1 and the estimated symbol is (1 + j)/
√
2,

• transmitted symbol is +1 and the estimated symbol is (1− j)/
√
2,

• transmitted symbol is −1 and the estimated symbol is (−1 + j)/
√
2 and

• transmitted symbol is −1 and the estimated symbol is (−1− j))/
√
2.

Note that each of the above cases may happen with the same prior probability of 1/4. The

correlation coefficient ρ
(i)
k is simply calculated as the correlation between the symbols in

the true constellation Ak and the nearest symbols in Ai. Based on this assumption, we can

calculate ρ
(1)
2 as follows:

ρ
(1)
2 = 1/4

[
1× (1 + j)∗/

√
2 + 1× (1− j)∗/

√
2− 1× (−1 + j)∗/

√
2− 1× (−1− j)∗/

√
2
]

= 1/
√
2.

When the appropriate case has been determined and ρ
(i)
k calculated accordingly, the

probability of any realization of the feature vector can be computed as given in (4.40), and

the modulation scheme can be estimated using (4.39).
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Figure 4.9: Modulation schemes used for classification: BPSK (’+’), 4QAM (’∗’) and
16QAM (’o’).

4.2.5 Simulation Results and Discussion

The proposed algorithm has been simulated for three modulation schemes: BPSK, 4QAM

and 16QAM, which are indexed by A1, A2 and A3, respectively, and are depicted in Figure

4.9. The correlation coefficients ρ
(i)
j for the chosen modulation schemes are given by ρ

(1)
2 =

1/
√
2, ρ

(1)
3 = 2/

√
10, and ρ

(2)
3 = 2/

√
5; ρ

(i)
j = 1 for all other i, j pairs. Five hundred Monte

Carlo simulation runs were averaged to determine the probability of correct classification at

each SNR value considered. For each run, independent transmitted symbols, channel taps,

and additive noise are generated.

Figure 4.10 displays the probability of correct classification vs. signal to noise ratio

(SNR) for blocks of 50, 100 and 150 symbol observations. For each run, an unknown 3-tap

channel is drawn from a zero-mean multivariate Gaussian distribution, and the channel

energy is normalized to 1. The number of particles retained in each DPF module is P = 64.

For comparison, we have also simulated Gibbs algorithm for constellation classification
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Figure 4.10: Probability of correct classification vs. SNR for the DPF and GACC modu-
lation classification schemes.

(GACC) [54]. The burn-in period and total number of iterations for GACC are set to

100 and 300 respectively, and 100 observation symbols are used for classification; the noise

variance is assumed known. Simulation results reveal that, as SNR increases, the DPF-based

classifier significantly outperforms the GACC method and can achieve perfect classification

with observation windows as small as 50 symbols.

Figure 4.11 shows the effect of the number of particles retained by each DPF module

on classification capabilities. The observation window is fixed at 100 symbols, and P varies

from 16 to 64. The simulation results indicate that reducing the number of retained particles

to as small as 16 has only a small effect on the performance of the classifier. Figure 4.12

shows the performance of the algorithm as a function of channel length. The observation

window is fixed at 100 symbols, and P is fixed at 64. Probability of correct classification

is presented vs. SNR for 2, 3 and 5-tap channels. While performance is nearly equal for

2 and 3-tap channels, degradation is apparent when the channel length grows to 5. We

hypothesize that performance can be improved through a suitable increase in P and in the
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Figure 4.11: Probability of correct classification vs. SNR for varying P , number of re-
tained particles.

length of the observation window.
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Figure 4.12: Probability of correct classification vs. SNR for varying channel length L.
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Chapter 5: Target Tracking via Tree Search

In Chapter 2, we introduced tree search techniques as a general solution to detection and

estimation problems modeled using a DSSM. In this chapter, we extend the application of

tree search techniques to target tracking. In a target tracking problem, we seek to estimate

target parameters of interest such as location and speed from noisy observations. Using

DSSM, variations of the target parameters in time are modeled by the state process model

and sensor observations are modeled by the observation model. A target track is defined

as a sequence of successive target states, starting from the initially estimated target state

and ending at the current observation time. By defining the nodes of a search tree as target

states, a target track is modeled by a path through the search tree, starting from the initial

node (root) and ending at a leaf. Therefore, tree search techniques can be applied to this

kind of problem, as well. In a target tracking problem, the state vector often contains

more elements than that of a decoding problem in communication systems and makes the

complexity of the tree search intractable if partial navigation techniques are not applied.

Additionally, real-time estimation of the target state is necessary in a wide range of tracking

applications including radar and sonar. The stack-based tree search algorithm, discussed

in Section 3.2, substantially reduces the tree search complexity and is a good candidate for

target tracking applications. In this chapter, we develop a stack-based tree search technique

for target tracking applications. To develop a tree search algorithm, we need to model the

problem using DSSM, define a search tree structure, and develop a metric associated to

each path.

A background on the target tracking problem and the existing techniques for tracking is

provided in Section 5.1. In Section 5.2, we describe the stack-based tree search approach for

tracking a single target in clutter. We propose and evaluate an embedded track validation

technique in Section 5.3, and we evaluate the performance of the tree-search based tracking

55



algorithm using the SEABAR’07 dataset in Section 5.4. Extension of the tree-search tracker

to follow multiple targets is presented in Section 5.5, and an analysis of the path metric

behavior in the stack-based tracker is presented in Section 5.6.

5.1 Existing Approaches to Target Tracking

Tracking moving targets based on noisy sensor observations is studied as an estimation

problem and modeled using a dynamic state space model. Target tracking problems appear

in many scientific and engineering applications including sonar, radar, biomedical imaging,

computer vision, etc. In an active sonar/radar system, a transmitter sends signals, or pings,

in the surveillance region, and receivers look for the return signals. The measured signals,

known as contacts, are reflected either from targets or from other undesired sources. In

the latter case, the measured signal is known as a false alarm or clutter. The existence of

clutter adds uncertainty in assigning the observations to the targets, and data association

techniques have been developed to address this problem.

A review of the existing approaches to a general detection and estimation problem

modeled using DSSM is discussed in Chapter 2. In this section, we review the existing

techniques to this problem which also incorporate data association. We first review existing

approaches to data association that can be combined with the general estimation approaches

discussed in Chapter 2. Then, we discuss more advanced techniques in the context of a target

tracking problem. A comprehensive review of multiple target tracking approaches can be

found in [55,56].

The early work on target tracking that addresses the challenge of data association in

a single target tracking problem was introduced in [57]. The approach described in [57]

splits a track whenever more than one measurement is present. The likelihood function for

each track is evaluated, and the tracks with likelihoods less than a predefined threshold are

deleted. The nearest neighbor Kalman filter (NNKF) approach was introduced by Singer,

Sea and Stein [58–60] and augments the traditional Kalman filter to address data association

uncertainty. In this approach, among all the measurements of each scan, the one that has

56



the smallest statistical distance to the current estimated target location is considered as

a true target measurement, and the others are considered as clutter. The global nearest

neighbor algorithm has been suggested in [61] for tracking multiple targets as a general form

of the NNKF algorithm. In this approach, each measurement is associated to its nearest

track, and each track is updated with at most one associated measurement (the nearest

one) using Kalman filtering.

When a single target is present, the optimal Bayesian approach for data association

considers all possible association hypotheses from the target initiation time index to the

current time and updates the target track using sum of the all possible track updates

weighted by evaluated association probabilities [62]. Since the optimal Bayesian method is

computationally intractable, suboptimal approaches have been suggested. The suboptimal

N-scan-back algorithm [62] considers all association hypotheses from N previous scans up

to the current scan. The probabilistic data association filter (PDAF) introduced in [63],

considers only the measurements of the current scan and can be considered as an N-scan-

back algorithm with N = 0. In this approach, the target track is updated using the weighted

sum of all possible track updates from each data association hypotheses of the current scan.

The joint probabilistic data association filter (JPDAF) [64] is an extension to the PDAF

algorithm for multiple target tracking. In this approach, all possible association hypotheses

at the current time are evaluated for all targets, and the tracks are updated by a weighted

sum of all possible track updates from the data association hypotheses.

Other data association algorithms implement either maximum a posteriori (MAP) or

maximum likelihood (ML) approaches to find the best sequence of measurements that can

be associated to each target. The Viterbi algorithm [65] and the expectation maximization

(EM) algorithm [66] have been widely used for this purpose. Multi-hypothesis tracking

(MHT) [67] is a MAP estimator in which at each scan, instead of combining the hypotheses

like JPDAF or selecting the best hypothesis like nearest neighbor (NN), the algorithm

makes a tree of possible association hypotheses and decides based on the future observations

through a MAP estimator.
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All of the data association approaches discussed above are combined with the Kalman

filtering family of approaches to estimate the target track. Kalman filtering is optimum

for systems with a linear state space model and additive Gaussian noise. In the case of

nonlinearity, the Extended Kalman filter (EKF) and similar approaches are implemented

with one of the above data association techniques. In severely nonlinear state space models

or in the presence of non-Gaussian noise distribution functions, however, the EKF approach

does not perform well. The unscented Kalman filter, particle filtering, Cubature Kalman

filter, etc., discussed in Chapter 2, are some recent alternative approaches in the family of

Kalman filtering.

Sequential Monte Carlo approaches [68] have been introduced in multiple target tracking

problems for both track estimation and data association. In the approach presented in [68],

Gibbs sampling is implemented to solve the data association problem, and particle filtering

is used for target track estimation. The algorithm is developed for the cases of single target,

multiple target, single receiver, and multiple receiver systems for both fixed and variable

number of targets [68,69].

Recently, the probability hypothesis density (PHD) filter [70] has been developed for

multiple target tracking. The PHD filter uses a Bayesian approach and finite-set statistics

(FISST) for joint estimation of the time-varying number of targets and the target states

from noisy measurements. The PHD filter is a sub-optimum approach based on optimal

multi-target Bayesian filter that implements random finite set (RFS) theory. While the

optimal Bayesian approach is computationally intractable, the PHD approach remains com-

putationally feasible by propagating only a first order multi-target moment, defined as the

probability hypothesis density, in time. Implementation of the PHD filter using a sequential

Monte Carlo approach is also suggested in [71]. The GM-PHD filter, a closed form solution

to the general PHD filter for multi-target linear state space models with additive Gaussian

noise, has been introduced in [72] and estimates jointly the target states and the number

of targets. Although GM-PHD dramatically reduces the implementation complexity of the

general PHD filter, it is optimum only for linear Gaussian system state space models.
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In the following section, we propose a modification of the stack-based tree search al-

gorithm, discussed in Chapter 2, for tracking a single target in clutter. This approach

can be classified as a sub-optimum Bayesian approach for both track estimation and data

association and can be implemented for linear/non-linear state space models as well as

Gaussian/non-Gaussian additive noise.

5.2 Tracking a Single Target in Clutter

In this section, we develop a stack based tree search algorithm for tracking a single target in

the presence of clutter. In Section 5.2.1 we first talk about the system model under which we

consider the single target tracking problem. The proposed algorithm for target tracking via

stack-based tree search including metric calculation, discretization, and data association, is

described in Sections 5.2.2 - 5.2.5. Simulation models and results are presented in Section

5.2.6.

5.2.1 System Model

The goal of target tracking is to adaptively estimate target parameters of interest based

on relevant noisy measurements. We use a conventional state-space model in which the

relevant target parameters form the state space vector denoted by x. Common parameters

to be tracked include location in space, target speed, target type, etc. We assume that the

target motion follows a first order Markov model given by

xk = F(xk−1) +Gkvk, (5.1)

where vk denotes the target state transition noise vector with known probability distribution

function pv(v), and F(.) is a function that governs the deterministic state space transition

in time. The (possibly nonlinear) function F(.) and matrix Gk are assumed to be known.

The index k denotes the arrival of the kth set of contact data, or the kth scan. Scans are

assumed to be separated by ∆t time units, and hence the time at which the kth scan is
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received is given by k∆t.

The tracker is modeled as a single sensor with known location in the region of interest.

At each time index k, the tracker may observe the target state through the observation

model given by

zk = H(xk) +wk, (5.2)

where zk denotes the target observation vector at scan index k, andwk denotes the measure-

ment noise vector with known probability distribution function pw(w), which is assumed to

be independent of the state transition noise vk. The function H(.), defines the transforma-

tion from the target state to the observed quantity.

At each scan, the observation matrix Zk = [z1k z2k · · · zmk
k ] is formed, where zjk,

j = 1, . . . ,mk, denotes the jth measurement (or contact) of the scan at time index k. The

number of contacts in the kth scan is denoted bymk. We assume that at most one contact is

generated by the target and that the target contact is present in the observation matrix with

probability of PD. Hence, each set of contacts may include only one noisy observation of the

target position, and all other contacts in the scan are caused by clutter. Depending upon

the context in which the tracker is operating, sources of clutter may include, for example,

trees, buildings, ocean waves, fish, and the sea floor. Contacts generated by clutter are

assumed to be uniformly distributed in the surveillance region with volume of V . The

number of clutter that observed in the surveillance region in the kth scan follows a Poisson

distribution with expected value of ζV , where ζ is the average number of clutter per unit

volume (clutter density). It is assumed that the initial state space estimate of the target

(x0) is available for the tracker.

We frame target tracking in clutter as a tree-search problem in which we aim to find

the most likely path through the tree. The search tree is constructed such that each path

represents a possible sequence of target states, and the stack algorithm navigates the tree

to identify likely paths, or equivalently likely target tracks.
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5.2.2 Stack-Based Tree Search Approach to Tracking

The stack-based tree search approach to tracking approximates the Bayesian inference track-

ing approach by approximating the posterior probability density function of a sequence of

the target states:

P (x1,x2, · · · ,xk|Z1,Z2, · · · ,Zk). (5.3)

The stack-based tracker navigates the tree of possible target states by extending only the

most likely path (target state sequence) at each iteration. In this manner, the tracker ex-

plores only highly likely state sequences (or equivalently computes the posterior distribution

only at likely state values) and hence provides reduced complexity relative to full Bayesian

inference. The stack algorithm maintains a list, or stack, of paths through the tree that have

been explored thus far. At each iteration of the algorithm, the path (target state sequence)

with the largest metric (likelihood) is extended to all possible children, each representing

a possible state at the next time index. The extended paths, along with their metrics, are

then added to the stack.

As discussed further in Section 5.2.5, application of the stack-based tracker always re-

quires discretization of the state space to replace the continuous posterior distribution on

the state by a probability mass function (PMF). Discretization plays a significant role in

the complexity and performance of tree search tracking since the dimension of the search

tree significantly changes with changing the number of the discretized states. In Section

5.2.5, we propose a sampling based discretization technique to reduce the number of discrete

states for tree search tracking.

5.2.3 Metric Calculation

In a tree search target tracking technique, possible target tracks are modeled by the paths of

the search tree. A metric is associated to each path and provides a measure for comparison

among the paths. To reduce the complexity, the stack algorithm avoids to explore all the
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existing paths and explores the path with largest metric until the largest metric path is

extended up to current scan index. Therefore, the existing paths within the search tree are

extended up to different scan indexes. We denote the lth path of the search tree, extended up

to scan index kl, by χ
(l)
kl

= {x(l)
1 ,x

(l)
2 , · · · ,x

(l)
kl
}. The posterior probability density function

of each target state given its previous state and the measured contacts is given by

p(x
(l)
kl
|x(l)

kl−1,Zkl) =
p(Zkl |x

(l)
kl
,x

(l)
kl−1)p(x

(l)
kl
|x(l)

kl−1)

p(Zkl)
(5.4)

∝ p(Zkl |x
(l)
kl
)p(x

(l)
kl
|x(l)

kl−1).

Evaluation of the term p(Zkl) requires using the total probability theorem that expands

over all possible target states xkl . In a surveillance region with high number of clutter

contacts and few targets, the clutter generated contacts have more contribution in p(Zkl)

than the target generated contacts. Assuming that the clutter density is not changing by

time index kl, p(Zkl) is assumed to be constant over different time indexes and is ignored

in the metric calculation. The state transition probability p(x
(l)
kl
|x(l)

kl−1) is calculated from

target motion model (5.1)

p(x
(l)
kl
|x(l)

kl−1) = pv(G
+(xkl −F(xkl−1))), (5.5)

where the superscript + denotes the Moore Penrose pseudo-inverse [73] operation. Calcula-

tion of the likelihood function p(Zkl |xkl) in (5.4) requires incorporating a data association

technique, since the target generated contact is not identified from the clutter generated

contacts in the observation matrix Zkl . We discuss the proposed data association technique

in Section 5.2.4.

The stack algorithm generates paths that are explored to different scan indexes, and

the path metric must provide a fair comparison among these paths. While the original
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stack algorithm incorporates a bias term in the path metric to allow for fair comparison

across paths of differing lengths, the structure of the tracking problem does not facilitate

computation of such a bias term. Hence, instead of calculating the path metric over the

full path, we define the path metric using a time window of the state transition posterior

probabilities in (5.4). If we assume that the statistics of the tracking problem such as

probability density function of the clutter density, measurement noise, and number of targets

are not changing with time, then the suggested metric can be considered as a fair metric

since the same window length is used for all paths.

In a target tracking application, the estimation accuracy of the current target state

is often of more interest than that of states have been visited in the past. Additionally,

calculating the metric in the logarithmic domain converts the products into the summations

and avoids working with very small values. Therefore, we consider the posterior probability

density function of each estimated target state (5.4) in the logarithmic domain, and we

implement an exponentially decaying window with parameter λ to discount the weight of

the states that are visited in the past. The path metric of the lth path is given by

b(l) =
1− λ

1− λkl−1
×

kl∑
i=2

λkl−i log
[
p(Zi|x(l)

i )p(x
(l)
i |x(l)

i−1)
]
, (5.6)

where a normalizing factor 1−λ
1−λkl−1 is incorporated to magnify the path metrics whose length

is smaller than the memory imposed by the exponential windowing. Note that in (5.6), all

the paths are generated from the same initial state x1 in the tree; hence, they have equal

values of p(x1), which can be deleted from the path metric.

5.2.4 Data Association

In general, the observation matrix includes contacts from target(s) and clutter, and hence

calculation of the likelihood function p(Zi|x(l)
i ) in (5.4) requires addressing a data association

technique. Using an approach similar to the probabilistic data association filter [62], we
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define the data association event θjk such that at scan index k, the jth contact zjk is generated

by the target and all other contacts are generated by clutter. The special case in which the

target is not detected (e.g. all measurements are generated by clutter) is denoted by θ0k.

Using the data association hypotheses, the likelihood function is calculated from the total

probability theorem

p(Zi|x(l)
i ) =

mi∑
j=0

p(Zi|x(l)
i , θ

j
i )p(θ

j
i |x

(l)
i ) (5.7)

=

mi∑
j=0

p(θji |x
(l)
i )

mi∏
k=1

p(zki |x
(l)
i , θ

j
i ),

where the second line is derived based on the assumption that clutter generated contacts

are independent from target contacts and other clutter generated contacts. The probability

distribution function of a target generated contact is calculated from the measurement

model and is equal to the probability distribution function of the measurement noise. The

clutter generated contacts are assumed to be uniformly distributed in the surveillance region

with volume V . Therefore, the likelihood function for each contact p(zki |x
(l)
i , θ

j
i ) is given by

p(zki |x
(l)
i , θ

j
i ) =

 pw(z
j
i −H(x

(l)
i )) for k = j (a target generated contact)

1
V for k ̸= j (clutter contact)

. (5.8)

Substituting (5.8) into (5.7), we have

p(Zi|x(l)
i ) =

1

V mi
p(θ0i |x

(l)
i ) +

mi∑
j=1

1

V mi−1
pw(z

j
i −H(x

(l)
i ))p(θji |x

(l)
i ). (5.9)

In modeling of the tracking problem, the number of clutter generated contacts in the surveil-

lance region with volume V is a Poisson distributed random variable with probability density
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function µF (.) and parameter ζV , where ζ is the average number of clutter contacts per

unit volume. Therefore, the prior probability of each data association event θji is given by

p(θji |x
(l)
i ) =

 PDµF (mi − 1) for j ̸= 0

(1− PD)µ(mi) for j = 0

=

 PD
e−ζV (ζV )mi−1

(mi−1)! for j ̸= 0

(1− PD)
e−ζV (ζV )mi

(mi)!
for j = 0

. (5.10)

In sonar applications, a contact is detected at the receiver when the amplitude of the

received signal is greater than a predefined threshold level. In many real applications, the

amplitude of a target-generated contact has a different statistical distribution than that of a

clutter-generated contact. We denote the probability distribution function of the amplitude

of a clutter-generated contact by p0(a) and that of a target-generated contact by p1(a).

Using the amplitude information, the likelihood function of each contact (5.8) is updated

as follows:

p(zki |x
(l)
i , θ

j
i ) =

 pw(z
j
i −H(x

(l)
i ))p1(a) for k = j

1
V p0(a) for k ̸= j

. (5.11)

Substituting (5.11) into (5.7), the likelihood function is given by

p(Zi|x(l)
i ) =

mi∏
k=1

p0(a
k
i )×

[
1

V mi
p(β0i |x

(l)
i ) (5.12)

+

mi∑
j=1

1

V mi−1

p1(a
j
i )

p0(a
j
i )
pw(z

j
i −H(x

(l)
i ))p(ηji |x

(l)
i )

 .

Using the amplitude information in the path metric calculations improves the performance
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if the distribution functions p0(a), and p1(a) are separated from each other. In this case, the

contact amplitude provides information about the class in which the contact falls. If this

condition is met, the likelihood of a target generated contact is magnified. This increases

the path metric of the true target path and decreases the possibility of exploring non-target

paths in the search tree.

5.2.5 Dynamic Discretization Technique

In general, the estimate of the state vector from the observation sequence using the dynamic

state space model (5.43) may take any value in the system state space. The Kalman filtering

family of approaches estimates the state vector x on the continuous state space. Techniques

such as particle filtering and the unscented Kalman filtering use a discrete set of particles

to approximate the continuous density of the state space. Other techniques, such as point

mass approaches, discretize the state space and estimate the state vector x from among a

discrete set of points. The stack-based tree search algorithm requires the state space to be

discretized to a finite set of possible states that can be mapped onto the branches of the

search tree. In digital synthesis of non-linear filters [17] and point-mass techniques [18],

several discretization techniques have been employed. All of these techniques discretize

the whole state space and evaluate the posterior probability density function over the entire

space. The stack algorithm, however, partially explores the state space and in each iteration,

only needs to discretize the observable area, e.g. the area (within the state space) to which

the target could move from its current state with sufficiently high probability. This is the

key advantage of the stack algorithm in reducing computational complexity relative to point

mass techniques.

One of the elements to be considered in discretization is how fine/coarse the quantization

should be. Increasing the number of discrete points reduces the discretization error of the

algorithm by providing finer discretization grids of the system state space but increases

the computational complexity of the stack algorithm. The stack algorithm discretizes the

observable area from the currently estimated target state and the number of discretization
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levels defines the number of children at each node in the search tree. In this section, we

propose a dynamic discretization technique to discretize the observable region in the vicinity

of the target estimated path. We first divide the observable area into cells and evaluate

the boundaries of each cell. Then, we propose a sampling algorithm for selecting discrete

points that represent discretized cells. The proposed algorithm reduces the discretization

error without increasing the number of discrete levels in the observable area.

Generating Discrete Cells

In the proposed tree search algorithm for tracking, instead of discretizing the entire surveil-

lance area, only the observable area from each node of the tree is discretized. Evolution

of the target states from each estimated target location is governed by the target motion

model (5.1), hence it defines the observable area for each node of the search tree. Using the

target motion model, the observable area for each node of the search tree is centered on the

predicted expected value of the target state and its dimension is defined by the predicted

error covariance of the target state estimation. To derive a close form for the observable

area, we assume that the target motion model is linear and the state process noise is addi-

tive and Gaussian distributed. Using this assumption does not limit the applications of the

proposed algorithm to linear/Gaussian models, since we only use this assumption to find

the dimension of the state space that must be discretized. The observable area of each node

of the search tree for a nonlinear/non-Gaussian state transition model may be evaluated

using linear-Gaussian approximations of the target motion model.

Assume that the previously estimated target state x̂i−1 is related to the true target state

xi−1 by

x̂i−1 = xi−1 + x̃i−1, (5.13)

where x̃i−1 is the estimation error at time index i− 1. Using this model within the DSSM,
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the prediction of the state estimation error is given by

x̃i|i−1 = x̂i|i−1 − xi (5.14)

= F(x̂i−1)−F(xi−1)−Gvi−1

= F(xi−1 + x̃i−1)−F(xi−1)−Gvi−1.

The general form of the probability distribution function of the random vector x̃i|i−1 de-

pends on the state transition function F(.) and the probability distribution function of the

state transition noise vi−1. For a linear Gaussian state transition model, the probability

distribution function of the random vector x̃i|i−1 is Gaussian. For a nonlinear/non-Gaussian

target motion model, its distribution depends on the distribution of the state process noise

vector and may not have a closed form. In this case, one can implement statistical tech-

niques [74] to approximate the estimated target state probability distribution function. To

derive a closed form expression in this work, we assume that the state process noise is Gaus-

sian with zero mean and covariance matrix Σv. We also assume that the state transition

function is linear and is represented by F . For a nonlinear state transition, F represents

a linearized version of F(.) using its Taylor series expansion around the estimated target

state. Again this assumption is used only to evaluate the boundaries of the discretization

area and does not limit the applications of the stack algorithm for general non-linear non-

Gaussian scenarios. Using this assumption for the system state space model, the predicted

estimation error x̃i|i−1 is Gaussian with zero mean and covariance matrix

Σ̂i|i−1 = F Σ̂i−1|i−1F
T +GΣvG

T , (5.15)

where Σi−1|i−1 is the estimation error covariance matrix at time index i − 1 given the

contacts up to time i − 1. Unlike Kalman filtering techniques that estimate the expected

value and the error covariance of the estimation, the structure of the stack algorithm does

not directly provide an estimate of the error covariance Σi−1|i−1. For this purpose, we
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calculate the sample error covariance of the target state in the search tree. Consider all

discrete target states at time index i − 1 that are generated from the same origin x̂i−2 in

the search tree. We denote these states by x̂j
i−1 for j = 1, · · · , S where S is the number

of possible target states at time i− 1 generated from the same origin (or, equivalently, the

number of discretization levels). The sample error covariance can be approximated using

Σ̂i−1|i−1 =

S∑
j=1

Pj(x̂
j
i−1 − x̄i−1)(x̂

j
i−1 − x̄i−1)

T , (5.16)

where x̄i−1 is the sample expected value given by

x̄i−1 =

S∑
j=1

Pj x̂
j
i−1, (5.17)

and Pj is the conditional probability of the jth state,

Pj = p(x̂j
i−1|Zi−1, x̂i−2) (5.18)

∝ p(Zi−1|x̂j
i−1)p(x̂

j
i−1|x̂i−2).

The right hand side of (5.18) is computed in the metric calculation (5.6), and Pj can be

calculated by normalizing (5.18) to meet
∑S

j=1Pj = 1.

The approximated error covariance matrix in (5.15) is used for calculating the boundaries

of the observable area and the discretized cells. The required state space discretization can

be achieved by discretizing the elements of the state vector in the observable region, but

discretization in this way may be inefficient due to possible correlation between the elements

of the system state. In sonar target tracking, the target state vector typically contains

target location and target speed information, where the target speed can be exactly known

based on the previous target location, current target location, and time difference between
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the scans. To avoid correlated discretized states, the principal components of the state

vector are discretized. The principal components can be generated from the approximated

covariance matrix Σ̂i|i−1 in (5.15). Let µ1i , · · · , µdi and e1i , · · · , edi be the eigenvalues and

eigenvectors, respectively, of Σ̂i|i−1. We define νji as the projection of x̃i|i−1 onto its jth

eigenvector eji . Assuming Gaussian distribution for x̃i|i−1, ν
j
i is a Gaussian random variable

with zero mean and variance µji . The random variables νji for j = 1, · · · , d are uncorrelated,

because they are the projection of the state error matrix onto the orthogonal eigenvector

basis. Therefore, the state space can be discretized by individually discretizing each random

variable νji .

We use the technique proposed by Max [75] for discretizing the uncorrelated individual

random variables νji . In this technique, the boundaries of the discretized cells (ul, ul+1),

and the discrete points εl are calculated to minimize mean square error, defined by

L∑
l=1

∫ ul+1

ul

(vj − εl)
2pνj (ν

j)dν, (5.19)

where pνj (ν
j) is the probability distribution function of νj , and L denotes the number

of discretized regions. The cell boundaries and the discrete point values for a Gaussian

distribution are provided in [75].

Selecting Points in Each Cell

Discretizing the state space introduces discretization error in the tree-search based tracker.

In order to reduce this error, one can employ finer discretization, but this has a substantial

negative impact on the speed of the tracker, since the size of the tree increases significantly.

As an alternative, we maintain a small number of discrete cells and employ sampling to

obtain a more accurate representation of the likelihood in each discrete cell.

The approach provided in (5.19) for calculating the discretized cell boundaries and their
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discrete points does not necessarily guarantee to generate the metric peak in the discretized

cell. We suggest a sampling discretization approach using the same cell boundaries as

derived from (5.19) and the discrete points that are derived from sampling inside each

cell. Using this technique, the discrete points can be selected in a finer grids within the

cell that generates highest metric values. Hence, the target state space is discretized in a

data-informed manner to reduce the discretization error of the target state space estimate.

Figure 5.1 represents the sampling discretization and compares it with the fixed dis-

cretization technique. As shown in this figure, rather than selecting a fixed state point to

represent a discrete cell, the cell is sampled at a finer scale, and the most likely sample is se-

lected to represent the cell. Using the cell boundaries (ul, ul+1) as in (5.19), the probability

mass function in finer grades (εl ∈ (ul, ul+1)) is evaluated as follows:

εl = arg max
νj

p(νj |Zi, ν
j ∈ (ul, ul+1),xi−1), (5.20)

and

p(νj |Zi, ν
j ∈ (ul, ul+1),xi−1) ∝ p(Zi|νj)p(νj |νj ∈ (ul, ul+1),xi−1). (5.21)

The likelihood function p(Zi|νj) must be expanded over data association hypotheses as

in (5.7). Considering that p(νj |xi−1) is the probability distribution function of the process

noise, the conditional probability density p(νj |νj ∈ (ul, ul+1),xi−1) is proportional to the

truncated version of p(νj |xi−1) in the intervals (ul, ul+1).

In finding the discrete point within the interval (ul, ul+1) that maximizes the posterior

probability in (5.20), the posterior probability density is calculated by dividing the interval

(ul, ul+1) into small intervals and selecting the center of each smaller interval as a candidate

for the point mass. The posterior probability distribution is calculated for each candidate,

and the one that maximizes the posterior probability is selected as a discrete point of the

interval (ul, ul+1).
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Figure 5.1: State space discretization using fixed discretization (left figure) and sampling
discretization (right figure). In fixed discretization, the estimated target location in each
region is deterministic; in sampling discretization, the estimated target location is sam-
pled from the posterior distribution function of the target in that region.

Using the proposed sampling technique to choose discrete points in each cell allows

for the use of fewer discretization levels without an increase in discretization error. Since

decreasing the number of discrete levels generally reduces the number of the paths that are

explored in the search tree, computational complexity is reduced, as well. While sampling

discretization increases the complexity of the metric calculation for each path, the reduction

in the number of paths explored outweighs the effects of additional metric calculations.

5.2.6 Simulations

To evaluate the performance of the proposed stack-based single target tracking algorithm,

we perform simulations for two target scenarios. In the first scenario, the target follows a

linear motion model, and in the second, the target follows a nonlinear motion model that

reflects the presence of obstacles. For both scenarios, the target state vector is defined by

x = [x y ẋ ẏ]T , where (x, y) denotes the position of the target in Cartesian coordinates, and

(ẋ, ẏ) denotes the target velocity in Cartesian coordinates.

The same observation model is employed in both scenarios. A single sensor is placed at
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(0, 0) in Cartesian coordinates. The target measurement model is given by (5.2), where

h(x) =

 tan−1 (y/x)√
x2 + y2

 . (5.22)

Note that the target observation vector contains noisy measurements of the bearing and

range of the target, which are nonlinear transformations of the Cartesian target position

coordinates.

For evaluation purposes, the performance of the stack-based tracking algorithm is com-

pared to that of the EKF and particle filtering (PF). The EKF technique employs the

nonlinear state space model in calculating the predicted state estimate and the innovation

error, but it linearizes the nonlinear functions based upon the first derivative of the non-

linear functions in calculating the Kalman gain and the updated covariance error of the

estimation [76]. To reflect the fact that the initial target state is assumed to be known (e.g.

x̂0 = x0), the initial covariance matrix of the EKF algorithm is given by P0 = 5 ∗ 10−5I4,

where I4 denotes the 4× 4 identity matrix. The probabilistic data association (PDA) filter

is employed in conjunction with the EKF (known as EKF-PDA) to combat the effects of

clutter [62]. EKF-PDA gates the measured contacts at each scan using a g-sigma ellipsoid.

A g-sigma ellipsoid is an ellipse that encompasses a random vector with high probability.

This ellipse is centered at the expected value of the random vector and its diagonals are

equal to the g times of the standard deviations in each direction. For a two dimensional

random variable, the gate volume is πg2|S|1/2, where S is the summation of the noise co-

variance matrix and the covariance error matrix of the target state estimate in Cartesian

coordinates. Selecting g2 = 16 is sufficient to achieve a probability of close to 0.99 that the

target, if detected, is inside the gate [77].

For simulating the particle filtering technique, we use the standard particle filtering

approach as is proposed in [68]. To make a fair comparison among the algorithms, we use
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the same importance sampling distribution function and likelihood function as is used in the

stack algorithm. However, any other type of the importance sampling distribution function

and the likelihood function in a PF algorithm can be applied in the stack algorithm for

state space discretization and metric calculation, as well. The number of particles is set to

500. For scan k, the lth particle, denoted by x
(l)
k , is updated using the target motion model

in (5.1) through sampling from the following importance sampling distribution function:

qk(x
(l)) = N (x

(l)
k ;F(x̂

(l)
k−1), G

+Σ̂k−1G
+T +Σv), (5.23)

where the notation N (x; a, b) represents that the random vector x is Gaussian distributed

with expected value a and covariance matrix b. The term x̂k−1 denotes the previous estimate

of the target state vector, Σ̂k−1 denotes the estimated covariance matrix of the target,

and G+ is the pseudo-inverse of the transition matrix G. The likelihood function of the

observations for the particle filtering technique is calculated using the same approach as

in the stack algorithm (5.12) to make a fair comparison between the two algorithms. The

re-sampling step is performed when the number of effective particles drops below one third

of the total number of particles.

The number of clutter contacts generated at each scan is drawn from a Poisson distri-

bution with parameter ζV . Due to the non-linearity of the target measurement model, the

observation gate dimension depends on the error covariance of the measurement noise and

the distance between the target and the source. Therefore, we define the clutter density as

the average number of clutter contacts that appear in a unit volume, and we denote it by

ζ.

In our simulations, we leave the time and distance parameters unitless. Realistic units

are dependent upon the application. The results presented here apply for any choice of time

and distance units as long as these choices are carried into the definition of state transition

noise variance, observation noise variance, etc. The maximum stack size used for simulation

is limited to L = 512 entries.
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Linear Motion Model

In the the first simulation scenario, the target moves according to a linear motion model

given by

xk = Fxk−1 +Gvk, (5.24)

where the covariance matrix of vk is given by Σv = 5 ∗ 10−4I2. Matrices F and G are given

by

F =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


G =



∆2
t
2 0

0
∆2

t
2

∆t 0

0 ∆t


,

where ∆t = 1 is the time between scans. In this model, the state transition noise vector vk

determines the acceleration (in the x and y directions) over the time interval from k∆t to

(k + 1)∆t. Each target path begins at point (20, 20) in Cartesian coordinates. The initial

velocity is drawn randomly from a zero-mean Gaussian vector with covariance matrix 0.02I2.

The observation noise wk is assumed to be Gaussian with zero mean and covariance

matrix of

Σw =

 (0.15π180

)2
0

0 0.252

 , (5.25)

where the first element of the diagonal is the variance of the bearing measurements and the

second element is the variance of the range measurement.

A sample target path drawn from the motion model described above is shown in Figure

5.2. The observations (both from the target and from clutter) are plotted, as are the

target position estimates generated by the stack-based tracker, the EKF-PDA, and the

particle filtering (PF) techniques. An average of ζ = 1.0 clutter contact is present in each
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Figure 5.2: A sample target path with contacts (from target and clutter), stack-based
tracker estimates, EKF-PDA estimates, and particle filtering estimates for the linear mo-
tion model with noisy observations of target bearing and range, ζ = 1.

observation gate. We assume that the true target is detected in each scan with probability

PD = 0.9. In this sample realization, the stack-based tracker, the EKF-PDA, and the PF

tracker successfully track the target through all 50 scans.

To evaluate the performance of the trackers, we have considered two criterion for each

tracker: percentage of lost targets and the mean square error (MSE) of the target location

estimate. To evaluate the percentage of lost targets, we must define a condition for de-

termining that a target has been lost. A target is marked as lost if the estimated target

location lies outside of a validation ellipse in any single scan. The validation ellipse is de-

fined as an ellipse centered on the true target location with diagonals equal to the 4 times

of the observation noise standard deviations. An example of the target path with validation

ellipses is plotted in Figure 5.3.

All three techniques have been simulated over 50 scans for 200 independent realizations

following the motion and the observation models given above. Generating independent
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Figure 5.3: A realization of the target path and the estimation validation ellipses. The
target tracking algorithm is considered to have lost a target if the estimated target loca-
tion lies outside of the validation ellipse in any single scan.

realizations, the average number of lost targets is counted for each technique under different

clutter density scenarios. Figure 5.4 shows the percentage of lost targets for different clutter

density scenarios. While all three techniques could track the target for clutter density

below 2, we see that the performance of the PF algorithm degrades faster than that of

the stack algorithm and the EKF. In this case, we do not expect the stack-based tracker to

outperforms the EKF, since the target motion model is linear and the nonlinear observation

model is well approximated by its Taylor series expansion. When clutter density increases,

the particles in particle filtering technique degenerate faster and the algorithm frequently

needs to perform the re-sampling step. Therefore, the percentage of lost targets for particle

filtering algorithm increases faster in early stages of increasing the clutter density.

Figure 5.5 shows the mean square error of the estimated target location averaged over

200 independent realizations of the target trajectory. The clutter density is fixed to ζ = 1.5.

For calculating the MSE, only the successfully estimated trajectories (not those associated
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Figure 5.4: Performance comparison based on percentage of successful tracks versus clut-
ter density.

with lost targets) are selected for averaging. We can see that the stack algorithm can

estimate the track as precisely as the EKF technique. The low mean square error achieved

by the stack algorithm is a result of the proposed sampling quantization technique, which

significantly reduces the discretization error. In particle filtering, the estimated target

location is provided by calculating the expected value of the particles. In high clutter

environments, some particles may represent the false tracks and averaging over the particles

increases the MSE of target location.

Nonlinear Motion Model

We also evaluate the performance of the stack-based tracker, PF, and the EKF-PDA in

tracking a maneuvering target whose motion model is nonlinear. The motion model used in

this evaluation is designed to simulate a maneuvering ship that travels in an area bounded

by shoreline [78]. The target moves in a circular region of radius r = 1. The coastline is

modeled by the perimeter of the circle, and a negative force moves the target back toward the
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Figure 5.5: Performance comparison based on Mean Square Error of the estimated target
location. The clutter density is fixed to ζ = 1.5

center of the circle when it moves beyond the circle’s perimeter. The target motion model

is given by (5.1), where the covariance matrix of the state transition noise is Σv = 10−2I2,

and

G =



0 0

0 0

1 0

0 1


. (5.26)

The nonlinear function f(·) is given by

f(x) =



x+∆tẋ

y +∆tẏ

ẋ+ f1(x, y)

ẏ + f2(x, y)


, (5.27)
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where

f1(x, y) =


−10x√
x2+y2

when
√
x2 + y2 > r & xẋ+ yẏ ≥ 0

0 otherwise

, (5.28)

and

f2(x, y) =


−10y√
x2+y2

when
√
x2 + y2 > r & xẋ+ yẏ ≥ 0

0 otherwise

. (5.29)

The nonlinear functions governing velocity changes serve the purpose of keeping the target

within the circle of radius r. When the target is within the circle, it accelerates in each

direction of the Cartesian coordinate by an independent zero-mean Gaussian noise. When

the target lies outside the perimeter of the circle and is moving away from the center of the

circle, the target velocity is modified to direct the target back into the circle. Instances in

which such nonlinear modifications are made pose challenges to the EKF-PDA, as will be

seen in simulation results.

For simulation, a single sensor is present at (0, 0) (the center of the circle), and the

sensor observes noisy measurements of bearing and range as described by (5.22). The time

interval between scans is given by ∆t = 0.15, and the measurement noise covariance matrix

is given by

Σw =

 ( π
180

)2
0

0 0.012

 . (5.30)

The initial position for each simulated target path is drawn from a uniform distribution

within the circle, and the initial velocity for each axis (x and y) is drawn from a zero-mean

Gaussian distribution with variance 0.5.

One sample path drawn from the nonlinear motion model, along with the associated
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Figure 5.6: A sample target path, stack-based tracker estimates, PF, and EKF-PDA esti-
mates for the nonlinear motion model with noisy observation of target bearing and range,
ζ = 1. All techniques maintain track through 50 scans.

target observations and the stack-based tracker, PF, and EKF-PDA estimates, are shown

in Figures 5.6 and 5.7. For this sample path, two different runs of the received target

observations and clutter observations are simulated. For both plots, the clutter density is

ζ = 1, the probability of target detection is PD = 0.9, and the stack algorithm is using

exponential window with parameter λ = 0.9. In order to make the plots more readable,

observations generated by clutter are not included. In Figure 5.6, all three algorithms

are able to follow the target through all 50 scans. In Figure 5.7, the EKF-PDA loses the

target track at the second change in direction (e.g. the first time the target travels outside

the perimeter of the circle) and never regains an accurate estimate of the target location.

This example highlights the advantage of the stack-based and PF tracker over a Kalman

filter-based approach in the presence of severe nonlinearities.

In Figure 5.8, the performance of the stack algorithm is compared with that of PF
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Figure 5.7: A sample target path, stack-based tracker estimates, PF, and EKF-PDA esti-
mates for the nonlinear motion model with noisy observation of target bearing and range,
ζ = 1. The stack-based and the PF tracker maintain track through 50 scans, but the
EKF-PDA is unable to follow the target’s nonlinear motion in clutter and diverges in the
second turn.

and EKF-PDA for different values of clutter density ζ. In each scan, it is assumed that

the target is measured with probability PD = 0.9. Again, the sampling stack algorithm

performs better than PF but it dramatically outperforms the EKF-PDA in the presence of

clutter.

Figure 5.9 shows the MSE performance of the stack-based tracker, PF, and the EKF-

PDA over 50 scans for 250 independent realizations of the nonlinear motion model with noisy

observations of target bearing and range. The average MSE in target position estimation

is evaluated for clutter density of ζ = 1. At each scan, the true target is detected with

probability PD = 0.9. Only the mean square error of successful tracks (no lost targets) has

been considered for averaging. The stack algorithm in this scenario works as well as the

EKF-PDA, and it out performs the PF in estimation accuracy. This is because the stack
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Figure 5.8: The performance of the stack algorithm is compared with that of EKF-PDA
and PF. for a nonlinear target motion model. ζ values of 0, 1, and 2 are considered, and
the true target appears in each scan with probability PD = 0.9.

algorithm implements the sampling discretization technique which reduces the discretization

error. In PF, however, the MSE is higher since the target state is estimated by averaging

over all the particles which some may not follow the true target state.

5.3 Track Validation in the Stack-Based Tracker

In our development of the stack algorithm, we have assumed that the initial locations of the

targets are estimated by an external track initiation algorithm. In addition to identifying

targets, the track initiation algorithm may also initiate a considerable number of false

tracks, particularly when clutter density is high. Similarly, when targets maneuver and/or

probability of true target contact detection is low, the tracker may lose the target and

instead follow clutter. Track validation is required to identify these cases in which a path

followed by the tracker is not associated with a target.
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Figure 5.9: The MSE of the target location estimate for EKF-PDA, stack algorithm, and
particle filtering. The MSE of the stack algorithm is close to that of the EKF and is sig-
nificantly lower than the PF.

The Neyman-Pearson test can be used to determine track validity [79]. Define hypothe-

ses H0 and H1 as

 H0 : target is absent

H1 : target is present
. (5.31)

The likelihood ratio of the contact matrix Zi given the estimated target state x̂i is evaluated

as

γi =
p(Zi|x̂i, H1)

p(Zi|x̂i, H0)
, (5.32)

where the numerator p(Zi|x̂i,H1) is calculated in (5.7). The denominator p(Zi|x̂i,H0) is the

likelihood that all contacts are generated by clutter and is equal to (1−PD)
1

V mo . Therefore,
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the likelihood ratio of a contact matrix Zi that contains mi contact vectors zi is equal to

γi = 1 +
PD

(1− PD)ζ

mk∑
j=1

p(zjk|x
(l)
k ). (5.33)

In conventional maximum likelihood target tracking techniques [79], the logarithm of

likelihood ratio (LLR) is evaluated over a fixed-length window of scans, and an optimization

technique finds the state vector which maximizes the LLR function. In this work, we employ

the LLR function for validating the target paths within the tree. Under the assumption that

recent contacts are more important than older contacts in evaluating the validity of a track,

we apply an exponentially decaying window with parameter η, similar to the windowing

used in defining the path metric for tree search. The resulting LLR is given by

γ =
1− η

1− ηkl−1
×

kl∑
i=2

ηkl−i log(γi). (5.34)

A track is declared invalid and terminated when the LLR of the associated path drops below

some threshold τ . Analytical calculation of the threshold requires evaluation of the pdf of γ

for a true target path, denoted by p1(γ), and for a false track, denoted by p0(γ). The random

variable γi is a combination of multiple realizations of the random variablesmi and p(z
j
i |xi),

and the LLR is the summation of independent random variables γi. The Linderberg-Feller

central limit theorem (CLT) [80, 81] suggests that the summation of independent random

variables γi may converge in distribution to a Gaussian random variable. Although the

conditions of the CLT theorem are not met due to a limited sum over the random variables,

but a Monte Carlo computer simulation of the distribution shows that the approximation

is sufficiently close to be used for calculating the threshold. In Section 5.6, we discuss

the Monte Carlo simulations and the statistical tests that are implemented to validate the

approximations in more detail. Denoting the probability of declaring a true target track to
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be valid by PTT , the validation threshold can be calculated from

PTT =

∫ ∞

τ
p1(γ)dγ, (5.35)

and the probability of false alarm can be derived using

PFA =

∫ τ

−∞
p0(γ)dγ. (5.36)

To evaluate the performance of the proposed track validation approach, we have simu-

lated a single target following a linear Gaussian motion model with nearly constant velocity

(NCV). The state consists of two-dimensional position and velocity, and the motion model

(5.43) parameters are given by

F =



1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


, G =



0.5 0

0 0.5

1 0

0 1


. (5.37)

The process noise is zero mean with covariance matrix 0.25I2×2, where I denotes the identity

matrix. The sensor, which is located at the origin of the coordinate system, is assumed to

collect noisy observations of the target position in Cartesian coordinates. The measurement

noise, wk, covariance matrix is given by 0.04I2×2.

The probability of target detection is set to PD = 0.7, and clutter density is ζ = 3.

In each realization of the simulation, the target starts from location (10, 10). Tracks are

initiated using the Hough transform initiation technique [82]. The Hough transform is

performed over cells of dimension 2× 2, and the existence of a target in a cell is declared if

3 out of 5 successive scans provide a peak in the cell. The exponential window parameter
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Figure 5.10: A sample realization of linear Gaussian target motion tracked by the tree-
search tracker. Likelihood-based track validation is used to terminate four false tracks.
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Figure 5.11: LLR values γ of the true and false tracks shown in Figure 5.10 as a function
of scan index. The γ values associated with the false tracks fall below the termination
threshold within 10 scans.
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for track validation in (5.34) and for path metric calculation in (5.6) is set to λ = η = 0.9.

The threshold for track validation is calculated from (5.35) by letting PTT = 0.9999 and is

equal to τ = 0.5 which results in PFA = 0.014. The stack is limited to 256 entries (paths).

A sample realization from this simulation is shown in Figure 5.10. When tracking begins,

the initiation algorithm detects the target track, as well as four false tracks. (To simplify

the figures, we perform track initiation only for the first five scans. In practice, false tracks

would be initiated in later scans, as well.) The LLR values associated with each of the

initiated tracks are plotted as a function of scan index in Figure 5.11. While the LLR of the

true track remains well above the threshold τ for all 50 scans, the LLRs of the false tracks

quickly drop below the threshold and are terminated within 10 scans.

The LLR-based track validation scheme also identifies when targets have been lost, an

example of which is shown in Figure 5.12. The tree-search tracker follows the target well for

the first 12 scans but then loses the target when several detections are missed. The track

validation algorithm declares the target lost at scan 20, and the target track is reinitiated

(again after several missed detections) at scan 28. The LLR values of the original and

reinitiated tracks are plotted as a function of scan index in Figure 5.13. Note that the LLR

begins to drop rapidly at scan 12 when the target is lost, though 8 scans are required before

the LLR drops below the chosen threshold. The number of scans required to identify a lost

target is strongly dependent on the LLR memory through η.

The simulation described above was performed for 200 randomly generated scenarios,

and the average performance is presented in Tables 5.1 and 5.2. The results presented in

Table 5.1 are derived by generating an environment with no target (only clutter contacts)

and using the Hough Transform to initiate false tracks. These tracks are followed until their

LLR falls below the threshold, and the length of each track when it is terminated by the

track validation algorithm is recorded. For Table 5.2, both target and clutter contacts are

available for the first 10 scan. After 10 scans, the target vanishes, and the number of scans

required to declare the target lost is recorded. The parameter of the exponentially decaying

window is selected as η = 0.9, yielding a memory of approximately 10 scans. Decreasing
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Figure 5.12: An example of a lost target identified via likelihood-based track validation.
The track is identified as false 8 scans after the estimated path deviates from the target
trajectory. The true target path is re-initiated via Hough transform techniques.

0 10 20 30 40
0

0.5

1

1.5

2

2.5

Scan Index

LL
R

 

 

Track LLR

LLR Threshold

Lost Target Detection

Re−initiated Target

Figure 5.13: LLR values γ of the target paths in Figure 5.12 as a function of scan index.
The LLR of the path associated with the lost target falls below the termination threshold
at scan 20.
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η decreases the number of scans needed to declare a target lost, but it also increases the

probability of declaring a target lost when it is not, particularly when PD is small. When

clutter density increases, the value of the threshold τ decreases to maintain the same PTT .

This increases the probability of retaining false tracks in the stack, as well as increasing the

number of scans required to declare a lost target.

Table 5.1: Persistence of false tracks under LLR-based track validation

Clutter
density

False tracks remaining
after 5 scans

False tracks remaining
after 10 scans

2 18 % < 1%

3 21 % < 1%

4 21 % < 1%

5 22 % 1.2%

Table 5.2: Scans required to declare targets lost when LLR-based track validation is em-
ployed

Clutter
density

Declared lost
after 5 scans

Declared lost
after 10 scans

3 82 % > 99%

4 75 % > 99%

5 73 % 98%

5.4 Multistatic Tracking and the SEABAR’07 Dataset

Multistatic tracking has become a topic of recent interest in the active sonar community. In

a multistatic scenario, multiple geographically distributed receivers are employed to observe

the echo from a single source, and hence measurements are obtained from multiple source-

receiver pairs. (The multistatic scenario may be extended to include multiple sources, as

well, but we consider only a single source in this work.) The presence of multiple receivers

provides the benefit of additional information for tracking, but it also presents the challenge

of efficiently fusing multiple data sources. As will be shown, the stack-based tracker is
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particularly attractive for multistatic tracking, as its path metric can be adapted to exploit

information from multiple sources with little to no increase in algorithm complexity.

The focus of this section is the augmentation of tree-search based tracking to address

multistatic problems and the evaluation of the resulting tracker on real sonar data. The

remainder of this section describes the multistatic system model under consideration, metric

derivation for multistatic target tracking, and evaluation of the stack-based tracker on the

dataset from the SEABAR’07 experiment.

5.4.1 Multistatic Stack Tracker

A multistatic sonar target tracking system must combine the information provided from all

the receivers to estimate the target path. Many distributed target tracking techniques are

developed to perform whether estimation fusion or data association fusion [83]. In estima-

tion fusion, multiple trackers are estimating the target state based on their own observations

and the estimations are combined to estimate the target track. In data association fusion,

the measurements provided from multiple receivers are combined to estimate the target

track. The algorithms for estimation fusion and data association fusion are combined with

the conventional target tracking techniques such as Kalman filtering and can be combined

with the stack algorithm as well. In this work, we implement a centralized tree search tracker

that approximates the posterior probability density function of the target path given the

observations of all the receivers.

Figure 5.14 shows the architecture of a centralized tree search tracker. In a central fusion

scenario, observations of all the receivers are transferred to a central target tracker where

the tracking is performed. The central target tracker implements a tree search tracker and

updates the search tree based on the observations from all the receivers. We assume that

the source and receiver locations are known (at least approximately) to the tracker and

that is a single source and Σw receivers. Similar to the single target tracking model, let

the vector xk denote the state of the target at time (or scan) index k. In the model under

consideration, each scan produces a set of contacts at each of the Σw receivers. (A receiver
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may not be functioning at a particular scan, in which case the associated set of contacts will

be empty.) One could assume an equivalent model in which the contacts at each receiver

are viewed as different scans, and hence one ping from the source results in Σw scans of

data.

Let the contacts observed by receiver r at time k be denoted by the m
(r)
k -column matrix

Zr
k, where m

r
k denotes the number of contacts observed by receiver r in scan k and each

column of the matrix Zr
k represents an individual contact. A target-generated contact

appears in the measurement matrix of each receiver with probability P r
D. For purposes of

deriving data association probabilities, mr
k is assumed to follow a Poisson distribution. A

full contact matrix for each scan is formed as Zk =
[
Z1
k Z2

k · · · ZΣw
k

]
. The target motion

model is as given in (5.1), and the measurement models for the rth receiver is given by

zrk = H(xk) +wr
k, (5.38)

where wr
k denotes the observation noise at receiver r. The observation noise vectors wr

k are

assumed to be independent of the state transition noise and independent of the observation

noise at other receivers and at different scans. While the stack-based tracker we consider

assumes knowledge of F(.) and G, a model of the target motion will not be known to

the tracker in most practical scenarios; in fact, such a model may not exist for targets

whose motion involves maneuvering, etc. In practical scenarios, however, motion models

are assumed within the tracker, even though they are not followed by the target.

Similar to Section 5.2.3, we use an exponentially decaying window to generate a fair

metric for comparing paths of different lengths:

b(l) =
1− λ

1− λkl−1
×

kl∑
i=2

λkl−i log
[
p(Zi|x(l)

i ,x
(l)
i−1)p(x

(l)
i |x(l)

i−1)
]
, (5.39)
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Figure 5.14: Architecture of a central fusion scenario. The information from all sensors is
collected at a single fusion center at which centralized tree-search based tracking is per-
formed.

where the state transition probability mass function p(x
(l)
i |x(l)

i−1) is calculated in (5.5). Cal-

culation of the path metric requires evaluation of the observation likelihood conditioned

on the target state p(Zi|x(l)
i ) for i = 1 to kl. When multistatic geometries are employed,

calculation of p(Zl|x
(l)
l ) must be modified to reflect the fusion of data streams obtained

from multiple source-receiver pairs. Under the assumption that observations at any single

receiver are conditionally independent of observations at all other receivers, we compute

the multistatic observation likelihood as

p(Zi|x(l)
i ) =

Σw∏
r=1

p(Zr
i |x

(l)
i ), (5.40)

where p(Zr
i |x

(l)
i ) can be evaluated by expanding over all data association hypotheses (5.7).

In fact, this is a simplifying assumption that generally does not hold true in practice. While

conditioning on the target state eliminates dependence among contacts generated by the

target (since the only remaining random element is observation noise), contacts that are
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observed at different receivers but generated by the same clutter source will certainly be

correlated. Hence, the chosen implementation is a simple first approximation to a more

accurate approach to observation fusion. The new observation likelihood can be applied in

discretization technique as discussed in Section 5.2.5.

5.4.2 Performance Evaluation on SEABAR’07 Dataset

The performance of the stack-based tracker for multistatic sonar has been evaluated on the

SEABAR’07 experiment. The SEABAR’07 experiment took place in the Mediterranean

Sea in October 2007 [84]. The experiment included a single source and three receivers.

Both continuous wave (CW) and frequency modulated (FM) pulses were transmitted by

the source at one-minute intervals. The result of two different experiments, known as A01

run and A56 run, is available for test. All three receivers were active during part, if not all,

of run A01, and receivers 2 and 3 were active during run A56. The target was simulated by

a towed echo repeater. In order to provide contact data that better model a true target, the

SNR levels of the target contacts were modified to reflect aspect-dependent target strength

[85]. The results presented here use contact data modified according to the BASIS target

strength model [86].

The source and receiver locations, as well as the true target trajectory, were provided in

terms of latitude and longitude. Conversion from time delay to contact range was performed

as described in [87]. Source, receiver, and target locations were converted to a 2-D Cartesian

coordinate system using the Haversine formula [88], and the origin of the coordinate system

was placed at the source. The source and receiver locations for the SEABAR’07 experiment,

along with the target trajectories for runs A01 and A56, are shown in Figure 5.15.

The stack-based tracker requires an initial estimate of the target state. We use the

Hough transform for track initiation [82] to generate this information. The surveillance

region is divided into 1-km2 cells, each of which is evaluated for the presence of a target

using peaks in the Hough bins. The common M -of-N approach is employed, meaning that

a track is initiated if M out of N observations in a sequence generate a peak. The track
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Figure 5.15: Geometry of the SEABAR’07 multistatic sonar experiment. The source,
shown in red, is at (0, 0). The three receivers are shown as blue circles, and the target
trajectories for runs A01 and A56 are shown in red.

initiation algorithm is repeated every 10 scans to detect newly arriving targets. The validity

of each track is evaluated at each scan via the stack metric. During tracking, we use the

track validation technique as discussed in Section (5.3) and if the LLR of an initiated target

path falls below the threshold of the track validity test, the target is marked as invalid and

is terminated by the algorithm. The value of M/N used for track initiation depends upon

the clutter density of the experiment. The values used for runs A01 and A56 are given in

Table 5.3.

The target state vector is given by xk = [xk yk ẋk ẏk]
T , where (xk, yk) denotes the

position of the target in Cartesian coordinates, and (ẋk, ẏk) denotes the target velocity in

Cartesian coordinates. Computation of the Bayesian path metric requires that motion and

measurement models be provided. Of course, no model is available to describe the motion
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of the targets in the SEABAR experiment; a simple nearly-constant velocity (NCV) linear

motion model [89] is assumed as a default. While extension to interacting multiple models

[90] or other more sophisticated models may provide performance improvement, the stack-

based search is able to hold track under the NCV model. The assumed motion model is

given by

xk = Fxk−1 +Gvk, (5.41)

where

F =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


G =



∆2
t
2 0

0
∆2

t
2

∆t 0

0 ∆t


. (5.42)

The time between scans, ∆t is equal to 1 minute. The observation vector for the FM

contacts includes bearing and time difference of arrivals (TDOA) and for the CW contacts

includes bearing, TDOA, and range rate. The observation function H(.) that relates the

target location to bearing, TDOA, and range rate is derived in Appendix A. The covariance

matrices of the vk and wk, denoted by Σv and Σw, respectively, are given in Table 5.3. An

SNR threshold of 12 dB is used to determine which contacts are provided to the tracker.

For evaluation of the stack-based multistatic tracker, we first consider run A01 of the

SEABAR’07 experiment. This run is particularly challenging, as the target engages in

both a hairpin turn and a Crazy Ivan maneuver. The target begins near (7000, 10000) and

travels first through the hairpin turn followed by the Crazy Ivan. Figure 5.16 shows the

performance of the stack-based tracker using only FM data from all three receivers. The

stack-based tracker is able to maintain track throughout the target trajectory, including

through the hairpin and Crazy Ivan turns. The tracker holds the hairpin turn particularly

tightly, showing little to no deviation from the highly nonlinear maneuver. The initiation
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Table 5.3: Stack-based tracker parameter values used for evaluation on run A01 of the
SEABAR experiment.

Contact SNR Threshold 12 dB

PD (Prob. of Detection) 0.75

M/N , run A01 3/5

M/N , run A56 2/5

Σw (covariance of wk), FM

[
0.0019 0

0 2500

]
Σw (covariance of wk), CW

[
0.0019 0

0 62500

]
Σv (covariance of vk)

[
0.0005 0

0 0.0005

]
λ (Forgetting factor) 0.95

Stack Size 256

Discretization Regions 9

Samples Per Region 81

algorithm generates four false tracks at scan indices 21, 31, 41, and 61. The first and the

third false tracks are terminated after 34 and 15 scans, while the second and fourth persist

to the end of the experiment.

Figure 5.17 shows the performance of the stack-based tracker on run A01 using only

CW data from all three receivers. Bearing, TDOA, and range rate information are used

by the tracker. Like the FM case, the tracker follows the target trajectory throughout

its maneuvers. The tracker does not follow the trajectory as closely in this case as it did

when FM data was used since the measurement noise is much higher in CW data. In this

experiment, three false tracks have been generated: one at the scan one and two at scan

21. The first false track is killed after 20 scans; one of the remaining false tracks lasts for

59 scans, and the other persists to the end of the experiment. Only parts of the false track

are shown in Figure 5.17.

The performance of the stack-based tracker on run A01 when both FM and CW data

are provided is shown in Figure 5.18. For simplicity, only CW data is used in the Hough
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Figure 5.16: Tracking performance of the stack-based tracker on run A01 using FM con-
tacts from all three receivers. The target trajectory is shown in red, the track estimate is
shown in blue, and false tracks are shown in black.
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Figure 5.17: Tracking performance of the stack-based tracker on run A01 using CW con-
tacts from all three receivers. The target trajectory is shown in red, the track estimate is
shown in blue, and false tracks are shown in black.

transform for track initiation, allowing bin size and thresholds to remain the same as those

used when only CW or FM data alone is used for tracking. The tracker maintains track
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Figure 5.18: Tracking performance of the stack-based tracker on run A01 using both FM
and CW contacts from all three receivers. The target trajectory is shown in red, the track
estimate is shown in blue, and false tracks are shown in black.
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Figure 5.19: Tracking performance of the stack-based tracker on run A01 using only CW
contacts observed at Receiver 2. The target trajectory is shown in red, and the track esti-
mate is shown in blue. Contacts are shown in green.
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throughout the trajectory, and performance is slightly better than FM alone. Since we have

used only CW data for track initiation, the same false tracks appear here and in Figure

5.17. Using both FM and CW information, all false tracks are killed within 9 scans. When

both data types are used, the multistatic likelihood is computed by treating each receiver

as two data streams, one for each pulse type. Again, assumptions of independence across

these contacts do not necessarily hold in practice, and methods for addressing correlations

among contacts are a topic of further work.

To evaluate the performance of the stack-based tracker when only a single stream of

contact data is available, we consider the scenario in which, for run A01, only CW data

from Receiver 2 is provided. The results are shown, along with Receiver 2 CW contacts,

in Figure 5.19. Even when only one receiver is used, the stack-based tracker succeeds in

following the target through both maneuvers. In fact, the performance using CW data

from a single receiver is comparable to (if not better than) the performance using CW data

from all three receivers. This may indicate that the current technique for fusing data from

multiple receivers (e.g. assuming independence) is causing minor performance degradation.

Note that Receiver 2 does not observe contacts in the region of the false track seen in Figures

5.17 and 5.18, and hence no false tracks are initiated when only Receiver 2 data is used.

The performance of the stack-based tracker has also been evaluated on run A56 of the

SEABAR’07 dataset. The target trajectory for run A56 begins to the left near (600, 6000)

with a loop and then travels straight for approximately 12 km before making a final turn.

Figure 5.20 shows the performance of the stack-based tracker on run A56 when CW contacts

are used for track initiation and both CW and FM contacts are used for tracking. Receivers

2 and 3, which were active for part or all of the run, are shown along with the target

trajectory, the track estimate, and two false tracks. The stack-based tracker maintains

track throughout the run, including the loop at the beginning and the turn near the end.

Initiation with CW contacts results in four false tracks. Two are initiated at the first scan

and last for 6 and 14 scans, respectively. Another false track is initiated at scan 51 and

persists through 39 scans. At time index 91, a final false track is initiated and lasts 10
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Figure 5.20: Tracking performance of the stack-based tracker on run A56. The target
trajectory is show in red, the track estimate is shown in blue, and the false tracks are
shown in black. Both CW and FM contacts are used for tracking. Only CW contacts are
used for track initiation.

scans.

Finally, the performance of the stack-based tracker on run A56 when only CW data is

provided for initiation and only FM data is provided for tracking is shown in Figure 5.21.

The tracking performance using only FM data is very similar to that using both FM and

CW data. In both cases, the target track is maintained throughout the run. Similar to

Figure 5.20, four false tracks are identified; they are terminated in 8, 20, 12, and 23 scans,

respectively.

5.5 Stack-based Multitarget Tracking

For many applications, particularly those that fall within the broader class of surveillance,

the goal is not to track a single target over time but to detect and track all targets present

in the field of view. For these applications, tracking techniques are required to estimate the

101



−2000 0 2000 4000 6000 8000 10000 12000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

meters

m
et

er
s

Figure 5.21: Tracking performance of the stack-based tracker on run A56. The target
trajectory is shown in red, the track estimate is shown in blue, and the false tracks are
shown in black. Only FM contacts are used for tracking, and only CW contacts are used
for track initiation.

states of multiple targets and to perform association of contacts with targets. The focus

of this section is on using tree-search techniques for multi-target tracking. We develop the

stack algorithm for tracking multiple targets, and we evaluate its effectiveness in tracking

the targets that are crossing or moving in close physical proximity.

5.5.1 System Model

To model the multi-target tracking problem, we consider a collection of targets traveling

through a surveillance region. The number of targets in the region is denoted by T , and

each target is assigned a unique identification number t, t = 1, 2, . . . , T . Dynamic state

space models govern the evolution of the targets’ states and the observation of the targets.

The state of each target evolves according to the state process equation, given by

xt
k = F t(xt

k−1) +Gtvt
k, t = 1, . . . , T. (5.43)
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A sensor associated with the tracking system periodically scans the surveillance area, and

sensor observations are processed to form contacts, which may be generated by targets

and/or clutter. In this section, we consider a single sensor problem to simplify the notations.

Extension to allow for multiple sensors and multistatic sensing geometries is straightforward

using the same approach presented in Section 5.4.

At each scan, the tracker forms a set of contacts Zk = [z1k z2k · · · , zmk
k ], where mk

denotes the number of contacts obtained in scan k. A target-generated contact in the

observation matrix is related to the target state vector by the observation model (5.2). The

probability that target t is detected by the sensor is denoted by P t
D. As in previous sections,

we assume that each contact is generated by at most one target. Other parameters of the

DSSM and the distribution of the clutter generated contacts are the same as the single

target model presented in Section 5.2.1.

5.5.2 Tree-Search Tracker Development for Multiple Target Tracking

The stack algorithm navigates a tree in which each path corresponds to a possible sequence

of states visited by a target. The search tree is initiated using estimated target locations

provided by an external track initiation algorithm. A target ID t is associated with each

initial target estimate; the ID is carried with all path extensions to differentiate among

the paths associated to different targets. We describe an implementation in which a single

search tree is used to track all targets in the surveillance area. Hence, the initiation step

consists of storing all initial target state estimates in the stack. One could consider an

equivalent implementation in which individual trees (and hence individual stacks) are used

to track each target in view. Figure 5.22 provides a flow chart summarizing the tree search

procedure for multiple target tracking.

Without loss of generality, consider the procedure as applied to the target with ID

t = 1. All steps described are applied only to paths for which t = 1. Each time a new

scan is completed and the corresponding contacts are obtained by the tracker, the tracker

identifies the path with the largest metric, e.g. the most likely path. (If the stack has been
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Figure 5.22: Flow chart describing multi-target tracking via stack-based tree search.

sorted by metric value, this path is at the top of the stack.) The most likely path is extended

to all possible children; the metrics of the extended paths are calculated, and the paths are

placed in the stack. The parent (shorter) path is removed from the stack. If the most likely

path in the stack is extended to the current scan, its current state estimate is provided

as tracker output, and the algorithm waits for the next set of contacts to be obtained. If
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the most likely path contains fewer branches than the number of scans completed, it is

again extended to its children, and the process continues until the most likely path reaches

a length equal to the number of scans completed. Mathematical expressions for the path

metric are derived in Section 5.5.3.

Multi-target tracking introduces the challenge of estimating the states of targets that

travel in close proximity and may cross. When targets are near each other, joint association

of contact data to targets is typically required to provide strong tracking performance. Fig-

ure 5.23 provides a pictorial representation of the stack algorithm tracking two targets that

move into close proximity. At initiation of the stack algorithm, the two targets have distinct

location estimates. The initial node for each target is extended to a set of possible children

(discretized states), and the posterior likelihoods are calculated based on the contacts in

scan 1. The most likely path for each target is again extended and metrics calculated based

on the contacts in scan 2. Notice that, for target 1, the stack algorithm “looks back” and

extends a second path from scan 1 to scan 2 before finding the most likely path in scan 2

to extend to scan 3. At scan 3, the regions covered by the paths associated with targets

1 and 2 overlap. In this situation, the state estimates for both paths must be considered

when calculating the individual metrics of the paths associated with each target.

5.5.3 Derivation of the Path Metric for Multi-Target Tracking

In Section 5.2.3, we developed the path metric for a single target tracking scenario. When

multiple targets are present, the path metric for each target is related to the states of

the other targets and hence cannot be evaluated independently. To implement the MAP

criterion, the path metric must be proportional to the posterior probability density of the

target state conditioned on the observations from the sensor. At scan index k, the posterior

pdf of the lth candidate path for target t, given the observation matrix Zk and the best

estimate (e.g. most likely path in the stack) of the states of all other targets at scan index
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Figure 5.23: A graphical example of tree-search based multi-target tracking using the
stack algorithm. The two targets move progressively closer to each other during the three
scans shown.

k − 1, can be written as

p(x
t,(l)
k |Zk, x̂

1
k−1, · · · , x̂T

k−1) =
p(Zk|x

t,(l)
k , x̂1

k−1, · · · , x̂T
k−1)p(x

t,(l)
k |xt,(l)

k−1)

p(Zk|x̂1
k−1, · · · , x̂T

k−1)
.

Calculation of p(Zk|x̂1
k−1, · · · , x̂T

k−1) would require a summation over all possible discretized

target states xk, but the tree search evaluates the likelihood of only a subset of the possible

states. Note that this term is equal for all paths extended to scan index k. Particularly when

the clutter density is high, the variation of the denominator term with k will be negligible,

and hence we omit it in generating the path metric. The path metric is constructed using

the same definition as in (5.6) knowing that the likelihood function considers the estimated

states of all the targets (5.44).
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Due to the presence of multiple targets and clutter in the surveillance region, calcu-

lation of the likelihood function p(Zi|xt,(l)
i , x̂1

i−1, · · · , x̂T
i−1) must include data association.

In Section 5.2.4, we have implemented a data association technique, similar to the PDAF

technique, by expanding the likelihood function over all possible association hypotheses.

The same approach can be applied for multiple target tracking and similar to the JPDAF,

the association events must consider the existence of multiple targets. Letting β denote a

data association event (e.g. an association of contacts observed with targets in track), the

likelihood function can be expanded over all possible association hypotheses as

p(Zi|xt,(l)
i , x̂1

i−1, · · · , x̂T
i−1) = (5.44)∑

β

p(Zi|xt,(l)
i , x̂1

i−1, · · · , x̂T
i−1, β)p(β|x

t,(l)
i , x̂1

i−1, · · · , x̂T
i−1).

When multiple targets are present in the surveillance region, we apply the constraint that

a contact can be assigned to at most one target. (This is in contrast to algorithms such as

MHT that allow one contact to be assigned to multiple measurements in order to reduce

data association complexity.) This constraint is relevant, for example, in crossing targets

scenarios or when two targets are moving in close proximity. If the constraint is not applied,

two crossing targets may follow the stronger of the target contacts, resulting in both paths

following a single (stronger) target and the weaker target being lost. For ease of explanation,

consider two targets traveling in close proximity. Similar to existing approaches in evaluation

of the likelihood function [91], there are four possible detection scenarios: neither target is

detected, only one target is detected, and both targets are detected. The likelihood function
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for target 1 in the two-target scenario is calculated as

p(Zi|x1,(l)
i , x̂2

i−1) = (5.45)

(1− P 1
D)(1− P 2

D)µF (mi)
1

V mi

+µF (mi − 1)
1

miV mi−1

P 1
D(1− P 2

D)

mi∑
j=1

p(zj |x1,(l)
i ) + P 2

D(1− P 1
D)

mi∑
j=1

p(zj |x̂2
i−1)



+P 1
DP

2
DµF (mi − 2)× 1

mi(mi − 1)V mi−2

 mi∑
j=1

mi∑
k=1,k ̸=j

p(zji |x
1,(l)
i )p(zki |x̂2

i−1)

 ,

and the likelihood function for target 2 is computed similarly. Note that the likelihood

function for each target is dependent on estimates of other target locations; the effect of

other targets will be significant when they are close to the target under consideration.

One of the advantages of the stack algorithm is its ability to jump backward in the

tree when a shorter path appears more likely than the paths extended to the current scan

index. This feature gives tree-search based tracking the chance to “reconsider” when the

trajectory followed begins to look less likely. The jump-back capability of the stack algo-

rithm also poses a unique challenge for data association, however. The metric of any path

in the tree depends upon the current and previous location estimates of all targets in the

surveillance region. Hence, when the stack algorithm looks back and extends a shorter path

in the tree, the resulting changes in the estimated location of a target impacts the metrics

of paths associated with other targets. Recalculation of all metrics to reflect changes in

previous estimates is computationally prohibitive. Instead, we propose applying the results

of JPDAF-based data association only in forward path extensions. In other words, when

a past state estimate changes due to path extension, we modify the metrics only of newly-

extended paths and avoid recalculating existing path metrics. Since the dynamic state space

discretization is also a function of the locations of all targets, implementing forward-only

metric modification also avoids recalculation of discretization regions.
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5.5.4 Simulation of Crossing and Maneuvering Targets with Track Vali-

dation

We examine the performance of the tree-search based tracker with both multi-target as-

sociation and LLR-based track validation incorporated. We have simulated the algorithm

for two crossing and maneuvering targets. The targets begin by following the NCV mo-

tion model with parameters given by (5.37). The initial state of the first target is set to

[9 10 0.075 − 0.075]T , and the initial state of the second target is [11 10 − 0.075 − 0.075]T .

The initial velocities are chosen such that the target paths cross with high probability. Af-

ter 30 scans, the targets begin to turn in the direction opposite their velocity with a fixed

acceleration; the turn continues for 10 scans. For the final 10 scans of the simulation, the

targets return to following the NCV model with random (Gaussian) acceleration. For the

simulations in this section, target detection probability is given by PD = 0.85, and the

clutter density ζ varies between 0.5 and 2. Because the crossing and maneuvering targets

are much more challenging to track than the linear Gaussian target in Section 5.3, lower

clutter density levels were chosen for evaluation. The sensor measures the target location

in polar coordinates, e.g. bearing and range. The measurement function is given by

H(xk) =

 tan−1( ykxk
)√

x2k + y2k

 . (5.46)

The measurement noise wk is assumed Gaussian with zero mean and standard deviation of

0.1 degrees in bearing and 0.01 distance units in range.

To track the targets, we have applied the tree-search tracker with and without track

validation, and we have compared its performance to that of the EKF combined with the

joint probability data association filter (EKF-JPDAF) [77], and the PF [68]. The proposed

PF algorithm implements 2000 particles. The importance sampling function is selected

using (5.23) and the likelihood function is calculated considering joint probabilistic data
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Figure 5.24: A sample realization of two crossing and maneuvering targets. Both the
tree-search tracker and the EKF-JPDAF lose the targets when tight turns are initiated.
Track validation is not integrated in the tree-search tracker in this example.

association (5.45). The re-sampling step is performed when the number of effective particles

drops below one tenth of the total number of particles. As in Section 5.3, a stack size of

256 is used for all tree-search tracker simulations. The LLR threshold τ is set to 3, which

corresponds to PTT = 0.99 and PFA = 0.015. The parameter of exponentially decaying

window for track validation is selected as η = 0.8, yielding a memory of approximately

5 scans to declare a lost target. A sample realization of the crossing and maneuvering

targets is shown in Figure 5.24. The clutter density is ζ = 1 for this realization. The track

estimates generated by the tree-search tracker without track validation, the EKF-JPDAF,

and the PF are also shown. The tree-search tracker follows target 1 tightly and target 2

loosely until the two targets enter turns at scan 30. At this point, the tree search tracker

loses both targets and instead follows clutter. The EKF-JPDAF follows target 2 closely

until the turn, but it begins to lose target 1 even before the turn is initiated. The PF,

however, is able to track both targets before the turn is initiated.
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Figure 5.25: The same realization of crossing and maneuvering targets as shown in Fig-
ure 5.24, but likelihood-based track validation is now integrated in the tree-search tracker.
With validation, the tracker can hold target 2 through the turn and can identify target 1
as lost when the turn begins.

To illustrate the benefits of integrating track validation within the tree-search based

tracker, we consider the same realization but now with validation incorporated in the stack

algorithm. The results are shown in Figure 5.25. To integrate track validation within the

tree-search tracker (rather than treating it as an external element), we simply remove from

the stack any target paths whose LLR is below the threshold τ . Since the path likelihood is

evaluated as part of the metric calculation in (5.44), calculation of the LLR does not impose

any additional computational load on the tracker. In addition, culling the stack based on

path LLR improves performance for fixed memory by freeing stack space for more promising

paths. Figure 5.25 shows that the tree-search tracker with integrated track validation tracks

target 2 much more tightly than without validation, and it is able to follow target 2 through

the hairpin turn. While the enhanced tree-search tracker doesn’t follow target 1 through

the turn, the validation scheme does recognize that the target has been lost and terminates

the track.
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Two hundred realizations of the crossing and maneuvering targets scenario were simu-

lated, and the average performance results are summarized in Table 5.4. The tree-search,

the EKF-JPDAF, and the PF trackers were evaluated based on the percentage of targets

lost, where a lost target was defined as one for which the distance between the true and

estimated tracks was at least twice the standard deviation of the measurement noise. All

simulated algorithms were able to follow all targets through the cross. The averaged results

show that the tree-search tracker outperforms the PF and is able to reduce the number of

lost targets by a factor of approximately three relative to the EKF-JPDAF. Target loss,

when it occurred, typically occurred during the tight target turn, confirming the perfor-

mance advantage of the tree-search tracker for following maneuvering targets.

Table 5.4: Tracking performance of the tree-search tracker with validation and that of the
EKF-JPDAF, and PF.

Clutter
Density

Lost Targets
Tree-Search Tracker

Lost Targets
EKF-JPDAF

Lost Targets
PF

0.5 9 % 18 % 15 %

1 16 % 22 % 20 %

2 20 % 32 % 27 %

Table 5.5: CPU time usage of the simulated stack-based tree search, EKF-JPDAF, and
PF algorithms. The expected value (EV) and the standard deviation (Std) of the CPU
time is calculated for each algorithm.

Clutter
Density

CPU Time
Tree-Search

CPU Time
EKF-JPDAF

CPU Time
PF

0.5
EV: 107.9s
Std: 71.5s

EV: 0.2s
Std: 0.03s

EV: 44.8s
Std: 0.3s

1
EV: 159.3s
Std: 107.2s

EV: 0.75s
Std: 1.5s

EV: 46.8s
Std: 0.4s

2
EV: 264.9s
Std: 142.8s

EV: 1.23s
Std: 0.8s

EV: 49.2s
Std: 0.4s

In addition to performance comparison between the simulated algorithms, the expected

value and the standard deviation of the CPU time usage is calculated for each tracker. The

results are presented in Table 5.5. As we expect, the EKF-JPDAF is the fastest technique

among the simulated algorithms. The CPU time usage of the PF is smaller than that of the
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stack-based tree search algorithm, and it slightly increases in the environments with higher

clutter density due to an increase in the frequency with which the re-sampling procedure

must be performed. The CPU time of the stack-based tree search algorithm, however, more

than doubles as clutter density increases from 0.5 to 2. One notable parameter in the CPU

time usage of the stack-based tree search algorithm is its large standard deviation. This

means that the CPU time usage notably varies for each realization of the simulated targets.

In some realizations, positions of the clutter contacts and the observation noise may force

the stack algorithm to expand more paths in the search tree. Although the stack-based tree

search shows higher complexity in comparison with the PF and the EKF-JPDAF, it can

still be implemented in real time for many sonar applications. The average CPU time for

each estimation update of the target is equal to the average CPU time usage divided by

the number of the scans. As an example in clutter density 2, it takes about 5.2 seconds for

the stack algorithm to update the states of both targets. This time is acceptable for many

sonar target tracking applications in which the time between the successive scans is often

larger than one minute.

The CPU time usage does not represent an exact complexity comparisons, and its value

depends on the implementation of the algorithms and the specifications of the simulating

machine. Analytical complexity evaluation of the stack-based tracker algorithm is beyond

the scope of this research and is considered as a future work.

5.6 Analysis of Path Metric Behavior

In some applications such as sonar target tracking, the mean square error (MSE) does not

provide a complete evaluation of the performance of the tracker. In addition to estima-

tion accuracy provided by the MSE, it is important to understand how often the tracker

successfully follows the true target path. In fact, if the target is tracked, then the MSE

becomes important and shows the accuracy of the estimation. In an environment with high

clutter density, the tracker may follow clutter observations instead of the true target path.

Therefore, it is very important to study the conditions in which the tracker loses the true
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target path.

In this section, we seek an approach to evaluate the performance of the stack algorithm

based on different system parameters. The stack algorithm is a tree search algorithm, and

the estimation is performed by comparing the path metric of the existing paths of the search

tree. Therefore, statistical analysis of the path metric provides a means to evaluate the

performance of the stack algorithm. We first evaluate the probability distribution function

of a general path metric. In Section 5.6.1, we analytically approximate the probability

distribution function of a path metric under a no-clutter condition, perfect observability

of the target, and the absence of discretization error. In Section 5.6.2, we extend the

distribution approximations considering clutter contacts, discretization error, and non-unity

target detection probability. Discussion of the results is provided in Section 5.6.3.

5.6.1 Statistical Analysis of the Path Metric in the Absence of Clutter

We seek to estimate the probability distribution function of a general path metric within

the stack. We first start with the true target path and we ignore existence of clutter, dis-

cretization noise, and missed detections. The target dynamic state space model is assumed

to be

xk = Fxk−1 +Gvk (5.47)

zk = Hxk +wk, (5.48)

where vk ∼ N (0,Σv) is the process noise vector with length of L and wk ∼ N (0,Σw)

is the measurement noise vector with length of D. In the absence of clutter, there is no

data association hypothesis, and the metric of the estimated path {x̂1, · · · , x̂k} using (5.6)
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simplifies to

b̄
(i)
k =

1− λ

1− λk−1
(5.49)

k∑
l=2

λk−l

(
1

2

(
G+(x̂l − F x̂l−1)

)T
Σ−1
v

(
G+(x̂l − F x̂l−1)

)
+

1

2
(zl −Hx̂l)

TΣ−1
w (zl −Hx̂l)

)
,

In deriving (5.49), we have multiplied the metric by −1 and eliminated the constant term

1−λ
1−λk−1

∑k
l=2 λ

k−l
[
L+D
2 log(2π) + 1

2 log(|Σv|) + 1
2 log(|Σw|)

]
since it only shifts the expected

value of path metric and it is equal for all the paths. To define a non-target path, we define

a difference state vector as the difference between the true target path and the estimated

target path. We denote the true target path by {x1, · · ·xk} and the state difference between

the true target state and the estimated target state by

di = x̂i − xi. (5.50)

We substitute (5.50) into (5.49) to yield

b̄
(i)
k =

1− λ

1− λk−1

k∑
l=2

λk−l

(
1

2

(
G+(xl + dl − Fxl−1 − Fdl−1)

)T
Σ−1
v

(
G+(xl + dl − Fxl−1 − Fdl−1)

)
+

1

2
(zl −Hxl −Hdl)

TΣ−1
w (zl −Hxl −Hdl)

)

=
1− λ

1− λk−1

k∑
l=2

λk−l

[
1

2

(
vl −G+(Fdl−1 − dl)

)T
Σ−1
v

(
vl −G+(Fdl−1 − dl)

)

+
1

2
(wl −Hdl)

T Σ−1
w (wl −Hdl)

]
. (5.51)
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Note that the target dynamic state space model (5.47), (5.48) has been applied to derive

the metric based on random vectors v and w. Defining the random variable υl as

υl =
(
vl −G+(Fdl−1 − dl)

)T
Σ−1
v

(
vl −G+(Fdl−1 − dl)

)
(5.52)

+ (wl −Hdl)
T Σ−1

w (wl −Hdl) ,

the path metric is simplified to

b̄
(i)
k =

1− λ

1− λk−1

k∑
l=2

1

2
λk−lυl. (5.53)

The random variable υl is the sum of the quadrature of independent random vectors vl −

G+(Fdl−1−dl) and (wl−Hdl). Because of the Gaussian state space model assumption, the

random vectors vl −G+(Fdl−1 − dl) and (wl −Hdl) are Gaussian with expected values of

G+(Fdl−1−dl) and Hdl, and the covariance matrices of Σv and Σw respectively. Therefore,

the random vector υl is a non-central Chi-square random variable with D + L degrees of

freedom and non-centrality parameter

δl =
(
G+(Fdl−1 − dl)

)T
Σ−1
v G+(Fdl−1 − dl) + (Hdl)

TΣ−1
w (Hdl). (5.54)

The metric defined by (5.53) is the weighted sum of the Chi-square distributed random

variables υl. The non-centrality parameter of the random variable υl depends on the vector

Fdl−1 − dl, which can be viewed as the innovations element of the state difference vector.

For the true target path, ignoring the discretization error, the state difference vector is

zero, i.e. dl = 0 for l = 1, . . . , k. We assume that the innovation state difference vector is

independent across l since it is affected by the state process noise vector vl, the observation

noise vector wl, and clutter observations which are independent across l. Therefore, the

random variables υl are independent across l.
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The probability distribution function of the sum of infinite independent random variables

has been studied well in advanced statistics [81]. Due to the exponential windowing, the

sum in (5.53) is not an infinite sum, and the number of effective elements in the sum is

governed by the window parameter λ. We first assume that the window length is infinite

and we approximate the distribution of the path metric. Then, we discuss the effect of short

window length on the distribution.

For a long window length (λ ≈ 1), the sum in (5.53) is not limited by the window length

and considering large k, we assume that the number of elements in the sum is infinite. It

is shown in Appendix B that the non-identically distributed random variables υi satisfies

the Lyapunov condition. Therefore, the Lyapunov central limit theorem can be applied and

the path metric converges in distribution to Gaussian distribution with expected value and

variance of

b
(i)
k ∼ N (µbk , σ

2
bk
)

where , µbk =

[
1− λ

1− λk−1

k∑
l=2

λk−l

(
−1

2
(D + L+ δl)

)]

and , σ2bk =

[(
1− λ

1− λk−1

)2 k∑
l=2

(
λk−l

)2 1
2
((2D + 2L+ 4δl))

]
. (5.55)

For a short window length, we can not apply the Lindeberg-Feller or Lyapunov central

limit theorems since Lindeberg’s condition [81] is not satisfied. We know from the statistics

that if a sequence of independent random variables is not uniformly asymptotically negligible

(u.a.n.), then Lindeberg’s condition is not satisfied. Denoting the variance of υi by σ
2
i , we
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find

lim
k→∞

maximum variance of the contributed elements

variance of the total sum
=

σ2υ∑k
l=1 λ

2(k−l)σ2υ

= lim
k→∞

1∑k
l=1 λ

2(k−l)

= 1− λ2 ̸= 0,

and hence the sequence of variables υi is not u.a.n. We see that when λ ≈ 1, then the

path metric converges in distribution to Gaussian distribution. For the general case, the

convergence depends on the value of λ. For λ ≈ 0, we only have one element in the

summation, and the distribution function of the path metric is equal to the distribution of

υk. In target tracking applications, however, the value of λ is usually selected between 0.8

and 1, which suggests that the Gaussian approximation may be appropriate. We use the

Kolmogrov-Smirnov (KS) statistical test [92] to compare the approximated distribution from

(5.55) with that of the empirically generated distribution by Monte-Carlo simulation. To

generate an empirical distribution and compare it with a Gaussian distribution, we simulate

the tracking problem using the specific parameters that are defined as follows. The system

state vector is defined as xk = [x y ẋ ẏ] where x and y denote the target location in

Cartesian coordinates and ẋ and ẏ denote the target speed in x and y dimension. The

state space model parameters, F and G are fixed as in (5.25) and the observation transition

matrix H is

H =

 1 0 0 0

0 1 0 0

 , (5.56)

to meet a linear-Gaussian model. The covariance matrix of the state process noise and the

measurement noise are given by Σv = 0.0025I2 and Σw = 0.04I2. The results of the Monte-

Carlo simulation are shown in Figure 5.26 for the true target path and two different sets of

window parameter λ and data length k. We first set the values for k and λ as k = 50 and
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Figure 5.26: Comparison of the empirical cdf of the target path metric (FD1) with the
cdf of Gaussian distribution (FD0) for different set of k and λ. For large k and λ ≈ 1, the
KS test results in max |FD1 −FD0| = 0.005. For k = 50 and λ = 0.9, the KS test results in
max |FD1 − FD0| = 0.017, which still shows acceptable approximation.
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Figure 5.27: Comparison of the empirical pdf of the target path metric with the Gaus-
sian pdf for different value of k and λ. The Gaussian approximation is acceptable for
practical values of k and λ, and it converges well as k increases and λ ≈ 1.
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λ = 0.9. We see that the empirical cumulative distribution function (cdf) is well matched

to the analytical Gaussian cdf with parameters calculated from (5.53). The maximum

absolute difference between the two cdfs is 0.017, which shows that the approximated cdf

fits the data with precision higher than 98%. In the second set of parameters, we seek

to test the convergence to the Gaussian probability distribution by increasing the window

size and the data length. We set k = 10000 and λ = 0.9999, and the maximum absolute

difference between the two cdfs decreases to 0.005. This shows that the distribution of the

sum becomes closer to a Gaussian distribution.

Figure 5.27 shows the comparison of the empirical pdf and the Gaussian pdf. The

expected value and the covariance of the Gaussian pdf is derived using (5.55). We can see

that the empirical pdf of the path metric matches well with the Gaussian pdf also for small

k and λ.

In Figure 5.28, we fix the value of k at 50, and we vary the value of λ to see the effect of

the window length on the distribution approximation. If we set the accuracy threshold to

96%, we see that by selecting λ > 0.5, the distribution can be well approximated by (5.53).

In the following section, we extend the results of this section to calculate the probability

distribution function of the path metric considering clutter, discretization error, and missed

target detections (PD ̸= 1).
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Figure 5.28: KS test results for different values of windowing parameter. We can see that
the Gaussian approximation matches well for λ > 0.5, which is always met in our simu-
lated stack-based tracker.

5.6.2 General statistical analysis of the path metric

In this section, we empirically approximate the probability density function of the path

metric considering data association uncertainty, discretization error, and non-perfect ob-

servability of the target. Using (5.6), the path metric can be written as

b
(i)
k =

1− λ

1− λk−1

k∑
l=2

λk−l

[
−1

2

(
G+(x

(i)
l − Fx

(i)
l−1)

)T
Σ−1
v

(
G+(x

(i)
l − Fx

(i)
l−1)

)

+ log

ω0 +

mk∑
j=1

ωj
1

(2π)L/2|Σw|1/2
exp(−1

2
ηjl )

 (5.57)

=
1− λ

1− λk−1

k∑
l=2

λk−l

−1

2
ϵl + log

ω0 +

ml∑
j=1

ωj
1

(2π)L/2|Σw|1/2
exp(−1

2
ηjl )

 ,
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where ωj denotes the probability of the jth data association event as defined in Section

5.2.4 and
∑

j ωj = 1. The gating technique is imposed on the measurement dataset to filter

out unlikely observations, and ml denotes the number of observations that lie inside the

gate. Similar to the no-clutter case, a constant term is eliminated from the path metric for

simplicity. The random variables ϵl and η
j
l in (5.57) are defined as

ϵl =
(
vl −G+(Fdl−1 − dl)

)T
Σ−1
v

(
vl −G+(Fdl−1 − dl)

)
,

ηjl = (wl −H (xl − dl))
T Σ−1

w (wl −H (xl − dl)) .

For the true target path in the search tree, when discretization error is present, the state

difference vector dl is uniformly distributed in the discretized cell to represent the discretiza-

tion error. For a non-target path, the state difference vector is the summation of uniformly

distributed discretization error and the state estimation error, which is the difference be-

tween the true target state and the estimated target state.

The metric in (5.57) is the combination of multiple independent random variables ϵl,

ηjl , and dependent random variables ωj and ml. While the random variables ϵl, and η
j
l are

Chi-square distributed, the analytical derivation of the path metric distribution is challeng-

ing since the Chi-square random variables ηjl are randomly weighted by data association

probabilities ωj , and the number of observations ml is Poisson distributed. However, the

generalized central limit theorem suggests that the path metric may converge in distribution

to a Gaussian random variable. Mathematical proof of the distribution convergence is only

possible for long window length (λ ≈ 1) and will be challenging due to the combination of

multiple independent random variables in (5.57). Similar to the no-clutter case analyzed in

Section 5.6.1, we approximate the probability distribution function of the path metric with

a Gaussian distribution and use the KS test to verify the approximation.

We use the same parameters as in Section 5.6.1 to generate the empirical distribution of

the path metric, but we set the clutter density to ζ = 1 and the target detection probability
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Figure 5.29: Approximation of the empirical path metric pdf by a Gaussian distribution
for a true target path and a non-target path. The KS test for the non-target path results
in max |FD1−FD0| = 0.043 and for a true target path results in max |FD1−FD0| = 0.02. It
can be seen that the centers of the pdf functions are well separated, but the distributions
do exhibit overlap in their tails.

to PD = 0.9 to see the effect of clutter and missed target detections. We empirically generate

the path metric of the true target path and of a non-target path. We consider a non-target

path as a path that does not receive any true target observations in its validation gate, and

hence its metric is a function of clutter-generated observations. The probability distribution

functions of the path metrics for target and non-target paths are depicted in Figure 5.29.

The KS test shows that the maximum difference between the empirical cdf and the Gaussian

approximation cdf is 0.02 for the true target path and 0.043 for a non-target path. This

shows that the accuracy of Gaussian approximation is about 96% for the a non-target path

and about 98% for the true target path.

Due to non-linear transformations of multiple random variables in (5.57), the analytical

calculation of the expected value and the variance of the approximated distributions is a
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challenge; hence, we suggest using Monte-Carlo simulations to approximate the expected

value and variance of the distribution. We use the Monte Carlo approximated expected

value and variance of the Gaussian distribution to generate the Gaussian pdf in Figure

5.29. In the following section, we implement the results of the distribution approximation

to analyze the behavior of the path metric as a function of discretization error, observation

noise, and clutter density.

5.6.3 Characterizing Path Metric Sensitivity

In this section, we use the results of Section 5.6.2 to study how the behavior of the path

metric (and hence the stack algorithm) varies with model and environmental parameters.

For performance evaluation, we are interested in understanding the conditions under which

the tracker fails in tracking a target. Using the stack algorithm, the estimated target path

has the largest metric among all the paths explored within the search tree. To evaluate the

probability of losing the target path, we need to consider the conditions in which the path

metric of a non-target path is larger than that of the true target path. The stack algorithm

does not explore all possible paths in the search tree, and hence one must also consider

whether or not a particular path in the search tree has been explored. The number of paths

that are explored in the search tree depends on many system parameters, such as clutter

density, target observability at the receiver, observation noise covariance, initial estimation

of the target state, and the target trajectory. Therefore, evaluating the probability of losing

the target is a challenging problem, and the proposed adaptive discretization technique adds

an additional element to this challenge.

Considering the challenge of performance evaluation in the stack algorithm, we seek

an approach to simplify the problem. We first assume that all paths are explored in the

search tree. This assumption simplifies the problem since we are not required to calculate

the probability that a specific path has been explored in the search tree. Then instead of

calculating the probability of losing a target, which is dependent upon the particular target

trajectory, we consider a simplified criteria, denoted by pl: the probability that the path
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metric of the true target path is smaller than that of the non-target path with the largest

expected path metric. Although pl is not equivalent to the probability of losing a target, it

helps us to study the conditions under which the tree-search tracker can not discriminate

between the true target path and the non-target paths within the search tree.

For calculating pl, we denote the true target path metric by bt and the path metric of the

non-target path with largest expected path metric by bl. Assuming that bt is independent

of bl, pl is given by

pl = P (bl > bt)

=

∫ ∞

−∞
pbt(τ)

∫ ∞

τ
pbl(ν)dν dτ, (5.58)

where pbt(b), and pbl(b) are probability distribution functions of bt and bl, respectively. The

non-target path with largest expected path metric is identified from (5.57). In (5.57), the

effect of random variable ηjl will be negligible for non-target paths, since a non-target path

sees only the clutter observations, which are assumed to be uniformly distributed in the

surveillance region. Therefore, the path with ϵl = 0 has the largest expected path metric

value among all non-target paths. For a linear-Gaussian model defined in (5.47), (5.48),

this path is the constant velocity target path. Figure 5.30 shows an example of the constant

velocity path and the true target path. Suppose that the target makes a slight turn to the

right in its trajectory. In this case, the constant velocity path (straight path) becomes a

non-target path and it has the largest expected path metric among the non-target paths of

the search tree.

Characterizing path metric sensitivity, we consider the same system parameters as in

Section 5.6.2 and calculate the value of pl across a range of values of observation noise,

clutter density, and target detection probability. Figure 5.31 shows variations of pl as a

function of clutter density. The clutter density varies from low (ζ = 0.5) to very high

(ζ = 3.5). The observation noise covariance matrix is set to Σw = 0.004 × I2, and pl
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Figure 5.30: An example of true target path and the constant velocity path that has the
path metric with largest expected value among non-target paths. When the target turns,
the expected value of its path metric decreases. This increases the chance of selecting the
constant velocity path.

is calculated for different target detection probabilities PD. We see that in low clutter

density, the probability that the stack-based tracker selects the true target path is close to

unity, since pl is close to zero. The value of pl increases with increasing the clutter density

and decreasing the probability of target detection. In this case, the probability that the

stack based tracker selects a non-target path increases. As an example, with PD = 0.7 and

ζ = 2.5, the constant velocity path has a larger metric than the target path with probability

0.1; when the probability of detection is increased to PD = 0.9, the probability of selecting

the constant velocity path is about 0.0005 .

In Section 5.2.5, we develop a sampling based discretization scheme to reduce discretiza-

tion error of the proposed stack-based tracker. In designing a discretization technique for

the stack-based tracker, we need to consider the effects of the discretization error on the

path metrics. Figure 5.32 shows the effect of discretization error on variations of pl, again as

a function of clutter density. The probability of target detection is set to PD = 0.85. In low

observation noise (Σw = 0.004 × I2), values of pl for the sampling discretization technique

are smaller than that of the fixed discretization technique and the ability of the stack-based

tracker in identifying the true target path improves when using the sampling discretization.

In higher observation noise (Σw = 0.02× I2), however, the observation noise dominates the

discretization error and the ability of the stack-based tracker in identifying the true target

path is more affected by the observation noise.
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Figure 5.31: Variations of pl as a function of clutter density for different target detection
probabilities. The observation noise covariance matrix is set to Σw = 0.004× I2.

Figure 5.33 shows the effect of observation noise on the path metric sensitivity as a

function of clutter density. The probability of target detection is set to PD = 0.85. Three

scenarios have been considered for the observation noise. In the first scenario, the obser-

vation noise covariance matrix is set to Σw = 0.004× I2. In this case, the stack algorithm

is able to detect the true target path with high probability. In the second scenario, the

observation noise covariance matrix is set to Σw = 0.02× I2 and in the third scenario, the

observation noise is set to Σw = 0.04 × I2. We see that high observation noise reduces

contributions of the true target observations in the true target path metric, and hence the

probability that the stack-based tracker identifies the target path decreases.

Using path metric sensitivity analysis, we calculated the probability that the stack

algorithm fails to track the true target path and instead follows the constant velocity path.

In our evaluation, we assumed that the constant velocity path is present in the search tree

and we didn’t consider applying the track validation technique discussed in Section 5.5.4.

From the point of view of the track validation technique, the constant velocity path doesn’t

have any advantage in comparison to other non-target paths, since the tracks are validated
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using the likelihood function of the observations. Therefore, applying the track validation

technique improves the ability of the stack based tree search algorithm to maintain the true

target path specially in high clutter density and high measurement noise.
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Figure 5.32: Effect of discretization error on values of pl as a function of clutter density.
While the sampling discretization technique has much smaller values of pl in low observa-
tion noise (Σw = 0.004 × I2), in higher observation noise (Σw = 0.02 × I2), pl is more
affected by the observation noise than the discretization error.
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Figure 5.33: Effect of observation noise on values of pl as a function of clutter density.
The observation noise is set as follows: scenario 1: Σw = 0.004 × I2, scenario 2: Σw =
0.02 × I2, and scenario 3: Σw = 0.04 × I2. Probability of target detection is set to PD =
0.85.
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Chapter 6: Conclusions

We have developed tree search techniques for approximating the MAP solution to gen-

eral detection and estimation problems that fit within a dynamic state space model. The

proposed techniques use noisy observations to sequentially estimate the system state in a

discrete or discretized continuous state space. We showed that the applications of the tree-

search algorithms are not limited to linear-Gaussian state space models and the proposed

techniques perform well in the presence of severe nonlinear dynamic state space models.

We applied the proposed techniques in wireless communication applications including

blind channel equalization and modulation classification. In blind channel equalization, we

considered the joint channel equalization and decoding problem. Using a forgetting factor

matched with the variation rate of the channel, we successfully applied the algorithm for

time-varying channels. The algorithm was compared with LMS-Viterbi algorithm and the

combined particle filtering equalizer-Viterbi decoder algorithm. We addressed the challenges

of implicitly estimating a dispersive fading channel whose effective order may also vary

with time. Simulation results show that the proposed detector can achieve lower BER

than competing blind detection schemes, even when only the proposed algorithm faces

uncertainty in the channel order.

For modulation classification applications, we applied the tree search technique for joint

channel estimation and data detection considering all possible modulation schemes of the

transmitted sequence. We implemented the M-algorithm for tree search to reduce the

complexity of the search tree. The statistical analysis of the estimation error was successfully

used for classifying the modulation scheme of an unknown signal. The proposed algorithm

is compared with Gibbs sampling technique, and the simulation results reveal superior

performance of the proposed algorithm in classification of high density modulation schemes

using a low number of observation sequences.
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We also applied stack-based tree search techniques to the challenge of multiple target

tracking. We presented a novel approach to target tracking in which each possible sequence

of target states is mapped to a path through a tree, and the stack algorithm for depth-

first tree search is employed to identify the most likely sequence of the states. We then

proposed a sampling technique to identify points in each of the discretized cells for state

space discretization. The proposed sampling technique reduces algorithm complexity by

allowing for coarser state space discretization and thereby generating a smaller search tree.

While the sampling based approach does require evaluation of the posterior density at

multiple points in each discretized region, the net effect of reduced tree size results in a

significant improvement in algorithm speed. Performance results reveal that the sampling

stack tracker performs better than particle filtering technique and significantly outperforms

the EKF-PDA in the presence of clutter and possibility of missed target.

An LLR-based track validation technique embedded in the tree-search based tracker

has been developed to terminate false tracks and lost targets within a few scans. Using the

LLR-based track management technique, we extended the stack-based tracker to address

multistatic sonar tracking and multiple target tracking. The performance of the algorithm

has been evaluated on data obtained from the SEABAR’07 experiment. Performance re-

sults show that the stack-based tracker is able to follow the target trajectory closely and

to maintain track through highly nonlinear maneuvers. We evaluated the ability of the

proposed tree search algorithm in discriminating the true target path with other non-target

paths by approximating the probability distribution function of the path metric. We stud-

ied variations of different system parameters such as probability of missed-target, clutter

density, and variance of the observation noise on the ability of the stack to maintain the

true target path. The results of this analysis are important in design and implementation

of the proposed technique in different applications.

Implementation of the stack algorithm for applications with a large number of unknown

parameters, such as modulation classification, must be performed with caution due to pos-

sible local maximums in the calculated path metric. Since the stack algorithm partially
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explores the search tree, it may follow a path through a local maximum of the posterior

probability mass function, and hence the true solution may not be expanded by the search

tree. In these applications, the M-algorithm (or a similar algorithm) that manually explores

more paths is preferable, since the probability that the true solution path is explored by

the search tree increases.

6.1 Future Work

Based on the empirical and simulation results of the proposed tree-search techniques for

detection and estimation problems, the algorithms show promise for further development

and evolution. In wireless communication systems, we assumed that system parameters

such as variance of the additive noise are known. Extension of the proposed algorithms for

estimating the measurement noise variance and applying the estimate in the path metric of

the search tree is a topic for future work. Additionally, we proposed a simple approach for

dealing with unknown channel length, but the approach does not explicitly estimate channel

length. Further research in this area could include directly estimating the channel length

and applying the results in the path metric. This technique may reduce the performance

loss due to channel length uncertainty.

The proposed approach in classification of different QAM modulation schemes can be

extended to modern communication systems which employ OFDM (Orthogonal Frequency

Division Multiplexing) for transmission. Applying the proposed modulation classifier to

each sub-carrier of an OFDM modulated signal may be cumbersome, and development of

faster tree search techniques is required. Additionally, the proposed blind channel equal-

ization and modulation classification techniques can be applied in communication systems

with multiple receivers. A multiple receiver communication system is interpreted as either

a single receiver with multiple receive antennas or multiple receivers located in separate

locations with the ability to communicate with each other. For these applications, the path

metric must be modified in a way to incorporate the measurements across all receivers.

The proposed stack-based target tracking algorithm has the potential to be developed
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in different scenarios. The proposed algorithm assumes that the number of existing targets

and the initial location of each target are known. In reality, a track initiation algorithm

must be applied to initialize the possible target tracks in the region. We used a simple

approach for track initiation of SEABAR’07 dataset, and we proposed a track management

technique for identifying false tracks and validating the target tracks. Future extension of

the proposed target tracking technique could include using tree search techniques for track

initiation. In this scenario, a tree search technique can be applied to locate the high peaks

of the likelihood ratio function for initiating possible target tracks.

In developing a stack-based tree search technique, we assumed that the target state

space model is provided for the tracker. In a real target tracking system, this information

may not be provided or the system parameters may change during target tracking. Ex-

tension of the proposed algorithm in applications with uncertain target state space models

is interesting in sonar and radar target tracking, since the target may maneuver in many

of these applications. The extension can be performed in either developing the path met-

ric using possible different dynamic state space models for a target or developing a track

management technique to monitor the target trajectories.

In all applications we considered, the complexity of the full tree search algorithm is

reduced by implementing partial tree search algorithms such as the stack algorithm or the

M-algorithm. While the computational complexity of the M-algorithm is deterministic, for

the stack algorithm complexity varies with observation noise and other system parameters.

However, the computational complexity of the stack algorithm with the same size path

memory is lower than or equal to that of the M-algorithm. Statistical complexity analysis

of the stack-based target tracking algorithm is considered as an extension of this research.

The results of the computational analysis would be useful in better design and development

of the stack algorithm for specific detection and estimation applications.
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Appendix A: SEABAR’07 Dataset Observation Model

The SEABAR07 experiment took place in the Mediterranean Sea in October 2007 [84].

The experiments included one transmitter and three receivers. In the SEABAR’07 dataset,

the observations are provided in the form of the time difference of arrival (TDOA), angle

of arrival (bearing), and range rate (CW only). This appendix describes the measurement

fields that are provided in SEABAR’07 dataset and describes the relationship between the

system state vector and the observation vector. The geometrical derivations are provided

by Coraluppi [87] for a multistatic sonar system.

The SEABAR’07 dataset is available in separate folders for FM signals and for CW

signals. The following fields are available for each contact:

• time: shows the received time of the contact

• source_position: location of the transmitter in attitude and longitude format.

• receiver_position: location of the receiver in attitude and longitude format

• source_velocity: the velocity of the transmitter

• receiver_velocity: the velocity of the receiver

• sound_speed: speed of the sound in water, equal to 1500 m/s for all contacts.

• type: shows the type of the measured informations. The first element of the measure-

ment vector is the time difference between the transmitted signal at the transmitter

and the received signal at the receiver. The second element is the bearing of the

received signal. For CW signals, there is an additional range rate measurement that

shows the speed of the repeater.
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• measurement: measurement matrix.

• covariance: covariance error of each measured vector in measurement field.

• truth: 0 if the measurement is related to clutter and non-zero for measurements from

the target; this value is provided intentionally to evaluate the performance of the

tracker and cannot be used as a measurement in simulations.

• contact_id: shows the contact identification code. Each contact has its own contact

identification code that is unique within a scan.

• snr: shows the SNR of the received contact.

We consider a single source and R receivers present in the region of interest. We assume

that the source and receiver locations are known (at least approximately) to the trackers,

and we denote them in a Cartesian coordinate system by (xs, ys) and (xr, yr) respectively.

Let the vector x denote the state of the target, including the target location (x, y) and the

target speed (ẋ, ẏ). The measurements in the form of Bearing, time difference of arrival

(TDOA), and range-rate are related to the target state by


Bearing

TDOA

Range Rate

 = (A.1)


tan−1

(
x−xr
y−yr

)
1
C

(√
(x− xs)2 + (y − ys)2 +

√
(xr − x)2 + (yr − y)2 −

√
(xr − xs)2 + (yr − ys)2

)
ẋ(x−xs)+ẏ(y−ys)

2
√

(x−xs)2+(y−ys)2
+ ẋ(x−xr)+ẏ(y−yr)

2
√

(x−xr)2+(y−yr)2

 ,

where C denotes the sound speed in the water.
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Appendix B: Distribution of the Sum of Non-central

Chi-square Distributed Random Variables

In probability theory, the distribution of the sum of independent random variables has been

studied through the central limit theorem. While the conventional central limit theorem

requires independent random variables to be identically distributed, the generalized central

limit theorems consider independent random variables that are not identically distributed.

The Lindeberg-Feller and Lyapunov central limit theorems consider the conditions in which

the sum of independent random variables converges in distribution to a Normal (Gaussian)

distribution. In this appendix, we check the Lyapunov conditions for sum of independent

non-centralized chi-square distributed random variables, and we prove that the distribution

converges to a Normal distribution. First we recall the Lyapunov central limit theorem.

Lyapunov Central Limit Theorem: Lets xi denote the set of independent random

variables with finite expected value µi and variance σ2i . Define S2
n =

∑n
i=1 σ

2
i . The sum of

(xi−µi)/σi converges in distribution to a standard Normal random variable if the Lyapunov

condition

lim
n→∞

1

S2+δ
n

n∑
i=1

E
[
|xi − µi|2+δ

]
= 0 (B.1)

is satisfied for some δ > 0.

If xi denotes a non-central chi-square random variable with ki degree of freedom and

non-centrality parameter of λi, then its second central moment (variance) is 2(ki+2λi) and
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its third central moment is 8(ki + 3λi). Setting δ = 1 in (B.1), we have

lim
n→∞

1

S3
n

n∑
i=1

E
[
|xi − µi|3

]
= lim

n→∞

∑n
i=1 8(ki + 3λi)

(
∑n

i=1 2(ki + 2λi))3/2

< lim
n→∞

8nmax(ki + 3λi)

(2nmin(ki + 2λi))3/2

= lim
n→∞

M
1√
n

where M <∞

= 0. (B.2)

We can see that the sum of independent non-central distributed random variables satisfies

the Lyapunov condition if M ∝ max(ki+3λi)

(min(ki+2λi))3/2
is finite. Therefore, the sum converges in

distribution to a Normal distribution.
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