DETERMINING COMPUTER ARCHITECTURE AND
COMPLIER STRUCTURES THROUGH INDUCTIVE
INFERENCE: A PRELIMINARY INVESTIGATION

by

M. Stauffer
R. §. Michalsks

Report #8906, Department of Computer Science, University of Illinois, Urbana, Il-
linois, January, 1983.

ORIGINAL

Determining Computer Architectures and Compiler
Structures Through Inductive Inference:
A Preliminary Investigation

M. D. Stauffer
R. 5. Michalski

January 1983

File Ne. UIUCDCS-F-83-506 186 8363

¥

i

hi

January 1983

Netermining Computer Architectures and Compiler
St ructures Through Inductive Inference:
A Preliminary Investipation

M. N. Stauffer
R-. S. Michalskti
Department of Computer S5clence
University of Illinois
Urbana, Tllinois

I5G 83-6

File No. UIUCDCS-F-83-906

ABSTRACT

With the current proliferation of computer architectures and programming
languages, the selection of an appropriate machine-architecture and compiler
structure has become a complex task, requiring special expertise. This paper
presents a formulation of this task as an inductive learming problem and

discusses some preliminary results.

Index terms: Knowledge Acquisition, Computer Architectures, Concept Learning,

Inductive Inference, NDecision Rules, Conceptual Data Analysis.

This work was supported in part by the MNational Science Foundation Grants No.
MCS 82-05896 and MCS 82-05166.

s

Determining Computer Architectures and Compiler
Structures Through Tnduetive Inference:
A Preliminary Tnvestigation

M. D. Stauffer
R. S. Michalski
Department of Computer Science
University of Illinois
Urbana, Illinols

1. Introduction
Designing a computer architecture and compiler structure that 1s well-
suited to a given eclass of applications is a difficult problem, requiring
special expertise and experience from a designer. The main difficulty is that
the number of combinatieons into which the available hardware components and
compiler modules can be arranged is potentially very large. Receatly, a lot
has been learned about this problem by the development of the PARAFRASE system
[2]. This system is an optimizing preprocessor that determines data
dependencies in a serial FORTRAN program and attempts to restructure the
program in order to achieve the maximum speed-up on a parallel machine. In
the process, PARAFRASE gensrates a large number of statistics characterizing
the input program and the transformed program. The value determined for each
statistic depends on the program and on the optimization steps required for
the target machine architecture. At the present time, there are three main
hypothetical architectures for which programs have been analyzed:
SEA--Single-Execution Array, MEA==Multiple=-Execution Array, and
MES--Multiple-FExecution Scalar. Future plans inelude a number of other
hypothetical and actual machines, such as the CRAY, CYRER 205, ete.

For each (program,target machine/compiler) pair, PARAFRASE generates
approximately one thousand statisties which describe the original program
(number of DO loops, loop-nesting-depth), the transformations which were
performed (number of loops interchanged, number of IF-statements removed), and
the transformed source (number of wvector operations, number of linear
recurrencas) . In additfion, a measurement of the resulting speed-up of the
program ls recorded. All of this data 1ls stored in a large database which will
eventually hold information on Fifty packages of 10-40 programs each, times
ten or more machine-architecture/compiler combinations, times the 1000+
statistics, i.e., approximately 400,000 data items altogether.

Two uses are envisioned for this data. One, more practical, use is for
recommending an appropriate computer architecture to a client interested in
running well-defined software packages. This can he done hy wusing analogy:
that architecture 1is suggested that performs well with programs that are
gimilar to those in the client’s package. Another, more theoretical, use 1is
to develop insights and better undevstanding of the relationships that exlst
hetween various program chatacteristics and speed-up achievable on a given
computer architecture and compiler structure.

A& major difficulty faced in either case is the sheer volume of the data
available. Another difficulty 1is poor understanding of the relevance of
various variables and statistics to the task. Some wvariables, such as the
number of Llinear recurrences, are obviously relevant to the cholce of a
particular machine architecture for a given program package. Other
variables——such as the number of program statements-—seem to be of lesser
relevance. There are a large number of variables whose degree of relevance is
still unknown. Clearly, a method for mechanically determining the relevance
of variables and/or their combinations is highly desirable. Because of the
volume of the data and the lack of established procedures for determining
relevance, an Artificial Intelligence approach te the problem is ‘necessary.
This paper makes an attempt to attack this problem by formulating it as an
inductive-learning task, and solving It by applying already-developed
inductive-learning methodologies. We have adapted for this purpose an
inductive program we have developed, GEM, whose predecessor AQLL has been very
successful in solving prublems in other duma[ns [4] [8].

2. Inductive Tools

GEM [9] is the latest in a series of inductivevlearninﬁ programs that we
have developed and experimented with which wuse the A" algorithm (others
tnclude ESEL, AQ7UNI, AQ7, and AQLISP) [7] [10] [5]. The A% algorithm [6]
creates descriptions of object classes from examples of objects belonging to
those classes. Examples are formulated as lists of attribute-value pairs.
The fundamental basis of the A? algorithm is the use of the negative examples
of each class (typically the events of all of the other classes) as
constraints on the generalization of the description of the elass. If
unlimited resources of time and space are availahle, the A% algorithm will
generate the most general description of each class possible given the input
data. As unlimited resources are not available, user-specified cost functions
are used to choose and keep only the "best" hypotheses sufficient to account
for the events of the class. The most often wused cost Ffunctions have the
effect of minimizing the number of conjunctive statements in the output
descriptions, and of minimizing the number of variables present in each of the
statements.

ALt e g

Our goals for GEHN are:

1. To implement the A7 algorithm in a modularized, well-structured, and
well-documented program suitable both as a "production” tool and as a
basis for further research and experimentation.

2. To provide relational-table iaput and output compatihle with the QUIN
relational-database system [1].

3. To add constructive—induction--automatic creation of new wvariables
which are logical or arithmetic functions of the existing variables.

4, To add the capahility to induce arithmetic relations between
variables, a la RACON [3].

In addition to these capabilities, related projects are now wunder
development which will provide other Ffeatures to GEM as pre- and post=
processors. These projects include VARSEL, a program to select most-likely-
useful wariables when there are more of the original variables than GEM can
handle, and REVAL, a program to test unknown events against GEM-output
descriptions.

3. Formulation of the Problem as an Inductive Task

Determining relevance of the variables 1in the PARAFRASE data can be
defined as a problem of inductively learning general descriptions from
specific examples. There are two ways of formulating the corresponding
inductive task. One s to divide the programs in the database into classes
associated with those architectures For which they can achieve maximum speed-
ups The GEM program can then be applied to determine a unifying discriminant
description of each class 1in the context of the other classes. These
deseriptions would indicate which variables and in what form are relevant for
achieving the highest speed-up for a given class of programs.

Another formulation is to take all programs analyzed for a particular
architecture, divide them into several classes on the basis of speed-up, and
Induce discriminant deseriptions of the eclasses 1in terms of the program
statistics rocorded in the database. If a particular statistic did not appear
in the description of the good or bad performers, or if it appeared bhut Its
range of values in the description spanned almost all of the possible values,
then that statistic could be presumed to be irrelevant.

In general, let e be a description of a program (an "event") in the form
of a 1ist of program characteristics and generated statistics. (Some exemplary
varlables of the over 1000 defined were given in Section l.) Suppose that this
program was optimized for machine architecture A, after which it was compliled
and executed. Suppose further that this optimized program obtained a speed-up
in the "good" sub-range.

The above can be expressed as a productlon tule:

& 1> A
g
stating that if a program has description e, then it will run well on
architecture A, TF the speed-up for program e were "had", we would have]

@ LA Ab

If we have more than one event assoclated with "good" or "bad" performance,
then we have sets of productions:

:> A}, where e; s in the set of good performers,
H

{ e . E
{ ei P AE }, where Ei {s in the set of bad performers, EE

In the terminelogy of inductive learning, E_ and E, can be viewed as sets of
"positive" and 'negative" learning examples (i.2., examples of good and bad
cholces of programs to be optimized for computer architecture A). Since, 1in
general, we consider not one hut several computer architectures, a general
formulation of the problem is:

Given: Sets of production rules for "positive'" examples associated with each

computer architectura:

{ e iy AL}
il Pl lg

{ €. p Ay, }

{ ey £1> A}
mg

where m is the number of architectures considered, and sets of production
rules for "negative" examples:

Eeiz Pl Ay)

ey :f) Apy b
{ e, ::} Amb }
Determine: A set of rules:
o 4
R ::}

where each R, is a condition composed of some logical combination of the
program chatacteristics and generated statistlecs which best describes the

corresponding class of good-performance programs.

4. An Initial Experiment

The programs From the EISPACK package (a set of programs for analysis of
eigenvalue problems) were divided Into five groups (eleven programs each)
ranked by the speed-up achleved on the BSEA arvrchitecture {as estimated by
PARAFRASE). GEM was then applied to determine a discrimlnant description for
characterizing the class of very good performers In the context of the other
classes. One of the eleven programs in the "very good" class is represented

graphically in Figure 1.

Number DO Loops

(a) I 01 6116 |

1 2 3
(b 0O |1 01 01 0]
| e e s i
Number 1 | 01 61 4|
Vectorized s =]
00 Loops 2 i 01121
---------- |
3 | 0|

Figure 1

Input: Tescription
of a program after
optimization

The vector in Figure 1{a) shows the number of assignment statements 1in the
program that were originally enclosed, respectively, in one, two, and three
nested DO loops. The matrix in Fligure l{b) represents the same program after
optimization. The columns again represent the original number of D0 loops in

o

which the statements in the columns were nested; the rows represent the
numher of the enclosiag loops which PARAFRASE was ahle to vectorize (transform
to a form where successive iterations are executed simultaneously on different
pProcessors). Tn our axample, the value 4 in column 3, row 1 of Figure 1{h)
indicates that out of 15 statements contained In depth-3 DO-loops {(i.e.,
nested in 3 loops), 4 have had one of their enclosing loops vectorized by

PARAFRASE.

The more DO-loops that are vectorized, the better should be the speed-up
of the program. Accordingly, one might expect that the description of the
class of very-good performers would contain relatively high values for the
variables corresponding ta the cells on the diagonal of the matrix, and
relatively low values for the variables corresponding to the top rank of

cells.

Number DO Loops ¥umber DO Loops

1 2 3 1 2 3
0 1 0-8 | | | I | I
R e I i e !
Number 1 | 0] [| [I | 1-7]
Vectorized e s | or e |
D0 Loops 2 11-58] | | |S5=16]
R e
3 l | | [

Figure 2

Output: Alternate hypotheses in
the description of the class of
very—pood performing programs

The results of GEM can be represented graphically by a diagram comparable
to that of Fligure 1. The two matrices shown In Figure 2 represent the two
conjunctive statements which GEM produced to describe the elass of programs
which experienced very good specd-up. The first statement could be
paraphrased as:

"Giwven a program, if the number of statements nested in only one loop,
which cannot be wvectorized, is from 0 to 8, there are no statements
nested in one loop which can be vectorized, and the number of statements
nested In two loops, hoth of which can be vectorized, is from 1 to 58,
then the program belongs to the class which can be sped-up very well for
this architecture." '

The wvalue sub-ranges mentioned can be given meaningful names such as
"yery low", "medium", and "high", to make their significance more obvious.

The empty cells indicate wvarlahles which are lrrelevant for
discriminating the class of very-good performing programs from the other
classes of programs. The remaining variables confirm, at least in part, our
pxpectation that programs whlch speed up very well have relatively low values
in the top rank of variables and higher values towards the diagonal.

5. Critique and Proposed Further Research

The wvariables and their values that were originally present [n the Input
data may not be the most useful form of the data for determining relevance. In
our example, for instance, the number of statements in a cell varies in
importance from column to column, depending on the total number of statements
in each column, since speed-up really corresponds to the percentage of
statements that have been moved out of their original loop position——i.e.,
that have moved down their respective column. - Constructive Induction
(automated construction of new numeric variables which are mathematical or
logical expressions involving the input variables) could be used to create new
variables that are normalized--that is, the original variables divided by the
sum of the assignment statements in each’s column.

Such constructive induction can be handled two ways. A domain expert
using a system such as GEM can pgulde the wvariable creation process by
suggesting combinations of variables and operators likely to be relevant, and
declaring other combinations off-limits. Alternately, generate-—and-test
heuristics such as the trend-detectors used in the BACON system [3] can bhe
used to automatically create useful new variables. Current research 1s
focusing on these and other ways to add coastructive induction of numeric
variables to the GEM implementation of the AY algorithm.

The rather arbitrary division of the input examples into classes of
differing speed-up suggests another vesearch problem: to extend the concept
of continous wersus discrete wvariable types to apply to the concept of
classes. In our problem, for example, a more appropriate approach than
dividing the range of speed-up into discrete classes might be to define a
single continuous range of speed-up--very good to wvery bad--upon which
programs can be placed. The descriptions of classes would then give way to a
test f(or tests) to determine placement of an "unknown'" program on the range
relative to the known examples, perhaps by generating a predicted speed-up.
(Note that this is not the same as mathematical regresslion in that numeric
values are ordinal but not necessarily interval.)

Another current research problem is finding ways to {dentify and name
important or tecurring sub-expressions in descriptions, resulting 1in a
hierarchy of descriptions, and re—evaluating the distinetion between wvariable
and value In such a hilerarchy. 4

6. Acknowledgements

We would like te acknowledge the contributions of Paul O0’Rorke to the
design and coding of GEM, and of Professor D. Kuck to the formulation of the
PARAFRASE problem. This work was supported in part by the Wational Science
Foundatrion under grants No. MCS-82-05896 and MCS 82-05166,

REFERENCES

[1] Cheng, A., "QUIN-—Query and Inferential Datahase Sublanguage," to appear

(2]

[3]

[4]

[5]

[6]

(7]

(8]

(9]

(10]

as a Master’s Thesis of the Department of Computer Sclence, University
of Illinois, Urbana, Illinois.

Kuck, D., et al, "The Structure of an Advanced Vectorizer for Pipelined
processors,” Proc. A4th Intl. Computer Software and Applications Conf.,
October, 1980.

langley, P., "Rediscovering Physics with BACON.3," Proc. 6th Intl. Joint

Conf. on Artificial Intelligence, pp. 505-507, August, 1979.

Michalski, R. §., and Chilausky, R. L., "Learning by Being Told and
Learning Erom Examples: An Experimental Comparison of Two Methods of
¥nowledge Acquisition in the Context of Developing an Expert System for
Soybean Disease Diagnosis,” A Special Issue on Knowledge Acquisition and
Induction, Policy Analysis and Information Systems, No. 2, 1980.

Michalski, R. S., and Larson, J. B., "Selection of Mast Representative
Training Fxamples and Incremental Generation of VL Hypotheses: The
Underlying Methodology and the Description of Programs ESEL and AQLL,"
Report No. 78-867, Dept. of Computer Science, University of Illinois,
Urhana, May, 1978.

Michalski, R. S., "Synthesis of Optimal and Quasi-Optimal Variable-Valued
Logic Formulas," Proceedings of the 1975 Intern. Symp. on

Multiple-Valued Logic, Bloomington, Indiana, May 13-16, 1975.

Michalski, R. 5., "A System of Programs for Computer-Aided Inductien: A
Summary,” Proc. 5th Intl. Joint Conf. on Artificial Intelligence, MIT,

Boston, August, 1977.

0’Rorke, P., "A Comparative Study of Two Inductive Learning Systems,"”
Internal Report No. 82-1, Intelligent Systems Group, Dept. of Computer
Science, University of Illinois, Urbana, Tllinois, 1982.

Stauffer, M. D., "GEM/0--User’s Guide and Program Descriptien," to appear

as a report of the Department of Computer Scilence, Unlversity of

Illinols, Urbana, Illinois.

Stepp, R., "Learning Without Negative Examples via Variable-Valued Logic
Characterizations: The Uniclass Inductive Program AQ7UNI," Report No.
79-982, Dept. of Computer Science, University of Illineis, Urbana, July,
1979,

BIBLIOGRAPHIC DATA 1. Report Na. 2
SHEET UIUCDCS-F-83-906

3. Recipient's Accession No.

4. Title and Subtitle
Determining Computer Architectures and Compiler Structures
Through Inductive Inference: A Preliminary Investigation

5. Repore Dare
January 1983

6.

7. Author(s)
M. D. Stauffer and R. S. Michalski

8. Performing Organization Repe.
Qe

9. Performing Organization Name and Address
Department of Computer Science
University of Illinois

Urbana, IL

10. Project/Task/Work Unit No,

11. Contract /Grant No.
MCS 82-05896
MCS 82-05166

12. Sponsoring Organization Name and Address
National Science Foundation
Washington, DC

13, Type of Report & Period
Covered

14.

15. Supplementary Notes

16. Abstracts

discusses some preliminary results.

With the current proliferation of computer architectures and programming
languages, the selection of an appropriate machine-architecture and compiler
structure has become a complex task, requiring special expertise. This paper
presents a formuation of this task as an inductive learning problem and

17. Key Words and Document Analysis. 17e. Descriprors

Knowledge Acquisitien
Computer Architectures
Concept Learning
Inductive Inference
Decision Rules
Conceptual Data Analysis

17b. Identificrs /Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement

19, Security Class (This

21. No. of Pages

Page
SINCLASSIFIED

Report) g
UNCLASSIFIED
20. Securiey Class (This 21. Price

FORM MNTIS- 38 (10=-70)

USCOMM=-DC 403258:-PT1

