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Recently, the interest in pattern recognition approaches to the analysis of clinical 

neuroimaging data has increased substantially. A crucial advantage of multivariate 

pattern recognition algorithms in comparison to the traditional univartiate approaches is 

that they provide predictions on the level of individual subjects. It is this multivariate 

nature of pattern recognition algorithms that results in increased sensitivity over 

univariate methods and has led to numerous applications in clinical research. Meanwhile, 

advances in neuroimaging technologies have improved our understanding of brain 

function in psychiatric and neurological disorders such as mood disorders, drug abuse 

and addiction, schizophrenia, Alzheimer’s disease, traumatic brain injury,-. These 

promising advances in functional neuroimaging technology and multivariate pattern 

recognition’s applications in neuroimaging data analysis motivated the work presented in 

this dissertation. Monitoring and evaluating of human brain performance during the 

execution of functional experiments have revealed evidence regarding distinctive pattern 
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of brain activity between healthy individuals and individuals with brain functional 

disorders. Except for certain cases, to date, the results of these studies have had minimal 

clinical impact and despite much interest in the use of brain scans for diagnostic and 

prognostic purposes, traditional and often ineffective diagnostic and prognostic 

approaches are the common practice for neurologists and psychiatrists.  

There are a few limitations that restrict the clinical translations of identifying 

functional biomarkers to characterize certain brain functional disorders. Firstly, majority 

of the related studies are focused on group studies that attempt to signify differences 

between the groups of subjects and do not provide description at the individual level. 

Secondly, the common techniques for characterizing functional neuroimaging response at 

the individual level are traditional single-channel time series feature extraction techniques 

that do not necessarily fit into the neuroimaging multichannel time series frameworks. 

Finally, for the more recently developed modalities such as fNIRS very few studies have 

attempted to identify biomarkers in brain disorders through the data mining and machine 

learning approaches. Therefore, in this dissertation emphasis was placed on improving, 

developing, and extracting clinically adaptable neuroimaging features to enable 

translating the laboratory work into clinical environments. In particular, machine learning 

algorithms and data mining techniques were utilized to generate spatio-temporal features 

from the neuroimaging time series and were evaluated for diagnosis of certain brain 

activity disorders. The presented work in this dissertation offers novel approaches for 

neuroimaging feature extraction, effective dimensionality reduction, and has applications 

in non-invasive and early diagnosis of certain brain functional disorders. 



 
 

1 

1. Introduction 

 

1.1. Biomarker identification  
 

Advances in neuroimaging technologies have improved our understanding of brain 

function in psychiatric and neurological disorders such as mood disorders, drug abuse 

and addiction, schizophrenia, Alzheimer’s disease, traumatic brain injury, etc. Monitoring 

and evaluating of human brain performance during the execution of functional 

experiments have revealed evidence regarding distinctive pattern of brain activity 

between healthy individuals and individuals with brain disorders. Except for certain 

cases, to date, the results of these studies have had minimal clinical impact and despite 

much interest in the use of brain scans for diagnostic and prognostic purposes, traditional 

and often ineffective diagnostic and prognostic approaches are the common practice for 

neurologists and psychiatrists.  

One of the reasons for this hesitation in translating the laboratory work into clinical 

environments, is that major research for investigating the brain disorders using the 

neuroimaging modalities is focused on group studies where signifying a difference 

between the healthy population and a population with brain disorder is of interest rather 

than characterizing the individuals with brain disorder. The neuroimaging modalities will 

be useful in the clinical settings if decision making on the individual using their collected 
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data is possible at the level of the individual. To be able to explicate the functional basis 

of the brain disorders, a data analytics framework is required that can signify the set of 

potential biomarkers in the individuals from the group with brain disorder and their 

differences with the individual from the healthy individuals. However, fully identifying 

the potential functional biomarkers encompassed in the collected spatio-temporal brain 

activity from the individuals with brain disorder is a challenging problem as each of the 

neuroimaging modalities have their own inherent spatial and temporal limitation.  In this 

dissertation, problem of identifying the functional biomarkers for brain disorders is 

addressed through utilizing through Machine learning (ML) (Bishop, 2006) algorithms. 

ML algorithms are employed to improve, develop, and explore the functional biomarkers 

for the functional neuroimaging data collected from the human cerebral cortex (Hagmann 

et al., 2008).  

1.2. Brain Functional Activity  
 

1.2.1. Brain cerebral cortex 
 
There are about 100 billion neurons in human brain. Neurons send and receive 

electro-chemical signals to and from the brain and nervous system. Neurons are 

connected with an average of 1000 other neurons. The local interconnections between 

neurons construct structural segregated and functionally specialized regions of the human 

cerebral cortex(Hagmann et al., 2008). Brain’s cerebral cortex covers the outermost layer 

of the brain and consists of nerve cell bodies made up of gray matter. As shown in Figure 

1-1, cerebral cortex is divided into four different lobes with distinct location and 
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functionality: frontal lobe, occipital lobe, parietal lobe, and temporal lobe (Hagmann et 

al., 2008).   

 

 

 

Figure 1-1 Four lobe of human brain 
 
 
 

Brain frontal lobe, which is positioned at the most anterior region of the brain, is 

involved in higher-level cognitive functions like reasoning and judgment, decision-

making, problem solving, attention, short-term memory tasks, motivation and planning.  
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The parietal lobe is immediately posterior to frontal lobe and is anterior to the 

occipital lobe. The parietal lobes is involved in sensation and perception as well as 

integrating sensory input, primarily with visual system. 

Temporal lobe is located anterior to the occipital lobe. Temporal lobe manages 

sensory input, auditory perception, language and speech production, as well as memory 

association and formation. It is also involved in semantics, or word meaning. 

Finally, occipital lobe, which is positioned at the most posterior regions of the 

brain, is primary visual processing center of the brain. Movement and color recognition 

and visual-spatial processing are interpreted within the occipital lobe.  

Overall, cerebral cortex is responsible for sensing and interpreting input from 

various sources and providing cognitive function. In other words, most of the information 

processing in the brain takes place in the cerebral cortex.  

1.2.2. Functional Neuroimaging   
 
Assessment of brain activity with the purpose of characterizing its spatio-temporal 

activity is performed through designing an experimental paradigm. The components of an 

experimental design are a number of participants, associated to one or more groups, a 

functional task to be executed by the participants, and one or more functional 

neuroimaging modalities to collected individuals’ brain response during the experiment. 

The functional experiments designs are divided into two categories with respect to 

presence or absence of in-situ stimulus: (a) experiments in which subjects perform a well-

defined task, e.g., making a decision or task-based experiments and (b) experiments in 
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which the brain activity is captured in the absence of a task, i.e. when the subject is in a 

state of wakeful rest and mind-wandering.  

 

1.2.3. Neuroimaging Modalities 
 
Functional neuroimaging modalities enable determining when and where neural 

activity occurs, in two different ways: (a) through capturing hemodynamic variations and 

(b) capturing electric impulses generated due to neuron communications.  

The hemodynamic response is the process in which blood provides glucose to the 

neurons corresponding to the activated regions at a greater rate than the neurons of the 

inactive areas. Increase in metabolic demand upturn cerebral blood flow (CBF) to the 

activated area of the brain results in a excess of oxyhemoglobin in the veins of the active 

area, and in a change of the local ratio of oxyhemoglobin to deoxyhemoglobin with 

respect to the inactive areas (Villringer and Dirnagl, 1994). A number of modalities are 

designed to quantify these changes with different spatial and temporal resolutions.  

Imaging modalities such as functional Magnetic Resonance (fMRI) (Huettel et al., 2004) 

imaging and functional Near Infrared Spectroscopy (fNIRS) (Villringer et al., 1993) are 

able to quantify the hemodynamic variations. The collected data using the 

aforementioned imaging is an indirect, with low temporal resolution (because blood 

flows slowly), of neural activity.  

On other hand, neurons’ communication takes place through an electrochemical 

process, by electro-chemical transmitters exchanging information between neurons. As a 

result of this process, neurons release ionic currents that flow within and across neuronal 
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assemblies. Imaging modalities such as electroencephalography (EEG) (Niedermeyer and 

da Silva, 2005; Teplan, 2002) or magnetoencephalography (MEG)  (Hämäläinen et al., 

1993) are capable of measuring changes in electrical activity as group of neurons become 

active. Imaging modalities of this category provide a direct measurement for neuronal 

activity and offer higher temporal resolution relative to the modalities that belong to the 

other category.  

A summary for a number of commonly used neuroimaging modalities is 

illustrated in Table 1-1. As it can be seen in Table 1-1, every modality, offers its own 

advantages and disadvantages with respect to spatial and temporal resolution, portability, 

head movement restraint, etc. Generally, the imaging modality of choice is determined by 

the purpose of the study. The functional brain activity for this dissertation has been 

collected by EEG and fNIRS modalities. Therefore, in the following sections common 

approaches to identify biomarkers for EEG and fNIRS modalities will be reviewed.  

 

 

 

 

 

 

 

 

 



 
 

7 

 

 
Table 1-1 Comparison of neuroimaging modalities. Adopted from (Nicolas-Alonso and 
Gomez-Gil, 2012) and (Koike et al., 2013) 
 

 

 

 

fNIRS fMRI PET EEG MEG 

Measure of 

neuronal 

activity 

Indirect Indirect Indirect Direct Direct 

Activity 

Measured 

Hemodynamic 

response 

Hemodynamic 

response 

Hemodynamic  

response 

Electrical 

activity 

Magnetic fields 
generated by 

neuronal 
activity 

 

Measurement 

area 
Cerebral cortex Whole brain Whole brain 

Cerebral 

cortex 

Cerebral 

cortex 

Temporal 

resolution (ms) 
≥ 𝟓𝟎𝟎 

𝟐×𝟏𝟎𝟑

− 𝟑×𝟏𝟎𝟑 
≥ 𝟏𝟎𝟒 ≥ 𝟎.𝟓 ≥ 𝟎.𝟓 

Spatial 

resolution (mm) 
20 ≥ 𝟏 ≥ 𝟏𝟎 𝟐𝟎 ≥ 𝟓 

Invasiveness No No 

Intravenous 

injection of 

radioactive ligand 

No No 

Body 

movement 
Tolerable No No No No 

Head restraint No Yes Yes No Yes 

Size, Movable Small, movable Large, fix Large, fix 
Small, 

movable 
Large, fix 

Portability Yes No No Yes No 
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1.3. Neuroimaging and Biomarker Detection 

   
Studies of brain function aiming to identify spatio-temporal biomarkers in 

different brain disorders have received increased attention over the past few years.  

The functional data is measured at equally spaced time intervals to trace fast-

paced neuronal activity during a period. Therefore, the collected brain activity data is 

typically translated into tractable signals formatted as time series, which is an ordered 

sequence of values. Identifying biomarkers from the collected neuroimaging data for a 

specific brain disorder refers to detecting the spatio-temporal characteristics encompassed 

in the time series of the individuals with the brain disorder. 

1.3.1. Electroencephalography (EEG)  
 

As discussed in the previous section, EEG is capable of measuring the electric brain 

activity caused by the flow of the electric currents during synaptic excitations, Figure 1-2. 

EEG signals are recorded non-invasively by placing the electrodes on the scalp to record 

the electrical signals that cross the scalp, skull, and other layers. An electrode placed on 

the scalp records the summed signal from many cells. 
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Figure 1-2 EEG signals are recorded non-invasively by placing the electrodes on the scalp to record the 
electrical signals that cross the scalp, skull, and other layers. An electrode placed on the scalp records the 
summed signal from many cells. Adopted from 
 
 
 
EEG signals’ amplitude ranges from 0.5 to 100 µV where measurements are made over 

millisecond intervals (Teplan, 2002). These signals in the time domain may be converted 

to signals in frequency domain by means of Fourier transform (Bracewell, 1965) where 

contribution of sine waves with different frequencies are visible. The EEG consists of the 

activity of an ensemble of generators producing rhythmic activity in several frequency 

ranges. To minimize the random behavior of the EEG response, sensory stimulation (i.e. 

task-based experiments) is employed to make these generators act more in a more 

correlated way. EEG’s stimulus-elicited responses are short-lasting events that give rise 

to “evoked” rhythms.  These evoked rhythms in the frequency domain, signify ensembles 
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of millions of neuron activity suggesting the transition from a disordered to an ordered 

state (Basar et al., 2012) while in the time domain the so called event-related potentials 

(ERPs) manifest these transient variations after a stimulus is presented.  Below, several 

works related to employing frequency rhythms and ERPs in studying individuals with 

brain disorders is reviewed.  

EEG Frequency Rhythms as Biomarkers 
 

In the first recording of human EEG, Berger (Haas, 2003), had mentioned the 

presence of two rhythms in the collected time series corresponding to certain frequency 

ranges of 7.5-12.5 (alpha rhythms) and 12.5-30 (beta rhythms) Hz. Following this 

finding, researchers identified a number of such signals that are be classified according to 

their frequencies. These well-known frequency ranges have been defined as theta (4-7 

Hz), delta (<4 Hz), and gamma (30-100 Hz) rhythms with respect to their distribution 

over the scalp or biological significance. 

EEG oscillations have been associated with different states of brain functioning 

(Başar et al., 1999; Klimesch, 1999; Moretti et al., 2004) while in the physiological sense, 

power of these oscillations denotes the synchronized activity corresponding to a number 

of neurons (Klimesch, 1999). Variations in EEG frequency bands’ magnitude have been 

employed as biomarker for many of the neurodevelopmental, neuropsychological, 

neurodegenerative, and psychiatric disorders (Van Deursen et al., 2008).  

Alpha rhythms is known to appear in normal adults during wakefulness, best observed 

when subjects’ eye are closed and are known to be detected mostly in the posterior region 

of the head (Niedermeyer, 2005). Evidence regarding alpha rhythm’s association to 
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cognitive and memory performance has been presented in (Başar et al., 1999; 

Niedermeyer, 2005). Decrease in alpha wave activity is historically linked to early 

diagnosis of Alzheimer disease (Gordon and Sim, 1967; Letemendia and Pampiglione, 

1958). Furthermore, decrease in the alpha and beta wave activity has been reported in 

individuals with mild Alzheimer (Hogan et al., 2003; Moretti et al., 2004)  

Beta waves are dominant during normal state of wakefulness with open eyes and 

are majorly distributed in the frontal and central part of the scalp(Teplan, 2002). Beta 

rhythm is considered as an index of cortical arousal and has been reported to be related to 

attention, perception, and cognition (Coyle et al., 2004). 

Spatial distribution of the beta power as well as variations in its magnitude has been 

studied as biomarkers in various studies. For instance, in the study by (Rangaswamy et 

al., 2002) increase in Beta’s (absolute) power was observed in alcohol-dependent 

subjects, uniformly distributed across the scalp where significant increase was observed 

in the central region. They concluded that Beta power is potentially an 

electrophysiological biomarker that signifies the imbalance in the excitation–inhibition 

homeostasis in the cortex. 

Relative changes in beta/delta power from the temporal lobes sites has been used 

as biomarkers in a work by (Merica and Gaillard, 1992). They examined if the rate of 

change in the spectral characteristics of EEG in beta/delta power may differentiate 

patients with insomnia from normal sleepers (control). To validate the effectiveness of 

their proposed biomarkers in categorizing subjects, a classification attempt was made on 
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a sample of 23 insomniac and 12 control subjects where classification accuracy of 75% 

was achieved.   

Theta band is present in drowsiness or meditation and its power has been associated with 

the condition of the sleep (Torsvall, 1987).  Its magnitude has also been used as 

biomarker for predicting the treatment outcome for the subjects with major depressive 

disorder (MDD) in (Iosifescu et al., 2009). A number of studies have attempted to use 

theta band as biomarker in the ADHD studies. In particular, magnitude variations of the 

theta band have been examined for the subjects with different range of age (children, 

teenagers, and adults with and without ADHD). (Snyder and Hall, 2006) have conducted 

a meta-analysis of these studies and have reported a consistent increase in theta power 

during a resting state in subjects with ADHD.  

Delta waves are present in healthy adults and are the main characteristics of the deep 

sleep(Harmony et al., 1996). Delta wave’s magnitude has been reported to decrease in 

subjects with depression(Borbély et al., 1984), AD (Basar et al., 2012) and increases in 

schizophrenic subjects (Flor-Henry et al., 2004; Mientus et al., 2002). 

Gamma activity oscillations occur in the high frequency range of the temporal spectrum 

of the EEG. It is known to reflect perceptual and cognitive processes (Basar et al., 2012; 

Tiitinen et al., 1993), therefore has typically been examined in association with cognitive 

impairment and dementia related disorders(Scheibel et al., 2003; Van Deursen et al., 

2008). In (Van Deursen et al., 2008), authors attempted to investigate the gamma band 

power as diagnostic biomarker for subjects with AD. Among three groups of subjects 

from AD (15 subjects), mild cognitive disorder (20 subjects), and 20 healthy control 
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subjects, increase in gamma band power was observed for subjects with AD in 

comparison with MCI and controls.  

EEG ERPs as Biomarkers 
 

The alteration of the ongoing EEG in response to stimuli is named an event 

related potential (ERP). ERPs consist of a series of elicited components (ERP 

components) which are time-locked events and reveal several sensory, cognitive and 

motor processes (Polich and Kok, 1995). Amplitudes of the ERPs are very low in 

comparison to the EEG time series. ERP components embedded in EEG signals can be 

extracted from the EEG signal by means of EEG signal averaging techniques over a 

number of trials.  By including numerous task-related trials in the averaging process, the 

averaged signal reveals more of the ERP component and the non-stimulus related EEG 

activity is minimized (Friedman and Johnson, 2000). In Figure 1-3 a number of ERP 

components are visualized.  
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Figure 1-3 Visualizing a number of Event Related Potential Components (ERPs). ERPs consist of a series of 
elicited components (ERP components) which are time-locked events and reveal several sensory, cognitive and 
motor processes (Polich and Kok, 1995) 
 
 
 
 

Amplitude, latency (the points in time at which the peak occurs), and scalp’s 

(spatial) distribution are three common features that are considered from the ERP 

components(Johnson and Rosenfeld, 1992). Component amplitude denotes the extent of 

neural activation while component latency shows the timing of this activation. The spatial 

distribution for the components’ activation provides a map for the components’ pattern of 

activity (Friedman and Johnson, 2000).  

ERP components are traditionally labeled by their polarity (i.e. P for positive going signal 

and N for negative going signal) as well as a value (in ms) that denotes the expected 

latency for the appearance of the wave’s peak.  P100, N100, N200, and P300, with the 
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occurrence expected latency windows of [50–190], [50–190], [150–300], [250–500] ms, 

respectively are four well-studied components that have been employed as biomarkers in 

studies involving populations with neurodevelopmental, neuropsychological, 

neurodegenerative disorders(Luck et al., 2011; Stahl et al., 2012; Taylor et al., 2014) 

The following discussion regarding employing ERP components as biomarkers is 

limited to P100, N100, and P300 components that potentially can cover two broad 

categories of disorders. P100 and N100 components have been associated with 

processing of different stages of human attention procedure and P300 component has 

been associated to brain’s cognitive procedure.   

Two common sensory stimuli to evoke N100 and P100 components are auditory 

and visual stimuli. Generally, it is well established that N100 and P100 are elicited in 

response to exogenous processes, which are modulated by physical stimulus attributes. 

These components are generated in temporal or visual cortex in response to an auditory 

or visual stimulus, respectively.   Visual and auditory P100 and N100 amplitude have 

been reported to be modulated by attention(Hillyard and Anllo-Vento, 1998) (Luck et al., 

1990). Therefore, these components have been studied as potential biomarkers in 

disorders pertaining to attention deficit such as ADHD (Nazari et al., 2010) 

In (Nazari et al., 2010), authors attempted to determine whether visual P100 latency and 

amplitude could be considered as potential biomarkers for ADHD. They collected the 

P100 ERP components from 15 children with ADHD and 15 children from normal 

control population. Delayed in latency and lower amplitude for P100 in ADHD 

population in comparison to the normal population was observed.  
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P300 component is known to reflect the fundamental cognitive events involving 

stimulus evaluation and immediate memory in normal populations in  

(Johnson and Rosenfeld, 1992; Nazari et al., 2010; Polich and Kok, 1995). It is usually 

elicited in response to the psychological tasks when subjects attend and discriminate 

stimuli that differ from one another on some dimension(Polich and Kok, 1995). It is 

relatively large in amplitude (10-20 V) and was first reported 30 years ago (Sutton et al., 

1965). P300 scalp distribution typically increases in magnitude from the frontal to 

parietal electrodes (Polich and Kok, 1995) while its P300 is also believed to reflect an 

information-processing cascade when attentional and memory mechanisms are engaged 

(Polich, 2007; Portin et al., 2000). 

P300 power as potential biomarker to differentiate populations with cognitive 

dysfunction such as MCI and AD has been investigated in several studies (Frodl et al., 

2002; Polich et al., 1990). In an attempt to investigate P300 potential to be used as 

biomarker for diagnosis of AD in its early stages (Polich, 1989) concluded that P300 

amplitude was smaller and peak latency longer for the Alzheimer patients compared to 

control subjects. 

P300 has also been employed to characterize schizophrenia disorder. Initially, 

(Roth and Cannon, 1972) reported smaller P300 in schizophrenic subjects in comparison 

to normal control. Later, P300 amplitude was adopted to be studied as a potential 

biomarker in schizophrenic individuals by more researchers (Duncan, 1988; Ford, 1999; 

Friedman and Squires-Wheeler, 1994);(McCarley et al., 1991). In (Jeon and Polich, 

2003), authors conducted a meta-analysis by working on a collection of 104 articles 
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pertaining to employing P300 as biomarker to characterize the schizophrenic subjects by 

identifying the underlying P300 deficits in the schizophrenic population in comparison to 

the normal control. They concluded that P300 was smaller in amplitude and showed a 

longer in latency in schizophrenic patients compared to normal controls. 

1.3.2. Functional Near Infrared Spectroscopy (fNIRS) 
 

As discussed in section 1.1, fNIRS is a non-invasive neuroimaging modality that 

is able to measures brain activity through quantifying the concentration changes of oxy-

hemoglobin (HbO) and deoxy-hemoglobin (HbR).  

Typically, an fNIRS device is comprised of a light source that is coupled to the 

participant’s head via a light-emitting diodes (LEDs) and a light detector. The emitting 

diode sends the Infrared light through the skull to a depth of approximately 1–3 cm below 

its surface. The intensity of the reflected light is measured by the receiving detector and 

enables quantifying the changes in the concentration of the HbR and HbO.  

The early ages of the fNIRS data analysis was focused on discriminating the 

signal that represents brain activity from the noise (Germon et al., 1994; Hoshi et al., 

2001; Kleinschmidt et al., 1996). As a result, taking the average values of the 

hemodynamic signals during the task period and performing a statistical test to identify 

the task-relevant hemodynamic response became a popular technique (Tak and Ye, 

2014). However, this approach does not utilize the time and shape dependent 

characteristics of the HbO and HbR signals. To address this limitation, (Schroeter et al., 

2004) utilized the well-known general linear model (GLM)(Schroeter et al., 2004) that 

linearly unmixes the data into several task-related and non-task related  sources . GLM 
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was later employed by several other researchers for fNIRS data analysis (Custo et al., 

2010; Koh et al., 2007; Minagawa-Kawai et al., 2010; Shimada and Hiraki, 2006; Singh 

and Dan, 2006).  

fNIRS Hemodynamic Spatio-temporal Characteristics as Biomarker 
 

Majority of fNIRS studies aiming to investigate the significance of difference 

between the healthy control group and the group with the neurological disorder, extract 

hemodynamic features from the HbO signal. It is due to the fact that HbO has higher 

sensitivity to the changes in cerebral blood flow than the HbR (Hoshi et al., 2001). fNIRS 

first use in clinical application dates back to 1994 in a study by (Okada et al., 1994). In 

this study, hemodynamic signals were from 38 healthy and 38 chronic schizophrenic 

subjects from the forebrain area of the both hemisphere were collected. To investigate the 

differences in the patterns of hemodynamic changes between the two populations in 

response to the mirror-drawing task, median, maximum and minimum values of the 

hemodynamic signals for every subject were extracted. For every variable, statistical test 

was employed to investigate the significance of difference between the populations. 

Authors reported that half of the schizophrenic subjects had deregulated patterns between 

the two hemispheres in the forebrain area where as the normal subjects showed distinct 

and well-integrated patterns of hemodynamic changes.  

(Monden et al., 2015) attempted to explore a method that enables characterizing 

individuals with ADHD to accurately distinguish individuals with ADHD from the 

healthy individuals.  The hemodynamic was collected in response to the go/no-go task 

(Jodo and Kayama, 1992) from 30 ADHD and 30 typical developing control children. 



 
 

19 

Authors employed compared HbO amplitude across certain regions of the brain and 

reported that subjects were classified to the ADHD and typical groups with high 

accuracy.  

1.4. Neuroimaging Feature Extraction Approach for Biomarker Identification    
 

As discussed in the previous sections, several attempts using the standard 

univariate analysis have been made to identify possible biomarkers from the 

neuroimaging data, which could be used for early diagnosis, treatment planning and 

monitoring of disease progression in individuals with certain brain function disorder. The 

proposed approaches have revealed a host of functional and structural alterations between 

subjects with wide range of brain function disorders and healthy control subjects. 

Although the commonly used univariate analysis is a valid methodology for comparing 

the brain activity between the two groups of subjects, but it does not fully exploit all the 

potential biomarkers that may play role in distinguishing the subjects. In addition, while 

it is capable of signifying differences between subjects with distinctive brain activity at a 

group level, it is incapable of providing a general model to satisfactory discriminate a 

patient from the healthy control subjects. 

Over the past few years, supervised and unsupervised Machine learning (ML) 

(Bishop, 2006) multivariate methods have been employed to address these limitations. In 

particular, supervised ML methods have been vastly used to differentiate task-specific or 

resting-state brain activity in brain-computer interface (BCI) (Lotte et al., 2007b) 

applications and infrequently to classify healthy subjects from individuals with a 

neurological disorders (Ahmadlou et al., 2010; Bosl et al., 2011; Rizk-Jackson et al., 
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2011; Stahl et al., 2012; Woon et al., 2007). Figure 1-4 illustrates the general problem 

that the supervised ML attempts to address.  

The advantage of employing multivariate ML algorithms for analyzing 

neuroimaging data is that unlike the traditional univariate group studies allows 

characterization at the level of the individual level, therefore yielding result with a 

potentially high clinical translation. Furthermore, the multivariate ML methods are 

sensitive to spatial distribution and subtle effects in the brain that would be undetectable 

using the univariate group analysis methods as the focus in these methods is on gross 

differences at group level. 

In the general supervised ML framework aiming to classify subjects to a group of 

healthy/typical and a group with brain disorder using the neuroimaging modalities, the 

algorithm receives a set of observation regarding the subjects (the neuroimaging data and 

class labels for subjects). A subset of the input data is used as “training” data to build a 

predictive model that can be applied to make to associate new subjects to one of the 

classes with respects to its collected data by a neuroimaging modality (Guyon and 

Elisseeff, 2006).  

1.4.1 The General Problem of Feature Extraction  
 
  As discussed above, the supervised ML approach has infrequently been utilized to 

automatically distinguish subjects with neurological disorder from the healthy subjects. 

The assumption underlying this approach is that anomalous brain activity is present in the 

neuroimaging data collected from the subjects with neurological disorder. The anomalous 
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activities are identified through informative feature extraction and the classification 

algorithm. Informative features are a number of characteristics extracted from the 

individuals’ neuroimaging signals that reflect similarities to a certain class of individuals 

as well as differences from the other class.   

 
 
 
 
 

 
Figure 1-4 The general diagram for a supervised machine learning classification. The neuroimaging signals from 
the subjects of different classes are used to train a classifier model.   The trained classifier makes prediction for 
the neuroimaging signals collected from the subjects with unknown class affiliation.   
 
 
 
 

Significance of feature extractions from the EEG and fNIRS signals is twofold.  

• Reducing Artifacts. In the context of functional imaging of task related activity, 

artifacts are the captured activities that are evoked by a phenomenon other than 

the experimental manipulation. EEG signals are known to be highly susceptible 

to the contamination caused by eye movements, blinks, cardiac signals, and 
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muscle activities whereas fNIRS hemodynamic signals are prone to combination 

of “spontaneous” hemodynamics (reflecting ongoing brain activity), various 

sources of physiological activity, and measurement noise. These artifacts present 

significant challenges for analysis and interpretation of the signals. Feature 

extraction as a mean of mining informative components of the signals, improves 

the performance of the aforementioned supervised ML approach.   

• Dimensionality Reduction. A major challenge in employing ML algorithms for 

EEG and fNIRS data analysis is their high dimensionality. The high 

dimensionality of the data is a natural consequence of the high temporal 

resolution of these modalities. The high dimensionality of the data adds more 

complexity, increases the computational time, and complicates the application of 

the ML procedures on the data due to the phenomenon called “curse of 

dimensionality” (Lotte et al., 2007b). In the supervised ML procedure, the curse-

of-dimensionality occurs if the number of training data is small (here, number of 

individuals data) compared to the size of the input data and results in poor 

performance for the employed algorithm (Lotte et al., 2007a).  

In the following section, most commonly used feature extraction techniques for EEG 

and fNIRS studies are reviewed.   

1.4.2. EEG and fNIRS Feature Extraction Techniques 
 

Mathematically, feature extraction is the process of extracting features from the 

raw data through a functional mapping. In other words, let 𝑥 be the neuroimaging time 

series of dimension 𝑛, 𝑥 = (𝑥 (1) , 𝑥 (2) . . . 𝑥 (𝑛) ), 𝑥 (𝑖)  ∈ ℝ. The components 𝑥 (𝑖)  of 
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this time series are the original features. A new set of features 

𝑦 = (𝑦 (1) ,𝑦 (2). . .𝑦 (𝑚)) (𝑚 < 𝑛) are extracted by a mapping function 𝐹,  

𝑦 (𝑖) = 𝐹!(𝑥 (1) , 𝑥 (2) . . . 𝑥 (𝑛) ).  

In multivariate EEG feature extraction approach, features may be obtained in time 

domain or frequency domain. The autoregressive model (AR) (Gersch and Yonemoto, 

1977) and discrete wavelet transform (DWT) are the most commonly used feature 

extraction techniques to investigate various neurological disorders using EEG in time 

domain and frequency domain, respectively.  

Early paper on AR method was published in 1977 by (Gersch and Yonemoto, 1977) . The 

authors described that AR models can be used to describe an EEG time series for the 

purpose of feature extraction. In an AR model, it is assumed that the value of the current 

sample,𝑥!, can be estimated as a linearly weighted sum of the previous samples, 

𝑥 (1) , 𝑥 (2) . . . 𝑥 (𝑛 − 𝑝) , where p is the model order and is generally chosen to be 

smaller than the number of time series samples. The AR model of a signal 𝑥  for in 

discrete time t is defined as follows:  

𝑥(𝑡) 
 = 𝑎!𝑥 𝑡 − 𝑖 + 𝜀(𝑡)

!
!!!   (1.1)  

where, 𝑥(𝑡) indicates the predicted value of 𝑥(𝑡)  and 𝑎!,𝑎!. . .𝑎!, denote the weight 

coefficient of the 𝑝𝑡ℎ-order model. The AR model parameters have been used in 

classifying patients with epilepsy (Chisci et al., 2010; Mousavi et al., 2008), patients with 

cognitive impairment (Li et al., 2014), patients with ADHD (Sadatnezhad et al., 2011) 

and sleep stages (Estrada et al., 2004). 
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The wavelet transform is an effective EEG feature extraction technique due to its 

attractive properties such as time–frequency localization (obtaining a signal at particular 

time and frequency, etc.) (Adeli et al., 2003). EEG analysis using Discrete Wavelet 

Transform (DWT) the original signal is decomposed into a several successive frequencies 

bands by utilizing a scaling and a wavelet function, associated with low-pass and high-

pass filters.  

The original EEG signal, 𝑥, is first passed through a half-band high-pass filter h[.] 

, and a low-pass filter  l[.] (Rioul and Vetterli, 1991). The filtering followed by sub-

sampling is one level of the successive decomposition procedure (this procedure is 

commonly referred to as sub-band coding) . The following formulation describes the first 

step of this procedure:  

𝑑!! =  𝑥 𝑛 . 𝑙 2𝑘 − 𝑛 ,
!

 

𝑎!! =  𝑥 𝑛 . ℎ 2𝑘 − 𝑛 ,
!

 

where 𝑑!! and 𝑎!! are level 1 detail and approximation coefficients at translation 𝑘 ( see 

(Shensa, 1992) , respectively. The second level of the wavelet transform is applied on the 

approximation coefficients of the first level,𝑎!! and 𝑎!! and 𝑑!! are obtained. This 

process may be repeated until no more subsampling is possible. The output at each level 

of this successive decomposition, called sub band, is a signal with a certain frequency 

range. Researchers either use the original sub band signals (or a subset of them) as feature 

elements or attempt to extract features from these signals to classify individuals with 

brain function disorder. For instance, the former has been employed in a study by  
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(Polikar et al., 1997) where the goal has been to develop a highly accurate diagnosis 

technique for AD.  The sub bands were considered as feature vectors and fed to the 

classification algorithm to classify individuals with AD. The latter approach was 

employed in (Ahmadlou et al., 2010) where the goal was to accurately classify children 

with autism. In this study, the fractile dimensions (Higuchi, 1988) of every sub band 

(obtained from a 3 level decomposition) were computed and  used as feature vectors for 

classifying children with autism.  

Although fNIRS has been available for several years but it has not achieved significant 

clinical use with respect to its availability and potential benefits. The research literatures 

published to date regarding potential fNIRS clinical use has mostly focused on 

applicability and reliable of the modality. The multivariate feature extraction approaches 

for fNIRS have been majorly developed for the BCI applications. The commonly used 

features from the fNIRS HbO signal are the signal’s maximum peak amplitude (Bennett 

et al., 2014; Ehlis et al., 2008; Kurz et al., 2014), mean value (Doi et al., 2013; Ehlis et 

al., 2008; Plenger et al., 2015), variance (Gottemukkula and Derakhshani, 2011) , slope 

(Hai et al., 2013), skewness and kurtosis (Holper and Wolf, 2011) . A number of 

researchers have attempted to employ the constructed BCI systems as a communication 

means for patients with motor disorders such as amyotrophic lateral sclerosis (ALS) 

(Naito et al., 2007) , or Duchenne muscular dystrophy (DMD) (Power and Chau, 2013).  

(Power and Chau, 2013) fitted a regression lines to the HbO and HbR signals and 

considered the slope of the lines as the features to classify a mental arithmetic task from a 

natural baseline state in an individual with DMD. Authors reported overall classification 
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accuracy of 71.1% and suggested that their findings demonstrate the potential of fNIRS-

BCI to be used by individual with DMD.  

 

1.5. Limitations of the Current Multivariate Feature Extraction Techniques 
 

It is very well established that brain functional and structural alterations due to a 

set of brain disease. These alterations expand over a widely distributed network of brain 

regions (Grady et al., 2001; Kennedy and Courchesne, 2008; Yu-Feng et al., 2007; Zhang 

et al., 2011). It signifies the importance of the spatial characterization in the process of 

biomarker identification thorough the feature extraction technique. Nevertheless, as 

discussed in section 1.3, the commonly used multichannel feature extraction techniques 

for EEG and fNIRS are essentially time series analysis techniques, which are not 

designed to incorporate the spatial information into their analysis. This highlights the 

need to develop higher level of feature extraction techniques that not only are capable 

of detecting information and discarding the noise but also considers the potential 

spatial connection between the collected signals.  

Furthermore, the typical EEG and fNIRS feature extraction techniques obtain 

discriminative information from individuals’ signals by treating signals from different 

channels independently and do not to consider the potential relation and correlation 

among the signals. To overcome this limitation, multivariate time series feature 

extraction techniques that attempt to identify features from multiple time series by 

treating multichannel data jointly need to be developed. 
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1.6 Organization  
  

In this dissertation, the supervised and unsupervised ML algorithms are employed 

to improve, develop, and explore the spatio-temporal characteristics of the EEG and 

fNIRS neuroimaging data.   

In Chapter 2, a new approach to trace the dynamic patterns of task-based 

functional connectivity, by combining dynamic time warping (DTW), and Quality 

Threshold (QT) clustering techniques, is presented. To capture the patterns of functional 

connectivity, DTW is employed to measure the functional similarities among channels. 

Unlike commonly used temporal similarity measures, such as cross correlation, DTW 

compares time series by taking into consideration that their alignment properties may 

vary in time. QT clustering analysis is then used to automatically identify the functionally 

connected regions in the brain.  

In chapter 3, the proposed approach in chapter 2 is evaluated on the EEG signals 

recorded from 5 healthy subjects as they performed an auditory oddball and a visual 

modified oddball tasks. As discussed in chapter 2, the stimulus-elicited brain responses 

are short-lasting events (John, 1990; John and Harmony, 1990; Koenig et al., 2005; 

Lehmann et al., 2005; Lehmann et al., 1998). Identifying the temporal windows 

corresponding to these events would be critical in studying task-based functional 
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connectivity. Ignoring these variations can lead to dismissing the dynamic interactions of 

the brain regions (Kang et al., 2011a). In the context of EEG, ERPs consisting of a series 

of elicited components (ERP components) manifest these transient variations after a 

stimulus is presented. The ERP components are time-locked events that reveal several 

sensory, cognitive and motor processes (Alexander et al., 1995). Hence, part of my 

proposed method of identifying functionally connected regions during the execution of 

the task, is concerned with exploring EEG signals within the expected temporal windows 

of a number of previously studied ERP components. 

In chapter 4, a novel neuroimaging time series feature extraction technique, relative 

brain signature (RBS) is developed. This technique uses orthogonal subspace projection 

to transform a set of time series associated to data point (e.g. set of EEG time series 

corresponding to a subject) into a new coordinate system. The proposed technique 

provides effective dimensionality reduction, which is crucial for neuroimaging data such 

as EEG with high temporal resolution. The proposed technique was named relative brain 

signature as the values in the transformed space quantify the relative association of every 

single time series to a class. Another unique characteristics of this technique is that it 

relies on the a priori information corresponding to a class, therefore, is feasible for 

clinical studies where databases corresponding to a class of certain disorder are available.  

In Chapter 5, the developed method in chapter 4 is applied on an EEG data set of  

abstinent alcoholics and  control subjects. To characterize subjects' relationship to the 

alcoholic and control populations, one RBS vector with respect to the alcoholic and one 

with respect to the control population is constructed. The applicability of the extracted 
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RBS vectors in identifying functional biomarkers over the brain of alcoholics is 

evaluated. To achieve this goal, a classification algorithm is used to categorize subjects 

into alcoholics and controls classes using the RBS feature extraction technique.  

In chapter 6, an approach for exploring potential hemodynamic functional biomarkers 

within the prefrontal cortex (PFC) that characterize subjects with Traumatic Brain Injury 

(TBI) is explained. To achieve this goal, a task-related hemodynamic response detection 

followed by a heuristic search for optimum set of hemodynamic features is introduced. 

To identify the hemodynamic signals that show task-related hemodynamic activity, trials 

with negatively correlated oxygenated hemoglobin (HbO) and deoxygenated hemoglobin 

(HbR) and HbO larger than HbR were considered for analysis. For identifying the 

optimum hemodynamic features, unlike common single feature analysis for studying TBI 

and healthy subjects, all the possible combinations of multiple hemodynamic features to 

compare the TBI and healthy populations were evaluated. Eleven hemodynamic features 

were extracted from HbO to determine the optimum set of biomarkers. I investigated the 

effectiveness of the extracted features in separating TBI and healthy subjects by utilizing 

a machine learning classification algorithm to score all the possible combinations of 

features according to their predictive power.  

In chapter 7, findings and contribution of this dissertation are reviewed.  
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2.  Cluster Analysis to Capture Functional Connectivity 

In Chapter 2, a new approach to trace the dynamic patterns of task-based functional 

connectivity, by combining dynamic time warping (DTW), and Quality Threshold (QT) 

clustering techniques, is presented. To capture the patterns of functional connectivity, 

DTW is employed to measure the functional similarities among channels. Unlike 

commonly used temporal similarity measures, such as cross correlation, DTW compares 

time series by taking into consideration that their alignment properties may vary in time. 

QT clustering analysis is then used to automatically identify the functionally connected 

regions in the brain.  

2.1 Functional Connectivity  
 

It is well established that brain is composed of functionally segregated regions. 

However, in contrast to such local specialization, brain activity is globally integrated at 

many levels ranging from the neuron to overall behavioral output(Tononi et al., 1994). 

Functional connectivity (FC) (Fingelkurts et al., 2005) is the approach of investigating 

the integration between these functionally segregated regions. Studies of resting state and 

task-based FC aiming to provide a biomarker through the potential connection between 

these spatially distinct regions have received increased attention over the past few years. 

Aside from healthy populations, different patient groups, including patients with autism 

(Kleinhans et al., 2008; Koshino et al., 2005; Pollonini et al., 2010), traumatic brain 
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injury (TBI) (Kasahara et al., 2010; Mayer et al., 2011), Alzheimer (Dauwels et al., 2010; 

Uhlhaas and Singer, 2006), and depression (Greicius et al., 2007; Sheline et al., 2010), 

have been the subject of FC  studies. These studies have identified altered connectivity 

networks in patient groups compared to the healthy group.  

However, It has been shown that the interactions between brain regions during the 

execution of a task are temporally dynamic (Kang et al., 2011b; Kelly et al., 2008; Liu et 

al., 1999). These interactions generally happen within milliseconds intervals. EEG by 

providing high temporal resolution can therefore, be employed to capture these short-

lasting events (Bhattacharya and Petsche, 2005; Koenig et al., 2002; Lehmann et al., 

2012). 

Assessing functional connectivity requires employing an appropriate measure of 

functional coupling among brain regions. Accordingly, several measures for detecting 

functional connectivity in either time domain or frequency domain have been proposed 

(Bhattacharya and Petsche, 2005; Jalili and Knyazeva, 2011; Pijnenburg et al., 2008). 

However, considering the short-lasting nature of the neurons’ commutations, to be able to 

trace the dynamic patterns of functional similarity among cortical regions, analysis in the 

time domain would be appropriate. Furthermore, the dynamic time warping (DTW) 

algorithm was employed to measure similarity among signals within each segment. DTW 

is a common practice in the field of speech processing (Sakoe and Chiba, 1978) and is 

used to compare time series by taking into consideration that their alignment properties 

may vary in time. In other words, DTW measures similarity between two signals by 

compressing/expanding them and looking for their best nonlinear temporal alignment. 
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With respect to the well-documented non-stationary behavior of the EEG signals, 

employing DTW is more appropriate in comparison to the conventionally used methods 

such as cross-correlation which generally requires the assumption of stationary. 

2.2 Dynamic Time Warping (DTW) 
 

As previously stated, the majority of the functional connectivity studies 

performed in the time domain use cross-correlation to analyze the similarities among 

signals. The major limitation of this technique is that it fails to capture the similarities if 

the alignment properties of the signals vary in time. To address this issue and to assess 

brain functional connectivity during the execution of a task more accurately, employing 

the dynamic time warping technique is proposed. 

DTW technique finds the optimal alignment between two time series through a non-

linear compression and extension of the time axes (as depicted in Figure 2-1). In fact, the 

basic problem that DTW attempts to solve is how to align the two time series in order to 

generate the most representative distance measure of their overall difference. Figure 2-2 

illustrates how the analysis is done. Suppose, we are interested in computing the DTW 

distance between two EEG signals d=(d1,d2…dN) and e=(e1,e2,…,eN) of length N . The first 

step is to calculate the distance between each point in signal d and all the points in signal 

e. Euclidean distance metric can be used for such distance computation. Therefore, for 

every point in signal d, N measured distance values are obtained, resulting in an NN ×

matrix (cost matrix) C∈ℝ NN×  (Figure 2-3). The signals are associated to this matrix 

such that the bottom-left and top-right corners of the matrix represent the distance 

between their beginning and the ending points, respectively. 
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Figure 2-1 Two hypothetical time series with an overall similar shape but not well aligned along the 
time axis. To find the optimal alignment between two time series, one point from the first time series 
may be compared against a number of points from the second time series, after (Keogh and 
Ratanamahatana, 2005). 
 
 
 

Once the cost matrix is formed, the second step is to find the best alignment between 

signals d and e. This alignment may be sought in a form of a warping path, p, consisting 

of a set of elements taken from matrix C (p=[p1… pL], where N≤L≤ 2N-1).  

A number of conditions can be enforced on this search, to reasonably limit the number 

of potential path candidates. For the analysis, only the paths satisfying the following 

conditions were considered:  

• Boundary condition: start and end points of the warping path have to be the very 

first and last points of the given time signals, respectively 

• Monotonicity condition: For any two consecutive points of the path, pk= ci,j and 

pk-1= cm.n , (ci,j and cm,n∈C) ,the following condition should be satisfied:  i-m 0≥ , 

j-n 0≥ . This condition guarantees that the path will not turn back on itself. 

• Step size condition: restricts the path to advance only one step at a time 



 
 

34 

The optimal warping path (optimal alignment) is the one having the minimal total cost 

among all possible warping paths. Mathematically the optimal warping path (dDTW) can 

be formulated as    

dDTW= min )
L
p

(
L

1L L∑ = .         

 
 
 

 

Figure 2-2 Two time series, which have similar pattern of activity but are not aligned in the time domain. Matrix 
C is the cost matrix in which the optimal warping path is shown as the sequence of solid squares (shown in red). 
 
 
 

Advantage of employing DTW technique in comparison to the common time 

series similarity measurement techniques that compute the point-to-point distance 

between two signals is visualized in Figure 2-3. Two hypothetical time series with an 

overall similar shape but not well aligned along the time axis (shown as a and b in the 

figure). To find the optimal alignment between two time series, DTW attempts to 

compare one point from the first time series against a number of points from the second 
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time series and selects the best match.  The difference in the point selection for 

comparison between DTW (red dashed line) and other common point-to-point selection 

techniques (solid blue line) is also illustrated in Figure 2-3. As depicted in this figure, 

DTW’s selection represents more of the similarity in the pattern of the signals in 

comparison to the other approaches.  

 
 
 
 

 

Figure 2-3 Two hypothetical time series with an overall similar shape but not well aligned along the time axis. To 
find the optimal alignment between two time series, one point from the first time series may be compared 
against a number of points from the second time series and the best match is selected.  
 
 
 

2.3 Quality Threshold (QT) Cluster Analysis 
 

The Quality threshold (QT) clustering is a partitioning clustering algorithm 

(Boley et al., 1999) originally developed for the analysis of gene expression data (Heyer 

et al., 1999).  One of the advantages of using QT over other clustering methods such as k-

DTW point selection 
  

A hypothetical point-to-point measurement technique 
(e.g. correlation) point selection 
  

a 
 

b 
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means (Hartigan and Wong, 1979)  is that it does not require specifying the number of 

clusters apriori. Moreover, the outcome of the algorithm is not dependent on the order of 

the points to be clustered, and it always returns the same cluster outcomes. Since the 

number of functionally connected regions in the brain in response to a functional task is 

not known in advance and needs to be determined, QT seems a feasible choice to tackle 

this problem.  

Let 𝑋 =  𝑥!, 𝑥!,… , 𝑥!} be the set of EEG signals, which are collected from 

different sites of the scalp and 𝑌 =  {𝑦!,𝑦!,… ,𝑦!} be the 𝑛 𝑚-dimensional feature 

vectors corresponding to {𝑥!, 𝑥!,… , 𝑥!}. Here 𝑦! is the feature vector extracted from 𝑥!.  

   

QT clustering approach is employed to identify the functionally connected regions 

in the brain from the set of EEG signals. Clusters are the functionally connected regions 

and the data points are the 𝑛 feature vectors.  

The basic idea of QT clustering for a given set of data points, 𝑌, and a threshold 

value, 𝑑, is as follows: Form a candidate cluster, 𝐶!, by starting with a random data point 

𝑦! and iteratively add other points 𝑦! ∈  (𝑌 − 𝐶!), with each iteration adding the point that 

𝑚𝑖𝑛!  (diamiter 𝐶! ∪ 𝑦! )   

where the diameter of a cluster (or quality of a cluster) is: 

 diameter C = min!"∈! 𝐷!!!!    

where 𝐷!!!!is the DTW distance between 𝑦! and 𝑦!. 

The process continues until no point can be added without surpassing the diameter 

threshold, 𝑑. If surpassing the threshold occurs, a second candidate cluster is formed by 
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starting with another point, 𝑦!  (𝑘 ≠ 𝑗 ). In order to achieve reasonable clustering quality, 

already assigned points are available for forming another candidate cluster. Once a 

candidate cluster corresponding to every data point is constructed, QT selects the 

candidate cluster with largest number of data points, removes the points, which belong to 

the cluster from consideration, and repeats the procedure on the remaining set of data. 

2.4 Summary of Chapter 2 
 

In this chapter, a novel approach for detecting the functionally connected regions 

in the brain, which is a well-established high-order functional biomarker for many brain 

disorders, is proposed. The first novelty of this approach lies in using a cluster analysis, 

QT, approach for automatically grouping the signals that have similar patterns of 

behavior. Advantages of employing QT to identify functionally connected regions are 

twofold. Firstly, it enables exploring all the possible clusters that indicate similar neural 

activity.  Secondly, the algorithm determines the number of functionally connected 

regions and it should not be specified a priori. The second novelty of the proposed 

approach corresponds to utilizing the DTW dissimilarity measure that unlike the 

commonly used methods considers the potential misalignment of the EEG signals 

through a non-linear compression and extension of the time axes.  
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3. Capturing Dynamic Patterns of Task-Based Functional Connectivity 
with EEG 

3.1. Dynamic Patterns of Functional Connectivity 
 

 In the previous chapter, a method to identify the functionally connected regions 

was proposed. In this chapter, the proposed method is evaluated on the EEG signals 

recorded from 5 healthy subjects as they performed an auditory oddball and a visual 

modified oddball tasks. As discussed in chapter 2, the stimulus-elicited brain responses 

are short-lasting events (John, 1990; John and Harmony, 1990; Koenig et al., 2005; 

Lehmann et al., 2005; Lehmann et al., 1998). Identifying the temporal windows 

corresponding to these events would be critical in studying task-based functional 

connectivity. Ignoring these variations can lead to dismissing the dynamic interactions of 

the brain regions (Kang et al., 2011a). In the context of EEG, ERPs consisting of a series 

of elicited components (ERP components) manifest these transient variations after a 

stimulus is presented. The ERP components are time-locked events that reveal several 

sensory, cognitive and motor processes (Alexander et al., 1995). Hence, part of my 

proposed method of identifying functionally connected regions during the execution of 

the task, is concerned with exploring EEG signals within the expected temporal windows 

of a number of previously studied ERP components. 
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 In the present study, I attempted to establish a dynamic pattern for task-based 

functional connectivity, which will enable tracing functionally connected regions 

during the execution of the tasks. To achieve this goal, first, EEG signals are divided 

into several segments. The temporal windows for EEG segmentation are set the same as 

the time intervals, where the occurrence of ERP components is expected. Second, DTW 

algorithm was utilized to measure similarity among signals within each segment that 

resulted in a similarity matrix. Finally, the similarity matrix is used as an input to the 

QT clustering algorithm. For each task, the proposed approach was able to establish a 

unique sequence of dynamic pattern (observed in all 5 subjects) for brain functional 

connectivity.      

 The rest of the chapter is organized as follows. First, experimental paradigms, 

data acquisition process, and analysis techniques are described. Next, results are 

presented and discussed. 
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3.2 Methodology 

3.2.1 Experimental Paradigms and Data acquisition  
 
 Five right-handed subjects (aged 27.2 ± 5.1 years) participated in this study. All 

subjects provided written informed consents approved by the Georgetown University 

Institutional Review Board prior to the experiments. They had self-reported normal 

hearing and normal vision (corrected in one case).   

 For each participant, both tasks were completed in one session lasting about two 

hours. Two versions of the oddball paradigm, a modified visual (Wang et al., 1999)  and 

an auditory (IRAGUI et al., 1993)  were used. For the visual task, sequences of three 

different stimuli (shown in Figure 3-1) were presented. Each stimulus was presented for 

50 ms, with inter-trial interval (ITI) of 1000-2000 ms. The plus sign image (Figure 3-1-a) 

was designated as a target stimulus with the appearance probability of 15%. Two other 

images appeared as frequent (Figure 3-1-b) and infrequent (Figure 3-1-c) non-target 

stimuli with the probability of 60% and 25%, respectively. Overall, 45 target and 250 

non-target stimuli were presented. Subjects were asked to press a button when a target 

stimulus appeared on the screen. 

 
 
 
 

           

Figure 3-1 (a) Target (b) non target frequent (c) and non-target infrequent stimuli 
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 For the auditory oddball task, the auditory stimuli were presented for 50 ms in 

duration with an ITI of [1000-2000] ms. The stimuli were pure tones of 1000 Hz (non-

target) and 2000 Hz (target) in frequency. The target stimulus was presented with 

probability of 15% with an overall of 45% targets versus 250 non-target stimuli. 

3.2.2 EEG data acquisition and preprocessing  
 
 Brain potentials were recorded using 128-channel EEG system (Electrical 

Geodesic, Inc., Eugene, OR). The signals recorded from each channel were first visually 

examined for motion artifacts. Single trials impacted by motion were identified and 

removed from further analysis. The signal quality in few channels was found to be poor 

(possibly due to the dryness of the sensors during the recording). These channels were 

replaced by the average of their neighboring channels. For every participant, average 

ERP waveforms for target stimuli-related trials of both tasks (visual/auditory) were 

computed. To filter the physiological artifacts, the signals were high pass filtered at 1 Hz. 

Other major artifacts related to eye blink or muscle activities were then removed by 

employing the Independent Component Analysis (ICA) (Hyvärinen and Oja, 2000) 

technique.   

 ICA aims at decomposing a linear mixture of measured EEG signals into the 

contributing sources, with the assumption that the sources are statistically independent.  

Since artifacts and signals of physiological sources are expected to be independent, the 

ICA algorithm can be used to separate them.  If 𝑿 is a set of 𝑛 measured EEG signals, 
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and element 𝑎!" in matrix 𝑨 specifies the contribution of source 𝑠! in matrix 𝑺 to the 

signal 𝑥!, one can write: 

 

𝐗 = 𝐀𝐒.     (1) 

 

To retrieve the source signals, the algorithm looks for maximum independency and 

estimates the unmixing matrix 𝐖, where 𝐖 = 𝑨!𝟏.  As a result, each signal source, si, 

can be defined as: 

 

𝑠!" = 𝑤!!𝑥! +  𝑤!!𝑥! +⋯+ 𝑤!"𝑥! ,   (2) 

 

where 𝑤!" specifies the weighted contribution of 𝑥!. To identify which of the estimated 

independent components are in fact the artifacts, an activity map localizing the 

contribution of each channel (𝑤!" coefficients) was plotted for each source. For example, 

for the components corresponding to eye blinks, channels placed closer to the eye 

presented strong contributions. After identifying the artifacts' components, they were 

removed, and the signal matrix was reconstructed. Signal preprocessing, including data 

visualization, filtering, and ICA analysis were performed in Matlab using the EEGLAB 

toolbox (Delorme and Makeig, 2004) . 

3.2.3 ERP Segmentation  
 Both oddball tasks involved target and non-target stimuli. For this study, only 

epochs corresponding to the target stimuli were extracted and averaged. Epoch length 
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was 1000 ms intervals (100 ms prestimulus and 900 ms poststimulus). To track possible 

changes in the functionally connected regions during the execution of each task, the ERP 

signals were segmented to a number of shorter temporal windows. Segments were 

obtained by extracting portions of the ERP signals where a number of well-studied ERP 

components were expected to be evoked. Selected temporal windows for the visual task 

were P100, N100, N200, and P300, with the expected latency windows of [50-190], [50-

190], [150-300], [250-500] ms, respectively. For the auditory task, the same temporal 

windows were used except for the P100 and N100 intervals, which were shortened to 

[80-190] and [85-190] ms, respectively. All the above mentioned intervals were selected 

based on the previously reported time windows for the corresponding ERP components 

(Alexander et al., 1995; Brown et al., 2007; Folstein and Van Petten, 2008; Itagaki et al., 

2011; Kayser and Tenke, 2006; Kayser et al., 1998).  

3.2.4 Employing DTW and QT clustering  
 

 To capture functional connectivity during the execution of both oddball tasks, for 

every segment of the 128 recorded EEG signals, DTW algorithm was applied and a 

128×128 similarity matrix was constructed. 

 Automatic identification of the most similar-behaving channels during various 

ERP components was carried out by the QT algorithm (see chapter 2). This algorithm 

was initially developed for the analysis of gene expression data (Heyer et al., 1999) . As 

explained in chapter 2, for every segmented signal, a similarity matrix was computed 

through the DTW process. The QT algorithm begins with considering each of the 128 

channels as a single cluster. In the next step, each cluster is expanded by adding channels 
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with distance from the given cluster (taken from the similarity matrix) below a certain 

threshold set by the user. Once this is done for all clusters, the most populated cluster is 

retained and others are discarded. The same procedure is repeated for the discarded 

channels until either all channels are clustered, or the largest cluster does not pass the 

user-defined “minimum number of points” criteria.  

 For each participant, applying the QT clustering algorithm on the segmented EEG 

signals resulted in the identification of the channels (brain regions) that, based on the 

DTW criteria, were functioning similarly during the corresponding time interval. 

 Figure 3-2-a illustrates the color-coded clustering results (on a 2D 128-sensor 

map) applied to the EEG signal within the time window [50-190] ms for one of the 

subjects. The representative temporal signals for each cluster are plotted in Figure 3-2-b. 

For each cluster, the solid line corresponds to the average value of the signals of all the 

channels in that cluster, and the dash lines represent the standard deviation of the signals. 

It can be seen that in this temporal window, the electrodes placed over the posterior 

region show a similar positive-going ERP component (shown in green), whereas the 

electrodes located at other regions exhibit different behavior (shown in red and black).  

 As mentioned in the previous section, to cluster the data, QT clustering requires a 

user defined threshold value, which corresponds to the similarity level between the 

signals in each cluster. Setting a threshold value, which results in clusters with the most 

analogous activity pattern, can be a challenging task: a low threshold value may result in 

large clusters containing channels with distinct neuronal activities, while a high threshold 

value might result in a large number of smaller clusters. Several threshold values for each 
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subject were considered, and those values that resulted in clusters with a high intra-

cluster similarity (a small standard variation for the cluster-average signal) and a low 

inter-cluster similarity (distinct activity patterns for cluster-average signals) were 

selected. 

 Another challenge in the group analysis was the variations in the head shape and 

size across subjects, as these variations resulted in slightly different electrode positions 

across subjects. To avoid inter-subject variations in the spatial distribution of brain 

activity, only the activation regions, which were common in all the subjects were 

considered.  

 For each EEG segment, the group analysis involved finding the clusters that were 

spatially common across all the subjects. The clusters were selected if their 

corresponding ERP signals were consistent with the expected activity for the selected 

temporal window. As a result, the region identified as functionally connected was a 

subset of the corresponding ERP activity map for the given temporal window. 

 Figure 3-3 presents the group analysis results showing the 3D activation maps of 

functionally connected regions for multiple segments of both the auditory and the 

modified visual oddball tasks. The averaged and the standard deviation of the 

corresponding ERP waveforms (for one of the subjects as an example) are also plotted for 

each component. The red area on the scalp demonstrates the identified functionally 

connected regions whereas the yellow strip around this area determines the boundary of 

that region. Using the proposed technique for the auditory task, functionally connected 

regions corresponding to all the four designated time intervals were identified. For the 
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visual task, the functionally connected regions were identified for three of four 

designated time intervals. 

 

 

 

 

 

 

 

 

 

 

 
 
 

3.3 Clustering Performance Evaluation 
 
 In this section, the performance of the QT clustering algorithm is evaluated. Since 

there was no external information regarding the potential clustering structure, an 

unsupervised approach for measuring the performance of the clustering is being used. 

The performance of the clustering algorithm was determined by measuring the 

compactness of the clusters (cluster cohesion), as well as cluster separation (isolation).  

Cluster cohesion suggests how closely the ERP signals in a single cluster are, whereas 

cluster separation determines how well separated a cluster is from other clusters. 

(a)                        (b)
  

Figure 3-2 (a) 2D map for functionally connected regions over the time interval of [50-190] ms shown by green, 
black, and red colors, (b) for each cluster, a cluster-representative signal obtained by averaging ERPs over all 
the channels (solid line), and its corresponding standard deviations (dash lines) are plotted. 
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A commonly used method that takes into consideration both cluster cohesion and cluster 

separation is called silhouette coefficient (Tan et al., 2006b). To calculate this coefficient, 

first the average DTW distance of the ith ERP signal to all other ERP signals in its own 

cluster ( iw ) is computed. Then, for the ith ERP signal, the distance to the closest cluster (

ir ) is determined. The silhouette coefficient for the ith ERP signal is then computed by the 

following equation: 

),max(/)( iiiii wrwrsilhouette −= .   (4) 

The silhouette coefficient value for every ERP signal would vary between -1 and 1. 

Overall, a nonnegative value for the silhouette coefficient is desirable. This may be 

verified from (4), where the negative value corresponds to a case where the average 

distance of an ERP signal in a cluster from other members of the cluster is larger than its 

distance from members of other clusters. Furthermore, a positive silhouette coefficient 

value ( ir > iw ) suggests that the ERP signal is more similar to the members of its own 

cluster as opposed to the members of other clusters. In particular, values closer to 1 ( ir >>

iw ), relate to improved performance for the clustering task. 

The average silhouette coefficient of a single cluster (representing the functionally 

connected regions) for each subject was determined by averaging over silhouette values 

of all the cluster members. Next, computed silhouette coefficient values for the selected 

cluster across subjects 
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Figure 3-3 ERP signal and its corresponding 3D map of the functionally connected regions distributed over the 
scalp for both auditory (left column) and visual (right column) tasks. The red region over the scalp demonstrates 
the identified functionally connected regions across all subjects whereas the surrounding yellow strip determines 
the boundary of the region. 
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Table 3-1 Average silhouette coefficient value corresponding to functionally connected regions of figure 3-3. 
Silhouette coefficient value varies between -1 and 1 whereas a positive silhouette coefficient value suggests 
that the ERP signal is more similar to its own cluster members as opposed to members of other clusters. 
Values closer to 1 correspond to improved performance for the clustering task. 
Component Silhouette coefficient/Auditory task Silhouette 

coefficient/Visual task 
N100 0.87  
P100 0.90 0.92 
N200 0.86 0.90 
P300 0.91 0.89 
 
 
 
 
were determined by averaging the cluster’s silhouette coefficient of all subjects. The 

results are summarized in Table 3-1. 

 It has been found in (Rousseeuw and Kaufman, 1990), that an average silhouette 

coefficient greater than 0.5 indicates reasonable partitioning of data whereas values less 

than 0.2 suggest poor partitioning of the data. As can be seen in Table 3-1, the silhouette 

coefficient for each cluster suggests that a precise partitioning of the data has been 

performed.  In other words, the ERP signals corresponding to a functionally connected 

region have shown a pattern of activity that are strongly similar to each other, and are 

well distinct from the ERP signals belonging to other regions.  

3.4 Investigating the Identified Functionally Connected Regions  
 

 The early evoked potentials, such as the P100 and N100 components, are 

dependent on the stimulus type (auditory or visual), and are assumed to be generated in 

the primary auditory or visual cortices, respectively (Herrmann and Knight, 2001) . In 

contrast, the later ERP components, such as P300, are independent of the stimuli type and 
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their sources are localized outside the primary sensory cortices (Katayama and Polich, 

1999; Polich, 2007) .  

 The scalp topography of the functionally connected regions obtained by the 

proposed technique (Figure 3-3) in reference to the well-established ERP components 

complies with the aforementioned expected scalp distribution of brain activation. For the 

auditory task, the scalp topography of the functionally connected regions during N100 

and P100 components within the bilateral temporal lobes suggests the involvement of the 

primary auditory cortex. The region of increased connectivity during the N200 

component appeared to be within the frontocentral part of the scalp. This result is 

consistent with the previous reports for the N200 scalp topography (Alho, 1995; Folstein 

and Van Petten, 2008; Patel and Azzam, 2005). The frontocentral contributed in forming 

the functionally connected regions during the P300 temporal window, which is in line 

with the previous studies (Bledowski et al., 2004; Brown et al., 2007; Katayama and 

Polich, 1999; Patel and Azzam, 2005). 

 For the visual task, during the early P100 component ([50-190] ms), functionally 

connected bilateral regions were revealed over the visual cortex. The area of increased 

functional connectivity did not change significantly for the temporal window of the N200 

component ([150-280] ms). Significant connectivity was observed over the occipital lobe 

along with a partial involvement of the parietal lobe. This is consistent with the previous 

reports, which have identified sources of the N200 component within the parietal and 

more posterior areas (Folstein and Van Petten, 2008; Ogura et al., 1991). The scalp map 
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of the functionally connected regions during the P300 component [250-500] ms shows a 

change from the posterior to the frontocentral distribution. 

 The captured spatio-temporal dynamic changes in the functionally connected 

regions during the execution of the oddball tasks provide evidence that the task-related 

functional connectivity follows a dynamic pattern, and is not bounded to a static set of 

brain regions. This temporal dynamic in the functional connectivity pattern at time 

intervals of 100 ms duration was captured. Naturally, the method can work at shorter time 

intervals if it is of interest.   

 To compare the proposed technique with the commonly used correlation 

technique, functionally connected regions for the auditory tasks using both the DTW and 

the cross-correlation methods are compared by applying the techniques on the full-length 

signal. Then QT clustering was applied, functionally connected regions that were 

common across all subjects were identified. 

 Figure 3-4-a shows the functionally connected regions captured by DTW when 

applied to the full-length signal. As it can be seen, the functionally connected regions 

corresponding to the N100 and P100 components (which were revealed by the proposed 

segmentation approach as seen in Figure 3-3) were not detected with this approach.  Full-

length signal analysis only identified the frontocentral part of the brain as the functionally 

connected region. Note that the analysis on the segmented signal for the P300 component 

had identified a comparable region (with a broader spatial distribution). Results for the 

cross-correlation analysis on the full length signal are shown in Figure 3-4-b. Similar to 

the DTW method, the cross-correlation technique also revealed the frontocentral part as 
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the region of connectivity (slightly smaller in size compared to the DTW) and also was 

not able to capture the functionally connected regions corresponding to the P100 and 

N100 as was obtained when considering segmentation.  

 
 
 
 

                       

Figure 3-2 3D maps of functionally connected regions obtained by two similarity techniques over the full length 
signal: (a) DTW and (b) cross-correlation. 
 
 
 

 As seen in Figure 3-4, compared to cross-correlation, DTW has identified a larger 

area for functionally connected regions. This can be explained by the fact that unlike 

cross-correlation, DTW also considers the nonlinear alignment of the signals. Therefore, 

the larger frontocentral area (revealed by the DTW) could be an indication of the brain 

regions with nonlinear similarity behavior.  

  

 

 

(a) 
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3.5 Summary of Chapter 3 
 
 The proposed approach of segmenting the EEG signals into multiple temporal 

windows, followed by identifying the functionally connected regions (by employing 

DTW and clustering techniques), enabled tracing the brain interactions during the 

execution of both oddball tasks. Four temporal windows, ranged from early stages of the 

ERP (50-190 ms for visual and 80-190 ms for auditory tasks) to later intervals (250-500 

ms) were considered for this study. 

The functionally connected regions during the execution of the auditory task were 

revealed in two major areas: the temporal lobe (during the early ERP component) and the 

frontal-parietal observed with the involvement of occipital (during the early ERP 

component) and occipital-parietal and frontal lobes (the later ERP component). Overall, it 

seems that the functionally connected regions during the early poststimulus periods tend 

to vary systematically with the physical modality of the stimulus, whereas the later ERP 

components vary in relation to the higher-order processing mechanisms of the brain that 

become activated later in response to the stimulus. 

It should be emphasized that in this study, when looking for functionally connected 

regions, only identifying the regions that were similarly “activated” (showing similar 

positive/negative ERP components) were of interest. However, the technique is not 

bounded to activation signals, and can be used to reveal the functionally similar 

“behaving” regions in the broader sense. For example, the technique can be used to trace 

the regions of the brain where there are no activations during the execution of the task.  
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 The proposed approach enables tracing the task-based functional connectivity 

over the scalp, and has the potential to become a useful tool for research in the field of 

cognitive neuroscience. It was shown that the proposed technique can identify functional 

connectivity in a more accurate way compared to other existing techniques. It is expected 

that in healthy individuals, every task can have a unique dynamic functional connectivity 

pattern which might differ from that of patient population. Comparing such dynamic 

patterns between the two groups could further help clinical investigators to identify the 

underlying impairments of brain functional connections in the patient groups.  
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4. Relative Brain Signature (RBS):  

 In this chapter, a novel neuroimaging time series feature extraction technique, 

relative brain signature (RBS) is developed. This technique uses orthogonal subspace 

projection to transform a set of time series associated to data point (e.g. set of EEG time 

series corresponding to a subject) into a new coordinate system. The proposed technique 

provides effective dimensionality reduction, which is crucial for neuroimaging data such 

as EEG with high temporal resolution. The proposed technique was named relative brain 

signature as the values in the transformed space quantify the relative association of every 

single time series to a class. Another unique characteristics of this technique is that it 

relies on the a priori information corresponding to a class, therefore, is feasible for 

clinical studies where databases corresponding to a class of certain disorder are available.  

4.1 RBS a Multichannel and Reference-based Feature Extraction Technique 
 

It was discussed in chapter 1 that the commonly used multichannel feature 

extraction techniques for neuroimaging time series obtain discriminative information 

from individuals’ signals by treating every signal corresponding to a single channel 

independently and do not to consider the potential correlation among the channels 

(single-channel analysis). Furthermore, traditional neuroimaging time series feature 

extractions are not capable of incorporating individuals’ class information into the 

analysis (blind analysis). I proposed a time series feature extraction technique that treats 
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neuroimaging time series collected from a multichannel modality, jointly (multichannel 

analysis) and takes the class association of the individuals into the feature extraction 

procedure (reference-based).  

4.2 Relative Brain Signature (RBS)  
 

 Suppose that there are n individuals from r populations (or classes). Then, the 

neural response collected from a single site for every subject is a d-dimensional time 

series. Also, suppose the neural response is collected from 𝑚 different sites. The aim of 

the proposed method is to map every time series to r scalar values whereas each scalar 

value determines the relative association of the subject’s 𝑖!! channel’s time series to the 

population 𝑗.  For 1 ≤ 𝑙 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑟 , and 1 ≤ 𝑖 ≤ 𝑚, let  

• 𝑠! denote the 𝑙!! individual,  

• 𝑃! = {𝑙: 𝑠! belong to 𝑗!! population} 

•  𝑙!! denote the } , 𝑛! =  𝑃! , 

• 𝑒! ! = (𝑒!! ! , 𝑒!! ! ,… , 𝑒!" ! )! ∈ ℝ! be the 𝑖!! time series of 𝑠! 

4.2.1 Population-Specific-Dataset (PSD) 
 
The first step of the proposed methodological approach is to construct the Population-

Specific-Dataset (PSD). PSD is the set of time series where every element is a 

representation for a certain channel site. This representation can be obtained in two way: 

a) from the available data (e.g. by averaging the corresponding time series from the 

subjects for the given population) or b) from a reference data collected in the laboratory a 
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priori. Using the averaging for representing a channel site, the time series 

representation, 𝑓!", and the PSD can be expressed as follows, respectively: 

For 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑟, 𝑓!" =
!
!!

𝑒!!!∈!!       

𝑃𝑆𝐷! = {𝑓!! , 𝑓!! ,… , 𝑓!"} 

4.2.2 Population-Specific-Subspace (PSS) 
 

The subspace spanned by the elements of the PSD provides generic brain functionality 

for the corresponding population over certain areas of the brain. The set of these 

subspaces generated by every element of the PSD is referred to as Population-Specific-

Subspace (PSS).  

Consider the subspace (Halmos, 1947) spanned by a channel site representation,𝒇𝒊𝒋,  

𝑆!!  = span 𝒇𝒊𝒋 =  {c𝒇𝒊𝒋: c ∈  ℝ,𝒇𝒊𝒋  ∈   𝑃𝑆𝐷!}  

then the set of all of these subspaces for the population 𝑗 is defined as: 

𝑃𝑆𝑆! = {𝑆!!  : 1 ≤ 𝑖 ≤ 𝑚} 

 The subspace 𝑆!!   is paired with another subspace called orthogonal complement 

subspace(Halmos, 1947)  

  𝑆!!  ! = {𝒈:𝒇.𝒈 = 0 and  𝒇,𝒈 ∈  ℝ!  and 𝒇 ∈  𝑆!!  }.  (3)  

This subspace encompasses elements that are orthogonal and dissimilar to the elements 

of 𝑆!!  . Thus, 𝑆!!  !  can be utilized to provide a generic representation for elements that 

belong to class 𝑗! (1 ≤ 𝑗 ≤ 𝑟 and 𝑗! ≠ 𝑗) with the maximum dissimilarity to the current 

elements of 𝑃𝑆𝑆!.  
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4.2.3 Orthogonal Complement Projection 
 

 To assess the dissimilarity of the individual’s time series to a class, every time 

series of the subject is projected onto its corresponding PSS element’s orthogonal 

complement subspace. Hence, the second step of the proposed approach for the subject’s 

𝑖!! channel time series, and population 𝑗 is to project the time series onto the 𝑆!!  ! .  

Suppose that {𝑢!,𝑢!,… ,𝑢!} linearly independent set of vectors in ℝ! and let 𝑊 =

span {𝑢!,𝑢!,… ,𝑢!} . Let 𝐴 =
|
𝑢!
|

|
𝑢!
|

 
…
 

|
𝑢!
|

. It is well known that the projection matrix 

𝑷! onto 𝑊 is given by 

 𝑷! = 𝐴(𝐴!𝐴)!𝐴!!.  

In particular, 

𝑷�!! =  𝒇!!
 𝒇!! ! 

𝒇!! 
!   and  𝑷!!! !  =  𝑰−  𝒇!!

 𝒇!! ! 

𝒇!! 
! , 

where 𝑰 is the 𝑑-dimensional identity matrix and .  corresponds to the norm-2 of the 

vectors. The projection of the 𝑖!! channel time series, 𝑒! !, onto 𝑆!!  ! is obtained by  

 (𝑒! !)! =  𝑷!!! !  𝑒!
 !  . 

 

4.2.4 Quantifying the Relative Association to Classes  
 

 The quantify the similarity of the 𝑒! ! to the population 𝒋! (𝒋! ≠ 𝒋), the cosine 

similarity between the (𝑒! !)! and 𝒇𝒊 𝒋! is computed as  
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o!!! =  
𝒇𝒊 𝒋!

!

𝒇𝒊 𝒋!
× (!!

 !)!

(!!
 !)!

 .  

Value of o!!! that varies between -1 and 1, quantifies the similarity of the individual’s  𝑖!! 

time series to the generic representation of the 𝑖!! element of the 𝑃𝑆𝐷!! . 

An RBS vector with respect to the population 𝒋!  is composed of 𝑚 o!!!  (𝑖 = 1,2, . . . ,𝑚) 

components . 

 

4.3 Summary of Chapter 4 
 

A novel population-based feature extraction technique, RBS, for neuroimaging 

time series data captured from subjects within populations (classes) with functionally 

distinctive neuronal activity is developed. This technique attempts to generate a feature 

vector for subjects to quantify their relationship to the given populations. Unlike the 

common feature extraction techniques that are not designed to consider the potential 

intra- and inter-population relationship among the subjects, RBS takes into analysis such 

information. Considering such relationships among subjects enables obtaining 

biomarkers from brain activity associated to a certain population. These biomarkers are 

the features that are shared among all the subjects from a certain population. 

The proposed technique is designed to perform a multichannel time series 

analysis in the settings where the individual data sample includes a set of time series. 

Unlike traditional time series feature extraction techniques, RBS does not analyze every 

time series without considering the reference (class association) of the time series. Given 

a neuroimaging dataset collected from different sites of the brain and formatted as multi-
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time series for every individual, RBS can be utilized to perform feature extraction and 

efficient dimensionality reduction. RBS is developed based on the hypothesis that there 

are generic subspace representations for the collected time series from the distinct brain 

sites of the individuals of a specific population.  

Figure 4-1, illustrates the general scheme of the RBS feature extraction technique.  

For given neuroimaging time series from the two population of subject, first the two PSD 

are computed for each group of subjects (figure 4-1 a). For every channel site of a 

population, its subspace and its orthogonal complement subspace is constructed. Then, 

subject’s time series is projected onto the orthogonal complement subspace of the 

population (Figure 4-1 b). Finally, subject’s RBS feature vectors that reveal the level of 

association of a subject to a specific population are computed within the projected 

subspaces (Figure 4-1 c).  

 
 
 

 
Figure 4-1 For the given neuroimaging time series from the two population of subject, first the two PSD are computed 
for each group of subjects (a). For every channel site of a population, its subspace and its orthogonal complement 
subspace is constructed. Then, every single time series of a subject is projected onto the orthogonal complement 
subspace of the population (Figure 4-1-b). Finally, subject’s RBS feature vectors that reveal the level of association of a 
subject to a specific population are computed within the projected subspaces (Figure 4-1-c).  
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5.  Functional Biomarker Identification Using RBS  

 In this chapter, RBS is applied on an EEG data set of 77 abstinent alcoholics and 

43 control subjects. To characterize subjects' relationship to the alcoholic and control 

populations, one RBS vector with respect to the alcoholic and one with respect to the 

control population is constructed. The applicability of the extracted RBS vectors in 

identifying functional biomarkers over the brain of alcoholics is evaluated. To achieve 

this goal, a classification algorithm is used to categorize subjects into alcoholics and 

controls classes using the RBS feature extraction technique.  

5.1 EEG and Alcoholic Studies  
 
 To capture brain potential impacts of long term alcohol consumption, analysis of 

ERP signals has been bounded to the certain temporal windows of the signals (such as 

P300 that occurs 300-500 ms after the stimulus onset)(Begleiter and Porjesz, 1999) or 

transforming signals to the frequency domain to explore specific frequency 

ranges(Rangaswamy et al., 2002). These studies attempt to investigate characteristics of 

ERP’s amplitude fluctuations (Bostanov, 2004) , power spectral density(Musha et al., 

1997), or time-frequency analysis(Wang et al., 2004), to extract informative and 

discriminative features. A major challenge in all the aforementioned EEG data analysis is 

the high dimensionality of the dataset. The high dimensionality of the EEG data adds 

more complexity, increases the computational time, and complicates the data analysis due 
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to the phenomenon called “curse of dimensionality” (Lotte et al., 2007b). Although the 

aforementioned feature extraction techniques reduce the dimensionality of the EEG 

signals, yet the feature space corresponding to a single subject is relatively high due to 

the large number of signals recorded from the subject’s brain. Therefore, EEG feature 

extraction is typically followed by a channel selection procedure(Ansari Asl et al., 2007) 

that selectively discards signals corresponding to certain channels of the subjects’ EEG 

signals. Furthermore, the common EEG feature extraction techniques are not designed to 

include attributes regarding the subject’s population association into their process of 

feature extraction and also cannot perform multichannel data analysis.  

 In this work, the RBS neuroimaging time series feature extraction technique that 

was introduced in chapter 4 is utilized as a features extraction technique to provide an 

effective dimensionality reduction for EEG signals. RBS does not require the typical 

EEG channel selection procedure and accounts for all the ERP signals. Furthermore, 

unlike common feature extraction techniques that do not consider subject’s population 

association in the procedure of feature extraction, RBS technique obtains information 

from subjects’ ERPs by investigating their relationship to the given populations of the 

study. RBS combines vector space analysis and orthogonal subspace projection to 

generate the feature vector that describes the relationship between a subject and 

populations. The effectiveness of utilizing RBS in identifying functional biomarkers 

related to alcoholics is also investigated. The identified spatially localized biomarkers 

will be illustrated as a topographic map over the scalp.  
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5.2 Experimental Paradigms and Data Acquisition 
 

RBS was assessed using an EEG dataset collected from two populations of 

alcoholic and control subjects. This data was collected by the Neurodynamics 

Laboratory, SUNY Downstate Medical Center, (supported by NIH grants AA05524 and 

AA026686) from a group of alcoholics and control subjects and was first published in 

(Zhang et al., 1995). The control group consisted of 43 right-handed male (the dataset 

originally contained 45 subjects of which two subject data were excluded due to file 

errors and empty trials) subjects with an age range of 19.4-38.6 years. The alcoholic 

group consisted of 77 males with an age range of 22.3-49.8 years. Alcoholic subjects 

were initially diagnosed with alcohol abuse or dependence by the intake psychiatrist 

according to the Diagnostic and Statistical Manual of Mental Disorders-III (DSM-

III)(Angold and Costello, 1993) criteria as well as more advanced diagnosis tools. Also a 

mini mental status examination (Bertolucci et al., 1994) was conducted on all subjects 

and no memory deficit was observed. The alcoholic subjects had a history of heavily 

drinking for a minimum of 15 years. At least 30 days before the start of the experiment 

alcoholic subjects were hospitalized and fully detoxified.  

 Subjects were shown a series of object pictures chosen from the 1980 Snodgrass 

and Vanderwart picture set (Snodgrass and Vanderwart, 1980), Figure 5-1. Two picture 

stimuli appeared in succession with a 1.6 s fixed interstimulus interval. The duration for 

the first (S1) and second (S2) picture stimulus in each test trial was 300 ms where the 
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interval between each trial was fixed to 3.2 s. All the pictures were paired either as 

matching or non-matching conditions. For the matching condition, subjects were 

presented identical stimuli (similar S1 and S2) and in the non-matched condition S2 was 

different from S1. Subjects were required to press a mouse key in one hand for the 

matching condition and press the mouse key in another hand for the non-matching 

condition. The data was captured by an EEG device with 64 electrodes of which two 

were mounted for Electrooculography (EOG) and one nose electrode. These three 

channels were exlcluded as well as one more channel that had been used for grounding 

the subjects and only used data from 60 electrodes. More information regarding the data 

collection procedure can be found in reference (Zhang et al., 1995). 

5.3 ERP Feature Extraction Using RBS 
 
 
As explained in chapter 4, PSD is composed of the elements that are computed by 

averaging the corresponding ERPs from the subjects within the population. The subspace 

spanned by the elements of the PSD provides generic brain functionality for the 

corresponding population over certain areas of the brain.  

For every subject, an ERP dataset is constructed by averaging the EEG signals 

corresponding to every channel across all different trials of the experiment. Then for 

every population, a PSD, namely Alcoholic-PSD and Control-PSD, is constructed. Every 

element of the PSDs, Alcoholic-PSD and Control-PSD, are computed by averaging the 

corresponding ERPs from the subjects in the alcoholic and control populations, 

respectively. The Alcoholic-PSD and Control-PSD is composed of 60 elements. The 
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subspace spanned by an element of PSD (see chapter 4) is considered. This subspace 

provides a generic brain functionality for a specific region of the brain. The subspaces 

generated by Alcoholic- and Control-PSDs are referred to as Alcoholic-PSSs and 

Control-PSSs, respectively.  

The proposed RBS feature extraction technique obtains information from subjects’ ERPs 

by considering their relationship to both alcoholic and control populations. First, the 

subject’s ERP is projected onto the orthogonal complement subspace (see Methods 

section) associated to the Alcoholic- and Control-PSS. The orthogonal complement 

subspace of the Alcoholic-PSS (Control-PSS) is a subspace in which elements illustrate 

distinctive functionality from the elements of the Alcoholic-PSS (Control-PSS). Hence, 

projection of subject’s ERP onto the orthogonal complement subspace related to 

Alcoholic-PSS or Control-PSS contains transformed ERP components that signify 

subject’s ERP association to the alcoholic or control populations. Each ERP is projected 

onto the orthogonal complement of the Alcoholic-PSS and onto the orthogonal 

complement subspace of the Control-PSS. To quantify the similarity of the projected 

ERP to the opposite population, the cosine similarity (see Methods section) between the 

projected ERP and the corresponding element from alcoholic and control population’s 

PSS element is computed. These two resulting scalars explain the association of an ERP 

to the alcoholic and control populations. Therefore, by applying this procedure to all of 

the 60 ERPs two vectors of dimension 60 corresponding to the alcoholic and control 

population, namely Alcoholic-RBS and Control-RBS are generated.  These vectors are an 

ordered collection of 60 elements, which are called components. A component of the 
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RBS vector depicts the similarity of an ERP associated to an area of the brain to the 

alcoholic or control population. 

RBS vectors for an alcoholic and a control subject are illustrated in Figure 5-2 by the 

dashed line that connects the computed RBS vector components for an alcoholic (Figure 

5-2-a) and a control subject (Figure 5-2-b). The component values, which quantify the 

connection between an ERP and the alcoholic or control populations, are shown in blue 

and red, respectively. The RBS component value closer to 1 indicates a stronger 

association to a certain population whereas smaller positive values and negative values 

suggest that the corresponding ERP of the subject is weakly associated to a population. It 

is worth noting that the largest similarity values for the Alcoholic-RBS of an alcoholic 

subject are expected to be observed among the ERPs originating from the regions with 

the foremost distinctive functionality due to prolonged alcohol effects.  
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Figure 5-1 RBS vectors for an alcoholic and a control subject are illustrated. Two RBS vectors for an alcoholic 
subject   and a control subject are shown. The components of the RBS vectors, quantify the association of an 
ERP waveform and the alcoholic population (shown in blue) or to the control population (shown in red). A 
positive value closer to 1, for a component of the RBS vectors indicates a stronger association to a certain 
population whereas smaller positive values and the negative values suggest the corresponding ERP data is 
weakly associated to a population. In a, majority of Alcoholic-RBS component values are significantly associated 
to the alcoholic population while for the Control-RBS component values, majority of the ERPs were weakly 
associated to the control population. In b, Control-RBS component values illustrate a strong relation to the 
control population while Alcoholic-RBS demonstrates weak association to the alcoholic population. 

 
 
 

5.4 Identifying Functionally Distinct Brain Regions of Alcoholic Subjects 
 
 In this section, the areas of the alcoholics’ brain with distinct functional activity 

are identified using the RBS vectors. These areas are detected by exploring the 

corresponding brain regions associated with the RBS components. Considering that 

larger component values for the alcoholics’ Alcoholic-RBS components are expected to 

be observed among the ERPs originated from the regions with distinct functional activity. 

Identifying these components is of particular interest. A set of components for which 

large association value to the alcoholic population (i.e. large Alcoholic-RBS value) and 

small association value to the control population (i.e. small Control-RBS values) across 

alcoholic subjects is obtained. This set of component is associated with a set of electrode 
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positioned on the areas of the brain with highest contribution in distinguishing between 

the alcoholic and control subjects. In an attempt to determine these components, a 

classification procedure is considered.  

 The classification procedure is composed of 60 classification experiments. For 

every classification experiment, feature vectors with a certain size are constructed from a 

set of RBS vector components. Classification accuracy for every classification 

experiment is computed. The details of the 𝑖!! 𝑖 = 1,2,… 60  classification experiment 

are explained in the following paragraphs.  

For a classification experiment, 2/3 of the alcoholic and 2/3 of control subjects are 

randomly selected for training purposes and the rest of the subjects are selected for the 

testing purposes.  

5.5 RBS Component Selection  

 To construct the feature vectors, a feature selection approach is considered. 

Feature selection algorithms in general have two components: a selection algorithm that 

generates proposed subsets of features and attempts to find an optimal subset; and an 

evaluation algorithm that determines the performance of a proposed feature subset by 

returning some measure of goodness to the selection algorithm. 

In this work, features are weighted and sorted by using the RBS vector of the alcoholic 

subjects within the training set, using equation (9), 

Component! =  max!{ 
!"#$!!"#$ !"# !
!"#$%"& !"# !

 !
!!! , 𝑗 = 1,2,… 60, 𝑙 = 51}  , (9) 

where “ . ” is the absolute value,  and 𝑙 is the number of alcoholic subjects from the 

training set ( i.e. since 2/3 of the alcoholics are used for training the classifier, 𝑙 = 51 ). 



 
 

69 

For every subject, the RBS vectors are resampled by keeping their first 𝑖 ranked 

components and discarding the rest of the components’ data (i.e. the sampled vectors 

contain 𝑖 elements). Then, feature vectors for every subject are extracted by subtracting 

the resampled Control-RBS from the resampled Alcoholic-RBS. It is worth emphasizing 

that the components are ranked and selected according to the RBS vectors of the 

alcoholic subjects within the training set to avoid the double dipping phenomenon 

(Kriegeskorte et al., 2009).  

 To classify the subjects using the constructed feature vectors, Linear Discriminant 

Analysis (LDA) (Welling, 2005) classification algorithm is employed. The generalization 

performance of every classification experiment is assessed  by random subsampling in 

which the process of randomly partitioning subjects into training and testing sets is 

repeated many times (1000 in this study). For every classification experiment, accuracy, 

specificity, and sensitivity (Pang-Ning et al., 2006) are reported . The overall accuracy, 

specificity, and sensitivity values for every classification experiment are determined by 

averaging the accuracy, specificity, and sensitivity values computed for every run of the 

random subsampling procedure.  

 In Figure 5-2, performance of the LDA classification algorithm is illustrated 

where different number of significant components is used to generate feature vectors. A 

dot in the dot-line of Figure 5-2-a corresponds to the average classification accuracy for a 

feature vector constructed from certain number of significant components. The dash lines 

in Figure 5-2-a represent the standard deviation for the computed accuracy.  Dots in the 

red and blue dot-lines in Figure 5-2-b denote the average specificity and average 
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sensitivity (respectively) for the corresponding significant components used to construct 

the feature vector.  Starting with the first significant component, an accuracy of 0.67 

±0.06, specificity of 0.65 and sensitivity of 0.69 are obtained. As it can be seen in Figure 

5-3, when the top 11 significant components of the RBS vectors are used to generate the 

feature vectors, the average accuracy, specificity, and sensitivity increase to their 

maximum values where the graphs’ knee is formed. The highest classification accuracy 

value when the feature vector is constructed using the first 11 significant components is 

0.78 ±0.06 whereas the highest specificity and sensitivity for the first 11 significant 

components are 0.74 and 0.79, respectively.   
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Figure 5-2 Performance evaluation for LDA classification between alcoholics and control subjects. (a) The x-axis 
corresponds to different number of significant components used to generate the feature vectors and the y-axis 
denotes the accuracy. The dot-line corresponds to the average classification accuracy and the dash-lines 
represent the standard deviation for the computed accuracy. (b) The x-axis corresponds to different number of 
significant components used to generate the feature vectors. The red and blue dot-lines denote the average 
specificity and average sensitivity (respectively) for a certain number of significant components used to 
construct the feature vector 
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 In Figure 5-3, spatial distribution of the first 11 significant components over the 
scalp is illustrated using EEGLAB (Delorme and Makeig, 2004). The red area 
corresponds to the most significant component and the yellow strip around the red 
determines the boundary of that region.  
 
 
 
 
 

 
Figure 5- 3 Different views for the top 11 functionally distinct brain areas between alcoholic and control subject. 
The red area corresponds to the most significant component and the yellow strip around the red determines the 
boundary of that region. These areas, with respect to their spatial extent are frontal and anterior frontal, centro-
parietal, parieto-occiptal and occipital lobes. 
 
 
 
 
 To investigate the consistency of the feature sets that are employed for the 

classification experiments across the sampling iterations, Sets of components with which 

feature vectors for the first 11 classification experiments are constructed, are tabulated in. 

Due to a slight variability in the feature set across the 1000 iterations, the fraction of 

times that a feature set has been used for a classification experiment is denoted by a 

percentage value. As it is show in table 5-1, the feature sets selected for every 

classification experiment across the 1000 iterations are consistent (i.e. majority of the 

classifications have been performed with the similar set of features) for all the reported 

classification experiments. 
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Table 5-1 Sets of EEG channels (RBS components) selected for the first 11 
classification experiments across their 1000 sampling iterations. 

 
Number of components 

used to construct the 
feature set 

Selected components 
 (EEG channel ID#) 

Fraction of 
selection 

(in 
percentage)  

1 [17] 100% 
2 [17,21] 94% 
3 [17,21,45] 90% 
4 [17,21,45,48] 90% 
5 [17,21,45,48,38] 90% 
6 [17,21,45,48,38,57] 89% 
7 [17,21,45,48,38,57,5] 89% 
8 [17,21,45,48,38,57,5,52] 88% 
9 [17,21,45,48,38,57,5,52,53] 89% 
10 [17,21,45,48,38,57,5,52,53,29] 88% 
11 [17,21,45,48,38,57,5,52,53,29,12] 89% 

 
 

 

5.6 Summary of Chapter 5 

 The proposed feature extraction approach of projecting the ERPs onto the 

orthogonal subspaces of the control and alcoholic populations has provided accurate 

details regarding the subjects’ original population association. Two 60-dimensional RBS 

vectors for every subject to characterize the relationship of the subject to the two 

populations of alcoholic and control were extracted. As Figure 5-2-a illustrates, the 

Alcoholic-RBS component values for an alcoholic subject signify a strong associated 

with the alcoholic population while majority of the Control-RBS component values of the 

ERPs, demonstrate a weak association to the control population. In Figure 5-2-b, the 
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Control-RBS component values for a control subject illustrate a strong link to the control 

population while Alcoholic-RBS demonstrates a weak association to the alcoholic 

population. It suggests that the RBS vectors can potentially explain and distinguish the 

association of the subject to different populations of a study. The RBS vectors were 

successfully utilized to detect and visualize the functionally distinct regions over brain of 

alcoholics. Features related to the EEG activity from these regions enabled classification 

between alcoholic and control subjects gains its maximum accuracy (Figure 5-3-a). In 

other words, these regions represent the functionally impaired regions of the alcoholics’ 

brain and can be used as biomarkers to distinguish between alcoholic and control 

subjects. Figure 5-3 provides scalp topography for these regions, which correspond to the 

first 11 significant components. These areas, with respect to their spatial extent are 

frontal and anterior frontal, centro-parietal, parieto-occiptal and occipital lobes. The 

distribution of these regions over the scalp indicates that the impact of the alcohol in the 

cerebral cortex of the alcoholics is spatially diffuse. The largest identified area (the 

centro-parietal area), engages more regions of the frontal lobe and right hemisphere 

relative to the left hemisphere that complies with the findings in other studies (Ellis and 

Oscar-Berman, 1989; Harris et al., 2008; Moselhy et al., 2001; Zhang et al., 1997). The 

identified regions encompass a set of smaller areas that are known to be affected by 

ingesting one or two drinks of alcohol by social drinkers(Luchtmann et al., 2013). In 

other words, it seems that impairments caused by one or two (alcoholic) drink 

consumption by social drinkers targets the same regions of the brain that have are 

affected in the abstinent alcoholics.  
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 The efficacy of the RBS techniques was evaluated by repeating the process of 

computing the RBS vector, without projecting ERPs onto the orthogonal subspaces and 

only quantified similarity of the subject’s ERP to the alcoholic and control subspaces. 

Figure 5.4 shows the vectors composed of these values for an alcoholic subject. For 

computing similarity vectors, in Figure 5-4-a, ERPs are not projected onto the orthogonal 

subspaces and only the similarity between a given ERP and its corresponding ERP from 

Control- and Alcoholic-ERP is computed. As demonstrated in Figure 5-4--a, similar 

values of association to the populations are obtained across all of the components of the 

alcoholic- and control- similarity vectors. In Figure 5-4-b, the RBS vectors for the same 

subject are constructed by projecting the ERPs onto the orthogonal subspaces of the 

populations and then the similarity is computed. The computed similarity vectors (Figure 

5-4-a) are not able to characterize subjects with respect to its original population 

association in comparison to the RBS vectors illustrated in (Figure 5-4-b).   

 

 

 



 
 

76 

 

Figure 5-4 Process of computing RBS vectors without projecting signal onto the orthogonal subspaces and vs. 
the proposed approach, for an alcoholic subject. (a) Subject’s ERPs were not projected to the orthogonal 
subspaces and only similarity between subject’s ERP and its corresponding ERP from Control-PSD and 
Alcoholic-PSD was computed. As demonstrated in a, very similar values of association to the alcoholic and 
control populations were obtained across all of the components of the Alcoholic- and Control-RBS. (b) The RBS 
vectors for the same subject were constructed by projecting the ERPs onto the orthogonal subspaces of the 
populations and then the similarity was computed. The computed similarity vectors in a were not able to 
characterize subjects with respect to its original population association in comparison to the RBS vectors 
illustrated in b.   
 
 
 
 
This finding verifies that the underlying assumption that the orthogonal complement 

subspaces of a PSS element provides a generic domain to represent distinctive brain 

functionality for populations other than the population of PSS. It should be emphasized 

that in this work, when evaluating population association of a subject, similarities and 

dissimilarities for the entire period of the experiment were considered and exploring the 

similarities (or dissimilarities) in the smaller temporal windows were disregarded. 

However, the proposed technique is not bounded to analysis of the ERPs for a long 
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period of time and can be used to reveal the potential dynamic pattern of an alcoholic’s 

distinctive areas.  

 Finally, it is worth mentioning that the approach enables distinguishing between 

any numbers of populations and is not limited only to two populations. It may also be 

used for intra-population classification given enough meta-information regarding subjects 

within a population. In future studies, this issue can be addressed by collecting more 

information regarding alcoholic subjects’ mental and physical health to perform an intra-

alcoholics classification experiment.      
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6. Identifying Functional Biomarkers in Human Prefrontal Cortex for 
Individuals with Traumatic Brain Injury (TBI) Using Functional Near-

Infrared Spectroscopy (fNIRS) 

 In chapter 6, an approach for 6 is explained. To achieve this goal, a task-related 

hemodynamic response detection followed by a heuristic search for optimum set of 

hemodynamic features is introduced. To identify the hemodynamic signals that show 

task-related hemodynamic activity, trials with negatively correlated oxygenated 

hemoglobin (HbO) and deoxygenated hemoglobin (HbR) and HbO larger than HbR were 

considered for analysis. For identifying the optimum hemodynamic features, unlike 

common single feature analysis for studying TBI and healthy subjects, all the possible 

combinations of multiple hemodynamic features to compare the TBI and healthy 

populations were evaluated. Eleven hemodynamic features were extracted from HbO to 

determine the optimum set of biomarkers. I investigated the effectiveness of the extracted 

features in separating TBI and healthy subjects by utilizing a machine learning 

classification algorithm to score all the possible combinations of features according to 

their predictive power. The identified optimum feature elements resulted in classification 

accuracy, sensitivity, and specificity of 85%, 85%, and 84%, respectively. The sensitivity 

value of 85% suggests that TBI subjects have been successfully characterized for the 

identified biomarkers with reasonable accuracy. A spatio-temporal classification was 

conducted to identify regions within the PFC that contribute in distinguishing between 
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TBI and healthy subjects. As expected, Brodmann areas (BA) 10 within the PFC was 

isolated as the region that healthy subjects (unlike subjects with TBI), showed major 

hemodynamic activity in response to the High Complexity task. Overall, results indicate 

that the identified temporal and spatio-temporal features from PFC’s hemodynamic 

activity are promising biomarkers in classifying subjects with TBI. 

 

6.1 TBI and PFC 
 

Executive function (EF) involves various complex cognitive processes, such as 

solving novel problems, generating strategies or sequencing complex actions (Elliott, 

2003).  Executive dysfunction in subjects with TBI has been reported in (Gioia and 

Isquith, 2004; McDonald et al., 2002) and is believed to be related to a dysfunctional PFC 

or disruption in the connection of the frontal lobes and other parts of the brain 

(McDonald et al., 2002). Poor performance within the PFC of TBI patients, independent 

of frontal parenchymal lesions, has been reported by researchers (Cazalis et al., 2006; 

Langfitt et al., 1986; Levin, 1982; Vilkki, 1992).   

 

6.2 Functional Near infrared Spectroscopy and Traumatic Brain Injury  
 
 

Advancement made in functional neuroimaging provide tools needed for the 

sensitive assessment of functional abnormalities following TBI in various brain regions 

including the PFC. In particular, functional magnetic resonance imaging (fMRI) of the 

blood-oxygen-level-dependent (BOLD) signal (Heeger and Ress, 2002), which depicts 

blood oxygenation changes followed by localized neuronal activity, has been widely used 
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to characterize the spatio-temporal pattern of brain regional activity in individuals with 

TBI (McAllister et al., 1999) (McAllister et al., 2001) (Cazalis et al., 2006; Scheibel et 

al., 2003).  

Although fMRI has traditionally been the modality of choice to study brain function of 

individuals with TBI, but it is relatively expensive, requires specialized and is 

permanently sited (Amyot et al., 2012).  Less expensive and more portable functional 

neuroimaging modalities such as functional near infrared spectroscopy (fNIRS) 

(Villringer and Chance 1997; Amyot et al. 2012; Bunce et al. 2013) have been utilized 

less to study brain function of individuals with TBI. Similar to its fMRI counterpart, 

fNIRS is capable of capturing local hemodynamic changes over the execution of a 

functional task. However, compared to fMRI, fNIRS offers lower spatial resolution but 

provides higher temporal resolution. fNIRS measures continuous change of 

chromophores in the blood, by sending near-infrared-range light (usually of 

700∼1000nm wavelength) through light-emitters and detect the diffused reflecting light 

after interacting with brain tissue by the detectors that are placed a few centimeters away 

from the emitters. HbO and HbR are the targeted chromophores measured by fNIRS.  

HbO and HbR signals are formed through successive measurements made over a time 

interval of an experiment.   

There are only a few studies that have utilized fNIRS to evaluate cerebral 

oxygenation and blood volume alterations during the execution of functional tasks in 

patients after TBI (Bhambhani et al., 2006; Hibino et al., 2013; Merzagora et al., 2011; 

Merzagora et al., 2014). These studies have employed very small sample sizes, various 
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cognitive stimuli, and different analytical techniques. (Bhambhani et al., 2006) used 

fNIRS to investigate cerebral hemodynamic alterations in the prefrontal cortex in 25 

subjects with TBI and 13 healthy control subjects while they performed the handgrip 

contractions task. It was reported that subjects with TBI demonstrated a significantly 

lower increase in oxygenation in both left and right dorsolateral prefrontal cortex 

(DLPFC) (Bhambhani et al., 2006). (Merzagora et al., 2011) examined the differences in 

the prefrontal hemodynamic activity of 5 TBI subjects and 11 healthy controls and 

reported significant lower mean HbO values for the subjects with TBI in comparison to 

healthy control subjects while performing an attenion-based task, and suggested that 

fNIRS could be used to monitor the rehabilitation procedure for the patients with TBI 

(Merzagora et al., 2011). (Hibino et al., 2013) conducted a study on 9 TBI and 47 healthy 

subjects to investigate differences between the two populations by analyzing the HbO 

changes captured from frontal to temporal cortices in response to 9 different cognitive 

rehabilitation tasks. They documented higher HbO changes for TBI compared to healthy 

control patients in the medial frontal region and higher left frontal HbO changes were 

reported for healthy controls in majority of the cognitive tasks (Hibino et al., 2013).  

(Merzagora et al., 2014) investigated fNIRS to understand working memory 

subcomponents for 6 TBI and 11 healthy controls and compared the maximum 

hemodynamic response between the two populations. It was reported that TBI subjects’ 

largest hemodynamic response was significantly higher than the healthy control subjects 

while performing a working memory task, in particular in the left DPFC. Nevertheless, 

similar experimental settings and comparison features from the hemodynamic signals for 
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investigating the difference between the TBI and healthy subjects has not been employed 

in the two studies by the same authors, this finding of observing a higher maximum 

hemodynamic signal for the TBI subjects compared to the healthy subjects, seems not to 

comply with their initial reports (Merzagora et al., 2011) of reporting lower mean HbO 

signal for the TBI subjects compared to the healthy subjects.  

Overall, significant hemodynamic response differences between TBI and healthy 

control in the PFC (or its subcomponents) have been reported in all the studies discussed 

above. The employed methodology for comparing the hemodynamic responses between 

the two populations is based on univariate statistical analysis where a single feature from 

the hemodynamic signal is utilized to investigate the difference between the TBI and 

healthy subjects by conducting a statistical testing. Although this is a valid approach to 

study the differences between TBI and healthy control populations, but it does not fully 

exploit the potential hemodynamic features that may act as TBI’s functional biomarkers. 

The approach of single hemodynamic feature analysis, while capable of signifying a 

difference between the TBI and healthy subjects, is incapable of providing a general 

model to classify a new (unseen) subject to the TBI or healthy population. A 

complementary approach to the current methodology is a technique that provides a 

measure of ranking different hemodynamic features according to their contribution in 

distinguishing TBI from healthy subjects and also enables classification of subjects 

according to their hemodynamic features. Conversely, feature combination through a 

machine learning classification method in which TBI and healthy subjects are 

characterized by multidimensional feature sets enables exploration of potential 



 
 

83 

biomarkers in combination with each other. In this approach, the goal is to identify the 

feature space in which TBI and healthy subjects are characterized with maximum intra-

population similarity and minimum inter-population similarity. Various heuristic feature 

extraction techniques attempting to construct single or multi-dimensional feature spaces 

from the hemodynamic signal to classify brain activity for the Brain-Computer-Interface 

(BCI) applications have been proposed (Coyle et al., 2004; Fazli et al., 2012; Hai et al., 

2013; Holper and Wolf, 2011; Luu and Chau, 2009; Naito et al., 2007; Power et al., 2010; 

Power et al., 2011; Sitaram et al., 2007; Stangl et al., 2013). However, few studies have 

attempted to identify the most efficient set of features from subjects of a population with 

purportedly distinctive brain activity to provide a unique characterization for the 

population (here TBI population). Selecting the optimum feature elements from a set of 

hemodynamic features is not a trivial problem. For instance, it has been shown that single 

features that may seem irrelevant in a single feature analysis can prove relevant in 

combination with other features (Domingos, 2012). Therefore, the full inherent 

biomarkers of the TBI subjects’ hemodynamic signal may be determined by identifying 

the set of features that optimally characterizes the population.  

 
6.3 Methodology  
 

The objective of this study is to identify the potential prefrontal hemodynamic 

biomarkers that contribute in characterizing subjects with TBI. To achieve this goal, 

hemodynamic response from a group of healthy and chronic TBI subjects while 

performing an event-related complexity task is captured. A novel procedure to identify 

the trials with elicited hemodynamic responses and reject the trials with artifactual 
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hemodynamic responses by imposing certain restrictions on the HbO and HbR signals is 

proposed. The average HbO and HbR signal are obtained by averaging the remaining 

trials. For every subject, a set of hemodynamic features from the average trials is 

obtained. The optimum set of functional biomarkers is obtained by employing the 

wrapper feature subset selection method (Guyon and Elisseeff, 2003) from the extracted 

features. Wrapper feature selection method utilizes machine learning classification 

algorithm as a black box to score different subsets of the hemodynamic features 

according to their predictive power.  Finally, the accuracy of the identified biomarkers in 

characterizing the TBI population is evaluated by employing different classification 

techniques.  

6.3.1 Participant 
 

70 subjects participated in the two IRB-approved studies (NCT01797549 and NIH 

07N0139) from which data from 9 subjects were not used in this analysis. Data from 

these subjects were excluded from the study either due to the problems in data collection 

or major motion or detector artifacts. Details of the procedure to identify subjects with 

major artifactual data are explained in the preprocessing section. Final number of subjects 

available for analysis was 61, 31 healthy controls (17 male and 14 female) and 30 TBI 

subjects (24 male and 6 female). Table 6-1 illustrates the demographic for all the TBI and 

healthy participant in this study.  
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Table 6-1 Demographic and Clinical Characteristics of the Study Population 
 
  TBI  (n=30) HC (n=31) 
Age (years), mean ± STD 37.8 ± 11.6 30.8 ± 8.06 
Gender, % male 80.0 58.06 
Education (yrs) 15,  17.2 
Time since TBI (months), median, IQR 21.5, 13-41  
Road traffic incident, % 50  
LOC > 30 min, % 40  
Days in ICU, median ± IQR 3, 1-8  
Received Rehabilitation, % 43  

 
 
 
6.3.2 Experimental Design  
 

An event-related paradigm in which subjects are required to evaluate the 

complexity (i.e. number of events) of certain daily life activities was chosen for this 

study. The paradigm was originally designed and implemented in an fMRI experiment by 

(Krueger et al., 2009) and has been shown to engage the PFC. Therefore, this experiment 

seems feasible for studying patients with TBI in respect to the susceptibility of PFC in 

this population (see introduction).   

In this paradigm, subjects were exposed to two classes of conditions: An 

experimental condition or the Complexity task and a control condition or the Font task. 

Stimulus presentation was controlled by the E-prime software package (Psychology 

Software Tools, Inc., http://www.pstnet.com/eprime.cfm). Participants were first trained 

with a separate set of stimuli to familiarize them with the experiment. At the beginning of 

each trial, instructions describing the type of task (Complexity or Font) and the name of a 

daily-life activity, e.g., “stirring a cup of coffee” was displayed on a computer monitor 

for 4 seconds.  For the Complexity task, participants were asked to make a binary 
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decision as to whether the activity name displayed corresponded to an activity with low 

complexity (i.e. less number of events), e.g., “stirring a cup of coffee” or an activity with 

high complexity (i.e. more number of events), e.g., “planning a wedding”, using a two-

button response pad. For the Font task, participants were asked to decide whether the 

instructions and the activity name shown represented the same or different fonts. 

Participants were prompted to respond as quickly and accurately as possible. Trials were 

separated by a randomly varied interval of 6 to 8 seconds. 33 Font and 66 Complexity 

trials were randomly arranged within a 15-min period of fNIRS data collection.   

The hemodynamic response changes were recorded with a continuous wave 

fNIRS device with 4 light sources and 10 detectors (fNIR Devices LLC). The distance 

between each source/detector pair was 2.5 cm. The lights were emitted from each source 

at two different wavelengths of 730 nm and 850 nm. The light sources were activated in 

sequence for collecting measurements from 16 different channels that spanned the 

forehead at 2Hz.  

 

6.3.3 Preprocessing 
 

The raw intensity data measured at two wavelengths was normalized for all 

channel sites to compute the relative change by dividing each value of the intensity signal 

by the mean of the signal. The intensity-normalized data was then used to calculate the 

change in optical density (delta-optical density).  Delta-optical density was computed for 

each wavelength as the negative logarithm of normalized intensity. For every subject, a 

differential pathlength factor (DPF) was calculated as the variable of age and the 
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wavelength following the formula obtained in (Scholkmann and Wolf, 2013). Using the 

DPF values, the delta-optical density was converted to changes in HbO and HbR using 

the modified Beer-Lambert law (Delpy et al., 1988). HbO and HbR signals were low-

pass-filtered using butterworth IIR frequency filter of order 10 with a cut-off frequency 

0.1 Hz. The filtered data was then detrended using the piecewise linear detrending to 

remove linear trends in the data. Trials corresponding to the High complexity stimulus 

were considered for this study. Trials were extracted by considering 11 seconds post-

stimulus onset. Three seconds extra after the trial ends was considered as it has been 

shown that a full hemodynamic change occurs over a 10–12 s period, after the stimulus is 

presented (Izzetoglu et al., 2005). To decrease the effect of motion artifacts or major 

detector artifacts during the data collection and also increase the relevance of the 

hemodynamic response to the presented stimulus, certain restrictions were imposed on 

the extracted trials. In an elicited trial, decrease of HbR signal is expected to be 

accompanied by an increase in HbO signal in the activated area (Plichta et al., 2006). 

Therefore, corresponding to every stimulus only trials in which HbO and HbR are 

negatively correlated were considered. Furthermore, to guarantee that the selected trials 

encompass brain hemodynamic activity elicited by the presented stimulus, trials in which 

HbO signal was (on average) larger than HbR were considered. Finally, trials with 

negative HbO values were discarded from the analysis. HbO and HbR data corresponding 

to the High complexity trials were then block averaged across the remaining trials for 

every channel.  
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6.3.4 Feature extraction  
 

As previously stated, the majority of the TBI fNIRS studies have attempted to 

construct a small feature space (feature spaces with 1 or 2 elements) to investigate the 

difference in the TBI and healthy populations. To enable the characterization of the 

subjects at the individual level, 10 time- and frequency-domain features are extracted and 

their potential to be employed for characterizing the TBI and healthy subjects is 

investigated. The optimum feature space for distinguishing TBI and healthy subjects is 

identified by employing a features selection method that will be explained in the next 

section.  

Typically, the average HbO signal obtained in response to an eliciting stimulus 

embodies a positive deflection representing the activation in the channel that I refer to as 

activity curve. The activity curve is the curve embodied in the HbO signal that is formed 

by an increase in oxygenation and its return to the same level of oxygenation. Depending 

on the nature of the features, they are extracted from the entire average HbO or the 

activity curve as follows:    

1) Mean value of the HbO signal (HM),  

2) Variance of the HbO signal (HV),  

3) Left slope of the activity curve (CSL), 

4) Right slope of the activity curve (CSR) 

5) Kurtosis value of the HbO signal (HK),  
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6) Skewness value of the HbO signal (HS),  

7) Area under the activity curve (CA),  

8) Full width half maximum of the activity curve (CF),  

9) Peak amplitude of the activity curve (CP),  

10)  Activity start time (CAS),  

11)  Discrete Fourier Transform (DFT) Coefficients of the HbO signal (HDFT) 

 

Figure 6-1 visualizes the HbO signal and the extracted features. Two slope values for 

the slope features, denoting the rate at which the oxygenation consumption increases or 

decreases are computed. Left slope is computed between the points corresponding to the 

peak of the activity curve and where the activity curve starts and the right slope is 

computed between the points corresponding to the peak of the activity curve and where 

the activity ends. Furthermore, DFT provides a projection for the HbO signal with 𝑛 data 

points in the time domain into the frequency domain by  

 

𝑐! =  !
!

𝐻𝑏𝑂(𝑡)exp (!
!!!

!!!"#$
!

), 𝑓 = 0,1,…𝑛 − 1      

 

where 𝑐! coefficients are a sequence of complex numbers that represents the amplitudes 

and shifts of a decomposition of the signal into sinusoid functions. 𝐻𝑏𝑂(𝑡) is the value of 

the HbO time series at time 𝑡.  Keeping a few coefficients and discarding the rest that 

provides a rough sketch for the original HbO signal is a common time series feature 

extraction technique (Mörchen, 2003). For this study, 4 coefficients corresponding to the 
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very low frequency oscillations (VFLO) and low-frequency oscillations (LFOs) ranging 

from 0.01-0.1 Hz were kept. The VFLO and LFOs from the cerebral hemodynamics are 

shown to be associated to the brain spontaneous response and functional stimulation, 

respectively (Obrig et al., 2000). Furthermore, this range of frequency is known to be 

related to the cerebral autoregulation (Liu et al., 2015) which is the specific intrinsic 

ability to maintain constant cerebral blood flow over a range of blood pressure and is 

known to be disturbed or absent in 49-87% of patients with TBI (Rangel-Castilla et al., 

2008). All the other features result in one single value and are as follows:  

Mean (HM): average signal value. 

Variance (HV): measure of signal spread. 

Skewness (HS): measure of the asymmetry of signal values around its mean relative to a 

normal distribution. If the HbO signal is symmetrically distributed, then HS will be 0. 

 

Kurtosis (HK): measure of the degree of peakedness of a distribution of signal values 

relative to a normal distribution. 

Activity start time (CAS): represents the time instant after stimulus onset when the 

oxygenation value in the HbO starts to increase toward its peak’s amplitude 

Full Width at Half Maximum (FWHM):  is commonly used to measure the width of a 

peak on a curve. As it is illustrated in Figure 6-1, the FWHM (“CF” in this study) value is 

obtained by computing the distance between points on the curve at which the values is 

half of the activity curve’s amplitude. 
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Figure 6-1 Visualizing the HbO signal (in red), activity curve and a number of hemodynamic features extracted 
in this study.  The activity curve is a positive deflection representing the activation embodied in the HbO signal. 
The activity curve is formed by oxygenation’s increase and its returns to same level of oxygenation. 
 
 
 

6.3.5 Feature selection and pattern classification  
 

To determine the optimal feature set (optimal combination of the aforementioned 

hemodynamic features) that enables distinguishing TBI subjects from the healthy subjects 

with the highest accuracy, I employed the wrapper feature selection method (Guyon and 

Elisseeff, 2003).  Wrapper utilizes the machine learning classifier (popular predictors 

include decision trees, linear discriminant analysis, support vector machines, etc.) as a 

black box to rank different subsets of the features according to their predictive power.  
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Wrapper addresses the problem of variable selection effectively in comparison to other 

techniques, as it is independent from the selected predictor and it can search the space of 

all feature combinations.  To employ the wrapper method, one needs to define the 

classifier, a method of evaluating the performance of the predictor, and method of 

searching the feature space (Guyon and Elisseeff, 2003). In wrapper method, a feature set 

is fed to the classifier and its performance is scored and the feature set with the highest 

rank, is selected as the optimal feature set.  

In this study, due to the relatively small size of the feature space, an exhaustive 

search in the set of all the feature combinations was performed and for every possible 

combination of the feature sets a classification experiment was run. Decision Tree 

(Breiman et al., 1984) was utilized as the classifiers to evaluate different feature sets. 

70% of the subjects (from TBI and health populations) were randomly selected for 

training purposes and the rest are considered for the testing purposes.  

6.3.6 Classification evaluation  
 

The TBI group was labeled as the positive class and the healthy group as the 

negative class. Generally, to assess the classification performance, evaluation indices are 

developed based on the counting the number of TP, TN, FP, FN where,  

• True Positive (TP) – A subject belongs to the TBI population and is classified correctly 

as a TBI subject.  

• True Negative (TN) – A subject that belongs to the healthy population and is classified 

correctly as a healthy subject 
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• False Positive (FP) – A subject that belongs to the healthy population and is classified 

incorrectly as a TBI subject. 

• False Negative (FN) – A subject that belongs to the TBI population and is classified 

incorrectly as a healthy subject.  

 

Since the number of TBI and healthy subjects are comparable (33 TBI and 34 

healthy subjects), the common metric of accuracy that weights TP and TN equally is 

appropriate for this classification problem (Satyasree and Murthy, 2013). The 

generalization performance of every classification experiment is assessed by random 

subsampling in which the process of randomly partitioning subjects into training and 

testing sets and executing the classification is repeated several times (1000 times in this 

study) and the average accuracy value of the 1000 classifications is considered as the 

overall classification evaluation index. For every classification experiment, I report 

average accuracy, specificity, and sensitivity (Tan et al., 2006a). The overall accuracy, 

specificity, and sensitivity values are determined by averaging the accuracy, specificity, 

and sensitivity values computed for every run of the random subsampling procedure. 

 

Accuracy, specify, and sensitivity are computed as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁  
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃  

Sensitivity and specificity suggest how accurate the TBI and healthy subjects are 

detected through the classification procedure, respectively.  In addition, once the 

optimum feature set is determined, two more classification algorithms namely, Linear 

Discriminant Analysis (LDA) (Welling, 2005), and Support Vector Machines (SVM) 

(Suykens and Vandewalle, 1999) were employed to classify the subjects.   

6.4 Results 
 

6.4.1 Trial/Channel removal 
 

The three criterions discussed in the preprocessing section were applied on every 

single trial. A channel for which more than 80% or more of the trials were discarded was 

not considered for analysis. Subjects for which all the channel data were rejected, were 

also discarded from the study. 6 subjects (3 TBI and 3 healthy subjects) were discarded 

from the analysis by applying the trial-removal preprocessing step. The remaining 

channels for every subject contained only trials that were the most representative for 

hemodynamic activation in response to the High complexity task. Figure 6-2, illustrates 

the distribution of the retained channels across all the subjects after the trial/channel 

removal step. As it can be seen, the difference in the distribution of the retained channels 

between the two populations is clear. For the TBI subjects, a smaller number of subjects 

shared a common channel and the channel sites with elicited activity data were diffusely 

distributed. However, the majority of the healthy subjects shared similar channels.  In 

particular, in the TBI population, more than half of the subjects shared only channel 16 



 
 

95 

and the rest of the channels were distributed among different subsets of subjects. 

However, in the healthy population except for channel 16, all other channels were shared 

among more than half of the subjects. The feature extraction and classification 

procedures in the sections below are performed merely on the channels for which the 

hemodynamic signal is kept 

 
 
 
 

 
Figure 6-2 Channel distribution for the healthy and TBI populations after the channel/trial removal step is 
illustrated. For the TBI subjects, less number of subjects shares a common channel whereas for majority of the 
healthy subjects share similar channels are kept. In the TBI population, more than half of the subjects share 
only channel 16. However, in healthy population except for channel 16, all the other channels are shared among 
more than half of the subjects.    
 
 
 

6.4.2 Temporal Feature Extraction/Classification  
 

Temporal features were extracted from every channel of the subjects. For every 

subject, these features were averaged across all the channels to obtain the subjects’ 

representative feature set. All the possible combinations of the generated features were 

considered for distinguishing the TBI from the healthy subjects using the Decision Tree 

classification algorithm. Table 6-2 illustrates the accuracy, specificity (accuracy of 
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classifying healthy subjects correctly), and sensitivity (accuracy of classifying TBI 

subjects correctly) of the classification experiments for the feature space constructed 

single features. As it can be observed in table 6-2, the largest accuracy is obtained for the 

feature space constructed by the left slope of the activity curve (CSL) variable with the 

accuracy of 65%. Poor classification performance was obtained for the remaining 

features. Although these variables seem to be irrelevant to the task of classifying TBI 

from the healthy subjects once used for single variable classification, they were not 

discarded in search for the optimal feature set. Findings in (Domingos, 2012) indicate 

that an irrelevant single variable in two class classification may be relevant once used in 

combination with other features. Therefore, classification performance among all the 

possible combinations of the generated features of different sizes (2047 potential feature 

sets for 11 features) are computed and compared. Table 6-3 shows the classification 

performance for the optimum feature sets of different sizes. The optimum classification 

performance is obtained for the feature space constructed by the triple feature set of [CA, 

HDFT, CF] with the average classification accuracy of 85%. Sensitivity and specificity 

values computed for the corresponding classification suggest that TBI and healthy 

subjects are classified with accuracies of 85% and 84%, respectively. This finding 

suggests that on average, 26 TBI subjects (out of 30) and 26 healthy subjects (out of 31) 

are correctly identified for the feature space constructed by [CA, HDFT, CF]. It can also 

be observed in table 6-3 that comparable classification performance is obtained for the 

optimum feature sets of size 4 and 5. Hence, it seems safe to conclude that the feature 

space constructed by these 5 hemodynamic elements (CA, HDFT, CF, CSL, and CSR) 
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provide the most accurate distinction between the TBI and healthy subjects. Furthermore, 

a comparison between the sensitivity and specificity for the classifications with optimum 

feature sets (feature sets of size 3, 4, and 5) indicates that the TBI subjects are identified 

with marginally higher accuracy. The high sensitivity values signify the potential 

relevance of these 5 hemodynamic features to be used as biomarkers for subjects with 

TBI.    

In Figure 6-3, Receiver Operating Characteristics (ROC) curve for the Decision 

Tree classifier in the feature space constructed by the optimum feature set is illustrated. 

An ROC curve illustrates the performance of the obtained classification model for the 

optimum feature set by visualizing the tradeoff between the sensitivity and the 

specificity. An ideal classifier would result in high sensitivity value whereas specificity 

value is reasonably low. The area under the curve (AUC) quantifies the overall ability of 

the classifier to distinguish between the TBI and the healthy subjects. An ideal classifier 

has an AUC of 1 and a random classifier has an AUC of 0.5. Therefore, the larger the 

AUC, the better the performance of the classifier in separating the TBI subjects from the 

healthy subjects. Specificity and sensitivity values at each point of the graph are obtained 

by averaging the corresponding values across the 1000 run of the random subsampling 

procedure. The AUC of 0.85 obtained for the constructed model in the optimum feature 

space signifies the high accuracy for the classification model. 
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Table 6-2 Accuracy, specificity (accuracy of classifying healthy subjects correctly), and sensitivity (accuracy of 
classifying TBI subject correctly) of the classification experiments for the feature space constructed using one 
feature element. The largest accuracy value is obtained for the feature space constructed by the left slope of the 
activity curve (CSL) variable. Overall, the accuracy of correctly identifying the TBI subjects (sensitivity) is 
larger than the accuracy of correctly detecting the healthy subjects for feature set of any size. 
 

Feature 

 HM HV HK HS CSL CSR CA CF CP CAS HDFT 

Accuracy 

(%)  
38±9 57±9 55±9 55±10 65±10 57±10 39±10 57±10 45±10 58±9 59±10 

Specificity 

(%)  
38±19 61±18 56±19 55±19 61±18 61±19 39±18 58±18 42±20 57±16 58±18 

Sensitivity 

(%)  
42±19 55±17 56±17 60±19 71±18 54±18 42±18 55±19 49±19 62±18 61±18 

 
 
 
Table 6-3 Classification performance obtained by using the optimum feature sets of sizes 2 to 11 is presented. 
The optimum feature sets are selected from all the potential feature combinations of a certain size. Among all 
the combinations of features for a certain size, the one with the highest accuracy value is selected as the optimum 
feature set. The optimum classification performance is obtained for the feature space constructed by the triple of 
3 features of “activity curve slopes (CS)”,  “HbO kurtosis (HK)“, and “activity starting time (CAS)” resulted in 
the best separation between the TBI and healthy subjects.  Comparison between the specificity and sensitivity 
indicates that in all the cases, sensitivity has been superior to the specificity meaning TBI subjects have been 
classified with higher accuracy.   
 
Size of the feature 
set combinations  

Feature set with the optimum performance Accuracy 
(%) 

Specificity 
(%)  

Sensitivity 
(%)  

2 [CA,HDFT] 81±9 79±15 82±14 
3 [CA,HDFT,CF] 85±13 84±16 85±17 

4 [CA,HDFT,CSL,CSR] 83±14 83±18 84±18 
5 [CA,HDFT,CSL,CSR,CF] 83±14 83±17 84±18 
6 [CA,HDFT,CSL,CSR,CF,CP] 78±13 77±18 80±18 
7 [HV,HS,HK,CA, CAS,CF,HDFT] 70±13 67±19 75±18 
8 [HV,HS,HK,CA, CAS,CF,HDFT,CSL] 70±14 67±20 74±19 
9 [HV,HS,HK,CA, CAS,CF,HDFT,CSL,CP] 67±11 64±19 70±19 
10 [HV,HS,HK,CA, CAS,CF,HDFT,CSL,CP,CSR] 67±13 64±19 71±19 
11 [HV,HS,HK,CA,CAS,CF,HDFT,CSL,CP,CSR,HM] 63±11 60±19 67±17 

 
 
 

It is worth noting that the classification performance for the features of the 

optimal set: CA, HDFT, CF, CSL, and CSR in table 6-2 suggests that 65% of accuracy 

(accuracy value obtained for CSL) is the optimal obtained performance if these features 
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are used for the single variable classification. However, the feature space formed by 

combining these features improved the classification performance. In particular, presence 

of the variable “CA” in the optimal feature set verifies that variables with poor 

performance in separating the subjects for single feature classification can improve the 

classification if used in combination with other features. On the contrary, a few variables 

with relatively larger accuracy values (e.g. HV) for single feature classification are not 

improving the classification performance in combination with other features. These 

observations verify the significance of performing multi-feature analysis. 

 

 

 

 

Figure 6-3 ROC curve for the classifying subjects into TBI and healthy groups, in the feature space constructed 
by the optimum feature set [CA, HDFT, CF]. Specificity and sensitivity values at each point of the graph are 
obtained by averaging the corresponding values across the 1000 run of the random subsampling procedure.  
Area under the curve of 0.85 is obtained for the constructed model, which signifies the high accuracy of the 
constructed classification model. 
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For the optimal features set of [CA, HDFT, CF], I attempted to evaluate the 

performance of other commonly used classifiers and provide a comparison with the 

Decision Tree performance. In table 6-4, result of classifying TBI and healthy subjects in 

the feature space constructed by [CA, HDFT, CF] using the LDA and SVM (using the 

polynomial kernel) is illustrated. As results in table 6-3 indicates, classification of TBI 

and healthy subjects using the Decision Tree algorithm outperforms the two other 

techniques.  

 
 
 
 
Table 6-4 Classifying TBI and healthy subjects by characterizing subjects in the features space defined by the 
identified optimal feature set  [CA,HDFT,CF] using 3 different classifiers. Decision Tree classifier outperformed 
LDA and SVM classifiers. 
 

Classifier  Accuracy (%) Specificity (%)  Sensitivity (%)  
Decision Tree 85±13 84±16 85±17 

LDA 64±10 61±17 72±17 
SVM 65±9 55±16 76±14 

 
 
 
6.4.3 Temporal feature extraction/classification without rejecting trials/channels 
 
 

In this section, the efficacy of the proposed preprocessing step of imposing 

constraints on the selected trials is evaluated. As discussed in the Methods section, 

trial/channel rejection step is proposed to identify the trials with meaningful HbO and 

HbR. Therefore, to evaluate the efficacy of the proposed technique, The entire 

classification procedure was repeated without imposing any of the constraints that were 

introduced (see Methods section).  This was done to reject artifactual trials and provide a 
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comparison between the results of this process, which are shown in table 6-2. However, 

to be able to provide a fair comparison, the 6 subjects that were discarded through the 

trial/channel rejection in the previous section, were not considered for the current 

classification experiments. Table 6-5, illustrates the optimal feature sets identified 

through the wrapper method (see Methodology section) and the corresponding 

classification performance measures.  

 
 
 
 
 
 
Table 6-5 Feature sets with the largest accuracy values were selected from all the potential feature combinations 
of different sizes. HbO and HbR signals have been averaged across all the trials without applying the 
trial/channel rejection procedure on the signals. 
 

Size of the 
feature set 

combinations  

Feature set with highest accuracy value Accuracy 
(%) 

Specificity 
(%)  

Sensitivity 
(%)  

1 [CSR] 57±10 51±19 62±20 
2 [CSR,HS] 62±11 58±19 58±19 
3 [HM,HV,CA] 58±13 52±22 64±20 
4 [CP,HM,CSL,CF] 57±11 54±21 62±18 
5 [CP,HM,CSR,HK,CAS] 57±12 57±20 57±19 
6 [CP,HM,HV,CSL,CA,CF] 59±14 57±21 61±19 
7 [CP,HM,CSL,CSR,CAS,CA,CF] 58±12 56±18 61±19 
8 [CP,HM,CSL,CSR, HK,CAS,CA,CF] 55±13 55±19 57±20 
9 [CP,HM,HV,CSL,CSR,HK,CAS,CA,CF] 54±12 54±19 56±11 

10 [CP,HM,HV,CSL,CSR,HS,HK,CAS,CA,CF] 51±10 49±19 53±19 
11 [CP,HM,HV,CSL,CSR,HK,CAS,CA,CF,HDFT] 46±10 44±18 49±19 

 
 
 
Comparing classification performance in tables 6-3 and 6-5 suggests that the trial/channel 

rejection has significantly improved the classification performance. This difference in the 

classification performance implies that trials in which HbO and HbR and negatively 
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correlated and average HbO is higher than average HbR contains hemodynamic response 

related to brain activation elicited by the stimulus.  

6.4.4 Spatio-temporal feature extraction  
 

In addition to the temporal classification, a spatio-temporal feature extraction and 

classification procedure was also considered to identify the features that enable 

distinguishing TBI subjects from healthy. In the spatio-temporal classification, unlike the 

temporal classification approach, the extracted features for a subject were not averaged 

across all the channels. Therefore, for a single feature there were at most 16 different 

feature values (some of the channels may have been discarded from the study, see 

Methods section) associated to the different channels. The DT algorithm was employed 

to classify the subjects in this spatio-temporal feature space. DT seemed feasible for this 

classification task as the spatio-temporal feature sets for the subjects contained missing 

values (for the discarded channels) and DT is known to be capable of handling the 

missing values (Safavian and Landgrebe, 1991).  Table 6-6, tabulates the result of this 

approach, for all the extracted features. 

 
 
 
Table 6-6 Accuracy, specificity (accuracy of classifying healthy subjects correctly), and sensitivity (accuracy of 
classifying TBI subject correctly) for the spatio-temporal classification. Similar to the single feature temporal 
classification, HbO variance (HV) and activity curve’s left slope (CSL) resulted in relatively larger classification 
accuracy. However, single variable spatio-temporal classification outperformed single variable temporal 
classification.  Similar to temporal classification, the accuracy of correctly identifying the TBI subjects 
(sensitivity) is consistently larger than the accuracy of correctly detecting the healthy subjects. 
 

Feature 

 HM HV HK HS CSL  CSR CA CF CP CAS 

Accuracy (%)  68±11 70±9 65±13 72±11 71±10 68±10 70±10 65±12 72±10 65±11 

Specificity (%)  66±18 68±18 58±21 71±20 74±117 67±17 67±18 65±20 68±17 61±17 

Sensitivity (%)  72±18 73±17 74±18 75±14 74±18 70±17 75±17 66±17 77±16 72±17 
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As it can be observed in table 6-6, the largest spatio-temporal classification performances 

were obtained for the HS, CP, CSL, CA, and HV variables. Although, these classification 

experiments for the spatio-temporal features do not provide significant distinction 

between TBI and healthy subjects, they outperform the obtained accuracy values for the 

corresponding single feature temporal classification (shown in table 6-2). In Figure 6-4, 

the average activity maps for the CSL, and HV for the healthy and TBI subjects are 

illustrated. The activity map for a spatio-temporal feature associated to a population is 

obtained by averaging every subject’s (from the corresponding population) spatio-

temporal feature set. 

Distinctive spatial distribution for the HV feature is observed between the two 

populations. For the TBI population, the larger HV values are located at multiple 

locations with the largest in the right hemisphere whereas for the healthy population the 

largest HV is concentrated in the left hemisphere within the Brodmann area 10 (BA 

10)(Ramnani and Owen, 2004). Furthermore, healthy subjects on average show a larger 

HV value for the HbO signal that indicates that the oxygenation signal has shown higher 

variation in the healthy subjects. Since, HbO signals are obtained from trials that indicate 

hemodynamic activation (see Methods section), it is safe to conclude that the HbO signal 

in response to the High Complexity task for the healthy subjects shows a larger variation 

and is spatially less diffuse than for the TBI subjects.  
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The left slope of the HbO signal’s activity curve (defined as CSL in the Methods 

section) at a certain location describes the rate by which HbO’s activity curve has started 

to increase toward its peak. Hence, larger CSL values correspond to a faster rate of 

oxygenation consumption. As it can be seen in Figure 6-4, the largest CSL values for the 

healthy subjects cover the left frontopolar area of BA 10. A comparison of healthy and 

TBI subjects’ CSL activity map reveals that healthy subjects have shown higher 

oxygenation consumption rate in response to the High complexity task at all the sites of 

fNIRS data collection. 
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Figure 6-4 The average activity maps for the CSL and HV features for the healthy (a) and TBI (b) subjects are 

illustrated. The activity map for a spatio-temporal feature associated to a population is obtained by averaging every 

subjects’ (from the corresponding population) spatio-temporal feature set. For the TBI population, the larger HV values 

are located at multiple locations with largest on the right hemisphere whereas for the healthy population the largest HV 

is concentrated on the left hemisphere of the Brodmann area 10 (BA 10). Furthermore, healthy subjects on average 

show larger HV values for the HbO signal that indicates oxygenation signal has shown higher variation in the healthy 

subjects. The HbO signal in response to the High Complexity task for the healthy subjects shows larger variation and is 

spatially less diffuse than for the TBI subjects. Larger CSL values correspond to faster rate of oxygenation 

consumption. Considering the activity map for healthy subjects, largest CSL values cover the left frontopolar of the BA 

10. A comparison of healthy and TBI subjects’ CSL activity map reveals that healthy subjects have shown higher 

oxygenation consumption rate in response to the High complexity task at all the sites of fNIRS data collection. 
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6.4.5 Task load effects (i.e. parametric effects) in distinguishing TBI from healthy 
population 
 

As discussed in the Methods section, subjects in this study performed 3 loads of 

complexity task, Font, Low Complexity and High Complexity. In this section, I attempt 

to explore the parametric effects on the performance of the population classification 

procedure. To this end, the feature space from the identified optimal features was 

constructed for the Font and Low complexity tasks in a similar way it was constructed for 

the High complexity task and the Decision Tree algorithm was employed for classifying 

subjects into TBI and healthy classes. Table 6-7, illustrates the classification performance 

obtained for each task load. The results in table 6-7 suggest that the as the task 

complexity decreases the classification performance also decreases. In other words, the 

difference between TBI and healthy subjects hemodynamic response is more prominent 

while performing the task with higher loads.  

 
 
 
 Table 6-7 Comparison of the classification performance across tasks with different loads of complexity for the 
identified optimal feature set  [CS, HK, CAS] using the Decision Tree classification 
 

Task  Accuracy (%) Specificity (%)  Sensitivity (%)  

Font 52±11 52±18 53±19 
Low complexity 59±10 58±17 61±18 

High complexity 79±13 74±18 84±16 
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6.5 Discussion 
 

Employing temporal and spatio-temporal classification approaches, I attempted to 

identify the prefrontal hemodynamic biomarkers that provide the optimum distinction 

between the TBI and healthy subjects. To this end, I presented a novel approach for 

identifying single trial hemodynamic responses that encompass task-related 

hemodynamic activity by imposing certain restrictions on a signal’s statistical 

characteristic followed by a hemodynamic feature extraction procedure.  To determine 

the optimum biomarkers from the extracted hemodynamic features, the effectiveness of 

the 11 extracted features from subjects’ prefrontal hemodynamic response in separating 

TBI and healthy subjects were investigated. The extracted features were employed for 

two types of classification, namely, temporal and spatio-temporal classification. In the 

temporal classification, the performance of 2047 classification experiments for every 

possible combination of features was evaluated. In every classification experiment, a 

distinct combination of the features was used to represent the subject’s hemodynamic 

data. Optimum feature elements resulted in classification accuracy, sensitivity, and 

specificity of 85%, 85%, and 84%, respectively (table 6-3). The sensitivity value of 85% 

obtained for the optimal classification experiment suggests that TBI subjects have been 

successfully characterized for the optimum feature set. For the spatio-temporal 

classification, the performance of every single feature in distinguishing between the TBI 

and healthy subjects by incorporating the spatial characteristics to the feature set was 

evaluated. Optimum accuracy, sensitivity, and specificity of 72%, 75%, and 71%, 

respectively, were obtained for the spatio-temporal classification (table 6-6).  The spatio-
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temporal classification performance in comparison to the temporal classification was less 

significant. Less accurate performance of the spatio-temporal classification may be 

explained by the fact that for every subject a number of channels may have been rejected 

and it causes the spatio-temporal feature set to contain several missing values. However, 

for the temporal classification the average characteristics of the hemodynamic feature 

across the existing sites is considered and the missing data does not contribute in the 

classification procedure.   

The selected optimum hemodynamic features set that effectively characterized 

TBI subjects with respect to their PFC hemodynamic response using the temporal 

classification are HbO’s area under the curve (CA), HbO’s, DFT coefficients of the HbO 

signal (HDFT), activity curve’s full width half maximum (CF), activity curve’s left slope 

(CSL), and activity curve’s right slope (CSR). As discussed in the Methods section, 

HDFT is composed of 4 components of which 2 correspond to the magnitude of the very 

low frequencies that are associated to the spontaneous oscillations in cerebral 

oxygenation and the other 2 are the magnitude of low frequency between 0.07-0.1 Hz. 

The relationship of the magnitudes of these frequencies to the functional stimulus for the 

hemodynamic signal collected from the visual cortex has been investigated in (Obrig et 

al., 2000) and they are shown to be altered by the stimulation. The significance of these 

frequency magnitudes in the results, which are obtained in response to the High 

Complexity task is in line with findings in (Obrig et al., 2000) that suggests the 

relationship between these frequency magnitudes and functional stimulus and also claims 

that this functional response is observed over the PFC and is not bounded to the visual 



 
 

109 

cortex. Furthermore, as discussed in the Methods section, the selected components of the 

HDFT feature are related to the cerebral autoregulation. The contribution of the HDFT 

components in separating TBI from healthy subjects is consistent with previous findings 

in which disturbance in the cerebral autoregulation in any degree of TBI has been 

reported (Rangel-Castilla et al., 2008).  

For the spatio-temporal classification, HbO’s skewness (HS), activity curve peak 

value (CP), activity curve’s left slope (CSL), activity curve’s area under the curve (CA), 

and HbO signal’s variance HV were identified as the optimum feature elements. In 

Figure 6-4, the spatial distribution of the HV and CSL variables for the healthy and TBI 

populations are visualized. The spatial distribution for HV and CSL signified the 

contribution of the left hemisphere of the BA 10 in separating the healthy subjects from 

the TBI for the spatio-temporal classification. Healthy subjects showed a consistent 

pattern of engaging this region in response to the High Complexity task. This finding 

complies with the reports by (Amyot et al., 2012; Krueger et al., 2009a) that BA 10 in 

healthy subjects is majorly activated in response to the High Complexity task. The HV’s 

spatial distribution map for the TBI subject suggests that the TBI population have very 

low activation values across the entire PFC in comparison to the healthy subjects. This 

finding is in line with the previous study of (Sánchez-Carrión et al., 2008) that reported 

patients with TBI show a pattern of cerebral hypoactivation in the right middle and 

superior frontal regions during working memory tasks. 

I investigated the parametric effects of the task complexity in distinguishing the 

TBI and healthy subjects by employing the optimum feature set of the temporal 
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classification for task with different loads. As it is shown in table 6-7, the higher the task 

complexity, a greater distinction was obtained between the TBI and healthy subjects. This 

finding complies with a previous report for this specific functional task (Krueger et al., 

2009b) in which distinct activation in the BA 10 for the High Complexity task was 

observed. 

Overall, a set of hemodynamic biomarkers that enabled identifying and 

characterizing subjects with TBI from healthy subjects with a significant accuracy (85% 

of sensitivity was reported in table 6-3) were successfully identified through constructing 

a feature space that maximized the difference between TBI and healthy subjects. The 

reported accuracy value for the classification performance is the generalized accuracy 

that describes the likelihood of identifying a subject with TBI correctly, given its 

hemodynamic signals are characterized in the similar feature space.  

Finally, it is worth mentioning that the proposed approach of identifying TBI 

functional biomarkers using the fNIRS’s hemodynamic signal has the potential to 

become a common approach in characterization of subjects with neurodegenerative, 

neurodevelopment disorders to further help clinical investigators to identify the 

underlying impairments of brain in the patient groups. 

6.6 Summary of Chapter 6  
 
 In chapter 6, a methodology to explore and identify potential hemodynamic 

biomarkers that can be utilized for classifying subjects with TBI is devised. The proposed 

approach searches a large set of hemodynamic feature combinations and identifies a set 

of features that provides the optimum classification between the TBI and healthy 
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populations. The identified features from the PFC in subjects with TBI shows significant 

accuracy in characterizing subjects with TBI and are potentially promising PFC 

biomarkers for characterizing subjects with TBI. The proposed methodology of 

identifying hemodynamic biomarkers from PFC in subjects with TBI extends the current 

state of art in hemodynamic feature selection and TBI subject characterization.  
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7. Summary and Future Work 

7.1 Summary  
 

It was discussed throughout this dissertation that literatures about functional 

neuroimaging studies with the purpose of identifying biomarkers that characterize certain 

brain disorders suffer from a few limitations that restrict their clinical translations. Firstly, 

majority of the related studies are focused on group studies that attempt to signify 

differences between the groups of subjects and do not provide description at the 

individual level. Secondly, the common techniques for characterizing functional 

neuroimaging response at the individual level are traditional single-channel time series 

feature extraction techniques that do not necessarily fit into the neuroimaging 

multichannel time series frameworks. Finally, for the more recently developed modalities 

such as fNIRS very few studies have attempted to identify biomarkers in brain disorders 

through the data mining and machine learning approaches. Therefore, in this dissertation 

emphasis was placed on improving, developing, and extracting clinically adaptable 

neuroimaging features to enable translating the laboratory work into clinical 

environments. In particular, machine learning algorithms and data mining techniques 

were utilized to generate spatio-temporal features from the neuroimaging time series and 

were evaluated for diagnosis of certain brain activity disorders. 
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In chapter 2 and 3, an approach to improve the current state of art of detecting the 

functionally connected regions in the brain is proposed and evaluated for 5 healthy 

subjects. The proposed approach targets certain limitations of the traditional approaches 

in identifying the functionally connected regions. Traditional approaches for identifying 

functionally connected regions failed to capture the last-shorting variations in the pattern 

of functional connectivity. This issue was tackled by using a cluster analysis technique, 

QT, for the short temporal windows. Advantages of employing QT to identify 

functionally connected regions are twofold. Firstly, it enables exploring all the possible 

clusters that indicate similar neural activity.  Secondly, the algorithm determines the 

number of functionally connected regions and it should not be specified a priori. The 

second novelty of the proposed framework corresponds to utilizing the DTW 

dissimilarity measure that unlike the commonly used methods considers the potential 

misalignment of the EEG signals through a non-linear compression and extension of the 

time axes. The most significant insight from this study is that the proposed approach 

captures the dynamic patterns of brain’s functional connectivity. Furthermore, it enables 

us to trace the brain interactions during the execution of a task. 

In chapter 4, a novel neuroimaging time series feature extraction technique, RBS, 

was introduced. Unlike the traditional neuroimaging time series feature extraction 

technique, RBS treats neuroimaging time series collected from a multichannel modality, 

jointly (multichannel analysis) and takes the class association of the individuals into the 

feature extraction procedure (reference-based). RBS provided effective dimensionality 

reduction, which is crucial for neuroimaging data such as EEG with high temporal 
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resolution. Since RBS is uniquely designed to utilize the a priori information 

corresponding to a class (a group of subjects with brain disorder), therefore, is feasible 

for clinical studies where databases corresponding to a class of certain disorder are 

available. In chapter 5, the applicability of RBS to identify biomarkers was evaluated for 

an EEG data set collected from 60 distinct brain sites of the abstinent alcoholics and 

control subjects.  Two 60-dimensional RBS vectors for every subject characterized the 

relationship of the subject to the two alcoholic and control classes suggesting that the 

RBS vectors can potentially explain and distinguish the association of the subject to 

different classes of a study. The RBS vectors were successfully utilized to detect and 

visualize the functionally distinct regions over brain of alcoholics. These regions 

represent the functionally impaired regions of the alcoholics’ brain and can be potentially 

used as biomarkers to distinguish between alcoholic and control subjects. 

In chapter 6, hemodynamic biomarkers that can be potentially utilized for 

classifying subjects with Traumatic Brain Injury (TBI) are explored. The proposed 

approach searches a large set of hemodynamic feature combinations and identifies a set 

of features that provides the optimum classification between the TBI and healthy 

populations. In this work, a novel approach for identifying single trial hemodynamic 

responses that encompass task-related hemodynamic activity by imposing certain 

restrictions on a signal’s statistical characteristic followed by a hemodynamic feature 

extraction procedure was introduced. For the temporal classification, optimum feature 

elements resulted in classification accuracy, sensitivity, and specificity of 85%, 85%, and 

84%, respectively. The sensitivity value of 85% obtained for the optimal classification 
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experiment suggested that TBI subjects have been successfully characterized for the 

optimum feature set. For the spatio-temporal classification, the performance of every 

single feature in distinguishing between the TBI and healthy subjects by incorporating the 

spatial characteristics to the feature set was evaluated. Optimum accuracy, sensitivity, 

and specificity of 72%, 75%, and 71%, respectively, were obtained for the spatio-

temporal classification. The spatial classification signified the contribution of the left 

hemisphere of the BA 10 in separating the healthy subjects from the TBI for the spatio-

temporal classification. Healthy subjects showed a consistent pattern of engaging this 

region in response to the High Complexity task suggesting that BA 10 in healthy subjects 

is majorly activated in response to the High Complexity task. Furthermore, TBI subjects 

showed very low activation values across the entire PFC in comparison to the healthy 

subjects. Analysis of the parametric effects of the task complexity in distinguishing the 

TBI and healthy subjects indicated that the functional tasks with more complexity results 

in more accurate distinction between the TBI and healthy subjects. Overall, a set of 

hemodynamic biomarkers that enabled identifying and characterizing subjects with TBI 

from healthy subjects with a significant accuracy (85% of sensitivity was reported in 

table 6-3) were successfully identified.  

 The overall contributions of this dissertation is summarized as follows:  

• Improving, developing, and extracting clinically adaptable neuroimaging features to 

enable translating the laboratory work into clinical environments 

• Utilizing ML algorithms to characterize brain functional activity at the individual level 

as opposed to the common approach of group analysis 
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• Developing domain-specific feature extraction techniques for neuroimaging time 

series  

• Improving the current state of art of detecting the functionally connected regions in the 

brain 

• Capturing the last-shorting variations in the pattern of functional connectivity 

(dynamicity of FC) 

• Utilizing an unsupervised approach to determining the number of functionally 

connected regions of the brain 

• Visualizing the trace of the brain’s neuronal interactions during the execution of a 

functional task 

• Devising a multichannel and reference-based neuroimaging time series feature 

extraction, RBS, for spatio-temporal biomarker detection applications  

• Successfully evaluating the proposed biomarker detection technique through 

performing an accurate classification between the alcoholic and control classes 

• Detecting and visualizing the functionally distinct regions over brain of alcoholics 

• Exploring hemodynamic features that can be potentially utilized for classifying 

subjects with TBI  

• Introducing a novel approach for identifying single trial hemodynamic responses that 

encompass task-related hemodynamic activity  

• Determining the spatio-temporal hemodynamic biomarkers that characterize subjects 

with TBI through a supervised classification approach 
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• Detecting and visualizing regions within the PFC area of the TBI subjects that function 

distinctly 

• Investigating the contribution of the loads of the complexity of the functional task 

loads in separating subjects with TBI from healthy subjects 

7.2 Future work 
 

The proposed approach to trace FC in the short temporal window has the potential to 

become a useful tool for research in the field of cognitive neuroscience. It was shown that 

the proposed technique could identify functional connectivity in a more accurate way 

compared to other existing techniques. It is expected that in healthy individuals, every 

task can have a unique dynamic functional connectivity pattern, which might differ from 

that of patient population. Comparing such dynamic patterns between the two groups 

could further help clinical investigators to identify the underlying impairments of brain 

functional connections in the patient groups.  

The proposed RBS method is capable of distinguishing between any numbers of 

populations and is not limited only to two populations classification. For multi-class 

classifications, the orthogonally assumption may be relaxed by seeking the difference in 

the subspaces of different angle orientations. The complementary approaches in 

evaluating RBS as an efficient feature extraction and classification are as follows. For 

certain group of subjects with brain disorders, library of neural response for different sites 

of the brain is constructed and the RBS would classify the subjects by using these 

references for constructing the subspaces. Furthermore, RBS may also be used for intra-

population classification studies, given enough meta-information regarding subjects 
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within a population. It can be addressed by collecting more information regarding 

subjects’ mental and physical health to perform an intra-population classification 

experiment.      

In this dissertation, the hemodynamic functional biomarker search was focused on 

the TBI group. Overall, the research community requires similar attempts to explore, 

identify, and localize the disorder’s corresponding hemodynamic biomarkers. The similar 

approach proposed in this dissertation for the TBI subjects has the potential to become a 

common approach in characterization of subjects with neurodegenerative, 

neurodevelopment disorders to further help clinical investigators to identify the 

underlying impairments of brain in the patient groups. 
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