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Randomized controlled trials (RCTs) serve as the gold standard in researching and

developing new therapeutics. A new treatment’s e↵ectiveness is evaluated by comparing

it to existing or standard treatment in an RCT. However, the imbalance in participants’

characteristics between groups would harm such comparison. The act of randomization on

patients mitigates the bias caused by such imbalance in the evaluation of treatment e↵ects.

Randomization-based inference was first introduced by Sir R.A. Fisher as an approach

to evaluate treatment e↵ects in an RCT. The limit in computing power has slowed its

development in the past. However, the tremendous growth of computing technology enables

us to compute randomization tests easily.

Randomization-based inference is a natural way to analyze data from a clinical trial.

But the presence of missing outcome data is problematic: if the data are removed, the

randomization distribution is destroyed, and randomization tests have no validity. There are

no randomization-based methods to handle missing data. In this thesis, the unconditional

reference set method, the conditional reference set method and the randomization-based

multiple imputation are described to handle missingness while preserving the randomization

distribution.



Randomization-based missing data methods are compared to population-based and

parametric imputation approaches via the metrics of type I error rates and power under

both homogeneous and heterogeneous population models. Randomization-based analogs

of standard missing data mechanisms are described, and a randomization-based procedure

is proposed to determine if data are missing completely at random. A large simulation

protocol is implemented to conclude that the unconditional, the conditional reference sets

method and the randomization-based multiple imputation are reasonable approaches to

handle missing data in patients’ missingness in the context of a two-armed RCT.



Chapter 1: Background and Significance

1.1 Introduction

The objective of most clinical trials is providing an unbiased comparison between treat-

ments. However, missing data can seriously compromise the comparison between treatments

from a statistical inference perspective, introducing bias in the comparison and diminishing

the statistical power of a study. Usually patients enter a study sequentially and are random-

ized to one of two or more treatments. It is not unusual to see patients drop out before the

end of a study. This may because patients who are assigned to the experimental treatment

may choose to discontinue the medication when they feel better, and patients on placebo

may also stop taking medication because they think the treatment is non-e↵ective during

the study, or patients may be lost to follow-up for reasons unrelated to the trial. Di↵erent

missing data mechanisms a↵ect the choice of statistical inference methods when dealing with

data with missingness. Unfortunately, determining the underlying missing data mechanism

is hard in practice, making data analysis with missingness even more complicated.

Even when there is no missingness in the data from randomized clinical trials, there

is a current debate over the choice of analysis methods: population-based methods and

randomization-based methods. For instance, if we are interested in comparing the treat-

ment e↵ects of two-armed randomized clinical trials with experimental and placebo treat-

ments, assuming patients’ responses are continuous, it is natural to use a population-based

method such as a two-sample t-test. However, the random sampling assumption for the t-

test itself is questionable. As Rosenberger et al. (2019) point out, clinical trials are designed

experiments, and there are no existing populations of patients taking experimental medi-

cations or procedures. The clinical trial creates a finite population consisting of patients
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who are involved in the trial. Hence there is no random sampling. The initial assump-

tion for population-based methods, i.e., random sampling, is inappropriate. However, the

randomization-based inference is a more natural and objective method to investigate dif-

ferent treatments’ e�cacy. Statistical inference using a randomization test is based on the

probability distribution derived from the randomization procedures, which are adopted in

the trials without any random sampling assumptions on patients’ collection. Randomiza-

tion tests preserve the type I error rates, even under heterogeneity. More details about the

randomization test are discussed in a later section.

The randomization test’s virtues are explained by Rosenberger et al. (2019) and these

motivate us to implement it in practice. Nevertheless, the lack of reliable randomization-

based methods adjusted for missing data can hinder the use of the randomization test,

especially when there are many population-based methods available that handle data with

missingness, such as the direct likelihood and multiple imputation. Confronting this situa-

tion, a randomization-based method adjusting for the missing values is desired. We focus

on the situations when the missingness only occurs in patients’ responses, not treatment

assignments, after they participate in a two-armed randomized clinical trial. The methods

we discuss are versatile when dealing with di↵erent types of responses. The continuous and

binary cases are both well-investigated in the simulation studies. We evaluate the methods’

performance under di↵erent missing data mechanisms. The new method’s validity is also

tested under situations where there is heterogeneity in the patient’s outcomes.

1.2 Randomization Procedures

Before discussing randomization procedures in detail, it is first necessary to clarify our goal

in a randomized clinical trial. Assume a new treatment is available, and we wish to compare

its e�cacy with an existing treatment, or placebo. Patients are recruited into the trial, and

two treatments are assigned to patients according to a randomization procedure. Proce-

dures promoting the comparability between two groups of patients who receive di↵erent

treatments and allocating treatments to patients without introducing human factors are
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essential to protect the comparison from bias. Randomization provides these protections.

We focus on reviewing the classical randomization procedures in the following.

Let T = T1, . . . , Tn be a vector of random treatment assignments for n patients, where

Tj = 1 if the patient j received treatment A and Tj = 0 if received treatment B.

1.2.1 Complete Randomization

For complete randomization (CR), the treatment assignments T1, . . . , Tn are independent

and identically distributed Bernoulli random variables where P (Tj = 1) = 1/2 for j =

1, . . . , n. CR is easy to implement in practice. However, this procedure is less attractive

since there is a non-negligible probability of obtaining a severe imbalance in treatment

assignments, i.e., significantly more patients receive one treatment compared to another

treatment. Note that all possible treatment assignment sequences are equiprobable. Rosen-

berger and Lachin (2016) discuss this imbalance with simulation studies and theoretical

results. Some forced-balance procedures are proposed to deal with the imbalance. Forced-

balance procedures result in exactly n/2 patients allocate to treatment A and n/2 patients

to treatment B.

1.2.2 Random Allocation rule

Unlike CR, the random allocation rule (RAR) relies on the previous treatment assignments

of j � 1 patients when allocating a treatment to the jth patient. Let Fn be the treatment

assignments for first n patients, where Fn = {T1, . . . , Tn}. The RAR is defined by the

following rule - the probability that the jth patient receives treatment A is given by

E(Tj |Fj�1) =
n
2 �NA(j � 1)

n� (j � 1)
, j = 2, . . . , n

where P (T1) = 1/2 and NA(j � 1) is the number of patients who received treatment A

after j�1 patients have been assigned. The treatment assignments are predictable at some

stages in the trial, which may result in selection bias. For instance, if n/2 patients have
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already received treatment A, the remaining patients who have not received treatments

must receive treatment B; thus, a significant imbalance also occurs midway through the

trial. The imbalance makes the comparison between treatments questionable, especially

when there is a time trend in patients’ responses. The influences of imbalance under the

RAR are discussed for large n by Rosenberger and Lachin (2016).

1.2.3 Truncated Binomial Design

Blackwell and Hodges (1957) proposed the truncated binomial design (TBD). The TBD

allocates exactly n/2 patients to each treatment when implementing a two-armed random-

ized clinical trial. The rule for allocating patients under the TBD is summarized as the

following, when n is even:

E(Tj |Fj�1) =
1

2
, if max{NA(j � 1), NB(j � 1)} < n/2

= 0, if NA(j � 1) = n/2,

= 1, if NA(j � 1) = n/2.

Similar to the problems in the RAR, the randomization sequences are predictable at some

stages, and imbalances in the assignments are expected to occur during the trial.

1.2.4 Permuted Block Design

Severe imbalances may occur in the course of the trial if the designs discussed above are

adopted. However, the permuted block design (PBD) better controls possible adverse e↵ects

due to imbalances, compared to CR, the RAR, and the TBD. We see how this works by

clarifying the rule for the PBD. For PBD, MB blocks are established, and each block has

mB = n/MB patients. Assume both MB and mB are even positive integers. Within

each block, mB/2 patients receive one treatment, and the rest receive another treatment.

The RAR or the TBD are implemented when allocating the patients within each block.
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Following this idea, it is easy to see that the maximum value for the possible imbalance is

mB/2 during the trial. In practice, block sizes should be greater than two. By introducing

blocks, the extent of the imbalance alleviates. However, selection bias can not be prevented

because of the predictability in the randomization sequences.

1.2.5 Random Block Design

Unlike the PBD, the block size varies in the random block design (RBD). The variability

in block sizes reduces the adverse e↵ects of selection bias on the randomization. Define Bj ,

j = 1, . . . , n, as one half of the block size of the block containing the jth patient, so that Bj

is a random variable from a discrete uniform distribution, and Bmax is the largest possible

value for Bj . The rule for the RBD is clearly defined in Rosenberger and Lachin (2016).

The position of a jth patient within its block is defined as Rj , and this depends on the

block size Bj . The RAR or the TBD were used to allocate treatments within a block. For

instance, if the RAR was adopted, we have

E(Tj |Fj , Bj , Rj) =

Bj

2 �
Pj�1

l=j+1�Rj
Tl

Bj �Rj + 1

There is a chance that the last block is unfilled since n usually is not known in advance.

1.2.6 Biased Coin Design

The biased coin design (BCD) was proposed by Efron (1971). The allocation rule is de-

scribed as the following:

E(Tj |Fj�1) =
1

2
, if Dj�1 = 0,

= �, if Dj�1 < 0,

= 1� �, if Dj�1 > 0,
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where Dn measures the di↵erences of treatment assignments between treatment A and B

(e.g., Dn = NA(n)�NB(n) = 2NA(n)� n), and gamma is a constant, � 2 (0.5, 1]. Efron’s

original paper provides the recommendation of �. In his paper, he states:

The value � = 2/3, which is the author’s personal favourite, will be seen to yield

generally good designs and will be featured in the numerical categories.

1.2.7 Big Stick Design

Soares and Wu (1983) introduced the big stick design (BSD). Define an imbalance tolerance

parameter b, which is a positive integer. The level of imbalance is controlled within an

acceptable range by b, which is fixed in advance. The rule for the BSD described as the

following:

E(Tj |Fj�1) =
1

2
, if |Dj�1| < b

= 0, if Dj�1 = b

= 1, if Dj�1 = �b.

1.3 Randomization Test

Under a population model, to investigate the di↵erence between treatments A and B, we

compare the outcomes from two groups of patients using population-based methods, such

as the t-test. For example, we assume patients in treatment A are a random sample from

the population of patients taking treatment A. As we discussed in the introduction, the

random sampling assumption is inappropriately adopted in a randomized clinical trial.

The only randomness in the trial is induced by the implemented randomization procedure,

which is ignored in the traditional analysis. Without a random sampling basis, population-

based methods are inapplicable to data from the randomized clinical trial. However, the

randomization test is the remedy for this. In Rosenberger and Lachin (2016), this philosophy
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was summarized as follows:

Fortunately, the use of randomization provides the basis for an assumption-free

statistical test of the equality of the treatments among the n patients actually

enrolled and studied. These are known as randomization tests.

For population-based methods, in the null hypothesis, we usually assume equality in the

parameters from populations taking two di↵erent treatments A and B. In randomization

tests, for the null hypothesis, we assume that the assignments of treatment A and B do not

a↵ect patients’ responses. Rosenberger and Lachin (2016) interpret the null hypothesis in

the randomization tests in the following:

Under the null, each patient’s observed responses is what would have been ob-

served regardless of whether treatment A or B had been assigned. Then the

observed di↵erence between the treatment groups depends only on the way in

which the n patients were randomized.

A measure of di↵erence between treatments is selected as the test statistic when implement-

ing the randomization test. The test statistic based on the observed randomization sequence

is denoted Sobs.. Under the null hypothesis, we assume there is no di↵erence between treat-

ment A and B. When implementing the randomization test, randomized sequences are

generated according to the randomization procedure adopted in practice. Each sequence is

generated with a certain probability. The set that contains all possible randomization se-

quences is called the reference set. Then for each sequence in the reference set, we compute

the corresponding test statistic and compare it with the observed test statistic. The p-value

of the observed test statistic is calculated by adding the probability of sequences that have

test statistics as the least extreme as the observed test statistic. A small p-value indicates

that there are di↵erences between treatments.

The reference set contains all possible sequences as long as sequences are generated

under the randomized procedure implemented in the trial. Let ⌦ be the cardinality of the

reference set and S be a test statistic of interest. Let L denote a record of the randomization
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sequence, and l be its realization. The method to calculates p-values for the randomization

tests is described as follows. For a randomization test, the two-sided p-value is given by:

p =
⌦X

l=1

l(|Sl| � |Sobs.|)Pr(L = l).

If the p-value, is less than the given significance level ↵, we would make the statement that

there is a significant di↵erence in treatment e↵ects between treatments A and B.

The flexibility in the selection for the test statistic of interest S makes the randomiza-

tion test even more versatile under di↵erent types of outcomes. For instance, S can be a

di↵erence between group means or group proportions. We can also use rank scores. Let ajn

be the score of patient j, where n patients are involved in the trial with outcomes Y1, . . . , Yn.

Let ān be the arithmetic mean of ajn where j = 1, . . . , n. We have a test statistic for the

randomization test based on a linear rank test. The test statistic is given by

S =
nX

j=1

(ajn � ān)Tj ,

where Tj = 1 if patient j received treatment A and Tj = 0 if treatment B. If ajn are simple

ranks, then the test becomes the Wilcoxon rank-sum test. For binary responses, ajn = 1 or

0.

When implementing a randomization test, Monte-Carlo re-randomization is used when

generating the possible randomization sequences in the reference set under the given ran-

domization procedure. If enough sequences are generated, replicates will mirror the prob-

ability distribution of the corresponding reference set. The two-sided p-value is estimated

by

p̂ =

PL
l=1 I(|Sl| � |Sobs.|)

L
.
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In Galbete and Rosenberger (2016), it was demonstrated by simulation that the test under

L = 15000 sequences are almost identical to the exact test (where the probability of each

sequence in the reference set are computed directly) and even more accurate than asymptotic

tests for moderate sample sizes.

The performance of the the randomization test has been tested by simulation. The

power of the randomization test is close to the t-test when no time trend exists. When

there is a time trend in patients’ responses, the randomization test is less a↵ected than the

t-test in terms of power. More details about time trends will discuss in the following.

1.4 Missing Data Mechanisms

Missing data can compromise the validity of statistical inference from a randomized clinical

trial, especially when the missingness is not handled appropriately. In this case, clarify-

ing the mechanism resulting in the missingness is essential to the analysis. The concepts

of missing-data mechanisms: missing completely at random (MCAR), missing at random

(MAR), and missing not at random (MNAR), are formulated in terms of likelihoods in

Little and Rubin (2002). We introduce the missing data mechanisms by using the notation

in Little and Rubin (2002).

Let Y = (yij) defined the (n ⇥ K) complete data set with ith row yi = (yi1, . . . , yiK)

where yij is the value of variable Yj for observation i. With missing data, define the missing

data indicator matrix M = (mij) such that mij = 1 if yij is missing and mij = 0 if yij is

present. The missing-data mechanisms are presented in terms of conditional distribution of

M given Y , f(M |Y , ) where M is parametrized by unknown parameter  .

1.4.1 Missing Completely at Random (MCAR)

Data are said to be missing completely at random (MCAR) if absence or the presence

of observations does not depend on the observed or unobserved data. In terms of the
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conditional distribution, the MCAR is described as the following:

f(M |Y , ) = f(M | ) for all Y , .

1.4.2 Missing at Random (MAR)

Let Y = (Y obs,Y mis) where Y obs is defined as the observed component of Y and Y mis is

the missing component. When the missingness depends on the observed data of Y , Y obs,

the missing-data mechanism is said to be missing at random (MAR) if

f(M |Y , ) = f(M |Y obs, ) for all Y mis, .

1.4.3 Missing not at Random (MNAR)

If the distribution of M depends the data in Y , the missing-data mechanism is called

missing not at random (MNAR). MNAR is also known as nonignorable nonresponse, or not

missing at random (NMAR).

1.5 Population-based Methods for Handling Missing Data

The following are frequently-used population-based methods to handle missing data prob-

lems; they are the complete-case analysis, single imputation methods, and model-based

methods such as the direct likelihood method and multiple imputation. In this section, we

will briefly review these methods.

1.5.1 Complete Case Analysis

The complete-case analysis only analyzes the complete observations in the dataset; it is

the most commonly used method in practice since it seems to be the quickest and easiest

way to solve the missing data problem. It provides statistical inference without bias under

the MCAR assumption since the sample under MCAR remains representative for the entire
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dataset because the missing does not depend on observed or unobserved data. However, due

to the decreased sample size, the complete-case analysis decreases the statistical power of a

test and increases the standard errors of an estimator. In practice, it is nearly impossible to

ascertain if the missing data are MCAR. Thus simply assuming MCAR and implementing

the complete-case analysis potentially risks the statistical inference.

1.5.2 Single Imputation

Imputation for the missing values is conducted once in single imputation methods. Imputed

values replace the missing values. After imputation, all observations become complete in

the original dataset, and the dataset with imputed values is available to be analyzed. Many

single imputation methods are available, and they are reviewed in the following.

• Mean imputation

This method applies to continuous variables. The missing values are replaced by the

mean calculated based on the complete observations in the dataset. Mean imputa-

tion is a quick and easy way to fix the missing data problem. However, this method

should always be used with caution. As described in Van Buuren (2018), mean im-

putation underestimates the variance, disturbs the relations between variables, and

biases almost any estimates other than the mean when data are not MCAR.

• Regression imputation

This method applies to continuous variables. First, a regression model is built based

on complete observations. Then the missing values will be replaced by the prediction

from the regression model built on complete observations. The regression method

generates unbiased estimates of the mean under MCAR. However, this method is

risky to use because of its potential problems such as underestimating the variance

and artificially strengthening the relations in data. Van Buuren (2018) also points

out the following:
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Regression imputation, as well as its modern incarnations in machine learn-

ing is probably the most dangerous of all methods described here. We may

be led to believe that we’re to do a good job by preserving the relations

between the variables. In reality however, regression imputation artificially

strengthens the relations in the data. Correlations are biased upwards.

Variability is underestimated. Imputations are too good to be true.

• Stochastic regression imputation

Similar to the regression imputation method, a model is first built based on complete

observations. The stochastic regression method’s imputed value is the predicted value

plus a random draw from the estimated distribution of residuals from the regression

model built on complete observations. Adding noise to the predicted value is an

attempt to alleviate the problem that the relations between variables are artificially

strengthened because of imputation.

• Predictive mean matching (PMM)

Instead of imputing missing values by a predetermined model, the predictive mean

matching method selects observed values from complete cases to replace missing val-

ues. Van Buuren (2018) described the predictive mean matching method:

For each missing entry, the method forms a small set of candidate donors

typically with 3, 5, or 10 members from all complete cases that have pre-

dicted values closest to the predicted value for the missing entry. One donor

is randomly drawn from the candidates, and the observed value of the donor

is taken to replace the missing value.

There are several methods to select donors based on metrics defined to measure the

similarity between the predicted values for the missing entry and the predicted values

from complete cases. Methods for selecting donors are detailed in Section 3.4.2 of

Van Buuren (2018). Some discussion on how to decide the number of donors is briefly

introduced in Section 3.4.3 of Van Buuren (2018). In general, the number of donors
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depends on the sample size. Setting the number of donors equal to 3 or 5 is usually

used in practice.

The advantage of applying PMM is that it will not impute any implausible values

outside the range of the observed values. Thus, even when the model used to impute

missing values is misspecified, the PMM is less vulnerable than previously discussed

methods (e.g., the regression imputation method). The PMM method is valid for

both continuous and binary missing values. It should be noted that it will be more

reasonable to use the PMM method for continuous missing values than for binary

values if the model used to predict missing values is a linear regression model.

• Logistic regression imputation

This method applies to binary variables. It is implemented through Bayesian logistic

regression. First, logistic regression is fit based on complete data and coe�cients �̂

and variance of coe�cients V = var(�̂) are estimated via iteratively reweighted least

squares. Then a �̇ is drawn from the multivariate normal distribution, which is built

based on �̂ and V ; see Van Buuren (2018) Section 3.6.1 for the exact procedure of

drawing �̇. Then the predicted probability ṗ for each missing response ẏ with its

predictor Ẋ is calculated; i.e., ṗ = 1/
⇣
1 + exp(�Ẋ�̇)

⌘
. A random variable U is

generated from the uniform distribution U(0, 1). Then, imputation for each miss-

ing response ẏ is calculated, where ẏ = 1 if u  ṗ and ẏ = 0 otherwise. This is

implemented using the logreg() function in the R package “Mice”.

However, “perfect prediction” may occur in practice. White et al. (2010) discussed

this perfect prediction problem and its potential harm:

Perfect prediction may occur in any GLM with a categorical outcome. In

this case, the likelihood tends to a limit as one or more regression parame-

ters go to plus or minus infinity: loosely, these parameters have maximum

likelihood estimate (MLE) equal to plus or minus infinity. It is arguable
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whether this is in itself a problem, since odds ratios of 0 or infinity should

be no more surprising than estimated probabilities of zero or one. However,

a problem definitely arises with standard errors computed from the infor-

mation matrix: these are extremely large, reflecting the near-flat nature of

the likelihood.

The exact solution to the perfect prediction problem depends on the choice of soft-

ware. Details are how to implement the method is also available in Section 3.6.2 of

Van Buuren (2018).

• “Worst-rank” method

This method was proposed in Lachin (1999), and it applies to both binary and contin-

uous variables. Lachin describes a worst-rank analysis, i.e., assigning more extreme

values (values indicating “worst” treatment e↵ects) than observed values as the im-

puted values for missing data. All missing values share the same values (ranks) if a

worst-rank analysis applies.

• “Best-worst and worst-best” method

We call it “Best - worst” method in the following sections. This method works for

both binary and continuous variables. Suppose we have missing values in patients’

responses if a two-armed randomized clinical trial is implemented. The experimental

group (treatment A) tends to have more beneficial outcomes. The control treatment

group (treatment B) tends to have less beneficial responses. If the “best - worst”

method is adopted, the imputed values for missing responses in treatment A will

represent harmful outcomes (i.e., the “worst” values among observed values). While

in treatment B, the imputed values will represent beneficial outcomes (i.e., the “best”

values among observed values).
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1.5.3 Direct Maximum Likelihood Method

The direct maximum likelihood method, sometimes called “full information maximum like-

lihood” or just “maximum likelihood,” is a method for handling missing data without im-

puting missing values under MAR. We will review the direct maximum likelihood method

by following the notation in Section 6.2 of Little and Rubin (2002). Let Y define the data

with missing values where Y = (Y obs,Y mis), Y obs denotes the observed value and Y mis

denotes the missing value; and Y is parametrized by some parameter ✓ that we want to

estimate. Define f(Y |✓) ⌘ f(Y obs,Y mis|✓) as the density of joint distribution of Y obs and

Y mis, and the marginal probability density of Y obs is

f(Y obs|✓) =
Z

f(Y obs,Y mis|✓)dY mis.

The likelihood of ✓ based on data Y obs ignoring the missing-data mechanism (denoted as

Lign) is a function of ✓ proportional to f(Y obs|✓) where

Lign(✓|Y obs) / f(Y obs|✓), ✓ 2 ⌦✓.

If the missing data mechanism is ignored, inferences about ✓ can be derived from the

likelihood Lign(✓|Y obs). As before, let M define the missing data indicator of Y . M is

treated as a random variable. The joint distribution of Y and M is given by:

f(Y ,M |✓, ) = f(Y |✓)f(M |Y , ), (✓, ) 2 ⌦✓, ,

where ⌦✓, is the parameter space of (✓, ), and the conditional distribution of M given

Y is indexed by unknown parameter  . In practice, the actual observed data contain the
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value of variables (Y obs,M). The distribution of the observed data is given by:

f(Y obs,M |✓, ) =
Z

f(Y obs,Y mis,M |✓, )dY mis

=

Z
f(Y obs,Y mis|✓)f(M |Y obs,Y mis, )dY mis

The full likelihood of ✓ and  is any function of ✓ and  , and it is given by:

Lfull(✓, |Y obs,M) / f(Y obs,M |✓, ), (✓, ) 2 ⌦✓, .

Notice that when missing-data mechanism is MAR,

f(M |Y obs,Y mis, ) = f(M |Y obs, ) for all Y mis.

The distribution of Y obs,M becomes

f(Y obs,M |✓, ) = f(M |Y obs, )⇥
Z

f(Y obs,Y mis|✓)dY mis = f(M |Y obs, )f(Y obs|✓).

As Little and Rubin (2002) point out:

In many important practical applications, the parameter ✓ and  are distinct,

in the sense that the joint parameter space of (✓, ), is the product of the

parameter space of ✓ and the parameter space of  , ⌦✓, = ⌦✓ ⇥ ⌦ . If the

mechanism is MAR and ✓ and  are distinct, then likelihood-based inferences

for ✓ from Lfull(✓, |Y obs,M) will be the same as likelihood-based inference

for ✓ from Lign(✓|Y obs), since the resulting likelihoods are proportional.

Moreover, the direct maximum likelihood has been shown to provide unbiased parameter

estimates and standard errors under MAR and MCAR by Enders and Bandalos (2001).
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Consider the linear regression model with the following format

y = X̃
|
� + ✏

where X̃ = (1,X|)| and the predictors X = (x1, . . . ,xp)| ⇠ Np(µX ,⌃X), and the ✏i ⇠

N(0,�2). Some values are missing within n independent observations (yi,X
|
i )

| where i =

1, . . . , n. Based on the normality and independent assumptions of y and X, we have

(y,X) ⇠ N(µy,X ,⌃y,X)

where µy,X =

0

B@
µy

µX

1

CA and ⌃y,X =

0

B@
⌃y ⌃y,X

⌃X,y ⌃X

1

CA. The parameters ✓ = (µy,X ,⌃y,X)

are estimated through the expectation maximization algorithm (EM) algorithm and it is

implemented by the R package NORM (Novo and Schafer (2013)). Details are available

in Section 5.3 of Schafer (1997).

Implementation of the direct maximum likelihood method via the EM algorithm is

briefly discussed in the context of the linear regression with missing values. We are inter-

ested in estimating the unknown parameter ✓. The data Y is defined as in the previous

section, where Y = (Y obs,Y mis). Under the MAR assumption, likelihood-based inferences

for ✓ from Lfull(✓, |Y obs,M) will be the same as likelihood-based inferences for ✓ from

Lign(✓|Y obs), i.e. maximizing the observed data log-likelihood which is given by:

l(✓;Y obs) = log f(Y obs;✓) = log

Z
f(Y obs,Y mis;✓)dY mis.

However, this maximization is di�cult to achieve in practice. We can achieve the MLE of

✓ by iteratively maximizing the expected complete data log-likelihood which is given by:

l(Y ;✓) = log f(Y obs,Y mis;✓).
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Steps of EM algorithm are listed in the below:

• Initiate ✓(0); ✓(t) is the estimate of ✓ at the tth iteration.

• E step: compute the expectation of complete-data log-likelihood with respect to the

conditional distribution of Y mis|Y obs with ✓(t), i.e.:

Q(✓|✓(t)) = E[l(Y ;✓)|Y obs;✓
(t)] =

Z
l(Y ;✓)f(Y mis|Y obs;✓

(t))dY mis.

• M step: maximize the Q function to obtain ✓(t+1) :

✓(t+1) = argmax
✓

Q(✓|✓(t)).

• Iterate between E step and M step until the change in function Q is very small.

• The estimate of ✓ based EM algorithm is obtained.

After ✓ has been estimated by EM algorithm, we can have the estimate of the coe�cient �

through the following. With

E(y|X) = µy � ⌃y,X⌃
�1
X µX + ⌃y,X⌃

�1
X X,

then the coe�cient � was estimated by the following form

� = (µy �⌃y,X⌃
�1
X µX ,⌃y,X⌃

�1
X )|.

The standard deviations can be estimated by the following forms

V[�] = diag(C), with

C =
�
⌃y � �>

⌃X�
�✓⇣

0p+1, (0p,⌃X)>
⌘>

+
�
1, µX

>�> �
1, µX

>�
◆�1

/n
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After obtaining the estimated � and its standard errors, a t-test can be conducted to test

the significance of a predictor’s coe�cient.

1.5.4 Multiple Imputation

Multiple imputation (MI) is an alternative method for dealing with missing data under

MAR.In general, MI contains three steps:

• Imputation step

In this step, multiple imputations are conducted. Hence, multiple completed datasets

are generated by replacing the missing values with the imputed values multiple times.

Usually, obtaining 50 or more than 50 imputations is acceptable to reduce the sampling

uncertainty from the imputation process.

• The complete-data analysis step

A desirable statistical analysis is conducted individually on each complete dataset

generated from the previous step.

• Pooling step

Collect statistical inference results (e.g., parameter estimates and their standard er-

rors) from the previous step. Rubin (2004) proposed a set of rules for combining

the separate estimates and standard errors from each of the imputed dataset into an

overall estimate with standard error, confidence intervals, and p-values. These rules

are based on asymptotic theory on the normal distribution and are implemented in

the functions pool() and pool.scalar() via the R package “Mice” (Van Buuren and

Groothuis-Oudshoorn (2010)).

1.5.5 Which Method We Should be Adopted under Di↵erent Missing

Data Mechanisms?

In general, the least stringent assumption is MCAR if we wish to apply the methods dis-

cussed above. Under MCAR, the complete-case analysis is valid to handle missing data,
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and it is only valid under MCAR. When assuming MAR, the direct maximum likelihood

method and multiple imputation are options to handle the missingness. Single imputation

methods such as the mean imputation, the regression imputation should always use with

caution due to their potential problems (detailed discussion is available in Section 1.5.2).

Van Buuren points out the case when the complete-case analysis and multiple imputation

are equivalent in Section 2.7 of Van Buuren (2018):

Suppose that the complete-data model is a regression with outcome Y and

predictors X. If the missing data occur in Y only, complete-case analysis and

multiple imputation are equivalent, so then complete-case analysis is preferred

since it is easier, more e�cient and more robust by Von Hippel (2007).

None of the methods we discussed so far can deal with MNAR. Particular assumptions about

the missing mechanism are required to proceed with data analyses under MNAR, and the

related discussion is beyond the scope. In practice, it is nearly impossible to ascertain

the missing data is MAR or MCAR because no information is provided about the missing

values. As Schafer and Graham (2002) point out:

When missingness is beyond the researcher’s control, its distribution is unknown,

and MAR is only an assumption. In general, there is no way to test whether

MAR holds in a dataset, except by obtaining follow-up data from nonrespon-

dents or by imposing an unverifiable model.

1.6 Outline of the Thesis

Chapter 2 reviews and proposes randomization-based missing data methods: the uncon-

ditional reference set, the conditional reference set, and randomization-based multiple im-

putation. Methods discussed in Chapter 2 deal with the case when missing values exist

in continuous/binary patients’ responses when a two-armed randomized clinical trial is

implemented. Which method should be selected in terms of missing data mechanisms is

discussed in Chapter 2. Chapter 3 describes how di↵erent simulation scenarios are set
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up to compare randomization-based missing data methods and population-based methods.

The simulation assumes a two-armed clinical trial with complete treatment assignments and

continuous/binary responses with missing values. Details about software implementation in

simulation studies are also presented in Chapter 3. Chapter 4 contrasts the parametric miss-

ing data inference with randomization-based methods without heterogeneity in simulated

patients’ responses. The contrast is conducted based on the simulation scenarios proposed

in Chapter 3. Methods comparisons are conducted separately for continuous and binary

patient responses. In Chapter 5, parametric and randomization-based missing data infer-

ence are contrasted when assuming heterogeneity existed in continuous patient responses.

In Chapters 4 and 5, the comparison is conducted via simulated type I error rates and

statistical power of parametric and randomization-based missing data methods. Chapter 6

proposes a randomization-based confidence interval to determine the missing data mecha-

nism. Finally, future work and concluding remarks of parametric and randomization-based

missing data inference for randomized clinical trials are presented in Chapter 7.
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Chapter 2: Methods for Randomization-Based Inference

with Missing Data

2.1 Randomization Tests with Missing Data

Randomization tests provide a natural way to analyze data from randomized clinical trials

since no random sampling assumption is required. Randomization tests can be used to

analyze nearly all types of primary outcomes encountered, including continuous, binary,

ordinal, survival with censoring, rates of change from longitudinal models, and adjusted

treatment e↵ects from regression models with covariates.

While there is a rich literature on parametric methods to handle missing data, no avail-

able analysis exists for randomization tests. It is naive and risky to adopt the complete-

case analysis since it is only valid under MCAR. Also, excluding observations with missing

values, especially in randomized clinical trials, is anathema for people implementing the

randomization test since the distribution of the randomization sequence is not preserved.

This section formalizes a randomization test when the missing data problem occurs

during a randomized clinical trial. Randomization-based methods handling missing data

are described in terms of two types of reference sets:

• The unconditional reference set where the missing values do not impact the test statis-

tic’s computation.

• The conditional reference set that conditions on the missing data pattern and the

number of missing values on each treatment.

Both methods are proposed but not developed or formalized in Edgington and Onghena

(2007) Section 14.16, and reference sets contain equiprobable randomization sequences in

their context. In Kennes et al. (2012), some properties of two references sets were explored
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only under the RAR with small sample sizes, and no global recommendations were made.

We discuss randomized-based inference under the framework of a linear-rank test. Linear

rank tests form a large family of tests that incorporates continuous, binary, ordinal, and

time-to-event outcomes, as well as covariate-adjusted analyses.

To illustrate randomization-based methods, a corresponding probability measure P(T )

is defined. The reference set ⌦ = {t 2 {0, 1}n : P(T = t) > 0} is formed with all possible

realization of the random vector T (i.e., treatment assignments). In the context of a two-

armed randomized clinical trial with experimental treatment A and placebo (treatment B),

missing values only occur in patients’ responses. If patient j receives treatment A then

tj = 1 otherwise tj = 0 if treatment B. Define the number of allocations to the treatment

A as NA =
Pn

j=1 tj with realization nA if n patients are in a trial. The missing pattern in

responses is defined by vector M . Note that 1 /2 M = (m1, ...mn)| 2 M = {0, 1}n and

mj = 1 if patient j’s response is missing,

= 0 if patient j’s response is observed.

The total number of complete observations is m• = n �
Pn

j=1mj and n �m• is the total

number of missing observations.

2.2 The Unconditional Reference Set

The implementation of a randomization test requires a reference set. The unconditional ref-

erence set is adopted to handle missing values, based on the assumption that the missingness

is independent of treatment assignments, i.e., M is independent of T . This assumption is

analogous, in some sense, to the idea of MCAR while we are not discussing the missing data

mechanism in terms of the likelihood since the distribution of the test statistic is determined

by the reference set, not the likelihood. A �2-test may be able to identify deviations from

stochastic independence if there are a large number of missing values, but the test would
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have very little power for minimal amounts of missing data. For a small amount of miss-

ing, the Fisher’s exact test can serve as an alternative. Randomization-based confidence

intervals are proposed to measure the deviation of the independence assumption between

missingness in responses and the treatment assignments by treating missing or not missing

in the observed data as binary outcomes. Details about the proposed methodology are

available in Chapter 6.

Suppose the linear rank test statistic is adopted for a randomization test. Define a as

the vector of non-missing observations’ centered ranks where a = (a1 � ā•, ..., am• � ā•)|

and ā• =
1
m•

Pm•
j=1 aj . The test statistic is given by

Sm(t) = a|A(m)t

where A(m) is a (m• ⇥ n) matrix with 0 or 1 resulting from the unit matrix by deletion of

(n�m•) rows corresponding to the entries of the m vectors. This test-statistic is the same

as the test statistic of a linear rank test when no missing observations; see Rosenberger and

Lachin (2016) for details. The original reference set ⌦ (when all observations are complete)

in a randomization test has been reduced to the reference set ⌦̃(m) with randomization

sequences t̃ = A(m)t and the corresponding probability measure of T̃ is

P(T̃ = t̃) =
X

t: t̃=A(m)t

P(T = t).

Then the two-sided p-value for the test statistic becomes

pu = I(|S(t̃)| � |Sobs.|)
X

t: t̃=A(m)t

P(T = t).

where Sobs. is the observed test statistic calculated from the observed randomization se-

quence. In Kennes et al. (2012), the reference set ⌦̃(m) is called the unconditional reference
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set. The estimation of the two-sided p-value pu corresponding to the test statistic Sm is

calculated by the Monte-Carlo method. The calculation of the p-value can be implemented

by imputing missing responses’ centered ranks as zero in the linear rank test and keeping

the original reference set ⌦. A p-value less than ↵ indicates two treatment e↵ects di↵er.

The following example gives a further explanation. Suppose we have 5 observations with

treatment assignment tobs = (1, 0, 1, 0, 0)|. The 3rd and 4th patients’ responses are missing.

Then

A(m) =

0

BBBB@

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

1

CCCCA

and A(m)t = (1, 0, 0). From the vector A(m)t, it is clear that patients with missing re-

sponses does not contribute to the calculation of the test statistic Sm(t). To be more specific,

suppose we sample randomization sequences such as t0 = (1, 0, 0, 0, 0)| or t00 = (1, 0, 0, 1, 0)|

or t000 = (1, 0, 1, 1, 0)|, the resulting A(m)t remains to be (1, 0, 0) when implementing a

randomization test. No matter how the treatments are allocated within the missing data

positions (3rd and 4th patients), it does not a↵ect the calculation of the test statistic. Im-

plementing this procedure is based on the assumption that missingness does not depend

on the treatment assignments. In other words, the missing observations themselves and

the proportion of treatment assignments within missing data positions do not a↵ect the

calculation of the test statistic.

If the di↵erences in group means is adopted as the test statistic, the mean value cal-

culated from all complete values is imputed as the replacement for missing values. After

missing values are imputed, a randomization test is applied.

2.3 The Conditional Reference Set

We assume missingness does not depend on treatment assignments when adopting the un-

conditional reference set in a randomization test. However, this assumption is not always
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valid. We may observe a trend that the proportion of missing observations on each treat-

ment di↵ers substantially, which indicates the dependent relationship between treatment

assignments and the missingness. The missingness depending on treatments, in some sense,

is analogous to MAR. If missingness depends on the treatment assignments, the condi-

tional reference set is adopted to handle the missingness. The conditional reference set

only contains randomization sequences that have same missing data positions and the same

number of missing on each treatment as the observed randomization sequence. More for-

mally, denote the random variable MA = T |m as the number of missing responses in the

experimental treatment A, with realization mA calculated from the observed randomization

sequence. Then the two-sided p-value conditioning on M = m and MA = mA is

pc =
X

t2⌦
I(|Sm(t)| � |sobs|)P (T = t|M = m)

=
X

t̃2⌦̃(m)

X

t̃=A(m)t

I(|S(t̃)| � |Sobs.|)P (T = t|M = m)

=
X

t̃2⌦̃(m)

I(|S(t̃)| � |Sobs.|)
X

t̃=A(m)t

P (T = t|M = m).

The estimation of two-sided p-value pc corresponded to test statistic Sm is also calculated

based on a Monte-Carlo method. For the conditional reference set, we first generate se-

quences unconditionally and then only keep the sequences that have the same number of

missing observations on each treatment as the observed sequence. The missing positions

are the same as the observed ones. Sequences that do not satisfy these conditions are elim-

inated. The probabilities are reweighted accordingly within the conditional reference set.

It is analogous to the idea of using weighted generalized estimating equations to reweight

components of the likelihood to account for the probability of missingness; see Molenberghs

and Verbeke (2006) for details.

For the conditional reference set method, the way to impute missing values is the same as

the one for the unconditional method. To be more specific, if the di↵erence in group means
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is adopted as the test statistic for a randomization test, then the imputed value would be

the mean from all complete values (patients’ responses); if the linear-rank test statistic is

adopted, the imputed centered rank (for a patient’s response ) would be zero. The di↵erence

is that the conditional reference set uses a di↵erent reference set - the reference set that only

contains sequences with same number of missing values on each treatment, on the locations

having missingness.

The conditional method and the unconditional method maintain the spirit of the ran-

domization test, and these are two practicable alternatives in handling missing data when

a randomization test is applied. Simulation studies are conducted to investigate the perfor-

mance of these two methods.

2.4 Randomization-Based Multiple Imputation (RBMI)

Randomization-based methods based on of the unconditional or conditional reference set

are analogous to the single-imputation in some sense since the imputed rank for each miss-

ing response is the same; i.e., all imputed centered ranks for missing responses are zero.

When handling missing values, not incorporating the uncertainty in data imputation makes

single imputation questionable, especially when we are less confident about the imputation

method. In contrast, multiple imputation provides a better solution to covering the uncer-

tainty from data imputation. The merit of multiple imputation has been pointed out by

Van Buuren (2018):

Multiple imputation is unique in the sense that it provides a mechanism for

dealing with the inherent uncertainty of the imputations themselves.

To improve single imputation, we propose a randomization-based multiple imputation. The

algorithm of a randomization-based multiple imputation is sketched in Figure 2.1. Suppose

we obtain complete treatment assignments and patients’ responses with missing values in a

two-armed clinical trial. Based on the observed data, N complete datasets are imputed by

methods that can introduce the uncertainty in data imputation, such as the PMM method.
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Figure 2.1: Algorithm of the randomization-based multiple imputation

Once a complete dataset is imputed, an unconditional randomization test is applied; and a

p-value is obtained. Multiple p-values are collected and averaged next. Finally, the averaged

p-value, p̄, is compared with the adopted significance level. If p̄ is less than the significance

level, the null hypothesis (assuming no di↵erence in treatment e↵ects between groups) is

rejected.
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Chapter 3: Simulation Protocol

The performance of randomization-based missing data methods is investigated by comparing

them with other population-based missing data methods. Especially, the performance of

randomization-based methods is of interest under homogeneous or heterogeneous patient

responses. Multiple simulation scenarios are simulated, and randomization-based methods

are compared with population-based methods in terms of type I error rates and power,

based on 1000 replicates for each simulation case. Simulation under homogeneous responses

is discussed in Chapter 4, and simulation under heterogeneous responses is presented in

Chapter 5.

3.1 Simulation Setting

We introduced several population-based and randomization-based methods to handle miss-

ing data in the Section 1.5 and Chapter 2, respectively. In the context of a two-armed

clinical trial with treatment A and B, we are interested in investigating these methods’

performance when assuming equality and inequality in treatment e↵ects between A and B

in the null hypothesis. Assume there are n observations (patients) in the dataset (trial),

and n = 50 or 100 in simulation studies. Treatment assignments are generated based on a

randomization procedure that we discussed in previous sections; options for procedures are

CR, RAR, PBD (blocksize = 4 or 6), TBD, RBD (maximum blocksize = 6), BSD. Two types

of responses are generated. Binary responses are simulated from Bernoulli distributions;

continuous responses are from normal distributions. When responses are continuous, higher

values in responses represent better treatment e↵ects. When responses are binary, the re-

sponse equals one representing a success. Before we simulate the missingness in responses,

complete responses are generated based on the parameters in the Table 3.1 below.
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Table 3.1: Homogeneous responses: distributions for simulating responses
Type I error rate Power, n = 50 Power, n = 100

Binary
A: Ber(0.2)
B: Ber(0.2)

A: Ber(0.65)
B: Ber(0.2)

A: Ber(0.5)
B: Ber(0.2)

Continuous
A: N(0.2,1)
B: N(0.2,1)

A: N(1.2,1)
B: N(0.2,1)

A: N(0.9,1)
B: N(0.2,1)

Table 3.2: Simulate missingness in binary responses based on missing mechanisms
Missing data mechanism How to simulate missing values

MCAR The probability that a patient’s response is missing is p (i.e., Ber(pms), pms = 0.05, 0.1).
MAR pB : pA = r; r = 1 : 3
MNAR pf : ps = r; r = 1 : 3

After treatment assignments and responses are simulated, the missingness in responses is

generated according to missing data mechanisms: MCAR, MAR, and MNAR. The overall

proportion of missing in the responses is controlled by the probability pms. The details

about how to simulate missing responses are in Table 3.2 and 3.3 below. No missing values

occur in the treatment assignments.

• NA: the total number of patients receiving treatment A;

• NB: the total number of patients receiving treatment B;

• pA: the missing probability if the patient receives treatment A;

• pB: the missing probability if the patient receives treatment B;
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Table 3.3: Simulate missingness in continuous responses based on missing mechanisms
Missing data mechanism How to simulate missing values

MCAR The probability that a patient’s response is missing is pms (i.e., Ber(pms), pms = 0.05, 0.1).
MAR pB : pA = r; r = 1 : 3
MNAR Right - tailed logistic distribution function*

*: Implemented by ampute in R package: mice. Larger values in responses have higher probabilities of being missing.
The logistic function is shifted according to the overall missing proportion pms. Details are available in the following
section

• Ns: the total number of success;

• Nf : the total number of failures;

• ps: the missing probability if the outcome is a success;

• pf : the missing probability if the outcome is a failure.

• Parameters NA, NB, Ns, Nf are counts calculated on the simulated complete dataset.

• The exact value for pA, pB, ps, pf in an simulated dataset are decided by the following

two equations:

NA · pA +NB · pB = (NA +NB) · pms,

Ns · ps +Nf · pf = (Ns +Nf ) · pms,

while pB : pA = 1/3 and pf : ps = 1/3.

• Bernoulli random variables are used to decide all missing values except for continuous

responses under MNAR. For example, when responses are binary, whether the ith

patient’s response is missing or not is decided by ps or pf . If ith patient response is
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a success, we use a Bernoulli random variable with probability ps to decide whether

the response is missing or not.

For each missing method studied, given a type of response, multiple simulation cases

generated. For Chapter 4 and Section 5.1, several randomization procedures are CR, RAR,

BCD, BSD, PBD (blocksize equals 4 or 6), TBD and RBD (maximum blocksize = 6) with

sample sizes n = 50 or 100, and the overall missing proportion (pms = 0.05 or 0.1). For

Section 5.2 and 5.3, the procedures involved are BCD and RBD (maximum blocksize =

6) and sample size n = 200. For each simulation case, the type I error rate or power is

calculated based on 1000 replications.

3.2 Software Implementation in Simulation Studies

3.2.1 Simulate Missingness in Continuous Responses under MNAR

We utilize the function ampute function in R package “Mice” to simulate missing values

in continuous responses under MNAR. The “Mice” package is developed by Van Buuren

and Groothuis-Oudshoorn (2010). The ampute function serves as a tool for simulating

missing values in a multivariate dataset (dataset with multiple columns) while controlling

the overall proportion of missing values pms (noted as prop in the Figure 3.1). Figure 3.1

sketches the procedure of simulating missing values by ampute function.

The multivariate amputation procedure of ampute is built upon an initial idea proposed

in Brand (1999). Details about how to use ampute function is available in Schouten et al.

(2018).

We target to simulate missing values within a single column (i.e., the vector for patient

responses) instead of multiple columns. A small trick is used in order to use ampute since

it only can be used to simulate missing values in a dataset with multiple columns. Before

simulating missing values in continuous responses under MNAR, a dataset containing two

columns is simulated by replicating simulated complete patient responses twice. Suppose

complete responses are y1, we use y1 as the first column of a complete dataset. We replicate
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Figure 3.1: Schematic overview of the multivariate imputation procedure (Schouten et al.
(2018), page 2914.)

the y1 and named it y2, then use y2 as the second column of a complete dataset. Then

responses with missing values will be simulated based on the complete dataset.

Some parameters are also needed to be set up in order to use the ampute. We assume

two missing patterns (i.e., k = 2 in the Figure 3.1) for the previous simulated complete

dataset.

• Missing pattern 1: we have missing values in y1 and no missing values in y2;

• Missing pattern 2: No missing values in y1 but we have missing values in y2.

After we decide on missing patterns, a complete dataset is randomly divided into two

subsets. The frequency of missing patterns decides the number of observations for each

subset. We set both frequencies equal to 0.5, which means half of the complete dataset

becomes the candidate for missing data pattern one, and the other half is the candidate for

missing data pattern two. For each observation in a complete dataset, we have its simulated

y1 and y2, and the probability of having a missing value in y1 or y2 is controlled by the

weighted sum scores (WSS). WSS is calculated as the outcomes of a linear combination
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of values from each column. For observation i, WSS is calculated as follows. Suppose f

columns (variables), y1, ...,yf exist in a complete dataset.

wssi = w1 · y1i + w2 · y2i + ...+ wf · yfi,

where wssi is defined as the wss for ith observation. Based on our simulation target,

we set w1 = 1 and w2 = 0 under missing pattern 1; w1 = 0 and w2 = 1 under missing

pattern 2. Since two columns in a complete dataset are the same, only the value from one

column a↵ects the calculation of WSS for ith observation (patient). After calculating the

WSS for ith patient, the right-tailed logistic distribution function is used. Thus, candidates

with high weighted sum scores will receive a high probability of missing. Noted that the

logistic distribution function has been adjusted according to patient response and the overall

proportion of missing values pms.

3.2.2 Programming Implementation with Rcpp, Parallel Computing and

High Performance Computing

In the context of this project, sometimes we may simulate some observed randomization

sequences that have very imbalanced missing values between two treatments. Even though

the probability of obtaining such sequences is very small in reality, it is still likely to happen

due to the randomness in simulation studies. For example, suppose we have ten missing

values in observed patient response; only one missing value is in treatment A, and the

remaining nine are all in treatment B. Suppose the conditional reference set method is

adopted. The probability of simulating a randomization sequence with one missing value in

treatment A and nine in treatment B as the observed sequence is low, making the conditional

reference set method take a much longer time finding enough sequences to proceed with a

randomization test.

Thus, instead of coding all methods by using R, the implementation of randomization-

based missing data inference is coded under the Rcpp package in the following simulation
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studies. Rcpp is a tool developed by Eddelbuettel et al. (2021), that facilitates connecting

C++ to R, since C++ runs much faster than base R codes. Since Rcpp is implemented

under R, combing Rcpp and R together in simulation studies can utilize the versatility and

flexibility of conducting statistical analysis in R while maintaining the high computation

speed of C++.

Parallel computing with the R package “doParallel” developed by Calaway et al. (2015)

is also applied in the following simulation studies. Parallel computing can utilize multiple

CPUs simultaneously to finish the computation workload for one program, which further

speeds up simulation studies.

All simulation work is conducted on the high-performance computing clusters-ARGO

and HOPPER-with support from the O�ce of Research Computing at George Mason Uni-

versity.

3.3 Simulation error upper bound for ↵

Based on � replication in a simulation, under the significance level ↵ = 0.05, the upper

bound for a type I error rate is

↵+ 1.96 ⇤

s
↵(1� ↵)

�

where ↵ = 0.05. Based on 1000 replications, the upper bound of a type I error rate is about

0.0635 under significance level 0.05. Thus, any simulated type I error rate greater than

0.0635 is considered type I error rate inflation in the following simulation studies.
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Chapter 4: Results Under Homogeneity

In this chapter, the performance of randomization-based methods is evaluated by comparing

them with population-based methods when patients’ responses are homogeneous. Both

continuous and binary patients’ responses are simulated. Multiple missing data methods

are investigated in terms of type I error rates and power. Di↵erent methods are adopted

under di↵erent types of responses.

4.1 Missing Data Methods

The simulated data contains two variables: treatment assignments and patients’ responses;

missing values occur only in responses. Missing data methods are listed in Table 4.1. Meth-

ods’ comparisons are conducted separately based on the type of responses. For continuous

outcomes, the test statistic for randomization-based methods is di↵erence in group means;

and the t-test is used for population-based methods. For binary outcomes, the adopted test

statistic is the linear-rank test statistic for randomization-based methods; and a �
2-test is

applied for population-based methods.
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Table 4.1: Homogeneous responses: missing data methods

Binary Continuous

Randomization-based
the unconditional/conditional method, the unconditional/conditional method.

RBMI RBMI

Population-based

the “worst” method the “worst” method

the “best-worst” method the “best-worst” method

logistic regression imputation mean imputation

complete case analysis complete case analysis

the maximum likelihood

multiple imputation (stochastic)*

*: the stochastic regression imputation is used as the imputation technique in multiple imputation.

4.2 Methods Comparison when Responses are Continuous

4.2.1 Discussion about the Best-Worst Method and the Worst Methods

• The “best-worst” method

After imputing missing outcomes by the “best-worst” method, a randomization test

based on the linear rank test is adopted.

– Severe type I error rate inflation occurred under all discussed procedures. This

fact is presented in Figures 4.1. If a method’s type I error rate is above the

red dashed line, it indicates a type I error inflation case. The red dashed line

is the upper bound of a type I error rate based on 1000 replications when the

significance level is 0.05.

To be more specific, if two treatments do not di↵er by assumption, applying the

“best-worst” method will create an artificial dissimilarity in responses between

groups since the missing in the beneficial (placebo) group is replaced by the
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“worst” (“best”) values, which explains the type I error rate inflation.

– When applying the “best-worst” method, type I error rates and power are sensi-

tive to the overall missing proportion pms. When pms increases, type I error rate

inflation become more severe since more missing values are imputed. The same

logic can be applied to explain the significant drop in power when pms increases

(this fact is presented in Figures 4.2).

– The “best-worst” method has the most severe type I error inflation problem

among all methods discussed, and it is the most conservative method in terms

of statistical power. Tables 4.2-4.7 present methods comparisons under di↵erent

missing data mechanisms.

– In conclusion, when responses are continuous, the “best-worst” method is not

recommended under all discussed procedures and missing data mechanisms due

to its significant type I error inflation and conservative statistical power.
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Figure 4.1: Homogeneous responses (continuous): the best-worst method, type I error rates,

pms = 0.05 (left plots), pms = 0.1 (right plots).
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Figure 4.2: Homogeneous responses (continuous): the best-worst method, power, pms = 0.05

(left plots), pms = 0.1 (right plots).
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• The “worst” method

After imputing missing outcomes by the “worst” method, a randomization test based

on the linear rank test is adopted.

– Severe type I error rate inflation is observed under MAR, see Figure 4.3 for

details. Based on the simulation settings, more missing outcomes occur in the

beneficial group under MAR than the one under MCAR or MNAR. Missing

values are replaced by values representing the worst treatment e↵ect. Thus,

if two treatments do not di↵er by assumption, when more missing values are

imputed in one group than another one, an artificial dissimilarity between groups

is created, which causes the type I error ratee inflation.

– The statistical power is sensitive to the missing data mechanism and the missing

proportion pms. More missing outcomes in the beneficial group are replaced by

the “worst” values under MAR than MCAR and MNAR. Thus a smaller power

is observed under MAR. The power drops more significantly when pms increases,

see Figure 4.4 for details. The statistical power of the “worst” method ranks the

second to the last (see Tables 4.2-4.7 for details).

– In conclusion, when responses are continuous, the “worst” method is not rec-

ommended due to its inflated type I error rates and conservative power under

MAR. Under MNAR, the “worst” method is not recommended because of its

conservative power. As for MCAR, the “worst” method has smaller power than

other methods.
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Figure 4.3: Homogeneous responses (continuous): the worst method, type I error rates,

pms = 0.05 (left plots), pms = 0.1 (right plots).
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Figure 4.4: Homogeneous responses (continuous): the worst method, power, pms = 0.05

(left plots), pms = 0.1 (right plots).
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4.2.2 Methods Comparison under MCAR

As discussed before, the “best-worst” method is are not recommended due to its poor per-

formance in power and type I error rates. The “worst” method is not recommended because

of its conservative power. As for the maximum likelihood method, it is not recommended

because of its apparent type I error inflation problem under all discussed procedures. See

Figure 4.5 for details.

Based on the discussion above, the “worst”, the “best-worst” methods, and the maxi-

mum likelihood method are excluded from the comparison. The remaining methods have

similar performance in power. Part of the simulation results are presented in Table 4.2 -

4.3 for illustration purposes. Results under other simulation cases are similar and they are

available in the Appendix. From the type I error control perspective, the best procedure is

the conditional reference set method. Under the BSD, all remaining techniques should be

adopted with caution because of the potential type I error rate inflation problem. Similar

type I error rate inflation under the BSD was also noted by Wang et al. (2020). More

research is needed to explain this fact. Note that these inflated type I error rates are just

outside the 95% upper bound for the type I rate for the number of replication in simulation.

Though the complete-case analysis is the quickest and easiest solution to missing data,

it is only valid under the MCAR assumption. When a large number of missing values

occur, significant power loss is expected under the complete-case analysis. Concerns about

applying the complete-case analysis are discussed in Section 1.5.1.

Concerns about applying mean imputation are discussed by Van Buuren (2018). The

mean imputation underestimates the variance, disturbs the relations between variables, and

biases almost any estimates other than the mean when data are not MCAR.

In conclusion, the “best-worst”, the “worst,” and the maximum likelihood method are

not recommended. All remaining methods are comparable in power for the designs studied.

The conditional reference set method exhibits the best type I error rate control. The

randomization-based methods can serve as alternatives for population-based methods in

handling missing data based on their performance in power and type I error rate control.
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Table 4.2: Homogeneous responses (continuous): type I error rates (MCAR, n = 100,

pms = 0.1)
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.367 0.033 0.046 0.050 0.046 0.058 0.046 0.048 0.047

2 BSD 0.376 0.064 0.062 0.063 0.062 0.077 0.061 0.048 0.061

3 CR 0.373 0.051 0.052 0.052 0.052 0.059 0.051 0.059 0.050

4 PBD(blocksize = 4) 0.376 0.055 0.057 0.061 0.058 0.074 0.059 0.050 0.056

5 PBD(blocksize = 6) 0.393 0.044 0.049 0.050 0.049 0.065 0.051 0.050 0.043

6 RAR 0.367 0.058 0.058 0.061 0.058 0.084 0.058 0.054 0.057

7 RBD 0.360 0.039 0.047 0.049 0.048 0.058 0.049 0.045 0.045

8 TBD 0.369 0.052 0.055 0.061 0.055 0.074 0.056 0.061 0.056

Table 4.3: Homogeneous responses (continuous): power (MCAR, n = 100, pms = 0.1)
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.171 0.766 0.916 0.919 0.916 0.936 0.916 0.905 0.912

2 BSD 0.183 0.758 0.902 0.902 0.902 0.919 0.898 0.887 0.896

3 CR 0.169 0.759 0.896 0.901 0.898 0.926 0.901 0.909 0.895

4 PBD(blocksize = 4) 0.161 0.756 0.904 0.902 0.904 0.917 0.898 0.903 0.897

5 PBD(blocksize = 6) 0.163 0.774 0.907 0.910 0.907 0.927 0.902 0.892 0.902

6 RAR 0.178 0.775 0.900 0.907 0.902 0.927 0.903 0.899 0.901

7 RBD 0.172 0.781 0.911 0.911 0.911 0.930 0.910 0.910 0.905

8 TBD 0.175 0.762 0.901 0.904 0.901 0.915 0.899 0.897 0.878

45



Figure 4.5: Homogeneous responses (continuous): maximum likelihood, type I error rates,

pms = 0.05 (left plots), pms = 0.1 (right plots).

4.2.3 Methods Comparison under MAR

Under MAR, the “best-worst”, the “worst” method, and the maximum likelihood method

are not recommended because of their poor type I error rate control. The remaining meth-

ods’ performance in power is similar, and slight inflation in type I error rates is observed

under certain randomization procedures such as the BSD. The conditional reference set

method is preferred since no type I error rate inflation is observed for procedures studied.

Details for the comparison of methods are available in Tabld 4.4 - 4.5. More results are avail-

able in the Appendix. Note that applying mean imputation or the complete-case analysis
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when the data are not MCAR potentially risks the statistical inference from multiple per-

spectives, e.g., underestimating or overestimating the estimator’s variance, etc. The section

1.5.1, 1.5.2 and Van Buuren (2018) discussed potential problems of applying mean impu-

tation (or the complete-case analysis) in detail. Multiple imputation is a valid parametric

method to handle missing data under MAR.

Choosing an appropriate missing data method depends on the randomization procedure

used in the trial since some slight type I error rate inflation is observed under a particular

combination of missing data method and randomization procedure. Based on simulation

results, the unconditional/unconditional reference set, multiple imputation, and RBMI are

recommended under MAR. The complete-case analysis and the mean imputation are less

recommended because of potential problems. The “best-worst”, the “worst” method, and

the maximum likelihood are not recommended.

Table 4.4: Homogeneous responses (continuous): type I error rates (MAR, n = 100, pms =

0.1)
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.382 0.149 0.049 0.053 0.048 0.064 0.048 0.055 0.051

2 BSD 0.396 0.146 0.064 0.069 0.063 0.085 0.066 0.056 0.061

3 CR 0.384 0.143 0.052 0.050 0.052 0.065 0.052 0.052 0.050

4 PBD(blocksize = 4) 0.404 0.140 0.055 0.055 0.055 0.069 0.054 0.047 0.053

5 PBD(blocksize = 6) 0.403 0.137 0.046 0.047 0.046 0.061 0.044 0.051 0.041

6 RAR 0.384 0.152 0.063 0.067 0.063 0.079 0.064 0.059 0.063

7 RBD 0.374 0.066 0.043 0.042 0.043 0.054 0.042 0.041 0.039

8 TBD 0.381 0.136 0.061 0.062 0.060 0.081 0.062 0.058 0.054
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Table 4.5: Homogeneous responses (continuous): power (MAR, n = 100, pms = 0.1)
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.180 0.425 0.911 0.905 0.910 0.929 0.908 0.905 0.907

2 BSD 0.182 0.435 0.900 0.895 0.899 0.905 0.893 0.877 0.891

3 CR 0.154 0.430 0.903 0.901 0.902 0.925 0.902 0.902 0.895

4 PBD(blocksize = 4) 0.159 0.406 0.907 0.907 0.906 0.925 0.906 0.904 0.904

5 PBD(blocksize = 6) 0.169 0.416 0.917 0.914 0.917 0.930 0.910 0.898 0.906

6 RAR 0.186 0.449 0.903 0.907 0.903 0.920 0.903 0.905 0.900

7 RBD 0.157 0.447 0.914 0.909 0.914 0.932 0.911 0.919 0.911

8 TBD 0.171 0.433 0.896 0.893 0.896 0.916 0.891 0.890 0.863

4.2.4 Methods Comparison under MNAR

As discussed in Section 1.5.5, none of the methods we discussed so far can deal with MNAR.

Particular assumptions about the missing mechanism are required to proceed with data anal-

yses under MNAR. To ascertain the exact missing data mechanism require follow-up data

from non-respondents, which is impractical in most cases. Thus, all missing mechanisms

are somehow non-testable in practice. However, we can compare the di↵erent methods’

performance under MNAR from simulation studies.

If we have strong confidence in MNAR, the data analysis should be adapted based on the

reason behind the missing values. If not confident with the exact missing mechanism, the

methods discussed are still available tools to handle missing data. The simulation results

can be considered as a reference before choosing a missing data method under MNAR.

Due to type I error rate inflation, the “best-worst”, the “worst” methods, and maximum

likelihood are not recommended. The remaining methods have similar performance in

power. As for the type I error rate, most methods have minor inflation problems under some

procedures (e.g., BSD). Generally speaking, randomization-based methods are comparable

to parametric methods in type I error rates and power. Part of the simulation results are
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available in Tables 4.6. - 4.7. Results under other simulation cases are similar and are

available in the Appendix. Randomization-based methods are comparable to population-

based methods in handling missingness.

Table 4.6: Homogeneous responses (continuous): type I error rates (MNAR, n = 100,

pms = 0.1)
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.357 0.042 0.037 0.037 0.037 0.051 0.038 0.035 0.035

2 BSD 0.359 0.048 0.060 0.059 0.060 0.076 0.064 0.055 0.061

3 CR 0.362 0.045 0.049 0.049 0.049 0.066 0.047 0.055 0.046

4 PBD(blocksize = 4) 0.370 0.049 0.058 0.059 0.058 0.078 0.063 0.051 0.059

5 PBD(blocksize = 6) 0.378 0.052 0.049 0.049 0.049 0.066 0.046 0.059 0.045

6 RAR 0.353 0.050 0.063 0.066 0.063 0.080 0.064 0.051 0.064

7 RBD 0.354 0.046 0.042 0.046 0.043 0.057 0.043 0.043 0.044

8 TBD 0.365 0.040 0.057 0.056 0.057 0.067 0.055 0.062 0.056

Table 4.7: Homogeneous responses (continuous): power (MNAR, n = 100, pms = 0.1)
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.142 0.591 0.893 0.891 0.893 0.910 0.891 0.886 0.891

2 BSD 0.159 0.581 0.876 0.876 0.877 0.899 0.880 0.873 0.875

3 CR 0.156 0.559 0.872 0.876 0.872 0.897 0.873 0.875 0.870

4 PBD(blocksize = 4) 0.167 0.573 0.882 0.878 0.882 0.905 0.876 0.899 0.877

5 PBD(blocksize = 6) 0.181 0.576 0.890 0.891 0.890 0.916 0.886 0.884 0.883

6 RAR 0.179 0.601 0.888 0.888 0.887 0.911 0.883 0.887 0.875

7 RBD 0.159 0.593 0.894 0.892 0.894 0.920 0.889 0.898 0.885

8 TBD 0.165 0.579 0.886 0.886 0.886 0.908 0.886 0.884 0.848
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4.3 Methods Comparison when Responses are Binary

4.3.1 Discussion about the Best-Worst and the Worst Methods

After imputing missing responses by the “best-worst” method, a randomization test based

on the linear-rank test is adopted. Note that for missing responses in a beneficial group,

i.e., the treatment A in our simulation settings, imputed values for missing responses are

failures. If missing responses are in the less beneficial group, i.e., the treatment B, imputed

values are successes.

• The “best-worst” method

– Severe type I error rate inflation occurred under all discussed procedures. The

fact is presented in Figure 4.6. Similar type I error rate inflation is observed for

continuous responses. In contrast, no such severe type I error rate inflation is

observed under other methods. This fact is presented in Tables 4.8, 4.10 and

4.12. Applying the “best-worst” method will create an artificial dissimilarity in

responses between groups since missing values in the beneficial (placebo) group

are replaced by failures (success) if two treatments do not di↵er by assumption.

It causes type I error rate inflation.

– When applying the “best-worst” method, type I error rates and power are sen-

sitive to the overall missing proportion pms. When pms increases, the type I

error rate inflation becomes more severe since more missing values are imputed.

The same logic can be applied to explain the significant drop in power when pms

increases (this fact is presented in Figure 4.7).

– The “best-worst” method has the most severe type I error rate inflation problem

among all methods discussed, and it is the most conservative method in terms of

statistical power. Tables 4.8 - 4.13 present methods comparisons under di↵erent

missing data mechanisms.
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– In conclusion, when responses are binary, the “best-worst” method is not recom-

mended under all discussed procedures and missing data mechanisms due to its

significant type I error rate inflation and conservative statistical power.

Figure 4.6: Homogeneous responses (binary): the best-worst method, type I error rates,

pms = 0.05 (left plots), pms = 0.1 (right plots).
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Figure 4.7: Homogeneous responses (binary): the best-worst method, power, pms = 0.05

(left plots), pms = 0.1 (right plots).
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• The “worst” method

After imputing missing outcomes by the “worst” method, a randomization test based

on the linear-rank test statistic is adopted. Imputed missing outcomes are failures in

both two treatment groups.

– Type I error rate inflation is only spotted in few cases. However, the statistical

power is sensitive to the missing data mechanism and the missing proportion

pms. This fact is presented in Figures 4.8-4.9. More missing responses in the

beneficial group are replaced by the “worst” values under MAR than MCAR

and MNAR. Thus, a smaller power is observed under MAR. Also, the power

drops more significantly when pms increases; the statistical power of the “worst”

method ranks the second to the last(see Tables 4.9, 4.11 and 4.13 for details).

– In conclusion, the “worst” method is not recommended due to its relatively small

power under MAR and MNAR for binary responses. As for MCAR, the “worst”

method has smaller power than other methods. Also, it should be adopted with

caution when the missing proportion pms is large.
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Figure 4.8: Homogeneous responses (binary): the worst method, type I error rates, pms =

0.05 (left plots), pms = 0.1 (right plots).
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Figure 4.9: Homogeneous responses (binary): the worst method, power, pms = 0.05 (left

plots), pms = 0.1 (right plots).
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4.3.2 Methods Comparison under MCAR

Under MCAR, the “best-worst” method is not recommended because of its severe type I

error rate inflation and conservative power. Thus, the “best-worst” method is excluded from

the discussion. Part of the simulation results of power and type I error rates are presented

in Tables 4.8 and 4.9 for illustration purposes. More results are available in the Appendix

and the pattern is similar. Generally, considerations from multiple aspects are needed when

selecting a method, such as the adopted randomization procedure, the missing proportion,

the focus on type I error rate control or the statistical power, etc. Simulation results above

show that proposed randomization-based methods are comparable to parametric methods

in terms of power and type I error rates under the MCAR assumption.

Table 4.8: Homogeneous responses (binary): type I error rates (MCAR, n = 100, pms = 0.1)

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.198 0.040 0.030 0.047 0.051 0.050 0.065

2 BSD 0.190 0.038 0.032 0.050 0.041 0.041 0.039

3 CR 0.235 0.057 0.041 0.086 0.060 0.059 0.058

4 PBD(blocksize = 4) 0.160 0.025 0.040 0.052 0.050 0.038 0.030

5 PBD(blocksize = 6) 0.188 0.045 0.039 0.058 0.050 0.032 0.047

6 RAR 0.179 0.043 0.046 0.060 0.054 0.043 0.047

7 RBD 0.167 0.019 0.018 0.043 0.032 0.029 0.023

8 TBD 0.220 0.050 0.041 0.058 0.049 0.040 0.045
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Table 4.9: Homogeneous responses (binary): power (MCAR, n = 100, pms = 0.1)

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.390 0.829 0.817 0.831 0.859 0.857 0.889

2 BSD 0.399 0.811 0.813 0.842 0.832 0.834 0.830

3 CR 0.406 0.830 0.835 0.858 0.856 0.858 0.856

4 PBD(blocksize = 4) 0.345 0.770 0.824 0.832 0.845 0.828 0.803

5 PBD(blocksize = 6) 0.416 0.809 0.833 0.841 0.849 0.846 0.835

6 RAR 0.376 0.794 0.827 0.823 0.845 0.853 0.832

7 RBD 0.210 0.797 0.811 0.839 0.842 0.831 0.820

8 TBD 0.240 0.820 0.840 0.856 0.852 0.841 0.843

4.3.3 Methods Comparison under MAR

The “best-worst” and the “worst” methods are not recommended due to their conservative

power and inflated type I error rates (under the “best-worst” method only). Thus these

two methods are excluded from the discussion below.

Part of simulation results of power and type I error rates are presented in Table 4.10

and 4.11 for illustration purposes. More results are available in Appendix and the pattern is

similar. The complete-case analysis is recommended. However, the complete-case analysis

is only valid under MCAR, and it has a potential power loss trend when the overall missing

proportion pms increases. Potential problems of applying the complete-case analysis are

discussed before. In practice, the complete-case analysis should be adopted with caution

under MAR since the situation might be more complex than the simulated scenario. When a

procedure other than CR or BCD is adopted, randomization-based and parametric methods

have similar performance in type I error rates and power.
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Table 4.10: Homogeneous responses (binary): type I error rates (MAR, n = 100, pms = 0.1)

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.120 0.046 0.031 0.055 0.052 0.047 0.067

2 BSD 0.120 0.046 0.028 0.054 0.042 0.041 0.037

3 CR 0.150 0.066 0.045 0.076 0.061 0.065 0.063

4 PBD(blocksize = 4) 0.101 0.033 0.038 0.048 0.049 0.042 0.030

5 PBD(blocksize = 6) 0.118 0.051 0.044 0.057 0.056 0.036 0.051

6 RAR 0.118 0.048 0.044 0.053 0.057 0.045 0.043

7 RBD 0.107 0.031 0.014 0.029 0.035 0.028 0.021

8 TBD 0.128 0.058 0.040 0.061 0.050 0.044 0.045

Table 4.11: Homogeneous responses (binary): power (MAR, n = 100, pms = 0.1)

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.477 0.706 0.812 0.844 0.871 0.868 0.893

2 BSD 0.482 0.701 0.828 0.856 0.848 0.847 0.844

3 CR 0.495 0.717 0.841 0.855 0.862 0.864 0.867

4 PBD(blocksize = 4) 0.416 0.651 0.821 0.830 0.841 0.824 0.805

5 PBD(blocksize = 6) 0.480 0.701 0.825 0.844 0.845 0.848 0.827

6 RAR 0.436 0.667 0.824 0.842 0.848 0.850 0.832

7 RBD 0.232 0.667 0.800 0.838 0.839 0.827 0.815

8 TBD 0.306 0.694 0.849 0.860 0.863 0.846 0.850

4.3.4 Methods Comparison under MNAR

The “best-worst” method is not recommended due to its conservative power and severe

type I error rate inflation. Thus, the “best-worst” method is excluded from the discussion
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below. The “worst” method is less recommended than the remaining methods since it

has relatively small statistical power. The complete-case analysis is recommended in our

simulation scenario. However, in practice, the complete-case analysis should be adopted

with cautions; reasons are discussed previously.

In conclusion, randomization-based methods are comparable to parametric methods

under MNAR when responses are binary.

Table 4.12: Homogeneous responses (binary): type I error rates (MNAR, n = 100, pms =

0.1)

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.222 0.037 0.022 0.050 0.048 0.043 0.059

2 BSD 0.216 0.039 0.035 0.048 0.047 0.045 0.043

3 CR 0.229 0.066 0.045 0.077 0.063 0.063 0.063

4 PBD(blocksize = 4) 0.165 0.018 0.027 0.043 0.044 0.025 0.019

5 PBD(blocksize = 6) 0.203 0.038 0.043 0.057 0.049 0.030 0.048

6 RAR 0.200 0.035 0.043 0.063 0.053 0.039 0.043

7 RBD 0.197 0.024 0.018 0.046 0.038 0.032 0.030

8 TBD 0.225 0.046 0.035 0.070 0.042 0.037 0.037
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Table 4.13: Homogeneous responses (binary): power (MNAR, n = 100, pms = 0.1)

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.396 0.772 0.788 0.821 0.841 0.838 0.876

2 BSD 0.401 0.770 0.801 0.818 0.824 0.826 0.823

3 CR 0.406 0.771 0.810 0.837 0.842 0.844 0.842

4 PBD(blocksize = 4) 0.345 0.718 0.804 0.819 0.826 0.801 0.785

5 PBD(blocksize = 6) 0.410 0.759 0.806 0.829 0.823 0.811 0.809

6 RAR 0.344 0.737 0.807 0.812 0.825 0.832 0.816

7 RBD 0.192 0.733 0.7777 0.803 0.821 0.802 0.797

8 TBD 0.237 0.754 0.823 0.852 0.838 0.822 0.826
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Chapter 5: Results Under Heterogeneity

In this chapter, the performance of randomization-based methods is evaluated by comparing

them with population-based methods from these three following perspectives:

• patients’ responses are a↵ected by time trends,

• outliers exist in patients’ responses,

• missing proportions increase over time.

Due to the poor performance of the “best-worst” method and the “worst” method, they

are excluded from the following discussion.

5.1 Time Trends in Responses

5.1.1 Missing Data Methods

The methods studied are listed in the Table 5.1.

5.1.2 Simulation Results

When the responses are continuous, the complete-case analysis, mean imputation, and

multiple imputation are tempting to use in practice due to their simplicity and availability.

However, these three methods essentially rely on a two-sample t-test (in this thesis’s simula-

tions); the performance of these methods under a time trend deserves further investigation.

A time trend is often observed in the clinical trial due to the sequential recruitment of

patients, and it is not perceived before the start of the trial. The existence of a time trend

may bias statistical inference when comparing two treatment e↵ects. The performance of

the methods is investigated when time trends exist in the following.
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Table 5.1: Time trend: missing data methods

Binary Continuous

Randomization-based
the unconditional/conditional method, the unconditional/conditional method

RBMI RBMI

Population-based

logistic regression imputation mean imputation

complete case analysis complete case analysis

maximum likelihood

multiple imputation (stochastic)

Table 5.2: Time trend: parameters in responses

Type I error rate Power (n=50) Power (n=100)

jth patient’s responses
A: N(0.2+�✓(j),1)

B: N(0.2+�✓(j),1)

A: N(1.2+�✓(j),1)

B: N(0.2+�✓(j),1)

A: N(0.9+�✓(j),1)

B: N(0.2+�✓(j),1)

The influence of a time trend is reflected in the responses’ theoretical mean. First, let us

define the amount of mean shift on jth patient’s response �✓(j), where �✓(j) = (j�1)✓/n;

where j is the position of jth patient in the randomization sequence, n is the total number

of patients, and ✓ is the theoretical maximum mean shift on patient’s response. Possible

values of ✓ are (-2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2). Once ✓ is chosen, the mean shift on each

patient’s responses can be calculated. The later the patient joins the trial, the larger the

influence (mean shift) on his/her response due to the time trend. The normal distribution

is used to simulate patients’s responses, see Table 5.2 for details.

Simulation results in the following sections are type I error rates and power based on 1000

replications when evaluating treatment e↵ects. The way to simulate responses with missing
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values is consistent with the previous case (available in Section 3.1) when no heterogeneity

existed in patients’ responses.

5.1.2.1 Type I Error Rates

Figures 5.1 - 5.8 and Table 5.3 below describe the type I error rate inflation among di↵erent

methods and procedures. For each method under a fixed missing mechanism and random-

ization procedure (e.g., CR under MCAR when multiple imputation is adopted at ✓ = 2),

multiple type I error rates are simulated via di↵erent combination of simulation parameters

such as the missing proportion pms = 0.05 or 0.1 and number of patients n = 50, 100. Part

of the simulation results (n = 100, pms = 0.1) are presented in this section. More figures

under other simulation cases are available in the Appendix. The smooth curve within each

subplot is to indicate the trend of type I error rates or power. Beyond the red dashed line

represents type I error rate inflation beyond simulation error.

In Table 5.3, the count in each cell is the total frequency of type I error rate inflation out

of 8 simulation cases generated from di↵erent parameter �s (i.e., di↵erent amount of time

trends) under the case when the sample size n = 100 and the overall missing proportion

pms = 0.1.

The following is a summary of simulation results for type I error rates under time trends

in responses.

• Type I error rate inflation occurs when applying the maximum likelihood method

among most randomization procedures.

• TBD is a randomization procedure that may have a sequence where one treatment is

dominant in the second half; thus, it tends to be highly a↵ected by the time trend.

Figure 5.1 presents that parametric methods are poorer in type I error rates control

than randomization-based methods under TBD regardless of the missing mechanism.

Moreover, when the influence of time trend becomes larger (measured by the |✓|), the

inflation becomes more severe under parametric methods.
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• In terms of the number of inflated cases, the randomization-based methods present

more strict type I error rate control than the other methods discussed in simulations;

see Table 5.3 for details.

• Block-based designs (such as RBD and PBD) exhibit better performance in type I

error rate control than designs are not block-based when responses are a↵ected by

time trend; see Table 5.3 for details.

Figure 5.1: Time trend: TBD, type I error rates (pms = 0.1, n = 100)
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Figure 5.2: Time trend: RBD (maximum blocksize = 6), type I error rates (pms = 0.1,

n = 100)

Figure 5.3: Time trend: CR, type I error rates (pms = 0.1, n = 100)
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Figure 5.4: Time trend: BSD, type I error rates (pms = 0.1, n = 100)

Figure 5.5: Time trend: BCD, type I error rates (pms = 0.1, n = 100)
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Figure 5.6: Time trend: RAR, type I error rates (pms = 0.1, n = 100)

Figure 5.7: Time trend: PBD (blocksize = 4), type I error rates (pms = 0.1, n = 100)
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Figure 5.8: Time trend: PBD (blocksize = 6), type I error rates (pms = 0.1, n = 100)
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Table 5.3: Time Trends: Number of replications in which type I error rate is inflated out

of eight simulation cases (no block designs vs. block designs; below the dashed line are block

designs (n = 100, pms = 0.1)

Missing Randomization Conditional Unconditional Complete-case Multiple The mean Maximum RBMI

Mechanisms procedures analysis Imputation imputation likelihood

(stochastic)

MCAR

BCD 0 0 0 0 0 1 0

CR 0 0 0 0 0 5 0

BSD 0 0 0 0 0 5 0

RAR 0 0 0 0 0 8 0

TBD 0 0 5 5 5 8 0

MAR

BCD 0 0 0 0 0 0 0

CR 0 0 0 0 0 7 0

BSD 0 0 1 2 1 5 1

RAR 0 0 0 1 0 8 0

TBD 0 0 5 5 5 8 0

MNAR

BCD 0 0 0 0 0 0 0

CR 0 0 0 0 0 3 0

BSD 0 0 0 0 0 5 0

RAR 0 0 0 1 0 8 0

TBD 0 0 5 5 5 7 0

MCAR

RBD 0 0 0 0 0 0 0

PBD4 0 0 0 0 0 3 0

PBD6 0 0 0 0 0 0 0

MAR

RBD 0 0 0 0 0 0 0

PBD4 0 0 0 0 0 2 0

PBD6 0 0 0 0 0 0 0

MNAR

RBD 0 0 0 0 0 0 0

PBD4 0 0 0 0 0 3 0

PBD6 0 0 0 0 0 1 0
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5.1.2.2 Di↵erent Power Trends

Generally the maximum likelihood approach has the highest power among all methods.

Under the randomization procedures RBD, BSD, BCD and PBD, we see an apparent trend

in power; the trend is seen in Figure 5.9 for illustration purposes. More similar results

are available in the Appendix. Population-based methods present a more apparent power

loss compared to randomization-based methods when the influence of time trends becomes

larger (measured by |✓|).

When the randomization procedures are CR, RAR, and TBD, the maximum likelihood

method maintains the highest power; methods relying on the t-test are less powerful. How-

ever, it is not observed that randomization-based methods have a smaller power loss than

other population-based methods when the time trend’s influence increases. The result under

CR is presented in Figure 5.14. Similar trends are available in Figures 5.14-5.16. Consis-

tent trends are observed in Rosenberger and Lachin (2016) where they compared the power

of the randomization test and the t-test under di↵erent randomization procedures when

responses are a↵ected by linear time trends.

70



Figure 5.9: Time trend: RBD, power (pms = 0.1, n = 100)

Figure 5.10: Time trend: PBD (blocksize = 4), power (pms = 0.1, n = 100)
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Figure 5.11: Time trend: PBD (blocksize = 6), power (pms = 0.1, n = 100)

Figure 5.12: Time trend: BCD, power (pms = 0.1, n = 100)
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Figure 5.13: Time trend: BSD, power (pms = 0.1, n = 100)

Figure 5.14: Time trend: CR, power (pms = 0.1, n = 100)
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Figure 5.15: Time trend: RAR, power (pms = 0.1, n = 100)

Figure 5.16: Time trend: TBD, power (pms = 0.1, n = 100)
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5.2 Outliers in Responses

Some simulation settings for this section are di↵erent from the cases described in Chapter

3.

5.2.1 Simulation Settings

• Simulation results are separated based on the randomization procedure (BCD and

RBD) and missing mechanisms (MCAR, MNAR, MAR). Details about how to sim-

ulate missing values under each missing data mechanism are available in Section 3.1.

Note that the parameter r in Section 3.1 is r = 0.7 instead of r = 1 : 3 in this

simulation.

• Number of simulated patients n = 200.

• The following are missing data methods studied, they are

– parametric methods:

∗ the complete-case analysis (complete)

∗ mean imputation (mean)

∗ multiple imputation with stochastic regression (MI(stochastic))

∗ multiple imputation with predictive mean matching (MI(PMM))

– Randomization-based methods:

∗ the conditional reference set (conditional)

∗ the unconditional reference set (unconditional)

∗ the randomization-based multiple imputation (RBMI)

• The overall proportion of missingness in responses is defined as pms. If pms = 0.1, it

means that 10% of the responses are missing, and pms = 0.1 or 0.2.

• Outliers in responses are simulated by Cauchy distribution. Non-outliers in responses

are simulated by the normal distribution. The exact distributions used for simulating
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Table 5.4: Outilers: distribution for outliers and non-outliers in responses
Types Treatment Outliers Non-outliers
Power A Cauchy (Location = 0.5, scale = 1) N(0.5, 1)

B Cauchy (Location = 0, scale = 1) N(0, 1)
Type I error rate A Cauchy (Location = 0, scale = 1) N(0.5, 1)

B Cauchy (Location = 0, scale = 1) N(0, 1)

responses are listed in the table below.

• The proportion of outliers within responses are 0%, 5%, 10%, 15%, 20%, which are

listed on the x-axis in the plots below.

5.2.2 Simulation Results

The adopted test statistic for randomization-based missing data methods is the di↵erence

in group means. Note that the test statistics for population-based approaches are t-test

based statistics.

Randomization-based or population-based methods are similar in the general pattern

of power and type I error rates. When the proportion of outliers increases, all methods

present a decreasing power trend, and no type I error rate inflation is exhibited. It is

observed that randomization-based methods are relatively less conservative compared with

population-based methods.

Wang et al. (2020) also studied the type I error rates and power when responses are

a↵ected by outliers; the di↵erence is that no missing values existed in responses. The

technique used to simulate responses with outliers is also by sampling from Cauchy distri-

bution, which is similar to the proposed setting above. In Wang et al. (2020), the adopted

test statistics for randomization tests are the di↵erence in group means, and the linear-rank

test statistic. It was discovered by Wang et al. (2020) that the choice of test statistic has a
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more significant impact on power; randomization tests with linear-rank statistics have larger

power than the one with a di↵erence in means under the same simulation case. When miss-

ing values and outliers coexist in responses, randomization-based missing data methods with

linear-rank test statistics are conducted, and a similar fact is observed; i.e., randomization-

based missing data methods are more powerful under linear-rank test statistics than the

di↵erence between group means. Data are in the Appendix.

In conclusion, when non-normal outliers and missing values coexist in patients’ re-

sponses, randomization-based methods with the test statistic - di↵erences in means - do

not show a apparent advantage in power than population-based ones, and both kinds of

methods present good performance in type I error rate control. To deal with such cases,

selecting a more appropriate test statistic for outliers, such as the rank-based one, would

be more helpful in maintaining statistical power.

Figure 5.17: Outliers: BCD under MCAR, pms = 0.1 (left), pms = 0.2 (right).

77



Figure 5.18: Outliers: BCD under MAR, pms = 0.1 (left), pms = 0.2 (right).

Figure 5.19: Outliers: BCD under MNAR, pms = 0.1 (left), pms = 0.2 (right).
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Figure 5.20: Outliers: RBD under MCAR, pms = 0.1 (left), pms = 0.2 (right).

Figure 5.21: Outliers: RBD under MAR, pms = 0.1 (left), pms = 0.2 (right).
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Figure 5.22: Outliers: RBD under MNAR, pms = 0.1 (left), pms = 0.2 (right).

5.3 Increasing Missing Proportion over Time

In previous studies, a constant overall missing proportion is assumed at each time point

during a trial; i.e., the probability of a patient’s responses to be missing does not change

over time. In practice, we may observe a varying missing proportion over time. For instance,

more patients may decide to discontinue the treatment in the later period of a trial than

the early period, which creates a non-constant missing proportion in patients’ responses.

Based on such interest, a simulation study for evaluating randomization-based missing data

methods is conducted, assuming a varying missing proportion is confronted.

5.3.1 Simulation Settings

A linear time trend is simulated in the missing proportion. Let the time trend ✓gi = g(i) be

defined by a function that is monotone in i. A linear time trend is defined as g(i) = i/n.

In order to model a time trend that a↵ects the missingness indicator, let ⌘ be the
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maximum “target” proportion missingness (e.g., ⌘ = 20%) in a trial. The missing values in

responses can be simulated with a varying missing proportion ⌘.

• Missing completely at random: ⌘i = ⌘ · ✓gi.

• Missing at random: ⌘i = Ti · ⌘ · ✓gi + (1� Ti) · ⌘.

• Missing not at random: ⌘i = I(Yi > Ȳ ) · ⌘ · ✓gi + I(Yi  Ȳ ) · ⌘.

Note that ⌘i is defined as the probability of ith patient’s response to be missing. Whether

ith patient’s response is missing or observed is implemented via a Bernoulli random variable

with parameter ⌘i. Possible options for ⌘ 2 {0, 0.05, 0.1, 0.15} and assume n = 200. The

distribution used to simulate responses is the Normal distribution. When calculating power,

if a patient from treatments A, their responses generate from N(0.5, 1); if treatment B, their

responses generate from N(0, 1). When calculating type I error rates, patients’ responses

follow N(0, 1) regardless of treatment assignments.

5.3.2 Simulation Results

The test statistic for all randomization-based methods is the di↵erence between group

means. Similarly, the test statistic for population-based methods is the t-test statistic. Two

randomization procedures: RBD and BCD, are used for simulating treatment assignments.

Compared methods are the same as the methods in Section 5.2.1.

The simulated type I error rates and power are presented in Figures 5.23 - 5.28. Based on

these figures, no significant di↵erence between population-based methods and randomization-

based methods is observed in terms of power and type I error rates. A decreasing power

trend is observed when the “target” missing proportion ⌘ increases. Slight type I error rate

inflation is observed under RBD and BCD. Note that they are just out of the inflation bound

(indicated by the red dashed lines in plots). The conditional reference set method exhibit

a relatively strong control in type I error rate regardless of randomization procedures and

missing data mechanisms.
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Figure 5.23: Non-constant missing proportion: BCD under MCAR

Figure 5.24: Non-constant missing proportion: BCD under MAR
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Figure 5.25: Non-constant missing proportion: BCD under MNAR

Figure 5.26: Non-constant missing proportion: RBD under MCAR
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Figure 5.27: Non-constant missing proportion: RBD under MAR

Figure 5.28: Non-constant missing proportion: RBD under MNAR
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Chapter 6: Testing the MCAR Assumption

6.1 Randomization-based Confidence Interval

In Wang and Rosenberger (2020), randomization-based confidence intervals are designed

for models using a scalar parameter to evaluate treatment e↵ects. For instance, the study’s

interest is to obtain a confidence interval for a constant additive e↵ect � from a two-armed

randomized controlled trial.

However, the construction and interpretation of a randomization-based confidence inter-

val di↵er from a population-based one. For a population-based confidence interval, data are

assumed to arise from a random sample, and the confidence interval is computed according

to a specific parametric distribution when constructing a confidence interval for a popu-

lation parameter; e.g., the treatment e↵ect. The interpretation for the population-based

confidence interval relies on the random-sampling assumption; it is interpreted as a range

covering the unknown parameter with a pre-determined probability. A population-based

confidence interval can be constructed by inverting the rejection region of a corresponding

hypothesis test.

The interpretation of a randomization-based confidence interval is distinct. As stated

in Edgington and Onghena (2007),

the confidence interval from randomization tests is a set of � values from which

the hypothesis H� that the treatment di↵erence is � for each and every patient

in the study is not rejected at the prescribed significance level based on the given

set experimental data.

Based on the algorithm developed by Garthwaite (1996), Wang and Rosenberger (2020)

proposed an algorithm to estimate the endpoints of a randomization-based confidence in-

terval that does not require a random sampling assumption or a population distribution
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assumption. The search algorithm developed by Garthwaite (1996) is built based on the

Robbins-Monro process, and it is computationally e�cient. As the number of search steps

increases, the corresponding coverage probability of the estimated confidence limits is un-

biased and has a smaller variance. Patients’ outcomes are permuted when applying Garth-

waite’s method when searching for confidence limits, and treatment assignments are held

fixed, which is not appropriate in some cases since randomization sequences are not always

equiprobable. Moreover, Garthwaite’s method only adjusts patients’ responses based on

the testing hypothesis once at the beginning of the search. As pointed out by Edgington

and Onghena (2007),

An equitable procedure would require modifying patient outcome data according

to the hypothesis at each time a re-randomization of treatment assignments is

generated.

Instead of permuting patients’ responses, Wang and Rosenberger (2020)’s method updates

patients’ responses every time based on the newly generated sequence, and a large number

of randomization sequences are generated during the searching process.

This chapter proposes a new methodology to test the missing data mechanism based on

the randomization-based confidence interval developed by Wang and Rosenberger (2020). A

randomization-based confidence interval derived is desired to measure the deviation of the

independence assumption between missingness in responses and treatment assignments.

The di↵erence in proportions of missingness between treatments provide potential evi-

dence to determine whether missing is completely at random or missing at random. A

randomization-based confidence interval for testing the di↵erence in missing proportion be-

tween treatments can be constructed to determine M and T are independent through the

implementation of Wang and Rosenberger (2020)’s search algorithm.
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6.2 Review of Randomization-based Confidence Interval

Wang and Rosenberger (2020) illustrate the idea of randomization-based confidence in-

terval by using constant additive treatment e↵ect as an example. The constant additive

treatment e↵ect is defined as �. Suppose a hypothesis H� states that treatment A has

an additive treatment e↵ect � comparing to the treatment B, and the di↵erence between

group means as the test statistic S to estimate �. When iterative searching the endpoints

of the confidence interval of �, Wang and Rosenberger (2020) ’s method would generate a

large number of randomization sequences, and patients’ responses would be updated based

on each newly generated sequence. The way to update patients’ responses is illustrated

at here: for each newly generated sequence, if a patient originally observed in treatment

A group, is re-randomized to treatment B, the corresponding observed response would be

decreased by v; and if a patient originally observed in treatment B is re-randomized to

treatment A, the observed response would be increased by v. Note that v here is not fixed

as the observed test statistic, the exact quantity for v when a new sequence generated in

explained Section 6.3.

6.3 The Robbins-Monro Algorithm

Wang and Rosenberger (2020) discuss the process of finding the endpoints of a randomiza-

tion based confidence interval with the reference to Garthwaite (1996). There are several

steps for this method. Suppose the (�L,�U ) is the interested 100(1 � 2↵)% two-sided

confidence interval for �, and 0 < ↵ < 0.5. Let Li, Ui be the estimates of �L and �U after

i steps.

• First, find the starting values for the endpoints of an interval. There are M newly

generated re-randomization sequences by the randomization procedure employed and

each sequence is updated based on Sobs. (i.e. v = Sobs. in Section 6.2); and Sobs. is

the observed test statistic, for example, the observed di↵erence in group means. Note

that M is suggested as M = (2 � ↵)/↵. In practice, M = 1000 to provide more
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precision in estimating the starting values for the endpoints of the confidence interval

interested. For each newly generated randomization sequence with responses updated,

a new test statistic, e.g., the di↵erence between group means, can be calculated. For

M generated sequences, M new test statistics values are available. Let t1 be the

second smallest test statistic value, and t2 be the second largest test statistics value

among these M statistics values (if M = 1000, t1 be statistic value on ↵% quantile

and t2 be the statistic value on (1 � ↵%) quantile). The starting values are for the

upper limit of a confidence interval is U0, and the starting value for the lower limit of

a confidence interval is L0 where U0 = Sobs. + (t2 � t1)/2 or L0 = Sobs. � (t2 � t1)/2.

• After starting values U0 and L0 are found, the endpoints of a confidence interval can

be searched via iterative updating Ui and Li. The following provides how to iterative

search the endpoints of the upper limit and the lower limit respectively.

– Search for the upper limit. To estimate Ui+1, a new treatment sequence is gener-

ated with patients’ outcomes updated with Ui (i.e. v = Ui in Section 6.2), and a

new test statistic SUi (e.g., the di↵erence in group means) can be obtained after

responses modified by Ui. Based on a newly generated sequence with modified

outcomes, the Ui+1 is obtained by the following equation.

Ui+1 =

8
>><

>>:

Ui � ci↵/i, if SUi > Sobs

Ui + ci(1� ↵)/i, if SUi  Sobs

(6.1)

where ci = k(Ui�Sobs.) and ci is defined as a positive step length constant. The

constant k is defined as k = 2/{z↵(2⇡)�1/2� exp(�z
2
↵/2)} where z↵ is the upper

100↵% point of the standard normal distribution.

– Search for the lower limit. To estimate Li+1, a new treatment sequence is gener-

ated with patients’ outcomes modified by Li (i.e. v = Li in Section 6.2), then a

new statistic SLi is obtained. Based on a newly generated sequence with modified
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outcomes, the Li+1 is obtained by the following equation.

Li+1 =

8
>><

>>:

Li + ci↵/i, if SLi < Sobs

Li � ci(1� ↵)/i, if SUi � Sobs

(6.2)

where ci = k(Sobs. � Li).

Wang and Rosenberger (2020) suggest that N steps be used when searching the end-

points of a confidence interval, and N is suggested to be a value greater than the

number of sequences used for a re-randomization test. When updating Ui or Li via

formulas above, Garthwaite (1996) suggests that m � i + 1 should be used as the

denominator rather than i to reduce the impact resulted from the rapid change in

the beginning steps, where m = min{50, 0.3(2 � ↵)/↵}. As pointed out by Wang

and Rosenberger (2020), for most commonly encountered distributions, the previous

ci provides a convergent sequence when numerically approaching the limits. However,

the previous choice of ci does not apply to the Cauchy distribution and the two pa-

rameterizations of the exponential distribution. In general, the previous choice of ci

is recommended if no better information is available.

6.4 Implementation of Randomization-Based Confidence In-

tervals to Evaluate the Missing Data Mechanism

Wang and Rosenberger (2020) discuss the randomization-based confidence interval for a

continuous quantity. The confidence interval for the di↵erence in proportions of missingness

between treatments is desired. To be more specific, whether a patient’s response is missing

or observed can be considered as a binary outcome. Based on binary outcomes created by

missingness. it is of interest that an randomization-based confidence interval to determine

if M and T are independent within some threshold.
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If a patient’s response is missing, the corresponding binary outcome equals one; other-

wise, the outcome equals zero. The di↵erence in missing proportions is equivalent to the

di↵erence in group means, if binary outcomes resulted from missingness is adopted. In

Section 6.2 and 6.3, a example of finding the confidence interval of the additive treatment

e↵ect is illustrated, and the confidence interval for the di↵erence in group means is derived

according to the algorithm proposed by Wang and Rosenberger (2020). Similarly, the algo-

rithm implemented in Section 6.3 can be applied to iterative search the confidence intervals

of the di↵erence in missing proportions based on binary outcomes resulted from missing-

ness in responses. Then we can used the confidence interval for the di↵erence in missing

proportions derived to evaluate the independent relationship between M and T . Note that

the way of modifying binary outcomes is illustrated in the following example.

The quantity studied is the di↵erence in missing proportions between treatments, it is

defined as ⇤ and the confidence interval for ⇤ is desired, where ⇤ = the missing proportion

from A - the missing proportion from B, denoted as qA � qB. The observed di↵erence in

missing proportion is defined as ⇤obs. = qA,obs. � qB,obs.. The di↵erence in group means

of patients’ responses is used to estimate ⇤ and patients’ responses are binary outcomes

resulted from the missingness in patients’ responses. Suppose an observed sequence of

treatment assignments is (A,A,B,B) and the second and fourth patients’ responses are

missing (marked as the underlined treatment in the table below). During the searching

process of the endpoints for a confidence interval, many new treatment assignment are

generated, e.g., (A,B,B,A) (the second row in the table below). The method to update

binary outcomes is the same as the one for continuous responses: if the patient observed in

A is re-randomized to B, subtract v from the observed outcome; if a patient observed in B

is re-randomized to A, add v to the observed outcome. Note that the modification to the

binary responses should not only happen in locations that have missingness, but also every

treatment within a sequence. The whole process of iterative searching the endpoints for

a confidence interval is the same illustrated in Section 6.3, except that patients’ responses

are binary outcomes resulted from the missingness. The algorithm developed by Wang and
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Rosenberger (2020) can be applied to seeking the randomization-based confidence interval

of the di↵erence in missing proportion between treatments. An optimal target is to find the

maximum imbalance between missing proportions that will not span the zero as a threshold

with a pre-defined confidence level. If the imbalance observed is greater than the threshold,

it concludes that the independence between M and T is violated under the predetermined

confidence level.

Table 6.1: Methods of modifying binary responses based on missingness
Treatment assignments Outcomes data based Outcomes values Di↵erence in missing Di↵erencee in missing

on missingness (binary) proportions (qA � qB) proportions (qA � qB) under v = ⇤obs

A,A,B,B m1,m2,m3,m4 (0, 1, 0, 1) (m1 +m2)/2� (m3 +m4)/2 ⇤obs = (0+1)/2 - (0+1)/2 = 0

A,B,B,A m1,m2 � v,m3,m4 + v (0, 1� v, 0, 1 + v) (m1 +m4)/2� (m2 +m3)/2 (0 + 1 + ⇤obs)/2� (1� ⇤obs + 0)/2 = 0

A,B,A,B m1,m2 � v,m3 + v,m4 (0, 1� v, v, 1) (m1 +m3)/2� (m2 +m4)/2 (0 + ⇤obs)/2� (1� ⇤obs + 1)/2 = �1

... ... ... ... ...

6.5 Examples on Randomization-based Confidence Intervals

Several examples are simulated for illustration purposes, and the quantity studied is the

di↵erence in missing proportions between A and B. Suppose the sample size n = 200, and

the randomization procedures implemented are the biased coin design (BCD) or randomized

block design (RBD). The population-based confidence intervals, i.e., the Z intervals derived

from the two-sample proportion test, are calculated for comparison. Table 6.2 below shows

that the randomization-based confidence intervals derived are similar to the corresponding

Z intervals.
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Table 6.2: Examples for randomization-based confidence intervals

Designs qA,obs. qB,obs. observed di↵erence in 80% confidence interval 80% confidence interval

missing proportions (in %) (population-based) (randomization-based)

RBD 1% 21% (1% - 21% = -20%) (-0.2537, -0.1463) (-0.2554, -0.1443)

RBD 3% 12% (3% - 12% = -9%) (-0.1370, -0.0430) (-0.1373, -0.0413)

RBD 3% 6% (3% - 6% = -3%) (-0.0675, 0.0075) (-0.0676, 0.0006)

BCD 1% 23% (1% - 23% = -22%) (-0.2754, -0.1646) (-0.2764, -0.1634)

BCD 1% 11% (1% - 11% = -10%) (-0.1421, -0.0579) (-0.1431, -0.0585)

BCD 1% 6% (1% - 6% = -5%) (-0.0830, -0.0170) (-0.0833, -0.0192)

When di↵erent missing proportions are observed, one interesting scientific question is

how large the di↵erence in missing proportions is required to conclude that the two missing

proportions are distinct with certain pre-determined confidence. A universal threshold that

measures the deviation from the independence assumption between M and T is desired.

Once a significant violation of the unconditional method’s assumption (see Section 2.2

for details) is confirmed, the conditional reference set method is preferred. This interest is

investigated by constructing randomization-based confidence intervals of di↵erent imbalance

values in missing proportions.

Examples below illustrate the idea of the desired threshold, and simulation results are

derived from 80% two-sided confidence intervals. Suppose the smaller missing proportion

is observed under treatment B and the number of patients is 200. The question becomes

ascertaining the required minimum imbalance in missing proportions such that the cor-

responding two-sided confidence interval of qA � qB does not cover zero. The following

simulation results are obtained by grid search, and the step in changing the missing pro-

portion is 1%. Note that adopting finer steps in missing proportions could provide more
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accurate values in searching the required minimum imbalances. Table 6.3 contains simula-

tion results from two randomization procedures: BCD and RBD. The first column is the

observed smaller missing proportion qB,obs. by assumption. The second and third columns

are the required minimum imbalance in missing proportions to state that qA is significantly

larger than qB. Under if the observed smaller missing proportion qB,obs. is 3%, then the

missing proportion qA,obs. must be greater than or equal to 3% + 5% = 8% to conclude that

the missing proportion in A is significantly larger than the one from B.
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Table 6.3: Threshold for stating non-equivalence in missing proportions (80% confidence)

qB,obs. minimum imbalance minimum imbalance

(BCD) (RBD)

0.01 0.04 0.02

0.02 0.05 0.05

0.03 0.05 0.04

0.04 0.05 0.05

0.05 0.05 0.05

0.06 0.06 0.05

0.07 0.05 0.04

0.08 0.06 0.05

0.09 0.06 0.06

0.10 0.07 0.06

0.11 0.07 0.06

0.12 0.07 0.06

0.13 0.07 0.07

0.14 0.08 0.07

0.15 0.08 0.07

0.16 0.08 0.08

0.17 0.08 0.08

0.18 0.08 0.07

0.19 0.09 0.08

0.20 0.09 0.07

0.21 0.09 0.07

0.22 0.09 0.08

0.23 0.09 0.08

0.24 0.09 0.08

0.25 0.09 0.08
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Chapter 7: Conclusion and Future work

7.1 Conclusion

Population-based methods which require the random sampling assumption have been widely

used to evaluate the treatment e↵ect in randomized clinical trials. However, the random

sampling assumption is invalid for patients in a randomized clinical trial due to the unique-

ness of an experimental design. Patients recruited in a trial essentially form a population,

which weakens the generality of the statistical inference based on the random sampling

assumption. The randomization test, which has been neglected for many years, exhibits its

advantages in delivering reliable inference results without requiring the random sampling

assumption. The randomization test is built upon the randomization procedure that is

applied in the trial. Randomization procedures themselves provide the basis for obtaining

a more valid and objective treatment e↵ect evaluation.

Missing data is an inevitable problem in clinical trials. Population-based solutions for

missing values are extensively researched. The lack of randomization-based missing data

methods significantly hinders the application of randomization tests in practice.

The contribution of this thesis is that it proposes and evaluates randomization-based

missing data methods by comparing them with population-based missing data methods

under di↵erent simulation scenarios. This comparison is conducted from two perspectives

depending on whether homogeneity a↵ects responses.

In general, population-based methods are comparable to population-based methods re-

garding power and type I error rates when evaluating treatment e↵ects. To achieve a fair

comparison, when responses are continuous, the test-statistic for randomization-based meth-

ods is the di↵erence between group means; the test-statistic for population-based methods

is the t-test. For binary responses, the test-statistic for randomization-based methods is
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rank-based test statistic (i.e., a randomization-based analogue of the �
2-test); the test for

population methods is the Pearson’s �
2-test. Multiple simulation scenarios are generated

by varying the missing data mechanisms, sample sizes, and overall missing proportion.

Under homogeneous responses, regardless of the type of responses or the involving ran-

domization procedures, randomization-based missing methods show similar performance to

the population-based approaches in most simulation scenarios; the “worst” method, the

“best-worst” method, are not recommended due to their poor performance in power and

type I error rates. The maximum likelihood is not recommended for continuous responses

because of the potential type I error rate inflation. Note that the “worst” and “best-worst”

methods are excluded from the simulation for responses with heterogeneity because of their

poor performance.

When heterogeneity exists in continuous responses, randomization-based missing data

methods are evaluated from three perspectives. When responses are a↵ected by time trends,

randomization-based methods present advantages in preserving type I error rates, especially

for procedures such as the truncated binomial design, which tends to be highly a↵ected be-

cause of the design itself. The performance of missing data methods in type I error rates

is more design-specified. Block-based designs exhibit advantages in type I error rates con-

trol over non-block designs. The conclusions above are obtained from simulations involving

eight previously discussed randomization procedures in Chapter 1. The other two aspects

evaluated for heterogeneity are responses with outliers, and the non-constant missing pro-

portion over time. When responses are a↵ected by outliers, randomization-based methods

and population-based methods are similar in power and type I error rates. In previous

simulations, a constant missing proportion over time is assumed. However, the probability

of observing missingess in responses change over time. Randomization-based missing data

methods are assessed based on this interest, and a linearly increasing missing proportion

over time is simulated. No apparent di↵erence in power and type I error rates are observed

between randomization-based and population-based methods. The conditional reference set

method shows a slightly smaller type I error rate than the remaining methods.
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In Chapter 6, a randomization-based confidence interval of the di↵erence between miss-

ing proportions is proposed to measure the deviation of the independence assumption be-

tween the missingness in responses and treatment assignments. The proposed interval is

built on the Wang and Rosenberger (2020)’s randomization-based confidence interval, where

their interval is designed for a quantity (e.g., the additive treatment e↵ect) on the real line.

In this thesis, the quantity interested ranges from [-1,1], i.e., the di↵erence in missing pro-

portions between treatments. Wang and Rosenberger (2020)’s method has been modified

to deal with the di↵erence in missing proportions. The randomization-based confidence in-

tervals for the di↵erence in missing proportions are compared with the Z intervals obtained

from the two-sample proportion Z test through simulations; similar confidence intervals

are observed under the same observed missing proportions. A threshold that can measure

the deviation of the independence assumption between M and T is desired. To be more

specific, the threshold is constructed by searching the minimum imbalance between miss-

ing proportions such that an 80% randomization-based confidence interval derived for the

di↵erence in missing proportion does not cover zero. In practice, to clarify the violation of

independence assumption, it is recommended to calculate a randomization-based confidence

interval for the di↵erence in missing proportions with a user-selected confidence level. If the

randomization-based confidence interval calculated does not cover zero, then the conditional

reference set method should be adopted.

7.2 Future Work

An R package containing these R modules will be built for open source use to the public.

One limit of the current implementation of the conditional reference set method is that it is

computationally burdensome to sample enough sequences in the conditional reference set,

when the number of missing observations between treatments di↵ers substantially. This

is because sequences in the conditional reference set are sampled from the unconditional

reference set, and the sequences do not satisfy the requirement are discarded. The current

solution to mitigate such weakness is to implement the conditional reference set method via
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a language with higher computational speed such as C++.

In clinical trials, generalized linear mixed models (GLMM) are commonly used in an-

alyzing longitudinal data, for example, repeated measures on biomarkers from patients at

multiple time points when comparing two treatment e↵ects. Parhat et al. (2014) extended

the application of randomization tests on GLMM by providing the corresponding algorithm

in the context of a two-armed clinical trial. Particularly, Parhat et al. (2014) investigate

the treatment e↵ect variation over the repeated measures such as whether a treatment has

a time-varying e↵ect for a patient. However, no missing data method is available when

applying a randomization test under GLMM. Thus, it is worth investigating corresponding

randomization-based missing data methods. Other missing data methods for longitudinal

studies will be employed in simulation studies for comparison, such as multiple imputation,

the last observation carried forward method when di↵erent missing data mechanisms are

assumed. Also, when applying the randomization-based methods, further investigation is

needed to study why the type I error rate is inflated under specific randomization proce-

dures, e.g., BSD, which is also observed in Wang et al. (2020).
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Appendix A: An Appendix

A.1 Results under Homogeneity (Continuous Responses)

A.1.1 Type I Error Rates

A.1.1.1 MCAR

Table A.1: Homogeneous responses (continuous): MCAR, type I error rates, n=50,

pms =0.05
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.076 0.036 0.044 0.043 0.044 0.060 0.040 0.043 0.040

2 BSD 0.102 0.049 0.058 0.061 0.058 0.066 0.056 0.055 0.055

3 CR 0.087 0.043 0.049 0.049 0.049 0.057 0.050 0.055 0.049

4 PBD (blocksize = 4) 0.090 0.061 0.052 0.053 0.052 0.061 0.055 0.049 0.055

5 PBD (blocksize = 6) 0.081 0.049 0.045 0.045 0.044 0.061 0.046 0.045 0.042

6 RAR 0.071 0.047 0.052 0.051 0.052 0.061 0.049 0.042 0.051

7 RBD 0.082 0.040 0.040 0.039 0.040 0.048 0.042 0.046 0.039

8 TBD 0.077 0.040 0.060 0.060 0.060 0.070 0.060 0.060 0.059
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Table A.2: Homogeneous responses (continuous): MCAR, type I error rates, n=50,

pms=0.1
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.195 0.035 0.040 0.040 0.040 0.064 0.038 0.039 0.037

2 BSD 0.222 0.053 0.058 0.061 0.058 0.079 0.059 0.058 0.058

3 CR 0.223 0.050 0.053 0.048 0.052 0.073 0.051 0.044 0.049

4 PBD (blocksize = 4) 0.197 0.057 0.053 0.058 0.054 0.077 0.059 0.044 0.056

5 PBD (blocksize = 6) 0.197 0.047 0.046 0.047 0.046 0.065 0.045 0.046 0.046

6 RAR 0.187 0.052 0.048 0.047 0.048 0.071 0.047 0.042 0.049

7 RBD 0.208 0.031 0.042 0.041 0.042 0.052 0.044 0.050 0.040

8 TBD 0.197 0.037 0.058 0.057 0.059 0.075 0.062 0.057 0.056

Table A.3: Homogeneous responses (continuous): MCAR, type I error rates, n=100,

pms=0.05
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.138 0.040 0.051 0.053 0.051 0.056 0.052 0.049 0.051

2 BSD 0.141 0.061 0.069 0.070 0.069 0.073 0.067 0.047 0.067

3 CR 0.136 0.042 0.053 0.052 0.053 0.059 0.052 0.051 0.052

4 PBD (blocksize = 4) 0.141 0.052 0.055 0.057 0.055 0.062 0.057 0.050 0.057

5 PBD (blocksize = 6) 0.141 0.041 0.047 0.046 0.047 0.053 0.042 0.051 0.041

6 RAR 0.132 0.060 0.065 0.067 0.065 0.075 0.065 0.062 0.062

7 RBD 0.114 0.037 0.041 0.043 0.041 0.046 0.042 0.045 0.039

8 TBD 0.139 0.060 0.055 0.054 0.055 0.064 0.055 0.057 0.050
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Table A.4: Homogeneous responses (continuous): MCAR, type I error rates, n=100,

pms=0.1
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.367 0.033 0.046 0.050 0.046 0.058 0.046 0.048 0.047

2 BSD 0.376 0.064 0.062 0.063 0.062 0.077 0.061 0.048 0.061

3 CR 0.373 0.051 0.052 0.052 0.052 0.059 0.051 0.059 0.050

4 PBD (blocksize = 4) 0.376 0.055 0.057 0.061 0.058 0.074 0.059 0.050 0.056

5 PBD (blocksize = 6) 0.393 0.044 0.049 0.050 0.049 0.065 0.051 0.050 0.043

6 RAR 0.367 0.058 0.058 0.061 0.058 0.084 0.058 0.054 0.057

7 RBD 0.360 0.039 0.047 0.049 0.048 0.058 0.049 0.045 0.045

8 TBD 0.369 0.052 0.055 0.061 0.055 0.074 0.056 0.061 0.056
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A.1.1.2 MAR

Table A.5: Homogeneous responses (continuous): MAR, type I error rates, n=50, pms=0.05
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.078 0.048 0.044 0.046 0.044 0.057 0.041 0.041 0.039

2 BSD 0.102 0.058 0.060 0.059 0.061 0.067 0.054 0.054 0.056

3 CR 0.098 0.063 0.054 0.057 0.054 0.062 0.055 0.046 0.054

4 PBD (blocksize = 4) 0.100 0.067 0.049 0.051 0.049 0.060 0.056 0.047 0.054

5 PBD (blocksize = 6) 0.079 0.055 0.049 0.044 0.047 0.061 0.044 0.045 0.044

6 RAR 0.074 0.060 0.055 0.053 0.054 0.065 0.053 0.042 0.054

7 RBD 0.086 0.041 0.037 0.037 0.038 0.047 0.038 0.045 0.039

8 TBD 0.081 0.045 0.062 0.063 0.062 0.071 0.060 0.055 0.056

Table A.6: Homogeneous responses (continuous): MAR, type I error rates, n=50, pms=0.1
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.213 0.082 0.043 0.045 0.043 0.065 0.046 0.036 0.045

2 BSD 0.219 0.100 0.060 0.059 0.060 0.077 0.062 0.051 0.057

3 CR 0.218 0.091 0.046 0.048 0.046 0.065 0.045 0.047 0.043

4 PBD (blocksize = 4) 0.205 0.090 0.058 0.055 0.058 0.073 0.058 0.049 0.058

5 PBD (blocksize = 6) 0.201 0.088 0.048 0.049 0.047 0.071 0.044 0.046 0.046

6 RAR 0.179 0.080 0.057 0.058 0.056 0.080 0.056 0.043 0.058

7 RBD 0.195 0.048 0.037 0.036 0.036 0.056 0.040 0.044 0.035

8 TBD 0.198 0.079 0.057 0.060 0.058 0.073 0.057 0.050 0.057
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Table A.7: Homogeneous responses (continuous): MAR, type I error rates, n=100,

pms=0.05
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.140 0.060 0.045 0.048 0.045 0.055 0.047 0.049 0.044

2 BSD 0.147 0.080 0.064 0.065 0.064 0.077 0.066 0.048 0.066

3 CR 0.143 0.081 0.050 0.051 0.050 0.058 0.051 0.053 0.051

4 PBD (blocksize = 4) 0.133 0.077 0.058 0.057 0.058 0.068 0.060 0.048 0.059

5 PBD (blocksize = 6) 0.134 0.067 0.043 0.041 0.043 0.048 0.044 0.057 0.042

6 RAR 0.136 0.079 0.059 0.060 0.059 0.068 0.059 0.060 0.059

7 RBD 0.116 0.065 0.040 0.040 0.040 0.045 0.041 0.046 0.040

8 TBD 0.144 0.080 0.057 0.057 0.057 0.062 0.055 0.059 0.054

Table A.8: Homogeneous responses (continuous): MAR, type I error rates, n=100, pms=0.1
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.382 0.149 0.049 0.053 0.048 0.064 0.048 0.055 0.051

2 BSD 0.396 0.146 0.064 0.069 0.063 0.085 0.066 0.056 0.061

3 CR 0.384 0.143 0.052 0.050 0.052 0.065 0.052 0.052 0.050

4 PBD (blocksize = 4) 0.404 0.140 0.055 0.055 0.055 0.069 0.054 0.047 0.053

5 PBD (blocksize = 6) 0.403 0.137 0.046 0.047 0.046 0.061 0.044 0.051 0.041

6 RAR 0.384 0.152 0.063 0.067 0.063 0.079 0.064 0.059 0.063

7 RBD 0.374 0.066 0.043 0.042 0.043 0.054 0.042 0.041 0.039

8 TBD 0.381 0.136 0.061 0.062 0.060 0.081 0.062 0.058 0.054

103



A.1.1.3 MNAR

Table A.9: Homogeneous responses (continuous): MNAR, type I error rates, n=50,

pms=0.05
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.078 0.042 0.037 0.037 0.037 0.049 0.036 0.045 0.037

2 BSD 0.090 0.063 0.052 0.053 0.052 0.066 0.054 0.045 0.055

3 CR 0.075 0.046 0.048 0.050 0.048 0.056 0.048 0.041 0.050

4 PBD (blocksize = 4) 0.085 0.052 0.063 0.062 0.063 0.072 0.060 0.039 0.060

5 PBD (blocksize = 6) 0.084 0.050 0.043 0.042 0.043 0.052 0.044 0.050 0.043

6 RAR 0.083 0.061 0.052 0.054 0.052 0.063 0.051 0.048 0.051

7 RBD 0.086 0.055 0.044 0.045 0.045 0.052 0.039 0.050 0.040

8 TBD 0.077 0.044 0.056 0.055 0.056 0.075 0.059 0.047 0.058

Table A.10: Homogeneous responses (continuous): MNAR, type I error rates, n=50,

pms=0.1
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.189 0.045 0.039 0.040 0.041 0.060 0.039 0.029 0.038

2 BSD 0.200 0.041 0.055 0.055 0.055 0.072 0.054 0.040 0.054

3 CR 0.183 0.041 0.047 0.049 0.048 0.064 0.045 0.051 0.046

4 PBD (blocksize = 4) 0.200 0.047 0.058 0.061 0.057 0.075 0.054 0.040 0.056

5 PBD (blocksize = 6) 0.201 0.057 0.049 0.049 0.049 0.059 0.047 0.048 0.046

6 RAR 0.205 0.047 0.055 0.056 0.055 0.074 0.054 0.043 0.056

7 RBD 0.194 0.052 0.040 0.046 0.041 0.063 0.040 0.046 0.042

8 TBD 0.193 0.049 0.054 0.057 0.054 0.077 0.058 0.049 0.052
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Table A.11: Homogeneous responses (continuous): MNAR, type I error rates, n=100,

pms=0.05
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.126 0.035 0.043 0.043 0.043 0.050 0.042 0.048 0.041

2 BSD 0.128 0.057 0.065 0.063 0.065 0.070 0.063 0.053 0.064

3 CR 0.118 0.033 0.053 0.052 0.052 0.059 0.050 0.051 0.050

4 PBD (blocksize = 4) 0.133 0.060 0.053 0.055 0.053 0.059 0.054 0.046 0.055

5 PBD (blocksize = 6) 0.128 0.046 0.043 0.042 0.043 0.051 0.045 0.056 0.042

6 RAR 0.128 0.044 0.055 0.055 0.055 0.064 0.057 0.060 0.054

7 RBD 0.119 0.047 0.044 0.043 0.044 0.050 0.043 0.047 0.044

8 TBD 0.118 0.047 0.053 0.056 0.053 0.062 0.056 0.054 0.054

Table A.12: Homogeneous responses (continuous): MNAR, type I error rates, n=100,

pms=0.1
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.357 0.042 0.037 0.037 0.037 0.051 0.038 0.035 0.035

2 BSD 0.359 0.048 0.060 0.059 0.060 0.076 0.064 0.055 0.061

3 CR 0.362 0.045 0.049 0.049 0.049 0.066 0.047 0.055 0.046

4 PBD (blocksize = 4) 0.370 0.049 0.058 0.059 0.058 0.078 0.063 0.051 0.059

5 PBD (blocksize = 6) 0.378 0.052 0.049 0.049 0.049 0.066 0.046 0.059 0.045

6 RAR 0.353 0.050 0.063 0.066 0.063 0.080 0.064 0.051 0.064

7 RBD 0.354 0.046 0.042 0.046 0.043 0.057 0.043 0.043 0.044

8 TBD 0.365 0.040 0.057 0.056 0.057 0.067 0.055 0.062 0.056
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A.1.2 Power

A.1.2.1 MCAR

Table A.13: Homogeneous responses (continuous): MCAR, power, n=50, pms=0.05
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.659 0.864 0.936 0.935 0.936 0.949 0.936 0.933 0.933

2 BSD 0.628 0.815 0.901 0.905 0.901 0.936 0.901 0.881 0.900

3 CR 0.630 0.839 0.906 0.907 0.906 0.916 0.906 0.924 0.904

4 PBD (blocksize = 4) 0.649 0.855 0.927 0.925 0.927 0.938 0.922 0.917 0.920

5 PBD (blocksize = 6) 0.651 0.848 0.923 0.919 0.923 0.932 0.923 0.904 0.918

6 RAR 0.644 0.857 0.918 0.921 0.918 0.935 0.920 0.923 0.919

7 RBD 0.622 0.844 0.920 0.919 0.920 0.931 0.911 0.918 0.914

8 TBD 0.647 0.862 0.919 0.917 0.919 0.933 0.921 0.931 0.903

Table A.14: Homogeneous responses (continuous): MCAR, power, n=50, pms=0.1
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.304 0.767 0.920 0.920 0.920 0.941 0.922 0.923 0.920

2 BSD 0.272 0.720 0.880 0.881 0.881 0.924 0.878 0.898 0.873

3 CR 0.276 0.748 0.891 0.894 0.890 0.908 0.889 0.919 0.885

4 PBD (blocksize = 4) 0.273 0.745 0.908 0.913 0.909 0.936 0.911 0.899 0.904

5 PBD (blocksize = 6) 0.270 0.749 0.909 0.907 0.910 0.932 0.910 0.894 0.902

6 RAR 0.273 0.768 0.906 0.904 0.906 0.930 0.907 0.910 0.905

7 RBD 0.277 0.734 0.891 0.892 0.891 0.920 0.882 0.905 0.887

8 TBD 0.289 0.760 0.897 0.898 0.899 0.925 0.904 0.921 0.880
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Table A.15: Homogeneous responses (continuous): MCAR, power, n=100, pms=0.05
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.560 0.862 0.927 0.928 0.928 0.938 0.930 0.921 0.927

2 BSD 0.559 0.845 0.914 0.910 0.914 0.925 0.915 0.905 0.916

3 CR 0.553 0.848 0.909 0.910 0.911 0.919 0.911 0.919 0.906

4 PBD (blocksize = 4) 0.545 0.846 0.916 0.913 0.916 0.924 0.915 0.910 0.917

5 PBD (blocksize = 6) 0.561 0.856 0.920 0.921 0.921 0.934 0.916 0.906 0.912

6 RAR 0.568 0.857 0.918 0.920 0.918 0.924 0.917 0.911 0.916

7 RBD 0.569 0.880 0.927 0.924 0.927 0.938 0.928 0.925 0.929

8 TBD 0.574 0.847 0.919 0.917 0.919 0.922 0.913 0.913 0.896

Table A.16: Homogeneous responses (continuous): MCAR, power, n=100, pms=0.1
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.171 0.766 0.916 0.919 0.916 0.936 0.916 0.905 0.912

2 BSD 0.183 0.758 0.902 0.902 0.902 0.919 0.898 0.887 0.896

3 CR 0.169 0.759 0.896 0.901 0.898 0.926 0.901 0.909 0.895

4 PBD (blocksize = 4) 0.161 0.756 0.904 0.902 0.904 0.917 0.898 0.903 0.897

5 PBD (blocksize = 6) 0.163 0.774 0.907 0.910 0.907 0.927 0.902 0.892 0.902

6 RAR 0.178 0.775 0.900 0.907 0.902 0.927 0.903 0.899 0.901

7 RBD 0.172 0.781 0.911 0.911 0.911 0.930 0.910 0.910 0.905

8 TBD 0.175 0.762 0.901 0.904 0.901 0.915 0.899 0.897 0.878
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A.1.2.2 MAR

Table A.17: Homogeneous responses (continuous): MAR, power, n=50, pms=0.05
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.647 0.775 0.939 0.940 0.939 0.948 0.939 0.936 0.939

2 BSD 0.621 0.727 0.901 0.901 0.901 0.933 0.901 0.886 0.899

3 CR 0.626 0.730 0.909 0.909 0.909 0.921 0.906 0.934 0.909

4 PBD (blocksize = 4) 0.641 0.751 0.922 0.924 0.922 0.941 0.922 0.913 0.923

5 PBD (blocksize = 6) 0.627 0.748 0.921 0.918 0.921 0.933 0.918 0.910 0.912

6 RAR 0.646 0.770 0.922 0.918 0.922 0.935 0.921 0.921 0.918

7 RBD 0.620 0.739 0.913 0.914 0.913 0.927 0.909 0.913 0.910

8 TBD 0.638 0.757 0.914 0.912 0.914 0.928 0.914 0.928 0.900

Table A.18: Homogeneous responses (continuous): MAR, power, n=50, pms=0.1
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.313 0.527 0.915 0.915 0.915 0.937 0.915 0.920 0.908

2 BSD 0.253 0.494 0.882 0.884 0.882 0.924 0.887 0.900 0.884

3 CR 0.281 0.503 0.893 0.894 0.893 0.917 0.891 0.916 0.888

4 PBD (blocksize = 4) 0.279 0.504 0.897 0.904 0.897 0.933 0.899 0.906 0.901

5 PBD (blocksize = 6) 0.276 0.499 0.896 0.899 0.897 0.923 0.893 0.890 0.891

6 RAR 0.277 0.519 0.898 0.899 0.899 0.922 0.899 0.904 0.892

7 RBD 0.268 0.494 0.902 0.899 0.901 0.928 0.898 0.912 0.898

8 TBD 0.293 0.533 0.903 0.902 0.903 0.931 0.907 0.915 0.882
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Table A.19: Homogeneous responses (continuous): MAR, power, n=100, pms=0.05
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.561 0.724 0.928 0.927 0.927 0.938 0.929 0.922 0.928

2 BSD 0.541 0.714 0.911 0.911 0.911 0.934 0.910 0.901 0.906

3 CR 0.550 0.718 0.911 0.909 0.910 0.923 0.911 0.922 0.910

4 PBD (blocksize = 4) 0.530 0.714 0.921 0.919 0.921 0.929 0.923 0.916 0.921

5 PBD (blocksize = 6) 0.552 0.732 0.927 0.928 0.927 0.936 0.925 0.911 0.920

6 RAR 0.571 0.735 0.920 0.924 0.920 0.931 0.921 0.915 0.920

7 RBD 0.566 0.746 0.926 0.926 0.926 0.938 0.930 0.927 0.927

8 TBD 0.561 0.712 0.914 0.912 0.913 0.920 0.910 0.913 0.888

Table A.20: Homogeneous responses (continuous): MAR, power, n=100, pms=0.1
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.180 0.425 0.911 0.905 0.910 0.929 0.908 0.905 0.907

2 BSD 0.182 0.435 0.900 0.895 0.899 0.905 0.893 0.877 0.891

3 CR 0.154 0.430 0.903 0.901 0.902 0.925 0.902 0.902 0.895

4 PBD (blocksize = 4) 0.159 0.406 0.907 0.907 0.906 0.925 0.906 0.904 0.904

5 PBD (blocksize = 6) 0.169 0.416 0.917 0.914 0.917 0.930 0.910 0.898 0.906

6 RAR 0.186 0.449 0.903 0.907 0.903 0.920 0.903 0.905 0.900

7 RBD 0.157 0.447 0.914 0.909 0.914 0.932 0.911 0.919 0.911

8 TBD 0.171 0.433 0.896 0.893 0.896 0.916 0.891 0.890 0.863
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A.1.2.3 MNAR

Table A.21: Homogeneous responses (continuous): MNAR, power, n=50, pms=0.05
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.628 0.759 0.921 0.920 0.920 0.943 0.922 0.919 0.921

2 BSD 0.592 0.744 0.899 0.897 0.898 0.924 0.894 0.879 0.892

3 CR 0.647 0.786 0.907 0.911 0.909 0.929 0.911 0.919 0.909

4 PBD (blocksize = 4) 0.641 0.774 0.918 0.917 0.917 0.932 0.921 0.912 0.915

5 PBD (blocksize = 6) 0.625 0.761 0.909 0.908 0.910 0.929 0.914 0.909 0.906

6 RAR 0.613 0.756 0.908 0.910 0.908 0.919 0.908 0.914 0.907

7 RBD 0.621 0.761 0.906 0.911 0.906 0.923 0.908 0.907 0.909

8 TBD 0.633 0.768 0.908 0.904 0.908 0.922 0.904 0.919 0.892

Table A.22: Homogeneous responses (continuous): MNAR, power, n=50, pms=0.1
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.284 0.572 0.898 0.900 0.898 0.931 0.897 0.899 0.892

2 BSD 0.268 0.557 0.877 0.879 0.880 0.905 0.872 0.896 0.870

3 CR 0.288 0.577 0.880 0.885 0.877 0.909 0.878 0.896 0.876

4 PBD (blocksize = 4) 0.287 0.555 0.900 0.901 0.900 0.926 0.885 0.889 0.879

5 PBD (blocksize = 6) 0.292 0.553 0.891 0.894 0.888 0.920 0.888 0.879 0.882

6 RAR 0.282 0.558 0.882 0.888 0.883 0.913 0.883 0.889 0.887

7 RBD 0.277 0.572 0.885 0.887 0.884 0.914 0.884 0.890 0.881

8 TBD 0.272 0.550 0.870 0.873 0.872 0.895 0.867 0.895 0.843
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Table A.23: Homogeneous responses (continuous): MNAR, power, n=100, pms=0.05
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.575 0.787 0.924 0.924 0.924 0.933 0.925 0.910 0.923

2 BSD 0.575 0.768 0.895 0.897 0.895 0.907 0.894 0.895 0.891

3 CR 0.558 0.764 0.904 0.903 0.904 0.917 0.901 0.900 0.897

4 PBD (blocksize = 4) 0.541 0.761 0.913 0.913 0.913 0.922 0.903 0.916 0.902

5 PBD (blocksize = 6) 0.551 0.771 0.909 0.909 0.909 0.923 0.907 0.902 0.907

6 RAR 0.567 0.771 0.907 0.906 0.907 0.920 0.905 0.913 0.905

7 RBD 0.558 0.793 0.919 0.921 0.919 0.927 0.917 0.922 0.916

8 TBD 0.553 0.782 0.911 0.909 0.911 0.922 0.912 0.911 0.903

Table A.24: Homogeneous responses (continuous): MNAR, power, n=100, pms=0.1
Randomization Best & Worst Worst Complete-case Multiple imputation Mean imputation Maximum likelihood Unconditional Conditional RBMI

1 BCD 0.142 0.591 0.893 0.891 0.893 0.910 0.891 0.886 0.891

2 BSD 0.159 0.581 0.876 0.876 0.877 0.899 0.880 0.873 0.875

3 CR 0.156 0.559 0.872 0.876 0.872 0.897 0.873 0.875 0.870

4 PBD (blocksize = 4) 0.167 0.573 0.882 0.878 0.882 0.905 0.876 0.899 0.877

5 PBD (blocksize = 6) 0.181 0.576 0.890 0.891 0.890 0.916 0.886 0.884 0.883

6 RAR 0.179 0.601 0.888 0.888 0.887 0.911 0.883 0.887 0.875

7 RBD 0.159 0.593 0.894 0.892 0.894 0.920 0.889 0.898 0.885

8 TBD 0.165 0.579 0.886 0.886 0.886 0.908 0.886 0.884 0.848
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A.2 Results under Homogeneity (Binary Responses)

A.2.1 Type I Error Rates

A.2.1.1 MCAR

Table A.25: Homogeneous responses (binary): MCAR, type I error rates, n=50, pms=0.05

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.060 0.033 0.030 0.033 0.036 0.069 0.068

2 BSD 0.039 0.035 0.034 0.039 0.039 0.041 0.038

3 CR 0.063 0.041 0.030 0.032 0.047 0.047 0.043

4 PBD (blocksize = 4) 0.059 0.040 0.034 0.033 0.049 0.048 0.048

5 PBD (blocksize = 6) 0.061 0.037 0.036 0.033 0.043 0.029 0.040

6 RAR 0.038 0.022 0.032 0.025 0.041 0.028 0.030

7 RBD 0.049 0.027 0.030 0.027 0.032 0.030 0.030

8 TBD 0.064 0.033 0.030 0.032 0.040 0.040 0.034
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Table A.26: Homogeneous responses (binary): MCAR, type I error rates, n=50, pms=0.1

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.107 0.034 0.032 0.047 0.039 0.071 0.065

2 BSD 0.092 0.030 0.029 0.041 0.038 0.042 0.037

3 CR 0.123 0.045 0.032 0.052 0.048 0.049 0.050

4 PBD (blocksize = 4) 0.118 0.036 0.036 0.047 0.049 0.042 0.042

5 PBD (blocksize = 6) 0.120 0.037 0.036 0.049 0.053 0.033 0.041

6 RAR 0.093 0.020 0.029 0.045 0.046 0.032 0.032

7 RBD 0.086 0.024 0.027 0.041 0.034 0.031 0.025

8 TBD 0.107 0.036 0.031 0.049 0.041 0.040 0.032

Table A.27: Homogeneous responses (binary): MCAR, type I error rates, n=100, pms=0.05

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.076 0.043 0.040 0.045 0.046 0.075 0.068

2 BSD 0.082 0.036 0.032 0.051 0.041 0.038 0.043

3 CR 0.105 0.063 0.046 0.066 0.066 0.063 0.064

4 PBD (blocksize = 4) 0.075 0.034 0.037 0.046 0.049 0.041 0.033

5 PBD (blocksize = 6) 0.086 0.050 0.042 0.059 0.049 0.033 0.049

6 RAR 0.080 0.043 0.040 0.053 0.051 0.049 0.047

7 RBD 0.056 0.023 0.028 0.035 0.033 0.030 0.025

8 TBD 0.092 0.044 0.035 0.049 0.045 0.040 0.042
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Table A.28: Homogeneous responses (binary): MCAR, type I error rates, n=100, pms=0.1

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.198 0.040 0.038 0.053 0.050 0.072 0.065

2 BSD 0.190 0.038 0.032 0.050 0.041 0.041 0.039

3 CR 0.235 0.057 0.041 0.086 0.060 0.059 0.058

4 PBD (blocksize = 4) 0.160 0.025 0.040 0.052 0.050 0.038 0.030

5 PBD (blocksize = 6) 0.188 0.045 0.039 0.058 0.050 0.032 0.047

6 RAR 0.179 0.043 0.046 0.060 0.054 0.043 0.047

7 RBD 0.167 0.019 0.027 0.044 0.032 0.029 0.023

8 TBD 0.220 0.050 0.041 0.058 0.049 0.040 0.045

A.2.1.2 MAR

Table A.29: Homogeneous responses (binary): MAR, type I error rates, n=50, pms=0.05

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.040 0.032 0.029 0.030 0.039 0.065 0.065

2 BSD 0.037 0.028 0.029 0.031 0.038 0.037 0.038

3 CR 0.051 0.038 0.029 0.036 0.044 0.045 0.047

4 PBD (blocksize = 4) 0.052 0.040 0.039 0.036 0.051 0.049 0.046

5 PBD (blocksize = 6) 0.046 0.041 0.034 0.030 0.049 0.030 0.042

6 RAR 0.028 0.024 0.029 0.021 0.038 0.029 0.033

7 RBD 0.033 0.028 0.030 0.028 0.042 0.035 0.030

8 TBD 0.046 0.037 0.033 0.036 0.039 0.039 0.034
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Table A.30: Homogeneous responses (binary): MAR, type I error rates, n=50, pms=0.1

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.070 0.031 0.031 0.045 0.045 0.073 0.067

2 BSD 0.062 0.031 0.033 0.042 0.046 0.044 0.039

3 CR 0.084 0.043 0.029 0.051 0.051 0.049 0.048

4 PBD (blocksize = 4) 0.078 0.037 0.035 0.050 0.050 0.045 0.046

5 PBD (blocksize = 6) 0.081 0.039 0.030 0.048 0.047 0.033 0.038

6 RAR 0.055 0.023 0.029 0.031 0.046 0.033 0.031

7 RBD 0.064 0.025 0.029 0.035 0.043 0.034 0.029

8 TBD 0.084 0.043 0.032 0.048 0.049 0.044 0.038

Table A.31: Homogeneous responses (binary): MAR, type I error rates, n=100, pms=0.05

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.060 0.046 0.040 0.057 0.052 0.072 0.065

2 BSD 0.055 0.038 0.029 0.045 0.037 0.037 0.036

3 CR 0.084 0.060 0.042 0.069 0.059 0.063 0.060

4 PBD (blocksize = 4) 0.052 0.037 0.038 0.043 0.053 0.040 0.033

5 PBD (blocksize = 6) 0.063 0.053 0.042 0.050 0.052 0.028 0.048

6 RAR 0.054 0.044 0.044 0.050 0.051 0.050 0.044

7 RBD 0.046 0.024 0.028 0.030 0.032 0.032 0.024

8 TBD 0.067 0.041 0.036 0.054 0.043 0.038 0.040
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Table A.32: Homogeneous responses (binary): MAR, type I error rates, n=100, pms=0.1

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.120 0.046 0.041 0.064 0.051 0.074 0.067

2 BSD 0.120 0.046 0.028 0.054 0.042 0.041 0.037

3 CR 0.150 0.066 0.045 0.076 0.061 0.065 0.063

4 PBD (blocksize = 4) 0.101 0.033 0.038 0.048 0.049 0.042 0.030

5 PBD (blocksize = 6) 0.118 0.051 0.044 0.057 0.056 0.036 0.051

6 RAR 0.118 0.048 0.044 0.053 0.057 0.045 0.043

7 RBD 0.107 0.031 0.022 0.030 0.035 0.028 0.021

8 TBD 0.128 0.058 0.040 0.061 0.050 0.044 0.045

A.2.1.3 MNAR

Table A.33: Homogeneous responses (binary): MNAR, type I error rates, n=50, pms=0.05

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.056 0.034 0.027 0.031 0.040 0.075 0.070

2 BSD 0.048 0.029 0.031 0.034 0.038 0.041 0.040

3 CR 0.064 0.045 0.027 0.035 0.046 0.045 0.046

4 PBD (blocksize = 4) 0.056 0.036 0.028 0.027 0.036 0.041 0.037

5 PBD (blocksize = 6) 0.057 0.037 0.032 0.028 0.043 0.027 0.037

6 RAR 0.035 0.020 0.024 0.020 0.031 0.030 0.025

7 RBD 0.043 0.024 0.027 0.023 0.034 0.029 0.028

8 TBD 0.058 0.035 0.029 0.033 0.041 0.038 0.031
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Table A.34: Homogeneous responses (binary): MNAR, type I error rates, n=50, pms=0.1

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.104 0.035 0.026 0.046 0.035 0.069 0.059

2 BSD 0.111 0.035 0.028 0.047 0.035 0.042 0.036

3 CR 0.130 0.033 0.024 0.043 0.039 0.036 0.036

4 PBD (blocksize = 4) 0.122 0.032 0.035 0.040 0.044 0.046 0.040

5 PBD (blocksize = 6) 0.122 0.035 0.032 0.040 0.044 0.032 0.035

6 RAR 0.105 0.017 0.026 0.035 0.038 0.034 0.027

7 RBD 0.106 0.033 0.032 0.037 0.038 0.029 0.026

8 TBD 0.120 0.037 0.030 0.037 0.040 0.037 0.036

Table A.35: Homogeneous responses (binary): MNAR, type I error rates, n=100, pms=0.05

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.078 0.039 0.036 0.051 0.044 0.066 0.070

2 BSD 0.085 0.035 0.033 0.045 0.040 0.040 0.038

3 CR 0.107 0.058 0.039 0.058 0.064 0.063 0.063

4 PBD (blocksize = 4) 0.071 0.024 0.034 0.046 0.044 0.033 0.028

5 PBD (blocksize = 6) 0.076 0.045 0.041 0.049 0.052 0.026 0.048

6 RAR 0.077 0.044 0.044 0.052 0.053 0.046 0.049

7 RBD 0.064 0.018 0.027 0.031 0.033 0.029 0.022

8 TBD 0.094 0.050 0.042 0.055 0.052 0.037 0.051
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Table A.36: Homogeneous responses (binary): MNAR, type I error rates, n=100, pms=0.1

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.222 0.037 0.033 0.063 0.049 0.073 0.059

2 BSD 0.216 0.039 0.035 0.048 0.047 0.045 0.043

3 CR 0.229 0.066 0.045 0.077 0.063 0.063 0.063

4 PBD (blocksize = 4) 0.165 0.018 0.027 0.043 0.044 0.025 0.019

5 PBD (blocksize = 6) 0.203 0.038 0.043 0.057 0.049 0.030 0.048

6 RAR 0.200 0.035 0.043 0.063 0.053 0.039 0.043

7 RBD 0.197 0.024 0.028 0.050 0.038 0.032 0.030

8 TBD 0.225 0.046 0.035 0.070 0.042 0.037 0.037
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A.2.2 Power

A.2.2.1 MCAR

Table A.37: Homogeneous responses (binary): MCAR, power, n=50, pms=0.05

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.748 0.867 0.877 0.871 0.886 0.926 0.922

2 BSD 0.738 0.856 0.871 0.880 0.879 0.883 0.880

3 CR 0.754 0.870 0.872 0.873 0.893 0.896 0.894

4 PBD (blocksize = 4) 0.727 0.859 0.879 0.884 0.886 0.877 0.869

5 PBD (blocksize = 6) 0.743 0.866 0.882 0.878 0.889 0.881 0.884

6 RAR 0.733 0.854 0.877 0.877 0.885 0.891 0.881

7 RBD 0.717 0.847 0.871 0.869 0.885 0.874 0.861

8 TBD 0.749 0.861 0.870 0.885 0.877 0.885 0.873

Table A.38: Homogeneous responses (binary): MCAR, power, n=50, pms=0.1

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.548 0.841 0.851 0.861 0.876 0.913 0.909

2 BSD 0.532 0.824 0.837 0.855 0.854 0.860 0.858

3 CR 0.579 0.841 0.834 0.869 0.867 0.867 0.866

4 PBD (blocksize = 4) 0.537 0.827 0.846 0.862 0.870 0.867 0.857

5 PBD (blocksize = 6) 0.535 0.830 0.837 0.871 0.874 0.866 0.860

6 RAR 0.529 0.803 0.846 0.860 0.879 0.872 0.860

7 RBD 0.529 0.803 0.840 0.852 0.874 0.857 0.848

8 TBD 0.491 0.829 0.846 0.870 0.859 0.868 0.858
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Table A.39: Homogeneous responses (binary): MCAR, power, n=100, pms=0.05

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.670 0.862 0.860 0.855 0.878 0.903 0.907

2 BSD 0.664 0.849 0.836 0.848 0.856 0.857 0.857

3 CR 0.694 0.879 0.861 0.869 0.879 0.878 0.883

4 PBD (blocksize = 4) 0.622 0.809 0.837 0.842 0.854 0.843 0.826

5 PBD (blocksize = 6) 0.671 0.840 0.849 0.856 0.858 0.860 0.851

6 RAR 0.628 0.811 0.843 0.841 0.858 0.871 0.850

7 RBD 0.634 0.820 0.841 0.833 0.861 0.852 0.839

8 TBD 0.673 0.851 0.859 0.857 0.872 0.861 0.864

Table A.40: Homogeneous responses (binary): MCAR, power, n=100, pms=0.1

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.390 0.829 0.841 0.841 0.858 0.897 0.889

2 BSD 0.399 0.811 0.813 0.842 0.832 0.834 0.830

3 CR 0.406 0.830 0.835 0.858 0.856 0.858 0.856

4 PBD (blocksize = 4) 0.345 0.770 0.824 0.832 0.845 0.828 0.803

5 PBD (blocksize = 6) 0.416 0.809 0.833 0.841 0.849 0.846 0.835

6 RAR 0.376 0.794 0.827 0.823 0.845 0.853 0.832

7 RBD 0.210 0.797 0.827 0.844 0.842 0.831 0.820

8 TBD 0.240 0.820 0.840 0.856 0.852 0.841 0.843
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A.2.2.2 MAR

Table A.41: Homogeneous responses (binary): MAR, power, n=50, pms=0.05

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.768 0.819 0.869 0.866 0.885 0.926 0.926

2 BSD 0.757 0.815 0.859 0.863 0.869 0.877 0.874

3 CR 0.766 0.836 0.870 0.875 0.889 0.892 0.890

4 PBD (blocksize = 4) 0.757 0.824 0.876 0.875 0.883 0.883 0.871

5 PBD (blocksize = 6) 0.766 0.824 0.886 0.870 0.893 0.883 0.885

6 RAR 0.746 0.804 0.880 0.875 0.887 0.893 0.879

7 RBD 0.734 0.802 0.880 0.877 0.891 0.888 0.870

8 TBD 0.770 0.825 0.870 0.868 0.872 0.884 0.868

Table A.42: Homogeneous responses (binary): MAR, power, n=50, pms=0.1

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.582 0.739 0.851 0.875 0.879 0.911 0.909

2 BSD 0.585 0.740 0.833 0.864 0.849 0.860 0.855

3 CR 0.604 0.768 0.837 0.869 0.870 0.874 0.878

4 PBD (blocksize = 4) 0.547 0.729 0.858 0.871 0.873 0.862 0.862

5 PBD (blocksize = 6) 0.558 0.728 0.846 0.864 0.873 0.863 0.860

6 RAR 0.546 0.698 0.851 0.866 0.877 0.874 0.864

7 RBD 0.546 0.698 0.843 0.865 0.869 0.852 0.841

8 TBD 0.503 0.736 0.846 0.875 0.864 0.872 0.860
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Table A.43: Homogeneous responses (binary): MAR, power, n=100, pms=0.05

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.714 0.804 0.871 0.873 0.884 0.910 0.911

2 BSD 0.698 0.794 0.839 0.861 0.859 0.859 0.855

3 CR 0.721 0.830 0.865 0.881 0.882 0.881 0.879

4 PBD (blocksize = 4) 0.655 0.764 0.846 0.858 0.861 0.849 0.833

5 PBD (blocksize = 6) 0.711 0.799 0.855 0.859 0.872 0.860 0.860

6 RAR 0.680 0.767 0.839 0.856 0.859 0.874 0.849

7 RBD 0.678 0.771 0.842 0.850 0.855 0.852 0.842

8 TBD 0.708 0.798 0.854 0.874 0.869 0.857 0.862

Table A.44: Homogeneous responses (binary): MAR, power, n=100, pms=0.1

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.477 0.706 0.851 0.855 0.869 0.893 0.893

2 BSD 0.482 0.701 0.828 0.856 0.848 0.847 0.844

3 CR 0.495 0.717 0.841 0.855 0.862 0.864 0.867

4 PBD (blocksize = 4) 0.416 0.651 0.821 0.830 0.841 0.824 0.805

5 PBD (blocksize = 6) 0.480 0.701 0.825 0.844 0.845 0.848 0.827

6 RAR 0.436 0.667 0.824 0.842 0.848 0.850 0.832

7 RBD 0.232 0.667 0.822 0.842 0.839 0.827 0.815

8 TBD 0.306 0.694 0.849 0.860 0.863 0.846 0.850
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A.2.2.3 MNAR

Table A.45: Homogeneous responses (binary): MNAR, power, n=50, pms=0.05

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.756 0.846 0.871 0.866 0.887 0.924 0.924

2 BSD 0.745 0.847 0.862 0.875 0.873 0.875 0.872

3 CR 0.751 0.849 0.859 0.860 0.884 0.886 0.886

4 PBD (blocksize = 4) 0.738 0.845 0.875 0.871 0.878 0.874 0.871

5 PBD (blocksize = 6) 0.741 0.849 0.876 0.870 0.887 0.879 0.877

6 RAR 0.725 0.820 0.876 0.867 0.883 0.891 0.880

7 RBD 0.718 0.822 0.869 0.870 0.885 0.872 0.864

8 TBD 0.759 0.843 0.876 0.876 0.881 0.881 0.875

Table A.46: Homogeneous responses (binary): MNAR, power, n=50, pms=0.1

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.536 0.787 0.852 0.842 0.875 0.912 0.910

2 BSD 0.544 0.796 0.828 0.844 0.845 0.853 0.851

3 CR 0.572 0.811 0.833 0.859 0.866 0.869 0.868

4 PBD (blocksize = 4) 0.520 0.772 0.831 0.850 0.859 0.853 0.850

5 PBD (blocksize = 6) 0.536 0.778 0.843 0.860 0.869 0.845 0.857

6 RAR 0.512 0.744 0.835 0.837 0.863 0.857 0.845

7 RBD 0.512 0.744 0.816 0.839 0.844 0.833 0.824

8 TBD 0.468 0.778 0.836 0.866 0.849 0.854 0.844
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Table A.47: Homogeneous responses (binary): MNAR, power, n=100, pms=0.05

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.671 0.833 0.853 0.853 0.867 0.904 0.903

2 BSD 0.653 0.821 0.829 0.852 0.850 0.853 0.852

3 CR 0.676 0.846 0.851 0.870 0.869 0.870 0.870

4 PBD (blocksize = 4) 0.621 0.783 0.835 0.831 0.850 0.833 0.821

5 PBD (blocksize = 6) 0.670 0.818 0.840 0.845 0.853 0.851 0.842

6 RAR 0.635 0.804 0.840 0.835 0.856 0.857 0.848

7 RBD 0.634 0.807 0.829 0.832 0.842 0.833 0.826

8 TBD 0.669 0.825 0.851 0.860 0.862 0.853 0.857

Table A.48: Homogeneous responses (binary): MNAR, power, n=100, pms=0.1

Randomization Best & Worst Worst Complete-case Logistic Unconditional Conditional RBMI

1 BCD 0.396 0.772 0.821 0.829 0.840 0.877 0.876

2 BSD 0.401 0.770 0.801 0.818 0.824 0.826 0.823

3 CR 0.406 0.771 0.810 0.837 0.842 0.844 0.842

4 PBD (blocksize = 4) 0.345 0.718 0.804 0.819 0.826 0.801 0.785

5 PBD (blocksize = 6) 0.410 0.759 0.806 0.829 0.823 0.811 0.809

6 RAR 0.344 0.737 0.807 0.812 0.825 0.832 0.816

7 RBD 0.192 0.733 0.799 0.806 0.821 0.802 0.797

8 TBD 0.237 0.754 0.823 0.852 0.838 0.822 0.826
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A.3 Results under Heterogeneity (Time Trends)

A.3.1 Power

Figure A.1: Time trend: RBD, power, pms = 0.05, n = 50

125



Figure A.2: Time trend: RBD, power, pms = 0.05, n = 100

Figure A.3: Time trend: RBD, power, pms = 0.1, n = 50
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Figure A.4: Time trend: RBD, power, pms = 0.1, n = 100

Figure A.5: Time trend: TBD, power, pms = 0.05, n = 50
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Figure A.6: Time trend: TBD, power, pms = 0.05, n = 100

Figure A.7: Time trend: TBD, power, pms = 0.1, n = 50
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Figure A.8: Time trend: TBD, power, pms = 0.1, n = 100

Figure A.9: Time trend: BCD, power, pms = 0.05, n = 50
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Figure A.10: Time trend: BCD, power, pms = 0.05, n = 100

Figure A.11: Time trend: BCD, power, pms = 0.1, n = 50

130



Figure A.12: Time trend: BCD, power, pms = 0.1, n = 100

Figure A.13: Time trend: RAR, power, pms = 0.05, n = 50
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Figure A.14: Time trend: RAR, power, pms = 0.05, n = 100

Figure A.15: Time trend: RAR, power, pms = 0.1, n = 50
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Figure A.16: Time trend: RAR, power, pms = 0.1, n = 100

Figure A.17: Time trend: BSD, power, pms = 0.05, n = 50
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Figure A.18: Time trend: BSD, power, pms = 0.05, n = 100

Figure A.19: Time trend: BSD, power, pms = 0.1, n = 50
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Figure A.20: Time trend: BSD, power, pms = 0.1, n = 100

Figure A.21: Time trend: CR, power, pms = 0.05, n = 50
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Figure A.22: Time trend: CR, power, pms = 0.05, n = 100

Figure A.23: Time trend: CR, power, pms = 0.1, n = 50
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Figure A.24: Time trend: CR, power, pms = 0.1, n = 100

Figure A.25: Time trend: PBD (blocksize = 4), power, pms = 0.05, n = 50
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Figure A.26: Time trend: PBD (blocksize = 4), power, pms = 0.05, n = 100

Figure A.27: Time trend: PBD (blocksize = 4), power, pms = 0.1, n = 50
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Figure A.28: Time trend: PBD (blocksize = 4), power, pms = 0.1, n = 100

Figure A.29: Time trend: PBD (blocksize = 6), power, pms = 0.05, n = 50
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Figure A.30: Time trend: PBD (blocksize = 6), power, pms = 0.05, n = 100

Figure A.31: Time trend: PBD (blocksize = 6), power, pms = 0.1, n = 50
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Figure A.32: Time trend: PBD (blocksize = 6), power, pms = 0.1, n = 100
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A.3.2 Type I Error Rates

Figure A.33: Time trend: RBD, type I error rates, pms = 0.05, n = 50
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Figure A.34: Time trend: RBD, type I error rates, pms = 0.05, n = 100

Figure A.35: Time trend: RBD, type I error rates, pms = 0.1, n = 50

143



Figure A.36: Time trend: RBD, type I error rates, pms = 0.1, n = 100

Figure A.37: Time trend: TBD, type I error rates, pms = 0.05, n = 50
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Figure A.38: Time trend: TBD, type I error rates, pms = 0.05, n = 100

Figure A.39: Time trend: TBD, type I error rates, pms = 0.1, n = 50
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Figure A.40: Time trend: TBD, type I error rates, pms = 0.1, n = 100

Figure A.41: Time trend: BCD, type I error rates, pms = 0.05, n = 50
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Figure A.42: Time trend: BCD, type I error rates, pms = 0.05, n = 100

Figure A.43: Time trend: BCD, type I error rates, pms = 0.1, n = 50
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Figure A.44: Time trend: BCD, type I error rates, pms = 0.1, n = 100

Figure A.45: Time trend: RAR, type I error rates, pms = 0.05, n = 50
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Figure A.46: Time trend: RAR, type I error rates, pms = 0.05, n = 100

Figure A.47: Time trend: RAR, type I error rates, pms = 0.1, n = 50
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Figure A.48: Time trend: RAR, type I error rates, pms = 0.1, n = 100

Figure A.49: Time trend: BSD, type I error rates, pms = 0.05, n = 50
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Figure A.50: Time trend: BSD, type I error rates, pms = 0.05, n = 100

Figure A.51: Time trend: BSD, type I error rates, pms = 0.1, n = 50
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Figure A.52: Time trend: BSD, type I error rates, pms = 0.1, n = 100

Figure A.53: Time trend: CR, type I error rates, pms = 0.05, n = 50
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Figure A.54: Time trend: CR, type I error rates, pms = 0.05, n = 100

Figure A.55: Time trend: CR, type I error rates, pms = 0.1, n = 50
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Figure A.56: Time trend: CR, type I error rates, pms = 0.1, n = 100

Figure A.57: Time trend: PBD (blocksize = 4), type I error rates, pms = 0.05, n = 50
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Figure A.58: Time trend: PBD (blocksize = 4), type I error rates, pms = 0.05, n = 100

Figure A.59: Time trend: PBD (blocksize = 4), type I error rates, pms = 0.1, n = 50
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Figure A.60: Time trend: PBD (blocksize = 4), type I error rates, pms = 0.1, n = 100

Figure A.61: Time trend: PBD (blocksize = 6), type I error rates, pms = 0.05, n = 50
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Figure A.62: Time trend: PBD (blocksize = 6), type I error rates, pms = 0.05, n = 100

Figure A.63: Time trend: PBD (blocksize = 6), type I error rates, pms = 0.1, n = 50
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Figure A.64: Time trend: PBD (blocksize = 6), type I error rates, pms = 0.1, n = 100
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A.4 Results Under Heterogeneity (Outliers)

A.4.1 Simulation Results under BCD

Figure A.65: Outliers: BCD, MCAR, power & type I error rates, pms = 0.1 (left plots),

pms = 0.2 (right plots), n = 100
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Figure A.66: Outliers: BCD, MAR, power & type I error rates, pms = 0.1 (left plots),

pms = 0.2 (right plots), n = 100

Figure A.67: Outliers: BCD, MNAR, power & type I error rates, pms = 0.1 (left plots),

pms = 0.2 (right plots), n = 100

160



A.4.2 Simulation Results Under RBD

Figure A.68: Outliers: RBD, MCAR, power & type I error rates, pms = 0.1 (left plots),

pms = 0.2 (right plots), n = 100
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Figure A.69: Outliers: RBD, MAR, power & type I error rates, pms = 0.1 (left plots),

pms = 0.2 (right plots), n = 100

Figure A.70: Outliers: RBD, MNAR, power & type I error rates, pms = 0.1 (left plots),

pms = 0.2 (right plots), n = 100
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