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Abstract

PROPERTIES OF RINGS AND OF RING EXTENSIONS THAT ARE
INVARIANT UNDER GROUP ACTION

Amy D. Schmidt, PhD

George Mason University, 2015

Dissertation Director: Dr. Jay Shapiro

We expand the work in invariant theory inspired by Hilbert’s Fourteenth Problem [24].

Given a commutative ring with identity R and a subgroup G of the automorphism group of

R, the fixed ring is RG := {r 2 R |�(r) = r for all � 2 G}. That is, RG is the collection of

elements of R that are fixed by all automorphisms in G. Properties of R inherited by RG

and properties of the extension RG ✓ R have been studied extensively. We call properties

of R that are inherited by RG invariant (under the group action by G).

In Chapter 1, we review the necessary basic definitions and literature on invariant theory.

We also describe the research questions addressed in this work. In Chapter 2, we continue

the study of invariant properties of rings.

In Chapter 2, Section 1, we determine that many properties of domains are invariant.

We consider generalizations of UFDs and generalizations of PIDs. We show that many of

these properties are invariant even though RG need not be a UFD or PID whenever R is a

UFD or PID, respectively.

In Section 2 of Chapter 2, we consider properties of rings with zero-divisors. Jøndrup

and Mouanis have determined that the properties of being a PP-ring [25] and a PF-ring



[34], respectively, are invariant. We show that being a pseudo-PF-ring (as defined by Kourki

[29]) is not an invariant property.

The major component of this work is Chapter 3, in which we determine invariant prop-

erties of ring extensions. Given an extension of commutative rings with identity R ⇢ T and

a subgroup G of the automorphism group of T , we have RG ✓ TG, where these fixed rings

are defined as above. We often assume that R is G-invariant, i.e., �(R) ✓ R for all � 2 G.

We call properties of the ring extension R ⇢ T inherited by RG ✓ TG invariant.

In Chapter 3, Section 1, we show that various significant properties of ring extensions are

invariant, e.g., integrality. In Sections 2 and 3, we show that being an integral minimal ring

extension and being an integrally closed minimal ring extension, respectively, are invariant

properties under certain assumptions. In Section 4, we consider properties related to mini-

mal ring extensions. Lastly, in Section 4 we determine that the FIP and FCP properties of

ring extensions are invariant under various hypotheses.



Chapter 1: Introduction

1.1 Preliminaries

Herein all rings are commutative with identity, and all homomorphisms are unital. Given

a ring R and a subgroup G of the automorphism group of R, we say that G acts on R and

denote the fixed ring of this action by RG = {r 2 R | �(r) = r for all � 2 G}. For r 2 R

we set O
r

:= {�(r) |� 2 G}, and we say that the group action is locally finite (on R) if O
r

is finite for all r 2 R. When there is no chance for confusion, we say that G is locally finite.

If G is locally finite, we define

n
r

:= |O
r

|, r̂ :=
X

ri2Or

r
i

and r̃ :=
Y

ri2Or

r
i

.

If G is finite, instead we denote by r̂ the sum
P

�2G �(r) and by r̃ the product
Q

�2G �(r)

(allowing for duplicates). Given an ideal I in R we denote the orbit of I under G by

O
I

:= {�(I) | � 2 G}. By the First Isomorphism Theorem, R/I ⇠= R/�(I) (cf. [14, Lemma

2.1 (c)]). It follows that R/I is a domain (field) if and only if R/�(I) is a domain (field).

Hence, I is a prime (maximal) ideal if and only if �(I) is a prime (maximal) ideal. As

defined in [16], G is strongly locally finite if G is locally finite and O
P

is finite for all prime

ideals P in R. If G is finite, then G is strongly locally finite; and if G is strongly locally

finite, then G is locally finite.

The total quotient ring of R is denoted tq(R), and if R is a (integral) domain, then

the total quotient ring is the field of fractions, denoted qf(R). We denote by Aut(R) the

automorphism group of R; Z(R) the set of zero-divisors of R; U(R) the set of units of R;

Prin(R) the set of principal ideals; Spec(R) the set of prime ideals; Min(R) the set of minimal

1



prime ideals; Max(R) the set of maximal ideals; Ann
R

(a) the collection of elements of R

whose product with a is 0; and Rad
R

(I):= {x 2 R | xn 2 I for some n 2 N} the radical in

R of an ideal I of R. A non-Noetherian ring with a unique maximal ideal is called quasilocal.

A ring is Noetherian if it has no infinite ascending chains of ideals - the ascending chain

condition (ACC). A Noetherian ring with a unique maximal ideal is called local.

We say that a ring extension R ✓ T satisfies the property

1. lying over if for every P 2 Spec(R) there exists Q 2 Spec(T ) such that P = Q \R;

2. going up if for P, P 0 2 Spec(R) and Q 2 Spec(T ), where P ✓ P 0 and P = Q \ R,

there exists Q0 2 Spec(T ) such that Q ✓ Q0 and P 0 = Q0 \R;

3. going down if for P, P 0 2 Spec(R) and Q0 2 Spec(T ), where P ✓ P 0 and P 0 = Q0 \R,

there exists Q 2 Spec(T ) such that Q ✓ Q0 and P = Q \R; and

4. incomparable if for Q,Q0 2 Spec(T ), Q * Q0 and Q0 * Q whenever Q \R = Q0 \R.

As in [26, p. 28], we refer to the lying over, going up, going down, and incomparable

properties of ring extensions as LO, GU, GD, and INC, respectively.

Given a ring extension R ✓ T , an element t 2 T is called integral (over R) if it satisfies a

monic polynomial over R. If every element of T is integral, then we say R ✓ T is an integral

extension. We denote by R̄ the collection of integral elements of T , which is subring of T

called the integral closure of R in T [26, Theorem 14]. (We only consider R̄ in the context

of a ring extension R ⇢ T , so there is no chance for confusion.) If R = R̄, then we say that

the extension R ✓ T is integrally closed. If R is a domain and T = qf(R), then we use R0

to denote the integral closure (of R in T ), and if R = R0, then we refer to R as integrally

closed.

We now introduce some constructions used in this dissertation.

Given a field K and a totally ordered group H, a map v : K ! H [ {1} satisfying

1. v(xy) = v(x) + v(y),
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2. v(x+ y) � min{v(x), v(y)}, and

3. v(x) = 1 if and only if x = 0

is called a valuation, and v : K\{0} ! H is a group homomorphism. By R
v

we denote the

subset of K with nonnegative valuation under v. This is a subring of K, and its quotient

field is K. Any such ring is called a valuation domain.

A subset S ✓ R is called multiplicatively closed if st 2 S whenever s 2 S and t 2 S.

Given such a set S, the localization of R at S, denoted R
S

, is a ring consisting of equivalence

classes (r, s), where r 2 R and s 2 S. The equivalence relation is given by (r, s) ⇠ (r0, s0)

if there exists t 2 S such that t(s0r � sr0) = 0. (We might as well assume that 0 /2 S;

otherwise R
S

= {0}.) As is common, we use r

s

to denote the equivalence class of (r, s), and

if P 2 Spec(R), we set R
P

:= R
R\P .

1.2 Background & Literature Review

The study of invariant theory, particularly under a group’s action on a ring, has been

of interest since the late 1800s. David Hilbert’s Fourteenth Problem [24] asks if R =

F [x1, . . . , xn] and G is a subgroup of the general linear group of R, then is RG of the form

F [y1, . . . , ym], where y
i

2 R, n,m 2 N, and F is a field? Over 50 years after the problem

was proposed, Masayoshi Nagata produced a counterexample [35]. This led to the following

questions: Given an arbitrary ring R and G  Aut(R), (1) what ring-theoretic properties of

R are also satisfied by RG, and (2) what properties of ring extensions does RG ✓ R satisfy?

Various assumptions about R and G are often considered. Properties described question

(1) are called invariant. Much research has been devoted to these questions, including the

following results, which will be useful in our work. In particular, Lemma 1.1 is a well-known,

elementary result and is a vital tool. We include some proofs for the sake of completeness

and to illustrate the group action by G.

Lemma 1.1. If G is locally finite, then R is integral over RG.
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Proof. For each r 2 R consider the polynomial

p
r

(x) :=
Y

s2Or

(x� s).

Clearly p
r

(r) = 0. Since the lead coe�cient is 1, and the coe�cients are the elementary

symmetric polynomials in O
r

, this is a monic polynomial over RG. Hence R is integral over

RG.

Lemma 1.2. (a) The set of zero-divisors of R is G-invariant, i.e., �(Z(R)) = Z(R) for all

� 2 G. It follows that the G-action on R extends uniquely to tq(R) via �
⇣a
b

⌘
=

�(a)

�(b)

for any � 2 G.

(b) [34, Lemma 2.2 (1)] If G is locally finite and R is reduced, then r 2 R\Z(R) whenever

r 2 RG\Z(RG).

(c) [34, Lemma 2.2 (2)] If G is locally finite and R is reduced, then tq(R) = R
S

, where

S := RG\Z(RG). It follows that (tq(R))G = tq(RG).

(d) [14, Lemma 2.1 (a)] The set of units of R is G-invariant, i.e., �(U(R)) = U(R) for all

� 2 G. Moreover, (U(R))G = U(RG).

(e) [14, Lemma 2.1 (b)] If (R,M) is quasilocal, then (RG,M \RG) is quasilocal.

Proof. (a) Let � 2 G. If 0 6= a, b 2 R such that ab = 0, then 0 6= �(a),�(b) 2 R and

�(a)�(b) = �(ab) = 0. Hence �(Z(R)) = Z(R). Next we show that �
⇣a
b

⌘
=

�(a)

�(b)
is well-

defined. For a, c 2 R and b, d 2 R\Z(R), suppose that
a

b
=

c

d
in tq(R), whence ad = bc.

It follows that �(a)�(d) = �(b)�(c), so we have
�(a)

�(b)
=

�(c)

�(d)
. (Note that we can divide by

�(b) and �(d), since b, d /2 Z(R) implies �(b),�(d) /2 �(Z(R)) = Z(R).) Lastly this G-action
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is unique since

�
⇣a
b

⌘
= �(a)�(b�1) = �(a)�(b)�1 =

�(a)

�(b)
.

(b) Let r 2 RG\Z(RG). For the sake of contradiction, suppose that r 2 Z(R). Then

there exists 0 6= s 2 R such that rs = 0. It follows that r�(s) = 0 for every � 2 G and so

rf(s) = 0, where f(s) is any symmetric polynomial in O
s

. Since f(s) 2 RG and r is regular

in RG, every such f(s) must be 0. Hence

sns =
Y

si2Os

(s� s
i

) = 0,

but R is reduced, so s = 0 – contradiction. Thus r 2 R\Z(R).

(c) From (b) it follows that R
S

✓ tq(R). For the converse, let
a

b
2 tq(R). From (a) it

follows that �(b) 2 R\Z(R) for every � 2 G, whence b̃ 2 RG\Z(RG). Hence

a

b
=

a

b̃

Y

bi2Ob\{b}
b
i

2 R
S

.

(d) The asserted invariance follows from the facts that �(1) = 1 and �(r�1) = �(r)�1

for any r 2 U(R) and any � 2 G. For the second assertion, it only remains to show that

U(R)G ✓ U(RG), which also follows from the fact that �(r�1) = �(r)�1.

(e) It is well-known and straightforward that U(R) = R\M if and only if (R,M) is

quasilocal. Note that RG\(M \ RG) = (R\M) \ RG = (U(R))G. It now follows from (d)

that U(RG) = RG\(M \RG). Hence (RG, RG \M) is quasilocal.

Lemma 1.3. Assume that G is locally finite and that R is a domain.

(a) [14, Lemma 2.3 (a)] Each element of qf(R) can be expressed as a fraction of the form

a

b
, where a 2 R and 0 6= b 2 RG, i.e., if S := RG\{0}, then qf(R) = R

S

.
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(b) [14, Lemma 2.3 (b)] The quotient field of RG is (qf(R))G, i.e., qf(RG) = (qf(R))G.

(c) [14, Theorem 2.4] The G-action extends uniquely to R0. Moreover, if G is locally finite,

then (R0)G = (RG)0.

Proof. We include only the proof of (c), since (a) and (b) follow from Lemma 1.2 (c). For the

first assertion, suppose that r 2 R0. Then r satisfies the polynomial xn + a
n�1x

n�1 + · · ·+
a1x+a0, where ai 2 R. It follows that �(r) satisfies xn+�(a

n�1)xn�1+ · · ·+�(a1)x+�(a0),

for any � 2 G. Hence �(R0) ✓ R0.

Next we show that (RG)0 = (R0)G. If r 2 (RG)0, then r is integral over RG and

r 2 qf(RG). Hence, r is integral over R and, by (b), r 2 (qf(R))G. Thus r 2 (R0)G.

Conversely, if r 2 (R0)G, then r is integral over R and r 2 (qf(R))G. By the transitivity of

integrality [26, Theorem 40] and by Lemma 1.1, r is integral over RG, and, again by (b),

r 2 qf(RG). Thus r 2 (RG)0.

Corollary 1.4. [14, Corollary 2.5] Assume that G is locally finite. If R is integrally closed,

then RG is integrally closed.

Proposition 1.5. [17, Theorem 2.2] If G is locally finite, then RG ✓ R satisfies GD.

There are many ring theoretic properties that are either known to be invariant or for

which there are counterexamples to invariance. A principal ideal domain (PID) (respec-

tively, Bézout domain) is a domain in which all ideals (respectively, finitely generated ideals)

are principal, i.e., generated by a single element. Example 1.6 (c.f. [6, p. 72]) shows that

both being a PID and being a Bézout domain are not invariant properties.

Example 1.6. [6, p. 72] Let x be a real variable. Then R := C[eix, e�ix] is a PID, hence

Bézout domain. If G := {1,�} where � is the complex conjugation map, then RG =

R[sin(x), cos(x)] is neither a PID nor a Bézout domain.

A Dedekind domain (respectively, Prüfer domain) is a domain in which all nonzero ideals

(respectively, nonzero finitely generated ideals) are invertible. An ideal I of a domain R is
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called invertible if II�1 = R, where I�1 is the conductor (R :qf(R) I) = {x 2 qf(R) |xI ✓ R}.

Since principal ideals are invertible [26], PIDs are both Bézout domains and Dedekind

domains, and these are a subclass of Prüfer domains. The following result is due to Bergman

[6].

Proposition 1.7. [6, Proposition 4.1] Assume that G is finite and that R is a domain. If I

is an ideal of RG and IR is an invertible ideal of R, then I is an invertible ideal of RG. In

particular, if R is a Dedekind domain (respectively, Prüfer domain), then RG is Dedekind

domain (respectively, Prüfer domain).

Krull domains comprise another important class of domains, which includes PIDs and

Dedekind domains. A domain R is a Krull domain if

(i) R =
T{R

P

| P 2 Spec(R) has height 1},

(ii) each such R
P

is a discrete valuation ring (DVR), and

(iii) each nonzero x 2 R is contained in only finitely many height one prime ideals.

A DVR is a valuation domain with value group Z.

Proposition 1.8. (a) [14, Proposition 2.6 (a)] For locally finite G, if R is a Prüfer domain,

then RG is a Prüfer domain.

(b) [14, Proposition 2.6 (b)]For arbitrary G, if R is a Krull domain, then RG is a Krull

domain.

Unique factorization domains (UFDs) are a subclass of Krull domains. A UFD is a

domain in which every nonzero non-unit has a unique factorization into irreducibles. Krull

domains are contained in the class of integrally closed domains. Whereas Krull domains and

integrally closed domains are invariant, if R is a UFD, RG need not be. This is illustrated

in Example 1.9, which is a well-known example. In Chapter 2, Section 1, we use this

construction to show some generalizations of UFDs are also not invariant under even a

finite group action.
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Example 1.9. Let F be a field of characteristic other than 2. Set R := F [x, y] and

G := {1,�}, where �(x) := �x and �(y) := �y. Then R is a UFD, and RG = F [x2, xy, y2]

is not, since x2y2 = (xy)(xy).

With UFDs now defined, we note that PIDs are UFDs. Also, PIDs can be characterized

as Noetherian Bézout domains. From these observations one can see that Example 1.6

also shows UFDs are not invariant: sin2 ✓ = (1 + cos ✓)(1 � cos ✓) in RG = R[sin ✓, cos ✓].

Moreover, RG is not Bézout, since it is not a UFD, hence not a PID, but it is Noetherian.

In Chapter 2, Section 1, we continue to determine if related properties of domains are

invariant.

Turning to rings with zero-divisors, we consider PP-rings and PF-rings. A PP-ring (also

known as a weak Baer ring [28] or a Rickart ring [30]) is a ring in which each principal ideal

is a projective module. A PF-ring is a ring in which each principal ideal is a flat module

[33]. Equivalently, a ring R is a PF-ring if Ann(a)+Ann(b)= R whenever ab = 0 for any

a, b 2 R [4, Lemma � (ii)] (cf. [22], [33], [28]), where Ann(a)= {r 2 R | ra = 0}. Jøndrup

[25] and Mouanis [34] show these classes of rings are invariant under arbitrary and locally

finite group actions, respectively. We investigate a generalization of PF-rings in Chapter 2,

Section 2.

Proposition 1.10. [25, Lemma 3] For arbitrary G, if R is a PP-ring, then RG is a PP-ring.

Proposition 1.11. [34, Theorem 2.7 (1)] Assume that G is locally finite. If R is a PF-ring,

then RG is a PF-ring.

Related to PP-rings are complemented rings; in fact, all PP-rings are complemented. A

ring R is said to be complemented if for all a 2 R there exists a b 2 R such that ab = 0

and a + b is a regular element. It follows easily that complemented rings are reduced. It

is part of the folklore that a ring is complemented if and only if its total quotient ring is

von Neumann regular (cf. [18, Proposition 2.4]). A ring R is von Neumann regular if for

all a 2 R there exists x 2 R such that axa = a. Another well-known equivalence is that
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a ring is von Neumann regular if and only if every finitely generated ideal is generated by

an idempotent. Hence, von Neumann regular rings are Bézout rings. Interestingly, the

von Neumann regular property is invariant even though the Bézout property is not. The

property of being complemented is also invariant. These results, respectively, are also due

to Jøndrup [25] (cf. [17, Proposition 3.6 (a)]) and Mouanis [34]. In fact, Mouanis uses

Jøndrup’s result to establish Proposition 1.13.

Proposition 1.12. [25, Corollary 4] For arbitrary G, if R is von Neumann regular, then

RG is von Neumann regular.

Proposition 1.13. [34, Theorem 2.1] Assume G is locally finite. If tq(R) is von Neumann

regular, then tq(RG) is von Neumann regular.

1.3 Research Questions

Given a ring R and a subgroup G of Aut(R), we continue to determine what ring-theoretic

properties of R are invariant in Chapter 2. We often assume that G is locally finite, and

for some results we make stronger assumptions. In Chapter 3, we consider a ring extension

R ⇢ T and G  Aut(T ). Since G is not assumed to be a subgroup of Aut(R), we define

RG := R \ TG. Upon inspection, one can see that this definition agrees with our original

definition of RG = {r 2 R | �(r) = r for all � 2 G} given in Section 1. We determine

properties of the extension R ⇢ T that are also satisfied by RG ✓ TG. At times we assume

that R is G-invariant, i.e., �(R) ✓ R for all � 2 G, whence G  Aut(R).

9



Chapter 2: Properties of Rings

2.1 Domains

We continue the work of determining which classes of domains are invariant under group

action. Noetherianness is an important property known to be invariant if G is finite and

|G| is a unit of R. As defined in Chapter 1, a ring is Noetherian if its ideals satisfy ACC

(all ascending chains terminate). Equivalently, a ring is Noetherian if all ideals are finitely

generated. Noetherian domains are a subclass of ACCP domains. The ACCP property

is the ascending chain condition for principal ideals. Another subclass of ACCP domains

consists of bounded factorization domains (BFDs) [2]. Within the BFD class we have finite

factorization domains (FFDs) [2], UFDs, and PIDs. In a BFD each nonzero non-unit is

a product of finitely many irreducible elements (atomic property), and the length of these

factorizations is bounded. In an FFD there are only finitely many such factorizations. We

have the following hierarchy of these domains: A UFD is an FFD; an FFD is a BFD; and

a BFD is an ACCP domain.

Lemma 2.1. For arbitrary G, if R is a domain, then elements of RG are associates in RG

if and only if they are associates in R. Hence, the map � : Prin(RG) ! Prin(R) given by

xRG 7! xR is injective.

Proof. Let 0 6= x, y 2 RG. Clearly �(0RG) = 0R. If x and y are associates in RG, then

x = ry, for some r 2 U(RG). By [14, Lemma 2.1(a)], U(RG) = U(R)G. Hence r 2 U(R).

Thus x and y are associates in R.

Conversely, if x and y are associates in R, then x = ry, for some r 2 U(R). For any

� 2 G we have x = �(r)y, whence 0 = (r � �(r))y. Since R is a domain and y 6= 0, it

follows that r = �(r), i.e., r 2 U(R)G = U(RG). Hence, x and y are associates in RG.
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Proposition 2.2. For arbitrary G, if R is a BFD (respectively, FFD, ACCP domain), then

RG is a BFD (respectively, FFD, ACCP domain).

Proof. As pointed out by Anderson et. al in [2], R is a FFD if, and only if, every nonzero

principal ideal is contained in only finitely many principal ideals. Similarly, R is a BFD

if for each nonzero x 2 R the lengths of chains of principal ideals ascending from xR is

bounded. Thus, the result follows immediately from Lemma 2.1.

Corollary 2.3. Let G be locally finite. Then if R is a UFD, RG need not be a UFD but

is at least a FFD.

Some non-Noetherian generalizations of UFDs are greatest common divisor (GCD) do-

mains and Schreier domains [8], which are subclasses of the class of integrally closed do-

mains. In a GCD domain every two elements have a greatest common divisor. A Schreier

domain is an integrally closed domain in which every element is primal. An element x in

a ring R is primal if, for a, b 2 R, x|ab implies x = x1x2, x1|a and x2|b for some elements

x1 and x2 in R. UFDs can be characterized as atomic Schreier domains [8, Theorem 2.3].

Cohn [8] also observes UFDs can be characterized as atomic GCD domains.

Proposition 2.4. If R is a GCD domain or a Schreier domain, RG may not be, even under

finite group action where the order of the group is a unit in R.

Proof. As in Example 1.9, consider R = K[x, y], where K is a field of characteristic other

than 2 and G = {1,�}, where �(x) = �x and �(y) = �y. In this case RG = K[x2, xy, y2].

Note that R and RG are atomic. Since RG is not a UFD, it follows that RG is neither a

GCD domain nor a Schreier domain.

As mentioned in Chapter 1, PIDs and Bézout domains are not invariant [6], and

Dedekind and Prüfer domains are invariant (cf. [6], [14]) under certain group action. We

consider generalizations of these domains introduced by Anderson and Zafrullah [3]. They

call a domain R an almost Bézout domain (AB-domain) (respectively, almost Prüfer domain
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(AP-domain)) if given any nonzero a, b 2 R there exists n 2 N such that (an, bn) is principal

(respectively, invertible). Similarly, R is an almost principal ideal domain (API-domain)

(respectively, AD-domain) if for any nonempty, nonzero {a
↵

}
↵2A ✓ R there exists n 2 N

such that the ideal generated by {an
↵

}
↵2A is principal (respectively, invertible). Note that

AD-domains are not referred to as “almost Dedekind” domains as this term already has a

di↵erent meaning.

Proposition 2.5. Assume that G is finite. If R is an AP-domain (respectively, AD-

domain), then RG is an AP-domain (respectively, AD-domain).

Proof. Let a, b 2 RG (respectively, {a
↵

}
↵2A ⇢ RG). Then there exists n 2 N such that

(an, bn)R (respectively, (an
↵

)
↵2AR) is an invertible ideal in R. By Proposition 1.7, (an, bn)

(respectively, (an
↵

)
↵2A) is an invertible ideal inRG. HenceRG is an AP-domain (respectively,

AD-domain).

We will show in Proposition 2.7 that being a AB- or API-domain is an invariant property

of a ring. First we introduce a few tools that we will use. As in [19], we define the following:

1. A fractional ideal of a domain R is an R-submodule A of qf(R) such that dA ✓ R for

some nonzero d 2 R.

2. An invertible ideal of R is a fractional ideal A such that there exists a fractional ideal

B such that AB = R. In this case, B is the inverse of A, which is denoted A�1. We

denote by F (R) the collection of invertible ideals of R.

3. The (ideal) class group, denoted C(R), is the group of invertible ideals modulo prin-

cipal ideals.

Under multiplication and with R as the identity element, F (R) is an Abelian group, and

Prin(R) is a (normal) subgroup. Hence the group C(R) described above is a group under

multiplication.

12



By [3, Lemma 4.4] AB-domains (respectively, API-domains) can be characterized as

AP-domains (respectively, AD-domains) with torsion class group. Hence, Proposition 2.7

will follow from Proposition 2.5 and the following lemma.

Lemma 2.6. Assume that G is finite and that R is domain.

(a) There is a group monomorphism F (RG) ! F (R) given by I 7! IR.

(b) If C(R) is torsion, then C(RG) is torsion.

Proof. (a) Let RG 6= I 2 F (RG). It follows from Lemma 1.3 (b) that I�1R is a fractional

ideal of R. Clearly (IR)(I�1R) = (II�1)R = RGR = R. Hence, IR is an invertible ideal

in R. Clearly (IJ)R = (IR)(JR), where J 2 F (RG). Thus, the asserted map exists and

is a homomorphism. It remains to show that it is injective. For the sake of contradiction,

suppose that IR = R. Since an invertible ideal is finitely generated [26, Theorem 58],

I = (a1, . . . , an) for some a
i

2 RG, and there exist r
i

2 R such that r1a1 + · · ·+ r
n

a
n

= 1.

It follows that
Y

�2G

⇣
�(r1)a1 + · · ·+ �(r

n

)a
n

⌘
= 1.

As in the proof of [6, Proposition 4.1 (b)], if we expand this product and collect the co-

e�cients of the monomials in the set {a
i

}, we see that the coe�cients of these terms are

elements of RG. Hence 1 2 I – contradiction. Thus the map I 7! IR is injective.

(b) As above, let I = (a1, . . . , an) 2 F (RG), whence IR 2 F (R). Then there exists

m 2 N and a 2 R such that ImR = aR. It follows that

Im|G|R =
Y

�2G
ImR =

Y

�2G
�(ImR) =

Y

�2G
�(aR) = ãR.

We will show that Im|G|2 = ã|G|RG. Contracting to the fixed ring we have

Im|G| ✓ Im|G|R \RG = ãR \RG = ãRG,
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where the last equality follows from Lemma 2.1. Hence Im|G|2 ✓ ã|G|RG.

For the reverse containment, first note that ãRG ✓ ãR = Im|G|R, whence

ã =
X

k1+···+kn=m|G|
r
k1a

k1
1 · · · akn

n

,

for some r
k1 2 R. It follows that

ã|G| =
Y

�2G
�(ã) =

Y

�2G

0

@
X

k1+···+kn=m|G|
�(r

k1)a
k1
1 · · · akn

n

1

A .

As in (a), if we expand this product and collect the terms involving the same powers of the

a
i

’s, we see that the coe�cients of these terms are elements of RG. Hence ã|G| 2 Im|G|2 ;

that is ã|G|RG ✓ Im|G|2 . Thus Im|G|2 = ã|G|RG, so C(RG) is torsion.

Proposition 2.7. Assume that G is finite. If R is an AB-domain (respectively, API-

domain), then RG is an AB-domain (respectively, API-domain).

Proof. Apply Lemma 2.6 (b) and Proposition 2.5.

2.2 Rings with Zero-Divisors

We continue the study of annihilator conditions on rings with zero-divisors as described in

Chapter 1, Section 2. Generalizing PF-rings, Kourki [29] defines a pseudo-PF-ring as a ring

R in which Ann(a)+Ann(b)=R whenever aR \ bR = {0} for any a, b 2 R. Mouanis shows

the pseudo-PF property is invariant under restrictive conditions [34, Theorem 2.9]. We can

conclude the pseudo-PF property is not invariant in general. To see this we will observe in

Lemma 2.8 that locally the pseudo-PF property is equivalent to the ring being uniform as a

module over itself. A module is uniform if the intersection of any two nonzero submodules

is nonzero.
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Lemma 2.8. Let R be a quasilocal ring. Then R is pseudo-PF if and only if it is uniform.

Proof. Let M be the unique maximal ideal of R. Assume that R is pseudo-PF and not

uniform. Then there exist nonzero a, b 2 R such that (a) \ (b) = {0}. Since a and b are

nonzero, both Ann(a) and Ann(b) are proper ideals of R, whence they are both contained

in M . It follows that R = Ann(a) + Ann(b) ✓ M ( R – contradiction. Thus R is uniform.

Conversely, suppose that R is uniform, and suppose there exist a, b 2 R such that

(a) \ (b) = {0}. Then a = 0 or b = 0. Hence Ann(a) + Ann(b) = R. Thus R is pseudo-

PF.

By [1, Lemma 4.1], the idealization R := T (+)M is a uniform R-module if and only

if M is faithful and uniform, where T is a ring, and M is a T -module. An R-module

M is faithful if Ann
R

(M) = {0}. The idealization of M over T is a ring R = {(t,m) |
t 2 T, m 2 M} containing T with component-wise addition and multiplication given by

(t,m)(s, n) = (ts, tn+sm) (so (1, 0) is the identity). With this construction and Proposition

2.9 we conclude Proposition 2.10.

Proposition 2.9. A ring is a domain if and only if it is reduced and uniform.

Proof. Suppose that R is a domain. Then, of course, R is reduced. Let I and J be nonzero

ideals of R, and let 0 6= a 2 I and 0 6= b 2 J . Then 0 6= ab 2 IJ ✓ I \ J . Hence R is

uniform.

Conversely, assume that R is reduced and uniform, and assume that R is not a domain.

Let 0 6= a, b 2 R such that ab = 0. Since R is uniform, there exists nonzero x 2 (a) \ (b),

whence x = ra = r0b for some r, r0 2 R. It follows that x2 = rr0ab = 0 – contradiction.

Proposition 2.10. Let T be a reduced ring of characteristic other than 2 that is not

a domain, and let M be a faithful, uniform T -module. Set R := T (+)M , and define

�(t,m) = (t,�m). Then for G = {1,�}, R is uniform but RG = T is not.

Proof. By [1, Lemma 4.1], R is uniform. Since RG = T is not a domain, RG is not uniform

by Lemma 2.9.
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Corollary 2.11. Let (T,m) be a local Noetherian ring that is reduced but not a domain

with char(T ) 6= 2. Let E := E(T/m) be the injective hull of T/m. Set R := T (+)E, and

define �(t,m) = (t,�m). Then for G = {1,�}, R is uniform but RG = T is not.

Proof. We must show that E is a uniform and faithful T -module. Let N,N 0 ⇢ E be nonzero

T -modules. Clearly N \ T/m ✓ T/m, but, in fact, N \ T/m = T/m, since T/m is a simple

module. By the same reasoning, N 0\T/m = T/m. It follows that (N\N 0)\T/m = T/m 6= 0,

whence N \N 0 6= 0. Thus E is uniform.

Now we show that E is faithful. Set A
i

:= {x 2 E | mix = 0}. Then E = [A
i

by

[32, Theorem 3.4 (1)]. It follows that

Ann
T

(E) =
\

Ann
T

(A
i

) =
\

0

@
\

x2Ai

Ann
T

(x)

1

A .

By [32, Theorem 3.4 (2)],
T�T

x2Ai
Ann

T

(x)
�
= m(i), where m(i) := (mTm)

i \ T is the ith

symbolic power of m. Since (T,m) is quasilocal, m(i) = mi. Hence Ann
T

(E) =
T
mi, but

T
mi = 0, by [26, Theorem 79], so Ann

T

(E) = 0. Thus E is faithful. By Proposition 2.10,

R is uniform but RG is not.

In particular, we have the following example.

Example 2.12. Set T := K[x, y]/(xy) where K is a field with char(K) 6= 2 and N :=

T
m

/(mT
m

) where m is the maximal ideal generated by the images of x and y. Note T
m

is

not uniform, since it is reduced but not a domain, and N is a simple T
m

-module. Since T
m

is local and Noetherian, the injective hull M := E(N) is faithful and uniform. Thus, T
m

and M satisfy the above proposition.

Remark 2.13. It follows from Lemma 1.2 (e) and Corollary 2.11 that the pseudo-PF

property is not invariant.
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Chapter 3: Properties of Ring Extensions

In this chapter R is assumed to be a (proper) subring of T , and G is a subgroup of Aut(T ).

In comparison to determining invariant properties of rings in Chapter 2, in this chapter we

investigate which properties of a ring extension R ⇢ T are inherited by RG ✓ TG. Recall

from Chapter 1, Section 3 that RG := R\TG = {r 2 R | �(r) = r for all � 2 G}. At times

we will assume that �(R) ✓ R for all � 2 G, in which case we say that R is G-invariant. It

is easy to see that if R is G-invariant, then G is a subgroup of Aut(R), and if G is locally

finite on T , then G is locally finite on R. But if G is strongly locally finite on T , G may

not be strongly locally finite on R. To see this define R as in [16, Example 2.3], and set

T := qf(R).

As in [20], we say that R ⇢ T is a minimal ring extension if there is no ring S such

that R ⇢ S ⇢ T . Clearly, this is true if and only if T = R[u] for all u 2 T\R. Since

R ✓ R̄ ✓ T , where R̄ is the integral closure of R in T , if R ⇢ T is minimal, then either R is

integrally closed in T , or T is integral over R (equivalently, T is module finite over R). In

the first case we call R ⇢ T an integrally closed minimal ring extension, and in the second

case, we call it an integral minimal ring extension. By [20, Théorème 2.2], if R ⇢ T is a

minimal ring extension, there exists a unique maximal ideal M of R such that R
P

⇠= T
P

for

all P 2 Spec(T )\{M}. This maximal ideal is commonly referred to as the crucial maximal

ideal of the extension. In the integral case, (R :
R

T ) is the crucial maximal ideal, while in

the integrally closed case, (R :
R

T ) is a prime ideal of R adjacent to the crucial maximal

ideal.

In 1970, Ferrand and Olivier contributed to the groundbreaking work of classifying

minimal ring extensions by determining the minimal ring extensions of a field [20]. More

recently, Ayache extended this work to integrally closed domains [5]. Shortly thereafter,
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Dobbs and Shapiro generalized these results further to arbitrary domains in [13] and then

later to certain rings with zero-divisors in [15]. In their second paper, they completely

classify the integral minimal ring extensions of an arbitrary ring, as well as the integrally

closed minimal ring extensions of a ring with von Neumann regular total quotient ring [15].

In [37] (cf. [11]), Picavet and Picavet-L’Hermitte give another characterization of integral

minimal ring extensions. In [7], Cahen et al. characterize integrally closed minimal ring

extensions of an arbitrary ring. We will use the characterizations in [37] and [7] to show

that being minimal is an invariant property of ring extensions under certain group action.

To do so, we treat the integral and integrally closed cases separately in Sections 3.2 and

3.3, respectively.

In Section 3.1, we establish the invariance of several properties related to integral and

integrally closed extensions. In Section 3.4, we consider properties of ring extensions related

to minimal ring extensions. Lastly, we use our results from Sections 3.2 and 3.3 to show

that the FIP and FCP are invariant properties. These properties will be defined in Section

3.5.

3.1 Integrality and Related Properties

Recall Lemma 1.1: If G is locally finite, then TG ✓ T is an integral extension. This result

is fundamental in this work and in much of the work by Dobbs and Shapiro [14], [16], [17],

which inspired this research. As noted in Chapter 1, integrality is a fundamental property

of ring extensions. Naturally this is our first result, which follows immediately from Lemma

1.1.

Proposition 3.1. Assume that R is G-invariant and G is locally finite. If R ⇢ T is an

integral extension, then RG ✓ TG is an integral extension.

Proof. This follows from Lemma 1.1 and by the transitivity of integrality [26, Theorem

40].
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Proposition 3.2. (a) If R is integrally closed in T , then RG is integrally closed in TG.

(b) Assume that R is G-invariant and G is locally finite. If R is a domain and R0 = T ,

then (RG)0 = TG.

Proof. (a) Let u 2 TG be integral over RG. Then u 2 T is integral over R. Hence

u 2 TG \R = RG.

(b) This follows directly from 1.3 (c).

By [26, Theorem 44], an integral extension satisfies LO, GU, and INC. Dobbs and

Shapiro [17, Corollary 2.3] show that if R ✓ T satisfies GD (respectively, GU), then RG ✓

TG satisfies GD (respectively, GU) when R is G-invariant and G is locally finite. We show

LO and INC also pass from R ⇢ T to RG ✓ TG under the same hypothesis.

Proposition 3.3. Assume that R is G-invariant and G is locally finite. If R ⇢ T satisfies

LO, (respectively, INC), then RG ✓ TG satisfies LO (respectively, INC).

Proof. Let p 2 Spec(RG). Then there exists P 2 Spec(R) where p = RG \ P . Let Q 2

Spec(T ) such that P = R \Q, and set q := TG \Q. Then

q \RG = TG \Q \RG = Q \RG = Q \R \RG = P \RG = p.

Hence RG ✓ TG satisfies LO.

Suppose R ⇢ T satisfies INC and RG ✓ TG does not. Then there exist q, q̂ 2 Spec(TG)

such that q ⇢ q̂ and q \ RG = q̂ \ RG =: p. Let Q and Q̂ be prime ideals of T lying over q

and q̂, respectively, where Q ⇢ Q̂. If P := Q \ R and P̂ := Q̂ \ R, then P ( P̂ (P 6= P̂

since R ⇢ T satisfies INC). Moreover,

P \RG = (Q \R) \RG = Q \RG = Q \ TG \RG = q \RG = p,
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and

P̂ \RG = Q̂ \R \RG = Q̂ \RG = Q̂ \ TG \RG = q̂ \RG = p.

Since RG ✓ R satisfies INC and P̂ ( P in Spec(R), the above conclusion that P̂ \ RG =

P \RG = p is a contradiction. Thus RG ✓ TG satisfies INC.

3.2 Integral Minimal Ring Extensions

Recall our riding assumptions in this section are that R ⇢ T and that G acts on T via

automorphisms. We do no necessarily assume that R is G-invariant. In the following

lemma we establish several technical results needed for the main result of this section.

Proposition 3.5 is another tool for the main result and is also of independent interest.

Lemma 3.4. Assume that G is locally finite (on T ) and that M := (R :
R

T ) is a maximal

ideal of R. Set m := M \RG = M \ TG.

(a) If R is integral over RG and RG 6= TG, then the conductor (RG :
R

G TG) equals m.

(b) If there exist N 2 Spec(T ) containing M , then M = N \R.

Proof. (a) Let x 2 m. Then x 2 RG and xt 2 R, for all t 2 T . If t 2 TG, then xt 2 R, from

which it follows that xt 2 TG \R = RG. Hence x 2 (RG :
R

G TG). Thus m ✓ (RG :
R

G TG).

Since R is integral over RG, we have that m 2 Max(RG). Thus m = (RG :
R

G TG).

(b) Clearly M = N \ R whenever N is a prime ideal of T containing M , since M 2
Max(R).

Recall the following definitions from Chapter 1: If G is locally finite on T , then for t 2 T

we set O
t

:= {�(t) |� 2 G}, and we define

n
t

:= |O
t

|, t̂ :=
X

ti2Ot

t
i

and t̃ :=
Y

ti2Ot

t
i

.
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Proposition 3.5. Let M 2 Max(R) and m := M \RG. Assume that G is locally finite (on

R) such that char(RG/m) - n
r

for all r 2 R (e.g. if char(RG/m) = 0). If the orbit of M in R is

a singleton set, i.e., O
M

= {M}, then theG-action extends toR/M via �(r+M) = �(r)+M ,

for � 2 G. Moreover, if R is integral over RG, then RG/m ⇠= (R/M)G.

Proof. The given action of G on R/M is well-defined: if r+M = s+M , then �(r)��(s) 2
�(M) = M . Hence �(r) +M = �(s) +M .

As for the moreover, first note that m 2 Max(RG) by integrality. Define � : RG/m !

(R/M)G by r + m 7! r + M . Since RG/m is a field, by showing that � is a (unital) ring

homomorphism we can assert that it is an injection. Clearly � preserves ring structure. If

�(1 + m) = 0 +M , then 1 2 M – contradiction. Hence � is a (unital) ring homomorphism.

Now let r + M 2 (R/M)G. Then r + M = �(r) + M for all � 2 G. Summing the

elements of O
r

we have that n
r

r+M = r̂+M . Since R/M is a field, we have that r+M =

(n
r

+M)�1(r̂+M). Similarly, since n
r

+m 2 RG/m, we have that y+m := (n
r

+m)�1 2 RG/m.

It follows that y+M = (n
r

+M)�1, whence �(yr̂+m) = yr̂+M = (n
r

+M)�1(r̂+M) = r+M .

Thus � is surjective. Hence RG/m ⇠= (R/M)G.

Remark 3.6. Proposition 3.5 is true without the assumptions of this chapter that R ⇢ T

and G  Aut(T ). That is, it is true if R is any ring and G is a locally finite group acting

on R via automorphisms such that R and G satisfy the hypotheses of the proposition.

The technique of averaging the orbit of an element used in Proposition 3.5 to produce

r+M = (n
r

+M)�1(r̂+M) is a well-known method (see [6, Proposition 1.1]). We generalize

this method in the following lemma.

Lemma 3.7. Assume that G is locally finite (on T ). Let t 2 TG. We show that if

t = r1u1 + r2u2 + · · ·+ r
k

u
k

for some r
i

2 R and u
i

2 TG, then there exist m,m
i

2 N and

r0
i

2 RG such that 0 6= mt = m1r
0
1u1 +m2r

0
2u2 + · · ·+m

k

r0
k

u
k

whenever

(a) T is a domain and char(T ) - n
t

for all t 2 T , or
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(b) |G| is finite and a unit in T .

Proof. For all t 2 T , fix a subset N
t

of G such that for each a 2 O
t

there exists a unique

� 2 N
t

with a = �(t) (and so |N
t

| = |O
t

| = n
t

).

First we show that if

0 6= t = q1u1 · · ·+ q
i

u
i

+ r
i+1ui+1 + · · ·+ r

k

u
k

, (3.1)

where t 2 TG, q
i

2 RG, and r
j

2 R, then there exists m 2 N, r0
i+1 2 RG, and s

j

2 R such

that

0 6= mt = m(q1u+ · · ·+ q
i

u
i

) + r0
i+1ui+1 + s

i+2ui+2 + · · ·+ s
k

u
k

. (3.2)

Applying each � 2 N
ri+1 to (3.1) and summing establishes (3.2). In particular,

m = n
ri+1 , r0

i+1 = br
i+1, and s

j

=
X

�2Nri+1

�(r
j

)u
j

,

for i + 2  j  k. Note that n
ri+1t 6= 0 under assumption (a). Since i = 1 establishes the

base case, the assertion of the lemma now follows from induction. Under assumption (b),

the same argument holds replacing N
ri+1 with G and n

ri+1 with |G|.

We have established the machinery needed to prove the main result of this section. We

use the characterization provided below for reference.

Theorem 3.8. [37, Theorem 3.3] (cf. [11, Corollary II.2]) The ring extension R ⇢ T is

minimal and integral if and only if (R :
R

T ) 2 Max(R) and one of the following three

conditions holds:

(a) Inert case: (R :
R

T ) 2 Max(T ) and R/(R :
R

T ) ! T/(R :
R

T ) is a minimal field

extension.

(b) Decomposed case: There exist N1, N2 2 Max(T ) such that (R :
R

T ) = N1 \N2 and

the natural maps R/(R :
R

T ) ! T/N1 and R/(R :
R

T ) ! T/N2 are each isomorphisms.
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(c) Ramified case: There exists N 2 Max(T ) such that N2 ✓ (R :
R

T ) ⇢ N , [T/(R :
R

T ) : R/(R :
R

T )] = 2 and the natural map R/(R :
R

T ) ! T/N is an isomorphism.

We now present our main result on the invariance of integral minimal extensions.

Theorem 3.9. Let R ⇢ T be an integral minimal extension with crucial maximal ideal

M = (R :
R

T ). Assume thatG is locally finite (on T ) such thatRG 6= TG and char(RG/(M\

TG)) - n
r

, for all r 2 R. Also assume that R is integral over RG and O
M

= {M} (e.g.,

if R is G-invariant). Then RG ⇢ TG is a minimal extension of the same type as R ⇢ T .

Moreover, the crucial maximal ideal of RG ⇢ TG is (RG :
R

G TG).

Proof. Throughout the argument, set m := (RG :
R

G TG), whence m = M \ RG = M \ TG,

by Lemma 3.4(a).

Inert case: By Theorem 3.8(a), M 2 Max(T ) and R/M ! T/M is a minimal field

extension. By Proposition 3.5, we may pass to R/M ⇢ T/M (since O
M

= {M}). Replacing

R/M ⇢ T/M with R ⇢ T , we show that TG = RG[u] for all u 2 TG\RG, i.e., RG ⇢ TG

is a minimal field extension. If u 2 TG\RG, then u 2 T\R, so T = R[u]. Let t 2 TG.

Then t = r
k

uk + · · · + r1u + r0, for some k 2 N and r
i

2 R. By Lemma 3.7, there exist

m,m
i

2 N and r0
i

2 RG such that 0 6= mt = m
k

r0
k

uk + · · · + m1r
0
1u + m0r

0
0. Since RG is

a field, we have that t = m�1(m
k

r0
k

uk + · · · + m1r
0
1u + m0r

0
0) 2 RG[u]. Hence, RG ⇢ TG

is a minimal field extension. By Theorem 3.8(a), the original fixed ring extension (before

passing to the quotient ring extension) RG ⇢ TG is an inert integral minimal extension with

crucial maximal ideal m = (RG :
R

G TG).

Decomposed case: By Theorem 3.8(b), there exist N1, N2 2 Max(T ) such that M =

N1 \ N2 and the natural maps R/M ! T/N1 and R/M ! T/N2 are isomorphisms. Set

n1 := N1 \ TG and n2 := N2 \ TG. By Lemma 1.1, T is integral over TG, whence n1, n2 2
Max(TG). Clearly

m = M \ TG = (N1 \N2) \ TG = n1 \ n2.
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Define � : RG/m! TG/n1 via the natural map r+m 7! r+ n1. Suppose that �(r+m) =

0 + n1 for some r 2 RG. Then r 2 n1 \ RG, but, by Lemma 3.4(b), n1 \ RG = m. Hence

r + m = 0 + m. Thus � is injective.

To show that � is surjective, we first note that the G-action extends to T/N1, since it

extends to R/M and R/M ⇠= T/N1. From Proposition 3.5, we have that RG/m ⇠= (R/M)G ⇠=
(T/N1)G. Let t+ n1 2 TG/n1 be nonzero. Then t+N1 2 (T/N1)G is nonzero. (Clearly it is

fixed, and if t 2 N1, then t 2 N1 \ TG = n1 – contradiction.) Since RG/m ⇠= (T/N1)G (via

composition of the natural maps), there exists r + m 2 RG/m such that r + m 7! r +M 7!

r+N1 = t+N1. It follows that (r� t) 2 N1 \TG = n1. Hence �(r+m) = r+ n1 = t+ n1, so

� is surjective. Thus RG/m ⇠= TG/n1. The same argument applies to show RG/m ⇠= TG/n2.

By Theorem 3.8(b), RG ⇢ TG is a decomposed integral minimal extension with crucial

maximal ideal m = (RG :
R

G TG).

Ramified case: By Theorem 3.8(c), there exists N 2 Max(T ) such that N2 ✓ M ⇢ N ,

[T/M : R/M ] = 2 and the natural map R/M ! T/N is an isomorphism. Set n := N \ TG,

and recall that m = M \ TG. Clearly, n 2 Max(TG) and m ( n, since m /2 Max(TG) (as

M /2 Max(T ), N 2 Max(T ), and T is integral over TG). For the other containment, let

x 2 n2. Then x 2 N2, so x 2 M . Hence x 2 M \ TG = m. Thus n2 ✓ m.
We show that the natural map � : RG/m ! TG/n given by r + m 7! r + n is an

isomorphism. Suppose that �(r + m) = 0 + n for some r 2 RG. Then r 2 n, so r2 2 n2.

Since n2 ✓ m and m is prime (in fact maximal) in RG, we have that r 2 m. (Alternatively,

r 2 n \RG = m, by Lemma 3.4(b).) Hence r + m = 0 + m. Thus � is injective.

Next we show that � is surjective. If t+n 2 TG/n, then t+N 2 (T/N)G. Note that, as in

the decomposed case, since R/M ⇠= T/N , the G-action extends to T/N . From this and from

Proposition 3.5, it follows that RG/m ⇠= (R/M)G ⇠= (T/N)G via r + m 7! r +M 7! r +N .

Hence, there exists r + m 2 RG/m such that r + m 7! r +M 7! r +N = t+N , from which

it follows that (r � t) 2 N \ TG = n. Hence �(r + m) = t+ n. Thus � is surjective.
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It remains to show that [TG/m : RG/m] = 2. Note that TG/m is not a domain, since

n2 ✓ m ⇢ n implies m = n, if m is prime. Hence TG/m 6= RG/m, i.e., [TG/m : RG/m] � 2.

Suppose that [TG/m : RG/m] > 2, and let {e1 + m, e2 + m, e3 + m} be an RG/m-linearly

independent set in TG/m. Then each e
i

/2 M ; otherwise, e
i

2 M \ TG = m. Hence each

e
i

+ M is nonzero in T/M . Since [T/M : R/M ] = 2, without loss of generality we may

assume that there exist t1 +M, t2 +M 2 T/M such that

e3 +M = (t1 +M)(e1 +M) + (t2 +M)(e2 +M) = t1e1 + t2e2 +M.

As in Lemma 3.7, using � 2 N
t1 and summing O

t1 we have that

n
t1e3 +M = bt1e1 +

0

@
X

�2Nt1

�(t2)

1

A e2 +M.

Defining t3 to be the coe�cient of e2 above and repeating the above technique with respect

to t3 we have that

n
t3nt1e3 +M = n

t3
bt1e1 + bt3e2 +M.

It follows that n
t3nt1e3 � (n

t3
bt1e1 + bt3e2) 2 M \ TG = m, so

n
t3nt1e3 + m = n

t3
bt1e1 + bt3e2 + m.

Equivalently,

(n
t3nt1 + m)(e3 + m) = (n

t3
bt1 + m)(e1 + m) + (bt3 + m)(e2 + m)

is an RG/m-linear combination of e1 + m, e2 + m, e3 + m in TG/m – contradiction. Hence,

there cannot exist in TG/m any more than two RG/m-linearly independent elements. Thus

[TG/m : RG/m]  2. Hence [TG/m : RG/m] = 2. By Theorem 3.8(c), RG ⇢ TG is a ramified
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integral minimal extension with crucial maximal ideal m = (RG :
R

G TG).

Remark 3.10. If we were to assume that R is G-invariant in this section (instead of waiting

until Section 3.3), then the conditions that R is integral over RG and O
M

= {M} would

automatically be satisfied. Integrality follows from Lemma 1.1. To see that O
M

= {M},
note that �(M)T = �(MT ) ✓ �(R) = R, for any � 2 G. Hence �(M) ✓ M . Since

�(M) 2 Max(R) (by the First Isomorphism Theorem), we have that �(M) = M .

Remark 3.11. It is necessary to assume that RG 6= TG in Theorem 3.9, as illustrated in

the following.

Example 3.12. The fixed rings are equal, even under finite group action, in the following

cases:

Inert case: Set R := R, T := C, and G := {1,�}, where � is the conjugacy map. Then

RG = R = TG.

Decomposed case: Let F be a field such that char(F ) 6= 2, and set R := {(x, x) |
x 2 F} and T := F ⇥ F . By [20, Lemme 1.2(b)], R ⇢ T is a minimal extension. Define

G := {1,�}, where �((x, x) = (x,�x). Then RG = TG.

Ramified case: Let F and R be as above, and set T := F (+)F . Then by [20,

Lemme 1.2(c)], R ⇢ T is a minimal extension. Define G as above. Then RG = TG.

3.3 Integrally Closed Minimal Extension

Our riding assumptions in this section are that R is a (proper) subring of T ,

G is a subgroup of Aut(T ), and R is G-invariant. We will show that the integrally

closed minimal property of an extension R ⇢ T is invariant when G is locally finite. This

generalizes Dobbs’ and Shapiro’s result that the property is invariant if R is a domain

and if |G| is finite and a unit in R [16, Theorem 3.6]. They use Ayache’s characterization

of minimal extensions (overrings) of an integrally closed domain [5, Theorem 2.4]. This
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result has since been generalized by Cahen et al. [7, Theorem 3.5]. With this more recent

characterization we establish Theorem 3.18.

Whereas crucial maximal ideals are historically essential to the study of minimal exten-

sions, Cahen et al. introduce critical ideals and use them extensively in classifying integrally

closed minimal extensions of an arbitrary ring [7]. They define a critical ideal for R ⇢ T as

an ideal I ⇢ R such that I = Rad
R

((R :
R

t)) for all t 2 T\R. That is, Rad
R

((R :
R

t)) is the

same ideal for all t 2 T\R. They show in [7, Lemma 2.11] that if an extension has a critical

ideal, then the ideal is prime. Moreover, they show that if R ⇢ T is a minimal extension,

then the critical ideal exists [7, Proposition 2.14(2)] and is maximal [7, Theorem 3.5]. If

R ⇢ T has a critical ideal, we show that RG ⇢ TG has a critical ideal under any group

action such that RG 6= TG.

Lemma 3.13. Let P be the critical ideal of R ⇢ T . If RG 6= TG, then p := P \ RG is the

critical ideal of RG ⇢ TG.

Proof. Let t 2 TG\RG. Then t 2 T\R. Hence P = Rad
R

((R :
R

t)), from which it follows

that

p = Rad
R

((R :
R

t)) \RG = Rad
R

G((R :
R

t) \RG) = Rad
R

G((RG :
R

G t)).

Thus p is the critical ideal of RG ⇢ TG.

We next show that if a critical ideal is maximal, then its orbit (under G) is a singleton

set.

Lemma 3.14. Suppose that M = Rad
R

((R :
R

t)), for all t 2 T\R, i.e., M is the critical

ideal for R ⇢ T . If M is a maximal ideal of R, then �(M) = M for all � 2 G, i.e.

O
M

= {M}.

Proof. Let � 2 G and t 2 T\R. Note that ��1(t) 2 T\R, for otherwise, if ��1(t) 2 R,

then t = �(��1(t)) 2 �(R) = R – contradiction. Since M is the critical ideal for R ⇢ T ,

M = Rad
R

((R :
R

��1(t))). Let x 2 M and set y := ��1(x). Then there exists n 2 N
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such that xnt 2 R, from which it follows that (��1(x))n��1(t) 2 ��1(R) = R. Hence

y = ��1(x) 2 Rad
R

((R :
R

��1(t))) = M . Thus x = �(y) 2 �(M), which shows that

M ✓ �(M). Since M is maximal, M = �(M), as desired.

Remark 3.15. In fact, it is not necessary to assume that M is maximal in the preceding

lemma. However, it is maximal when it is the critical ideal of an integrally closed minimal

ring extension (c.f. [7, Theorem 3.5]), and this is the case in our application of the lemma.

Related to critical ideals are valuation pairs for an extension R ⇢ T . As in [31], for

P 2 Spec(R), (R,P ) is a valuation pair of T if there is a valuation v on T with R = {t 2
T | v(t) � 0} and P = {t 2 T | v(t) > 0}. Equivalently, (R,P ) is a valuation pair of T if

R = S whenever S is an intermediate ring containing a prime ideal lying over P [31]. Rank

1 valuation pairs are one of several equivalences of integrally closed minimal extensions

given by Cahen et al [7]. As previously mentioned, the rank of a valuation pair (R,P ) of T

is the rank of the valuation group. The following lemma describes the relationship between

critical ideals and valuation pairs.

Lemma 3.16. [7, Lemma 2.12] Let (R,P ) be a valuation pair of T . Then R ⇢ T has a

critical ideal if and only if (R,P ) has rank 1. Moreover, under these conditions, P is the

critical ideal of R ⇢ T .

Our next result is fundamental to the invariance of integrally closed minimal extensions

to be established in Theorem 3.18.

Proposition 3.17. Assume that G is locally finite (on T ) such that RG 6= TG. Let

M 2 Max(R) and set m := M \RG. If O
M

= {M}, then (RG,m) is a valuation pair of TG

whenever (R,M) is a valuation pair of T .

Proof. Let A be a ring such that RG ✓ A ✓ TG. Then R ✓ AR ✓ T . First note that AR

is integral over A, since R is integral over RG, hence over A. Let q 2 Spec(A) such that
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q \RG = m, and let Q 2 Spec(AR) lie over q. From

m = q \RG = (Q \A) \RG = Q \RG = (Q \R) \RG

it follows that Q \ R is maximal in R, by integrality. We claim Q \ R = M . Suppose

not. Then there exists x 2 (Q \R)\M , since Q \R and M are incomparable (as maximal

ideals). It follows that x̃ 2 Q\RG = m = M \RG. Hence �(x) 2 M for some � 2 G. Since

O
M

= {M}, we have that x 2 ��1(M) = M – contradiction. Hence Q \ R = M . Since

(R,M) is a valuation pair of T , we have that AR = R, whence A = RG. Thus (RG,m) is a

valuation pair of TG.

Of the several integrally closed minimal extension equivalences in [7, Theorem 3.5], we

use the condition that there exists a maximal ideal M such that (R,M) is a rank 1 valuation

pair of T where R ⇢ T . With this equivalence, it follows directly from the preceding results

that integrally closed minimal extensions are invariant under locally finite group action.

Theorem 3.18. Assume that G is locally finite (on T ). If R ⇢ T is an integrally closed

minimal extension, then RG ⇢ TG is an integrally closed minimal extension.

Proof. First we show that RG 6= TG. Let t 2 T\R. Then t̃ 2 TG. Suppose that t̃ 2 RG.

Then t̃ 2 R. By [20, Proposition 3.1], �(t) 2 R for some � 2 G, whence t = ��1(�(t)) 2

��1(R) = R – contradiction. Hence, t̃ 2 TG\RG. Thus, RG ( TG.

Let M be the critical ideal for R ⇢ T . By Lemma 3.13, m := M \ RG is the critical

ideal for RG ⇢ TG. Since R ⇢ T is a minimal extension, the critical ideal M is maximal.

By Lemma 3.14 O
M

= {M}. By Lemma 3.17 (RG,m) is a valuation pair of TG. Since m

is the critical ideal of RG ⇢ TG, this valuation pair has rank 1 by Lemma 3.16. Hence,

RG ⇢ TG is an integrally closed minimal extension by [7, Proposition 3.5].
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3.4 Minimal Extensions, Flat Epimorphisms, and Normal

Pairs

As in the previous section, our riding assumptions in this section are that R is a subring of

T , G acts on T via automorphisms, and R is G-invariant. In this section, we generalize the

results of Sections 3.2 and 3.3.

In Proposition 3.19 and Corollary 3.20, we show that integral minimal extensions are

invariant under stronger assumptions on G but without the restriction of characteristic used

in Theorem 3.9. In doing so, we simultaneously re-establish Theorem 3.18.

In Theorem 3.23, we exchange a stronger assumption for a more general result. In

particular, we assume that G is strongly locally finite in order to show that flat epimorphic

extensions are invariant.

Lastly in Corollary 3.26, we show that normal pairs are invariant. As in [9], we say that

(R, T ) is a normal pair if S is integrally closed in T whenever R ✓ S ✓ T . Clearly, if R ⇢ T

integrally closed minimal extension, then (R, T ) is a normal pair.

As in Theorems 3.9 and 3.18, certain integral minimal extensions and all integrally closed

minimal extensions are invariant under locally finite G-action. In the former, however, we

require a certain restriction of characteristic. Assuming that |G| is finite and a unit in the

base ring, we can remove this restriction. Of course, if G is finite, then it is locally finite.

Hence, the following result and corollary re-establish Theorem 3.18.

Proposition 3.19. Let R ⇢ T be a minimal extension. Assume that G is finite such that

|G| is a unit in R and RG 6= TG. Then RG ⇢ TG is a minimal extension.

Proof. Let u 2 TG\RG. Clearly, u 2 T\R. Hence, T = R[u]. Let t 2 TG. Then t =

r
n

un + · · · + r1u + r0 for some r
i

2 R. Applying the averaging technique introduced in

Section 3.2 we have that

t = |G|�1
X

�2G
�(r

n

)un + · · ·+ �(r1)u+ �(r0).
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Thus TG = RG[u], i.e. RG ⇢ TG is a minimal extension.

Combining Propositions 3.1, 3.2(a), and 3.19, we have the following corollary.

Corollary 3.20. Under the hypotheses of Proposition 3.19, if R ⇢ T is an integral or inte-

grally closed minimal extension, then RG ⇢ TG is an integral or integrally closed minimal

extension, respectively.

Integrally closed minimal extensions are flat epimorphic extensions, by [20, Théormè 2.2].

An extension R ⇢ T is called flat epimorphic extension if T is a flat R-module and if the

inclusion map is an epimorphism (in the category of commutative rings). We will introduce

an equivalent characterization of flat epimorphisms, but first we introduce the construction

of localization at a filter (versus at a multiplicative set).

A collection of ideals F of a ring R is called a Gabriel filter (or localizing filter) if it

satisfies:

(i) If I 2 F and I ✓ J , then J 2 F .

(ii) If I, J 2 F , then I \ J 2 F .

(iii) If for an ideal I there exists J 2 F such that (I : j) 2 F for every j 2 J , then I 2 F .

By RF we denote the localization of R at F (or ring of quotients with respect to F).

One way to define RF is as follows: Assume R is F-torsion free, i.e., ⌧F (R) = {0}. (If

R is not torsion-free, then set R := R/⌧F (R).) Then RF = ⇡�1(⌧F (E(R)/R)), where

⇡ : E(R) ! E(R)/R is the canonical projection and E(R) denotes the injective hull of R.

For more information on Gabriel filters and localizations, see [21, 38,39].

Theorem 3.21. [39, Theorem 2.1, Ch. XI] Let � : R ! T be a ring homomorphism. Then

� is a flat epimorphism if and only if the collection F = {I ⇢ R |�(I)T = T} where I is

an ideal in R is a Gabriel filter, and there exists an isomorphism  : T ! RF such that

 � � : R ! RF is the canonical homomorphism. Such a filter is called perfect.
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Equivalently, flat epimorphisms are perfect localizations, so-called because of the above

correspondence. By [39, Exercise 8, p. 242], T is a perfect localization of R if and only if

for all t 2 T , (R :
R

t)T = T . With this definition and Lemma 3.22 we show that perfect

localizations (equivalently, flat epimorphic extensions) are invariant in Proposition 3.23.

Lemma 3.22. Assume that G is strongly locally finite (on T ) and R is G-invariant. Define

F := {I ⇢ R | IT = T} and F 0 := {J ⇢ RG | JTG = TG}. If I 2 F , then I \RG 2 F 0.

Proof. Note that I 2 F if and only if every P 2 Spec(R) containing I is not lain over in T .

Also note that F 0 = {J ⇢ RG | JR 2 F}. Let I 2 F and let P 2 Spec(R) contain (I\RG)R.

We claim I ✓ �(P ) for some � 2 G, whence PT = ��1(�(P )T ) = ��1(�(PT )) = T (since

IT = T ). Let x 2 I. Then x̃ 2 I \ RG, so x̃ 2 P . It follows that �(x) 2 P for some

� 2 G; equivalently, x 2 ��1(P ). Hence I ✓ S
Q2OP

Q. Since G is strongly locally finite,

O
P

is finite. It follows that I ✓ Q for some Q 2 O
P

by the Prime Avoidance Lemma

[26, Theorem 81]. Hence the claim is satisfied by � 2 G, where Q = �(P ), so PT = T .

Thus, every prime containing (I \ RG)R is not lain over in T . That is, (I \ RG)R 2 F ,

whence I \RG 2 F 0, as desired.

We are now ready to show that perfect localizations (flat epimorphic extensions) are

invariant under strongly locally finite group action using Lemma 3.22.

Theorem 3.23. Assume that G is strongly locally finite (on T ) and R is G-invariant. Let

F and F 0 be as in Lemma 3.22. Then

(a) F 0 is a Gabriel filter whenever F is a Gabriel filter, and

(b) if R ✓ T is a flat epimorphic extension, then so is RG ✓ TG.

In particular, TG = (RG)F 0 whenever T = RF .

Proof. (a) Suppose that F is a Gabriel filter. We check that F 0 satisfies the defining

conditions (i) through (iii) of a Gabriel filter given above. Let I 2 F 0, and let J be an
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ideal of RG containing I. Then IR 2 F and IR ✓ JR, so JR 2 F . It follows that

JT = T , so JTG = TG, since T is integral over TG. Hence J 2 F 0, which establishes

condition (i). Now let I, J 2 F 0. Then IT = T and JT = T . Suppose that I \ J /2 F 0, i.e.

(I \ J)TG 6= TG. Again by integrality, (I \ J)T 6= T . Let P 2 Spec(T ) contain (I \ J)T .

Then I \ J ✓ P \ TG =: p. It follows that I ✓ p or J ✓ p, but then IT ✓ P or JT ✓ P –

contradiction. Hence I \ J 2 F 0, which establishes condition (ii).

It remains to show that F 0 satisfies condition (iii). Let J be an ideal of RG, and suppose

that there exists I 2 F 0 such that (J :
R

G a) 2 F 0 for all a 2 I. We claim (JR :
R

a) 2 F for

all a 2 IR, whence JR 2 F , i.e., J 2 F 0. Let a := a1r1+ · · ·+ a
n

r
n

2 IR, where a
i

2 I and

r
i

2 R. For each a
i

, clearly (J :
R

G a
i

)R ✓ (JR :
R

a
i

). Since (J :
R

G a
i

) 2 F 0, we have that

(J :
R

G a
i

)R 2 F . Hence (JR :
R

a
i

) 2 F . From (JR :
R

a
i

) ✓ (JR :
R

a
i

r
i

) it follows that

(JR :
R

a
i

r
i

) 2 F . Since
T

n

i=1(JR :
R

a
i

r
i

) 2 F and
T

n

i=1(JR :
R

a
i

r
i

) ✓ (JR :
R

a), we have

that (JR :
R

a) 2 F , proving the claim. Hence JR 2 F , i.e. J 2 F 0. Thus F 0 is a Gabriel

filter.

(b) Now we show that RG ✓ TG is a flat epimorphic extension by showing that TG

is a perfect localization of RG. Let x 2 TG. Then (R :
R

x)T = T , since T is a perfect

localization of R. It follows that (R :
R

x) 2 F , and (R :
R

x) \ RG 2 F 0, by Lemma 3.22.

We claim (R :
R

x) \ RG ✓ (RG :
R

G x), whence (RG :
R

G x) 2 F 0, since F 0 is a Gabriel

filter. Let y 2 (R :
R

x) \ RG. Then xy 2 R, but x 2 TG and y 2 TG, so xy 2 RG. Hence

(R :
R

x) \ RG ✓ (RG :
R

G x), so (RG :
R

G x) 2 F 0 as claimed. (In fact, as the reverse

containment clearly holds, (R :
R

x) \ RG = (RG :
R

G x).) Thus (RG :
R

G x)TG = TG, i.e.

TG is a perfect localization of RG. In particular, TG ⇠= (RG)F .

Remark 3.24. It would be interesting to know if epimorphic extensions or flat extensions

are invariant under any group action.

Normal pairs are another generalization of integrally closed minimal extensions. By

[27, Theorem 5.2], (R, T ) is a normal pair if and only if R is integrally closed in T and
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R ✓ S satisfies INC for any intermediate ring S. A pair of rings (R, T ) satisfying the latter

property is called an INC-pair and note that it is equivalent to the definition of an INC-pair

given in [10].

We have already seen that integrally closed extensions are invariant in Proposition 3.2

(a). To assert that normal pairs are invariant, it remains to show that INC-pairs are

invariant.

Proposition 3.25. Assume that G is locally finite (on T ). If (R, T ) is an INC-pair, then

(RG, TG) is an INC-pair.

Proof. Let RG ✓ A ✓ TG, and let q ✓ q0 be prime ideals of A with the same contraction in

RG. Set p := q\RG = q0 \RG. Since R is integral over RG (whence over A), AR is integral

over A. Hence, A ✓ AR satisfies LO and GU. Let Q ✓ Q0 be prime ideals in AR such that

q = Q\A and q0 = Q\A. Setting P := Q\R and P 0 := Q0 \R, we have that P ✓ P 0 and

P \RG = Q \RG = (Q \A) \RG = q \RG = p,

and P 0 \ RG = p, by the same reasoning. As an integral extension, RG ✓ R satisfies INC,

whence P = P 0. Since R ✓ AR satisfies INC, Q = Q0. Hence q = q0. Thus (RG, TG) is an

INC-pair.

The corollary below now follows easily from Propositions 3.2 (a) and 3.25.

Corollary 3.26. If G is locally finite (on T ), then (RG, TG) is a normal pair whenever

(R, T ) is a normal pair.

3.5 FIP and FCP Extensions

As in the previous section, our riding assumptions in this section are that R is a subring

of T , G acts on T via automorphisms, and R is G-invariant. We denote the collection of

intermediate rings by [R, T ] , and the collection of proper intermediate rings by (R, T ). We
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say that R ⇢ T satisfies the finitely many intermediate algebras property (FIP) if [R, T ] is

finite, and we say that the extension satisfies the finite chain property (FCP) if every chain

in [R, T ] is finite.

We utilize several significant results in [12] to show that these are invariant properties of

ring extensions. By Theorem 3.27 below, while studying extensions satisfying FIP or FCP

we need only consider two cases: integral and integrally closed extensions. By [12, Theorem

6.3], in the integrally closed case, the FIP and FCP are equivalent. We begin with this case

in Theorem 3.28.

Theorem 3.27. [12, Theorem 3.13] The extension R ⇢ T satisfies FCP (respectively, FIP)

if an only if R ✓ R̄ and R̄ ✓ T satisfy FCP (respectively, FIP).

Theorem 3.28. Assume G is locally finite, and R ⇢ T is integrally closed. If R ⇢ T

satisfies FCP (FIP), then so does RG ✓ TG.

Proof. Let R = S0 ⇢ S1 ⇢ · · · ⇢ S
n

⇢ T be a maximal chain, i.e., each subextension is

minimal. If n = 0, then R ⇢ T is a minimal extension, in which case RG ⇢ TG is a minimal

extension by Proposition 3.18. If n = 1, then R ⇢ S1 and S1 ⇢ T are both integrally

closed minimal ring extensions (the latter by [12, Theorem 6.3 (b)]). We will show that

S1 is G-invariant, i.e., G acts on S1, whence RG ⇢ SG

1 and SG

1 ⇢ TG are integrally closed

minimal ring extensions by Theorem 3.18.

Let s 2 S1\R. Then s̃ 2 SG

1 . Note that R ⇢ S1 is an integrally closed minimal

ring extension and so satisfies Samuel’s condition, meaning a 2 R or b 2 R whenever

ab 2 R, for a, b 2 S1 [20, Proposition 3.1]. In particular, if s̃ 2 R, then �(s) 2 R for

some � 2 G, whence s 2 ��1(R) = R – contradiction. Hence, s̃ 2 SG

1 \RG, i.e., RG ( SG

1 .

Let u 2 SG

1 \RG. Then u 2 S1\R. Since R ⇢ S1 is minimal, we have S1 = R[u]. Hence,

�(S1) = �(R)[�(u)] = R[u] = S1 for all � 2 G. Thus S1 is G-invariant.

Now assume that if R = Ŝ0 ⇢ Ŝ1 ⇢ · · · ⇢ Ŝ
n�1 ⇢ T is a maximal chain, then RG =

Ŝ0\TG ✓ Ŝ1\TG ✓ · · · ✓ Ŝ
n�1\TG ✓ TG is a maximal chain. Consider the aforementioned
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maximal chain R = S0 ⇢ S1 ⇢ · · · ⇢ S
n

⇢ T . By the reasoning in the case where n = 1, S1

is integrally closed in T , and S1 is G-invariant. Hence RG ✓ SG

1 is a minimal ring extension

(again as in the case where n = 1), and S1 \ TG ✓ · · ·S
n

\ TG ✓ TG is a maximal chain

by the inductive hypothesis. Thus RG ⇢ SG

1 ✓ · · · ✓ SG

n

✓ TG is a maximal chain. By

Proposition 3.2 (a), RG ⇢ TG is integrally closed. By [12, Theorem 6.3 (a)], RG ✓ TG

satisfies FCP.

Before establishing that the integral FCP property is invariant, we introduce two con-

structions that we will use. As in [40], we say that a ring extension A ✓ B is seminormal

if b 2 B and b2, b3 2 A imply b 2 A. Given R ⇢ T , the seminormalization of R in T is the

smallest ring +
T

R 2 [R, T ] such that +
T

R ✓ T is seminormal. As in [36], we say that A ⇢ B

is t-closed if b 2 B, a 2 A, b2 � ab 2 A, and b3 � ab2 2 A imply b 2 A. Given R ⇢ T , the

t-closure of R in T is the smallest ring t

T

R 2 [R, T ] such that t

T

R ✓ T is t-closed. The rings

+
T

R and t

T

R can be constructed via elementary subintegral and infra-integral extensions.

Again as in [40] (respectively, [36]), a ring extension A ⇢ B is an elementary subintegral

(respectively, infra-integral) extension if B = A[b], where b 2 B and b2, b3 2 A (respectively,

b2 � ab, b3 � ab2 2 A, where a 2 A).

Lemma 3.29. For R ⇢ T , +
T

R and t

T

R are G-invariant.

Proof. By [40, Theorem 2.8], +
T

R is the union of all subrings of T obtained from R by a finite

number of elementary subintegral extensions. Analogously, by [36, Théorème 2.5], t
T

R is the

union of all subrings of T obtained from R by a finite number of elementary infra-integral

extensions. Let S 2 (R, T ) and � 2 G. If S = R[s], where s 2 S and s2, s3 2 R (respectively,

s2�rs, s3�rs2 2 R, where r 2 R), then, since R isG-invariant, �(S) = R[�(s)], �(s) 2 �(S),

and �(s)2,�(s)3 2 R (respectively, �(s)2��(r)�(s),�(s)3��(r)�(s)2 2 R, where �(r) 2 R.

Hence, the image of an elementary subintegral (respectively, infra-integral) extension under
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any element of G is an elementary subintegral (respectively, infra-integral) extension. It

follows that +
T

R (respectively, t

T

R) is G-invariant.

With this lemma and the following theorem, we show that, under certain assumptions,

the integral case of the FCP is invariant in Theorem 3.31.

Theorem 3.30. [12, Theorem 4.6] Let R ✓ T ben an integral extension. Then R ✓ T

satisfies FCP if and only if R ✓ +
T

R, +
T

R ✓ t

T

R, and t

T

R ✓ T each satisfy FCP.

Theorem 3.31. Assume G is locally finite such that char(RG/(RG :
R

G TG)) - n
r

for all

r 2 R. Also assume at least one of +
T

R or t

T

R is distinct from both R and T , i.e., +
T

R 2 (R, T )

or t

T

R 2 (R, T ). If R ⇢ T is integral and satisfies FCP, then so does RG ✓ TG.

Proof. By [12, Theorem 4.2], there exists a maximal chain R ⇢ S1 ⇢ · · · ⇢ S
n

⇢ T , where

each subextension is integral. If n = 0, then R ⇢ T is minimal, whence RG ⇢ TG is

minimal or RG = TG by Theorem 3.9. If n = 1, then let S := S! and there are three cases:

RG = SG = TG, RG ⇢ SG = TG, and RG = SG ⇢ TG. Clearly, RG = SG = TG is trivial.

If RG ⇢ SG = TG, let u 2 SG\RG. Then u 2 S\R, whence S = R[u]. For any � 2 G we

have �(S) = �(R)[�(u)] = R[u] = S. Hence S is G-invariant. By Theorem 3.9, SG ⇢ TG is

a minimal ring extension.

The case where RG = SG ⇢ TG is more complicated. Set M := (R :
R

S), N := (S :
S

T ),

and P := N \ R, and note that M and N are the crucial maximal ideals of R ⇢ S and

S ⇢ T , respectively. If P * M , then [R, T ] = {R,S, S0, T}, where R ⇢ S0 and S0 ⇢ T

are minimal, by [12, Lemma 2.7]. Without loss of generality assume that +
T

R 2 (R, T ).

Then again without loss of generality we may assume +
T

R = S, whence S is G-invariant, by

Lemma 3.29. By Theorem 3.9, SG ⇢ TG is a minimal ring extension.

Now consider RG = SG ⇢ TG and P ✓ M . Since R ⇢ S is integral and N 2 Max(S),

we have P 2 Max(R), whence P = M . As in the previous cases, we will show that SG ⇢ TG

is a minimal ring extension by Theorem 3.9, except we establish that SG ✓ S is an integral
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extension instead of determining that S is G-invariant. To do so we argue M 2 Max(S)

and O
M

= {M}.

Since RG ✓ R and R ⇢ S are integral and SG = RG, we have that SG ✓ S is integral.

Since M 2 Max(R), we have M \ SG = M \ RG is maximal in SG = RG. Hence M 2
Max(S). Moreover, since M = N \ R, we have M ✓ N , whence M = N , i.e., (R :

R

S) =

(S :
S

T ).

We now show that O
M

= {M}. Note that (R :
R

T ) ✓ M . For the sake of contradiction,

assume that there exists r 2 M\(R :
R

T ). Since M = N \ R, we have r 2 N , whence

rT ✓ S. It follows that r2T ✓ rS ⇢ R, i.e. r2 2 (R :
R

T ). Since (R :
R

T ) 2 Spec(R), we

have r 2 (R :
R

T ) – contradiction. Thus (R :
R

T ) = M . By Remark 3.10 O
M

= {M}.

Having established that SG ✓ S is an integral extension, M 2 Max(S), and O
M

= {M},

it now follows from Theorem 3.9 that SG ⇢ TG is a minimal integral ring extension. Thus

the base case is complete.

We now proceed with the inductive argument which is similar to that in Theorem 3.28,

except we use strong induction. Let 1 < k < n and assume that if R = Ŝ0 ⇢ Ŝ1 ⇢ · · · ⇢

Ŝ
k

⇢ T is a maximal chain, where each subextension is integral, then RG = Ŝ0 \ TG ✓

Ŝ1 \TG ✓ · · · ✓ Ŝ
k

\TG is also a maximal chain with integral subextensions. Consider the

aforementioned maximal chain R ⇢ S1 ⇢ · · · ⇢ S
n

⇢ T . Without loss of generality we may

assume +
T

R 2 (R, T ). Since R ⇢ T satisfies FCP, clearly R ⇢ +
T

R and +
T

R ⇢ T satisfy FCP.

Without loss of generality we may assume +
T

R = S
k

. Hence,

R ⇢ S1 ⇢ · · · ⇢ S
k�1 ⇢ S

k

= +
T

R

and

+
T

R = S
k

⇢ S
k+1 ⇢ · · · ⇢ S

n

⇢ T

are maximal chains, where each subextension is integral. By Lemma 3.29, the inductive

hypothesis applies to the above chains. Hence, RG ✓ S1 \ TG ✓ · · · ✓ S
k�1 \ TG ✓ (+

T

R)G
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and (+
T

R)G ✓ S
k+1\TG ✓ · · · ✓ S

n

\TG ✓ TG are maximal chains where each subextension

is integral. Thus, RG ✓ SG

1 ✓ · · · ✓ SG

n

✓ TG is a maximal chain, where each subextension

is integral. By Proposition 3.1, RG ✓ TG is an integral extension. By [12, Theorem 4.2]

RG ✓ TG satisfies FCP.

With stronger assumptions we can show that being an integral extension satisfying FIP

is an invariant property. In fact a similar argument applies to the integrally closed FCP

(FIP) and integral FCP cases.

Lemma 3.32. Assume |G| is finite and a unit in R. If A 2 [RG, TG], then AR \ TG = A.

Proof. Note that R ✓ AR ✓ T . Clearly, A ✓ AR \ TG. For the reverse containment, let

x 2 AR \ TG. Then there exists a
i

2 A and r
i

2 R such that x = a1r1 + · · ·+ a
n

r
n

. As in

Lemma 3.7, we have |G|x = a1r̂1 + · · ·+ a
n

r̂
n

, whence x = |G|�1(a1r̂1 + · · ·+ a
n

r̂
n

). Hence

x 2 ARG = A. Thus AR \ TG ✓ A

Proposition 3.33. Assume |G| is finite and a unit in R, and R ⇢ T is integral. If R ⇢ T

satisfies FIP, then so does RG ✓ TG.

Proof. Let |[R, T ]| = n, and let A 2 [RG, TG]. By the above lemma, R ( AR ( T , i.e.

AR 2 [R, T ], and if A 6= B 2 [RG, TG], then AR 6= BR. Hence |[RG, TG]|  n.
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