
Learning Symbolic User Models for Intrusion
Detection: A Method and Initial Results

Ryszard S. Michalski1,2, Kenneth A. Kaufman1, Jaroslaw Pietrzykowski1,
Bartlomiej Sniezynski1,3, and Janusz Wojtusiak1

1 Machine Learning and Inference Laboratory, George Mason University, Fairfax,
VA, USA

2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland,
3 AGH University of Science and Technology, Krakow, Poland

Abstract. This paper briefly describes the LUS-MT method for automatically
learning user signatures (models of computer users) from datastreams capturing
users’ interactions with computers. The signatures are in the form of collections of
multistate templates (MTs), each characterizing a pattern in the user’s behavior.
By applying the models to new user activities, the system can detect an imposter or
verify legitimate user activity. Advantages of the method include the high expressive
power of the models (a single template can characterize a large number of different
user behaviors) and the ease of their interpretation, which makes possible their
editing or enhancement by an expert. Initial results are very promising and show
the potential of the method for user modeling.

1 Introduction

The widespread availability of information technology and rising computer
use have increased interest in intrusion detection, the detection of illegitimate
access to computer systems (e.g., [2]). This paper describes an approach to
intrusion detection based on user profiling – creating models of user behav-
ior and matching them with observed activities. Differences between a user
model and observed activity indicate potential illegitimate use [7]. Although
the presented initial research concentrated on modeling a small set of users,
the method can be applied to large numbers of users. It can capture char-
acteristics of users’ behavior that differentiate them from each other, while
ignoring irrelevant variations.

The method, called LUS-MT (Learning User Signatures-Multistate Tem-
plate model), applies symbolic machine learning to induce patterns in users’
computer interactions. Given records measuring various characteristics of
user activity, LUS-MT learns models in the form of multistate templates that
relate the measured characteristics to individual users. These models can be
easily matched in parallel against datastreams, and incrementally updated as
needed. They can be inspected, verified and hand-modified by experts. The
following sections briefly describe LUS-MT, and present initial results from
its application to a collection of datastreams available from the New Jersey
Institute of Technology website.

Intelligent Information Systems 2006
New Trends in Intelligent Information Processing and Web Mining

Ustron, Poland, June 19-22, 2006

2 R.S.Michalski, K.A.Kaufman, J.Pietrzykowski, B.Sniezynski, J.Wojtusiak

2 Objectives

The objectives of this research are to develop methods for creating effective
and efficient user models that resemble human recognition capabilities in
terms of:

• Idiosyncrasy: User models should be able to capture patterns that are most
characteristic of the given user, but not of other users, making it possible to
identify the given user from short periods of observation (episodes).

• Satisfiability: If at some stage of observing a datastream, the observed behavior
strongly matches exactly one user model, no further observation is conducted,
and a decision is reported.

• Understandability: User models should be easily understandable and potentially
modifiable by an expert managing the intrusion detection system.

• Incrementality: User models should be incrementally updatable to capture
changes in behavior over time, without having to completely relearn the model.

• Efficiency: User models should be in a form that can be efficiently applied to
datastreams from a large number of users to ensure their practical applicability.

It is not the goal of this research to build a complete Intrusion Detection
System (IDS); rather, we are developing building blocks for such a system,
with sufficient flexibility to be applied in many real world scenarios, possibly
in conjunction with other components. Evidence indicates that the presented
method is able to achieve high performance with respect to very important
IDS evaluation measures such as false alarm rate [9, 10, 22] or ”time to de-
tect.” LUS-MT was developed and tested on real-world data, thereby avoiding
the pitfalls of using simulation data [13].

Intrusion detection has been heavily investigated using a number of dif-
ferent methods. Most methods are statistically oriented, such as Bayesian
methods (e.g., [6, 7, 20, 25]), statistical modeling (e.g., [21]), pattern match-
ing (e.g., [8, 23]), and various data analysis methods (e.g., [16, 17]). A method
that learns from observation (unsupervised) rather than from examples [5]
applies multiple strategies to recorded events in order to identify anoma-
lous behavior. These methods all examine overall system/network behavior
in search of signs of misuse.

A variety of methods of user profiling also been developed. Traditionally,
user profiling relies on statistical approaches. Valdes [24] describes a multi-
approach system that combines sequence matching and statistical analysis
to identify user behaviors, and Goldring [6] applies probabilistic scoring to
match episodes with user profiles. Billsus and Pazzani [3] present a system
that uses a combination of k-Nearest-Neighbor and Naive Bayes techniques
to build adaptive models.

Another approach is described by Adomavicius and Tuzhilin [1] in which
customer profiles are created based on the selection of attributes represent-
ing less variant user information and on a set of rules discovered using an
association rule mining program. These rules are further validated by ex-
perts. A method that extracts user signatures from transactional data by

Learning Symbolic User Models for Intrusion Detection 3

applying C programs automatically generated based on input specifications
is described in [4].

As does LUS-MT, the work of Schonlau and Theus [19] also bases its
anomaly detection on observing the various processes run. Their approach,
however, generates a statistical plot of user commands’ popularity, both for
individual users, and for all users together. During the application phase,
observed episodes are compared to these profiles, and high levels of mismatch
set off alarms.

Another approach [12] employs an n-gram-based representation of activ-
ity, but rather than using processes as the basic n-gram units, this method
uses command line tokens. This approach applies a similarity-based measure
between known legitimate behavior and new events, but does not articulate
learned user patterns.

It is worth noting that statistical systems quite easily pick up changes in
a user’s behavior and adapt the model to them, which can have undesirable
consequences when the new data stream is generated by an imposter [22]. The
presented symbolic learning approach provides an advantages in this respect,
because an expert can edit a model to eliminate or modify conditions leading
to false alarms.

3 Terminology

We start by defining basic concepts and terms used. An event is a description
of an entity under consideration. In the context of LUS-MT, it is a vector
of attribute values that characterizes the use of computer by a user during
a specific time period. One representation is an n-gram, a list of values of
an attribute characterizing user behavior at n consecutive time instances. An
extension of the n-gram that we developed in this work is an n× k-gram, or,
briefly, a multigram, which is a list of values of k attributes characterizing
user states over n consecutive time instances. In LUS-MT, datastreams are
represented by multigrams.

A session is a sequence of events characterizing a user’s interaction with
the computer from logon to logoff. An episode is a sequence of events ex-
tracted from one or more sessions; it may contain just a few events, or all
of the events in the sessions. A pattern is a frequently occurring regularity
in data, characterized by a pattern description, which is an expression in a
knowledge representation system. Such an expression can be in the form of a
set of decision rules, a decision tree, a neural network, a Bayesian net, etc. In
this paper, pattern descriptions are in the form of multistate templates that
are derived from attributional rules [14] learned from datastreams character-
izing the interaction between users and the computer.

4 R.S.Michalski, K.A.Kaufman, J.Pietrzykowski, B.Sniezynski, J.Wojtusiak

4 LUS Methodology

The presented LUS-MT method is a special case of the general LUS method-
ology for intrusion detection. Different LUS methods use different model rep-
resentations, and thus require different programs for model learning and test-
ing, but the basic steps outlined below are common for all LUS methods. As
do other intellectual processes, the process described below typically requires
several iterations, rather than a single sequential execution of steps. Depend-
ing on the results of a particular step, one may go back to a previous step, for
example, to re-discretize attributes or relearn rules when the current models
are not satisfactory.

In order to understand the LUS methodology, assume that raw datas-
treams characterizing interactions of a given set of users with the computer
have been extracted. The basic steps of the LUS methodology are:
1. Choose the user model. In this paper we assume that the multistate
template model has been selected.
2. Preprocess the datastream and transform it into a master target
dataset. In this step, a preprocessed dataset is created from the raw datas-
treams that are to be used for model learning and testing. This initial step
involves selecting the set of users for whom models will be built, selecting suf-
ficient subsets of data for model learning and testing, selecting the attributes
to be used, and possibly constructing new attributes from those in the raw
datastreams and metadata.
The preprocessed datastreams are transformed into a master target dataset
appropriate for learning the user models. In LUS-MT, this is a set of n× k-
grams labeled by user identifier and episode number. The subsequent steps
will modify this dataset in order to generate a final target dataset for learning
and testing.
3. Discretize numeric attributes. All numeric attributes are discretized
into a small number of intervals. Such a discretization is done in two steps: 1)
selecting a set of candidate discretization schemas, and 2) selecting the best
among the candidate schemas. The first step defines discretization thresholds
both manually and automatically. The second step evaluates these discretiza-
tions and selects the best for each attribute.
4. Select the most relevant attributes. The relevance of attributes in the
target data is evaluated according to some measure (e.g., information gain),
and the most relevant ones are retained for training. Attributes may be se-
lected for all users, or separately for each user.
5. Determine the target data size. This step helps to suggest the amount
of data to be used, utilizing a similarity measure that roughly characterizes
the similarity between two sets of events. The consistency of each user’s be-
havior in the master target dataset is determined by splitting each user’s
master data into subsets and determining the similarity between them. If
the similarity is low, it may not be possible to learn a predictive model that
will reliably classify behavior. Similarity between different users’ data is also

Learning Symbolic User Models for Intrusion Detection 5

measured, since such high similarity may lead to poor performance of some
user models. By incrementally expanding the subsets used for measuring the
similarity, it can be determined (by seeing how the performance changes) how
large the target dataset needs to be in order to achieve a satisfactory user
model.
6. Select training and testing episodes. In this step, training and testing
episodes are defined and extracted from the target dataset. This step should
be performed so as to ensure that there is a sufficient amount of data for each
model to be learned and tested, but not more than is necessary to achieve
satisfactory results.
7. Select the most relevant training data. This step seeks events from
the training episodes that are most characteristic of each user, and thus most
relevant to learning reliable models, using measures of event significance that
are functions of the frequency of an event in the datastream of the user being
modeled, and its infrequency in the datastreams of other users.
8. Learn models from training dataset. This step applies a learning pro-
gram to the training dataset in order to induce user models. The best model
for each user is sought by modifying learning program parameters. Model
quality is characterized by complexity, consistency on the training data, and
performance on the testing set in the next step.
9. Test and apply learned models. This step tests user models by match-
ing testing data against the learned models. In LUS-MT, such matching is
done by two interconnected modules, one that computes degrees of match be-
tween each model and the individual multigrams in the testing data [18, 26],
and one that combines these degrees over the events in each testing episode
(typically, each such episode corresponds to one session).

Below we describe how these steps were applied in LUS-MT, and show
exemplary experiments and results. Further details are presented in [15].

5 Data Description and Preparation

Datastreams recording user behaviors were collected from computers running
Windows, based on information stored in the system process table. To gener-
ate the datastream records, the process table was polled for changes roughly
every 0.5 second. Records of processes primarily controlled by the operating
system were filtered out. The entire set of datastreams represents 1292 ses-
sions of 26 users. The experiments described in this paper were concerned
with learning models for the ten users with the highest numbers of sessions
recorded.

Each session’s data consists of two types of records: (1) window records
indicating a new or killed active program window, or a change to the active
program window’s title, and (2) activity records reporting process activity.
The raw data consisted of eight attributes, three of which (name of current
process, time since start of session, and name of active window) were used,

6 R.S.Michalski, K.A.Kaufman, J.Pietrzykowski, B.Sniezynski, J.Wojtusiak

and two of which (process status, process CPU time) were activity record
attributes that were incorporated into derived attributes. Only events corre-
sponding to window records were used in the presented experiments. Activity
records were not used directly for model learning because their granularity
was found to be too fine to yield useful patterns. Derived attributes included:
the number of words in the active window title, the amount of time that had
elapsed in the active window, the number of windows opened, the number of
activity records logged from the current window, etc.

The input datastreams were transformed into a form needed for model
learning and testing by a software tool that uses the Linux awk utility [15].
The output was a list of multigrams corresponding to both window and ac-
tivity input records. In the master target dataset, n was usually set to 4 and
k was 31. Continuous attributes were discretized using two manual (based on
human assesment of distributions of values of attributes) and up to seven au-
tomatic (generated by the ChiMerge algorithm [11]) discretization schemes.
For each attribute, the discretization scheme with the fewest intervals and
with the highest value of the Promise [26] evaluation measure was selected.
Attribute selection used both Gain Ratio and Promise criteria. For each
criterion, a list of the top attributes was created, and the attributes that
appeared in the most lists were selected. For each modeled user, the first
ten user sessions were used for model learning and the next five for model
testing, a choice of experiments made to satisfy our sponsor’s guidelines. We
conducted a number of data similarity experiments in order to determine
a minimum target data size. For example, we measured similarity between
the chronologically first and last segments of each user’s master dataset, for
segment sizes of 10%, 30%, 50%, 70% and 90% of the master dataset, and
found a monotonically increasing similarity as the segments increased in size,
came temporally closer to each other, and ultimately overlapped [15]. These
results suggested necessary training data sizes in order to create relatively
stable models.

To characterize consistency of a user’s behavior and differences in the
behavior of two users, we use a similarity measure called Combined Similarity
(COS), which is the product of Forward (FS) and Backward Similarity (BS)
measures. Let D1 and D2 be two datasets characterizing behavior of a single
user during non-overlapping time intervals, or behavior of two users during
any two time intervals. The forward similarity, FS(D1,D2) is the fraction of
the events in D1 that match (over specified attributes) events in D2, and the
backward similarity, BS(D1,D2), is the fraction of events in D2 that match
events in D1. If D1 and D2 are used as training and testing sets, respectively,
for a given user, a low FS indicates that D1 contains events that should be
filtered out, and a low BS indicates that models built from D1 will likely
perform poorly on D2, because its behavior is very different from the model’s
basis. COS determined for data from one user is called self-similarity, and
from datastreams of different users is called cross-similarity.

Learning Symbolic User Models for Intrusion Detection 7

For example, Figure 1 shows self- and cross- similarities for Users 19 (left)
and 25 (right). User 19 had the lowest, and user 25 had the highest, combined
self-similarity among all users. In this figure, three types of bars represent the
cross-similarities if the x-axis label differs from the target user name, and self-
similarities otherwise. The results indicate that for User 19, more data may
be required to build a satisfactory user model [15], and that a significant
number of User 19’s events that appear also in other users’ data should be
filtered out.

0.000

0.020

0.040

0.060

0.080

0.100

U1 U2 U3 U4 U5 U7 U8 U12 U19 U25 U1 U2 U3 U4 U5 U7 U8 U12 U19 U25
0.000

0.001

0.002

0.003

Forward Similarity Backward Similarity Combined Similarity

USER 19 USER 25

0.098

Forward, Backward Sim. Combined Sim.

0.220

0.444

Fig. 1. Self- and cross-similarities for Users 19 and 25

6 Learning Multistate Template Models

To learn user models from sets of multigrams, we employed the rule learning
program, AQ21 [26]. Given positive and negative examples of a concept to be
learned, the program creates general and optimized attributional rules that
describe (completely or approximately) positive examples of the concept and
none of the negative examples. Positive examples characterize the behavior
of the user whose model is being learned, and negative examples characterize
the behavior of other users. The negative examples thus provide a contrast

8 R.S.Michalski, K.A.Kaufman, J.Pietrzykowski, B.Sniezynski, J.Wojtusiak

set, acting as constraints on the scope of generalization of the description of
a user’s behavior.

The program optimizes rules according to a user-defined multi-criterion
rule quality measure tailored to the given learning problem. In our exper-
iments, the measure minimized the number of rules and conditions in the
models. Figure 2 shows an example of a template generated from a learned
rule. A template is a list of sequences of n value sets associated with a single
attribute, where the value sets represent the attribute at n consecutive time
instances. In this experiment n was set to 4, and k to 6, that is, 4× 6-grams
were used to represent datastreams.

The first sequence in the template consists of four conditions specify-
ing values of the process name attribute in consecutive time instances. The
first one states legal processes in the first time instance. Each value set is
annotated by two numbers, representing the absolute positive and negative
support for the given condition. The number 1339, called absolute positive
support, is the number of multigrams in the User 2 training data that sat-
isfy this time period constraint, and the number 5192, called absolute negative
support, is the number of negative events that satisfy it. The second condition
states possible processes in the second time instance. The interpretation of the
remaining conditions follows the same pattern. If the value set is defined only
for one time instance, as in the case of attributes such as ”prot word chars”,
only that value set is shown in double angle brackets, and a number in paren-
theses denotes the position of this value set in the attribute’s n-gram. In this
case, the condition is in the second time instance.

The numbers p and n at the end of the template respectively denote
the absolute positive and negative support of the whole pattern. Thus, this
one template describes p=39 positive events and n=0 negative events in the
training set for User 2. As shown in Figure 2, this template sets conditions
on the values of 6 input attributes out of 31; thus, other attributes do not
have to be measured to match it.

[process_name=<csrss,explorer,msimn,netscape,outlook,powerpnt,rundll32,wordpad:1339,5192;
explorer, msimn, netscape, notepad, rundll32,services, wordpad : 893, 2342;
explorer, msimn, perfmon, rundll32, wordpad : 373, 657;
explorer, msimn, netscape, perfmon, rundll32, wordpad : 876, 2392 >]

[delta_time_new_window = << 0..10500 : 1578, 7410 >> (1)]
[prot_words_chars = << 0..24 : 1487, 6003 >> (2)]
[proc_count_in_win_logfun = < -inf..0 : 325, 1322;

0..2.01267 : 1213, 5092;
0..2.01267 : 1214, 5117;
-inf..0 : 339, 1425 >]

[win_opened = << 16..inf : 276, 306 >> (4)]
[win_title_prot_words = << 0..3 : 1520, 6894 >> (1)]
p = 39, n = 0

Fig. 2. A multistate template describing User 2

Learning Symbolic User Models for Intrusion Detection 9

7 Testing Multistate Template Models

To test the developed user models, we employed the testing module of the
learning program to match learned rulesets with episodes of user activity.
Given an episode, the testing module generates a classification of the episode
with associated degrees of match for each user profile. To generate those
degrees of match, the module applies a three-step process:

1) Generate a degree of match between each event and each template
in the user profiles. A user’s model’s conditions can be matched strictly,
or flexibly, in which case a degree of match is computed. To calculate the
aggregate degree of match, possible operators include minimum, product,
average, etc. [26].

2) Generate a degree of match between each event in the episode and
each user profile as a whole by aggregating the degrees of match generated in
(1) between the event and the profile’s individual templates. Methods such as
maximum, probabilistic sum, average etc. can be used for the aggregation [26].

3) Generate a degree of match between the episode and each profile by
averaging the degrees of match generated in (2).

Once a degree of match between the episode and each user profile is
calculated, we classify based on threshold and tolerance parameters. All pro-
files returning degrees of match both above the threshold, and within the
tolerance of the highest degree of match attained are returned as possible
classifications.

8 Initial Experimental Results

In the target data, 94 episodes were used for learning user models, and 47
episodes were used for testing the models. In the experiment design, 100
and 50 training and testing episodes, respectively, were initially specified,
but nine of those episodes were too short to generate multigrams. In these
experiments, the size of the training sessions varied between 1 and 495 events,
while the number of testing events per session ranged from 1 to 393. The total
number of events in individual users’ data varied between 51 and 1992 for
training data, and between 6 and 703 for testing data. In total there were
9041 training, and 4139 testing events.

Experiments learned different types of rules by our changing the program
parameters. For instance, some experiments involved learning user models
using characteristic rules (highly specific descriptions of user activities) and
others involved learning user models using maximally simple rules. In both
cases, we experienced high predictive accuracy for users who showed higher
self-similarity than cross-similarity, and erratic predictive accuracy for other
users. Details are presented in [15]. Limited space does not allow us to discuss
in greater detail the issue of training and testing dataset similarity, and its
influence on the performance of user models, but these will be addressed in
a subsequent report.

10 R.S.Michalski, K.A.Kaufman, J.Pietrzykowski, B.Sniezynski, J.Wojtusiak

These experiments brought some surprises. For example, varying the win-
dow size (n) of the n×k multigrams derived from the data had little effect on
predictive accuracy, as if users could be modeled nearly as well by characteriz-
ing single state multigrams (n=1) as by characterizing multistate multigrams.
These results may have been due to an inappropriate temporal granularity of
the datastreams. If this is the case, it opens the possibility of improving mod-
els by optimizing the time granularity of the datastreams. Further research
will investigate this phenomenon.

In addition to predictive accuracy, another very important IDS evaluation
criterion is false alarm rate. To deal with this concern, our testing method
allows for flexibility in specifying conditions under which an alarm should be
issued. For example, if the target user is not the user with the highest degree
of match, it does not necessarily indicate an alarm. An alarm can be issued
based on specified parameters, such as if the target user is not in the group
of the users with the top 4 degrees of match, or his/her degree of match is
too far from the highest degree. By setting a high threshold, we can forego
issuing an alarm if there is no clear winner among candidate models. In this
case the system outputs ”I don’t know”, which is not an alarm, but indicates
the need for further observation.

9 Conclusion and Future Research

This paper presented the LUS-MT method and preliminary results of its
testing on user data. The most significant results are the multistate templates
that concisely represent user activity patterns, and a method for efficiently
applying them to user datastreams. To enhance the representation of user
states at specific time instances, we introduced multigrams (n×k-grams) for
characterizing each state.

During the course of the experiments, we found that the behavior of some
users was radically different in training and testing sessions. This situation
precluded the system from learning highly predictive models from these users’
training data. In cases where users’ behavior was relatively consistent, pre-
dictive accuracy was 100%. Taking into consideration this limitation of the
training data, the results show that LUS-MT is capable of learning high qual-
ity and efficient user models. The models are expressed in forms that make
them relatively easy to interpret and understand. The latter feature makes it
possible for experts to manually adjust the models by modifying or removing
spurious conditions, or adding new ones.

In addition, user models can be applied to datastreams in parallel, and
thus the model matching time does not depend on the number of user models.
LUS-MT can therefore be potentially employed for developing an intrusion
detection system for a large number of users. Achieving high recognition of
individual users in an intrusion detection system is predicated upon sufficient
consistency in the given user’s behavior, and its sufficient difference from the

Learning Symbolic User Models for Intrusion Detection 11

behavior of other users. What constitutes sufficient consistency and sufficient
difference depends on the required degree of certainty of recognition. If the
user’s behavior changes frequently, user models must be updated frequently
as well.

Obtained experimental results have opened several topics for further re-
search. Studies of MT models using different data, possibly with information
about usage of input devices such as keyboard or mouse, are needed to com-
prehensively evaluate this model. Another topic is to investigate other types
of user models within LUS, and compare them with the multistate template
model. Such models could include, for instance, a Bayesian model, and a
combination of these models.

Other important topics for research are to study different methods for
filtering. In a large group of users, there will likely be users who during some
periods will behave very similarly to others. Consequently, events extracted
from the datastreams of these users during such a period will be very similar,
and discrimination among them will not be possible. Adequate training event
filtering may allow user models that have a higher predictive accuracy and
are also simpler.

Related problems concern methods of representation space optimization.
One method includes in training datastreams only the most relevant at-
tributes for discriminating among users. Another method optimizes discretiza-
tion levels of continuous attributes, in search of optimal precision. The third
and most difficult method searches for new attributes that better discrimi-
nate among the users. An important topic is to determine the needed sizes
of the training datastreams for different users, and of the application datas-
treams needed to confirm legitimate use or detect possible illegitimate use.
Other major open topics include the development of methods for incremental
learning of the user models, and for learning and applying ensembles of user
models.

Acknowledgments

This research was supported in part by the UMCB/LUCITE #32 grant, and
in part by the National Science Foundation under Grants No. IIS-0097476 and
IIS-9906858. The opinions expressed in this report are those of the authors,
not necessarily the opinion of the UMBC/LUCITE program or the National
Science Foundation.

References

1. Adomavicius, G. and Tuzhilin, A., ”Building Customer Profiles in Personaliza-
tion Applications Using Data Mining Methods,” IEEE Computer, 34(2), 2001.

2. Bace, R.G.,. Intrusion Detection, Indianapolis: Macmillan Technical Publish-
ing, 2000.

12 R.S.Michalski, K.A.Kaufman, J.Pietrzykowski, B.Sniezynski, J.Wojtusiak

3. Billsus, D. and Pazzani, M., ”User Modeling For Adaptive News Access,” User
Modeling and User-Adapted Interaction, 10(2-3):147-180, 2000.

4. Cortes, C., Fisher, K., Pregibon, D., Rogers, A. and Smith, F., ”Hancock: A
Language For Extracting Signatures From Data Streams,” Proceedings of the
6th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2000.

5. Eskin, E., Arnold, A., Prerau, M., Portnoy, L. and Stolfo, S., ”A Geometric
Framework for Unsupervised Anomaly Detection: Detecting Intrusions in Un-
labeled Data,” in D. Barbara, & S. Jajodia (Eds.), Applications of Data Mining
in Computer Security, Kluwer, 2002, pp. 77-102.

6. Goldring, T., ”Recent Experiences with User Profiling for Windows NT,” Work-
shop on Statistical and Machine Learning Techniques in Computer Intrusion
Detection, 2002.

7. Goldring, T., Shostak, J., Tessman, B. and Degenhardt, S., ”User Profiling
(Extended Abstract),” NSA unclassified internal report, 2000.

8. Hofmeyr, S., Forrest, S. and Somayaji, A., ”Intrusion Detection using Sequences
of System Calls,” Journal of Computer Security, 6, 1998, pp. 151-180.

9. Javitz H. S. and Valdes, A., ”The SRI IDES Statistical Anomaly Detector,”
Proceedings of the IEEE Symposium on Research in Security and Privacy,
Oakland, CA, May 1991.

10. Julisch, K. and Dacier M., ”Mining Intrusion Detection Alarms for Actionable
Knowledge,” Proc. 8th Intl. Conf. on Knowledge Discovery and Data Mining,
July 2002.

11. Kerber, R., ”Chimerge: Discretization for Numeric Attributes,” Proceedings of
the Tenth National Conference on Artificial Intelligence (AAAI-92), 1992, pp.
123-128.

12. Lane, T. and Brodley, C.E., ”Temporal Sequence Learning and Data Reduction
for Anomaly Detection,” ACM Trans. on Information and Syst. Security, 2,
1999, pp. 295-331.

13. McHugh, J., ”Testing Intrusion Detection Systems: A Critique of the 1998 and
1999 DARPA Intrusion Detection System Evaluations as Performed by Lincoln
Laboratory,” ACM Trans. on Information & Systems Security, 3, November
2000, pp. 262-294.

14. Michalski, R.S., ”Attributional Calculus: A Logic and Representation Language
for Natural Induction,” Reports of the Machine Learning and Inference Labo-
ratory, MLI 04-2, George Mason University, 2004.

15. Michalski, R.S., Kaufman K., Pietrzykowski, J., Sniezynski, B. and Wojtusiak,
J., ”Learning User Models for Computer Intrusion Detection: Preliminary Re-
sults from Natural Induction Approach,” Reports of the Machine Learning and
Inference Laboratory, MLI 05-3, George Mason University, 2005.

16. Mukkamala, S. and Sung, A. ”Comparison of Neural Networks and Support
Vector Machines in Intrusion Detection,” Workshop on Statistical and Machine
Learning Techniques in Computer Intrusion Detection, 2002.

17. Novak, J., Stark, V. and Heinbuch, D., ”Zombie Scan,” Workshop on Statistical
and Machine Learning Techniques in Computer Intrusion Detection, 2002.

18. Reinke, R., ”Knowledge Acquisition and Refinement Tools for the ADVISE
Meta-expert System,” M.S. Thesis, Reports of the Intelligent Systems Group,
ISG 84-5, UIUCDCS-F-84-921, University of Illinois Dept. of Computer Science,
Urbana, 1984.

Learning Symbolic User Models for Intrusion Detection 13

19. Schonlau, M. and Theus, M., ”Detecting Masquerades in Intrusion Detection
based on Unpopular Commands,” Information Processing Letters, 76, 2000,
pp. 33-38.

20. Scott, S., ”A Bayesian Paradigm for Designing Intrusion Detection Systems,”
Computational Statistics and Data Analysis, 45, 2004, pp. 69-83.

21. Shah, K., Jonckheere, E. and Bohacek, S., ”Detecting Network Attacks through
Traffic Modeling,” Workshop on Statistical and Machine Learning Techniques
in Computer Intrusion Detection, 2002.

22. Shavlik, J. and Shavlik, M., ”Selection, Combination, and Evaluation of Effec-
tive Software Sensors for Detecting Abnormal Computer Usage,” Proc. of the
10th Intl. Conference on Knowledge Discovery and Data Mining, Seattle, WA,
2004, pp. 276-285.

23. Streilein, W.W., Cunningham, R.K. and Webster, S.E., ”Improved Detection
of Low-profile Probe and Novel Denial-of-service Attacks,” Workshop on Sta-
tistical and Machine Learning Techniques in Computer Intrusion Detection,
2002.

24. Valdes, A., ”Profile Based Intrusion Detection: Lessons Learned, New Direc-
tions,” Workshop on Statistical and Machine Learning Techniques in Computer
Intrusion Detection, 2002.

25. Valdes, A. and Skinner, K., ”Adaptive, Model-based Monitoring for Cyber At-
tack Detection,” in H. Debar, L. Me and F. Wu (Eds.), Lecture Notes in Com-
puter Science #1907 (from Recent Advances in Intrusion Detection, RAID-
2000), Springer-Verlag, 2000.

26. Wojtusiak, J., ”AQ21 User’s Guide,” Reports of the Machine Learning and
Inference Laboratory, MLI 04-3, George Mason University, 2004.

