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Abstract

S-BAND QPSK TRANSMITTER FOR POCKETQUBE SATELLITES

Jay Deorukhkar

George Mason University, 2021

Thesis Director: Dr. Peter W. Pachowicz

The small satellite field has become popular amongst academia, amateur satellite (AM-

SAT) community, and commercial businesses due to the miniaturization of components and

smaller form factors. Specifically, the PocketQube structure has gained attraction for its

size and affordability of launch fees. However, the size constraint makes it difficult to gener-

ate power and limits the transmit power for downlink. Therefore, efficient data modulation

is key to providing high data downlink rates. Also, the typical VHF and UHF frequency

spectrum used for satellites is getting congested. Hence, the higher frequency bands such

as S-band and X-band are gaining attraction and offer higher data bandwidth. To address

both issues, an architecture to implement QPSK modulation for S-band operation is pro-

posed. The design is focused on low-power PocketQubes and the implementation is targeted

for academia and the AMSAT community.



Chapter 1: Introduction

The recent growth in small satellites has enabled academia, amateurs, and the commercial

sector to design and launch payloads for specific applications. This can include complex

payloads for earth observation, ship tracking, scientific experiments, interplanetary missions,

and various others. The technology has also evolved to allow for smaller form factors ranging

from multi-unit CubeSats (10 cm cube) to PocketQubes (5 cm cube) and even smaller.

The PocketQube form-factor is particularly challenging to work with, primarily due to its

size. This smaller satellite bus results in a smaller surface area for solar cells, consequently

generating less power. This puts a limit on the payload and subsystems since they will need

to be designed with tighter power constraints. For the transmitters, the transmit power

will also be limited for data downlink. This combination of small size and limited power

drives the need for efficient data modulation structures, providing high data downlink rates

for complex payloads.

Along with the challenges of the transmitter, the frequency spectrum used for satellites

is getting congested and noisy. Typically, satellites use the VHF and UHF bands for uplink

and downlink with ground stations. However, with the growth of small satellites and the

need for higher data rates, more missions are shifting towards the use of higher frequency

bands. Particularly, the S-band and X-band frequencies are much less crowded and offer

higher bandwidth compared to VHF and UHF bands.

For the amateur satellite (AMSAT) community, there is a popular open-source ground

station platform called SatNOGS. The idea is to allow amateurs to build inexpensive ground

stations, collect data from satellites within their database, and upload the data for everyone

to access. Currently, there are 585 satellites with 1139 satellite transmitters in their database

[1]. They also provide various statistics, including a list of modulation modes and frequency
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bands used on the satellites. Figure 1.1 shows the top 15 modes and top 5 frequency bands

used.

Figure 1.1: List of modulation modes and frequency bands in SatNOGS

The list of satellites in SatNOGS encompasses all form factors within the database. If we

want to narrow it down to PocketQubes, we can use a well-known satellite repository called

Gunters Space Page. This website has updated information on satellite and spacecraft
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launches. From this website, we can get a list of launched PocketQubes [2]. By cross-

searching each of these satellites with the SatNOGS database, table 1.1 lists the details

about each satellite and its onboard transmitters.

Table 1.1: Details for PocketQubes launched

At the time of writing this thesis, a few PocketQubes have used BPSK at 1,200 baud

however, none have used QPSK or any of its variants for their modulation scheme. Also,

note that the frequencies used are only in the UHF band. This masters thesis will provide

an architecture to implement QPSK modulation for S-band operation on PocketQubes

satellites. The following sections will discuss the functionality, design, implementation,

testing, and analysis of the proposed architecture. This is primarily directed for use by

academia and the AMSAT community.
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Chapter 2: Background

2.1 IQ Modulation

IQ modulation is the process of converting baseband signals to RF signals using two si-

nusoids that are in quadrature. One of these sinusoids is the in-phase component with no

phase shift while the other is the quadrature component with a 90 degree phase shift [3].

These are typically represented by sine and cosine waves with the same carrier frequency.

Using these two components, the modulation process is shown in figure 2.1.

Figure 2.1: Structure of an IQ Modulator

The local oscillator generates a sinusoid signal at the carrier frequency that is used by

the in-phase channel without any phase shift and the quadrature channel with a 90 degree

phase shift. The baseband signal is split between the in-phase and quadrature channels,

where it is multiplied by the two sinusoids and upconverted to the carrier frequency. The
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resulting signals from the two channels are added together to form the IQ modulated RF

signal [4].

The advantage of this method is that the baseband signal encodes the data only in its

amplitude level while keeping its frequency and phase the same. Based on the variation in

amplitude, any form of modulation (amplitude, frequency, and phase) can be achieved in

the resulting RF signal [4]. Since any signal can be fully represented by its IQ components,

the same process but flipped can be used to demodulate the RF signal.

2.2 Phase Shift Keying

A form of modulation where the data is represented by changes in the phase of a signal is

known as Phase Shift Keying (PSK). As seen previously, by varying the amplitude baseband

signal to specific levels, the resulting summation of the IQ channels after upconversion will

result in a phase modulated RF signal. Depending on the number of bits used per amplitude

level, a finite number of phase shifts can be generated by the output. Each phase shift is

known as a symbol that is mapped to certain bits. In the case of Binary Phase Shift Keying

(BPSK), two phases can be used for one data bit (0 and 180 degrees) [5]. In Quadrature

Phase Shift Keying (QPSK), four phases can be used for two data bits (45, 135, 225, and

315 degrees). The mapping between symbols and bits is shown in the IQ constellation

diagram in figure 2.2.

Each axis is used to show the symbols within the IQ components of the RF signal. In

this case, the benefit of using QPSK over BPSK is with fixed bandwidth, QPSK can achieve

twice the data rate over BPSK. This is due to BPSK being limited to encoding one bit for

the in-phase channel, whereas QPSK can encode two bits by using both the in-phase and

quadrature channels [4]. Also, with the added symbols in QPSK, the distance between

symbols is still the same as BPSK, ensuring the same level of noise immunity as BPSK.

There are variations for QPSK such as Offset QPSK (OQPSK) that have certain benefits

and Differential Phase Shift Keying (DPSK) to remove phase ambiguity at the receiver. By
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Figure 2.2: Bits to symbols mapping for BPSK and QPSK modulation

increasing the number of bits per symbol, higher-order PSK such as 8-PSK can be created

for increased data throughput at the cost of receiver complexity.

2.3 Pulse Shaping Filter

To generate a baseband signal, the incoming data bits must be mapped to symbols with

specific amplitude levels and fixed time intervals. Once the bits are mapped to symbols, the

resulting baseband signal will contain a train of rectangular pulses with varying amplitude

levels and instant transition jumps between symbols.

The issue is with the sharp transitions between symbols in the time domain which

correspond to infinite bandwidth in the frequency domain. Therefore, a pulse shaping filter

is needed to smooth the sharp transitions in the time domain, resulting in a band-limited

signal in the frequency domain. Such filters are typically implemented digitally as Finite

Impulse Response (FIR) filters.

The filter coefficients define the filter behavior (such as low-pass or high-pass), while the

filter length and delay are fixed due to the impulse response being truncated by windowing

functions [6]. The rectangular window is the simplest however, other windowing functions
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offer better stopband attenuation. A comparison of a few windowing functions is shown in

figure 2.3.

Figure 2.3: Impulse and Frequency Response of filters with windowing functions

Although certain windowing functions have better performance than the rectangular

window, the impulse response of the pulses have tails that may interfere with neighboring

pulses in a pulse train resulting in Inter-Symbol Interference (ISI). Therefore, an optimal

pulse shape is one from the class of Nyquist pulses, such as a Raised Cosine (RC) pulse

[7]. These pulses prevent ISI by ensuring that the pulse tails cross zero amplitude for every

symbol period. Therefore, when the next pulse is transmitted, the energy of the previous

pulse’s tail is at zero during the sampling interval of the current pulse.

Typically along with the pulse shape filter at the transmitter, the receiver also needs

to do some level of filtering to isolate the signal energy from the noise. Therefore, a more

optimal pulse shape filter is one that has a relationship between the transmit and receive

filter. In this case, a Square Root Raised Cosine (SRRC or just RRC) pulse can be used

at the transmitter and at the receiver [7]. This pulse shape itself is not a Nyquist pulse,

however, filtering at the transmitter and receiver with the same RRC pulse has the net
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effect of an RC pulse where the received signal will not experience ISI. This operation of

filtering at the receiver with the same RRC pulse as the transmitter is known as matched-

filtering, where the receiver convolves the signal with the flipped version of the pulse shape.

The advantage of matched-filtering is it maximizes the Signal-to-Noise Ratio (SNR) at the

receiver.
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Chapter 3: Functionality

3.1 QPSK Modulator

The entire QPSK modulation chain is shown in figure 3.1. It starts with the binary input

data being split into even and odd bits for the IQ channels. Then, the bits are mapped to

symbols based on the desired modulation scheme. Next, the symbols are passed into the

pulse shaping filter to generate the baseband signals. Lastly, both signals are modulated

using an IQ modulator to generate the RF signal at a specific carrier frequency [8].

Figure 3.1: Full structure of a QPSK Modulator

3.1.1 Splitter

The splitter is used to separate the incoming data stream into two channels. The format of

the split depends on the type of modulation and can affect the layout of the symbol map.
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QPSK alternates each bit between the two channels to have the even bits pass to the I

channel and the odd bits pass to the Q channel.

The splitting operation can be done in hardware or software depending on the imple-

mentation. In the case of software, this can be implemented as an if-statement. The decision

can be a variable that alternates its state between two buffers for storing the data.

For a hardware implementation, the splitter can be viewed as a 1-to-2 Demultiplexer

(Demux) as shown in figure 3.2. The input data is passed to one of the two channels based

on the select signal. This signal could be the clock source that is used by the input data,

where the value alternates every rising or falling edge of the clock signal. Another potential

solution would be to feed the same input data to both channels but alternate the write

enable pulse for the data buffers in each channel.

Figure 3.2: Hardware implementation of a splitter

3.1.2 Symbol Map

Symbol mapping is the stage where the incoming bits are mapped to specific symbols in the

form of amplitude levels. The number of levels and their values depend on the modulation

scheme used by the transmitter. For QPSK, the Non-Return-to-Zero (NRZ) line code is

used to map binary one to positive one and binary zero to negative one.

There are various ways to implement the mapping of bits to symbols in both software
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and hardware. Similar to the splitter, the mapping can be done using an if-statement, where

it checks for a binary zero to convert it to a negative one while the binary one would stay

the same.

The symbol mapping can be implemented in hardware as a 2-to-1 Multiplexer (Mux)

as shown in figure 3.3, where the two inputs are positive one and negative one. The select

signal is the binary input data that corresponds to the input levels. If the select value is

zero, the negative one input is passed to the output and the positive one is passed if the

select is one. An efficient alternative is to use a 2-bit signed integer where the binary input

is inverted and concatenated with a binary one.

Figure 3.3: Hardware implementation for symbol mapping

3.1.3 Pulse Shaping

The pulse shaping operation is used to generate analog pulses with a specific time interval

corresponding to each symbol. This is typically implemented as an FIR filter where the

coefficients are the values from the impulse response of the desired filter shape. Before the

symbol values can be passed to the FIR filter, they must be upsampled to a specific length

for the filter to output a proper pulse shape. The upsampling operation is essentially having

a fixed number of zeros between each symbol value.
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An FIR filtering operation in its direct form is equivalent to multiple Multiply-And-

Accumulate (MAC) operations. In software, this can be implemented using three arrays

(an input buffer, output buffer, and coefficients buffer) and a for-loop. During each loop, the

current symbol is multiplied by a coefficient value and added with the previous calculation.

In the case of hardware, the implementation consists of three storage units where two of

them are Random Access Memories (RAMs for input and output buffers) and one is Read-

Only Memory (ROM for coefficients buffer) as shown in figure 3.4. The filtering operation

can be done either in parallel using multiple MAC and input delay blocks or sequentially

using a single MAC and delay block.

Figure 3.4: Hardware implementation for pulse shaping
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Chapter 4: Design

4.1 Proposed Architecture

The proposed architecture for QPSK modulation is shown in figure 4.1. The input data is

received by the MachXO2 Field Programmable Gate Array (FPGA) over Serial Peripheral

Interface (SPI). The FPGA splits the incoming data into two channels, maps it to the

appropriate symbols, and applies pulse shape filtering. The resulting baseband signals in

each channel are sent out through a modified SPI interface where the two outputs correspond

to a differential pair output. The first output is the positive signal (same as the baseband

signal) and the second is the negative signal (an inverted version of the baseband signal).

Both set of SPI outputs are fed into the two PMOD-DA2 2-channel Digital-to-Analog

Converter (DAC). This converts the differential digital baseband signals into differential

analog baseband signals. These are connected to the differential inputs of the AD8348 IQ

modulator. Additionally, the FPGA also controls the ADF4351 Voltage Controlled Oscil-

lator (VCO) over SPI which sets the oscillator frequency to the desired carrier frequency.

The VCO outputs the oscillator signal in a differential pair, which is passed into the IQ

modulator. The result of the IQ modulator is the RF signal at the upconverted carrier

frequency.

4.1.1 MachXO2-1200HC FPGA

This is a small-footprint and low-power FPGA with 1,200 logic cells, 10 kbits DRAM, 64

kbits block RAM, 64 kbits of flash memory, and clock speeds from 2.08 MHz to 133 MHz.

The TinyFPGA board is a breakout board for this chip, allowing for fast prototyping. The

main advantages of this chip are the 3.3 V operating voltage and 32-pin QFN chip package,

making it a small power efficient chip for small satellite applications.
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Figure 4.1: Proposed QPSK architecture

4.1.2 DAC121S101 DAC

Within each PMOD-DA2 board is the DAC121S101 12-bit 2-channel DAC. This 6-pin QFP

chip has an operating voltage of 3.3 V and draws between 0.64 to 0.78 mW over a range

of operating temperatures. The DAC has a modified SPI interface, where each channel

has independent MOSI lines allowing for parallel outputs. For the SCK input clock, it

can accept up to 30 MHz as the maximum output rate. The PMOD-DA2 board makes it

convenient to test the chip by directly attaching it to the Basys 3 FGPA board.

4.1.3 ADF4351 VCO

The ADF4351 uses an internal Phase-Locked Loop (PLL) synthesizer along with a VCO

to generate an oscillator signal and maintain the desired frequency. This 32-pin QFN

chip can operate at 3.3 V and has a frequency range between 2.2 GHz and 4.4 GHz with
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dividers to generate a minimum of 35 MHz. For stability in space environments, the VCO

needs a Temperature Compensated Crystal Oscillator (TCXO) or Oven Controlled Crystal

Oscillator (OCXO) with appropriate loop filters to remove harmonics generated by the

crystal.

4.1.4 AD8346 IQ Modulator

As a Zero Intermediate Frequency (ZIF) modulator where the signal is directly converted to

the RF frequency, the AD8346 is a small-footprint IQ modulator suitable for the PocketQube

form factor. It can operate at 3.3 V with a low current draw of 45 mA for low-power

applications. The generated RF signal can range from 0.8 GHz to 2.5GHz, which is ideal

for the intended S-band frequency of 2.4 GHz. The 16-pin QFP chip has inputs that are

differential pairs in order to reduce externally generated noise. The voltage bounds on the

inputs are from 1.7v to 0.7v with a 1.2v bias. The single-ended RF output can be matched

to a 50-ohm load, such as an S-band patch antenna.

4.2 Testing Architecture

For the testing architecture, the entire structure is the same as the proposed architecture

except for the FPGA. In this case, the input data is received by the Artix-7 FPGA over SPI

as shown in figure 4.2. The rest of the QPSK modulation chain is the exact same, resulting

in the same RF signal as before.

4.2.1 Artix-7 FPGA

This chip is a very capable FPGA with 33,280 logic cells, 1,800 kbits block RAM, 90 DSP

slices, a vast array of internal peripherals, and clock speeds of 100 MHz to 450 MHz. It is

used on the Basys 3 development board for convenient testing of hardware logic. Also, a

broad range of external peripherals can be directly plugged into the board (like the PMOD-

DA2 DACs). However, the chip itself is not ideal for use on small satellites due to the

238-pin BGA footprint and the excess resources that are unused in this design.
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Figure 4.2: Testing architecture for QPSK

4.3 Alternate Architecture

An alternate architecture was considered for a simpler approach that did not use FPGAs

but instead used a Microcontroller (MCU) with integrated DACs. In figure 4.3, the input

data is received by the MSP430-FR2355 MCU over SPI. The incoming data is split into

two channels, mapped to symbols, and pulse shape filtered by the MCU.

In this case, the MCU has internal 4-channel DACs which can convert the filtered

baseband signal to the equivalent analog signal. The differential baseband signals are fed

into the differential inputs of the IQ modulator. Along with this, the MCU has internal SPI

peripherals for controlling the VCO oscillator’s carrier frequency. The VCO output signal

is connected the same as before to the IQ modulator. In this architecture, the ADL5375 IQ

modulator is a different chip but has similar functionality and pinouts as the previous IQ

modulator. The resulting RF signal is also the same as before.
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Figure 4.3: Alternate QPSK Architecture

4.3.1 MSP430-FR2355 MCU

The MSP430 is a popular 16-bit MCU with very low-power consumption and on-chip Fer-

roelectric RAM (FRAM). It is considered a legacy MCU for use in small satellites due

to its flight history. The major advantage of FRAM is its nonmagnetic structure, which

makes it radiation resistant. This can prevent Single-Event Upsets (SEUs) due to memory

corruption (like bit flips), making it robust for space applications. This specific MSP430

can operate at clock speeds between 1 MHz to 24 MHz, has a 4-channel 12-bit DAC, and

multiple SPI peripherals available. Although the chip has hardware multipliers, it lacks Dig-

ital Signal Processing (DSP) specific hardware and Direct Memory Access (DMA) which

heavily impacts its performance when FIR filtering for the pulse shape.
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4.3.2 ADL5375 IQ Modulator

The ADL5375 is another ZIF broadband IQ Modulator that directly converts the signal to

RF frequency. It has a 5v operating voltage with a current draw of 203 mA and an output

frequency range from 400 MHz to 6 GHz. Depending on the specific chip, the input voltage

range can be from 0.25v to 0.75v with 0.5v bias (05 chip version) or 1.25v to 1.75v with 1.5v

bias (15 chip version). Along with the high current draw and bus voltage, this 24-pin QFN

chip also generates a discernible amount of heat making this an impractical and inefficient

option for small satellite use.
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Chapter 5: Implementation

5.1 Simulations

The following simulations demonstrate the operation of the pulse shape filter and the QPSK

modulation chain. The pulse shape filtering involves testing various types of FIR Filters.

For the filters that use windowing functions, the simulation was conducted in GNU Octave

using the remez function along with the respective windowing functions [7]. With the RC

and RRC filters, MATLAB was used due to the available rcosdesign function. The IQ

modulator functionality and the demonstration of the entire QPSK chain are simulated

using GNU Radio.

5.1.1 Pulse Shaping

When designing filters, various approaches can yield the desired filter shape. Earlier in

the background section, figure 2.3 shows different windowing functions and their resulting

passband, stopband, and cutoff frequency.

Window Based

These filters are based on the Parks-McClellan optimal FIR filter design method where the

passband cutoff is 1.5 kHz, stopband cutoff is 2.5 kHz, stopband attenuation is 60 dB, and

the desired filter length is 21 [6]. This length is determined by a formula that calculates the

optimal length based on the passband cutoff, stopband cutoff, stopband attenuation, and

sampling rate as shown in the reference. After generating the filter coefficients, the different

windowing functions can be applied by multiplying the coefficients with the window weights.

Since the filter will be implemented on an FPGA, the floating-point coefficients need

to be scaled and quantized into fixed point integers. This is done by multiplying them by
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the number of bits used to store them in memory. After scaling, the floating-point values

are rounded to store them as integers. In this case, the coefficients are scaled by 10 bits to

store them as signed 10-bit integers. Therefore, the range of values is between 511 and -512

as shown in the impulse response of all the filters.

As an example, a binary input signal is generated with zeros and ones corresponding to

a frequency of 1 kHz. This is evident in the frequency domain, where there are spikes at 1

kHz and the odd harmonics of 3 kHz due to sharp jumps between zero and one. It represents

the signal after splitting into the even and odd bits. It is passed into the symbol mapper

to apply NRZ coding, where binary ones become positive ones and binary zeros become

negative ones. Then, the symbols are upsampled before entering the pulse shaping filter.

The upsampling is set to 8 for padding each symbol with zeros. The resulting waveform is

shown in figure 5.1.

Figure 5.1: Time and frequency domain of the input signal

Filtering the input signal with each of the filters results in the output shown in figure 5.2.

The output signals exhibit very similar time domain responses. In the frequency domain,

the output responses are only marginally different.
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Figure 5.2: Time and frequency domain of the output from windowed filtering

After pulse shape filtering, the baseband signals are passed into the DAC to generate the

equivalent analog signals. Notice in the time domain plot there are three flat lines. These

represent the voltage bounds for the input of the DAC. The output of the pulse shape filter

must be bounded between 1.7v and 0.7v with a bias of 1.2v. To ensure the output fits

within these bounds, the baseband signals are shifted up from zero to the bias and the filter

coefficients are scaled based on the output signal.

Typically, the output range of an FIR filter can be characterized by the sum of the

absolute value of the coefficients. This would define the absolute maximum and minimum

values for the output from the FIR filter, assuming a bounded input is fed into it. However,

this characterization cannot be applied due to the upsampling of the input values. Therefore,

another approach is to run multiple iterations of the FIR filter with random inputs. Based

on 1000 iterations, the output was verified to stay between the DAC input bounds using

the scaled filter coefficients.
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Nyquist Pulse

The window-based filters are effective at removing out-of-band frequencies however, they

do not solve the problem of ISI. As discussed earlier, ISI is the interference from previous

and future pulse shape tails affecting the current pulse shape. This issue can be mitigated

by filtering at the transmitter and matched-filtering at the receiver with an RRC pulse [7].

Figure 5.3 shows the impulse response and frequency response of an RC and RRC pulse.

These are based on a few parameters such as the samples per symbol set to 8 and filter

span of 5. Also, the roll-off factor is set to 0.35 which determines the extra bandwidth used

by the filter. The rest of the scaling and quantizing operations are the same as before.

Figure 5.3: Impulse and frequency response of RC and RRC filters

By using the same NRZ coded and upsampled input signal, the output signal is shown

in figure 5.4. The time domain result shows a slightly higher RRC filter output. This

distinction can also be seen in the frequency domain as the RRC filter is taller than the

RC filter. This is expected as the RC filter cutoff is before the RRC filter as seen in the

frequency response, hence the larger attenuation.

As seen previously, the three flat lines correspond to the maximum, minimum, and
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Figure 5.4: Time and frequency domain of the output from RC and RRC filtering

bias levels of the DAC input. The same techniques for shifting the output and scaling the

filter coefficients were used. Likewise, the random input approach was executed with 1000

iterations for both filters, verifying that the response is within the DAC bounds.

5.1.2 QPSK Structure

To understand how the entire QPSK structure works, the following simulations were con-

ducted. They cover the baseband version and the upconverted passband version with dif-

ferent blocks on the transmitter and receiver sides. In both cases, an ideal channel was

assumed where no channel impairments or noise was added. For the baseband structure,

the receiver performs symbol synchronization, while the passband signal assumes perfect

synchronization between the transmitter and receiver.

Baseband Structure

For the baseband transmitter, figure 5.5 starts with the random input source to generate a

stream of binary values. To visualize and compare this with the final output stream, the
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binary values are converted to float values. The next step for the input stream is to take

each binary value (which is a byte wide) and package it into one bit chunks so that each

bit in the output is a data value. These values are passed into the constellation modulator

that generates the QPSK symbols based on the constellation object. The block also does

RRC filtering using the samples per symbol and excess bandwidth parameters, which are

set to 8 and 0.35 respectively. The output from the block is a complex modulated baseband

signal that is passed to the receiver. The throttle block is for the simulation to control the

number of samples being processed [9].

Figure 5.5: Transmitter side of the QPSK baseband structure

The receiver side shown in figure 5.6 passes the modulated baseband signal into an

Automatic Gain Control (AGC) block. This will maintain the output signal amplitude

between positive and negative one by scaling the input signal. Next, the signal goes to the

symbol sync block which does four things. It matched-filters the input signal for optimal

SNR, estimates and tracks the symbol rate based on a close initial estimate, does timing

synchronization for sampling at the correct times, and decimates the signal to generate

one sample per symbol. Most of the parameters are kept as default except for the Timing

Error Detector (TED) that is set to ”Gardner”, the samples per symbol set to 8, and

a loop bandwidth of 0.0628 [10]. The synchronized complex baseband signal is passed
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into the constellation decoder block that uses the same QPSK constellation object as the

transmitter. The output is a stream of bytes that correspond to the symbol values between

zero and three. These values are unpacked into chunks of two bits and concatenated so that

all the bits in the output are data bits. Finally, the output stream is converted to floats to

compare with the input stream [9].

Figure 5.6: Receiver side of the QPSK baseband structure

Looking at the time domain plot, the output stream and the input stream have the

same data values as shown by the overlapping lines in figure 5.7. This confirms that the

transmitter correctly propagates the symbols to the receiver. Originally, the output stream

was delayed by some number of samples due to the pulse shape filtering (half the filter

length), the matched-filtering, and the synchronization loops. This was corrected by using a

delay block (which is not shown) on the input stream to align it with the output stream. For

the frequency domain, a similar conclusion can be drawn as the output spectrum accurately

overlaps the input spectrum.

Passband Structure

The passband structure takes a different approach from the baseband structure to under-

stand more about the IQ modulation process. Figure 5.8 shows the same random input

source being used at the start for the input data. The binary data is converted into float

values, multiplied by 2 and subtracted by 1, which accomplishes the task of NRZ coding.

The stream of positive and negative ones are de-interleaved to alternate the values between

25



Figure 5.7: Time and frequency domain of the QPSK baseband output

the IQ channels. In both branches, the values are pulse shape filtered with the same RRC

coefficients generated in the earlier simulation section. Next, the pulse shaped baseband

signal is upconverted to the carrier frequency of 4 kHz with multiplication. The input to

both multipliers is a complex cosine signal where the real and imaginary values are con-

verted to float by splitting them into two channels. The real channel is fed to the in-phase

multiplier while the imaginary channel is fed to the quadrature multiplier. Lastly, both

channels are added together and the RF signal is sent to the receiver side.

Most of the blocks in the receiver are the same as the transmitter but in the reverse

order as seen in figure 5.9. At the start, the RF signal is passed into two multipliers for

downconversion to baseband. The same complex cosine signal with 4 kHz carrier frequency

is converted to float and passed to both multipliers. The resulting signals are low-pass

filtered with a cutoff frequency of 1 kHz and a Hamming window. Next, the baseband

signal is matched-filtered with the same RRC filter coefficients and decimated by 8 to have
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Figure 5.8: Transmitter side for QPSK passband structure

one sample per symbol. At this point, the signal is ready to be sampled and quantized by

the threshold block. With the threshold set to zero, the block will output a positive one for

values greater than zero and a zero for values less than zero. This stream of binary values

is interleaved to form a single stream of binary values. Finally, the values are converted to

float to visualize with the input stream.

From figure 5.10, the output data stream is the same as the input data stream as seen

in the time domain plot. Also, the input stream was delayed by a different number of

samples, which is justified by the different passband simulation structure as compared to

the baseband version. Likewise, the frequency domain shows the two streams precisely

overlapping each other.

5.2 Hardware

In the following sections, the hardware used in the three architectures is shown. The

annotations highlight the corresponding components from the architecture diagrams along

with the main inputs and outputs.
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Figure 5.9: Receiver side for QPSK passband structure

5.2.1 Proposed Architecture

In this architecture, we start with the input data entering the TinyFPGA over SPI as shown

in figure 5.11. Next, the data is sent to the two PMOD-DA2 DAC boards over a modified

SPI interface, where two MOSI lines are used for the two independent output channels.

In this case, the input SPI side powers the TinyFPGA and DAC boards. Then, the four

analog baseband signals (in differential pairs) are passed into the AD8346 IQ modulator

along with the local oscillator (LO) signal from the ADF4351 VCO. The IQ modulator

evaluation board is set up as a single-ended input for the LO signal, whereas typically it

would be a differential pair as well. Lastly, the RF signal is generated as a single-ended 50

ohm output.

The board on the bottom left is an evaluation board for the ADF4351 VCO as well as

the ADL5375 IQ modulator (which is covered in the later section). The boxed portion of the

board is the VCO and the positive LO output is connected to the AD8346 IQ modulator.

Note that the architecture shows the ADF4351 being connected to the FPGA over SPI

however, it is controlled over USB with a specific program in this setup. This allows for
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Figure 5.10: Time and frequency domain of the QPSK passband output

setting the carrier frequency and other functions on the computer with ease.

5.2.2 Testing Architecture

The testing architecture in figure 5.12 is very similar to the previous one, except the TinyF-

PGA is replaced by the Basys 3 board. It is also powered and controlled over USB, hence

the DACs are also powered by the FPGA board. The interfaces and rest of the chain are

identical to the earlier architecture.

5.2.3 Alternate Architecture

For the alternate architecture, the setup shown in figure 5.13 is fairly different from the

previous two architectures. Firstly, the input data passes through SPI into the MSP430

MCU (which is powered and programmed over USB). Since this particular MSP430 has a

4-channel integrated DAC, the output is the baseband analog signal which goes into the
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Figure 5.11: Hardware used in the proposed architecture

ADL5375 IQ modulator to generate the output RF signal. The chip itself can be seen in

the top portion of the evaluation board along with the ADF4351 VCO at the bottom. The

differential LO outputs from the VCO are internally connected to the IQ modulator through

a series of loop filters for reducing the oscillator harmonics.

5.3 Software

The software that is running on the FPGA and MCU boards within each architecture is

discussed in the sections below. The goal of the software is to implement functionality for

generating the baseband signals as seen in the functionality section. One thing to note
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Figure 5.12: Hardware used in the testing architecture

for the FPGAs, the Very-High-Speed-Integrated-Circuit Hardware Description Language

(VHDL) code was written as generically as possible for the logic elements and memory

inferring to be transferable between the Basys 3 board and the TinyFPGA board. With

modifications to the pinouts and clock speed settings, using the same VHDL code helped

save time when testing both architectures.
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Figure 5.13: Hardware used in the alternate architecture

5.3.1 Testing Architecture

Starting with the testing architecture, the Basys 3 board had three iterations of software

where each one is more optimized with lower resource utilization:

1st Iteration

With the first iteration, the idea was to build logic blocks that performed each function

independently. This is shown in figure 5.14 where the input SPI block takes the input

data and passes it to FIR filter blocks in each channel. Then, the filtered data is sent to

the output SPI blocks for the DACs to generate the baseband signal. The FIR filter and

SPI output blocks in each channel are identical as they were instantiated using the same

VHDL code entities in the top-level file. This results in duplicate logic hardware such as

input/output buffers which significantly increases resource utilization.
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Figure 5.14: Block diagram for first iteration of software on Basys 3 FPGA

For the input SPI block, the SCK and MOSI inputs are double-flopped to prevent meta-

stability issues. Anytime synchronous signals from an external device are sampled by an

FPGA, the inputs should pass through two flip-flops to synchronize the signals with the

FPGA clock. For the MISO output, it uses the full flags from the FIR filter blocks and

passes one of them to the input device. In this case, the input device operates in master SPI

mode with the MISO signal functioning as an on/off switch, indicating when to start/stop

sending data. Another function of this block is to split the incoming data stream into two

channels. This can be done with a Mux however, the Mux alone will induce an offset of one

bit between the two channels as it flips between them. Additionally, a delay block is used

on one of the channels to synchronize the data writes in both channels.

The FIR filter blocks are the most resource intensive blocks due to the filtering logic and

data buffers. The filter coefficients are the same 21-element RRC coefficients seen previously

and are stored as signed 10-bit integers in a ROM memory block. The input and output

buffers are 32-element circular buffers where there is a single input buffer with two output
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buffers for the positive and negative differential outputs. Both the length of the FIR filter

and input/output buffers are declared as a generic value and can be adjusted. For the input

data, the values are NRZ coded and upsampled by 8 before being stored in the input buffer

as 2-bit signed integers. The upsampling rate is also a generic value that can be adjusted

depending on the FIR filter requirements. To minimize resource usage, the FIR filtering

operation is done on a single cycle basis, where each multiply and addition operation takes

a clock cycle. Since the filter length is small the performance impact is not as significant,

as opposed to the notable increase of resource utilization with a parallel filter structure.

Lastly, the 12-bit signed integer results are stored in differential output buffers as 16-bit

values. The leading 4 bits are used by the DACs for specific functions and are set to zeros.

These differential outputs in each channel are sent bit by bit to the output SPI block.

In both channels, the SPI output block passes the filtered data to the DACs by generat-

ing a clock and chip-select signal. There are two clocks created by this block, a data clock

and an SPI clock. Both are generic values that can be changed however, they are initially

set to 8 kHz and 500 kHz respectively. The data clock can be viewed as the output sample

rate, where a new value is sent to the DAC for updating the output waveform whereas the

SPI clock is used to send each bit of the new value. Therefore, the differential outputs per

channel are sent to the DAC through this SPI block to generate the baseband output signal.

The simulation waveform shown in figure 5.15 shows the input and output SPI signals

as well as the expected baseband signals from the DACs. For this simulation, the main

clock frequency is set to 100 MHz which is the intended operating frequency of the Basys

3 board. First, the testbench file transmits two data bytes (which are 0x33) as seen at

the top. The output SPI signals in the middle show the filtered values being sent back to

the testbench file. Lastly, the baseband signals at the bottom correspond to the output

data received from the SPI output. The two markers in the middle highlight the maximum

and minimum values of the wave, which are shown on the left sidebar. These values are

verified with the RRC filter simulation to be within the bounds of the IQ modulator input.

The markers also show the time between the two symbols at the bottom. In this case, the
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data rate was set to 8 kHz with an upsampling rate of 8, hence the time interval is 1 ms

corresponding to 1 kHz symbol rate.

Figure 5.15: Output waveform for first iteration of software on Basys 3 FPGA

The resource utilization for this software iteration is expected to be the highest due to

the FIR filter and SPI output blocks being duplicated for both channels. Table 5.1 shows

the post-implementation resource utilization for each block file. The FIR filter blocks take

the most resources (as expected) while the SPI input and output blocks take much less. The

memory implemented in this case is Distributed RAM using Look-Up Tables (LUTs) due to

the small buffer sizes and faster speed compared to block ram. One key point is that all the

registers are clock-edge driven to ensure the internal signals are properly synchronized to

clock edges. This generally results in no latches being used in the implementation, which is

highly desirable due to their asynchronous nature causing signals to potentially miss clock

edges.

Looking at the timing report in table 5.2, it shows that there are no failing endpoints
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Table 5.1: Resource utilization for first iteration of software on Basys 3 FPGA

and the timing constraints are met. The positive value for the Worst Negative Slack (WNS)

means that the time it takes for the longest path in the implemented logic still fits within a

clock period. Initially when designing the FIR filter block, the multiply and add logic was

entirely parallel. This resulted in a large negative value for the WNS, indicating that the

filtering logic cannot fit within the clock period. Hence, this single-cycle filtering approach

offers a more desirable WNS time.

Table 5.2: Timing report for first iteration of software on Basys 3 FPGA
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2nd Iteration

This iteration is designed to reduce the resources used in the first iteration. To achieve

this, the duplicate FIR filter and SPI output blocks in both channels are merged into single

blocks as shown in figure 5.16. Therefore, most of the logic elements that were duplicated

are now reduced however, certain elements are still the same (such as the buffers). The

SPI input block is the same as the previous iteration and the overall functionality is also

unchanged.

Figure 5.16: Block diagram for second iteration of software on Basys 3 FPGA

With the same SPI input block, the FIR filter block is re-designed to contain the logic

for both channels. The input/output signals and data buffers are the same however, the

control logic is now shared between the buffers. The filtering operation is also the same

and each filter cycle does the multiply and addition for both channels. The result is the

differential output for each channel, which will be passed to the SPI output block.

Likewise, the SPI output blocks are combined to form a single block with the same

input/output signals. Also, both channels share the same 8 kHz data clock and 500 kHz

SPI clock. For the SCK and SYNC outputs, they are independent signals that go to each

DAC separately. However, an alternative could have only one set of SCK and SYNC pins

while externally connecting them to both DACs.

In this case, the simulation waveform is identical to figure 5.15. The baseband output
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signal expected from the DAC is within the IQ modulator bounds and the symbol rate is 1

kHz.

After the optimizations, the benefits can be seen in table 5.3. The resource utilization

shows a significant reduction in the LUTs and registers used in this implementation. The

number of LUTs is reduced by 78, registers by 73, and the overall slices by 31. Since this

optimization was focused on the logic elements of the FIR filter and SPI output blocks, the

data buffers remain the same, hence the number of LUT memory elements is the same as

before.

Table 5.3: Resource utilization for second iteration of software on Basys 3 FPGA

Similar to the previous implementation, the timing report in table 5.4 shows no failing

endpoints with the timing constraints being met. Although the WNS is reduced by a very

small amount, the Worst Hold Slack (WHS) has a noticeable increase. This gives a slightly

larger margin when modifying the design and working to optimize it further.

3rd Iteration

Lastly, this implementation optimizes a step further by reducing the output buffers in the

FIR filter block. The block diagram is the same as the previous iteration as shown in figure

5.16. Apart from the FIR filter block, the SPI input and SPI output blocks are unaltered.

In all the past iterations, the FIR filter block needs one input buffer and two output

buffers per channel. The two output buffers are for storing the differential output of the
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Table 5.4: Timing report for second iteration of software on Basys 3 FPGA

baseband signals. However, since the output of the FIR filter is a signed value between the

positive and negative bounds, the negative part of the differential signal can be generated

by inverting the positive part. Then, both positive and negative parts can be shifted to the

desired bias voltage to conform to the input requirements of the IQ modulator.

The resulting simulation is analogous to the first iteration as seen in figure 5.15. Since

the main functionality is still the same, the differential baseband signals have a 1 kHz

symbol rate as they are passed into the IQ modulator from the DACs.

From the resource utilization shown in table 5.5, there are a few changes compared to

the previous iterations. First, the LUTs have decreased by 14 and registers by 10 whereas

the overall slices increased by 1. Although additional 12 Muxes were added due to the

changes in the FIR filter block, the LUT memory elements decreased by 16. Overall, this

optimization results in a net benefit of reduced resource utilization.

In this iteration, the timing report is the same as table 5.4 from the second iteration.

This would mean that the removal of the two output buffers does not affect the critical path

timing.

Optimizations and Structure

Other optimizations were considered but not implemented due to the cost outweighing the

performance. Typically with FIR filters, the first half of the coefficients are the same as the
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Table 5.5: Resource utilization for third iteration of software on Basys 3 FPGA

second half. Therefore, the buffers can be reduced so only the first half of the coefficients

are stored. In this case with 21 coefficients, the benefits would only be 11 LUT memory

elements at the cost of additional logic elements such as an up-down counter for the index.

Therefore, this optimization is not worth implementing for small filter sizes but may offer

some resource savings for much larger FIR filters. Another potential optimization was using

block RAMs instead of LUT memory elements for the buffers. As mentioned previously,

the LUT memory elements are preferred due to the small buffer sizes and faster speeds.

However, another reason is for compatibility between different FPGAs as implementing

block RAM usually involves writing FPGA-specific code. Therefore, changing the main

logic to incorporate block RAM may result in more logic elements being used.

Regarding the structure of the VHDL code, a typical state machine structure with

controller and datapath was considered. However, the code needed to be highly parallel

as the state machine would become very complex. Another consideration was to use the

Advanced eXtensible Interface (AXI) for connecting blocks. This was not implemented due

to the extra logic overhead per block, which would substantially impact the overall resource

utilization.
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5.3.2 Proposed Architecture

For the proposed architecture, the software for the TinyFPGA adopts the same generic

VHDL code from the third iteration of the testing architecture. The first two iterations

were not implemented as the designs exceeded the available resources on the TinyFPGA.

Likewise, the block diagram is the same as figure 5.16.

The base-level code with SPI input, FIR filter, and SPI output blocks are kept mostly the

same although the pinouts are completely different. However, the top-level file was modified

to have the clock initialization code, which would generate the main clock signal using the

internal PLL oscillator. In order for the timing constraints to be met, the maximum clock

rate that can be set is 53.2 MHz to ensure a positive WNS. Additionally, the SPI output

block was slightly modified so the data clock and SPI clock use the 53.2 MHz main clock

rate. This was done by declaring it as a generic value that can be changed. Apart from

this, the overall functionality is identical to the previous architecture.

Looking at the simulation waveform in figure 5.17, all the SPI signals are identical to the

previous architecture. The baseband signal amplitudes are also within the expected bounds

of the IQ modulator. With the main clock frequency set to 53.2 MHz, the expected symbol

rate is still 1 kHz. However, the symbol period is not exactly 1 ms due to the fractional

portion of the main clock period being truncated.

The key difference from the previous architecture is the post-implementation resource

utilization as shown in table 5.6. FPGA chips usually differ in the number of LUTs, registers,

and other hardware as well as the grouping of this hardware (known as SLICEs). Although

less than half of the available registers, SLICEs, and LUTs are being used, an additional

11 registers, 133 SLICEs, and 188 LUTs are used in this implementation as compared to

the previous architecture. Additionally, there are 24 more LUTs being used as distributed

memory alongside 3 block RAMs. The TinyFPGA inferred these block RAMs despite the

code being unchanged, albeit with no noticeable difference in functionality.

The timing report shows zero unrouted paths, hence all the paths in the design meet the

timing constraints. Table 5.7 shows both the worst slack (which is equivalent to the WNS)
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Figure 5.17: Output waveform of software on TinyFPGA

and the worst hold slack as being positive values. This indicates that the implementation

has small available margins for additional functionality without decreasing the main clock

frequency.

5.3.3 Alternate Architecture

In the case of the alternate architecture, the software is written in C and is similar in certain

aspects to the VHDL code. Although the hardware is entirely different, the same overall

functionality is implemented where the hardware blocks are now software tasks that run on

the MSP430. The flow chart of the software is shown in figure 5.18.

Once the MSP430 boots up in the main function, it first initializes the pins and configures

the SPI and DAC peripherals, and enables interrupts. This allows for the Interrupt Service

Routine (ISR) for the SPI and DAC peripherals to be invoked depending on their trigger

condition. Continuing with the infinite while-loop, the first if-statement checks if the input

buffers have data to be filtered and if the output buffers have space. Assuming these

conditions are met, the FIR filtering operation takes place in a for-loop using the FIR

coefficients and input data for both channels. The final results are written to the output
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Table 5.6: Resource utilization of software on TinyFPGA

buffers. If the condition was not met, the filtering operation would be omitted and the

execution will continue. The last if-statement checks the input buffers and raises the MISO

signal if they are full or lowers it otherwise. This indicates to the input device whether to

send more SPI data packets or to wait.

As the while-loop covers the filtering task, the other two subset diagrams on the right

side show the ISR for the SPI input task and DAC output task:

The SPI ISR task is triggered when a complete byte is received in the SPI peripheral’s

shift register. Then, the values from the shift register are written to the input buffers.

However, the binary values are converted to NRZ coded values between positive and negative

one, split into odd and even bits, and upsampled by 8. After this, the input buffers are

checked again for full capacity and the MISO signal is changed accordingly.

For the DAC ISR, the trigger is based on a timer that raises a flag every 1 ms. This

corresponds to the DAC ISR being called at a rate of 1 kHz and the output updating at

that rate. The values from the output buffers are first inverted to generate the negative

part of the differential signal. Both are then scaled to the intended bias value corresponding

to the bias voltage of the IQ modulator input.
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Table 5.7: Timing report of software on TinyFPGA

The memory layout and usage are shown in figure 5.19, where less than half of the total

available resources are being used. As mentioned in the design section, placing as much of

the code in FRAM make the software more resistant to radiation-related errors. Due to

this, all the buffers and variables are placed in FRAM while only the stack is present in

the RAM. This is due to the extensive number of read/write operations taking place in the

stack, which would reduce the lifetime of the FRAM. Also, errors during execution can be

fixed by power cycling the MCU, hence retaining the FRAM data while resetting the stack

in the RAM.

Code Structure

Similar to the final FPGA code, there are two input/output buffers corresponding to the IQ

channels and one FIR coefficients buffer. All the buffers are all declared as integer arrays

of specific bit length. The FIR filter coefficients are the same RRC filter values from the

previous architectures. Initially, the length of the arrays was chosen to be bit-aligned to the

8-bit length of the read/write index variables. This allowed for the read/write variables to

roll over the 256 value and back to zero, essentially implementing a circular buffer without

the additional if-statement index checks. However, this caused issues where random values

were populated in the buffers and resulted in the non-deterministic behavior of the software.

Instead, explicit checks of the index using if-statements were employed, resulting in reliable
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and stable functionality at the output.

From the perspective of functionality, the filtering operation results in the same output

as the aforementioned architectures while being implemented differently. Since the MSP430-

FR2355 does not contain any hardware DSP units for filtering, the first approach was to

use multiplication for calculating the FIR filtering results. However, the multiply/divide

operators are resource intensive for large-scale computations even though the operands are

integers.

Therefore, the second approach was to use the hardware multipliers unit present on the

MSP430-FR2355. Although this gave a significant computation boost, it exposed another

issue with memory read/write operations. With the lack of Direct Memory Access (DMA)

hardware on this specific MSP430, any read/write operations would involve processor cycles

whereas a DMA unit would manage the memory while the processor can work on filter

calculations.

The problems did not affect the overall functionality but instead slow down the DAC

output rate significantly. Hence, other potential solutions were attempted where the MCU

clock speed was increased to the max rate. The MSP430-FR2355 runs at 1 MHz by default

but can be increased up to 24 MHz. This can be done using the in-built Digitally-Controlled

Oscillator (DCO) and Frequency Locked Loop (FLL) to generate the 24 MHz clock however,

the final implementation should use a more reliable and temperature stable 24 MHz crystal.

The result of this modification yielded a significant increase in the DAC output rate however,

it was still under the desired 1 kHz output rate.

These cascading issues were solved by the final approach which replaces the multiplica-

tion operation with if-statements. Essentially, the multiplication operation only multiplies

the FIR filter coefficient with the NRZ coded input data. Since the data can only be a

positive one, negative one, or zero, the multiplication result can be explicitly coded using

if-statements. Depending on the value of the input data, the corresponding result can be

substituted into the rest of the calculation per iteration of the filter.

Overall, this method works very well in this case where the input data is NRZ coded and
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only three states need to be checked. However, if the symbol mapping was not NRZ coding,

the if-statements would need to be expanded to cover all possible cases. This method was

also considered for the FPGA implementation however, the if-statements would result in

more resources being used as opposed to the direct multiplication approach.
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Figure 5.18: Software flow chart for the MSP430
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Figure 5.19: Memory usage of software on MSP430
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Chapter 6: Testing

6.1 Output Plots

The ensuing sections show the output at various stages for each architecture. The setup is

the same as the figures in the hardware implementation section. For the baseband signal

plots, the output was connected to an oscilloscope for visualizing the time and frequency

domain. With the RF signals, they were connected to a Vector Signal Analyzer (VSA).

This particular instrument can show the frequency spectrum of a signal up to 6.5 GHz with

40 MHz bandwidth. It also has a symbol decoder feature, where the incoming signal is

demodulated and the symbols are shown in different formats.

6.1.1 Proposed Architecture

Starting with the ADF4351 VCO, the output carrier signal is shown in figure 6.1. The

sharp peak is at roughly 2.4 GHz with an amplitude of -24.62 dBm. The frequency is not

exactly at 2.4 GHz due to the clock calibration and temperature changes within the chip.

This carrier signal is connected to the LO positive input of the AD8346 IQ modulator.

Next, the time domain of the baseband signal from the FPGA is shown in figure 6.2.

The top two traces correspond to the in-phase channel positive and negative outputs while

the bottom two are the quadrature channel positive and negative outputs. The input data

is the same as the simulation (0x33) and the symbol interval is also 1 ms (1 kHz symbol

rate). The 509.97 Hz shown at the bottom right is the waveform’s frequency. The slight

offset from the expected 500 Hz is due to the inaccuracy of the internal FPGA clock, which

can be improved by using an external crystal. Notice the highlighted markers are at the

maximum and minimum amplitude points. These correspond to 1.52 V and 800 mV, which

are both within the bounds of the IQ modulator.
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Figure 6.1: Frequency spectrum of the carrier signal from the ADF4351 VCO

In figure 6.3, the frequency domain of the in-phase positive signal is shown. The markers

indicate the first two peaks which are at 500 Hz and 1500 Hz. Although the symbol interval

is at 1 ms, the frequency is at 500 Hz. Hence, the pulse shape filter passes the 500 Hz signal

with -21.5 dB while attenuating the 1.5 kHz signal to -39.7 dB.

Moving on to the VSA, the symbol decoding of the RF signal is shown in figure 6.4.

The top left plot shows the symbol constellation where the received signal goes between two

symbol points. This matches the plot on the right which shows the decoded binary values

(0x33). The yellow highlighted bits are indicating the burst-search feature of the VSA to

find the intended bit sequence. The plot in the bottom left shows the frequency domain of

the RF signal while the bottom right plot shows the time domain of the decoded baseband

signal. Notice the right sidebar shows the measurement interval of 50 bits, the points per

symbol set to 16, and the symbol rate set to 1.02 kHz. Ideally, these would be set to 8
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Figure 6.2: Time domain of the baseband signal from the TinyFPGA

points per symbol and 500 Hz however, these cannot be set due to the minimum symbol

rate of 1 kHz of the VSA. Also, the rate matches the slight offset from the time domain

plot, where the 1.02 kHz symbol rate is two times the 509.97 Hz frequency.

Lastly, figure 6.5 shows the output when the input data contains random bits. The

constellation diagram shows four clusters of symbols while the decoded values are all random

bits. The main plot to observe is the time domain plot of the baseband signal. This is

known as an eye diagram due to the overlaid signals forming an eye shape. The middle of

the eye represents the optimal sampling point (highest SNR) for the receiver. Whether the

eye is open or closed is determined by the timing errors due to clock jitter and noise-like

interference added to the RF signal.

6.1.2 Testing Architecture

Identical to the earlier implementation, the same carrier signal shown in figure 6.1 is passed

into the LO positive input of the AD8346 IQ modulator.

Looking at the baseband signal, the time domain plot from figure 6.6 shows the same

symbol interval of 1 ms and similar voltage level bounds of 1.52 V and 720 mV. However, the
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Figure 6.3: Frequency domain of the baseband signal from the TinyFPGA

frequency of the waveform is at 500.00 Hz as opposed to the slight offset from the previous

architecture. This is due to the Basys 3 board having an external crystal that provides a

much more stable clock.

With the frequency domain plot in figure 6.7, it is also identical to the earlier architecture

with the same peaks of 500 Hz and 1500 Hz. In this case, the 500 Hz passband signal is

-18.4 dB while the attenuation at 1500 Hz is -33.7 dB.

The VSA symbol decoding plot in figure 6.8 is nearly identical to the earlier imple-

mentation. The only difference is the symbol rate of 1 kHz due to the 500 Hz waveform

frequency.

With random input bits, the same constellation is shown in figure 6.9. The eye diagram

shows a similar eye shape where the middle of the eye is open, indicating the ideal sampling

point for the receiver.

6.1.3 Alternate Architecture

In this architecture, the same carrier signal is used as shown in figure 6.1. This signal is

fed to the onboard ADL5375 IQ modulator, where the LO positive and negative inputs
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Figure 6.4: Input symbol decoding of the RF signal from the AD8346 IQ modulator

are already connected through loop filters. All of the subsequent plots for the baseband

time domain, baseband frequency domain, VSA input symbol decoding, and VSA random

symbol decoding are identical to figure 6.6, 6.7, 6.8, and 6.9 respectively from the previous

architecture. Although a completely different IQ modulator was used, there were no no-

ticeable differences in the output of each plot. This would imply that the IQ modulators

function independently from the baseband and carrier signals as expected.
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Figure 6.5: Random symbol decoding of RF signal from the AD8346 IQ modulator

Figure 6.6: Time domain of the baseband signal from the Basys 3 FPGA
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Figure 6.7: Frequency domain of the baseband signal from the Basys 3 FPGA

Figure 6.8: Input symbol decoding of the RF signal from the AD8346 IQ modulator
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Figure 6.9: Random symbol decoding of RF signal from the AD8346 IQ modulator
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Chapter 7: Analysis

7.1 End-to-End System

The following section covers an end-to-end setup for the entire QPSK modulation chain.

It starts from a transmitter sending known data through the proposed architecture to the

receiver. The RF signal is then received using a LimeSDR-USB Software-Defined Radio

(SDR) and demodulated with GNU Radio to recover the baseband signal. This would

mimic a satellite-to-ground communication system where the payload on the satellite would

send data to its transmitter, which transmits the RF signal to the ground station receiver

for recovering the payload data.

The payload is a Raspberry Pi 3B+ (RPI) which sends fixed data values (0x33) over

SPI. It is configured to function as the bus master and runs the SPI clock at 500 kHz while

the data rate is roughly 1 kHz. With the MISO signal behaving as an on/off switch, the

RPI starts sending data when the signal is low and stops when the signal is high. This

allows for flow control at the receiver end as the input data buffers reach full capacity.

Implementing the proposed architecture, the receiver is the TinyFPGA AX2 which func-

tions as a slave device on the SPI input bus. The same code discussed earlier is executed on

the FPGA and the output is the filtered baseband differential signals from the IQ channels.

These signals are passed into the PMOD-DA2 DACs through a modified SPI bus at the

same 500 kHz SPI clock rate and 1 kHz data rate.

Next, the DACs receive the digital baseband signals and convert them to analog signals.

The outputs are updated as soon as a new SPI data packet is received, hence the output

rate is also 1 kHz. Both sets of differential signals are connected to the appropriate positive

and negative inputs of the AD8346 IQ modulator.

For the ADF4351 VCO, the board is controlled over USB and powered using a power
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supply. The carrier frequency is set to 2.4 GHz and LO positive output is connected to the

IQ modulator LO input. Although the VCO provides differential outputs, the IQ modulator

board is configured in single-ended mode and only the positive signal is needed.

Lastly, the IQ modulator is also powered by the same power supply and generates the

resulting RF signal. This is connected to the RX input of the LimeSDR-USB, which is set

to use the high-band specific channel for inputs greater than 1.5 GHz. Once the signal is

sampled and demodulated by the GNU Radio software, the baseband signal is recovered at

the receiver end of the system. The entire setup is shown in figure 7.1.

Figure 7.1: End-to-end setup of QPSK modulation chain

Looking at the GNU Radio flowgraph in figure 7.2, it largely resembles the receiver

side of the QPSK baseband structure from the implementation section. Starting with

the left side, the osmocom source block is used to interface with different SDRs. In this

case, it is configured to work with the LimeSDR-USB with the frequency set to 2.4 GHz,

bandwidth being automatically controlled, and sample rate of 200 kHz. The block generates
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IQ samples at the specified rate, which are passed into an AGC block. This block along

with the symbol sync block is identical to the receiver side of the QPSK baseband structure

from the implementation section. However, the flowgraph differs as the output is passed

into a Costas loop block.

The QPSK baseband simulation from the implementation section assumed that the

baseband signal is perfectly centered at zero frequency. However, this is not the case with

a real hardware implementation where the transmitter oscillator may have a slight offset

when upconverting to the 2.4 GHz carrier frequency. Similarly at the receiver, the oscillator

in the LimeSDR-USB can have a different offset from the carrier frequency, resulting in the

baseband signal being frequency shifted. The Costas loop is used to adjust the frequency

shift back to zero frequency. Lastly, the signal is viewed in the time domain and frequency

domain using the sink blocks [9].

Figure 7.2: Flow graph for QPSK demodulator

From figure 7.3, the top plot shows the time domain of the demodulated signal while the

bottom plot shows the frequency domain. The time domain plot has both IQ traces that

are overlapping each other. Once the IQ channels are re-interleaved with odd and even bits,

the result is the same as the transmitted data. In the frequency domain plot, the distinct

spike corresponds to 1 kHz as expected.
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Figure 7.3: Time domain and frequency domain plots for QPSK demodulator

Setup Considerations

For the SPI input device, the current setup is to have the RPI as the bus master while

the FPGA is the slave device. The FPGA uses the MISO signal to enable/disable the

data transmit from the RPI. However, a typical SPI implementation would allow the RPI

to transmit continuously while the FPGA would send ACK/NACK bytes over the MISO

signal. An ACK would indicate the byte being transmitted is successfully received by the

FPGA. A NACK would be sent to indicate the FPGA buffers are full and that the RPI

should keep re-transmitting the last byte until acknowledged by the FPGA. The flip side of

this implementation would be if the FPGA was the bus master and the RPI was the slave

device. In this case, the FPGA would send a byte to request the data from the RPI. When

the buffers are full, the FPGA can simply turn off the SPI transmission to prevent new

data from being requested. Note that having the FPGA as the bus master would require it
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to generate the SCK clock signal, resulting in more resources being used.

When performing carrier synchronization, the Costas loop method is known to have

a phase ambiguity when decoding the data symbols. This can be solved by validating

the output symbols with a known synchronization header. If the symbols are inconsistent

with the header, then the flow graph can be re-run until the correct header sequence is

detected. Otherwise, the received data can be corrected manually by shifting the symbols

and adjusting the data bits. Another approach to solve this issue is using differential

encoding. This is where the symbols are encoded based on changes in the data bits, as

opposed to the symbols corresponding to the data bits themselves [9].
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Chapter 8: Conclusion

With the growing number of small satellites being launched, the PocketQube form factor

has gained attention for its reduced launch fees and relatively inexpensive building cost

with the trade-off of power and size. With more complex missions taking place, the need

for higher data rates using better modulation schemes becomes apparent. This growth has

also increased the congestion at the typical VHF/UHF bands and provokes the use of higher

frequency bands for better signal strength and higher bandwidth.

To address these issues, this thesis proposes a QPSK transmitter architecture for S-band

operation on PocketQubes satellites. This architecture alongside the testing and alternate

architectures is shown in detail starting with the overall functionality of the QPSK structure.

Next, the design of each architecture was shown with the reasoning for selecting the specific

components. Then, the implementation stage covers the simulation, hardware, and software

aspects of the architectures. This is followed by the testing of each architecture which verifies

the intended behavior of the transmitter. Lastly, the analysis portion brings the proposed

architecture into an end-to-end test where data is sent through the entire chain from the

transmitter side to the received end.

Although the testing and analysis portions show this architecture being a viable option

for use on PocketQube satellites, additional testing needs to be conducted. This would

include building the final board and undergoing functional and environmental testing. While

the output plots show the expected symbols being received while transmitting at 2.4 GHz,

these were under the assumption of no channel impairments which will inevitably cause

symbol errors. Additionally, these tests would also reveal the performance bounds of the

architecture. With the end-to-end link being tested at a 1 kHz data rate, the upper and

lower bound may vary from this initial baseline.

To build on this, other variations can be considered in place of the QPSK structure.
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This includes offset-QPSK, 8-PSK, or even higher-order modulation schemes. These can be

achieved in the FPGA case by building a generic symbol mapping block where the mapping

between the input data and output symbols can be modified. Similarly in the MCU case,

it will involve changing the current mapping function to be the desired symbol mapping.

In both cases, the underlying hardware may need to be changed as well if the MCU cannot

handle the extra processing or if the FPGA does not have enough hardware resources.

In future implementations, the idea of software-defined modulation could be incorpo-

rated, where the modulation can adapt to a changing communication channel to optimize the

data rate. Implementing this feature would require additional hardware and accompanying

software which far exceeds this architecture. However, with enough hardware resources and

processing capability, the modulation scheme could be reconfigured in software to maximize

performance. This would result in better link reliability and efficient use of the channel.
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