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Abstract

I IQ: A SHADER GRAPHING CALCULATOR FOR SIGNED DISTANCE FUNCTIONS
(SDFS)

Henro Kriel

George Mason University, 2023

Thesis Director: Dr. Yotam Gingold

Shaders are useful in real time graphics and high performance computing applications

as they specify computation to be run in parallel on the GPU. In the community, these

shaders are often described in mathematical syntax and translating that math to executable

code can be tedious and error prone. We present I IQ, a graphing calculator of sorts for

signed distance functions (SDFs) and materials that expedites the process of prototyping

shaders. It provides a math-like syntax using I LA and comes with a built-in raycasting

architecture, removing the overhead of translation and implementation details. I IQ is

designed to be responsive and interactive. The system automatically detects free parameters

and lets users tweak them using slider controls, allowing for seamless manipulation of the

scene in real time. The code generated by I IQ can then be exported to third party

programs and used outside of the I IQ environment. The I IQ repository can be found at

https://github.com/HenroKriel/heartdown.

https://github.com/HenroKriel/heartdown


Chapter 1: Introduction

Shaders are high performance graphics programs that run on the GPU, and they are ex-

tremely common in real time graphics applications such as video games. Some popular

examples of their use include the building interiors in Spiderman [1] and the liquid within

bottles in Half-Life: Alyx [2], though shaders are everywhere behind the scenes. Shaders

are also popular for real time computer generated art, such as those created by demosceners

[3].

The art generated by shaders will typically be done by modeling objects mathemati-

cally, as opposed to using discrete data structures such as meshes. For instance, moving

the camera around and into a fractal while rendering it in real time is popular in this do-

main [4]. The problem is that translating math into shader code takes time and is prone

to errors, and shaders can be hard to debug, especially since that often entails creating an

architecture like raymarching for rendering whatever was modeled. Additionally, discussion

concerning the implementation of these shaders is often done with math, not shader lan-

guage syntax necessarily. In this showcase, Inigo Quilez demonstrates the implementation

details with traditional math syntax [5]. So, a system for automatically translating math

to executable shader code would save time in translation, designing and implementing a

rendering architecture, and would eliminate debugging as a result of implementation errors.

Our system, I IQ, compiles I LA, a language with math-like syntax, to executable

shader code, specifically GLSL. See figure 1.1 for an example scene written in I IQ. Users

can define shapes and materials, and then in a scene script instances of those shapes can be

declared. User-defined materials and a transformation matrix are applied to each instance

of a shape. I IQ comes with a raymarching backend that then loads the generated code

and renders a scene so the user gets immediate feedback. That is the vision for I IQ. Users

should be able to make changes quickly and easily and see the effects of those changes
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Figure 1.1: An example scene.

in close to real time. To this end, free parameters are picked up by I IQ and are given

corresponding interactable sliders. This allows the users to tinker with the values until they

get the scene that they want without having to recompile. I IQ is designed to expedite the

prototyping stage for generating these shaders. Then, users can take the generated GLSL

and use it however they want, such as in a graphics application. For this reason, code

generation was made with readability in mind. This motivated features such as input and

output structs, which are used as interfaces between functions.

Consider a graphing calculator, such as Desmos [6]. One of their purposes is to quickly

test functions so that the user gets the one that they want. Say a user wanted to define

a sine wave whose period maps to [0,1] on the x axis and whose amplitude also maps to

[0,1]. A graphing calculator lets the user quickly define the function, check it for accuracy,

and tweak it should they desire a variation on the curve. SDFs are the main primitive for

defining surfaces in raymarched shader programs, and they look like something that one

could plug into a graphing calculator. However, that graphing calculator does not exist,

and I IQ fills this niche.

2



Chapter 2: Related Work

2.1 Math-Like Syntax

I IQ is an extension of H rtDown [7], which itself is built on I LA [8]. I LA embraces a

syntax that closely approximates the look of conventional math while being unambiguous

in interpretation. Languages in the past have experimented with introducing syntax from

conventional math. Fortress [9] interpreted juxtaposition as multiplication, and Julia [10] let

users define unicode math symbols as operators. In the Julia paper, the authors emphasize

the ability to mimic mathematical idiosyncrasies. For instance, if f and g are both functions,

f ∗ g(x) might represent a composition, f(g(x)). I LA takes this to the extreme with the

hope of providing a common high level interface that can be mapped to executable relatively

lower level languages such as Python.

2.2 Shader Languages

I IQ was not designed to be a shader language or an extension of a shader language.

Rather, it is designed to be a meta-shader-language of sorts. It is a replacement for the

mathematical subset of a typical shader language. Furthermore, I IQ does not support

direct control over the rendering. Instead, rendering is handled by a raymarching back-end

that takes the processed I IQ script as input.

An example of a proper shader language is Slang [11], which is an extension of HLSL

aimed at incorporating best-practice principles into a shader language. Unlike Slang, I IQ

is not an extension of GLSL. Instead, it takes I LA, which doesn’t resemble GLSL, and

compiles it to GLSL. Additionally, I IQ does not necessarily introduce new features to

GLSL aside from the boilerplate needed for interactive raycasting.
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However, future work might entail supporting higher level semantic error checking. For

example, Geisler et al [12] somewhat recently published a paper on a language called Gator

that checks geometry types for variables. Gator introduces generic-like syntax for vectors

that declares which space they belong to. Similarly, for matrices the user declares which

spaces the matrix transforms from and to. Type rules are then checked for operations.

An error will be thrown when the user tries to subtract two vectors in different spaces,

for instance. Users can also declare whether a vector describes a point or direction, and

then the corresponding type rules will be checked. For example, two point-vectors can’t be

added.

This higher level type checking, such as direction and position types for vectors, would

be a great addition to I IQ. However, the conversion between spaces is already handled

by the backend. SDFs are defined in an object space, and all the user defined transforma-

tion matrices take the shape instances from object space to world space. Additionally, the

transformation to screen space is handled implicitly by raycasting. Thus, much of the men-

tal overhead is already removed. Gator was proposed because handling multiple different

geometric spaces is hard and error prone, and since I IQ also prevents many of these user

errors, this further cements its place as a usable prototyping tool.

2.3 Interactive Documents and Educational Frameworks

I IQ was made in the spirit of interactive documents. Tangle [13] is a Javascript library

for this purpose. The user declares interactive components using html classes and can

access variables in the interface using the data-var attribute. There is a standard library of

components, but they can also be defined by the user. However, html isn’t comparatively

readable. So, Conlen and Heer proposed Idyll [14], which, like H rtDown, is an extension

of markdown. It also has a standard library of components and supports custom component

creation, but now with the added benefit of the readability of markdown. Streamlit [15] is a

tool for building data apps that uses python as an interface instead of a markup language.

Nonetheless, similar to a markup language, components appear on the document in the
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order that they are declared in the script, and Steamlit will write variables on their own

line in the script to the screen without a function call. Furthermore, the web app will

hotload whenever a change is detected in the script file. It is designed to be usable and fast,

which is what we hope I IQ will be.

I IQ was also inspired by educational graphics frameworks like Processing [16] and

openFrameworks [17]. These frameworks are designed to be simple and usable but powerful

tools for teaching graphics. They are not necessarily intended to be used in industry ap-

plications, but they are great tools for learning. They are still powerful and versatile, and

thus make great tools for experts who want to prototype ideas. As such, these frameworks

are targeted to both beginners and experts. These attributes are what we desire for I IQ

as well.

2.4 Similar Systems

Naturally, I IQ takes heavy inspiration from signed distance functions (SDFs) and the

work of Inigo Quilez [18], who is the IQ in I IQ. Signed distance functions are the bedrock

of raycasting with fragment shaders, described as early as 1989 [19]. These are implicit

descriptions of the surfaces of (usually) 3D shapes and enable a computationally efficient

form of raymarching called sphere tracing [20], which is the mechanism that I IQ uses.

Quilez uses SDFs in his work extensively. He is an avid demoscener and the co-creator

of Shadertoy [21]. I IQ is meant to be a higher level version of Shadertoy where the

syntax is math based and the ray marching architecture is implicit. This way, much of

the implementation details are extracted away, allowing users to prototype quickly and

effectively. Quilez’ video on painting a character with maths [5] and his other such videos

are the quintessential use case of I IQ. Users could then take the generated GLSL code,

tweak it, and use it in other applications. As a general compiler for mathematics into GLSL

it can be used for any mathematical functions to be executed on the gpu such as illumination

for materials, animation curves, and potentially general purpose gpu computation.
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Finally, I IQ is similarly motivated by the Desmos graphing calculator [6]. This online

tool takes conventional math as input and graphs the equations. It’s very useful for finding

or checking equations that satisfy the user’s needs, such as a sine wave whose period maps

to [0, 1] and whose amplitude varies between [0, 1]. In a way, I IQ is a 3D graphing

calculator with support for materials. Users should be able to quickly define and check the

geometry of SDFs. The user might want to describe two interlocking box frames (see figure

6.3). I IQ should make it easy to generate SDFs and transformation functions that satisfy

that requirement.
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Chapter 3: Background

I IQ generates fragment shaders (also known as pixel shaders). Fragment shaders are

instructions for which color to apply to a pixel on the output screen. The code for a

fragment shader is run in parallel for a batch of pixels on the GPU.

Typically, fragment shaders are applied to a mesh, which is stored in object space. The

positions of the vertices in world space and the normals of the surfaces on this mesh are

supplied by a vertex shader, which, similar to the fragment shader, does the computations

for positions, normals, and screen space positions in parallel on the GPU. The host program

iterates over primitives, which are almost always triangles formed by the vertices, and uses

screen space position output by the vertex shader to determine which pixels on the screen

are inside the projected primitive. If primitives overlap, a depth value is used to choose

which primitive determines the color of a given pixel.

However, instead of using discrete precomputed surfaces defined by meshes, one could

mathematically model a surface within the fragment shader. This is usually done with

implicit surfaces, where for some function F (x, y, z) the surface is defined as the set of

points x, y, z such that F (x, y, z) = 0. In a closed surface, a positive output means that

the input point is outside the surface, and a negative output means the input is within

the surface. Raycasting could then be used to render the surface. Raycasting is done by

generating a ray that originates from the camera and passes through a pixel position on a

virtual screen for each pixel. If a ray intersects a surface, then the pixel that the ray passes

through is colored according to the surface’s material (Figure 3.1).

It is possible to derive closed form solutions for the point at which a ray intersects a

surface, but a solution would have to be derived for every surface primitive. Additionally,

each surface primitive has different conditions to check whether the ray intersects the shape

at all. Thus, closed form solutions are not generalizable. Raymarching, on the other hand,

7



Figure 3.1: This diagram [22] depicts ray tracing, which is like ray casting but rays are also
cast at points of intersection to create shadows and reflections.
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Figure 3.2: A visualization of sphere tracing [23].

is generalizable and is a more popular choice. Raymarching works as follows. A point is

placed at the origin of the ray, and at each iteration the point is used to query the implicit

surface function and is then moved along the ray by a small amount. If the value goes from

positive to negative, or vice versa, then by the intermediate value theorem it is known that

the function returns 0 at some point between, therefore the ray has crossed the boundary of

the surface. Of course, this mandates that surfaces be closed, otherwise there would not be

a definitive inside or outside, or respectively a positive and negative region of the implicit

surface function.

Signed Distance functions (SDFs) are popular implicit surface functions for raymarching

because, as mentioned in the related work section, they can be rendered efficiently using

a method called sphere tracing [20]. Instead of moving forward by a small increment each

iteration, the query point moves forward by the value returned by the SDF. A visualization

of sphere tracing can be seen in figure 3.2.

SDFs can be composed of other SDFs by using functions to combine them. Most simply

taking the min of two SDFs will generate a surface that bounds the union of the two shapes

(more specifically the union of their volumes). Similarly, taking the max of two SDFs
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Figure 3.3: SDF combinations, including union, subtraction, intersection, and their smooth
variants [24].

will take the intersection. For more combinations, see [24]. Quilez includes more complex

combinations such as one that produces a smooth union, which can be seen in figure 3.3.

Combinations of SDFs can yield arbitrarily complex shapes.

It is important to know how to compute the normal of a surface given its SDF. Many

materials, such as the ubiquitous Phong [25], require the normal of a position as input. To

compute the normal of an SDF, you simply need to calculate the gradient and normalize it

[26]. Here is why that works conceptually. The gradient is the direction and rate of fastest

increase, and the direction which maximizes the output of the SDF is the direction which

maximizes the distance from the surface, that being the normal.
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Chapter 4: Design

We decided to follow the H rtDown model, where the document source code is on the left

half of the screen, and on the right is the output document or, in the case of I IQ, the scene.

H rtDown was chosen so that in the future, users would be able to place the rendered scene

as supplementary material in interactive documents.

We added a few things to the I LA grammar. Some were features that could be added

back into I LA, such as max, min, and floor (see figure 6.2 for an example use of floor to

define a toon shader material), while others were more structural. You can, for instance,

declare I LA modules as shapes or materials. In addition to the main function that they

generate, shape modules will generate gradient functions, which are used for finding the

normal at a given point near or on the surface. Remember that the gradient is in the same

direction as the normal when working with SDFs. These gradient functions are implemented

using finite differencing.

Shapes and materials require that the user return information to the backend using

named I LA variables. In shape modules, D (for distance) holds the output of the shape’s

SDF. C (for color) in material modules holds the resulting RGB color value for a given

point on the surface. The RGB color’s components range from 0 to 1 like in GLSL. Shapes

and materials also have their own set of required parameters through which information is

supplied by the backend. Shapes require a position parameter, which is used to query their

SDFs. Materials require a parameter representing the position of a point on the surface of

the shape, the surface’s normal at that point, and the position of the eye/camera, which is

used to calculate things like specular lighting (see figure 6.1).

The rest of the parameters defined by the user are automatically assigned sliders so that

the user can tweak their values in real time. Examples of the slider controls can be found
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Figure 4.1: An example scene codeblock. The double bracket syntax in TOML indicates
an array of tables. So, [[shapes]] is an array named ”shapes” that contains tables which
describe each shape. The tables contain type, material, and transform entries.

in figure 1.1 and 6.3. The upper and lower bounds of these sliders are defined using typical

interval notation in place of the number space type, e.g. [0,1]. Bounds for vectors are done

with x as a delimiter where each bound corresponds to a vector component, e.g. [0,1]x[0,1].

Defaults for these parameters can be set by declaring them to the right of their bounds. If

no default is specified, it will be set to the average of the left and right bounds.

As of now, only number literals can be placed in these parameter definitions. Because the

bounds are enforced by the sliders, which are written in JavaScript, evaluating expressions

in the bounds and defaults would require a code generator for JavaScript, which is not a

priority at the moment.

With the shapes and materials defined, users can then describe a scene with a code block

named “scene”. An example scene code block can be seen in figure 4.1. Instances of shapes

are declared in sequence. Each shape instance has a type, material, and transformation

matrix. Here, the type refers to the shape module that the shape instance instantiates.

For the sake of usability, we have provided a set of functions written in I LA that take 3D

vectors as input and return 4x4 homogeneous transformation matrices. These are standard

12



Figure 4.2: The transformations module.

transformations such as translate and rotate. The transformation matrix declarations in

the scene codeblock are processed as I LA, so these functions can be called and chained.

See figure 4.2 for their definitions.

After the user compiles the code, the scene is rendered in the pane to the right of the

screen. In the top right of the rendered scene are the controls which hold the sliders. Sliders

are organized in a hierarchical fashion. The top level of the hierarchy are shape instances,

which are enumerated by type. Eventually we would like to allow the user to name shaped

instances in the scene code block. Next, each shape instance has sliders for its shape type,

transformation function, and material. Finally, scalars have their own sliders, and vectors

are split into sliders for each component.

Defaults for sliders apply to shapes and materials globally. In the future, users will

hopefully be able to pass default values to shape instances in the scene code block.

13



Figure 4.3: An example of use of structs as input and output.

Some design decisions were made concerning the code generation as well. It is possible

for the number of parameters to become unwieldy, especially for something like materials.

Figure 4.3 illustrates one such example. In these cases, it is unclear which argument maps

to which parameter in a function call. As such, we have decided to use input structs to

interface between functions in order to approximate named arguments in languages like

Python. Structs in GLSL can be instantiated using a parenthesis enclosed list similar to

arguments in a function call, so the user can still use that syntax if they desire. Additionally,

a struct input for a shape needs to be reused in calls to its respective gradient function since

each shape instance has its own sliders and thus its own values for free parameters. We also

use structs as output like I LA does in its generated code. Any variable that is assigned a

value in an I LA module is stored in an output struct, which is returned at the end of the

function call, so the user can select which of the outputs they need.

14



Chapter 5: Implementation

5.1 Web GUI

I IQ compiles I LA into GLSL code. GLSL was chosen as the target language because it

is supported by WebGL, which allows web apps access to the GPU. This is likely why GLSL

was also chosen as the input language for Shadertoy. I IQ implements its scene output with

Three.js [27], which in turn uses WebGL. Thus the generated code is run directly on the

GPU. We use Three.js to render a plane with the same dimensions as the output window

and apply the fragment shader to that plane. The plane is rendered orthographically so it

takes up the entire output window without any perspective distortion.

The GUI for the sliders was implemented using little-gui [28], which is the same library

that the authors of Three.js use for the examples on their website. The values of these

sliders are passed as uniforms to the fragment shader. These uniforms can be seen in use

in figure 4.3. Their naming adheres to the hierarchy described in the design section. For

example, a uniform might be named torus 1 transform X. These can be vectors or scalars.

Values from a vector’s component sliders are packed into a vector object before being passed

to the fragment shader.

5.2 Code Generation

The text in the scene code block is interpreted as TOML. TOML [29] was chosen for

its usability and minimal syntax. Unlike JSON, it supports multiline strings, which is

important for declaring transformation matrices because the parameter declarations are on

separate lines.

The GLSL code output by I IQ is injected into a fragment shader, which is run for
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every pixel on the screen. The general architecture of this fragment shader is hard coded.

A ray from the camera to the pixel is generated. The camera is placed at (0, 0, -1) and the

virtual screen is a plane on the x and y axis at z = 0. The ray is passed to the intersection

function to check whether it intersects with a shape, and if it does then the shape’s material

function is called and the resulting color is returned.

The distance from the origin of the ray (the viewer) to the intersection is calculated for

each shape and the minimum distance, that being the intersection closest to the viewer, is

returned. More precisely, an intersection struct is returned, which contains other relevant

information, such as the distance to the intersection, the position of the intersection, and

the normal of the surface at that intersection. It also includes whether the intersection

was valid. An intersection is invalid if the ray did not intersect any shape before meeting

an exit condition. Finally, the intersection struct includes the index of the shape that

was intersected. The shapes are indexed in the order that they appear in the scene code

block. This index is then used to determine which material to apply. The material selection

is implemented as an if-ladder. Inside each if statement, the arguments are set to the

corresponding slider uniforms, and the appropriate material function is called. The shape

instance index is then used as a key to the if-ladder. An example of one of these if statements

can be found in figure 4.3.

Ideally, the intersection function would be generalized such that it could take a shape

type. Then a parent function would call this intersect function for every shape instance

and return the intersect struct with the smallest intersection distance. However, GLSL

doesn’t support function pointers, meaning that different SDFs and their respective gradient

functions could not be called in a generic way. One solution would have been to make an

array for each type of shape holding the shape instance’s transformation matrices. Then,

for each shape type, run the sphere marching algorithm over the instances in the array.

However, an unrolled loop (generating code for each shape instance) seemed like an easier

and more readable solution, so that is what we decided to go with. The intersection function

runs the sphere tracing algorithm for each shape instance and keeps track of the minimum

16



distance intersection after each check.

5.3 Sphere Tracing

The intersection function is implemented using sphere tracing. Before executing the sphere

tracing algorithm, the ray is transformed into the shape’s object space by applying the

inverse transformation matrix which is defined in the scene block. If there is an intersection,

the point and normal on the surface at the point of intersection are moved back into world

space by applying the transformation matrix. To transform the normal into world space,

the inverse transpose of the transformation matrix actually needs to be applied [30].

Sphere tracing is an efficient ray marching algorithm that leverages SDFs. At each

iteration, the ray marches forward by the distance returned by the SDF.

There are certain necessary numerical constraints. There is the maximum distance

to trace (MAX DIST), the minimum distance before the ray is considered to intersect

with the shape (MIN HIT DIST), and the maximum number of iterations before giving

up (NUM ITER). These are set somewhat arbitrarily to 100, 0.01, and 32 respectively.

If the maximum distance or the maximum number of iterations is reached, the algorithm

exits with an invalid intersection. If the absolute value of the SDF’s output goes below the

minimum hit distance, then the function exits with a valid intersection. For an example of

a sphere tracing algorithm generated by I IQ, see figure 5.1

5.4 Speeding up IHLA

The parser used for I LA is Tatsu [31], a Python library for building a compiler. However,

it is slow when parsing several modules, especially since sometimes two parsing passes are

required. We optimized and compiled Tatsu using Nuitka [32], and achieved roughly a 2x

speedup.
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Figure 5.1: A sphere tracing algorithm generated by I IQ.
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Chapter 6: Gallery

This section contains three figures that exemplify the use of I IQ.

The material depicted in figure 6.1 implements the Phong reflection model whose equa-

tion can be found on Wikipedia [33]. This implementation assumes there to be only one

light source. The great number of parameters in this material was the inspiration for the

use of structs as inputs and outputs.

Figure 6.2 depicts two tori, each with a different material. The torus on the left is lit

with a diffuse shader, and the torus on the right is lit with a toon shader. This is an example

of the use of multiple materials in a scene. The toon shader leverages the floor function

to discretize the levels of brightness, which, like in the diffuse shader, is a function of the

surface position, surface normal, and light position.

Figure 6.3 depicts two interlocking box frames. It would have been difficult to position

the frames in this way through non-interactive means, be it via a closed-form solution or

by testing values manually.
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Figure 6.1: Phong material.

Figure 6.2: A diffuse and toon material.
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Figure 6.3: Interlocking box frames. The SDF for a box frame was taken from Inigo Quilez’
website [24].
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Chapter 7: Future Work

7.1 The Scene Code Block

Allowing users to name each shape instance in the scene code block is preferable to just

enumerating them, like I IQ does now. This would allow users to attribute semantic

meaning to the shapes’ names instead of having to remember which numbered shape is

which. Support for names would not force users to name every shape instance. I IQ could

just enumerate the shapes which have no name.

Additionally, allowing the user to pass arguments into the material and shape decla-

rations for each shape instance would be a good feature. As of now, the free parameters

of each material and shape is instantiated with the same respective global default values,

despite each shape instance having its own transformation function. For instance, if the

default color of the Phong material is blue, every shape instance using the Phong material

will start blue. It is impossible to completely describe a scene because of this limitation.

The user would need to tweak each shape instance’s shape and material parameters to get

the exact scene that they want.

It would also be a good idea to allow users to define global light positions in the scene

code block. Then, the light positions would become a reserved parameter for material

modules. Right now, light positions are regular free parameters, and are thus different for

each shape instance. Most likely, the user would want a change in the light position to

affect the whole scene. Users would still be able to define per material lights if they choose.
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7.2 Animation, Interaction, and Versatility

Support for time and mouse input as parameters is important. Animation and allowing users

to interact with shaders are staples of the genre (see Shadertoy [21]). Noise, which also sees

heavy use in fragment shaders, should be supported as well. GLSL itself doesn’t natively

support noise, so that would be another motivation for I IQ as a usable prototyping tool.

Support for interacting with matrices would also be a good feature. One way to do that

would be to print the matrix in the control panel and then allow users to click drag elements

in the matrix up or down to increase them. This would however likely mean implementing

our own control UI. It would also be nice to evaluate expressions in the bounds and default

declarations.

Furthermore, we also want to allow for embedding scenes into an interactive document.

That is after all what H rtDown was designed for. There would be some option for whether

to generate a full-screen scene or to generate a document and place it inside. The scene

would be placed wherever the scene code block was defined in the Markdown. Multiple

scenes could be defined and placed in the document this way.

7.3 Implementation Improvements

7.3.1 The Editor

The editor used by H rtDown, Ace [34], struggles to handle Unicode characters appro-

priately. Certain characters, such as the hat character used to denote normalized vectors,

cause the cursor to appear to the right of where it actually is. Unicode characters are core

to the I LA philosophy, so it is important to support them. This can be solved by either

switching the web editor to something else like CodeMirror [35], which apparently does not

have this problem, or by allowing users to use a local editor of their choice.

The latter could be a better direction. The ergonomics of the editor is not the focus

of this project, so it is probably best to practice modularity and focus on the usability of

the syntax and the interactive scene. An architecture like that of Streamlit [15] might work
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well, wherein the user modifies a source file locally, and the web-app updates when a change

is detected in the file. This way, users could use whatever editor they want. Additionally,

having an editor window and a scene window allows users to organize the two however they

see fit. They could put the scene window on another monitor, for instance.

However, by supplying our own editor, we can provide immediate support for replacing

character expressions with Unicode characters. For example, \R is automatically replaced

with R in the current editor. This support would be lost by having users use their own

editor. We could amend this by providing a Visual Studio Code extension that does this or

by detailing how to set system-wide text-substitution rules in the documentation.

7.3.2 Backend

We achieved some speedup by compiling Tatsu [31] with Nuitka [32], but it still takes too

long to compile. We want the compile to feel almost instantaneous. Switching to something

like Tree-sitter [36] will likely achieve that.
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