
Points at Rational Distance from the Vertices of a Square

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Joseph G. Sadeq
Bachelor of Science

George Mason University, 2008

Director: Dr. Walter Morris, Professor
Department of Mathematical Sciences

Spring Semester 2015
George Mason University

Fairfax, VA



Copyright c© 2015 by Joseph G. Sadeq
All Rights Reserved

ii



Dedication

For my family.

iii



Acknowledgments

Special thanks to Walter Morris for his enthusiasm, patience, and time; to Jim Lawrence
and Geir Agnarsson for their interest and participation; to my parents and A for their
endless support; and to Arwyn for her inspiration.

iv



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Representation as a Pythagorean Triple . . . . . . . . . . . . . . . . . . . . 3

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Sums of Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Prime Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Representations of Sums of Squares . . . . . . . . . . . . . . . . . . . . . . . 11

3 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Generalization to Regular Polygons . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



Abstract

POINTS AT RATIONAL DISTANCE FROM THE VERTICES OF A SQUARE

Joseph G. Sadeq, M.S.

George Mason University, 2015

Thesis Director: Dr. Walter Morris

Guy asks if there exists a point in the plane at rational distance to the corners of

the unit square. Also known as the four-distance problem, we establish the equivalence

of the problem to the existence of nontrivial solutions to a particular Pythagorean triple,

from which we derive known conditions and establish new results. We then provide a

generalization given by Barbara of the four-distance problem to regular polygons of unit

side, in which a negative answer is almost always obtained.



Chapter 1: Introduction

Diophantine equations, polynomial equations in at least two variables such that only integral

solutions are studied, are notorious for being simple to state, yet elusive to solve. One class

of Diophantine equations specifically deals with finding points at rational distance from a

given set in the plane (under the usual metric). More precisely, given a set S in the plane,

a point p is said to be at rational distance from S provided d(p, si) ∈ Q for all si ∈ S.

Moreover, a set S is said to be a rational distance set provided that all pairwise distances

are rational. Although these configurations can easily be viewed geometrically, there are

significant gaps in our knowledge of their structures. Several decades ago, Ulam asked if

there was a set at rational distance that was dense in the plane [1], a question which not

only remains unsolved, but also has had very little progress. Perhaps the only significant

result related to Ulam’s problem is due to Solymosi and de Zeeuw, in which they showed

that no irreducible curve other than a line or a circle contains an infinite rational set [2]. In

sharp contrast to Ulam’s question, it is unknown if there exists even a set of 8 points in the

plane in general position1 that is at rational distance. The case of 7 points was only solved

relatively recently, by Kreisel and Kurz [3].

In this paper, we focus on the following open problem posed by Guy [4]: does there

exist a point in the plane at rational distance from the corners of the unit square? We will

often refer to this as the four-distance problem. One of our main objectives is to establish

the equivalence between the four-distance problem and the existence of nontrivial solutions

to a particular Pythagorean triple. Guy lists some necessary conditions without proof; we

derive his conditions, as well establish some new results. Using a variety of techniques,

along with some of our results, we establish several cases where such a point cannot exist.

1A set of points is said to be in general position provided no three are collinear and no four are concyclic.
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Finally, we examine a generalization given by Barbara [5] of the four-distance problem to

regular polygons of unit side, in which a negative answer is obtained in almost all cases.
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Chapter 2: Main Results

2.1 Representation as a Pythagorean Triple

Suppose there exists a point in the plane at rational distance from the corners of the unit

square. Since scaling the configuration preserves rationality, it suffices to consider only

the existence of a point at integral distance from the corners of a square with integer side

length. We begin by showing that the integral distance formulation is equivalent to finding

nontrivial solutions to a certain Pythagorean triple, which will provide the foundation of

our analysis.

Lemma 2.1.1. The existence of a point at integral distance from the corners of a square

with side length n is equivalent to finding nontrivial integer solutions to the Pythagorean

triple

(a2 − b2 − n2)2 + (a2 − c2 − n2)2 = (2rn)2

where r2 = −a2 + b2 + c2.

Proof. Let n be a positive integer. There exists a point in the plane at integral distance

from the corners of a square of side length n if, and only if, there exists (x, y) ∈ R2 such that

(x−ui)2+(y−vi)2 = d2i , where (u1, v1) = (0, 0), (u2, v2) = (n, n), (u3, v3) = (n, 0), (u4, v4) =

(0, n) and di ∈ Z for 1≤ i ≤ 4.

Let x = r cos θ, y = r sin θ. Then (r cos θ−ui)2 + (r sin θ− vi)2 = r2 cos2 θ− 2uir cos θ+
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u2i + r2 sin2 θ − 2vir sin θ + v2i = d2i determines the equations

r2 = d21 (2.1)

−2rn cos θ − 2rn sin θ = d22 − r2 − 2n2 (2.2)

−2rn cos θ = d23 − r2 − n2 (2.3)

−2rn sin θ = d24 − r2 − n2 (2.4)

Moreover,

(2rn)2 = 4r2n2

= 4r2n2(cos2 θ + sin2 θ)

= 4r2n2 cos2 θ + 4r2n2 sin2 θ =

= (−2rn cos θ)2 + (−2rn sin θ)2 =

= (d23 − r2 − n2)2 + (d24 − r2 − n2)2

With equations (2.3) and (2.4) into (2.2) and by changing variables (d2 7→ a, d3 7→

b, d4 7→ c) we have the Pythagorean triple

(a2 − b2 − n2)2 + (a2 − c2 − n2)2 = (2rn)2 (2.5)

where

r2 + a2 = b2 + c2 (2.6)
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A Pythagorean triple (or simply, triple) X2 + Y 2 = Z2 is said to be primitive provided

gcd(X,Y, Z) = 1. Euclid showed [6] that every primitive triple is expressed as X = u2 −

v2, Y = 2uv, Z = u2 + v2, where u and v are positive integers with u > v. The triple given

by Euclid’s formula is primitive if and only if u and v are coprime and are of opposite parity.

Moreover, every primitive triple arises from a unique pair of such integers u and v.

Euclid’s formula does not produce all triples; however, by adding an additional param-

eter k, all Pythagorean triples X2 + Y 2 = Z2 can be generated uniquely by

X = k(u2 − v2), Y = k(2uv), Z = k(u2 + v2) (2.7)

where u, v and k are positive integers with u > v, u − v odd, and gcd(u, v)=1. We shall

refer to (2.7) as the parametrized form of a triple.

2.2 Preliminaries

The three-distance problem, that is, the existence of a point (excluding those on the lines

containing the square’s boundary) at rational distance to three corners of the square, is

equivalent to finding nontrivial integer solutions to just (2.5). Although previously thought

to not be possible, Conway and Guy [7] found an infinite number of solutions. Additionally,

Berry gives some parametric families of solutions [8]. For the fourth distance to be an

integer, condition (2.6) is required; this arises from incorporating equations (2.3) and (2.4)

into (2.2). For the purposes of this paper, any reference to a (nontrivial) solution to the

four-distance problem is one such that (2.5) and (2.6) are both satisfied.

Since the existence of a point (x, y) ∈ R2 at rational distance to the corners of the unit

square is equivalent to the existence of a solution (n, a, b, c, r) ∈ Z5 to (2.5) and (2.6), we

are free to employ either form as being a representation of the same solution.

Henceforth, in our attempt to characterize the set of solutions, we assume that there is

no common factor of n, a, b, c, r in equations (2.5) and (2.6); by translation, we may assume

5



the square lies in the first quadrant; and by symmetry of the square, we may consider only

the solutions that arise from (x, y) lying in the first quadrant of the plane.

2.3 Basic Properties

Having transformed the problem into a more algebraic representation, we begin our analysis

by describing the parities of the solution set.

Theorem 2.3.1. n is even, and all of a, b, c, r are odd (assuming that there is no common

factor).

Proof. From (2.5), denote A = (a2 − b2 − n2), B = (a2 − c2 − n2), C = (2rn). We first

note that since C is even, A and B are either both odd or both even. More specifically,

as C2 ≡ 0 (mod 4), A and B are both even, otherwise A2 + B2 ≡ 2 (mod 4). Since A

and B are both even, k is a multiple of 2, where k is as found in the parametrized form of

A2 +B2 = C2 by (2.7). Without loss of generality, we may further suppose A = k(u2− v2).

Thus, C −A = k(u2 + v2)− k(u2 − v2) = k2v2, and therefore 4|(C −A).

Suppose n is odd. Then either a is even with b and c odd, or a is odd with b and c even.

Let a be even. Then a = 2k, b = 2f + 1, c = 2j + 1, n = 2h+ 1, where k, f, j, h ∈ Z. Write

C−A = 2rn− (a2− b2−n2) = 2rn−a2 + b2 +n2 = 2rn−4k2 + 4f2 + 4f + 1 + 4h2 + 4h+ 1.

Therefore 4|(2rn+ 2) = 2(rn+ 1), and so rn is odd. But a even with b and c odd implies

r2 is even, by (2.6), and so rn is even. Contradiction.

Next, suppose a is odd. Then a = 2k + 1, b = 2f, c = 2j, n = 2h + 1. Again, write

C −A = 2rn− 4k2 − 4k − 1 + 4f2 + 4h2 + 4h+ 1. Therefore 4|2rn, thus rn is even. But a

odd with b, c even implies r2 is odd, and so rn is odd. Contradiction.

Therefore n is even. Moreover, a, b, c all have the same parity, therefore a, b, c (and thus

r) are all odd, since otherwise all five would have a common factor. The result follows.

Theorem 2.3.2. n is divisible by 4.
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Proof. Since A = a2 − b2 − n2 and B = a2 − c2 − n2 are multiples of 4, and a2 − b2 and

a2− c2 are multiples of 8, it follows that A
4 and B

4 are of the same parity. This implies that

C
4 is even, which means that n is a multiple of 4 since r is odd.

Proposition 2.3.1. For any Pythagorean triple x2+y2 = z2, at least one of x, y is divisible

by 3.

Proof. Note that squares modulo 3 are equal to either 0 or 1. Suppose neither x nor y is

divisible by 3. Then x2 + y2 ≡ 2 (mod 3). But z2 ≡ 0 or 1 (mod 3). Contradiction.

Proposition 2.3.2. If n is not a multiple of 3, then exactly two of a, b, c, r are divisible by

3.

Proof. Suppose n is not a multiple of 3. First, suppose all four of a, b, c, r are divisible by 3.

By Proposition 2.3.1, 3|(a2− b2−n2) or 3|(a2− c2−n2). In either case, 3|n. Next, by (2.6),

any three that are divisible by 3 implies the fourth must be too. If only one is divisible

by 3, then (2.6) yields 1 ≡ 2 (mod 3). Finally, suppose none of a, b, c, r are divisible by 3.

Without loss of generality, suppose 3|(a2 − b2 − n2). Then a2 − b2 − n2 ≡ 1 − 1 − n2 ≡ 0

(mod 3), which implies 3|n. Since each case yields a contradiction, exactly two of a, b, c, r

are divisible by 3.

Proposition 2.3.3. For any Pythagorean triple x2 + y2 = z2, at least one of x, y, z is

divisible by 5.

Proof. Note that squares modulo 5 are equal to 0, 1, or 4. Suppose none of x, y, z is divisible

by 5. Then x2 + y2 = z2 becomes {1, 4}+ {1, 4} ≡ {1, 4} (mod 5), where the {1, 4} denotes

that a 1 or a 4 may be taken. A quick check shows that this equation is not solvable.

The following proposition is analogous to Proposition 2.3.2.
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Proposition 2.3.4. If n is not a multiple of 5, then exactly two of a, b, c, r are divisible by

5.

Proof. Suppose n is not a multiple of 5. If none of a, b, c, r are divisible by 5, then 5|(a2 −

b2 − n2) or 5|(a2 − c2 − n2), by Proposition 2.3.3. In either case, {1, 4} − {1, 4} 6≡ {1, 4}

(mod 5).

Suppose only one of a, b, c, r is divisible by 5. Then looking at r2 + a2 = b2 + c2 modulo

5, we have {1, 4}+ {1, 4} ≡ {1, 4} (mod 5), which is not possible.

Suppose 5 divides three of a, b, c, r. Then by r2 + a2 = b2 + c2, 5 must divide all four.

Contradiction.

Finally, suppose 5 divides all of a, b, c, r. Then both (a2 − b2 − n2)2 and (a2 − c2 − n2)2

are congruent to 1 modulo 5. Therefore 1 + 1 ≡ 0 (mod 5). Contradiction.

2.4 Sums of Squares

Before continuing, we introduce some algebraic properties of integers that can be expressed

as the sum of two squares. Recall that the ring of Gaussian integers Z [i] is a generalization

of the integers in which the property of unique prime factorization still holds. Z [i] is

particularly useful here as it allows us to factor a sum of two integer squares into linear

factors. We make use of only some elementary properties of the Gaussian integers. For

more information about the Gaussian integers, we invite the reader to refer to a text on

abstract algebra such as [9].

Definition 2.4.1. For z = a+ bi ∈ Z [i], the conjugate of z is z̄ = a− bi, and the norm is

N(z) = |z|2 = zz̄ = a2 + b2.

Moreover, the norm is multiplicative; that is, N(wz) = N(w)N(z), for all w, z ∈ Z [i].
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Definition 2.4.2. An element z = a + bi ∈ Z [i] is called a unit if there is some w ∈ Z [i]

such that zw = wz = 1.

An element z is a unit in Z [i] if and only if N(z) = ±1.

Definition 2.4.3. Suppose z = a+ bi ∈ Z [i] is nonzero and is not a unit. Then z is called

irreducible if whenever z = xy with x, y ∈ Z [i], at least one of x or y must be a unit in Z [i].

Otherwise z is said to be reducible.

Definition 2.4.4. A nonzero element z = a+ bi ∈ Z [i] is said to be prime if and only if it

is irreducible.

Lemma 2.4.1. Let n be an integer. If n ≡ 3 (mod 4), then n is not the sum of two squares.

Proof. Suppose n = a2 + b2. Note that squares modulo 4 are equal to either 0 or 1. Then

n ≡ 0, 1, or 2 (mod 4).

Lemma 2.4.2. Let p be a prime in Z of the form 4k + 3. Then p is prime in Z [i].

Proof. Suppose p ≡ 3 (mod 4) is a prime. Then N(p) = pp̄ = p2. If p were not irreducible,

then there exists a factor a + bi such that N(a + bi) = a2 + b2 = p. But by the previous

lemma, p cannot be the sum of two squares.

Lemma 2.4.3. Let p be a prime factor of a2 + b2. If p ≡ 3 (mod 4), then p|a and p|b.

Proof. Let p be a prime factor of a2 + b2 = (a+ bi)(a− bi). By Lemma 2.4.2, p is prime in

Z [i], and so p|(a + bi) or p|(a − bi). Assume p|(a + bi). Then a + bi = p(c + di) for some

c, d ∈ Z, that is, a = pc and b = pd. Therefore, p|a and p|b.

2.5 Prime Divisors

Lemma 2.4.3 plays an important role in further characterizing solutions to (2.5) and (2.6).

In particular, we can now generalize the divisibility by certain prime divisors.
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Theorem 2.5.1. Let p be a prime of form 4k+3. If p|n, then none of a, b, c, r are divisible

by p. Similarly, if q|r, where q is a prime of form 4j+ 3, then none of a, b, c, n are divisible

by q.

Proof. If p|n or p|r, then p|(2rn)2, so by Lemma 2.4.3, p|(a2− b2−n2) and p|(a2− c2−n2).

Suppose p|n. If p|a, then p divides both b and c, which implies p divides r, contradicting

there being no common factor to a, b, c, r, n. The cases in which p|b and p|c are analogous.

The case in which p|r is handled similarly, noting that (a2− b2−n2) and (a2− c2−n2) can

be expressed as (c2 − r2 − n2) and (b2 − r2 − n2), respectively.

Next, suppose q|r. Again, express (a2 − b2 − n2) = (c2 − r2 − n2) and (a2 − c2 − n2) =

(b2 − r2 − n2). If q|n, then by Lemma 2.4.3, q|b and q|c, and therefore q|a. Contradiction.

The cases in which q divides b or c are handled similarly. If q|a, then q|(b2 + n2), since

q|(a2 − b2 − n2). Also, since q|(b2 + r2 − n2), it follows that q|(b2 − n2); therefore q|((b2 +

n2) + (b2 − n2)) = 2b2, that is, q|b. Then q|n, which implies q|a. Contradiction.

In [4], Guy notes that if n is not a multiple of 3, then exactly two of a, b, c, r are divisible

by 3; indeed, this fact was proved in Proposition 2.3.2. We now show that n is necessarily

a multiple of 3, thereby allowing our first application of Theorem 2.5.1.

Theorem 2.5.2. n is a multiple of 3, and none of a, b, c, r are divisible by 3.

Proof. Suppose n is not a multiple of 3. By Proposition 2.3.2, two of a, b, c, r are divisible

by 3. The only possible pairs divisible by 3 are (a, b), (a, c), (r, b), (r, c); any other pair

would lead to all a, b, c, r being divisible by 3. Also, 3|(a2 − b2 − n2) or 3|(a2 − c2 − n2), by

Proposition 2.3.1.

If 3|a and 3|b, then 3 - (a2 − b2 − n2), since otherwise 3|n. Therefore by Proposition

2.3.1 3|(a2 − c2 − n2). But a2 − c2 − n2 ≡ 0− 1− 1 ≡ 1 (mod 3). Similarly, if 3|a and 3|c,

then 3|(a2 − b2 − n2). But a2 − b2 − n2 ≡ 1 (mod 3).

If 3|r and 3|b, then 3|(b2 − r2) = (a2 − c2). Also, 3|(2rn)2; therefore by Lemma 2.4.3,

3|(a2 − c2 − n2). Thus 3|n. A similar argument is used if 3|r and 3|c.
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As each of the four cases lead to a contradiction, 3 divides n. By Theorem 2.5.1, it

follows that 3 divides none of a, b, c, r.

Despite the similarity between Proposition 2.3.2 and Proposition 2.3.4, a statement

analogous to Theorem 2.5.2 cannot be made for the case in which n is a multiple of 5,

at least not by using the same method. Since only primes of Z of the form 4k + 3 are

irreducible in Z [i], the results of Section 2.5 cannot be used when dealing with primes of

the form 4k+1.

Relatively straightforward applications of Theorem 2.5.1 appear to be rather limited to

the case of p = 3, in part due to the very general property that for every triple X2+Y 2 = Z2,

at least one of X,Y is divisible by 3. Furthermore, under modulo 3, squares are easily

described, being equal to either 0 or 1. Considering just the next smallest prime of the form

4k+3 introduces a fair amount of complexity; modulo 7, squares are 0, 1, 2, or 4. While

still a small set, the greater number of possible combinations becomes prohibitive to check

directly, and given the lack of a general statement of the divisibility by 7 for any triple, is

likely not a fruitful approach.

It is interesting to note the similarity between Theorem 2.3.1 and Theorem 2.5.2. There

appears to be a marked restriction on the values of distances a, b, c, r with respect to the

square’s length n, which possibly suggests the unlikelihood of such an arrangement to exist.

Being able to apply the methods used in the proof of Theorem 2.5.2 to other primes of

the form 4k+3, such as 7, could perhaps provide further insight. Indeed, if it can be shown

that infinitely many primes of the form 4k+3 must divide n, then the four-distance problem

would be answered in the negative.

2.6 Representations of Sums of Squares

Thus far, condition (2.6) has played an essential role in describing possible solutions to

the four-square problem; indeed, its inclusion was necessary for us to establish even basic
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properties. Using the results from the previous section, we can characterize (2.6) slightly

further.

Definition 2.6.1. A positive integer x is said to be representable as a sum of two squares

provided x = y2 + z2, where y, z are integers. Furthermore, x is said to be properly repre-

sentable provided there exist integers y1, z1 such that x = y21 + z21 with gcd(y1, z1) = 1.

Perhaps the first fundamental result regarding the previous is Fermat’s result (though

first proven by Euler) that an odd prime p is expressible as the sum of two squares (of

integers) if and only if p ≡ 1 (mod 4). The following result is of particular interest; for a

proof, see [10].

Theorem 2.6.1. A positive integer n is properly representable as a sum of two squares if

and only if the prime factors of n are all of the form 4k + 1, except for the prime 2, which

may occur to at most the first power.

If a prime p = 4k + 3 were a factor of r2 + a2, and therefore a factor of b2 + c2, then

p would divide all of a, b, c, r, contradicting Theorem 2.5.1. Thus, the prime factors (other

than 2) of r2 + a2 and b2 + c2 must be of the form 4k+1. By Theorem 2.6.1, it follows that

both r2 + a2 and b2 + c2 are properly representable as a sum of two squares.

There are several interesting results on representations of sums of squares (and more

generally, on representations of quadratic forms); however, there is no immediate indication

as to how useful they may lend themselves to further describe the four-distance problem.
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Chapter 3: Additional Results

Let P = (x, y) ∈ R2 be at integral distance to the corners of the square with side length n,

and let (a, b, c, r, n) ∈ Z5 be the associated solution to (2.5) and (2.6). In this chapter we

establish several theorems as to where P cannot lie. It has been shown that P cannot be

on the boundary of the square; Barbara gives a proof by the method of infinite descent [11].

Theorem 3.0.1. P cannot lie on a line coinciding with one of the square’s diagonals.

Proof. Without loss of generality, let ` denote the line coinciding with the square’s diagonal

passing through vertices (0, 0) and (n, n). Note that for the four distances a, b, c, r to the

square’s vertices, c corresponds to vertex (0, n), a corresponds to (n, n), b corresponds to

(n, 0), and r corresponds to (0, 0). Therefore c = b.

If P ∈ `, we can express (2.5) as 2(a2 − b2 − n2)2 = (2rn)2. But by taking the square

root of both sides, we have that
√

2 is integral. Contradiction.

Theorem 3.0.2. P cannot lie on a circle circumscribing the square.

Proof. Let A,B,C,D be the vertices of the square inscribed within the circle, and suppose

such a point P exists on the circle. Then by Ptolemy’s theorem, AC · PD = AP · CD +

AD · CP . But all edges except for AC are rational. Contradiction.

The preceding theorem actually establishes the stronger result of no point on a circle

circumscribing the square satisifying the three-distance problem.

Theorem 3.0.3. P cannot lie on a circle inscribed in the square.

Proof. Let A,B,C,D be the vertices of the square, and P a point on the circle inscribed in

the square. We may rescale the square such that its side has length 2, and then translate the

13



square such that A = (1, 1), B = (1,−1), C = (−1,−1), D = (−1, 1). Then AP 2 + CP 2 =

(x − 1)2 + (y − 1)2 + (x + 1)2 + (y + 1)2 = 2x2 + 2y2 + 4 = 2(x2 + y2) + 4 = 6. But

6 is not the sum of 2 rational squares To see this, we show that the more general form

a2 + b2 = 6c2, with c 6= 0, has no nontrivial solutions over the integers. Suppose otherwise.

Then viewing under modulo 3, we have that a ≡ b ≡ c ≡ 0 (mod 3). Therefore a, b, c are

infinitely divisible by 3. Contradiction.

Theorem 3.0.3 also provides a stronger result, namely, of there not being any point on

the inscribed circle being at rational distance from two vertices of the square.

We now prove a much stronger statement using results from Chapter 2, in which both

Theorem 3.0.2 and Theorem 3.0.3 are special cases.

Theorem 3.0.4. Let C = (n2 ,
n
2 ), and let R = nL

M , where L2 is a positive integer, and M2

is a positive integer not divisible by 3. Then P cannot lie on a circle with center C and

radius R.

Proof. We may suppose that P does not lie on the boundary of the square. Note that the

circle on which P lies is defined by the equation
(
x− n

2

)2
+ (y − n

2 )2 = (nLM )2.

Then

n2L2

M2
=

(
x− n

2

)2
+
(
y − n

2

)2

= x2 + y2 − 2
xn

2
− 2

yn

2
+ 2

n2

4

= r2 − n
(
x+ y − n

2

)
(3.1)

By equation (2.3), and taking into account that x, y > 0, we can write

−2rn cos θ = −2xn = b2 − r2 − n2
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and therefore

x =
−b2 + r2 + n2

2n
(3.2)

Likewise, by (2.4), we have

y =
−c2 + r2 + n2

2n
(3.3)

Substituting (3.2) and (3.3) into (3.1), we have

n2L2

M2
= r2 − n

(
x+ y − n

2

)

= r2 − n
[(
−b2 + r2 + n2

2n

)
+

(
−c2 + r2 + n2

2n

)
− n

2

]

= r2 − n
[

2r2 − b2 − c2 + 2n2 − n2

2n

]

= r2 −
[

2r2 − b2 − c2 + n2

2

]
(3.4)

By (3.4),

2r2 − (2r2 − b2 − c2 + n2) = b2 + c2 − n2 =
2n2L2

M2
(3.5)

Thus,

b2 + c2 = n2 +
2n2L2

M2
(3.6)

We know that 2n2L2

M2 is an integer; moreover, it is divisible by 3, by Theorem 2.5.2.
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Therefore 3|(b2 + c2), and so 3|b and 3|c, contradicting Theorem 2.5.1.

We remark that Theorem 3.0.4 is likely able to be strengthened further by considering

circles whose centers differ from (n2 ,
n
2 ), which would allow for more freedom in characterizing

sets of points that cannot satisfy the four-distance problem. Additionally, if any prime p

of the form 4k + 3 (other than 3) can be shown to be a divisor of n, then the theorem can

be extended to account for all M such that M2 is an integer not divisible by p. If it can

be shown that any point in the plane must lie on a circle satisfying Theorem 3.0.4 (or a

possible generalization of the theorem), then the four-distance problem would be answered

in the negative. We don’t necessarily expect this to be the case, and even so it likely would

be more difficult to show, but an investigation is warranted.
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Chapter 4: Generalization to Regular Polygons

We now introduce a generalization of the four-distance problem given by Barbara [5]. We

provide a summary of his results which uses concepts from field theory; the reader may

decide if it is of interest.

For n ≥ 3, denote Pn to be the unit n-gon; that is, the regular n-gon with unit side.

Is there a point in the plane of Pn at rational distance from the vertices of Pn? Barbara

establishes the very interesting result: the statement is false for n = 5, true for n = 6, and

false for all n ≥ 7, except for possibly when n ∈ {8, 12, 24}. While his results do not resolve

the four-distance problem, Barbara establishes the exceptional rarity of an arbitrary n-gon

having the rational distance property.

Let n = 3, where T the resulting unit equilateral triangle. By a well-known theorem

of Berry [12], there exists a point in the plane of T at rational distance from the vertices

of T; in fact, the set of such points is dense in the plane of T. The case of the unit square

(n = 4), of course, is simply the four-distance problem.

For the case of n = 6, consider the centroid of the unit hexagon; then the distance from

the centroid to each vertex is of unit length.

For the cases of n = 5 and n ≥ 7, we provide some preliminary statements (for proofs,

see Barbara’s paper).

Definition 4.0.1. A 2-group is a group such that every element has order 1 or 2.

Definition 4.0.2. A real field F is said to be flat if for every subfield E of F, the Galois

group G(E : Q) is a 2-group.

Proposition 4.0.1. Let r1, r2, . . . , rn be nonnegative rational numbers. Then

Q(
√
r1 ±

√
r2 ± · · · ±

√
rn) is a flat field.
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Proposition 4.0.2. Let n ≥ 5, n 6= 6, and set Ω = Q(cot πn). If Ω is a flat field, then

n ∈ 8, 12, 24.

As a corollary to the preceding two propositions, we have the following result.

Corollary 4.0.1. Let n = 5 or n ≥ 7, with n 6= 8, 12, 24. Then the identity

n

4
cot

π

n
=
√
r1 ±

√
r2 ± · · · ±

√
rn,

where each ri is a nonnegative rational numbers, is impossible.

Proof. Suppose not. Then Q(
√
r1 ±

√
r2 ± · · · ±

√
rn) = Q(n4 cot πn) = Q(cot πn). But by

Proposition 4.0.1, Q(
√
r1 ±

√
r2 ± · · · ±

√
rn) is a flat field, whereas by Proposition 4.0.2,

Q(cot πn) is not a flat field. Contradiction.

Theorem 4.0.5. For n = 5 or n ≥ 7, there is no point in the plane of Pn at rational

distance from the vertices of Pn.

Proof. Suppose not. Let P be a point in the plane of Pn at rational distance from the vertices

A1, A2, · · · , An of Pn, written in cyclic order, and set An+1 = A1. Let Ti = PAiAi+1,

i = 1, · · · , n be the set of triangles lying in the plane of Pn. Then

area(Pn) = area(T1) + area(T2) + · · ·+ area(Tn)

Since each triangle Ti has rational sides, by Heron’s formula we have that the area of each

Ti is of the form
√
ri, where ri is a nonnegative rational. Thus, it follows that area(Pn) =

√
r1 ±

√
r2 ± · · · ±

√
rn. Moreover, area(Pn) = cot πn . Finally, we obtain n

4 cot πn =
√
r1 ±

√
r2 ± · · · ±

√
rn. By Corollary 4.0.1, we have a contradiction.
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