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ABSTRACT

AQ15 is a multi-purpose inductive learning system that uses logic-based, comprehensible
knowledge representation. [t is able to incrementally learn attributional disjunctive concepts
from data thot may contain erroneous or inconsistent examples, and can perform constructive
induetion. The latter means that the program uses background knowledge to generate new
attributes not present in the input data, and, if they pass a relevance test, employs them in the
learning process. In an experimental application to three medical domains, the program learned
decision rules that performed at the level of accuracy of human experts. A surprising and
potentially significant result is the demonstration that by applying the proposed method of rule
reduction and flexible matching {TRUNC), one may drastically decrease the complexity of the
knowledge base without affecting its performance accuracy.

Keywords: Knowledge Acquisition, Machine Learning, Inductive Inference,
Applications [Medicine)






1. INTRODUCTION

It is widely acknowledged that the construction of a knowledge base represents the major
bottleneck in the development of any Al system. An important method for overcoming this
problem is to employ inductive learning from examples of expert decisions. In this knowledge
acquisition paradigm, knowledge engineers do not have to force experts to state their "know how”
in a predefined representational formalism. Experts are asked only to provide correct
interpretation of existing domain data or to supply examples of their performance. It is known
that experts are better at providing good examples and counterexamples of decisions than at
formalizing their knowledge in the form of decision rules. Early experiments exploring this
paradigm have also shown that decision rules formed by inductive learning may outperform rules
provided by human experts [Michalski & Chilausky 80, Quinlan 83].

This paper describes briefly an inductive incremental learning program AQ15 that learns
attributional descriptions from examples. As an important aspect of development of learning
systems is their evaluation using practical problems, we also present results of applying AQ15 to
three medical domains: lymphography, prognosis of breast cancer recurrence, and location of
primary tumor. These three domains are characterized by consecutively larger amounts of
inconsistent and sparse learning events.

The evaluation was done [rom the viewpoint of classification accuracy of the induced rules on
new objects and complexity of the rules. Examples of a few hundred patients with known
diagnoses were available, along with the assessed classification accuracy of human experts. We
randomly selected 70% of examples for rule learning and used the rest for rule testing. For each
domain, the experiment was repeated four times. The induced rules reached the classification
aceuracy of human experts. Performance of experts was measured in two out of three domains,
(breast cancer and primary tumor) testing four and five experts, respectively. The experiments
revealed an interesting phenomenon that by truncafing rules and applying flezible rule matching
one may significantly reduce the size of the knowledge base without decreasing its performance
accuracy.

2. DESCRIPTION OF AQ15

The program AQI5 is a descendant of the GEM program [Reinke 84] and the AQI-AQ11 series
of inductive learning programs, e.g., [Michalski & Larson 75). lts ancestors were experimented
with in the areas of plant disease diagnosis [Michalski & Chilausky 80, Reinke 84|, chess end-
games [Reinke 84], diagnosis of cardiac arrhythmias [Mozetic 86|, and others. This section
provides a brief description of AQ15 and its basic features. A more detailed presentation is in
[Hong, Mozetic & Michalski 86/.

All these systems are based on the AQ algorithm, which generates decision rules from a set of
examples, as originally described in [Michalski 69] and [Michalski & McCormick 71]. When
building a decision rule, AQ performs a heuristic search through a space of logical expressions to
determine those that account for all positive examples and no negative examples. Because there
are usually many such complete and consistent expressions, the goal of AQ is to find the most



preferred one, according to a flexible extra—logical criterion. This criterion is defined by the user
to reflect the needs of the application domain. When input data may include inconsistent and/or
incorrect learning events, it may be advantageous to develop incomplete and/or inconsistent
descriptions. We tested this hypothesis using the TRUNC method of rule reduction and obtained
results that were quite unexpected. The results seem to indicate that the TRUNC method may
be useful not only for learning from inconsistent and incorrect examples, but also for learning
from perfect examples. The method is described in sections 3 and 4, and the results in section 5.

Learning examples are given in the form of events, which are vectors of attribute values.
Attributes may be of three types: nominal, linear or structured (the domain is a hierarchy).
Events represent different decision classes or, generally, concepts, Events from a given class are
considered its positive ezamples, and all other events are considered its negative examples. For
each class a decision rule is produced that covers all positive examples and no negative ones.
Rules are represented in VL (Variable-valued  Logic system 1) notation
[Michalski & Larson 75|. VL, is a multiple-valued logic attributional calculus with typed
variables. A selector relates a variable to a value or a disjunction of values, e.g.:

[Weather_type = cloudy V rain]

A conjunction of selectors forms a complez. The following complex states that the weather is
cloudy, the temperature is greater than 80 degrees, and winds blow from the South or West:

[Weather_type = cloudy| & [Temp > 60] & [Wind_direction = South Vv West|

Complexes are assembled into covers. A cover is a disjunction of complexes describing all
positive examples and none of the negative examples of the concept. A cover is formed for each
decision class separately. [t defines the condition part of a corresponding decision rule. The
following are two examples of decision rules:

[Transport = car|] <= [Weather_type = cloudy V rain] v [Temp = 40. 80|
[Transport = bike] <= [Weather_type = sun| & [Temp > 60]

As one can see, the rules are easy to interpret. This ease of interpreting AQ15 generated rules is
one of the most attractive features of the program. The major idea behind the covering
algorithm is to generate a cover in steps, each step producing one conjunctive term {complex) of
the cover. Each step starts with focusing attention on one selected positive example (a seed). The
algorithm generates a set of all complexes (a star) which cover the seed and do not cover any
negative examples, and then selects the best complex from the star according to the user defined
criteria. The basic covering algorithm is as follows:



While partial cover does not cover all positive examples
do 1. select an uncovered positive example (a seed),
2. determine maximally general complexes covering the seed and no negative
examples (generate a star),
3. select the best complex from the star according to the user—defined
problem-dependent preference criteria,
4. generate a new partial cover by adding the best complex to the current cover.
At the end, a partial cover becomes a cover of the class.

The algorithm starts with an initial cover that is either empty, was previously learned, or is
supplied by the user. Extending the seed against all the negative examples, i.e. generating a star
in step 2, is again a multistep procedure which can be described as follows:

While partial star covers some negative examples
do 1. select a covered negative example,

2. generate all maximally general hypotheses that cover the seed and exclude
the negative example; the resulting set is called a partial star of the seed
against the negative example,

3. generate a new partial star by intersecting the current partial star
with the partial star of the seed against the negative example,

4, trim the partial star il the number of disjoint complexes exceeds
the user defined threshold (the mazsiar parameter).

At the end, a partial star becomes the star of the seed, i.e., the set of maximally
general complexes covering the seed and not covering any negative example.

The procedure starts with an initial star which is either the entire event space or a complex from
the initial cover. If the star generating procedure were to work exhaustively, the search space for
covers might grow very rapidly with the number of negative examples and the number of
variables used. To deal with this problem, a parameter (mazstar) controls how many disjoint
complexes may be kept in a partial star. If the number of its disjoint complexes exceeds the
parameter, the star is trimmed according to the user specified criteria. A typical criterion is: first
"maximize the number of positive examples covered” and then, in the case of a tie, "minimize the
number of selectors” or "minimize the total cost of variables used".

The program is able to produce rules of different degrees ol generality. Rules may be general
{having minimum number of variables, each with maximum number of disjunctive values),
minimal (minimum number of both, variables and values), or specific (maximum number of
variables, each with minimum number of values).

AQ15 has the incremental learning facility. The user may supply his decision hypotheses as
initial rules. The system implements the method of learning with full memory. In this type of
learning the system remembers all learning examples that were seen so far, as well as the rules it
formed. By this method, as opposed to learning with partial memory, new decision rules are
guaranteed to be correct with respect to all (old and new) learning examples [Reinke 34,
Reinke & Michalski 86].



When learning from inconsistent examples, the system provides three options: a) inconsistent
examples are treated as positive examples, b) as negative examples, or ¢) are removed from the
data; in this case their membership is decided by the learning process. If statistical infor mation
about the probability of inconsistent examples is available, they are preclassified according to the
maximum likelihood [Michalski & MeCormick 71|

A form of consiructive induction is implemented in AQI5 as well. The program’s background
knowledge is expressed in the form of rules, used to generate new attributes not present in input
data. The background knowledge rules are of two types: L-rules (logie) that define values of
new variables by logical expressions, and A-rules (arithmetic) that introduce new variables as
arithmetic functions of original variables. The L-rules and A-rules are two different
representations of domain knowledge relevant to the learning process. The L-rules permit one to
represent background concept definitions, constraints among the concepts, concept generalization
hierarchies, causal dependencies, etc. Concepts known to the program or learned by the program
are also added to the stock of L-rules. The algorithm attempts to use new variables to produce
better decision rules. The following is an example of a simple L-rule:

[Temp < 32] => |Weather_type # rain| & [Amount_of rain — NAJ

The program is also capable of automatically testing the learned rules on new events. It
produces a confusion matriz that shows for each concept and event the degree of match,
according to the flexible rule interpretation method (see Section 4). Thus it seems to be an ideal
tool for experimenting on inductive knowledge acquisition in a variety of practical domains.
AQ15 is implemented in Berkley Pascal and runs under the Unix operating system on VAX and
SUN machines. It consists of approximately 13.000 lines of code.

3. TRUNCATION OF RULES AND FLEXIBLE MATCHING

Most human concepts are structures with flexible, imprecise boundaries. They ean match
different instances with varying degrees of precision and have context-dependent meaning.
Flexible boundaries permit one to use concepts beyond the typical range; imprecise boundaries
are useful for avoiding superfluous or undesirable precision. When building a learning or
inference system, two crucial issues are the way in which concepts are represented, and the way
in which they are recognized.

As pointed out in [Michalski 86], the meaning of a concept can be distributed between its base
representation and the method of its interpretation. The base representation explicitly states the
typical, context-independent properties of the concept. The interpretation method determines
whether a given instance satisfies the base concept description by conducting inference -
deductive, analogical or inductive - using contextual information and background knowledge.
The method may give a yes-no answer or may determine the degree to which the instance
satisfies the base concept representation.

Such a two-tiered concept representation yields a spectrum of possibilities. At one extreme, all
the concept properties are explicitly defined, including any concept variations and exceptions,
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This may lead to a very complex and unwieldy concept representation. The concept recognition
process, however, would involve merely a simple matching of the properties of an instance with
the information in the concept description. At the other end of the spectrum, the concept is
explicitly represented only by a simple prototypical description characterizing its ideal form.
Such a prototypical description does not have to relate to a single object like in the family
resemblance case [Rosch & Mervis 75, Murphy & Medin 85| but may be an abstract concept
specification (e.g., a logical formula inveolving disjunction)., The process of concept recognition
using a prototypical description is more complicated. Instead of seeking a strict match (a
satisfaction of a complex description), the system determines the degree of similarity between the
prototypical (ideal) concept description and the given instance, and compares it with the results
from matching the instance with other ideal concept descriptions. The concept that gives the best
match is assigned to the instance. This method saves memory for concept representation at the
expense of more complicated matching procedure. The matching procedure may be the same [or
a class of concepts, which increases the cost-effectiveness. Also, by changing the concept
interpretation method one may affect the concept recognition process without changing the
concept representation, and thus may apply the concept to new situations, not originally
planned.

Depending on the costs associated with storing a representation and performing the inference, the
most effective distribution of meaning between the concept representation and interpretation
corresponds to some point within the above spectrum. Interesting research problems are to
determine this point of optimal balance, and to find out what concept interpretation methods
should be used in different situations. Some preliminary experimental results on the last problem
are discussed in [Michalski & Chilausky 80|, and more recently in [Uhrik 85|.

Let us illustrate the above ideas by the knowledge representation used in AQ15. In this program
concepts are represented by a disjunction of conjunctive expressions (complexes). Each expression
is associated with a pair of weights: t and u, representing the fotal number of instances (events)
explained by the expression, and the number of events explained uniguely by that expression,
respectively. The complexes are ordered according to decreasing values of the t—weight. The t-
weight may be interpreted as a measure of the typicality or the representativeness of a complex
as a concept description. The complex with the highest weight (t—weight) may be interpreted as
describing the most typical examples of the concept. It may also be viewed as a prototypical or
the ideal definition of the concept. On the other hand the complexes with lowest u—weight can be
viewed as describing rare, exceptional cases. If the learning events from which rules are derived
are noisy, such "light” complexes may be indicative of errors in the data.

Two methods of recognizing the concept membership of an instance are distinguished: the strict
match and the flexible match. In the strict match, one tests whether an instance satisfies
condition part of a rule (or, generally, if it can be logically derived from it). In the flexible match,
one determines the degree of similarity or conceptual closeness between the instance and the
condition part. Using the strict match, one can recognize a concept without checking other
candidate concepta, i.e., without taking into consideration the context. In the flexible match, one
needs to perform inference involving an event and candidate rules, and determine the most
similar concept that best "matches” the instance. The flexible matching can be accomplished in a
variety of ways, ranging from approximate matching of features through deduction and analogy,



to conceptual cohesiveness that employs inductive inference [Michalski & Stepp 83].

The above weight-ordering of complexes suggests an interesting possibility. Suppose we have a
~weight ordered disjunction of complexes, and we remove from it the lightest complex. So
truncated description will not strictly mateh events that uniquely satisfy the truncated complex,
However, by applying a Hexible match, these events may still come out to be the most closelv
related to the correct concept, and thus be correctly recognized. A truncated description is, of
course, simpler but carries a potentially higher risk of recognition error, and requires a mere
soph'sticated evaluation. We can proceed further and remove the next “light" complex from ' -
cover, and observe the performance. Each such step produces a different trade-off between /.
complexity of the description on one side, and the risk factor and the evaluation complexity on
the other (Figure 1). At some step the best overall result may be achieved for a given application
domain. This method of knowledge reduction by truncating ordered covers and applying a
flexible matching is called TRUNC.
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Figure 1. An example of a t-ordered cover. The cuts at a, b and ¢ mark truncated
covers with 1, 2 or 3 complexes, respectively. In each pair (x,y), x represents the t—
weight, and y represents the u-weight.

The above described trade-off is related to the issues studied in Variable Precision Logic, which is
concerned with trade-offs between certainty, computational costs and specificity of inferences
[Michalski & Winston 86]. An interesting problem is to test how the eover truncation method
affects the accuracy of recognition and the comple: it i of the decision rules in different practical
settings. Section 5 presents results of some such experiments, which in some cases came out very
surprising. We now turn to the problem of Hexible matching used in this study, and the
resolution of a conflict when several concept descriptions are satisfied by an event.

4. FLEXIBLE RULE INTERPRETATION

When strictly matching a new event against a set of (disjunctive) rules, three outcomes are
possible: only one rule may be matched (satisfied), more than one rule may be matched, or no
rule may match. These cases are classified into categories called SINGLE, MULTIPLE and
NO_MATCH, respectively (Figure 2). Each category requires a different evaluation procedure,
and a different method of determrining the accuracy of concept recognition. For exact match
(category SINGLE), the evaluation is easy: the decision is counted as correet if it is equal to the



known diagnosis of the testing object, and as wrong otherwise. If there are several exact matches
{the MULTIPLE case) or none (the NOMATCH case) the system activates the approzimate.
contert-dependent scheme that determines the best decision [or the most probable one).
Comparing this decision with the decision provided by experts, one evaluates it as correct or
incorrect. The scheme consists of two simple heuristic evaluation criteria, one for the
MULTIPLE case, and the other for the NO_MATCH case.

SINGLE MULTIPLE NO_MATCH

Figure 2. The three possible cases when matching a new event against a set of
decision rules,

Estimate of probability for the MULTIPLE case (EP). When an event matches a few,
rules the system selects the one which suggests the most probable decision. Let CI’ 'Cn denote
decision classes and e an event to be classified. For each decision class C. we have a rule that
consists of a disjunction of complexes {Cpz), which, in turn are conjunctions of selectors (Sel). We
define the estimate of probability, EP, as follows:

1} EP of a complex Cpx. in the context of the event e is the ratio of the weight of the complex
(the number of positive learning examples covered by the complex) by the total number of
learning examples (#ezamples), if the complex is satisfied by the event e, and equals 0 otherwise:

IWe:'g.’:t{Cp:J.] | #ezamples  if complez Cpz; is satisfied by ¢,

EP(Cpz,,e) =
( Pz 4] l 1] otherwise.

2) EP of a class Gi is the probabilistic sum of EPs of its complexes. If the rule for C, consists of
a disjunction of two complexes Cpxl W Cpx,z, we have:

EP(C,.e) = EP(Cpz,,e) + EP(Cpz,¢) — EP(Cpz,e) X EP(Cpz,,¢)

The most probable class is the one with the largest EP, i.e., the one whose satisfied complexes
cover the largest number of learning examples. It is assumed that the learning examples are a
representative sample of the domain, and that the numbers of examples for each class are
proportional to the frequency of occurence of classes. Obviously, if the class is not satisfied by
the given event, its £P equals 0. For each C. this measure determines the number of learning
examples that support the classification of the new event into class Ci' The larger such number



is, the stronger support is assumed.

Measure of fit for the NO_MATCH case (MF). In this case the event belongs to a part of
the event space that is not covered by any decision rule and this calls for flexible matching. One
way to perform such matching is to measure the fit between attribute values in the event and the
class description, taking into consideration the prior probability of the class. We used in the
experiments a simple measure, called measure of fit, MF, defined as follows:

1) MF of a selector Sel, and an event e is 1, if the selector is satisfied, i.e. if one of event’s
attribute values lies in the range of values of the selector. Otherwise, this measure is
proportional to the amount of the decision space covered by the selector:

1 tf selector Sel, 13 safisfied by e,
MF(Sel e) =
(Sehre) # Values otherwise,
DomainSize

where #Values is the number of disjunctively linked attribute values in the selector, and
DomainSize is the total number of the attribute’s possible values.

2) MF of a complex Cpx, to an event e is defined as the product of MFs for a conjunction of its
constituent selectors, weighted by the proportion of learning examples covered by the complex:

MFprz;,e] = JT MF(Sel,,e) x (Weight(Cpz;) / #ezamples)

k

3) MF of a class Ci to en event e is obtained as a probabilistic sum for a disjunction of complexes.
If the rule for C.I consists of a disjunction of two complexes lf:‘..p:cI W Cpx,z, we have:

MF(C, e) = MF(Cpz,,e) + MF(Cpz,,e) — MF(Cpz,,e) X MF(Cpz,,¢)

We can interpret the measure of best fit of a class as a combination of "closeness” of the event to
the class and an estimate of the prior probability of the class, Closeness is measured by MF of
selectors, where the fit is complete for selectors that are satisfied. MF of an unsatisfied selector is
the probability that it will be satisfied if the event's corresponding attribute value changes. A
selector that covers more decision space fits an event better than a selector that covers less
decision space (having fewer alternative values). Closeness to a complex is the probability that
the event will be covered by the complex if the values of attributes corresponding to unsatisfied
selectors change. MF of a complex is then weighted by an estimate of priori probability, i.e., the
proportion of the learning examples that it covers, Note that the estimate of probability EP is a
special case of the measure of fit UF; when all selectors in a complex are satisfied the measure of
fit of a complex is the same as the estimate of probability.
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The above measure of fit is one of many possible measures that can be devised for flexible
matching. One way to improve this measure would be to define a distance between an attribute
value and a selector, when attributes are linear [Michalski & Chilausky 80l.

5. EXPERIMENTS

The experiments were performed on data {rom three medical domains: lymphography, prognosis
of breast cancer recurrence and location of primary tumor. All data were obtained from the
Institute of Oncology of the University Medical Center in Ljubljana, Yugoslavia
[Kononenko, Bratko & Roskar 84].

Lymphography. This domain is characterized by 18 attributes and 4 diagnostic classes. Data of
148 patients were available. The set of attributes was complete, i.e., was sufficient for having all
learning examples consistent. This means that examples of any two classes were always different.
Diagnoses in this domain were not verified and actual testing of physicians was not done. A
specialist's estimation is that internists diagnose correctly in about 60% and specialists in about
85% of cases.

Prognosis of Breast Cancer Recurrence. For about 30% of patients that undergo a breast
cancer operation, the illness reappears in five years. Prognosis of this recurrence is very
important for patients’ post-operational treatment. The domain is characterized by 2 decision
classes and O attributes. The set of attributes was incomplete, i.e., not always sufficient to
distinguish between cases with different prognosis. Data for 286 patients with known diagnostic
status 5 years after the operation were available. Five specialists of the Institute of Oncology
were tested. They gave a correct prognosis in 64%% of cases.

Location of Primary Tumor. Physicians distinguish among 22 possible locations of primary
tumor. Patients' diagnostic data were described by 17 attributes. The given set of attributes
was incomplete, as some patients with the same values of all attributes had different location of
primary tumor, Data of 339 patients with known locations of primary tumeor (verified by
operation or by X-ray] were available for the experiment. At the Institute of Oncology 4
internists and 4 specialists were tested. Internists determined a correct location of primary
tumer in 32% and oncologists in 42% of test cases. Regarding these relatively low results. we
should stress that there are 22 possible locations and that the correct location of primary tumor
is only one of the sources of evidence used in cancer treatment.

Table 1 provides a summary of these medical domains. [t presents the number of examples, of
classes, of attributes, and the average number of values per attribute for each domain.

In all medical domains 70% of examples were selected for learning and the remaining 30% for
testing. Each testing experiment was repeated 4 times with randomly chosen learning examples.
Final resulis are the average of 4 experiments.



- 10 -

Domain Examples  Classes  Attributes  Values/Attr
Lymphography 148 4 18 3.3
Breast cancer 286 2 9 5.8
Primary tumor 339 22 17 2.2

Table 1. Characteristics of the data for the three medical domains.

For illustration, in Figure 3 there is an example of a paraphrased rule from the domain of
lymphography. Complete rules for all three domains are in the Appendix.

Diagnosis = lymphoma  if:
Filling_defects_lacunar = none ¥ lacunar ¥ lacunar_central

Special_structures_and_forms = none ¥ bladder Base

Lymph_nodes_size_diminishing = 0 complex

Lack_of_lymph_nodes_filling = yes

No_of_diseased_lymph_nodes > 10 (t-weight:40, u-weight:22)
V'

Filling_of lymp_nodes = grains Vv fine_drops V dispersed % obscure

Special_structures_and _forms = cup V' bladder

Early_filling_of lymp_nodes = yes

Block_of_afferrent_vessels = no

By_pass = no (t=weight:24, u-weight:7)
W

Special_structures_and forms = cup ¥ bladder

Lymph_vessels = curves Vv deformities

Lymph_nodes_size_enlarged = 1..2

Bloek_of_afferent_vessels = no

Dislocation_of_lymph_nodes = yes (t-weight:18, u-weight:3})
v

Filling_of lymp_nodes = fine_drops V/ stripes \/ obscure

Filling_defects_various = follicular \ gross_central

Lymph_nodes_size_enlarged = 1..3

Block _of Jymph_nodes_chain = no

Extravasates = yes (t-weight:10, u-weight:3)
v

Changes_of_lymph_nodes_shape = oval

No_of_diseased_|lymph_nodes = 30..39 (t-weight:2, u-weight:1)

Figure 3. A complete rule, generated by AQL5 from all available examples, with t-
ordered complexes, for the domain of lymphography. The rule consists of 5
complexes and 22 selectors. After truncation to the "base complex” (with the highest
t-weight) the rule has only 1 complex with 5 selectors. T-weight is the total number
of examples covered by a complex, and u-weight is the number of examples covered
by the complex uniquely.



=11 =

Two sets of experiments were performed. In the frst one only rules of the minimal type were
used. Different cover reduction mechanisms were applied on them, and their effect on complexity
and classification accuracy of rules was determined. Complexity was measured by the total
number of selectors and complexes in the rules, and accuracy by the "lst choice correct”
evaluation method (Table 2). In the second set of experiments we measured classification
accuracy by two parameters: correctness and precision. We used rules of different degree of
generality, applied different evaluation methods and used two cover reduction mechanisms to find
the optimal combination of correctness and precision (Table 3).

Cover Complexity  Accuracy Human Random
Domain truncation  Sel  Cpx 1st choice Experts Choice
no a7 j 81%
Lymphography | unique >1 34 10 80% 85% 25%
base cpx 10 4 82% (estimate)
no 180 41 86%
Breast cancer unigque >1 128 32 669 64% 50%
base epx 7 2 88%%
no 551 104 319%
Primary tumor | unique >1 257 42 41% 42% 5%
j basecpx 112 20 20% |

Table 2. Average complexity and accuracy of AQ15’s rules (minimal type) learned
from 70% of examples, over 4 experiments. Two simple cover truncation mechanisms
were applied - keeping only complexes that uniquely cover more than one example
(unique >1), and deleting all but the heaviest complex in each rule (base cpx).

In addition to results obtained from using complete {untruncated) rules, results of two other
experiments are presented. In the first experiment we eliminated from rules all complexes that
cover uniquely only one learning example, and in the second we eliminated all complexes except
the most representative one that covers the largest number of learning examples. Complexity of
rules is measured by the number of selectors and complexes. Table 2 shows that some results
came out very surprising. When the cover of each class was truncated to only one (the heaviest)
complex, the complexity of the rule set for lymphography went down from the total of 12
complexes and 37 selectors to only 4 complexes (one per class) and 10 selectors (see bold
numbers). At the same time the performance of rules went slightly up (from 81% to 82%) ! A
similar phenomenon occurred in the breast cancer domain, where the number of selectors and
complexes went down from 160 and 41 to 7 and 2, respectively; while the performance went
slightly up from 86% to 68%. This means that by using the TRUNC method one may
significantly reduce the knowledge base without affecting its performance accuracy. Results for
human experts were the average of testing of five and four domain specialists in the domains of
breast cancer recurrence and primary tumor, respectively [Kononenko, Bratko & Roskar Bd].
In the domain of lymphography, physicians’ accuracy is given only as their own estimate; it was
not independently measured.
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In practice, giving always exactly one answer (1st choice) is often not the most appropriate. One
might wish to get more than just one possible diagnosis, or none if there is not enough evidence.
If any of the alternative diagnoses given by the system is the same as the known diagnosis of the
testing example the answer is counted as a correct one. However, the more alternative diagnoses,
the smaller diagnostic precision of the system. Therefore, in evaluation of such a system, the
results should be measured by two quantities: correctness (the ratio of the number of correct
answers by the number of testing examples), and precision (the ratio of the number of correct
answers by the total number of answers given).

Evaluation method for Type of All epx Best cpx
Domain | MULTIPLE NO-MATCH rules Corr. Prec. | Corr. Prec.
1st 1st specific 79% T9% 80% 80%
[ choice choice minimal | 31% 81% | 82% 82%
correct correct general 81% 81% | 81% 81%
! specific | 63%  85% | 52%  94%
Lymphography correct always minimal | 78% 7% 58% 89%
! & if match incorrect general 88% 74% 58% 87%
! | 1st specific 80% 8% | B1% 31%
| | correct choice minimal | 83% 76% | 83%  82%
| i if match correct general 899 74% B2% 81%
‘ 1st lst specific | 88%  68% | B87%  67%
| | choice choice minimal | 68%  66% | 68%  689%
! correct correct general | 65% 65% | 85%  B5%
| specific | 59%  64% | 13%  67%
! Breast cancer correct always minimal 7% 57T% 18% 67%
if matech incorrect general 86%  54% 17%  B4%
| st specific | 72% 6295 58% 68%
correct choice minimal | 80% 58% | 88%  68%
if match correct general | 86%  54% | 66%  66%
1st Lst specific | 41%  41% | 33%  33%
choice choice minimal | 3%% 39% | 29% 20%
correct correct general 39% 39% | 29%  29%
specific 'I 33% 31% | 2% 4%
Primary tumor correct always minimal | 509%  249% 25%  34%
if match incorrect general | 51% 24% 25% 34%
Lst specific 47% 4% | 5% 33%
| correct choice minimal | 52% 24% | 32%  28%
i | if match correct general | 53%  24% | 32% @ 28%

Table 3. Trade-offs between correctness and precision of AQ15's rules for different
evaluation methods and different types of rules.

Several experiments with AQ15 were performed to evaluate trade—offs between correctness and
precision (Table 3). This trade-off is a reflection of the phenomena studied in Variable Precision
Logic [Michalski & Winston 84]. We tried three different evaluation schemes (representing
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combinations of 1st choice correct, correct if match and incorrect for MULTIPLE and
NO_MATCH cases). The "1st choice correct” means that the best fexible matching was used.
The "correct if match” for MULTIPLE and “incorrect” for NO_MATCH mean that the strict
mateh method was used. We also used rules of different degree of generality (specifie, minimal,
general) and different cover reduction mechanism. "All cpx” and "Best cpx” mean complete cover
and the cover truncated to one complex, respectively. One of the interesting future research
tasks is to find an appropriate information—theoretic measure for defining an optimal
combination of correctness and precision.

8. ANALYSIS OF RESULTS

The domain of lymphography seems to have some strong patterns and the set of attributes is
known to be complete, i.e., no event description belongs to more than one class. There are four
possible diagnoses, but only two of them are prevailing, i.e., they occur much more often than
others. The domain of breast cancer has only two decision classes, but does not have many
strong patterns. Domain of location of primary tumor has many decision classes and mostly
binary attributes. There are only a few examples per class, and the domain seems to be without
any strong patterns. Both domains are underspecified in the sense that the set of available
attributes is incomplete (not sufficient to discriminate batween different classes). The statistics in
Table 4 include average number of complexes per rule, average number of attributes per
complex, average number of values per attribute and finally, average number of learning
examples covered by one complex. We can see that in the domain of primary tumor decision
rules consist of complexes that in average cover slightly more than 2 examples. In the domain of
lymphography complexes in average cover & examples, which indicates a presence of strong
patterns.

Domain Cpx/Rule  Attr/Cpx  Values/Attr Examples/Cpx
Lymphography 3 3.1 1.8 8

Breast cancer 20 3.9 L.7 5
Primary tumor 5.2 5.3 1.0 2.3

Table 4. Average complexity of AQL5's decision rules (minimal type) in the three
medical domains, when no cover truncation mechanism was applied.

Several experiments with AQIL5S were performed, each with a different complex truncation
heuristic. This was done in order to investigate the trade-off between complexity and accuracy,
and to derive some preliminary conclusions about the effects of the cover reduction mechanism.
Results given in Table 2 present only two extreme cases of these experiments. By eliminating all
complexes but one, a significant reduction of complexity was obtained. Except for the primary
tumor demain, there was no decrease of accuracy.

In the domain of primary tumor, initial elimination of lightest complexes (those that cover only 1
example) increased accuracy from 33% to 41%; accuracy decreased when further complexes were
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eliminated. In the domain of lymphography accuracy increased until only one "heaviest” complex
in the two most important rules was kept (82%). In the breast cancer domain each step of
elimination of complexes increased accuracy as well. Best results were obtained when all
complexes for the class "recurrence” were deleted. The obtained diagnostic accuracy was 72%
which is close to a priori probability of the diagnosis "no recurrence”.

It is surprising that a cover reduction mechanism that strongly simplifies the rule base may have
no affect on classification accuracy. Removing complexes from a cover is equivalent to removing
disjunctively linked conditions from a concept description. This process overspecializes a
knowledge representation, producing an incomplete concept description (i.e., a one that does not
cover some positive examples).

Such knowledge reduction technique by specialization may be contrasted with knowledge
reduction by generalization used in the ASSISTANT learning program, a descendant of [D3
[Quinlan 83|. This program represents knowledge in the form of decision trees, and has been
applied to the same medical problems as here {Kononenko, Bratko & Roskar 84|. The program
applies a tree pruning technique based on the principle of maximal classification accuracy. The
technique removes certain nodes from a tree, and is equivalent to removing conjunctively linked
conditions from a concept description. Thus, such a knowledge reduction technique
overgeneralizes the knowledge representation, producing an tnconsistent concept description (i.e.,
a one that covers some negative examples). It is interesting to point out that this technique may
also lead to an improvement of accuracy in decision making when learning from noisy and
overlapping data. Table 5 presents the complexity and diagnostic accuracy of ASSISTANT's
trees built with and without tree pruning |[Kononenko, Bratko & Roskar 84|, Complexity of
trees is given by the number of nodes and leaves. In all domains results were better when the tree
pruning mechanism was used.

Tree Complexity Accuracy

Domain pruning Nodes Leaves  1st choice
no 38 22 76%
Lymphography yes 25 14 17%
no 120 83 67%
Breast cancer yes 16 9 72%
no 188 90 11%
Primary tumor yes 35 18 46%

Table 5. Average complexity and accuracy of decision trees built by ASSISTANT on
70% of examples, over 4 experiments. In all three domains the tree pruning
mechanism reduced the complexity and increased the accuracy. Note that more than
one decision may be assigned to some leaves (hence there are only 18 leaves for 22
classes in the primary tumor case),

Tree pruning corresponds to the removal of selectors from complexes. This seems to suggest that
when learning from noisy or inconsistent examples the knowledge reduction process may not only
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involve removal of complexes from a cover (a specialization process) but also removal of selectors
from complexes (a generalization process). This means that the generated concept description
would be both inconsistent and incomplete. It is an interesting problem for further research to
determine conditions under which such inconsistent and incomplete descriptions might be more
advantageous than consistent and complete ones.

7. CONCLUSION

A major contribution of the paper is a demonstration that a relatively simple, attribute-based
inductive learning method iz able to produce decision rules of sufficiently high quality to be
applicable to practical problems with noisy, inconsistent and/or incompletely specified learning
examples. An especially impertant for practical applications is perhaps the fact that the method
produced these results without using 2 large amount of domain knowledge that would be required
by an analytic approach or explanation-based generalization [Mitchell, Keller & Kedar-
Cabelli 86; DeJong & Mooney 36|, It relied primarily on learning examples that were obtained
from already existing records or human experts. It is well known that it is typically easier for an
expert to make decisions (i.e., to produce examples) than to formulate a theory justifying them.

Although the program can work with relatively little domain knowledge (e.g., only the
specification of types and domains of attributes, and the preference criterion), it can also take
advantage of the domain knowledge when it is available. The latter is realized by employing
background knowledge representation facilities in the form of logical and arithmetical rules (L-
rules and A-rules).

The AQ15 program has shown itsell to be a powerful and flexible tool for experimenting with
inductive knowledge acquisition. [t produces decision rules which are easy to interpret and
comprehend. The knowledge representation in the program is, however, limited to only
attributional descriptions. For problems that require structural descriptions one may use a
related program INDUCE2 [Hoff, Michalski & Stepp 83| or its incremental learning version
INDUCE4 [Mehler, Bentrup & Riedsel 86]. A weakness of the experimental part of the paper is
that the authors had no influence on the way the data were prepared for the experiments and the
available data allowed us to test only a few of the features of AQ15.

Another major result is a demonstration that the knowledge reduction by truncating the covers
may lead in some cases to a substantial reduction of the rule base without decreasing its
performance accuracy. We have also shown that by varying the degree of generality of rules and
applying different evaluation methods, different trade—offs between the correctness and precision
of decision rules are achieved. Further research will be required to find for any given domain a
rule reduction criterion that leads to the best trade-off between accuracy and complexity of a
rule base. Another topic for further research is to develop more sophisticated methods for
flexible matching.
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APPENDIX

The following are rules produced by AQ15 for all three investigated medical domains. 1iule.
presented were induced from all available examples and are untruncated. The preference
criterion was set to: first "maximize the number of newly covered examples” (not yet covered by
any previous complex) and then, in the case of a tie, "minimize the number of selectors”. Rules
are of the minimal type (minimum number of selectors in a complex, and minimum number of
values in each selector), and may intersect. Inconsistent examples were treated as positive
examples for each class. The maxstar parameter was set to 20. [n the rules, "t-weight” is the
total number of examples covered by a complex, and "u-weight" ia the number of examples
uniquely covered by the complex.

1. Lymphography

[lympho_diag = lymphoma| <=
{diminish LN = 0| & [fill_def Jacun = no V lacun Vv lacun_cent| & [spec_str_form = no
V bladder| & [lack LN_fill = yes| & [diseased LN = 10..inf| (t-weight:40, u-weight:22)

V [block_affer_vess = no| & |by_pass = no| & [early fil LN = yes] & [filLLN = grains
v fine_drops v dispersed vV obscure| & [spec_str_form = cup V bladder] (t-weight:24, u-
weight:7)

V (lymph_vess = curves  deform| & [block_affer_vess = no| & [enlarged LN = L..2]
& [spec_str_form = cup Vv bladder] & [disloc LN = yes| (t-weight:18, u-weight:3)

V |block_chain = no| & [extravas = yes| & [enlarged LN = 1..3]
& [ll_def_var = follicular v gross_cent| & [fil LN = fine_drops v stripes v obscure] (t-
weight:10, u-weight:3)

v [change_LN_shape = oval| & [diseased LN = 30..39] (t-weight:2, u-weight:1)

[lympho_diag = metastases|
[block_affer_vess = yes| & [hll_def_lacun = lacun_marg| & [fill LN = grains v fine_drops
\/ coarse_drops V dispersed v obscure| & [diseased LN = 0..29] (t-weight:50, u-weight:23)
v [fill_def Jacun = lacun Vv lacun_marg| & [AILLN = no v grains V coarse_drops
v dispersed vV obscure] & [spec_str_form = no V bladder| & |diseased LN = 0..9] (t-
weight:21, u-weight:11)
v [AlILN = grains V coarse_drops V dispersed] & [spec_str_form = cup]
& [diseased LN = 0..19] (t-weight:18, u-weight:3)
v [lymph_vess = curves| & learly fill LN = no| & [lack_LN_fill = yes| (t-weight:12, u-
weight:5)
Vv (lymph_vess = curves v displac| & [early_fill LN = yes| & [enlarged LN =
& [fill_def_var = follicular v tiny| & [fillLN = grains V fine_drops Vv tuarse_drnpa
v dispersed| (t-weight:8, u-weight:4)
V [change LN_shape = round| & [fill_def var = gross_cent| & [fill LN = coarse_drops
V reticular| (t-weight:5, u-weight:3)
v [block_affer_vess = yes| & [fill_def var = tiny| & [fill_LN = coarse_drops V obscure|
& [diseased LN = 30..39 v 30..59| (t-weight:2, u-weight:2)
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llympho_diag = fibrosation| <=
(by_pass = ves| & [diminish LN = 1..2] (t-weight:4, u-weight:4)

lympho_diag = normal] =
lymph_vess = noj {t-weight:2, u-weight:2)

2. Prognosis of Breast Cancer Recurrence

[breast_cancer = no_recurrence| <=
[menopause = [t40 v ged0| & [tumor size = 0..19] & [inv_nodes = 0..2} (t-
weight:35, u-weight:14)

v |age = 40..69] & [menopause = ged0 V premeno| & [tumor_size = 20..34|
& |deg_malig = 1..2] & [breast_quad = left_Jow V right_low]| & [irradiat = no| (t-
weight:30, u-weight:4)

v [age = 30..59] & [tumor size = 0..14] (t-weight:28, u-weight:15)

V |menopause = premeno| & [tumor_size = 20..34) & [node_caps = no|
& |breast_quad = left low V right Jow V central] & [irradiat = nof (t-weight:27, u-
weight:7)

v [age = 50..69| & [tumor_size = 25..34] & [deg_malig = 1..2| & [breast_quad = left_up
v left_low| (t—weight:24, u-weight:4)

v [menopause = ge40 V' premeno| & (tumor_size = 10..19 v 25..39] & [deg malig = 1)
& [breast = left] & lirradiat = no| (t-weight:Z1, u-weight:4)

v lage = 50..59] & [inv_nodes = 0..2] & [breast = right| & [breast_quad = left_up
v left_Jow Vv right_up| & [irradiat = no| (t-weight:20, u-weight:4)

v ltumor_size = 25..44 Vv 50..54] & [inv_nodes = 0.2 & [deg_malig = 2|
& Ibreast_guad = left up V right_low| (t-weight:17, u-weighl:4)

V [age = 20..49] & [node_caps = no| & [deg malig = 2| & [breast_quad = left Jow
v right_up] & [irradiat = no| (t-weight:15, u-weight:3)

v |menopause = premeno} & [tumor_size = 15..20] & [node_caps = no| & [breast = right|
& breast_quad = left_up V right_up V right_Jow| (t-weight:13, u-weight:4)

v |age = 30..59] & [tumor_size = 40..49] & [inv_nodes = 0..5| & [deg_malig = 2..3] (t-
weight:12, u-weight:6)

V [menopause = premeno| & [tumor size = 20..29] & [deg_malig = 2
& [breast_quad = left_up]| (t-weight:11, u-weight:2)

v [age = 50..69| & [tumor_size = 20..29] & [deg malig = 2..3| & [breast = right|
& |breast_quad = left_up| (t-weight:10, u-weight:4)

v lage = 60..69] & [tumor size = 25..34| & |breast_quad = left_Jow]| (t-weight:9, u-
weight:3)

v [age = 60..69] & [deg_malig = 2| & [breast_quad = left_up| (t-weight:9, u-weight:2)

v [age = 40..59] & [tumor size = 25..34] & [deg_malig = 1] & |breast = right| (t-
weight:7, u—weight:2)

v |age = 40..59] & (tumor_size = 20..24] & [inv_nodes = 0..2| & [node_caps = no|
& [deg_malig = 3| (t-weight:6, u-weight:5)

v [inv_nodes = 6..8] & [deg_malig = 2| & [breast_quad = left_up Vv left_low V right_up)
(t-weight:6, u-weight:4)
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v |age = 40..49] & [tumor_size = 30..34] & [inv_nodes = 0..2] & [node_caps = no|
& [breast_quad = left_up v right_up| (t-weight:6, u-weight:3)
V [age = 40..59] & [tumor_size = 35..39] & [deg_malig = 3| & [breast_quad = left_up
W left_Jow| (t-weight:5, u-weight:5)
|age = TCI..TQ] & [irradiat = no| (t-weight:5, u-weight:3)
lage = 40..59] & [tumor size = 30..39] & [inv_nodes = 9..11| & [breast_quad = left_up
v left_low v right_up| (t-weight:4. u-weight:4)

< <

V [tumor_size = 45..54| & [breast = left| (t-weight:4, u-weight:2)
v |age = 40..49] & [tumor size = 40..44| & |breast = right] (t-weight:4, u-weight:2)
v |age = 50..59] & [menopause = ge40| & [tumor_size = 25..29|

& [breast_quad = right_up] (t-weight:1, u-weight:1)

[breast_cancer = recurrence| <=
lage = 30..48] & [inv_nodes = 3..17] & |node_caps = yes| & [breast = left] (t—
weight:11, u-weight:5)

V [inv_nodes = 0..8| & [deg_malig = 3| & [breast = left| & [irradiat = yes| (t—
weight: 10, u-weight:T)

V [menopause = ge40 \ premeno| & [tumor_size = 30..34| & [deg_malig = 2..3|
& [breast = right| & [breast_quad = left_up V' central] (t-weight:8, u-weight:8)

V [age = 50..69] & [tumor_size = 20..34| & [inv_nodes = 0..5| & [deg_malig = 2|
& [breast_quad = right_up \V central| (t-weight:6, u—weight:6)

V [tumor_size = 30..39] & [deg_malig = 3| & [breast_quad = right_up Vv right_low| (t-
weight:6, u-weight:5)

V [lage = 40..59] & [inv_nodes = 3..8| & |breast_quad = right_up v right_ow]| (t-
weight:5, u-weight:3)

V lage = 60..69| & [tumor_size = 35..49] & [breast_quad = left_low \/ right_up] (t-
weight:4, u-weight:4)

V [age = 40..49] & [menopause = premeno| & [tumor_size = 20..29] & [deg _malig = 2..3]
& [breast = left| & [breast_quad = left Jow Vv right_up] (t-weight:d, u-weight:3)

V [age = 40..59] & itumor_size = 25..20] & |deg_malig = 2..3] & [breast = right|
& |breast_quad = left_Jow]| (t-weight:3, u-weight:3)

V [age = 40..59] & [menopause = ged0| & [tumor size = 30..34] & [inv_nodes = 0..5]
& [deg_malig = 3| & [breast = left| (t-weight:3, u-weight:3)

V [tumor_size = 20..29] & |deg_malig = 1] & [breast_quad — left_up| & [irradiat = nol
(t—weight:3, u-weight:2)

V [age = 30..39] & [tumor_size = 35..39| (t-weight:3, u-weight:2)

V [age = 60..69] & [menopause = ge40| & [tumor_size = 20..24] & [deg_malig = 2..3|
& |breast_quad = left_low| (t-weight:3, u-weight:2)

V |menopause = premeno| & [inv_nodes = 9..11] & [irradiat = no| (t-weight:3, u-weight:2)

V |age = 50..59] & imenopause = ged0 Vv premeno| & [tumor_size = 15..24]
& [node_caps = no| & [deg malig = 2| & [breast = left] {t-weight:2, u-weight:2)

V [tumor_size = 40..44] & [deg_malig = 1] & [breast = left] (t-weight:2, u-weight:2)

V [age = 30..39] & [inv_nodes = 0..2] & [deg_malig = 2| & |breast_quad = left_up
W central| (t-weight:2, u-weight:2)

V [age = 40..49] & [menopause = ge40| & [tumor_size = 20..24] & [breast = right] (t-
weight:2, u-weight:2)
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v [age = 40.49] & [tumor _size = 15..19] & [breast_quad = left_up| (t-weight:2,

weight:2) .
v |age = 30..39] & [tumor size = 15..19 v 30..34| & [deg_malig = 1] & [breast = right|

(t-weight:2, u-weight:2) _
v 'tumor_size = 25..29! & ideg_malig = 3] & [breast = left| & [breast_quad = left_up|

(t-weight:2, u-weight:2)

v |menopause = 1t40] & [tumor size = 20..24] (t-weight:2, u-weight:1)
v [tumor_size = 15..24] & linv_nodes = 9..11 v 24..26] & [breast = left| (t—weight:2, u-
weight:1)

v [tumor_size = 35..39| & |deg_malig = 1] & [breast = right| (t-weight:1, u-weight:1)
v [age = 40..49] & [tumor size = 50..54] & |breast = right] (t-weight:1, u-weight:1)
vV [tumor_size = 50..54] & [deg_malig = 3| (t—weight:1, u-weight:1)
v {age = 50..59] & [tumor_size = 35..39] & [inv_nodes = 0.2 & [deg_malig = 2|
& |breast = left] & [breast_quad = left_Jow| & [irradiat = no| (t-weight:1, u-weight:1)
v [tumor_size = 30..34] & ideg_malig = 1] & [irradiat = yes| (t-weight:1, u-weight:1)

3. Location of Primary Tumor

[tumor_location = bladder] ==
lage = bet30_59] & [sex = male| & [bone = no| & [perit = yes| & [liver = no
& [abdom = nol (t-weight:1, u-weight:1)

v Iperit = yes| & |neck = yes| & [mediast = yes| (t-weight:1, u-weight:1)

[tumor_location = breast| <=
[sex = fem| & [brain = no| & [axillar = yes| & [abdom = noj i~ weikht:17, u-
weight:14)

V [age = bet30_59] & [sex = fem| & [bone = yes| & [lung = no| & [liver = no]
& Iskin = no| & |neck = no| & [mediast = no| & [abdom = no| (t-weight:5, u-
weight:2)

v [lung = nol| & [axillar = yes| & [mediast = yes| & [abdom = yes| (t-weight:3, u-
weight:3)

v [age = 1t30] & |[bone = no| & [axillar = yes] {t-weight:1, u-weight:1)

V [lung = yes| & iperit = yes| & [supraclav = yes| (t—weight:1, u-weight:1)

[tumor_location = cerv_uteri] <=
lsex = fem| & [deg_diff = fair| & [bone = yes| & [liver = no| & [supraclav = noj
& |abdom = yes| (t-weight:1, u-weight:1)

V [age = bet30_59] & [sex = fem| & [lung = yes| & [perit = no| & [liver = yes]
% [mediast = yes| (t-weight:1, u-weight:1)

[tumor_location = colon| <<=
lage = ge60| & [sex = fem| & [hyst_type = adeno| & |bone = no| & {lung == no|
& [perit = no| & [supraclav = no| & |mediast = no| (t—weight:3, u-weight:3)

V |age = ge60j & [sex = fem| & [bone = noj & [lung = yes| & [perit = no]
& [liver = yes| & |brain = no| & [mediast = yes| (t-weight:2, u-weight:2)
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v |age = betd0_59| & [sex = fem| & [bone = no| & [lung = yes| & [pleura = no}
& [liver = no| & [supraclav = no| (t-weight:2, u-weight:2)

v [liver = yes| & [supraclav = yes| & [mediast = no| & [abdom = yes| (t-weight:l, u-
weight:1)

v [age = bet30_59] & {sex = fem| & [deg_diff = fair| & [pleura = no| & [perit = yes]|
& liver = no| & [abdom = yes| ({t-weight:l, u-weight:1)

v [age = bet30_58) & [sex = male] & |hyst_type = adeno| & [perit = yes| & {liver = no|
& [abdom = no| (t—weight:1, u-weight:1)

v |age = 1t30] & |[liver = yes| & [mediast = no| (t-weight:1, u-weight:1)

V [age = bet30_59] & [sex = male| & [hyst_type = adeno| & [bone = no]

& |[pleura = no| & [perit = no| & [liver = yes| & [supraclav = no| & [abdom = no]
(t-weight:1, u-weight:1)

v |age = geb0] & [sex = male| & [hyst_type = adeno| & [pleura = yes| & [liver = yes|
[t-weight:1, u-weight:1)

V |age = bet30_59) & [sex = male| & [deg_diff = well] & |[bone = no| & [pleura = noj
& |perit = yes| & [abdom = yes| (t-weight:1, u-weight:1)

[tumor_location = corp_uteri] ==
[age = bet30_59] & [sex = fem| & |[bone = no| & [pleura = no| & [perit = no|
& lliver = no| & [supraclav = no| & [mediast = no| & [abdom = yes| (t-weight:1, u-
weight:1)

V |age = bet30_59] & [sex = fem| & [deg diff = well] & [bone = yes| & [lung = no|
& [pleura = no| & [liver = no| & [skin = no| & [axillar = no| & |mediast = no] (t-
weight:1, u—weight:1)

V |age = bet30_59] & [sex = fem| & [lung = yes| & [perit = no| & [liver = yes|
& [mediast = no| (t-weight:1, u-weight:1)

v |age = ge60| & [lung = yes| & [perit = yes| & iliver = no| (t-weight:1, u-weight:1)

v |age = ge60| & bone = yes| & |liver = no| & [mediast = no| & [abdom = yes| (t-
weight:1, u-weight:1)

V [sex = fem| & [lung = no| & [perit = yes| & [supraclav = no| & [axillar = no|
& |[mediast = yes| (t-weight:1, u-weight:1)

[tumor Jocation = duod_intest] <=
[age = ge60| & [bone = no| & [lung = yes| & [pleura = no| & [supraclav = no|
& [abdom = no| (t-weight:1, u-weight:1)

[tumor_Jocation = esophasus| <=
[age = bet30_59] & [deg diff = poor| & [pleura = no| & [neck = yes|
& [supraclav = yesi & [abdom = no| (t-weight:2, u-weight:1)

V [sex = male| & |hyst_type = epid| & [lung = yes| & [supraclav = yes| (t—weight:2, u-
weight:1)

V [sex = male| & [bone = yes| & {lung = no| & [mediast = no| & [abdom = yes| (t-
weight:1, u—weight:1)

V [skin = yes| & [neck = yes| & [supraclav = no| (t-weight:1, u-weight:1)

v |age = bet30_59] & [sex = male| & [deg_diff = poor| & [bone = yes| & [lung = no|
& [liver = no| & [skin = no| & [neck = no| & [mediast = no| (t-weight:1, u-weight:1)
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v [perit = no| & [liver = ves| & [supraclav = yes| & [mediast = no| (t-weight:1, u-
weight:1)

v [age = bet30_59] & [sex = male| & [lung = ves| & [liver = yes| & [mediast = noj (t-
weight:1, u-weight:1) :

v |age = geB0| & [hyst_type = epid} & [bone = no| & (lung = yes| & [abdom = yes (t-

weight:1, u—weight:1]

[tumor_Jocation = gallblader] <
[age = ge60] & [sex = fem| & [bone == no| & [perit = no| & (liver = yes]|
& |mediast = nof (t-weight:9, u-weight:2)
v [age = ge60] & [sex = fem| & |bone = no| & [lung = no| & [perit = noj
& [abdom = yes| (t—weight:8, u-weight:3)
v |age = ge60] & [sex —= fem| & [bone = no| & [liver = yes| & [supraclav = no|
& |abdom = no| (t-weight:3, u-weight:1)
v [age = bet30_59] & [lung = no| & [pleura = yes| & [perit = yes| & [supraclav = no
& (abdom = nol {t—weight:1, u-weight:1)
v [age ="geb0] & lsex = fem| & [perit = yes| & [mediast = ves| (t-weight:1, u-weight:1)
v [lung = yes| & [brain = yes| & [mediast = no| (t-weight:1, u-weight:1)

[tumor_location = head_neck] <=
[bone = no| & [neck = ves| & [supraclav = no| & |[mediast = no| {t-weight:17, u-
weight:16)
V [sex = fem| & [skin = no| & [neck = yes| & [axillar = no| (t-weight:3, u-weight:2)
v [age = ge60| & |deg diff = well] & [neck = yes| (t-weight:1, u-weight:1)

[tumor_location = kidney| =
lage = 1t30..bet30_59] & [sex = male| & [bone = yes] & [bone_marr = no
% [pleura = noj & [liver = no| & [skin = no| & (neck = no| & [abdom = no| (t-

weight:9, u—weight:7)
vV [sex = male| & [bone = yes| & [lung = yes| & [liver = no] (t-weight:6, u-weight:2)
v lage = bet30_59] & [sex = male| & [hyst_type = adeno| & [lung = ves!
.- pleura = no| & [liver = no| & [supraclav = no| (t-weight:4, u-weight:1)
v e = geB0| & ibone = no| & [perit = no| & [liver = no| & [neck = no]
& {supraclav = no| & [mediast = no| & [abdom = no| (t-weight:3, u-weight:3)
v [age = 1t30} & [hyst_type = adeno| & [perit = no| & [liver = no| & [supraclav = yes]
& [axillar = no| & [abdom = no| (t-weight:2, u-weight:2)
v [age = bet30_59| & [bone = yes| & [lung = yes| & [perit = no| & [mediast = nol (t-
weight:2, u-weight:1}
v age = ge60| & |lung = yes| & [liver = no| & [mediast = yes| (t—weight:2, u-weight:1)
v [age = bet3050] & [deg diff = welll & [lung = no| & [perit = no| & |neck = nol
& |supraclav = yes| & [axillar = no{ & [mediast = noj (t-weight:1, u-weight:1)
V |age = bet30_59] & bone = nol & [lung = yes| & [perit = yes| & [liver = yes|
& |mediast = no| (t-weight:1, u-weight:1)
Vv |age = ge60| & [sex = fem| & [lung = no| & [pleura = yes| & [brain = no]
& [abdom = yes| (t-weight: " u-weight:1)
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[tumor_ Jocation = liver] ==
[age = 1t30] & |hyst_type = anapl] & [supraclav = ves| & [mediast = no| (t-
weight:1, u-weight:1)

V [sex = male| & [bone = no| & [pleura = yes| & [perit = yes| & labdom = no] (t-
weight:1, u-weight:1)

V [age = ge60| & [pleura = yes| & [brain = yes| (t-weight:1, u-weight:1)

V [age = bet30_59] & [sex = fem] & [bone = yes| & [lung = no| & [pleura — no|
& [liver = no| & [skin = no| & [neck = no| & [axillar = no| & [mediast = no|
& [abdom = no| (t-weight:1, u-weight:1)

V [age = ge60] & [sex = fem| & [lung = no| & [liver = no] & [mediast — ves|
& [abdom = yes| (t-weight:1, u-weight:1)

V [age = ge60| & [bone = no| & [lung = yes| & [pleura — no| & [supraclav = no|
& [abdom = no| (t-weight:1, u-weight:1)

V [sex = male| & [bone = no] & [lung = yes| & [pleura = yes| & [mediast = yes] (t-
weight:1, u-weight:1)

[tumor_location = lung] <=
[sex = male| & [deg diff = (air V poor| & [lung = no| & [mediast — yes|
& labdom = no| (t-weight:15, u-weight:3)

v [lung = no| & [brain = yes| & [mediast = ves| (t-weight:11, u-weight:4)

V [bone = no| & [perit = no| & [supraclav = yes| & [axillar = no| & [mediast = yes|
(t-weight:11, u-weight:3)

V [sex = male] & [neck = no] & [supraclav = yes| & [mediast = ves| (t-weight:10, u-
weight:1)

V [age = ge60] & |sex = male| & [lung = no| & [neck = no| & [mediast = yes] (t-
weight:9, u-weight:d)

V [sex = male|] & [bone = yes| & [lung = no| & [supraclav — no| & [mediast = yes| (t—
weight:9, u-weight:1)

V [age = bet30.59] & [sex = male] & [lung — no| & [skin = ves| (t—weight:8, u-weight:4)

V [sex = male| & [hyst_type = epid| & [bone = yes| & [lung = no| & [pleura = no|
& [neck = no| (t-weight:6, u-weight:3)

V lage = bet30_59] & [pleura = yes| & [perit = yes| & [mediast = yes| (t—weight;5, n-
weight:d}

V [age —= 1t30| & [sex = fem| & [mediast = yes| (t-weight:4, u-weight:3}

v [age = bet30_59] & [sex = male| & [bone = no| & [lung = no| & [perit = no]
& [liver = no| & [neck = no| & [supraclav = no| & [mediast = no| & [abdom = no]
(t-weight:4, u-weight:2)

V lage = bet30_59] & [bone = no| & [lung = no| & [pleura = yes| & [perit = no|
& [skin = no| & [neck = no| & {abdom = no (t-weight:d, u-weight:2)

V [age = geB0] & [sex = fem| & [perit = no| & [liver = yves| & [abdom = no] (t-
weight:4, u-weight:1)

V [age = bet30_59] & [sex = fem| & |bone = yes| & {lung = no| & [pleura = no|
& [neck = no| & [axillar = no| & [mediast = no| & [abdom = no| (t-weight:3, u-
weight:3) ’ '

V [age = ge60| & [sex = male| & [hyst_type — epid| & [neck = no| & [mediast = no]
(t-weight:3, u-weight:2)



vV |age = bet30.59] & [sex = male] & [lung = yes| & [perit = no| & [liver = yes|
& |mediast = yes| (t-weight:3, u-weight:2)
v lage = ge60] & [hyst_type = epid| & [bone = no| & [neck = no| & [abdom = no [t~
weight:3, u-weight:2) ;
V [lung = yes| & [liver = yes| & [abdom = mo| (t-weight:3, u-weight:1)
v [deg_diff = fairV poor| & [bone = yes| & [pleura = no| & [supraclav = yes|
& [axillar = no| (t-weight:2, u-weight:2)
V [sex = male] & [deg diff = poor| & [bone = no| & [lung = yes| & [pleura = no|
& lliver = no| & [neck = no| & [supraclav = no| (t-weight:2, u-weight:2)
i [agé = ge60| & |bone = yes| & [pleura = yes| & (abdom = no| (t-weight:2, u-weight:1)
Vv [sex = fem| & [deg_diff = poor| & [lung = no| & [liver = no| & [neck = no}
& [supraclav = ves| & [axillar = no| (t-weight:2, u-weight:1}
v [age = bet30_50| & [sex = male] & [hyst_type = adeno| & [lung = yes| & [neck = no|
& [supraclav = yes| (t-weight:2, u-weight:1)
V jage = bet30_50] & [sex = male| & [deg_diff = well] & [bone = no| & [lung = no|
& |pleura = no| & [neck = yes| (t-weight:1, u-weight:1)
V [age = geb0| & [perit = yes| & [supraclav = ves| (t-weight:1, u-weight:1)
v [liver = yes| & [neck = yes| & [axillar = no] (t-weight:1, u-weight:1)

[tumor_location = ovary| <=
jage = bet30_59] & [sex = fem| & [bone = no| & lung = no] & [brain = no]
& [neck = no| & [supraclav = no| & [axillar = no| & [abdom = no| (t-weight:19, u-
weight:19)

v [age = bet30_59] & [lung = no] & [perit = yes| & [liver = no| & [mediast = noj
& [abdom = yes| [t—weight:3, u-weight:3)

V |age = geB0] & [sex = fem| & [hyst_type = adeno| & [deg_diff = well vV poor]
& |perit = yes| & [liver = no| & [abdom = no| (t-weight:2, u-weight:2)

V [skin = yes| & [mediast = no| & [abdom = yes| (t-weight:l, u-weight:1}

V [age = bet30_59] & [pleura = yes| & [perit = no| & [mediast = no| & [abdom = yes|
(t-weight:1, u-weight:1)

v [age = ge60| & [sex = fem| & [bone = no| & [perit = no| & [liver = no]
& |[mediast = no| & |abdom = yes| (t-weight:1, u-weight:1)

v [age = ge60| & [sex = fem| & [lung = yes| & [pleura = no| & [perit = yes| (t-
weight:1, u-weight:1)

V [perit = yes| & [supraclav = yes| & [mediast = yes| & [abdom = ves| (t—weight:1, u-
weight:1)

[tumor_location = pancreas| <=
lage = ge60] & [sex = fem| & [lung = no| & [pleura = no] & [perit = yes|
& [supraclav = no| (t-weight:5, u-weight:4)

V [age = bet30_59] & [sex = male] & [bome = no| & [pleura = no| & [liver = yes|
& [supraclav = no| & [mediast = no| & [abdom = no| (t-weight:4, u-weight:4)

\ [sex = fem| & [hyst_type = adeno| & [deg diff = well v poor| & [lung = no|
& [liver = yes| & [skin = no| & [mediast = no| & [abdom = yes| (t-weight:4, u-
weight:3)

v lage = bet30_59| & [bone = no| & [pleura = yes| & [perit — no| & [brain = no|
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& |neck = no| & [supraclav = no| & [abdom = yes| (t-weight:3, u-weight:3)

v [age = betd0 59| & [sex = fem| & [perit = no| & [liver = yes| & [mediast = no|
& [abdom = yes| (t-weight:3, u-weight:2)

v [age = 1t30..bet30_59i & isex = male! & [pleura = yes| & [perit = yes|
% [supraclav = no| & [mediast = no| (t-weight:2, u-weight:2)

v |age = ge60| & [sex = male| & [lung = no| & [pleura = no| & [liver = yes]
& [mediast = no| & [abdom = yes| (t-weight:2, u-weight:2)

V [age = geB0] & [sex = fem| & [pleura = no| & [liver = yes| & [supraclav = no|
& [abdom = no| (t-weight:2, u-weight:1)

W [lung = yes| & [perit = yes| & [supraclav = no| & [mediast = no| & [abdom = no]
(t-weight:1, u-weight:1)

V [sex = male| & [bone = no| & [lung = yes| & [perit = yes| & [mediast = yes| (t—
weight:1. u-weight:1)

V lage = geB0| & [bone = yes| & [pleura = yes| & [mediast = yes| (t-weight:1, u-
weight:1)

V lage = ge60| & [sex = fem| & [lung = yes| & [pleura = no| & [liver = yes]
& [brain = no| & |mediast = yes| (t-weight:1, u-weight:1)

v [age = ge60| & [sex = male| & [lung = yes| & [pleura = no| & [perit = no|
& [liver = yes| & mediast = no| (t-weight:1, u-weight:1)

[tumor_location = prostate] <=
[age = bet30_59..ge60| & [sex = male| & |hyst_type = adeno| & |[bone = yes|
& lung = no| & [liver = no| & [skin = no| & [neck = no| & [mediast = no|

& labdom = no| (t-weight:5, u-weight:5)

v [sex = male] & |hyst_type = adeno| & [lung = no| & |neck = yes| & [supraclay = ves|
& abdom = nol {t-weight:2, u-weight:2)

V [age = ge60] & [sex = male| & [hyst_type = adeno| & [deg diff = well] & [bone = no|
& [perit = no| & |[abdom = yes| (t-weight:2, u-weight:1)

v lage = geB0| & [sex = male| & |hyst_type = adeno| & [lung = no| & [perit = no]
& [mediast = no| & [abdom = yes| (t-weight:2, u-weight:1)

[tumor_Jocation = rectum| <=
'sex = male| & |hyst_type = adeno| & [deg diff = well| & [lung = no| & [perit = no|
& lliver = yes] & [abdom = no| (t-weight:3, u-weight:3)

V [sex = fem| & [brain = yes| & [mediast = no| & [abdom = no| (t-weight:1, u-
weight:1)

V |age = ge60] & [sex = fem| & [deg_diff = well] & [bone = no| & [lung = yes|
& [abdom = no| (t-weight:1, u-weight:1)

V |age = ge60| & [bone = no| & [pleura = yes| & [liver = yes| & [mediast = no| (t-
weight:1, u-weight:1)

[tumor Jocation = sal_glands|] <=
[hyst_type = epid| & [deg diff = well| & [bone = yes| & [skin = no| & [neck = yes]
(t—weight:1, u-weight:1)

v [hyst_type = epid] & [pleura = yes| & [perit = yes| & [supraclav = yes| (t-
weight:1, u—weight:1)
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[tumor Jocation = stomachl = .
[age = 1t30..bet30 59| & [sex = fem| & [deg_diff = well v poor| & [lung = noj .
& [perit = yes| & [liver = nol & [skin = no| & [mediast = no| (t-weight:5, u-weight:4)

v |[age = bet30.59| & [sex = male] & [bone = no| & [lung = no| & [pleura = no|
& ‘perit = no| & [neck = no| & [abdom = yes| (t-weight:4, u-weight:4)

v, [gej; = fem| & [lung = no| & [liver = no| & [neck = no| & [supraclav = yes|
& |axillar = no| & [mediast = no| (t-weight:4, u-weight:2)

v [age = bet30_59] & [bone = no| & [lung = no| & |[liver = no| & [neck = no]

& [supraclav = yes| & [mediast = no| (t-weight:4, u-weight:2)

V [age = ge60| & [sex = fem| & [lung = no| & [perit = no| & [liver = yes]
& [mediast = no| & [abdom = yes| (t-weight:3, u-weight:3)

v lage = bet30_59] & [sex — male| & [hyst_type = adeno] & [bone = yes| & [lung - no|
& [skin = no| & ineck = no| & [mediast = no| & [abdom = no] (t-weight:2, u-
weight:2)

V |age = 1t30] & [perit = yes| & [supraclav = yes| (t-weight:2, u-weight:2)

V |age = geB0| & [sex = male| & [pleura = no| & [perit = yes| & [liver = no| (t-
weight:2, u-weight:2)

v [age = bet30_59] & [lung = no| & [pleura = no] & [perit = yes| & [liver = yes|
& [skin = no| & 'mediast = no| & [abdom = yes| (t-weight:2, u-weight:2)

v [lung = yes| & [axillar = yes| & [abdom = yes| (t-weight:2, u—weight:2)

V [age = bet30_59] & [sex = fem| & [pleura = no| & [perit = yes] & [liver = no|
& Iskin = no| & 'abdom = no| (t-weight:2, u-weight:2)

V [sex = male| & hyst_type = adeno] & [deg dif = well| & [bone = no| & [perit = no/
& [liver = no| & [mediast = yes| (t-weight:2, u-weight:1)

v |age = bet30_59] & [lung = yes| & [pleura = yes| & [liver = no| & [abdom = yes| [t~
weight:2, u-weight:1)

V |age = geb0| & [sex = fem| & [deg diff = well| & |lung = no| & [perit = no]

& [liver = yesl (t-weight:1, u-weight:1)

v lage = It30] & [bone = no| & [pleura = yes| (t-weight:1, u-weight:1)

v [age = geB0| & isex = male| & [lung = yes| & [supraclav = yes| (t-weight:1, u-
weight:1)

V [age = geB0| & [sex = male| & [lung = yes| & |perit = yes| (t-weight:1, u-weight:1)

V lage = bet30_59] & [sex = male| & [hyst_type = adeno| & [deg diff = well]

& jlung = no| & [perit = no| & [liver = yes] (t-weight:1, u-weight:1)

V [age = ge60| & [sex = male| & [hyst_type = adeno| & |[perit = yes| & [liver = yes
& [abdom = no] (t-weight:1, u-weight:1)

v [age = ge60| & [sex = male] & [deg_diff = poor| & [liver = yes| & |mediast == noj
& |abdom = no| (t—weight:1, u-weight:1)

[tumor_location = testis] <=
[age = bet30_59] & [sex = male] & [lung = yes| & [pleura = yes| & [mediast = noj
(t—weight:1, u—weight:1)

[tumor_location = thyroid] <=
[age = geB0| & [sex = fem| & [bone = yes| & [pleura = no| & [supraclav = no| (t-
weight:4, u-weight:4)
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v |age = 1t30..bet30 59| & [bone = yes| & |lung = ves| & [perit = no| & Imediast = nol

(t-weight:3, u-weight:3)
Vv [age = bet30.59] & [sex = fem| & [bone = yes] & [perit = no| & [brain = no|

& |axillar = no| & [mediast = yes| (t-weight:3, u-weight:3) .

V [sex = male| & [deg diff = fair| & [neck = yes| & [axillar = yed] (t-weight:1, u-
weight:1})

V [age = bet30_59] & [sex = male| & [hyst_type = adeno| & [deg_difl = well|

ves| & [skin = no| & [mediast = no| & [abdom = no| (t-weight:1, u—

& [bone =

weight:1)
V [age = ge60] & pleura = yes| & [supraclav = no| & [mediast = yes| & |abdom = nol

(t-weight:1, u-weight:1)
V [sex = male] & [bone = yes| & [neck = yes| & [supraclav = no] (t-weight:1, u-

weight:1)

[tumor_location = vagina] <=
[hyst_type = epid| & |lung = yes| & [perit = yes| & [mediast = no| (t-weight:1, u-
weight:1)

[tumor Jocation = anus| <=

false (t—-weight:0, u-weight:0}
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