

THE WARTIME PORTFOLIO SELECTION PROBLEM

by

Ronald F. A. Woodaman
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University

In Partial fulfillment of
The Requirements for the Degree

of
Doctor of Philosophy

Systems Engineering and Operations Research

Committee:

______________________________________ Dr. Karla L. Hoffman,

Dissertation Director

______________________________________ Dr. Andrew G. Loerch
 Committee Member

______________________________________ Dr. Ariela Sofer
 Committee Member

______________________________________ Dr. Kenneth Hintz
 Committee Member

______________________________________ Dr. Ariela, Sofer,

Department Chair

______________________________________ Dr. Kenneth S. Ball, Dean,

Volgenau School of Engineering

Date:__________________________________ Spring Semester 2015
 George Mason University
 Fairfax, VA

The Wartime Portfolio Selection Problem

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

by

Ronald F. A. Woodaman
Master of Science

Naval Postgraduate School, 2000
Bachelor of Science

United States Naval Academy, 1987

Director: Karla Hoffman, Professor
Department of Systems Engineering and Operations Research

Spring Semester 2015
George Mason University

Fairfax, VA

ii

Copyright 2015 Ronald F. A. Woodaman
All Rights Reserved

iii

DEDICATION

To the Creator who made and blessed me.

To my parents who loved me and raised me.

To my wife who shares her life with me.

To my children who fulfill me.

To the men and women who served our Nation with me.

iv

ACKNOWLEDGEMENTS

I wish to acknowledge the contributions of my dissertation director Dr. Karla Hoffman. I
think I echo her many students in saying that she goes well beyond the norm in
maximizing the value of every dissertation under her supervision.

I want to thank Dr. Andrew Loerch, who has been a mentor and guide to me along this
way. So much of what I have learned in the practice of military operations research came
via his instruction. Many of his practical and insightful ideas found this way into my
dissertation, particularly the DENIV approach.

I want to thank Dr. Ariela Sofer, my department chair, both for serving on my committee
and the outstanding instruction I got from her in the classroom. She developed my
appreciation for the fundamentals of optimization: an improving direction and a step
length.

I wish to also recognize Dr. Kenneth Hintz for serving on my committee. While working
with him on the JIEDDO project he inculcated in me a profound respect for the value of
intellectual property.
In mentioning the JIEDDO project, I must also acknowledge Dr. Kathryn Laskey both for
her encouragement of my research, and for her outstanding leadership of the team.
Two of the key technologies in this dissertation were taught to me by two outstanding
professors. I learned stochastic programming from Dr. Miguel Lejeune of George
Washington University, and dynamic programming from Dr. Rajesh Ganesan of our
SEOR Department. My thanks to both of these passionate teachers.
Thanks to my father, R. Elliott H. Woodaman, who earned his PhD from Georgetown
University, who from an early age taught me never to quit on your dreams, and to my
mother, Nivia Luz Woodaman, who taught me that is everything is possible with Love.

Thanks to my darling children Zoe, Iain, and Isabella, for whom writing this dissertation
just seemed to be an excuse for their father to miss one event or another.

Lastly, thanks to my lovely wife Michelle, without whom this would never have been
possible, for her enduring love, patience, and understanding.

v

TABLE OF CONTENTS

LIST	
 OF	
 TABLES	
 ...	
 vii	

LIST	
 OF	
 FIGURES	
 ...	
 ix	

LIST	
 OF	
 EQUATIONS	
 ..	
 xiii	

ABSTRACT	
 ..	
 xv	

CHAPTER	
 1	
 –	
 INTRODUCING	
 THE	
 PROBLEM	
 ..	
 1	

1.1	
 Introduction	
 ..	
 1	

1.2	
 The	
 Joint	
 Improvised	
 Explosive	
 Device	
 Defeat	
 Organization	
 	
 2	

1.3	
 The	
 Challenges	
 of	
 Accelerated	
 Acquisition	
 ...	
 4	

1.4	
 Wartime	
 Portfolio	
 Selection	
 Problem	
 Description	
 ..	
 5	

1.5	
 Wartime	
 Portfolio	
 Selection	
 Problem	
 (WPSP)	
 Statement	
 ...	
 14	

1.6	
 Research	
 Questions	
 ..	
 15	

CHAPTER	
 2	
 –	
 LITERATURE	
 REVIEW	
 ...	
 17	

2.1	
 Introduction	
 ..	
 17	

2.2	
 Applicable	
 Mathematical	
 Programming	
 Literature	
 ...	
 17	

2.3	
 Applicable	
 Military	
 Value	
 Literature	
 ..	
 25	

2.4	
 Potential	
 Contribution	
 ...	
 27	

CHAPTER	
 3	
 –	
 MEASURING	
 THE	
 BENEFIT	
 OF	
 WARTIME	
 PORTFOLIOS	
 	
 29	

3.1	
 Introduction	
 ..	
 29	

3.2	
 JIEDDO	
 Overview	
 ...	
 29	

3.3	
 Military	
 Value	
 Literature	
 ..	
 32	

3.4	
 Strategic	
 Goals	
 and	
 Considerations	
 ...	
 35	

3.5	
 Numerical	
 Example	
 ...	
 51	

3.6	
 Summary	
 and	
 Generalizing	
 to	
 the	
 Wartime	
 Portfolio	
 Problem	
 	
 56	

CHAPTER	
 4	
 –	
 SOLUTION	
 METHODS:	
 	
 DYNAMIC	
 PROGRAMMING	
 	
 57	

4.1	
 Introduction	
 to	
 Dynamic	
 Programming	
 ..	
 57	

4.2	
 Dynamic	
 Programming	
 Knapsack	
 Foundations	
 ..	
 67	

4.3	
 Stochastic	
 Binary	
 Knapsacks	
 ...	
 81	

4.4	
 Approximate	
 Dynamic	
 Programming	
 Implementation	
 of	
 WPSP	
 	
 114	

4.5	
 Summary	
 ...	
 156	

CHAPTER	
 5	
 –	
 SOLUTION	
 METHODS:	
 	
 STOCHASTIC	
 PROGRAMMING	
 	
 160	

5.1	
 Stochastic	
 Programming	
 Introduction	
 –	
 The	
 Two-­‐Stage	
 Problem	
 	
 160	

5.2	
 Basic	
 Approach	
 ..	
 165	

vi

5.3	
 Numerical	
 Solutions	
 of	
 the	
 WPSP2SSIP	
 ..	
 177	

5.4	
 Addressing	
 Initiative	
 Investment	
 Options	
 (First	
 Stage	
 Decisions)	
 	
 196	

5.5	
 An	
 Attempt	
 to	
 Apply	
 Bender’s	
 Decomposition	
 WPSP	
 ..	
 199	

5.6	
 Summary	
 ...	
 211	

CHAPTER	
 6	
 –	
 CONTRIBUTION,	
 FUTURE	
 RESEARCH,	
 AND	
 CONCLUSIONS	
 	
 213	

6.1	
 Contributions	
 ...	
 213	

6.2	
 Lessons	
 Learned	
 ...	
 214	

6.3	
 Optimization	
 Approaches	
 to	
 WPSP	
 ..	
 218	

6.4	
 Conclusion	
 ...	
 223	

APPENDIX	
 A.	
 WPSP	
 DYNAMIC	
 PROGRAMMING	
 CODE	
 ..	
 224	

APPENDIX	
 B.	
 WPSP	
 APROXIMATE	
 DYNAMIC	
 PROGRAMMING	
 CODE	
 	
 228	

APPENDIX	
 C.	
 WPSP	
 2SSIP	
 SAMPLE	
 AVERAGE	
 APPROXIMATION	
 CODE	
 	
 233	

REFERENCES	
 ...	
 238	

BIOGRAPHY	
 ..	
 244	

vii

LIST OF TABLES

Table Page

Table 3-1 Posited Scheme for Determining Base Discounting Levels 48	

Table 3-2 Swing Weights – Illustrative example ... 51	

Table 3-3 Numerical Example DENIV Results ... 55	

Table 4-1 Evaluating Bellman's Equation at Node 3 .. 63	

Table 4-2 Evaluating Bellman's Equation For All Nodes in the Example Network 64	

Table 4-3 Data for Example Knapsack .. 72	

Table 4-4 Selecting Log-Means Based on Number of Basis Functions 133	

Table 4-5 Mean Smoothed Sum of Squared Errors for Different Number of Lognormal

Basis Functions .. 135	

Table 4-6 Regression Coefficients Resulting from a Two Basis Function Regression

Solutions to the ADP WPSP Example Problem .. 136	

Table 4-7 Mean Smoothed Sum of Squared Errors for Different Numbers of Log-Means

with Two Log-Variances ... 137	

Table 4-8 Comparing Run Times of Different Approaches and Effect of Larger Size

Problems on Recursive Regression Value Function Approximation 147	

Table 4-9 Comparing two methods for generating basis functions means, the old method

depending upon the mean and number of the arrivals, the new strictly using
variance/2 .. 151	

Table 5-1 Scenario Data Example .. 167	

Table 5-2 Effect of Sample Sizes on WPSP SIP Solution for the Example Problem 178	

Table 5-3 Results from increasing levels of Log-Variance and N for the Example

Problem .. 180	

Table 5-4 Results from 10 runs of SAA at increasing levels of Log-Variance and N ... 184	

Table 5-5 Maximum absolute deviation between value functions for DSKP, ADP, & SIP

approaches ... 187	

Table 5-6 Results of single instance of Full Scale Problem by increasing N 189	

viii

Table 5-7 Results from 10 Runs of the Simplified SAA Algorithm for varying N 190	

Table 5-8 Comparing Measures of Centrality for varying levels of Log-Variance 194	

Table 5-9 Bender Decomposition Approach Results Compared to Standard Gurobi

Solver Approach .. 208	

Table 5-10 Example Scenario Data .. 210	

ix

LIST OF FIGURES

Figure Page
Figure 1-1 IED Incidents against Coalition Forces in Iraq (JIEDDO Annual Report

FY08) ... 3	

Figure 1-2 IED incidents per month in Iraq and Afghanistan contrasted with JIEDDO's

annual budgets (Figure from the JIEDDO Annual Report FY2010) 4	

Figure 1-3 Number of initiatives funded weekly between 03/21/07 and 9/21/08 8	

Figure 1-4 Comparing weekly arrivals to a Poisson distribution with the same mean 10	

Figure 1-5 Total aggregate weekly cost of funded initiatives between 3/21/07 and

9/21/08 ... 11	

Figure 1-6 Comparing the distribution of log10 transformed costs to the Normal

distribution with same mean and standard deviation .. 12	

Figure 3-1 The Joint IED Defeat Capability Approval and Acquisition Process

(JCAAMP) ... 31	

Figure 3-2 Proposed value hierarchy for measuring portfolio counter-IED value 37	

Figure 3-3 The Four Domains of the Attack the Network Cyclical Model 38	

Figure 3-4 DtD Event Tree ... 40	

Figure 3-5 Illustrating the vector union operation where xm > ym 44	

Figure 3-6 Factors for Assessing Likelihood of Transition .. 46	

Figure 3-7 Discounted Expected Net Initiative Value ... 50	

Figure 3-8 Unweighted Assessed Capability Levels vs. Objective Levels 52	

Figure 3-9 Weighted Assessed Capability Levels .. 53	

Figure 4-1 Example Acyclic Directed Network ... 59	

Figure 4-2 After Evaluating Three Nodes .. 62	

Figure 4-3 After Evaluating Four Nodes .. 63	

Figure 4-4 Shortest Path Tree ... 65	

Figure 4-5 Example Knapsack Network .. 73	

x

Figure 4-6 Example Knapsack Network After Solving for Stage 4 75	

Figure 4-7 Example Knapsack Network After Solving for Stage 3 76	

Figure 4-8 Example Knapsack NetworkAfter Solving for All Stages 77	

Figure 4-9 Graphical Depiction of Bellman's Equation for Type I Stochastic Knapsack

with Random Benefits and Fixed Costs .. 87	

Figure 4-10 Post-decision State for the Type I Stochastic Knapsack with Random Costs

 ... 92	

Figure 4-11 Post-decision State for the Type I Stochastic Knapsack with Random

Benefits and Costs ... 95	

Figure 4-12 Histograms for 5M replications of the cost of a single arrival and for the

total cost of all arrivals .. 104	

Figure 4-13 Cumulative Value vs Stage t ... 105	

Figure 4-14 Cumulative Value vs State b ... 106	

Figure 4-15 Excerpt from Papastavrou, Rajapopalan, and Kleywegt comparing

Consistent and Inconsistent Behaviors .. 107	

Figure 4-16 Comparing the Log-Normal and Exponential Distributions for the Same

Means .. 108	

Figure 4-17 Plot of Critical Reward vs Resource State by Cost of Arrival at Stage t=6 109	

Figure 4-18 Histograms comparing Poison and Bernoulli arrivals in a discrete time

period of 12 steps with mean arrivals per time period of 1/3 111	

Figure 4-19 Histograms comparing Poisson and Bernoulli arrival processes total cost

distributions ... 112	

Figure 4-20 ADP WPSP Results for 12,000 Iterations .. 119	

Figure 4-21 ADP WPSP Results: Smoothed Via Outer loop Procedure 120	

Figure 4-22 Smoothed Plot SSE for Stage t=1 ... 129	

Figure 4-23 Side by Side Comparison of the Table Look Up Value Function vs

Recursive Regression Value Function Approximation using Log Normal basis
functions .. 131	

Figure 4-24 Side by Side Comparison of the exact DSKP DP solution vs Recursive
Regression Value Function Approximation using Log Normal basis functions 132	

Figure 4-25 Panel of Recursive Regression Value Functions Approximations Varying
the Number of Basis Functions with log variance of 1.0 .. 134	

Figure 4-26 Panel of Recursive Regression Value Functions Approximations Varying
the number of Log-Means and Log-Variances .. 137	

xi

Figure 4-27 Side by Side Comparison of the exact DSKP DP solution vs Recursive
Regression Value Function Approximation using eight Log Normal basis functions,
using a sequence of four log-means by two log-variances 138	

Figure 4-28 Comparing the DSKP Value function to the result from the tuned log-normal
bases regression ... 139	

Figure 4-29 Different Constraint Levels, From Severely to Mildly Constrained (from
budget of 10 to budget of 100), Compared to Changes in Variance from Low to
High (Log-variance = (0.125, 1.0, 4.0)) .. 141	

Figure 4-30 Comparison of the Value Curve for the Same Distribution for Different
Arrival Rates .. 143	

Figure 4-31 Histogram of individual log-normal costs for a sample of 1 million. 144	

Figure 4-32 Panel Comparing Poisson Arrivals to Bernoulli Arrivals and their

Respective Summed Cost Histograms ... 145	

Figure 4-33 Cumulative Value Curve Using Large Scale Problem Data – Preliminary

Solution .. 147	

Figure 4-34 Comparing DP and ADP for Cost Log-Variance of 0.5 152	

Figure 4-35 Comparing DP and ADP for Cost Log-Variance of 1.5 153	

Figure 4-36 Comparing DP and ADP for Cost Log-Variance of 2.5 154	

Figure 4-37 Comparing DP and ADP for Cost Log-Variance of 3.5 155	

Figure 5-1 The effect of sample size on stopping conditions for the simplified SAA

algorithm .. 182	

Figure 5-2 Q(x) vs Resource Budget, with computation time plotted on a secondary axis

on the left chart, and the number of constrained futures plotted on the secondary axis
on the right chart. ... 185	

Figure 5-3 Comparing DSKP, ADP, and SIP Value Curves as a function of budget for
T=1 on the 12 time step example problem .. 186	

Figure 5-4 Illustrating the trade between computation time and precision for the
Simplified SAA Application for the large scale problem for a range of scenarios N
 ... 191	

Figure 5-5 Q(x) compared to solution times (left graph) and constrained futures (right
graph) ... 192	

Figure 5-6 Depicting the effect of increasing log-variance on the log-normal distribution
while holding the log-mean constant. The exponential with the same log-mean is
shown as a point of comparison. ... 193	

Figure 5-7 Comparing ADP to SIP value functions for the large scale problems 195	

xii

Figure 5-8 Comparing Bender's Decomposition Approach Results to those obtained via
the Gurobi Solver .. 209	

xiii

LIST OF EQUATIONS

Equation Pages
Equation 3-1: Portfolio Counter-IED Value ... 42	

Equation 3-2: Net Initiative Value ... 45	

Equation 3-3: Discounted Expected Net Initiative Value .. 50	

Equation 4-1: Prototype Bellman’s Equation ... 60	

Equation 4-2: Critical Reward Equation .. 79	

Equation 4-3: Binary Knapsack Policy .. 80	

Equation 4-4: Stochastic Functional Equation – Type I Stochastic Knapsack 82	

Equation 4-5: Stochastic Functional Equation – Type II Stochastic Knapsack 82	

Equation 4-6: Type I Stochastic Knapsack with Random Benefits 86	

Equation 4-7: Type I Stochastic Knapsack with Discrete Random Benefits 87	

Equation 4-8: Type I Stochastic Knapsack with Random Benefits Policy 88	

Equation 4-9: Type I Stochastic Knapsack with Random Costs 90	

Equation 4-10: Type I Stochastic Knapsack with Random Costs Policy 91	

Equation 4-11: Type I Stochastic Knapsack with Independent Random Benefits and

Costs .. 93	

Equation 4-12: Type I Stochastic Knapsack with Dependent Random Benefits and Costs

 ... 93	

Equation 4-13: Type I Stochastic Knapsack with Dependent Random Benefits and Costs

Policy ... 94	

Equation 4-14: Type II Stochastic Knapsack Policy Equation .. 98	

Equation 4-15: Type II Stochastic Knapsack Recursion .. 98	

Equation 4-16: Type II Stochastic Knapsack – Critical Reward 100	

Equation 4-17: ADP Critical Reward ... 117	

Equation 4-18: Basic Value Function Updating Equation ... 121	

xiv

Equation 4-19: Sample Mean Equation .. 122	

Equation 4-20: ADP Error Function ... 123	

Equation 4-21: ADP Sample Error Function .. 123	

Equation 4-22: ADP Stochastic Gradient Equation ... 124	

Equation 4-23: Standard Regression Equation – Vector Form 127	

Equation 4-24: Regression-Based Approximate Value Function 127	

Equation 4-25: Recursive Regression-Based Approximate Value Function 128	

Equation 4-26: Recursive Regression-Based Approximate Value Function Gradient

Term .. 128	

Equation 5-1: Mean Updating Equation ... 175	

xv

ABSTRACT

THE WARTIME PORTFOLIO SELECTION PROBLEM

Ronald F. A. Woodaman, PhD

George Mason University, 2015

Dissertation Director: Dr. Karla Hoffman

This thesis describes the research conducted to support the optimal selection of a

portfolio of military solutions during wartime. During peacetime, the United States

military selects a portfolio of military solutions holistically as part of an annual budgetary

planning cycle supported by long-term planning. During wartime, this annual review and

decision process is not responsive to the rapid cycles of battlefield adaptation and the

resulting exploitation of opposing capability gaps by adversaries. The long-running

vulnerability of U.S. forces in Iraq and Afghanistan to Improvised Explosive Device

(IED) attacks, as the threat’s tactics and techniques evolved during these conflicts,

provides a poignant example. During conflict, opportunities to improve the force arrive

irregularly over time and are difficult to anticipate. When potential solutions are

identified, these must be rapidly pursued, subject to resource constraints. Bad decisions

xvi

early rob resources from better opportunities that arrive later, while good opportunities

unduly delayed may lead to lost opportunities on the battlefield.

We develop quantitative methods to support decision makers in the optimal

selection of solutions in this context, employing as our motivating case study the

challenges faced by the United States Department of Defense’s Joint Improvised

Explosive Device Defeat Organization (JIEDDO). For example, in fiscal year 2013, the

JIEDDO budget was $1.6 billion. This organization had to make counter-IED solution

selection decisions continuously as these arrived, without knowing precisely what other

opportunities might occur in the future months. Two key aspects of this problem are how

to measure the military value of potential solutions, and how to make the best choices as

opportunities arrive. Correspondingly, this dissertation examines these two sides:

valuation of war-fighting solutions in an uncertain and time-sensitive context, and, given

a valuation method, methods for optimal sequential selection.

1

CHAPTER 1 – INTRODUCING THE PROBLEM

1.1 Introduction

During peacetime, the United States military seeks to optimize its portfolio of

capabilities via a multi-year process of planning, budgeting, and review during which

varying requirements compete for limited funds. These requirements include manpower,

equipment, supplies, and the facilities to house them. The planning must address that for

much of the equipment, the lifetime between inception and retirement can exceed a half

century, a span during which the government funds the research and development,

acquisition, and disposal. This broadly describes the standard Military Capital Planning

Problem (MCPP) (see Brown et al, 2007).

During short conflicts, such the Battle of the Falklands in 1983, the invasion of

Panama in 1989, and the Russian-Georgian conflict 2008, a military must fight the entire

conflict with its starting inventory of war-fighting equipment, adequate or not. If the

conflict lasts longer, a country’s military may have the opportunity to address inventory

inadequacies of two types: new approaches to exploit an adversary’s weaknesses and

new ways to shore up its own vulnerabilities. In particular, these inadequacies may exist

in a particular asymmetric domain of the conflict.

2

During World War II, the Allies’ dominance of the Atlantic via their superior

naval forces was severely contested by the Nazi U-boat fleet. This led to the accelerated

development of anti-submarine technologies and tactics, and to the Allies’ eventual

success in the Battle of the Atlantic (Morison, 1963). More recently this asymmetry

existed between Allied forces and their enemies in Iraq and in Afghanistan in the form of

the Improvised Explosive Device (IED).

The same long-term, measured acquisition processes that support an inventory

optimization approach during peacetime may be inadequate to keep pace with the cycle

of adaptation on the battlefield. Defense organizations need an alternative approach that

is more responsive to the demands of war. How has the U.S. adapted to this challenge of

war-time acquisition?

1.2 The Joint Improvised Explosive Device Defeat Organization

A U.S. Defense organization specifically created to address this challenge is the

Joint Improvised Explosive Defeat Organization (JIEDDO). JIEDDO coordinates and

supports activities across all of the Military Services aimed at defeating the Improvised

Explosive Device (IED) as a weapon of strategic influence. The conflicts in Iraq and

Afghanistan exposed the inadequacy of the U.S.’s inventory in the realm of irregular and

asymmetric warfare, in particular the vulnerability of its tactical vehicles to IEDs.

JIEDDO provides the regional Combatant Commanders – the leaders in charge of the

theaters of war - with a centralized clearing-house for requesting and acquiring counter-

IED capabilities.

3

Figure 1-1 IED Incidents against Coalition Forces in Iraq (JIEDDO Annual Report FY08)

Figure 1 shows the historical level of IED activity in Iraq from 2003 through

2008. Between Fiscal Years (FY) 2004 and 2008, JIEDDO received $13.79B in

appropriations (2008 HASC Report), the bulk of which was allocated to procuring

counter-IED initiatives. These initiatives cover the gamut of military operations and

functions: software, unmanned aircraft systems, an overwhelming variety of sensing

technologies, better armored vehicles, training programs, and many kinds of specialized

support programs. The initiatives funded by JIEDDO may have played a part in keeping

the number of monthly casualty-causing IED attacks (the red area on the graph)

somewhat flat relative to the great spikes in the total number of IEDs incidents until the

steep drop in overall activity during 2007.

The next figure shows how IED incidents in Afghanistan eventually surpassed

those in Iraq and contrasts these trends with JIEDDO’s annual budgets during this time.

4

Figure 1-2 IED incidents per month in Iraq and Afghanistan contrasted with JIEDDO's annual
budgets (Figure from the JIEDDO Annual Report FY2010)

Because JIEDDO presents a very specialized – and large – example of the

wartime problem of dynamically selecting the best mix of solutions, we will use JIEDDO

throughout this dissertation as a motivational case study.

1.3 The Challenges of Accelerated Acquisition

To rapidly meet emerging needs, JIEDDO inverts the standard MCPP. Instead of

a drawn-out process of winnowing down an “optimal” subset from a list of military

investment choices, JIEDDO receives its budget up front from Congress without certainty

as to what will be procured and what will be deployed eventually. Then, as possible

counter-IED solutions – “initiatives” - present themselves or are discovered over time,

JIEDDO is mandated to rapidly develop, test, and acquire the best available initiatives in

order to expedite useful solutions to the battlefield.

5

Unnecessarily delayed acquisition of effective counter-IED solutions can lead to

unnecessary loss of life and failed military objectives. But funding ineffective solutions

– whether from poorly understood technologies, engineering management, random

outcomes, or changes in operational requirements – may deny funds to effective solutions

arriving later as well as consuming limited non-fungible resources such as weapons test

facilities, developmental laboratories, and management time. To manage the process of

rapidly identifying, investing, developing, testing, and procuring promising technologies,

JIEDDO employs the JIEDD Capability Acquisition and Approval Process (JCAAMP).

JIEDDO has faced criticism from the Government Accountability Office (GAO

Report 2007), from Congressional inquiries (House Armed Services Committee report

2008), and from military personnel themselves (Ellis et al, 2007). One recurring theme

is JIEDDO’s inability to clearly specify measures that relate to goal attainment, how

these map to the initiatives it funds, and the rationale for its funding choices.

From studying JIEDDO’s particular investment selection problem, we hope to

develop some principles that others may apply to the more general problem of wartime

defense portfolio selection.

1.4 Wartime Portfolio Selection Problem Description

In this section we will present a general problem description for the War Time

Portfolio Selection. To aid in developing this problem statement, we consider the more

specific case of JIEDDO’s particular challenge.

6

1.4.1 JIEDDO Decisions When Selecting Initiatives

We summarize the basic decisions involved in JIEDDO search for the best portfolio

of counter-IED initiatives:

• JIEDDO searches for promising counter-IED initiatives to rapidly acquire and

field in order to save lives and defeat the enemy.

• JIEDDO receives annual funding increments in order to select the most promising

amongst potential solutions that arrive at random intervals throughout the year.

• After arriving, initiatives are rapidly evaluated for suitability against a

combination of stated needs from theater prior to an initial funding decision. No

single measure of value exists to support return on investment (ROI) or cost-

benefit analysis.

• JIEDDO chooses whether to fund each initiative based a variety of factors, to

include the priority of the need as described by commanders in the theater of

war1, its own technology assessments, input from the military services, and the

funds available.

• If an initiative is selected, JIEDDO funds it in successive stages: initial

development of initiatives; various demonstrations phases, culminating in the

theater of conflict; and the sustainment of initiatives.

1	
 The	
 standard	
 communication	
 of	
 need	
 by	
 the	
 Combatant	
 Commander	
 is	
 the	
 Joint	

Universal	
 Operational	
 Needs	
 (JUONS)	
 as	
 described	
 in	
 the	
 Chairman	
 of	
 the	
 Joint	

Chiefs	
 of	
 Staff	
 Instruction	
 3740.01	
 Rapid	
 Validation	
 and	
 Resourcing	
 of	
 Joint	
 Urgent	

Needs.	

7

• JIEDDO funds the initiatives for no more than a total of 2 years, after which the

items is either turned over to one of the Military Services or it is terminated and

disposed.

Given the urgency of the counter-IED (C-IED) fight, JIEDDO needs to identify,

develop, demonstrate and sustain the most effective portfolio of C-IED initiatives subject

to budget constraints. Choices are difficult because there is no certainty that an initiative

will function as specified, that it can deployed in a timely fashion, or that a better choice

might not arrive shortly.

1.4.2 Random Initiative Arrivals and their Costs

JIEDDO, via various methods, conducts an active search for solutions. From an

enterprise perspective, these solutions “arrive” over time in an unpredictable fashion. A

preliminary data analysis of approximately 18 months of funded initiative data provided

some of the following insights on the rate at which initiatives arrive and a description of

the costs of some of these.

Figure 1-3 shows the number of new initiatives funded each week between

3/21/07 and 9/21/08, the period of time our research team had access to these data2.

(Note: The poor quality of the image is the result of transferring this unclassified image

from the classified network domain in which it was developed. This applies to the

figures on the following pages as well.)

2	
 For	
 obvious	
 reasons,	
 we	
 would	
 prefer	
 to	
 have	
 the	
 entire	
 set	
 of	
 arriving	
 initiatives	
 –	

not	
 just	
 the	
 funded	
 ones	
 -­‐	
 and	
 be	
 able	
 to	
 describe	
 the	
 distribution	
 of	
 costs	
 for	
 all	

arriving	
 initiatives.	
 	
 When	
 these	
 data	
 were	
 collected,	
 JIEDDO	
 had	
 not	
 been	
 keeping	

this	
 information	
 on	
 the	
 non-­‐selected	
 initiatives.	

8

Figure 1-3 Number of initiatives funded weekly between 03/21/07 and 9/21/08

Visually, these data appear random. Were we to model a decision process based

on this particular observed behavior, an approach might be to model this as a random

arrival process. A simple random arrival process, found throughout operations research

literature, is the Poisson random arrival process.

A Poisson process {t, N(t)} counts the number of events from the time 0 to time t.

Ross (1997) provides the following definition:

• N(0) = 0;

• independent increments – the number of arrivals in one time increment do not

depend upon the arrivals in a different time increment;

• stationary increments – the distribution of the number of arrivals in a time

period depend only on the length of the time period;

9

• the number of arrivals in a time interval follow a Poisson distribution;

• the time interval between discrete arrivals follows an Exponential distribution;

The Poisson distribution has the feature that the variance equals the mean.

Therefore, a gross check of the adequacy of the Poisson distribution as a model of a data

set is to compare the sample mean with the sample variance. For our sample of funded

initiatives, the average number of weekly arrivals was 0.3205 and the sample variance

was 0.4804. Therefore, the Variance-to-Mean Ratio (VMR) for this data set is

0.4804/0.3205 = 1.499. A VMR less than 1 indicates under dispersed data (more

clustering around the mean than expected for Poisson data), and a number greater than 1

indicates overly dispersed data. Thus, the sample is overly dispersed with more

observations in the lower and the higher cells and fewer in the central cells than expected

for Poisson data.

Statistical hypothesis tests can be applied to evaluate whether deviations from a

theoretical distribution indicate inadequacy of the hypothesized distribution, or whether

they can be explained as chance fluctuations. The chi-squared test is one of the most

commonly applied tests. For small samples, a common adjustment made to the chi-

squared test is the Yates correction. For this data set, we calculated the chi-squared

statistic with Yates correction, comparing against the Poisson distribution, and obtained a

p-value of 0.0364. Without the Yates correction, the standard chi square goodness of fit

test provides a p-value of 2.3e-8, a very small number.

10

Figure 1-4 Comparing weekly arrivals to a Poisson distribution with the same mean

Figure 1-4 provides a histogram comparing the distribution of arrivals to the

distribution of Poisson arrivals with the same mean. The main issue lies in a larger right

tail in the observed sample than one would expect in the Poisson distribution of same

mean, specifically the two weeks, one with three arrivals and the other with four.

We frequently observed that scheduling challenges resulted in the weekly

decision meeting being rescheduled to the following week. This occurred around 20% of

the time. Consequently, any arrivals from that week were viewed the following week.

Thus, while the arrival process might be behaving closer to the Poisson ideal, the decision

process itself did not exactly follow the ideal. We did not witness every such meeting

and so cannot attest to whether the case of the four arrivals in one week was the result of

such a rescheduling. Removing the four-arrival week without substitution makes the

goodness-of-fit for the unadjusted chi-square p-value jumps from 2.3e-8 to 0.44. It may

11

well be that the inconsistency in the weekly decisions led to this skew in the observed

weekly arrivals.

Save for this one, the Poisson arrival process closely mimics the quality of the

observed behavior. Thus, for modeling purposes, we will assume that arrivals follow this

Poisson distribution.

The next question we can ask of the data concerns the distribution of funded

initiative costs. The costs we observed ranged generally from 100 thousand to one billion.

Using the same time period as Figure 2, Figure 4 shows the same time series of funded

initiatives in a different way. Instead of the counts of funded initiatives, this chart shows

the aggregate costs of funded initiatives in each week.

Figure 1-5 Total aggregate weekly cost of funded initiatives between 3/21/07 and 9/21/08

It has been long observed that U.S. government agencies’ spending patterns show

a surge at the end of the fiscal year when the spending authority is about to expire (GAO,

12

1980). To combat this tendency, Congress funds JIEDDO with money that does not

expire at the fiscal year. In this time series there does not appear to be a pattern of end of

year spending.

To facilitate analysis, we are interested in a distribution that may fit these data, in

particular given the many orders of magnitude present in the data. Figure 5 shows a

histogram of the log10-transformed costs.

Figure 1-6 Comparing the distribution of log10 transformed costs to the Normal distribution with
same mean and standard deviation

Based on this second histogram, the costs of past funded initiatives appear to be

log-normally distributed, with the mean in log10-space being 7.20 and standard deviation

of 0.82. A chi-squared test comparing the transformed data with a normal distribution of

the same parameters defends this hypothesis, with a p-value of 0.4616. The log10-mean

and ±1 standard deviation range in log-space equate to $15.8M and [2.4M, 104.7M]

13

respectively. We should expect that about 68% of funded initiative costs (rounding to

nearest million) to fall between $2M and $105M.

While log10 provided an intuitive basis for understanding the cost behavior,

further research into the log-normal showed that most formulae employ the natural

logarithm. For these data the log-mean µ comes to 16.58 and the variance σ2 to 3.57. For

the normal distribution, the mean µ equals the median. Transforming from log-space

back to linear space log-median translates to eµ; but this is not true for the mean. The

log-normal distribution’s pronounced right tail pulls the mean to the right, so the mean of

the log-normal distribution has the following form: 𝑒!!!!/!. This equates to a mean of

$93.4M for the distribution, which is very close to the sample mean of $93.6M and far

higher than the median of $16M.

Combining these observations provides us with a basic model for the funding

decisions over time: funded counter-IED initiatives behave as a compound arrival

process, where the number of arrivals in a given week is Poisson distributed, and the

costs of these initiatives are log-normally distributed. A missing part of this model is

how to measure the value, or benefit, of an initiative.

Assuming that these observations can be generalized and extended to other like

organizations focused on the war time acquisition of critical capabilities, we use the

information gleaned to make a general problem statement.

14

1.5 Wartime Portfolio Selection Problem (WPSP) Statement

A defense acquisition agency has the mission to rapidly acquire capabilities

within a critical domain to support an active and enduring war. The agency starts the

funding period with a budget of discretionary funds and a portfolio of previously funded

initiatives. Initiatives are funded efforts that, with development and testing, may yield

war-fighting capabilities. Throughout the year, the agency seeks to add initiatives that

will improve its portfolio. Initiatives arrive via a random process. When an initiative is

added to the portfolio the budget is decremented by the first year cost of the initiative,

which is not known until the initiative arrives.

Initiatives have a random benefit that cannot be ascertained until they arrive, is

measured in terms of their potential contribution to the current domain portfolio, and is

non-fungible. Initiatives must be accepted or rejected in short order, as not adding a

“good” initiative when it presents itself could result in the loss of a potential war-winning

opportunity. Conversely, spending a lot of money on a “bad” initiative could result in lost

purchasing power and developmental resources. The opportunity to assess newly arrived

initiatives, and the decision whether to fund or reject, happens at fixed time intervals

(e.g., weekly, monthly).

Funded initiatives receive a year of funding, which may be used to complete

development and testing, acquire the requisite amount of capability, deploy the

capability, and provide life-cycle support. Initiatives that prove themselves useful

15

capabilities may receive funding – but this decision is outside of the scope of this

problem statement.

The agency has imperfect knowledge of what initiatives may arise during the

course of the year. It must make its decisions sequentially.

1.6 Research Questions

The classic operations research resource allocation problem is the knapsack

problem. Given a knapsack of limited capacity and set of items with different benefits

and size, one must choose the subset with the most benefit that fits in the knapsack.

The wartime portfolio problem differs in key respects: the items are random in

quantity, present themselves sequentially, their benefits and size (cost) are not known

until they arrive, and given the urgency of the situation, the decisions must be made

sequentially as soon as initiatives arrive. At a deeper level, we have to consider that

initiatives are funded not via a single decision but rather are funding in stages with their

own funding increments. Promising initiatives may prove unattractive after further

testing, due to failures in performance or unacceptable cost growth. We may also want to

consider “side” constraints – constraints that might either require investment in some

capability domains or limit investment in other domains regardless of value.

We will focus on two research questions:

RQ1. How might we measure the benefit of the initiatives, particularly since we wish

to use this information to help us to decide which initiatives to fund?

16

RQ2. If we had the means to measure their benefit and cost, how might we optimally

choose among these randomly arriving initiatives?

Chapter 2 provides an overview of the applicable literature we have identified.

Chapter 3 describes how we model the benefit of initiatives in the case of a counter-IED

portfolio and draw some extensions to the larger wartime portfolio problem. Chapter 4

examines an approach based on Dynamic Programming. Chapter 5 describes a different

approach to the problem employing Stochastic Integer Programming. Chapter 6

summarizes the work and discusses further research.

17

CHAPTER 2 – LITERATURE REVIEW

2.1 Introduction

This literature review examines two aspects. We first review literature on related

optimization and mathematical programming approaches that may be of utility in our

research into the WPSP. The second part of the reviews deals with research concerning

means of measuring the value of a military portfolio.

2.2 Applicable Mathematical Programming Literature

The knapsack problem (KP), while simple in structure, has been studied

extensively throughout operations research and related fields. It appears in

transportation, capital planning, communications, military applications, agriculture, etc.

The KP concerns a situation in which one must choose items from a set of items,

where each item has a benefit, value, or utility, and a weight, cost, or capacity. The

knapsack has finite capacity, assumed to be less than the aggregate capacity of the set of

items. The question is which combination of items to choose to maximize to total

benefit. The linear knapsack problem assumes additivity of benefits and weights.

Variations on the deterministic version of the KP – where all data are known at

the time a decision must be made – include: the 0-1 knapsacks, where the choices are to

either include an item or not; the bounded knapsack, where one can include multiple

copies of an item up to some bound; and the unbounded knapsack. Early exact solution

18

approaches include dynamic programming (Bellman, 1957) and branch-and-bound

(Kolesar, 1967). An early but still useful heuristic approach is the greedy approximation

algorithm (Dantzig, 1957). Salkin and de Kluyver (1975) provide a survey of dynamic

programming, integer programming, lagrangian-based heuristics, and network based

approaches. Wilbault, Hanafi, and Salhi survey a variety of innovations in heuristic

approaches largely focused on the deterministic variants of the (2008).

We are concerned with the stochastic version the problem – where some of the

data are uncertain. Now instead of a known benefit or weight, we have random variables

describing benefits, weights or both. We will examine various approaches and see how

these may relate to the JPSP.

We start with the concept of portfolio optimization. Markowitz (1952) models

the optimization of portfolios of financial assets as the quadratic minimization of

covariance (risk) subject to some level of expected return. The repeated solution of the

model for different levels of return creates what Markowitz (1959) called the critical line.

Portfolios below this line are inefficient and those above cannot exist. Along this

frontier, improving the expected return cannot happen without an increase in risk nor can

reducing risk be accomplished without reducing the level of return. The knapsack

constraint is of the unbounded variety since, subject to the total amount of funds, it

assumes that one can buy any amount of stock. The distribution of stock returns is

assumed Gaussian.

19

During this similar time-frame, Bellman examined sequential decision problems.

He noted that a broad class of these displayed a similar decomposable structure, where if

one could solve the sub-problem, then via recursion, the entire problem could be solved.

Bellman called this concept of solving the sub-problem the Principle of Optimality.

Thus, was born Bellman’s dynamic programming (1957). We provide a more thorough

review of dynamic programming in Chapter 4.

Markov Decision Processes (MDP) describes a group of sequential decision

problems where the outcome of the decision is random (Denardo, 2003). The process is

memory-less in that the system’s current state provides all the necessary information

about the system. At each time step a decision must be made and the system’s transition

probabilities depend upon the decision. Transitions from one state to another provide a

certain reward. The goal is to find the policy that maximize the accumulation of

discounted reward. Bellman (1957) described stochastic decision problems that were

essentially MDPs. Howard (1960) brought the term into wide-spread use and devised

policy iteration as a solutions approach.

Dantzig (1955), who had already engendered the field of linear programming,

examined what he called two-stage linear programs with uncertainty. He describes these

as problems where there were certain data and decisions to be made in the present,

random data to be revealed at a future juncture, recourse decisions that could made

subsequent to this revelation, and where the decision maker seeks to optimize an

objective function that incorporates both deterministic and random elements.

20

Independently, Beale (1955), examined linear programs with random coefficients and

proved that these were convex. Together these two papers formed the start of stochastic

programming.

Cord (1963) looks at choosing amongst capital investment projects internal to a

firm. Now the decision variable is binary instead of continuous non-negative; a project

will either be funded or not. In contrast to stock portfolios, he assumes independence of

returns, arguing that projects with interdependencies will be mutually exclusive, and that

the choice between these will have already been made. He describes a decision rule

where projects are chosen in order of interest rate subject to funds available and the

weighted average of the individual variances of the candidates for the portfolio. This

creates two knapsack constraints. He solves the problem as a dynamic program, where

each stage is the choice of a project, and within each stage the budget is varied

incrementally from 0 to the total amount available. He addresses the variance constraint

via a Lagrange multiplier. His approach only works for budget problems with a single

budgetary period.

Greenberg (1968) broaches the subject of the stochastic knapsack (which he calls

a dynamic program with linear uncertainties) where either the utilities or weights of the

knapsack are random variables. For the case of stochastic weights, he converts this to a

chance constraint (Charnes and Cooper, 1963): where the linear combination of the

weights must satisfy the total capacity with probability p. Assuming Gaussian weights,

this chance constraint can be restated as a deterministic constraint. In the case of

21

stochastic utilities, he employs a chance objective function, maximizing total utility for

given p. He solves both approaches via dynamic programs with two-state variables.

Greenberg’s problem is what Birge and Louveaux (1997) describe as a static stochastic

program; there is no recourse after the decision is made and uncertainties revealed.

Henig (1989) examines a similar problem. He argues against considering the

problem of chance constraints, since he states that in most applications, the weights are

known at the time of the decision. The uncertainty – again Gaussian - surrounds the

returns. As his objective function he uses a convex combination of mean and variance.

He points out that Greenberg’s method is not practical for realistic problems. He uses

dynamic programming and experiments with nested search procedures to keep his state

space manageable.

Morita et al (1989) treat a similar problem starting with an objective function that

maximizes the probability of exceeding a threshold. The resulting deterministic objective

function leads to a non-linear fractional program formulation and uses methods outlined

by Dinkelbach (1967).

Morton and Wood (1998) examine a similar problem of fixed weights and random

rewards, where the objective is to maximize the probability that a given linear

combination of random rewards exceeds a threshold. They compare dynamic

programming and integer programming approaches and show that in the case of Gaussian

rewards the dynamic program is considerably faster. However, the integer programming

is still relatively efficient and is more readily generalizable to non-Gaussian distributions.

22

Kleywegt (1996) introduces the dynamic and stochastic knapsack problem

(DSKP). In this case, objects of random benefit and weight arrive over time via a

stochastic process and are examined for inclusion in a finite knapsack. At the moment of

arrival, the benefit and weight become known. Items must be accepted or rejected

immediately. Rejected items are lost. Future benefits may be discounted. The objective

is to maximize the total benefit, usually at a decision horizon. In its dynamic aspect, this

problem is related to optimal stopping problems, a well-known example of which is the

secretary problem (see Freeman, 1983, for a survey).

In a succession of papers Kleywegt and Papastravou (1996 with Rajagopalan,

1998, 2001) examine different variations of this problem: discrete versus infinite time

horizons, fixed weights or benefits, penalties for rejections, discrete vs continuous

distributions, and arbitrary probability distributions. The approaches they use draw

heavily from dynamic programming and Markov Decision Processes (MDP).

Lu, Chiu, and Cox (1999) look at the project selection problem as a stochastic

knapsack with finite time horizon. Projects of type k arrive via a stochastic process. For

each type k, the weight wk and reward rk is known. The object is to maximize revenue by

some deadline T. The authors use dynamic programming to explore the case where the

horizon T is random.

Van Slyke and Young (2000) describe much the same problem as the finite

horizon stochastic knapsack problem. The emphasis is slightly different as instead of

projects, the arrivals are customers. Again, customers of type k arrive via a stochastic

23

process, each with weight wk and reward rk . The object is to maximize revenue by some

deadline. They solve the problem via a continuous time, finite horizon, discrete state,

dynamic program. They examine the special case where wk = 1 for all k, which is the

airline yield problem.

Motivated by transportation problems, Cohn and Barnhart (1998) step back and

revisit the issue of random weights with a known set of objects. In their problem, the

objects are customers who must be served but whose demands for service are uncertain.

With Gaussian-distributed weights, they create an objective function maximizing reward

but with a penalty for the expected violation of the capacity. They describe a branch and

bound solution scheme.

Fortz et al (2005) examine the same problem but treat it more formally as a

stochastic programming two-stage recourse formulation. The penalty is viewed as an

opportunity to buy more resource in the second stage. With the appropriate assumptions,

the result is an unconstrained mixed-integer convex non-linear program. For solution,

they employ an LP/NLP based branch and bound algorithm (Quesada and Grossmann,

1992) using CPLEX to solve the sub-problems.

Kress et al (2007) develop a combinatoric problem they term the minmax multi-

dimensional knapsack problem. This is developed as part of a two-stage recourse

problem with chance constraints to model a logistical resupply problem, where the

second stage involves satisfying realized supply demands. In contrast with most chance

constraint problems found in the literature, the second stage random variable is an

24

arbitrary discrete distribution. The chance constraint requires a combinatoric formulation

using the concept of p-efficient points.

Brown et all (2007) provide a survey of the methods involved in military capital

planning. These addressed the deliberate multi-year planning involved in optimized

multi-billion dollar portfolios where the funding options and their associated reward and

cost are understood. However, the complex nature of these options are such that an

accurate portrayal of the trades involved requires the explicit modeling of fixed and

variable benefits and costs, interactions between systems, and the effects of lot-purchases

and multi-year planning horizons. Non-linearities are typically approached via piece-

wise linear functions. These approaches result in large-scale mixed-integer programs.

They discuss means of improving solution times, provide examples, and delve into the

issue of measuring the reward in a military context.

Keles and Hartman (2007) describe an approach for optimizing multi-stage

research and development (R&D) portfolios, which they consider to be a specialized case

of the dynamic stochastic knapsack problem. Their problem statement is very similar to

the one given here for the Wartime Portfolio Selection problem but their focus is on the

pharmaceutical R&D portfolio. They show how the sequence of decisions to fund

(continue funding), delay, or terminate R&D projects within (or entering) a portfolio can

be represented as a stochastic dynamic program. Given the size of practical problems,

they solve via an approximate dynamic programming approach.

25

Powell (2007) describes how approximate dynamic programming (ADP) grew as

an approach for solving dynamic programs too large to solve via conventional means. In

DP, the value function provides the optimal value of the objective function for a given

state of the system. A common theme for DP problems is that they can all be thought of

as the shortest path in a network, where the nodes of the network are states of the system.

While DP is efficient in that it solves for the shortest path without having to enumerate

every path, it still requires that every state/node be visited. For complicated problems,

where the nodes may exist in an N-dimensional state space, this is computationally

infeasible. ADP uses statistical methods to approximate the value function without

having to visit every state. We delve more deeply into approximate dynamic

programming in chapter 5.

2.3 Applicable Military Value Literature

Profit is traditionally used to measure value in business applications. However, a

military organization is not a profit-making enterprise. Military investment demands can

range from new weapon systems, the means to move them, the means to target for them,

the means to maintain these systems, to the manpower to operate them, to include the

facilities to house the manpower’s families. None of these lead to a profit. Therefore,

measuring military value requires a way to quantify the degree of accomplishment of

military goals and objectives.

Military requirements such as firepower, mobility, or targeting capability can be

treated as constraints to satisfy while minimizing costs, an approach taken by Dell and

26

Tarantino (2003). More commonly, the approach is to develop constructed measures of

benefit as linear combinations of various normalized measures that seek to capture the

level to which multiple, frequently competing objectives are satisfied by bundles of

choices. This approach was advocated by Keeney and Raiffa (1976), and in the military

context is described by Brown et al (2007), and more extensively by Parnell (2007).

The measures that might be employed are very specific to the strategic goal being

examined. Perry (2007) discusses the challenge of mapping the performance of a system

to attainment of strategic goals, including measures that may address the improvement in

outcome as a result of using different combinations of systems.

Crain (2007) provides an overview to the practice of Theater Campaign Analysis.

This framework looks at the entire campaign: mobilization, deployment, employment,

redeployment, and sustainment. This framework may be applicable to supporting

JIEDDO’s objective to acquire the best bundle of counter-IED in support of two active

theater campaigns. Applying Theater Campaign Analysis to JIEDDO’s problem would

require consideration of how counter-IED initiatives contribute to theater campaign

goals.

Bertha and Shelton (2007) discuss the topic of Combat Operations Analysis.

Broadly, these analyses are more concerned with exact modeling of the combat

operations in the employment phase of the campaign. Much of the focus is on the

modeling of traditional force-on-force, large-scale combat, which the counter-IEDs

campaign is not.

27

Orgeron (2007) discusses the specific issue of small-scale contingency analysis.

The general thrust of his discussion is on the use of this analysis to determine future

requirements, versus the model of a specific campaign, and the means to determine cause

and effect that may lead to answering questions about the best bundle of capabilities.

A major aspect of the counter-IED problem involves search. The primary function

of a number of IED initiatives is to search for IEDs. Washburn (2002) provides a survey

of methods to address search problems.

A large number of IEDs occur on roads. Washburn (2007) describes a network

interdiction model that incorporates the means to model IED and counter-IED

effectiveness. In our context, his approach could prove useful for addressing how to

model the cumulative effect of different counter-IED initiatives operating in the same

tactical space.

A particularly pernicious problem is the suicide bomber. In contrast with the

road-side IED, which is an ambush, the suicide bomber is an attack. Kaplan and Kress

(2005) conduct an analysis of the effectiveness of suicide bomber detection

methodologies for the protection of urban areas from suicide bomber seeking mass-

casualty targets. A military context for the use of these technologies may be more

focused on the protection of specific sites.

2.4 Potential Contribution

The multi-stage R&D portfolio optimization problem described by Keles and

Hartman (2007) appears most closely aligned with this problem. The main differences lie

28

in that they are examining a private sector problem of selecting pharmaceutical R&D

projects, where the reward can be measured in dollars, the types of projects are

homogenous, and the distribution of cost per project is relatively bounded. In the

wartime portfolio selection problem, the means of valuation are not so clear and the

projects are heterogeneous, which may alter the methodology for optimal selection of the

portfolio.

The specific problem of measuring the military value of counter-IED initiatives,

which provides a case study for the more generic problem of wartime portfolio selection,

may not have broader application beyond the counter-IED problem itself – but the IED is

considered by many to be one of the most pressing technological issues facing western

armies today. Additionally, while JIEDDO at its height had annual budgets on the order

of $3-4B a year, these funding levels have already started to diminish, increasing the

difficulty of the resource allocation decision. Enhancing JIEDDO’s ability to acquire an

effective counter-IED portfolio at a lower level of resourcing would be a valuable

contribution.

29

CHAPTER 3 – MEASURING THE BENEFIT OF WARTIME PORTFOLIOS

3.1 Introduction

The benefit or value of military items is typically non-fungible; it cannot be

measured in dollars. While many approaches for measuring preference quantitatively are

known in the decision analytic literature, JIEDDO does not currently employ any means

to measure the benefit of its initiatives (GAO report 2007). Since JIEDDO represents a

powerful case study for the wartime portfolio decision problem, we present our approach

for measuring initiative value in the case of this particular portfolio. We conclude the

chapter by considering what aspects of the decision analysis approach can be generalized.

3.2 JIEDDO Overview

During the conflicts in Iraq and Afghanistan the most lethal tool of the insurgent

has been the Improvised Explosive Device (IED). In response to this threat, Congress in

January 2006 established the Joint Improvised Explosive Device Defeat Organization

(JIEDDO) with the mission of leading, advocating, and coordinating U. S. defense

actions aimed at defeating the IED as a weapon of strategic influence. Given the urgency

of wartime, JIEDDO seeks to deliver solutions to meet counter-IED needs of U.S. forces

in the areas of conflict as quickly as possible.

30

Counter-IED solutions cover a broad range of both military functions and forms.

Functions include intelligence, surveillance, electronic warfare, maneuver, targeting, fire

support, force protection, and information operations. Forms include software, airborne

sensors, ground sensors, vehicle systems, armor recipes, jammers, spoofers, scanners,

robots, and a gamut of contracted services.

To help manage these efforts, JIEDDO partitions the counter-IED solution space

into three Lines of Operation: Attack the Network (AtN), Defeat the Device (DtD), and

Train the Force (TtF).

AtN is focused on preventing IEDs from reaching the intended place and time of

employment on the battlefield. AtN targets insurgent activities to include financial,

recruiting, training, logistical, manufacturing, planning, command and control (C2), and

operational functions.

DtD focuses on solutions that defeat the IED once it has reached its intended

place of employment. DtD attempts to detect, neutralize, or mitigate all aspects of the

IED itself, to include its triggering systems, its arming systems, its firing systems, its

means of concealment, its means of delivery, and its means of lethality.

TtF addresses the means to gain and maintain force readiness for the counter-IED

fight, primarily concerning the gaps in the Services’ ability to prepare their forces for the

latest IED threats and counters.

JIEDDO ties this all together via the Joint IED Defeat Capabilities Approval and

Acquisition Process (JCAAMP). JCAAMP is designed to rapidly usher promising

31

solutions through a series of phases culminating in transition of the successful solutions

to one or more of the Armed Services. JCAAMP’s goal is to compress standard defense

procedures in order to deliver solutions to the warfighter field in months instead of years.

To maximize its responsiveness to the warfighter’s needs, JIEDDO considers initiatives

sequentially as they arrive. Because the Services are the ultimate customers in this

process, the Services, the Joint Chiefs of Staff, and the Office of the Secretary of Defense

are active participants in all JCAAMP decision points.

Figure 3-1 The Joint IED Defeat Capability Approval and Acquisition Process (JCAAMP)

As shown in Figure 3-1, JIEDDO continuously seeks proposed solutions and

rapidly vets those it finds. A vetted solution of sufficient maturity and suitability

becomes an “initiative”. After an accelerated period of development and testing, a

32

suitable quantity of the initiative is acquired and deployed to theater for use by select

units in order to assess the initiative’s combat effectiveness.

If an initiative has been successfully demonstrated in combat as a counter-IED

solution, JIEDDO has two years during the sustainment phase to arrange for the

solution’s turnover to one of the Services. This time period coincides with the length of

the defense budgeting cycle, allowing the Services the time required to budget for the

assumption of ownership of a new solution. Every effort is made to identify the likely

transition Service as early as possible.

Between FY06 and FY10, JIEDDO received $17.4B in appropriations (JIEDDO,

2010). Congress has been concerned about the efficacy of JIEDDO in employing these

funds and has directed several assessments of JIEDDO by the GAO, to examine, among

other things, JIEDDO’s management practices, performance measures, and metrics.

GAO’s studies have provided a variety of recommendations regarding the development

of metrics for the selection of initiatives and tracking the performance of initiatives

(GAO, 2008)

3.3 Military Value Literature

Profit is the standard measure of value in business applications. However, a

military organization is not a profit-making enterprise. Military investment opportunities

include new weapon systems, training systems and facilities, transportation systems,

manpower, healthcare, and the facilities to house manpower and their families. None of

33

these led to profit. Measuring military value requires a way to quantify the degree of

accomplishment of military goals and objectives and aggregate to a common scale.

Military requirements such as firepower, mobility, or targeting capability can be

treated as constraints to satisfy while minimizing costs, an approach taken by Dell and

Tarantino (2003). However, when the problem is to maximize military capability subject

to constraint, a method is needed to measure this capability that encompasses the many

ways capabilities may be manifested: intelligence, logistics, fire support, maneuver, to

name a few.

A common approach for assessing the strategic value of investment decisions is

multi-objective decision analysis (MODA) (Keeney and Raiffa, 1976). MODA is a

valuable technique for complex problems with multiple stakeholders, complex value

trade-offs, significant outcomes, and major uncertainties. Most MODA applications

consist of a hierarchy of goals and objectives, evaluative measures aligned with the goals

and objectives, value functions to translate evaluative measure levels to a common scale,

and weights.

A general description of the use of MODA for military budget optimization in a

mathematical programming context is described by Brown, Dell, Loerch, and Newman

(2007). Several descriptions of specific MODA applications in a military budgetary

context are readily available.

Loerch, Koury, and Maxwell (1999) describe how they employed value-added

analysis to optimize U.S. Army long-range budgets by blending: large-scale campaign

34

simulations of multiple scenarios; experimental design to isolate system contributions;

multi-objective decision analysis to measure the value of a given budget; and a mixed-

integer program to identify optimal budgetary solutions.

Parnell et al (2002) employed future value analysis to support National

Reconnaissance Office resource allocation. This approach employed structured

interviews to identify futures challenges and opportunities, a multi-objective decision

analysis using value-focused thinking, and integer programming for optimal resource

allocation.

Parnell et al (2003) employed a similar approach to help identify the optimal

portfolio of R&D solutions across a diverse set of capability areas but with a significant

difference. As before, the portfolio value model employed a linear combination of

capability area scores. The difference lies in how the capability scores were obtained.

Instead of a capability score that resulted from an additive function of selected solutions,

the score was the maximum from amongst the selected solutions within a specific

domain. Solutions that did not offer a materiel improvement in capability over the

current portfolio did not contribute value.

Parnell (2007) describes various practical approaches to the application of MODA

with regard to determining values. These include “gold,” “platinum,” and “silver”

approaches. In the gold standard approach, the values in the MODA model are built on

an approved vision, strategy, policy, or other high-level guidance. The platinum

approach is based on direct interaction with the decision-maker, while the silver approach

35

is based upon input obtained from the decision-makers representatives. These

approaches are often used in combination, and the resulting model must be presented to

decision makers for refinement and validation. In our research, we have followed a

combined approach, employing reviews of JIEDDO’s strategy [JIEDDO, 2009],

interviews with intermediate level personnel, and careful observation of JCAAMP

functions over a period of a year.

3.4 Strategic Goals and Considerations

A wartime program must have as its principle aim the most effective collection of

solutions within its capability area relative to the war effort. JIEDDO’s mission is to

enable the defeat of the IED as a weapon of strategic influence. JIEDDO is not a military

service and thus does not actually fight. Rather, it energetically seeks to aid the Services

and theater commanders by gaining for them the means to reduce the effects of the IED.

A key criterion for selecting a solution is its potential to contribute to the counter-

IED campaign. Thus, our value model first seeks to measure the initiative’s ability to

contribute to these efforts. From our research we have identified two additional goals.

JIEDDO wants initiatives that can be developed and deployed to the theater of

war as quickly as possible. A perfect approach that is not ready until after the war is

concluded is of little use.

JIEDDO also wants initiatives that are likely to transition to one of the military

services. By design, JIEDDO only funds initiatives for a fixed period of time, which is

36

intended to be sufficient time for the initiative to prove its usefulness. Initiatives should

then either transition to a service’s ownership or they are terminated. Because of the long

lead time required for the services to identify means of funding an initiative should it

transition, JIEDDO pushes to identify the likely service to gain ownership of the initiative

early on in the initiative’s life cycle. From our observation, many factors appear

influence this decision. These include the maturity of solution, the total ownership cost,

and the “endurance” of a solution. An initiative that is easily countered may have

immediate impact but no long-term value. However, a strong short-term impact may still

be worth the investment.

We describe a decision analytic methodology for quantifying counter-IED value.

It has three components: a MODA portfolio model to assess the value of a counter-IED

portfolio and thereby the potential net portfolio value of an initiative; a model for

eliciting probabilities that an initiative will transition; and model for assessing how much

to discount initiative value over the expected time for the initiative to become

operational.

3.4.1 Qualitatively Value Model

Counter-IED Value Hierarchy. The MODA portfolio value model aligns with

JIEDDO’s lines of operation: AtN, DtD, and TtF. Through our interviews of personnel,

review of documentation, and a year’s worth of observation, we developed a multi-

37

objective decision model of Portfolio Counter-IED Value (PCV). Figure 3-2 depicts the

PCV goal hierarchy.

Figure 3-2 Proposed value hierarchy for measuring portfolio counter-IED value

Each top-level (Tier 1) goal corresponds to a line of operation. AtN has as its

primary objective to reduce the volume of IED emplacements and attacks. This function

focuses on preventing IEDs from reaching the enemy’s time and place of employment.

38

DtD has as its objective to decrease the effectiveness of emplaced IEDs and attacks.

These IEDs have reached the enemy’s intended place and time of employment and the

desire is to detect them and render them safe for exploitation; to, barring detection,

somehow neutralize them: or should detection and neutralization fail, to mitigate their

effects. Lastly TtF seeks to improve C-IED training and readiness.

Attack the Network Value. We model the AtN aspect of the campaign as a

cyclical concept with four domains: counter-IED intelligence, IED network targeting,

interdiction/inhibition of attackers, and IED evidence exploitation. As depicted below,

these domains come from a conceptual model we developed to depict how AtN functions

relative to the enemy. Generally AtN initiatives will contribute to only one of these

domains. These domains form the Tier 2 goals under the Tier 1 AtN goal.

Figure 3-3 The Four Domains of the Attack the Network Cyclical Model

Counter-­‐IED	

Intelligence

IED	
 Network	

Targeting

Interdicting	
 /	

Inhibiting	
 Attackers

Exploiting	
 IED	

Evidence

39

The first aspect of attacking the network is to maximize the intelligence available

to all those activities involved in the counter-IED fight, from stateside agencies to

infantry squads planning their next patrol. The next domain is more specialized and

offensive in nature: how to improve warfighter’s means to target IED cells and

functions.

IED cells that escape being targeted might still be degraded by the allied forces

denying or inhibiting their freedom of movement. The interdiction/inhibition domain

covers this conceptual “battle hand-off” between AtN and DtD. It specifically aims to

interdict or inhibit the IED in its final leg towards its intended destination. The last

domain is the technical ability of the Force to exploit the information gathered from each

encounter with the IED, which includes forensic methods. This domain completes a

natural feedback loop to the first step of enhance C-IED Intelligence.

Defeat the Device Value. DtD Tier 2 goals stem from a conceptual event tree,

shown in Figure 3-4, that depicts a defense-in-depth. The first line of defense is to

successfully detect the IED before the friendly entity (commonly a vehicle) and the IED

come within the IED’s effective range. If the IED is not detected, the next line of defense

lies in technologies that can neutralize the device: prevent it temporarily or permanently

from operating as intended. If neither detected nor neutralized, the IED may detonate as

intended. The last line of defense is a system’s capability to mitigate the IED’s lethal

effects.

40

If, however, the IED is successfully detected, there remains the sticky issue of

how to safely, rapidly, and effectively clear and make safe detected IEDs, particularly

since they are valuable sources of intelligence. This goal links to the AtN Tier-2 goal of

Exploiting IED Evidence. While all IED events can be investigated, the unexploded

IEDs are better sources of intelligence than the detonated ones.

Figure 3-4 DtD Event Tree

Train the Force Value. TtF is subdivided into two basic training needs that

correspond to the Tier 2 goals. Focused IED Training provides for specialized training

events, courses, and facilities focused on counter-IED (National Training Center, schools,

etc). Home Station Training seeks to provide units with enhanced means to conduct their

Detect%IEDs%

Clear%Detected%
IEDs%

Neutralize%
Undetected%IEDs%

Mi5gate%
Unneutralized%

IEDs%

41

own counter-IED training at their home stations prior to deploying to theater. In either

case, the desire is to maximize readiness of individuals and units by ensuring they have

the best training with the latest information from theater.

3.4.2 Quantifying Value

Overview. In keeping with Parnell et al (2003), we seek to measure first the

capability of the portfolio of solutions, and then measure of an initiative’s value as its

marginal contribution to the portfolio. The MODA model we describe uses the weighted

sum of portfolio capability level across the Tier 2 goals.

Evaluative Measures. In decision analysis, each goal requires a means of

measuring goal realization. The Tier 2 goals shown exist at relatively high levels of

aggregation. Developing the evaluative measures for each of these goals requires follow-

on research and is beyond the scope of this dissertation. For the purposes of our analysis,

we assume that the means of measuring goal fulfillment exist for each Tier 2 goal, and

will refer to these means as Tier 2 evaluative measures, indexed by m. The portfolio’s

capability level attained on each measure m is designated ym and the vector of these

measures is y.

Value Functions. As described by Parnell (2007), each Tier 2 evaluative

measure m needs a least preferred level and a most preferred capability level. The least

preferred level, also called the threshold level, is the level below which no value is

contributed. The most preferred capability level, or objective level, is the level above

42

which no further value is accrued. Between these endpoints, i.e. in the range of variation,

the capability level on the measure, ym, requires a single dimensional value function,

vm(ym), which maps from the measure space to the normalized value space; e.g., a point

on the interval [0, 1], [0, 1000], or [0%, 100%]. These value functions should be elicited

from decision makers’ preferences, which could include using the threshold and objective

levels from requirements documents.

Swing Weights. We should not expect that the maximum possible contribution

of each value function vm() to be equal. If they were, we need only take the average of

the values. Accordingly, we need to assign to each vm() a weight wm. Parnell describes

these as swing weights, which reflect not just importance but the change in overall value

within an evaluative measure when swung from its least preferred level to its most

preferred level. He describes several approaches for eliciting these from decision makers.

Portfolio Counter-IED Value (PCV). We obtain the resulting mathematical

model for measuring PCV, which is the weighted average of normalized value functions

of the capability levels.

Equation 3-1: Portfolio Counter-IED Value
𝑃𝐶𝑉(𝒚) = 𝑤!! 𝑣! 𝑦!

𝑤!! = 1,𝑤! ≥ 0

43

3.4.3 Valuing Individual Initiatives

For portfolios of financial instruments, Markowitz (1959) developed a

mathematical programming approach that constructed the portfolio by considering the

expected return of the entire portfolio and the covariance of its components. There are a

couple of insights to gain from this approach. The first is to understand that initiatives

may interact with other solutions in the portfolio, thus inherently changing the value of

the portfolio in potentially non-linear ways. The second is that the value of an initiative

must be based on its net contribution to the total value of the portfolio: the difference

between the value of the portfolio with the initiative and the value of the portfolio without

the initiative.

Loerch, Koury, and Maxwell (1999) modeled the value of all the U.S. Army’s

Major Defense Acquisition Programs by looking at their contribution to the overall

portfolio value of U.S. Army’s projected inventory via design of experiments and combat

simulations. To consider the independence issue, they also considered combinations of

candidate systems. Given the large number of systems, they limited themselves to a

factorial design with 2-way combinations.

Parnell et al (2003) were examining space systems and did not have

computational models for considering overall portfolio value. Their approach was to

score initiatives on each evaluative measure as the maximum of either the initiative’s

stand-alone score or its score when in concert with the current capability of the portfolio.

44

Vector Union Operation. To implement this procedure we define a vector union

operation x U y = z where zm = max(xm, ym) for all m. This operation ensures that an

initiative only is considered if it provides capability higher than the current portfolio in at

least one evaluative measure.

To illustrate, if y is the vector of the portfolio’s capability level then let x be the

vector of the capability levels attributable directly to a new initiative i. Consider the case

where only one measure m is affected. Let the new capability level on m be xm, while the

original portfolio capability level on m was ym. The new initiative scores a 0 on all

measures but m and we assume that xm > ym. The procedure is illustrated below.

Figure 3-5 Illustrating the vector union operation where xm > ym

These illustrations show only one measure changing at time because we assume a

single function initiative. Obviously, multi-mission systems may alter more than one

measure capability level at a time.

The Net Initiative Value of i (NIV(i)) is the net change in PCV from introducing

the initiative i.

y1 y2 y3 ym … y =

0 0 0 xm … x =

yk …

0 …

y1 y2 y3 xm … y U x = yk …

45

Equation 3-2: Net Initiative Value

 𝑁𝐼𝑉 𝑖 = 𝑃𝐶𝑉 𝒚 ∪ 𝒙 − 𝑃𝐶𝑉(𝒚)

Interactions. An issue to consider is the effect of multiple initiatives arriving

close together in time. Interactions between these items might be missed by this process.

One approach might be to ignore these interactions, since in this sequential process only a

few initiatives are ever considered at the same time, and it is unlikely that any two will

interact.

A more rigorous approach is to require that the evaluation process consider

potentially interacting initiatives that arrive simultaneously both separately and in

combination. This complicates the issue, adding potentially many more candidates

solutions to evaluate – for any set of arrivals with cardinality n where ALL the arrivals

might possibly interact, then 2n – 1 solutions would need to be evaluated. However, the

trend we observed at JIEDDO was that only a few items were ever evaluated

simultaneously at any single transition point, and the potential for interactions proved

rare.

For example, if two initiatives, A and B, arrive in the same week. Both are

assessed to provide a modest improvement over the current portfolio on their own.

However, the assessment reveals the two may interact synergistically – their contribution

in combination is greater than the sum of their individual contributions. In this case,

there are four mutually exclusive options for the leadership: buy nothing, buy A and not

B, not A and B, or both A and B.

46

3.4.4 Assessing the Likelihood of Transition

The ideal goal is for funded initiatives to prove so effective that they eventually

transition into the permanent inventory. An example of this is the now ubiquitous

Counter-IED Radio-controlled Electronic Warfare (CREW) jamming technology, the

development of which was funded by JIEDDO (HASC Report 2008).

Not all solutions transition into the permanent inventory. Some prove ineffective

when tested in realistic environments, to include limited evaluations on the battlefield.

Others do prove effective but are simply too expensive for the benefit they offer.

Furthermore, because the process of securing resources in the Planning, Programming,

Budgeting and Execution System typically takes years, the process of transitioning an

initiative has to start very early in its life-cycle to ensure that, should the initiative prove

to be successful, the receiving Component will have the required resources to support the

initiative.

Figure 3-6 Factors for Assessing Likelihood of Transition

Assess	

Probability	
 of	

Transition

Lower	
 Future	

Ownership	
 Costs

Lower	

Supportability	

Impacts

Anticipate	

Enemy	
 Counter-­‐

measures

Demonstrate	
 C-­‐
IED	
 Contribution

47

To aid in in the selection process, we propose that the probability of transition

should be systematically assessed, independent of the PCV process. Based on our

observations at JIEDDO, the main reasons services might be disinclined to support

transition of an initiative, independent of its potential counter-IED effectiveness, include

the following: an initiative was too expensive, it had onerous support requirements, it

was easy to defeat in the long term, or it lacked demonstrated evidence to confirm the

potential value. We envision using an assessment of these factors to elicit from decision

makers an estimate of the likelihood of transition (see Figure. 5). We use PT (i) as the

probability of transition of initiative i.

3.4.5 Accounting for the Value of Time

Meeting the demands of the warfighter requires that solutions be fielded as

rapidly as possible. However, developing new solutions takes time. Discounting is a

means of estimating the value today of something not expected to yield value until

sometime into the future. In finance, usually a benchmark is used, such as a current or

projecting lending rate, which may or may not be adjusted for inflation. This benchmark

rate is then raised exponentially based on how long it will take to realize the expected

value. This is the basis for the Net Present Value calculation.

A military solution available now is clearly preferable to one not available for

some time. When comparing the value of two military solutions of equal estimated

effectiveness, the value of the one not immediately available should be discounted. We

48

argue that all else being equal, the discount factor is a measure of the willingness of the

warfighter to wait for a solution. Some factors that might influence the warfighter’s

willingness to wait include whether a solution fulfills a validated but unfilled urgent

requirement (e.g, a specified Joint Urgent Operational Need (JUON)). A step down in

this willingness to wait might be if a solution did not have an unfilled urgent requirement

but did fit within an anticipated future need found within a document such as a

technology roadmap plan. Lastly, the warfighter might discount steepest for a solution

that did not have any associated statement of need but perhaps provides an unanticipated

capability. Table 3-1 illustrates a posited three level base discounting scheme.

Table 3-1 Posited Scheme for Determining Base Discounting Levels

Some solutions in the bottom level could prove to be unanticipated, ground-

breaking solutions. Should these be immediately available, then there is no discounting.

If there is a long wait before these might be ready, then discounting would affect these

heavily. Of course, over time the existence of some potential solutions may influence the

development of requirements leading to a change in their discounting level.

Level DF (posited) Rationale
I 0.99 Has validated war-fighting requirement (e.g., JUONS)
II 0.95 Solution fulfills an anticipated need (e.g., technology road map)
III 0.90 Solution has no associated statement of need

49

3.4.6 Discounted Expected Net Initiative Value

We demonstrate how NIV, likelihood of transition, and discounting come

together. Upon arriving before a decision-making body, an initiative is assessed for its

potential to provide an enduring contribution to the counter-IED fight. This is done via

the PCV model, where the value of the portfolio is measured with the initiative, and the

resulting increase in value over the current portfolio is assigned to the initiative as its

NIV.

To become an enduring contribution, which we assume to be coincident with

realization of NIV, the initiative must first transition to a Service. Since NIV is not

certain, we should employ some method of adjust for this uncertainty. At this stage in the

model’s development, we are considering only two possible outcomes: transition and

termination. Treating this as a simple Bernoulli variable, we take the expectation of the

NIV, using the probability of transition PT.

Taking only the expectation assumes that the time until NIV is achieved is

insignificant. The realities of conflict dictate a strong preference by the warfighter for

solutions that work sooner rather than later. To account for the cost of waiting we

employ a discount factor DFt(i), where t is the delay until solution i can be deployed to the

theater of conflict, and where DF the discount factor rate describes the warfighter’s

willingness to wait for the solution to arrive on the battlefield. A likely unit of time to

use when discounting is the fiscal quarter.

50

Figure 3-7 Discounted Expected Net Initiative Value

As the equation below shows, DENIV(i) is the discounted, expected, weighted

average of its net contribution over the present portfolio.

Equation 3-3: Discounted Expected Net Initiative Value

𝐷𝐸𝑁𝐼𝑉 𝑖 = 𝑃! 𝑖 𝐷𝐹! ! [𝑤!
!

𝑣! max (𝑦!, 𝑥!) − (𝑤!
!

𝑣! 𝑦!)]

Discounted,	
 Expected	

Net	
 Initiative	
 Value	

(DENIV)

NIV

TerminationDFt

PT

t – time	
 until	
 deployed

1	
 -­‐ PT

51

This approach we have described provides a means to quantify value, but it does

not necessarily describe how to optimize value. That is subject of our ongoing research.

However, reader’s familiar with dynamic program may recognize strong similarities

between Equation 3-3 and some forms of Bellman’s equation.

3.5 Numerical Example

We provide a numerical example to illustrate how DENIV might be employed as

part of JCAAMP or a similar process. Let us assume that on a periodic basis, the

counter-IED development agency evaluates the collective counter-IED capability levels

across the lines of operation, and reassesses the vector of swing weights w.

Based on this, the agency’s leadership assessed the swing weights to assign to

each of the enterprise level attributes. These weights reflect not just the importance of

each attribute but the amount of swing available between the current level and the desired

ideal. The overall portfolio value is the weighted average of the capability levels.

Table 3-2 Swing Weights – Illustrative example

Goal
Current

Capability Level
Rank Raw Swing

Wt
Normalized
Swing Wt

C-IED Intel 50% 3 45 0.129
IED Cell Targeting 20% 1 60 0.172
Interdict & Inhibit 20% 2 50 0.143
Evidence Exploitation 70% 7 30 0.086
IED Detection 50% 5 40 0.115
IED Neutralization 20% 4 41 0.117
IED Mitigation 30% 6 35 0.100
IED Clearance 80% 10 10 0.029
Focused Training 70% 9 15 0.043
Home Station Training 50% 8 23 0.066

Unweighted Average
Capability Level 46.0% 38.5%

Weighted Average
Capability Level

52

As the table shows, the swing weights result in a overall capability level different

than the unweighted average – in this particular case lower. This will result in a higher

priority being given to solutions in the higher weighted areas.. In the charts below the

capability level is the area under the bars. In the unweighted scheme the bars have the

same width, while in the other the widths of the bars reflect the respective swing weights.

Figure 3-8 Unweighted Assessed Capability Levels vs. Objective Levels

0%

25%

50%

75%

100%

%
	
 o
f	
 D

es
ire

d	

Le
ve
l

Current	
 Capability	
 Level	
 -­‐ Unweighted

53

Figure 3-9 Weighted Assessed Capability Levels

The following week, three initiatives arrive: Ground Sensor A, Intelligence

Analyst Software B, and Training System C. The agency’s solution evaluation board

(SEB) has convened to examine these.

As briefed, Ground Sensor A detects a particularly lethal and elusive class of

IEDs 60% of the time. This is a three-fold improvement in U.S. forces current

probability of detection. This class of IEDs causes 40% of all IED casualties. Thus, in

terms of coalition forces’ total ability to detect all types of IEDs, as weighted by the

casualties these IED’s types cause, Ground Sensor A represents a 20% improvement.

The SEB is informed that this system has been successfully employed in recent

contingency operations by an ally and requires minimal levels of sustainment support.

The Service reps find that its overall costs are affordable. Thus, its probability of

transition is set at a high level – 0.9. Ground Sensor A is addressed by a JUON and is

0%

25%

50%

75%

100%

0 25 50 75 100 125 150 175 200 225 250 275 300 325

%
	
 o
f	
 D

es
ire

d	

Le
ve
l

Current	
 Capability	
 Level	
 -­‐ Weighted

54

thus assigned a DF of 0.99 - the highest discount rate employed by the SEB. It can reach

theater in the next fiscal quarter, so t = 1 and resulting discount factor is 0.991 = 0.99

The SEB is informed that the Intelligence Analyst Software B significantly

increases the productivity of a large swath of intelligence analysts. It is estimated that it

will enhance overall C-IED intelligence by 33.3%. However, as it has not yet fully

matured, it is expected to have high sustainment costs, particular in the forecasted

number of developers and help desk staff requirements. Thus, the SEB assesses its

probability of transition at 0.7, indicating some concern for this program. Additionally, it

is not forecasted to be operational for another 9 months and has no JUON or other

supporting requirement. By the business rules used in our fictional example, a lower DF

of 0.9 is used. Since the operational availability is not forecasted to be for another 3

quarters, the resulting discounting factor is 0.93 = 0.729.

Training System C provides a 10% improvement in home station training

throughput and cuts in half the lag time in inserting the latest battlefield lessons-learned

into the training: a 50% improvement in overall home station training metric. It has been

demonstrated at one National Guard site, but the Army and Marine Corps will need

JIEDDO to help fund a full roll out of the system, which will take about 12 months.

There is much concern about recent environmental issues with its employment that may

or may not be resolvable. Despite its modest sustainment requirements, this last issue

caused the board to assign this initiative a 0.5 probability of transition. A like capability

55

is addressed in the TtF technology road map so its DF is an intermediate value of 0.95.

The forecasted year long wait results in a discount factor of 0.954 = 0.814.

The results from the board’s evaluation are shown in the table below. Ground

Sensor A scored highest, but in large part because its maturity, high likelihood of

transition and readiness to be deployed. In fact, the act of computing the discounted

expectation reversed the rank ordering of the initiatives that resulted from measuring the

just their weighted overall value. This highlights that resolving the key issues with

Systems B and C – perhaps getting the theater commander to provide a JUON for System

B and resolving the environmental issues with System C – could have dramatic effects on

their scores.

Table 3-3 Numerical Example DENIV Results

Evaluative Measure
Current

Capability
Level

With
System A

With
System B

With
System C

C-IED Intelligence 50% 50% 67% 50%
IED Cell Targeting 20% 20% 20% 20%
Interdict & Inhibit 20% 20% 20% 20%
Evidentiary Exploitation 70% 70% 70% 70%
IED Detection 50% 63% 50% 50%
IED Neutralization 20% 20% 20% 20%
IED Effect Mitigation 30% 30% 30% 30%
IED Reduction 80% 80% 80% 80%
Focused Training 70% 70% 70% 70%
Home Station Training 50% 50% 50% 75%
Weighted Overall Value 38.5% 39.9% 40.6% 40.1%
NIV(i) na 1.4% 2.1% 1.6%
t - Time to Deploy na 1 3 4
DF na 0.99 0.90 0.95
DF t na 0.99 0.73 0.81
P T (i) na 0.90 0.70 0.50
DENIV(i) na 1.3% 1.1% 0.7%

56

As the systems progress through the development process, the intent would be to

update these measures as information becomes more current while addressing shortfalls

that could increase the likelihood of transition or mitigate the effect of discounting. Note

that in this example we do not make a recommendation as to which system to choose.

The decision makers could choose all three. The purpose is to illustrate quantitatively

how these disparate capabilities could be compared on a single value system.

3.6 Summary and Generalizing to the Wartime Portfolio Problem

The model as specified presents a useful starting point for a counter-IED

capability developer or resource provider to develop a decision-analytic process for

objectively valuing and conducting trades in their portfolio.

In general, the model also provides some useful considerations for agencies

conducting rapid, wartime procurement: a value model to address future or potential

value of solutions the measures value based on gaps in the capability set, discounting to

address the value of time, and considering the probability that the item will successful

join the inventory.

There is certainly room in this approach to incorporate Utility Theory, where one

needs to consider the risk attitudes of decision makers. We view this as “next spiral” in

the decision analytic model; one to introduce once the base model had gained traction

within a using organization.

57

CHAPTER 4 – SOLUTION METHODS: DYNAMIC PROGRAMMING

The next two chapters address methods for making optimal choices for the

Wartime Portfolio Selection Problem (WPSP). This chapter focuses on Dynamic

Programming and its derivative, Approximate Dynamic Programming, to solve versions

of the WPSP. We start with DP since this was the essential approach that Kleywegt

(1996) employed when he introduced the Dynamic and Stochastic Knapsack Problem

(DSKP), and its variants.

4.1 Introduction to Dynamic Programming

The sequential nature of WPSP lends itself to a dynamic programming approach.

Dynamic Programming (DP) largely came about to address the challenge of sequential

decision making (Bellman, 1957).

The basic principle of DP is to decompose a large, hard problem into small, easily

solved problems and then assemble these sub-problems together so that they solve the

original problem. In a simplified case, DP can be thought of as a means to find the

shortest path in an acyclic directed network with real arc length. The literature in this

field is extensive – see Ajuha, Magnanti, and Orlin (1993) for a complete treatment of

this subject. The primary goal of this section is to use a simple case of the shortest-path

problem to provide an introduction to the principles of DP.

58

A network is a set of nodes with arcs linking the nodes, where the arcs each have

a distance that must be traveled in order to move from one node to the next. Directed

means the arcs can only be traversed in one direction, with the direction indicated by an

arrow. A path is a feasible sequence of arcs that provides means to travel from one node

to another node elsewhere in the network. Acyclic means that there if you were to start at

any given node and traverse the network, there would be no way to return to the node

from which you started.

We can describe this network mathematically as follows. Let N = {i} be the set of

nodes and A = {(i,j), i<j, i,j in N} be the set of arcs, with d(i,j) the length of the arcs.

Note that instead of giving the arcs their own labels, we use the ordered pair of origin and

terminus nodes (i, j) to describe each arc. To facilitate understanding, the definition of

the set A specifies that the nodes have been labeled in topological order from the source

node 1 to sink node n, where n = |N|, so that the label on every node i is always greater

than the labels on the nodes in its backwards arc (the arcs that lead to i) and less than the

labels on the nodes in its forward arc (the set of arcs that lead away from i). The goal of

DP is to find the shortest path in this network from every node to the sink. To illustrate

we use a small example of an acyclic directed network.

59

Figure 4-1 Example Acyclic Directed Network

This network starts with node 1. From this source node, any path we choose will

eventually lead to the sink node - node 6. The label on each node is less than nodes in its

forward arc; e.g., node 2 has nodes 4, and 5 in its forward arc, node 3 has nodes 4, 5, and

6 in its forward arc and so on. Each arc has a length, shown by the number next to each

arc. A path is a just sequence of connected nodes along which we can travel in this

network. For example, 1-2 is the only path from node 1 to node 2, but there are two paths

from node 1 to node 3: 1-3 and 1-2-3.. The length of a path is sum of its arc lengths.

Path 1-2 has only one arc of length 1 so the length of the path is 1. Similarly, path 1-3

has length 3. Path 1-2-3 has two arcs of length 1 each, so length of the path is 2. Since

we are interested in finding shortest paths, we compare the two paths and find by

inspection that the shortest path from 1 to 3 is 1-2-3.

60

Finding the shortest path from 1 to 3 is illustrative of the principle of DP. The

shortest path from 1 to 6 in this small network is not immediately obvious. At first blush,

one way to ensure we found the correct answer would be to enumerate all the paths, find

their corresponding lengths and determine the shortest one. Enumeration seems

daunting, both because there does not seem to be a straightforward way to doing that and

because it may take a long time before we are done. But perhaps if we find a structured

way to break this down into small, easy problems – problems like finding the shortest

path from to 1 to 3 – we might be able to use that structure to assemble these small

solutions into the whole solution.

In DP the basic approach is to start at the sink n and work backwards, or

recursively, determining at each node i the shortest distance from it to the sink. Bellman

defined f(i) as the shortest distance from node i to the sink n. While working backward

from sink, at each node i we visit, we look at the nodes j in the forward arc of i – the

nodes we can visit in one step from i - to see which previously visited node j offers the

shortest path from i to the sink. Each of these nodes i represents a choice, one that

combines the length of the arc from i to it, d(i,j), with the previously determined shortest

distance from j to the sink n, f(j). Mathematically we express this choice problem:

Equation 4-1: Prototype Bellman’s Equation
f(i) = minj ε FwdArc(i) {d(i,j) + f(j)}

61

Denardo (2003) calls this the prototype formula of the fundamental equation in

DP, Bellman’s Equation. It is the basic form upon which later versions expand. The

structure it is exploiting lies in that at each node we do not have to explicitly consider all

possible paths from i to the sink in the acyclic directed network. We need only consider

the set of shortest paths defined by the forward arc of i and the labels f(j). We describe

the basic algorithm.

Simple Recursive DP Algorithm

Step 1. Given N = {i: i = 1, 2,…,n}, A = {(i, j), i < j}

 ShortestPathTreeList = empty

Let f(n) = 0 # distance from sink to itself is zero

Step 2. For i in n-1, n-2,…,1 # decrementing in order until we get to source

For j in Forward Arc(i)

f(i) = min(f(i), d(i, j) + f(j))

record minimizer j*

Add (i, j*) to ShortestPathTreeList

Step 3. Return f() and ShortestPathTreeList

Readers familiar with Ahuja, Magnanti, and Orlin (1993) may be conditioned to

the shortest path problem as finding the shortest path from the source to every other node.

62

As we have seen, in DP the problem is defined as the shortest path from every other node

to the sink. The difference is one of perspective. In a sequential decision problem the

system is traversing towards a desired destination state. Thus, for any node the system

may occupy, we want to know the best path to take from there to the desired destination.

Returning to our small example we will apply our DP algorithm to find the

shortest path from source 1 to the sink 6. To begin, we set the distance from the sink to

itself as 0: f(6) = 0. Working backwards, we go to node 5 and evaluate Equation 4-1 for

this node. Node 6 is the only node in the forward arc of 5. Since d(i,j) equals 7 and we

already know f(6) = 0, per Bellman’s Equation, f(5) = 7. Similarly, f(4) = 5.

Figure 4-2 After Evaluating Three Nodes

63

Working our back in reverse order, the next node is 3. Here matters are little

busier as node 3 has three nodes in its forward arc: nodes 4, 5, and 6. We outline and

evaluate these choices via the following table.

Table 4-1 Evaluating Bellman's Equation at Node 3

The shortest path from node 3 is to go through node 5, so that the total distance

from node 3 to node 6 is 8. The arc (3, 6) offered a direct path but the length was longer

in total than going through node 5. Updating our graph we get the following.

Figure 4-3 After Evaluating Four Nodes

64

The last table illustrates the algorithm for the remaining nodes.

Table 4-2 Evaluating Bellman's Equation For All Nodes in the Example Network

The shortest path from node 1 to 6 has length 10. Walking back up the table, we

find the shortest path: 1-2-3-5-6. When we update our example network, we see visually

the resulting shortest paths tree rooted in the sink.

65

Figure 4-4 Shortest Path Tree

On the term “Functional Equation”. Bellman chose the term “functional” from

the Calculus of Variations. In the Calculus of Variations a functional is a mapping from

a set of functions to a real number. Frequently, the functional is looking for the extreme

boundary of a space occupied by a set of functions; i.e., it is functioning as a max or min

operator. Returning to our simple example of the shortest path in a network, a function is

a mapping from a given point of i to the set of path lengths from i to the sink. The

functional is the mapping from that set of functions to length of the shortest path.

Computational Efficiency As Compared to Enumeration. How much work

was saved by employing this procedure? The basic steps involved starting with the sink

and going backwards, visiting every node just once, and evaluating its forward arc. In

our DP approach, we evaluate each arc once. For this network that is 10 arcs. While

with a little bit of stubby pencil work, the reader can determine through brute force

66

enumeration that there are eight unique paths, the work to find those paths is much more

than what DP required. Clearly every arc had to be visited more than once..

What of a general case? Instinct correctly tells us this disparity gets much worse

as the problem gets bigger. In a topologically ordered, acyclic direct network, DP visits

each arc once. In the worst case of a highly connected network, the source node has n-1

forward arcs, the next node has n-2, and so on, which sum to (n-1)(n-2)/2 arcs, an upper

bound of order n2. Using the same worst case analysis to evaluate the enumeration of

paths, at the source we have n-1 choices, at node 2 there are n-2 choices, and so on. Path

enumeration requires multiplying these choices, so the number of paths is bounded by (n-

1)! which grows much faster than n2

Longest Path Problem Acyclic Directed Networks. As described earlier, the

shortest path problem for acyclic directed networks solves in linear time. What of

finding the longest path in the network? For the acyclic directed network, the longest

path problem solves in exactly the same fashion as the shortest path problem. We need

only take the network and negate all the arc values and solve the shortest path as done

before (Ahuja, Magnanti, and Orlin, 1993). Our standard DP approach will work for both

minimization and maximization as long as we continue to employ acyclic directed

networks. For many sequential decision problems, this requirement is easily met.

Stages and States. In modeling, the nodes represent the possible states of the

system, commonly indexed as s and f(s) represents the value of being in state s. The

assumption employed in our simple example of states being indexed in topological order,

67

so that an arc (i,j) would always have i < j, is not difficult to satisfy in many sequential

decision problems. In fact, a common technique for sequential type problems is to

partition the state space into stages and states. States, indexed by s, can be used to

represent the resource level of the system. Stages, indexed by t, can be thought of as time

periods through which the system travels while occupying a single state within a time

period. This results in the nodes being indexed by the ordered pair (t, s). This imposes a

special structure where the system will typically only transition from (t, s) to (t + 1, s’)

where s may or may not equal s’. This kind of structure is particularly applicable to the

binary knapsack problem, which we visit next.

4.2 Dynamic Programming Knapsack Foundations

The binary knapsack provides a classic (albeit simplistic) example of the

peacetime capital budgeting problem. As we described previously, the WPSP is different

from the peacetime problem in that decisions are made sequentially. The peacetime

problem focuses on a long-range horizon so that all options can be considered

concurrently. It has its own diverse complications: different resource pools

(appropriations), binning of options by type of applications (capability area), inter-

relations of projects, and multi-period effects. It is useful nonetheless to consider the

simple problem of the binary knapsack since its DP implementation structurally provides

a fundamental template on how to approach the more challenging sequential problem.

68

4.2.1 Binary Knapsack Formulation

The “knapsack” problem gets its name from the challenge any hiker faces while

planning his or her trip: there are more items which the hiker would like to take than

there is capacity in the knapsack to take them. The hiker needs to decide what unit to

attach to the capacity – is the knapsack limited by volume or by weight. Of course, using

volume assumes that there is no lost space when packing items in the pack. Many

versions of this problem exist in the literature. Prominent in the DP literature (Denardo)

is the Integer Knapsack, where the hiker is allowed to choose integer quantities from a set

of potential items, subject to the total capacity of the knapsack.

The version we examine here is the binary or 0-1 knapsack. Here each possible

item is a “yes/no” option. We ignore interactions to keep things simple: clearly the

benefit to the hiker of a space blanket is different whether or not the hiker decides to also

bring a sleeping bag.

Relating this to the WPSP, we first examine the case where we know there are T

arriving initiatives, we know the order of arrival, and by some oracle all of their

associated costs and values are known a priori. This is simply the binary knapsack

problem with the following structure. The “capacity” of this knapsack is the amount of

fiscal resource available.

69

Deterministic Binary Knapsack Integer Programming Formulation

 max vx

 s.t. cx ≤ B

 x ∈ {0,1}

The vector v provides the benefit or value of each item, the vector c provides the

cost of each item, and x is the vector of “yes/no” decisions. B is the resource budget

available to use. Note that in contrast to the shortest path problem in the previous

section, we are now maximizing, but since we will show how we can represent this

problem as an acyclic directed network, this use the exact same algorithm.

On the choice of labels: The literature varies, so in this case we have chosen to

use the word “value” to indicate the reward or benefit offered by an arriving initiative.

We use c to indicate the cost of the arrival, and f(s) as the optimal cumulative value

function the system can accrue in state s. We use v and c in this fashion because it is

more consistent with terms used by the decision makers we have encountered.

Powell (2007) uses V(S) for f(S) as the value to system of being in state S, and

uses v as a sample of V. For reward or benefit he uses C for contribution. Denardo

(2003) uses v for cumulative reward or value, f() for the optimal v, and uses R for the

reward. We define the dynamic program for the binary knapsack as follows.

70

Deterministic Binary Knapsack Recursive Dynamic Programming Formulation

Stages

t the tth initiative arriving, t = {1,…,T}

States

bt remaining budget when the tth initiative arrives (perhaps in units of $M)

Data

ct cost of initiative t

vt value of initiative t

B total budget at the start of the fiscal period

Variable

xt 1 if the initiative t is chosen for the portfolio, 0 otherwise

Value Function

 ft(bt) – maximum cumulative expected value earned from initiatives t, t+1,…, T

Functional Equation

 ft(bt) = maxx{vtxt + ft+1(bt – ctxt)}

Constraints (also called Boundary Conditions)

 bt ≥ ctxt ≥ 0

 b1 = B

 fT+1(b) = 0, for all b

71

The recursion asks “Is it better to step forward with the arrival, and decrement the

budget accordingly, or to step forward without the arrival and keep more of the budget?”

A note on the choice of t as the stage/initiative index: Many formulations will use

the common i but given the sequential nature of arrivals – whether deterministic or

random – the use of t links the stages and arrivals to the notion of time advancing.

As consistent with our simpler earlier example, this formulation defines an acyclic

directed network. Each node (t, bt) maps to a stage t for the current arrival and a state bt

for the amount of remaining budget. We define a source node for a stage 0 and state B

that represents the system prior to any arrivals, and a sink node w after all stages in order

represent the system after all decisions are done. From the source node we create single

arc of length 0 signifying the first arrival. For all stages 0 < t <= T, each node (t, bt) has

two forward arcs only, one to node (t+1, bt-ct), depicting a “yes” decision with the budget

decremented by ct, and (t+1, bt), a “no” decision with an unchanged budget. The former

forward arc has value vt and the latter has zero value. All nodes (T+1, bt+1), for 0 <= b

<= B, represent a dummy stage to capture the results of the last initiative considered.

From each dummy stage node (T+1, bt+1) we create a single forward arc of zero length to

the sink. Solving the dynamic program equates to finding the shortest path from every

node to sink in this network. Another example will help illustrate.

72

4.2.2 Binary Knapsack Example

In this example, there are five stages, representing four separate arriving

initiatives and final dummy state, and six units of resource. The table below provides the

data for the four initiatives.

Table 4-3 Data for Example Knapsack

The cost data is in the same units as our resource budget. The value data is in its

own units. Using these data we construct the following network.

73

Figure 4-5 Example Knapsack Network

We note that the network is relatively sparse. Not all states b can be occupied in

all stages, so for clarity we have removed these infeasible nodes. Transitions only occur

from state t to state t+1. The forward arc of each node – except after the last stage when

there are no remaining decisions – is binary, representing the “yes/no” decision. The

“down” arcs represent a “yes” decision, indicating a reduction in the budget state.

Because each stage t corresponds to each initiative, and each initiative has its own cost,

the “slope” of the down arcs represents the change in budget. Not every budget state is

feasible at every stage nor is every decision available at every feasible state/stage. The

arc length data is vt, the value gained by traversing the arc. The cost ct of an initiative

appears in the change in budget state, so that when we exchange resources for the value

74

offered by initiative t the system moves from state bt to state bt-ct and from stage t to t+1.

This network is clearly acyclic and its readily evident that we could easily re-label the

nodes so that i < j for all (i,j).

We take a brief tour of the network. From the source node of (0,6) we step

directly to (1,6) where our first consideration is whether to acquire initiative 1. We can

choose not to do so, and arrive straight at node (2,6). If we choose to acquire initiative 1,

we pay a cost of 4 units, gain 6 units of value, and arrive at node (2,2). Consider now

initiative 2. It can only be acquired if we decided not to acquire initiative 1, since there’s

not room enough in the budget for the two of them. Initiative 3 can be acquired if we had

not acquired either 1 or 2, or if we acquired either. Finally, we can acquire initiative 4

under all circumstances except where we acquire 1 and 3, since acquiring these two

initiatives leaves no resources for initiative 4.

Before we apply DP to the network, we should address a possible condition not

previously discussed: multiple optima, or how to break ties. Multiple optima in this case

occur when either binary decision offers the same value; that is, vt + ft+1(bt – ct) = ft+1(bt).

In general, a rule is required to determine how to break ties. By the recursion, it does not

matter which choice is made. The chosen rule depends upon the context and the bias of

the decision makers. A capability developer may have a bias for making acquisitions –

“a bird in the hand is worth two in the bush”, while the financial manager may want to

“save for a rainy day”. For our example we will follow the latter policy for breaking ties.

75

The following illustrations show the algorithm after solving for all nodes in each

stage moving backwards from the sink.

The first stage solved is the dummy state of T+1, or stage 5. This stage is actually

a boundary condition and involves setting each dummy stage distance from the sink to 0.

Now this boundary condition might seem peculiar, since intuition for many might be that

we should arrive at the sink having gained the value of the decisions represented by the

path that brought us there. DP employs recursive thinking, where it assigns the value to

the node based on its distance from the sink – the inherent value the system gains by

being in that state. An analogy is to consider the concept of potential energy for those

familiar with Physics.

Figure 4-6 Example Knapsack Network After Solving for Stage 4

76

The dark arcs represent the chosen paths for this stage and the gray are the sub-

optimal arcs. Note that for this stage at all states the choice was to acquire initiative 4

except at (4,0) because there were no remaining funds.

Figure 4-7 Example Knapsack Network After Solving for Stage 3

During stage 3 with the system at resource state 2, we faced a tie: we could

acquire initiative 3, gain 3 units of value plus whatever value was at node (4,0); or we

could forego initiative 3, gain no value but still have whatever value was at node (4,2).

Node (4,0) has zero value while node (4,2) already has 3 units of value. These two

77

options were tied in terms of the resulting distance from the sink, however, our tie

breaker dictated that we choose the path that gives us the same value for less (or 0)

resources. Thus the arc ((3,2),(4,2)) is darkened indicating the chosen path.

Continuing this logic backwards to remains nodes, we see the resulting shortest

path tree from every node to the sink.

Figure 4-8 Example Knapsack NetworkAfter Solving for All Stages

78

As mentioned previously the order of the initiatives does not matter. If we change

the order of the initiatives in generating the network, the result may look different

visually but the results will be identical since we are solving over the same fundamental

set of paths. Solving the knapsack problem requires generating, explicitly or implicitly,

the set of all feasible combinations of items and finding the subset of these with the

maximum summed value. Since summation is commutative, the order of the items in the

subset is of no consequence.

4.2.3 Some Helpful Concepts

Bellman’s Principal of Optimality. As stated earlier, DP breaks the larger,

seemingly intractable problem into smaller sub-problems. Bellman states (1957, Chap.

III, pg. 3):

Principle of Optimality: An optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision.

Denardo (2003, Chap. 2, pg 15) simplifies this Principle of Optimality for the case

of the shortest path in a network:

Consider an optimal path from some node to some other node. Any path (ip,…,iq)

contained in this path is an optimal path from node ip to node iq.

79

Recursive DP builds this optimal path one arc at a time, stepping backward one

node at a time and then looking forward from each node it visits. The binary knapsack

emphasizes the simplicity of the choices that are at the heart of recursive DP: make

decisions based upon the best marginal improvement in state. Trading resources for

value at stage t will lead to a lower potential for future value. Not trading those resources

keeps a higher potential – but does not acquire any further value, which runs counter to

goal of the program. Thus the decision must be made on the marginal improvement in

value: so that only if vt + ft+1(bt – ct) – ft+1(bt) > 0 will we acquire the t-th item. This is

essentially the reduced cost of the t-th item given budget level b, where xt = 1 iff the

reduced cost of the item t is greater than 0. We can also consider what Papastavrou,

Rajagopalan, and Kleywegt (1996) call a “critical reward” level at resource state b at

stage t for an item of cost c.

Equation 4-2: Critical Reward Equation

Rt
b(c) = ft+1(bt) – ft+1(bt – ct), if bt ≥ ct, else Rt

b(c) = ∞.

If vt > Rt
b(c) then xt = 1, and xt = 0 otherwise.

Policy. Looking at the DP formulation it is easy to think about the optimal

decision as existing in isolation. The concept of a policy provides the general notion that

80

one can consider decisions as belonging to a rule set. Echoing Denardo (2003), in DP, a

policy is a function that maps to each state (or, the combination of state and stage) a

decision. In the context of the shortest path problem, it dictates for every node i the

choice of node j in its forward arc. In the context of the binary knapsack, a policy would

tell us what “yes/no” decision to make for a given budget level b and stage t.

Mathematically, we can describe a policy for the binary knapsack as follows.

Equation 4-3: Binary Knapsack Policy

 π = {xb,t: (b, t) è xb,t, xb.t ε {0,1}}

When considering our shortest route problem over an acyclic network, a policy

would describe a tree. The optimal policy π* is the policy that dictates the optimal

choice of forward arc for every node i; i.e., the shortest path tree. Lastly, while we have

described policies in terms of the variable xt, when considering the binary nature of the

decision we can think also define our policy in terms of the choice of arc based on a rule

such as “Acquire item t if vt > Rt
b(c); reject otherwise.”

Post-decision State. Each node represents the consideration the decision maker

gives to initiative t in light of the remaining budget bt. The decision maker’s decision

then carries the system to the next stage/state. Though not necessary for the static binary

81

knapsack, we could easily partition what is happening in each stage into two kinds of

states still indexed by resource level: the pre-decision state where the decision maker is

considering his or her choice, and the post-decision state which shows the instantaneous

effect of the decision when the system has not yet advanced to next stage. For this static

binary knapsack, the post-decision state would have a single arc straight to the next

stage’s corresponding resource state. The transition is deterministic. The post-decision

state becomes very important later when begin to implement machine learning.

Horizon Assumptions and Discounting. In addressing many decision problems

with sequential decisions one must consider the decision epoch and its endpoint: the

decision horizon. Is there a point in the future at which we are “done”? Or does the

problem require one to consider the implications of decisions to a point arbitrarily far into

the future? This question leads to a natural partition of approaches between those with

finite and infinite horizons. Since federal agencies are required to commit all of their

funds within a fixed period, most commonly in the same year they are issued, we will

focus on the finite horizon assumption. We will use the term “decision epoch” to

represent the time period from the start to the “horizon”, beyond which no decisions can

be made nor value accrued.

4.3 Stochastic Binary Knapsacks

A point of emphasis for Powell (2007) in presenting stochastic DP is where in the

decision process the previously random information becomes known to the decision

maker. He illustrates this point in discussing a traveler through a road network. Powell

82

describes a driver who must choose at an intersection which road to turn on, but who will

not know the exact travel time until having traversed the road. The driver has a long

history of travel on the possible paths and knows the distribution of travel times across

each road. Thus, the driver uses the prior history to make the decision. The functional

equation of the decision making process may look as follows:

Equation 4-4: Stochastic Functional Equation – Type I Stochastic Knapsack

 f(i) = maxj E{cij + f(j)}

We will call this the Type I Stochastic Knapsack. The equation captures the

notion that we are making decisions at each node based upon on an expectation of the

travel time. The other case Powell describes is one where at each intersection the driver

is told with certainty the travel time for the choices. Perhaps, they can look at a GPS

navigation system which gives the driver a very accurate “real time” prediction of travel

time across each choice. The latter problem, which we call the Type II Stochastic

Knapsack, has a subtly different form.

Equation 4-5: Stochastic Functional Equation – Type II Stochastic Knapsack

 f(i) = E{maxj (cij + f(j))}

83

The expectation operator is now outside the maximization operator because a

priori the decision itself is random. Thus, while in both cases the distribution is assumed

known, in Type I problems we will arrive at an invariant set of decisions: each time we

travel the network we make a decision based on the same expectation about our choices.

In Type II problems, at each node we are presented with a single sample from the

probability distribution. In the latter case, a policy would have to consider many more

possibilities. The Type II problem is our focus since it more closely mimics the situation

in the WPSP. However, it is instructive to start with the Type I static knapsack.

4.3.1 Type I Stochastic Binary Knapsack Variations

Random Initiative Values3. At a given state, the value of the initiative has a

random distribution but the result of the binary decision is known deterministically, since

the state is the current budget level, and the cost of choosing an initiative is known. The

choice is to reject and stay put at the current resource state level and then advance to the

next stage, or accept and move to a known lower resource state for a random value and

advance to the next stage. The goal is to maximize the expectation of the total reward

over the random vector of initiative values v.

3	
 We	
 use	
 “initiative	
 value”	
 with	
 care	
 since	
 the	
 term	
 value	
 function	
 has	
 a	
 special	

meaning	
 in	
 dynamic	
 programming.	
 	
 	

84

Static Stochastic Binary Knapsack with Random Benefits Integer Programming

Formulation

 max E[vx]

 s.t. cx ≤ B

 x ∈ {0,1}

This is not to be confused with an alternative interpretation of the static stochastic

knapsack, where the goal is to maximize the probability that the value of the solution

exceeds a deterministic threshold e.

Static Stochastic Binary Knapsack with Random Benefits and Chance Objective

Integer Programming Formulation

 max Pr(vx > e)

 s.t. cx ≤ B

 x ∈ {0,1}

For an examination of this version of the stochastic knapsack problem and some

solution approaches, see Morton and Wood (1998).

85

We introduce the following recursion formulation. Since the results of our

decisions depend on samples from probability distributions, the value function ft(bt) is no

longer deterministic but is now an expectation.

Static Stochastic Binary Knapsack with Random Benefits Recursive Dynamic

Programming Formulation

Stages

t the tth initiative arriving, t = {1,…,T}

States

bt remaining budget when the tth initiative arrives (perhaps in units of $M)

Deterministic Data

ct cost of initiative t

B total budget at the start of the fiscal period

Random data

vt stochastic benefit of initiative t

Variable

xt 1 if the initiative t is chosen for the portfolio, 0 otherwise

Value Function

 ft(bt) – maximum expected reward that can be earned from initiatives t, t+1,…, T

86

Functional Equation

 ft(bt) = maxx E[{vt xt + ft+1(bt – ctxt)}]

Constraints (also called Boundary Conditions)

 bt ≥ ctxt ≥ 0

 b1 = B

 fT+1(b) = 0, for all b

Once the decision x is made, the next state is known deterministically because

only the values are stochastic, while the cost of the arrival, which affects the resulting

state, is deterministic. The value or benefit of initiative t does not depend upon the action

x and the expectation of an expectation is the same, so we can rewrite this recursion.

Equation 4-6: Type I Stochastic Knapsack with Random Benefits

ft(bt) = maxx{E[Vt]xt + ft+1(bt – ctxt)}

We can rewrite the expectation in the case of a discrete probability distribution as

follows, where j represents the possible values that vt can assume.

87

Equation 4-7: Type I Stochastic Knapsack with Discrete Random Benefits

ft(bt) = maxx{ [Σj Pr(Vt = vt(j)) vt(j)] xt + ft+1(bt – ctxt)}

This Type I Stochastic Knapsack with Random Benefits is ultimately not

fundamentally different than our previous case. We have only replaced the value of the

initiative, which was previously given, with its expectation. Note that in the case of the

discrete random benefits as shown in the equation above, the summation plays no role in

the decision. The figure below illustrates the choices.

Figure 4-9 Graphical Depiction of Bellman's Equation for Type I Stochastic Knapsack with Random

Benefits and Fixed Costs

bt!!

E[vt]!!

0!
bt!!

bt#%!ct!

ft(bt)!! ft+1(bt)!!

ft+1(bt(ct)!!

88

The binary nature of the decision allows us to express this decision problem very

simply from a policy perspective.

Equation 4-8: Type I Stochastic Knapsack with Random Benefits Policy
 π*(b,t) =

 accept if E[Vt] + ft+1(bt – ct) > ft+1(bt), and ct <= bt;

reject otherwise.

Note that the policy formulation makes explicit what choice we make in the event

of a tie: we will accept only if the change in value is strictly improving. Had the

inequality been greater than or equal, then we would accept the new initiative in the event

of a tie.

This is the sample problem described by Powell (2007) of a driver traveling the

road network who at each intersection must choose which turn to take without knowing

precisely the travel time across each of the road segments. In this formulation, drivers

would make their decisions based on the expected travel time of each segment.

Binary Knapsack Variation with Random Costs. Now consider the alternative

where at each node the values are known but the costs are stochastic. The goal is to

maximize the expectation of the total reward over the random vector of initiative costs c.

This is also a Type I problem so we are making our decisions knowing only the

89

distribution of cost; only sometime after making our choice will we learn the true cost of

the item. At first blush this case is more challenging, because while the benefit is known,

the next state is random since the resource level defines the state of the system. In

particular, it creates a special problem in that the decision maker cannot incur a cost

greater than the available resource budget. We present a modification of the previous

formulation, showing only the changes. All other definitions remain the same.

Static Stochastic Binary Knapsack with Random Costs Recursive Dynamic

Programming Truncated Formulation

Random Variables

ct random cost of initiative t

Recursion

 ft(bt) = maxx E[{vtxt + ft+1(bt - Ctxt)}]

Constraint

 Pr(Ct > bt) ≤ ε, where ε is a small non-negative number.

One might ask: When would a decision maker decide to make an expenditure

without knowing the resulting costs? The answer is that there are many situations where

costs are only estimated and change over time. In any research and development

90

situation, the costs, eventual value and timing are all estimates. The decision maker has

to make decisions about what choices to make at each stage of development based on

only partial information and estimates of expectations: essentially the decision maker

must decide what research and development path to follow - in order to maximize the

yield of his programs while staying within budget. In some cases, managers may be able

to go back to leadership to request more funding if needed, but this can expose their

program to cancellation. One can think of ε as representing the level of risk the decision

maker is willing to take in overspending the allocated budget.

In this particular problem, the choices are binary: choose not to acquire and

suffer no change to your resource level, or acquire the fixed value but the resources

consumed are uncertain. Assuming the cost of initiative i is (or can be approximated as)

discretely distributed with a total J of possible values ct(j) and probabilities Pr(Ct = ct(j)),

we can express this recursion as follows.

Equation 4-9: Type I Stochastic Knapsack with Random Costs

 ft(bt) = maxx{vtxt + [Σj Pr(Ct = ct(j)) ft+1(bt - ct(j)xt)]}

While in the random benefits case we were able to remove the decision variable

from within the expectation operator, this is not the case here.

We can also express this from a policy perspective.

91

Equation 4-10: Type I Stochastic Knapsack with Random Costs Policy
 π*(b,t) =

 accept if vt + [Σj Pr(Ct = ct(j)) ft+1(bt - ct(j)] > ft+1(bt), and Pr(Ct > bt) ≤ ε;

reject otherwise.

The policy perspective emphasizes both the overall expected cost of the decision

and its functional nature. Even so, for every state there is a simple rule that guides the

decision maker.

Graphically this requires a change in the structure of the network: we now need

to partition the layers into decision nodes and chance nodes, as depicted below. The

decision nodes lead to chances nodes. The chances nodes are labeled by the actions,

indexed by state and stage, that brought the decision maker to the current state. The

chance nodes carry the expected value, which is the inner product of the probabilities and

the value of the states in the forward arc. When calculating value, the arcs from the

decision node have additive value. The arcs from the chance nodes are weighted with

their corresponding likelihood, so that they function in multiplicative fashion. Powell

(2007) also describes these chance nodes as the Post-Decision States.

92

Figure 4-10 Post-decision State for the Type I Stochastic Knapsack with Random Costs

This case is actually an example of a Markov Decision Process (MDP): the

decision made then leads to a respective set of transition probabilities. We will give

MDPs only cursory treatment here. While they are important to what we classify as Type

I stochastic knapsacks, our focus is on the Type II problem. In the Type II problem, the

decision is random while the transition is deterministic.

Static Stochastic Binary Knapsack Variation: Random Benefits and Costs.

We now consider the case where at each node both the benefit and the cost are stochastic.

Furthermore assume these are independent of each other. The independence assumption

93

allows us to move the expectation outside of the summation, as was the case for the

stochastic binary knapsack with random benefits.

Equation 4-11: Type I Stochastic Knapsack with Independent Random Benefits and Costs
 ft(bt) = maxx E[{Vt xt + fi+1(bi - Ctxt xi) }], which can be rewritten:

 ft(bt) = maxx {E[Vt]xt + Σj Pr(Ct = ct(j)) ft+1(bt - ct(j)xt)})}, where Pr(Ct > bt) ≤ ε.

Mathematically, this gives us the same basic situation as shown when reward was

fixed and cost random, where all that we have done is replaced the fixed cost with its

expected value.

Suppose that cost and benefit come from a joint distribution where independence

cannot be assumed. In fact, independence would be an unnatural assumption in any kind

of market where one would expect that benefit and cost are correlated. If we can

discretize the joint distribution for K values, we get the following functional equation.

Equation 4-12: Type I Stochastic Knapsack with Dependent Random Benefits and Costs

 ft(bt) = maxx Σk Pr(Ct = ct(k), Vt = vt(k)) {vt(k)xt + ft+1(bt – ct(k)xt)})}

94

Depicting this from a policy perspective clarifies some of the choices involved.

Equation 4-13: Type I Stochastic Knapsack with Dependent Random Benefits and Costs Policy
 π*(b,t) =

 accept if Σk Pr(Ct = ct(k), Vt = vt(k)) {vt(k) + ft+1(bt – ct(k))} > ft+1(bt),

 and Pr(Ct > bt) ≤ ε;

reject otherwise.

This is not qualitatively different than our previous policy statement. Depicting

this graphically we see again that we have had to change the structure of the network, this

time in how we handle the data on the arcs.

95

Figure 4-11 Post-decision State for the Type I Stochastic Knapsack with Random Benefits and Costs

There is no immediate reward after the decision, thus each of these arcs have

reward 0. The forward arcs from the post-decision nodes contain an ordered pair: the

additive reward and multiplicative weight assigned to this outcome.

The chance nodes contain the value of the decision, which is now the weighted

sum of jointly dependent reward and the value of the future state; i.e., the expected value

of the decision.

In the Type I problem, for a given problem the optimal policy is invariant with

respect to the resource level and stage (b,t). At each node the decision is made based

96

upon the expectation of the random variables. Assuming perfect knowledge of the

distribution of travel times and that these are distributions are stationary, perfectly

rational drivers traversing the network regularly will make the same decision at every

node even if some days the travel time is slower than expected because they know that in

the long run they are following an optimal policy.

We will now turn our attention to the Type II problem, where the analogy is that

our perfectly rational driver traversing the same road network under the same conditions

has now been given a perfect GPS-based oracle that tells the driver how much time it will

take to cross each roads segment emanating from a given intersection. Perhaps the

choice with the best expected value today has an accident a half-mile down the road.

Thus, Type II problems will result in dynamic policies with respect to (b,t), by which we

mean that the policy may vary with each trip through the network. As we will see, the

policies are not dynamic but rather that they require a larger concept of system state, not

just (b,t) but also incorporating the new information presented to the decision maker

when arriving at the node.

4.3.2 Dynamic Stochastic Binary Knapsack

We introduce a new feature that distinguishes the Wartime Defense Portfolio

Problem from previous binary stochastic knapsacks: the random number of arriving

initiatives. This creates a problem for creating the network depiction. However, we will

see how to adapt the binary knapsack DP approach to handle this challenge.

97

The approach described here is due to Papastavrou, Rajapopalan, and Kleywegt

(1996). Items arrive over a finite horizon of discrete time periods. Each time period is a

Bernoulli trial where a single item shows up with probability p, and no item with

probability 1-p. Using Bernoulli trials can be viewed as an approximation to a Poisson

arrival process, where time has been discretized into small enough units that the

probability of a second arrival can be ignored. This gives us an approach for addressing

the unknown number of arrivals.

If a new item arrives, its value and cost instantly become known and an

immediate decision must be made whether to acquire or discard. As alluded to before,

the decisions a priori are random, since we must first establish if an initiative has arrived,

and, if so, its reward and cost, and the remaining resource budget. Papastavrou,

Rajapopalan, and Kleywegt solve such problems via a slightly modified approach to

Bellman’s, where they must consider four Events that address all possible states at time t:

Event 1: an initiative has arrived, the arriving initiative has cost less than

remaining budget and it meets the optimality conditions.

Event 2: an initiative has arrived, the arriving initiative has cost less than

remaining budget, but it does not meet optimality conditions.

Event 3: an initiative has arrived but its cost exceeds the remaining budget.

Event 4: an initiative did not arrive.

Let us first consider this as the authors did from a policy perspective.

98

Equation 4-14: Type II Stochastic Knapsack Policy Equation
 π*(b,t) =

 accept if vt + ft+1(bt – ct) > ft+1(bt), and ct ≤ bt;

reject otherwise.

This looks identical to the deterministic problem, which we should expect since

the nature of the Type II problem is that at the point of the decision, the data on the item

has become known; i.e., the decision is conditioned on these data. Using the four events

that define the optimal decisions, one can construct the following recursion:

Equation 4-15: Type II Stochastic Knapsack Recursion
ft(bt) = p [

 [Pr(Ct ≤ bt, Vt + ft+1(bt – Ct) > ft+1(bt)]

 × E[Vt + ft+1(bt – Ct)| Ct ≤ bt, Vt + ft+1(bt – Ct) > ft+1(bt)]

 + [Pr(Ct ≤ bt, Vt + ft+1(bt – Ct) ≤ ft+1(bt)] ft+1(bt)

 + [Pr(Ct > bt] ft+1(bt)]

 + (1-p) ft+1(bt)

With Boundary Conditions

 fT+1(b) = 0, for all b

Event 1

Event 2

Event 3

Event 4

99

Consider the events in reverse order. Event 4 says with probability (1-p) no item

arrives and the value ft+1(bt) remains as it was. In Event 3 with probability p an item

arrives but with probability Pr(Ct > bt] its cost exceeds the available budget so that value

ft+1(bt) remains as it was. In Event 2 an item arrives with probability p and with joint

probability [Pr(Ct ≤ bt, Vt + ft+1(bt – Ct) ≤ ft+1(bt)] the cost is within budget but the reward

is insufficient so value ft+1(bt) remains as it was.

The sole event in which an acquisition is made is Event 1. Again with probability

p an item arrives and with joint probability [Pr(Ct ≤ bt, Vt + ft+1(bt – Ct) ≤ ft+1(bt)] the item

is acquired. However, the amount of value gained is uncertain since the next state

depends upon the cost of the arrival. This value is shown as a conditional expectation,

which is simply the average of the values gained over each of the acceptable choices in

the forward arc.

Papastavrou, Rajapopalan, and Kleywegt (1996) show how p acts as a filter on the

value without changing the behavior of the system qualitatively. Thus, they let p = 1 and

omit Event 4 from their recursion. We are interested in developing decision support tools

so we have retained p in the recursion. The authors describe various conditions in similar

fashion to the treatment we gave to the Type I stochastic binary knapsack: fixed cost and

variable reward, variable cost and fixed reward, and variable cost and reward.

In the case of variable costs, they discuss how as the deadline approaches, the

combinatoric nature of the knapsack problem can result in counter-intuitive results. First

100

they discuss how one should expect consistent behavior: if an item of fixed value v and

cost c is unacceptable at state (b,t) then decreasing the available budget should not result

in the item becoming acceptable. They then provide a numerical example where

inconsistent behavior takes place: the critical cost goes up even as the available budget

goes down. They establish certain conditions on the distribution of costs to ensure

consistent behavior, in particular that the distribution of cost should be concave and

monotonically decreasing on (0, ∞). We will discuss the implications of these conditions

later in the context of a numerical example.

When determining how to convert this recursion to an algorithm, or indeed to

consider how to efficiently handle a policy space that has leaped from being on (b, t) to

being on (b, t, c, v), we turn to the concept of the critical reward, Rt
b(c). The critical

reward, a function of b, t, and c, partitions the reward space between acceptable and

unacceptable values. It is defined as below.

Equation 4-16: Type II Stochastic Knapsack – Critical Reward
Rt

b(c) = ft+1(bt) – ft+1(bt – ct), if bt ≥ ct, else Rt
b(c) = ∞

Then for any arrival at time t, budget b, with cost c and value v, we define the

optimal policy π*(b, t, c, v) as being accept if vt > Rt
b(c) and reject otherwise. We present

how the recursion translates into an algorithm.

101

DSKP Recursive DP Algorithm

Step 1. Let:

ft(b) = 0 for all b in [0, B] and t in [1, T+1]

Pr(c, v) be probability of arrival with cost c and reward v; Σk Pr(ct(k), vt(k)) = 1

p be probability of an arrival in any given t

Step 2. For t in [T, 1] {

For b in [B, 0] {

For k in [1, K] {

If c(k) <= b then {

Rt
b (c(k)) = ft+1(b) – ft+1(b – c(k))

If v(k) > Rt
b (c(k)) then

ft(b) = ft(b) + p Pr(c(k), v(k)) ft+1(b - c(k))

} else {

ft(b) = ft(b) + p Pr(c(k), v(k)) ft+1(b)

}

 } else

 ft(b) = ft(b) + p Pr(c(k), v(k)) ft+1(b)

 }

 }

 ft(b) = ft(b) + (1 – p) ft+1(b)

 }

 }

Step 3. Return f() and Rt
b().

102

Assuming that we have accurately modeled the decision problem, all that is

needed to make a decision is Rt
b(c), which can be stored as a table of critical reward

values.

WPSP Small Scale Example.

This example seeks to capture the fundamental aspects of JIEDDO’s challenges.

From Chapter 1, analysis of JIEDDO’s initiatives led to two key observations: arrivals

could be approximated by a Poisson arrival process with rate of 0.32 and their respective

costs could be approximated by the distribution log10N(7.20, 0.67). Because JIEDDO did

not establish a quantitative way of measuring initiate value (see previous chapter), we are

left to speculate what values a rigorous method might produce.

In order to ensure that the DSKP Recursion algorithm operates over a broad range

of values – so that it might adequately populate the array of critical values – we chose to

characterize the distribution of initiatives as Uniform[0, 2c]. Thus the distribution of

value has a mean equal to the cost of the arrival and ensuring that, on average, value is

proportional to cost. We impose this requirement not because its believed to be true, but

because a) nothing is known about the distribution of value, and b) to ensure that the

DSKP DP algorithm is able to adequately evaluate values over a sufficient range to

populate the Rt
b(c) array.

103

Curse of Dimensionality. One of the challenges for DP is the “Curse of

Dimensionality”. The WPSP is a good example of this problem. Recall that we use

“value” as length of the arcs in our network. Budget reflects the state of the system, be it

dollars, thousands of dollars or millions of dollars. The problem with WPSP is that costs

are log normal: we found costs of individual decisions spanning more than 4 orders of

magnitude. This could lead to network with 10,000 states, 50 stages, (given the long

right tail of the log-normal distribution) 2,000 bins to discretize the cost distribution, and

50 value bins per cost bin. The resulting network would have, worst-case, 500,000 nodes

and on the order of 50 billion arcs. The example which we will use has 1,200 nodes and

561,600 arcs. DSKP DP run time is proportional to the number of arcs, so we should

expect the full problem to take at least 50,000 more cycles to run.

Example Problem Data. We will work with a smaller scale numerical example:

T = 12 time periods

B = 100 resource units

p = 1/3 - likelihood of binary arrival in any given time step

C ~ Log-normal(2, 0.5) distribution of arrival cost, (discretized over 234 bins)

V ~ Uniform(0, 2C) distribution of arrival value given its cost (20 bins)

104

Results. First, lets develop some intuition on the log-normal distribution. The

histogram below shows a histogram of 5,000,000 samples from the distribution C.

Figure 4-12 Histograms for 5M replications of the cost of a single arrival and for the total cost of all

arrivals

We can calculate the mean of the cost distribution for a single arrival via the

formula e(!!
!!

!) which, for the given data, equals 9.483. In twelve time-periods with

probability of arrival of 1/3, we expect four arrivals and a total cost of 37.930 – well

under the total budget of 100 units. Interestingly, we know that the sum of log-normal

random variables is also log-normal but there is no analytical solution for the parameters

of the distribution.

105

The long right tail tells us that there exists a small but real likelihood that a single

arrival could exceed the budget: 1.17e-10. For the 12 time-step epoch, the probability

that the resource budget would be exceeded is estimated via numerical integration at

0.012.

Running the model, the first views shown are marginal plots showing how the

optimal cumulative value f() varies as with stage t. Given the slow arrival rate, clearly

more time would be needed before the budget was effectively used.

Figure 4-13 Cumulative Value vs Stage t

This figure shows that at the full budget of 100 units, the system experiences

essentially linear growth – essentially every arrival is accepted. As the starting budget

decreases the long heavy tail of the cost distributions begins to make itself felt, with a

106

growing likelihood that one of the four expected arrivals in the epoch will have a cost that

consumes most of the available budget. With more time prior to the deadline and a

smaller budget the decision to accept is more conservative. With a small budget it

becomes difficult to accrue value since only low cost initiatives can be accepted and these

have a low likelihood of arriving. The next figure depicts cumulative optimal value f()

vs. resource state b, which is the same surface in the previous figure but rotated about the

left vertical axis.

Figure 4-14 Cumulative Value vs State b

Note that for a given state t the curve is not strictly convex: from b=0 to b=1

there is little growth in value and then the slope increases rapidly before leveling off with

diminishing returns. For the log-normal distributions small values are unlikely and so

107

when the budget is small, an affordable arrival is unlikely. This lack of monotonicity is

an example of what Papastavrou, Rajapopalan, and Kleywegt (1996) call inconsistent

behavior, a result of the cost distribution not being concave and monotonically

decreasing.

The concern is that distributions that are not concave and monotonically

decreasing can lead to degenerate behavior. The figure below, taken from their paper,

compares consistent behavior on the left with very degenerate behavior on the right.

Figure 4-15 Excerpt from Papastavrou, Rajapopalan, and Kleywegt comparing Consistent and

Inconsistent Behaviors

108

The degenerate behavior shown above on the right for critical reward, provides

strange results. For example, for an item of weight 15 and critical reward 350, the policy

would recommend that one procure the good at capacity 35 and 55 but no at capacity 45.

Looking back at Figure 4-14 we can see that except for that small region of

concavity at very low budget levels, the curve behaves consistently. The authors’

definition of consistency required a cost density distribution that was monotonically

decreasing throughout its domain. A couple example distributions they mention are the

right triangular distribution and the exponential distribution. The log-normal distribution

does not follow this behavior but rather, it has an “early” period of increasing value

followed by a long monotonically decreasing tail. The figure below compares the log-

normal distribution to the exponential for similar means.

Figure 4-16 Comparing the Log-Normal and Exponential Distributions for the Same Means

109

We conclude from these examples that other than when the problem space where

the budget is small – which we will loosely define as when the resource state is smaller

than expected cost of a single arrival -- we can expect consistent behavior. The figure

below shows the Critical Reward thresholds for a selection of costs at stage 6 – the

halfway point of the decision epoch. The Critical Reward is what will be used as a

decision aid: for an arrival at stage t, with cost c and value v, with a given budget of b,

we accept the item if v is greater than Rt
b(c).

Figure 4-17 Plot of Critical Reward vs Resource State by Cost of Arrival at Stage t=6

First we note the vertical lines on the curves. This is graphical depiction of the

constraint that the cost of the item must be less than or equal to the resource state b. Then

110

observe the “notch” in each curve. This is another example of the inconsistent effect.

Connecting the notches provides the curve of f(b, t=6) that was depicted in Figure 4-14.

Surprisingly, the sum of log-normal variables is not well understood – no closed form

exists - but has been approximated successfully via a single log-normal distribution with

several recipes for specifying the parameters (Wiu et al, 2005). This provides insight on

the shape of the critical value curves. At t=6, the expectation is for two initiatives to

arrive prior to the deadline, so the distribution of the total cost should follow the

distribution of the sum of two identically distributed log-normal random variables, which

in shape should follow a log-normal distribution. Since the distribution of initiative

value is directly proportional to cost, it follows that the distribution of critical reward as a

function of resource state b given initiative cost appears to follow a log-normal

distribution as well.

Curse of Dimensionality Revisited. This small numerical example requires

approximately one minute of run time as implemented in the statistical package R on a

2.3 GHz MacBook Pro. Since the full problem is approximately 50,000 times larger, we

should expect a similar computer, without taking any steps reduce the dimensionality of

the problem, to require about 35 days of run-time to solve the full problem.

Comparing the Bernoulli Arrival Process as an Approximation to the

Poisson. As described in the introduction to this paper, the number of arrivals for a given

period was assumed to follow a Poisson distribution. This poses a problem for either of

111

the approaches we have chosen, since it means the number of the arrivals is theoretically

unbounded.

From Papastavrou et al (1996) we use the approach of discretizing time to a unit

step small enough where the likelihood of more than one arrival is sufficiently small. We

then use a Bernoulli arrival process as an approximation of the Poisson. The natural

question then is how close is the Bernoulli approximation? Employing a probability of

arrival of 1/3, the Bernoulli arrival process yields an arrival process that follows the well-

known binomial distribution: the number of successes x in n Bernoulli trails where each

trial has the same probability of success p. By the Poisson Limit Theorem, the Poisson

distribution converges to the Binomial for large n and small p. We compare first the

number of arrivals.

Figure 4-18 Histograms comparing Poison and Bernoulli arrivals in a discrete time period of 12

steps with mean arrivals per time period of 1/3

112

Clearly, 12 is not a large enough n and 1/3 not a small enough p. The next

comparison examines the effect of the approximation on the cumulative cost distribution.

Figure 4-19 Histograms comparing Poisson and Bernoulli arrival processes total cost distributions

The resulting difference is nuanced. The Poisson shows a stronger mode at zero

while the Bernoulli arrival process has a weaker mode. This is on the whole due to

smaller variance of the Binomial compared to the Poisson for these data. Practically

speaking the difference is small. Numerically integrating shows that the likelihood the

Bernoulli arrival process results in exceeding the budget of 100 units is 0.012 while for

the Poisson the likelihood is 0.020. On the whole this approximation, for a small price in

accuracy, provides us with a viable way of modeling the problem by bounding the

number of arrivals.

113

Insights. While using the DSKP DP algorithm to solve real-time instances of the

WPSP is not practical, it does provide valuable insights. The big insight is that the

optimal rate of value accrual is super-linear – meaning that it does not just follow a linear

rate. It is optimal to be more conservative at the start of the period and then be more

aggressive as time runs out. The results are not precisely scalable: there is a complex

relationship between the arrival rate, the distribution of cost, and the duration of the

decision epoch. Basic results can lead to simple observations: items with a value to cost

ratio less than the linear rate are never optimal to acquire.

Acquisition Phases. A challenge to realistic implementation of the WPSP is that

the problem is not as myopic as we have modeled it. Commonly, there is some

knowledge of arriving items, some decisions can be deferred at a cost, development can

be slowed down or sped up, and development is done in phases. Never is an initial

decision made with all the resources required to deliver that value fully committed.

Rather, items are given funding increments over developmental phases with intermediate

goals or gates that must be achieved. This limits risk without slowing the process down

untowardly. These subsequent decision points can be and usually are scheduled, in

contrast to the random arrival process. Thus, at a minimum the WPSP requires that we

capture the notion that at every stage t we have the possibility of arrivals and also the

possibility of scheduled decisions. This added complication on top of the previously

discussed curse of dimensionality drives home the reality that if we are to use DP to

114

address this problem, we need a different approach: Approximate Dynamic

Programming.

4.4 Approximate Dynamic Programming Implementation of WPSP

Approximate Dynamic Programming (ADP) is a relatively recent approach.

When interpreting the shortest path problem in the case of random travel times over arcs,

one way to think about is to envision navigating forward through the network repeatedly

and learning the shortest path. For well-solved problems, it is not the ideal technique.

Exact methods produce better answers faster. According to Powell (2007) it is at its best

when attempting to solve sequential decision problems that are unsolvable via exact

methods because of being large, or where the state transition function are not known.

ADP has a variety of approaches for handling different kind of problems, but one of the

major categorizations is based on whether problems have finite or infinite horizons. Our

focus is on the finite horizon problem: the decision maker has a budget that she must use

or lose by the end of the decision epoch.

Recall that in stochastic DP, f() is an expectation. In ADP, we make repeated

trips through the network, where each trip generates a sample of cumulative value by

node. Powell in his notation has this sample of shortest path values as vt
n and the

expectation is Vt
n. To stay consistent with our notation up till now, we will make the n-th

sample ft
n, leaving it un-italicized to differentiate from ft

n(), the expectation after the n-th

iteration. We sketch a simple algorithm of the approach.

115

Simple Finite Horizon ADP WPSP Algorithm

Step 0. Initialize ft
0(s), set iteration n = 1, set b.

Step 1. Generate a sample set of arrivals over the decision epoch.

Step 2. For t = 1 to T {

 If there is no arrival let ct = 0 and vt = 0

Solve the Bellman equation:

 ft
n = maxx{vtxt + ft+1

n-1(bt – ctxt)}, s.t. ct <= bt

 Update the expectation, where k is the counter for the visits to node (t,bt):

 ft
n(bt) = ((k – 1)/k)* ft+1

n-1(bt) + (1/k)* ft
n

 Update the state:

 bt+1 = bt - ctxt

 }

Step 3. While n < N, increment n. Return to Step 1.

Step 4. Return ft
N(bt) for all t and b.

This algorithm is what Powell calls the single pass procedure. He also describes

the double pass procedure, where the difference lies in how the updating of the

expectation is conducted. In the single pass, the expectation is updated at every stage

while making the trip through the network. In the double pass, we find the shortest path

through the sample network, keeping track of the nodes visited and the decisions made.

We then travel backwards, and use that shortest path information to update the

116

expectation at each node that was visited. The difference is subtle but significant since

the single pass could suppress extreme behavior.

Double Pass Finite Horizon ADP WPSP Algorithm

Step 0. Initialize ft
0(s), set iteration n = 1, set b.

Step 1. Generate a sample set of arrivals over the decision epoch.

Step 2. For t = 1 to T {

 If there is no arrival let ct = 0 and vt = 0

 Solve the Bellman equation:

 xt = argmax{vtxt + ft+1
n-1(bt – ctxt)}

 Update the state:

 bt+1 = bt - ctxt

 }

Step 3. For t = T to 1 {

 Let bT+1 = 0

Compute shortest path distance to t

 ft
n = vtxt + ft+1

n-1

 Update the state:

 bt = bt+1 + ctxt

 Update the expectation:

 ft
n(bt) = ((n – 1)/n)* ft+1

n-1(bt) + (1/n)* ft
n

 }

Step 4. While n < N, increment n. Return to Step 1.

117

Step 5. Return ft
N(bt) for all t and b.

For the WPSP this approach gives us a better picture of what a given decision

epoch might look like, since the expectation is updated using the entire shortest sample

path versus updating the expectation one arc at a time.

Previously we used the array of Critical Reward as the output that would be used

to support decision making, which is not an output here. We can still use this concept but

we need not calculate the entire array. For an arrival at stage t for resource level b with

cost c, we can readily calculate the Critical Reward using its definition.

Equation 4-17: ADP Critical Reward
 Rt

b(c) = ft+1
N(bt) – ft+1

N(bt – ct)

4.4.1 Initial Implementation

Pre-decision and Post-decision state variables. Previously we discussed how

the state space could be partitioned to differentiate between when the system is affected

by decisions and when it is affected by exogenous effects. This is an important concept

in ADP, particularly in addressing Markov Decision Processes, where the next state of

the system is conditioned both on the decision and on exogenous effects. However, in

118

the WPSP, the exogenous effect is the arrival and its accompanying descriptive data.

Once a decision is made, the state transition is deterministic: the resource state (budget)

is decremented accordingly and the system advances to the next stage. Thus, we initially

used the pre-decision state variable to avoid the unnecessary complication. As we will

see, the post-decision state variable proved vital later when we needed to approximate the

value function.

“Look-up Table” ADP Results. Since the value function is estimated by

keeping a look-up table of both the value estimate and the number of visits, to

differentiate this from later implementations we call this version the “Look-up Table”

ADP. Running this algorithm in order to generate smooth information requires varying

the starting points – both for stage and the resource state variable – since certain

trajectories are more likely than others and thus the states in these trajectories will get

more visits. Varying the starting points helps fill out the value space. Despite this, the

results can be noisy, as depicted in the figure below.

119

Figure 4-20 ADP WPSP Results for 12,000 Iterations

To smooth these results, one technique employed was to run an outer loop

algorithm that incrementally increased the default starting budget, although within each

outer-loop iteration we still varied the starting point within the default starting budget.

For each outer-loop budget value, the final cumulative value at a selected set of stages

was recorded. This resulted in a much smoother graph at the price of 34 outer loop

evolutions, each of 12,000 iterations.

120

Figure 4-21 ADP WPSP Results: Smoothed Via Outer loop Procedure

While we have shown that the ADP implementation can replicate the results from

the DP DSKP algorithm, the approach, at this point and for the given set of data, is far

less efficient. Fundamentally, we must visit every state multiple times in order estimate

the value function. The power of ADP lies in being able to maximize the value of the

information gained from every trip through the network, exploiting problem structure and

statistical methods to approximate the value function, versus trying to directly calculate

the sample mean state by state.

121

4.4.2 Approximating the Value Function

For this problem, the power in ADP lies in exploiting regression to approximate

the value function. The idea is to explore the space and “learn” the value function as an

analytical function of the state space. Only via an approximation will we be able to run

large-scale problems – cases of high variance and large orders of magnitude. In order to

do value approximation we will need to employ three concepts that are central to ADP:

learning, the post-decision variable, and recursive regression.

Learning and the Stochastic Gradient Function

In our initial ADP implementation, we kept track of how many times we visited

each node in order to estimate the value function at that node. This a modification on the

basic updating equation:

Equation 4-18: Basic Value Function Updating Equation

𝑓!! 𝑏! =
𝑛 − 1
𝑛 𝑓!!!! 𝑏! +

1
𝑛 f!

!

This a recursive equation for calculating the sample mean.

122

Equation 4-19: Sample Mean Equation

𝑓!! 𝑏! =
1
𝑛 f!!

!

!!!

Powell tells us that what is nice about using Equation 4-18 is that it is very simple

and easy to calculate. The problem with this approach in practice is that it places

excessive weight on the information obtained early in the exploration of the space and,

because it has a tendency to approach zero quickly, it provides too little weight to the

information gained later when the values are becoming better established. We modified

the estimation in the initial implementation to keep track of how many times each state

was visited since the odds of visiting any single state are slim. However, this approach

only made the overall approach more cumbersome computationally.

Powell approaches this issue by starting with the basic theory of how to

approximate the mean algorithmically, using the stochastic gradient algorithm. Assume

that we have a vector of observations R from a random process W. We wish to find the

number θ that minimizes the mean squared error. We define the error function F(θ, W).

123

Equation 4-20: ADP Error Function

min
!
𝔼{𝐹(𝜃,𝑊} = min

!
𝔼{
1
2 (𝜃 − 𝑅)

!}

Taking the derivative and setting it equal to zero would be the standard solution.

However, let us further assume that the observations come from a random process and

that we can only see one observation at a time and we need to update our estimate as we

go. Let R(ω) be the current sample. Then we can consider the sample error function.

Equation 4-21: ADP Sample Error Function

 𝐹 𝜃,𝜔 =
1
2 (𝜃 − 𝑅(𝜔))

!

The gradient of this function is just the difference between θ and R(ω). It is

stochastic since it depends upon the sample from a stochastic process. This gradient

allows us to recast the problem of updating the estimate with each sample as a kind of

search problem. Nash and Sofer present a basic search equation that consists of the

previous solution, an improving direction, and a step size. Powell embeds this gradient in

the standard search equation, which uses the last estimate θn-1, the stochastic gradient, and

a step size αn-1 to yield the next estimate θn.

124

Equation 4-22: ADP Stochastic Gradient Equation
 𝜃! = 𝜃!!! − 𝛼!!! 𝜃!!! − 𝑅(𝜔!)

We turn our attention first to the issue of step-size, 𝛼!!!.

Step Sizes

Powell studies in detail the question of the step size. As discussed earlier, in this

type of stochastic search using 1/n will lead to an artificially early convergence. For most

problems, Powell tells us, there is not an optimal search step. The challenge is that we

are trying to estimate the value function one random sample at a time while

systematically searching over a policy space. He offers many strategies that are each best

suited to particular ADP applications. Often strategies can be used in combination.

One simple strategy to prevent premature convergence, and one that is suited to

approaches involving many parameters, is to use a constant step size. This is particularly

useful when we wish the algorithm to have ample opportunity to explore the policy

space. It has the disadvantage that the step size remains constant rather than allowing it

to decay to zero.

For our application, based on exploration with a variety of rules, we altered the

concept of constant size. We allowed the algorithm to search with a constant size for a

125

proportion γ of the total runs. At every iteration we applied a multiplicative factor β < 1

to α so that it would exponentially decay to zero. This strategy is shown below.

Search-Then-Decay Step-size Strategy
 𝜶𝒏 = 𝒂𝟎, if n < γN

 𝜶𝒏 = 𝜷𝒂𝒏!𝟏, if n ≥ γ N

Setting the values of α0, γ, and β required trial and error. The intent is to allow the

algorithm to spend most of the time searching. Once values have stabilized we then

allow the step-size to decay towards zero. One way to do this is to track the sum squared

error (SSE) – the square of the stochastic gradient. If the SSE becomes stable, this is an

indicator that the step-size is allowed to decay. Once the decay point γN is reached, the

aim is to set β to a value that bring the step-size down close to zero in N(1 – γ) remaining

iterations.

As to the fixed step-size α0, Powell discusses how special care is required when

selecting fixed step sizes for recursive regression models using basis functions.

Post-Decision State Variable

When we kept a look-up table of the value function, the post-decision state

variable seemed an unnecessary complication. However, it is vital for a value

126

approximation scheme. Fundamentally, we want to regress on the post-decision state

because this significantly reduces the variance in the estimation problem. If we were to

regress on the pre-decision state variable, our regression model would have to account for

both the variance in the random process and the variance in the decisions induced by the

systemic search. Regressing on the post-decision state variable removes this decision-

induced variance.

Powell indicates the post-decision state variable by appending the superscript x to

the state. Conceptually, it also easy to understand: for a given budget b and an arrival

with cost c, our point of comparison is the value of passing on the buying opportunity and

staying at bx = b; or acquiring and moving to state bx = b-c.

Recursive Regression

Regression has the attractive property that we can avoid the requirement of using

a continuous state variable – the amount of resources – as both a discrete variable and

also as an index to the state space. Instead we can use the resource state as an

independent variable and use it to compute an approximation to the value function.

The standard regression equation found in most textbooks is shown below.

127

Equation 4-23: Standard Regression Equation – Vector Form
 𝑦 = 𝜃!𝑥 + 𝜖

Here we have used a vector form of the equation. If the original decision variable

x has I dimensions, we have added an additional element x0 = 1 for the intercept term θ0.

We note, however, that our value function is clearly not linear and we only a single

dimensional predictor b. As we will see, we will have a different model for each stage t.

What Powell stresses is the need for basis functions, so that the approximation function is

now a function of both the state b and the parameter vector Θ, via a set of basis functions

ϕj. This makes our approximate value function as follows.

Equation 4-24: Regression-Based Approximate Value Function
 𝑓!(𝑏!! ,𝜃) = 𝜃!𝜙!(𝑏!!)!

Note that we are using the post-decision variable. The challenge now is how to

transform this equation into a recursive approach. The answer is to embed this equation

into the stochastic gradient search equation.

128

Equation 4-25: Recursive Regression-Based Approximate Value Function
 𝜃! = 𝜃!!! − 𝛼!!!(𝑓!!!! 𝑏!! ,𝜃 − f!!)∇!𝑓!!!! 𝑏!! ,𝜃

The gradient with respect to θ is the vector of basis equations.

Equation 4-26: Recursive Regression-Based Approximate Value Function Gradient Term
 ∇!𝑓!!!! 𝑏!! ,𝜃 = Φ(𝑏!!)

Revisiting the step-size rule previously described, Powell states that in recursive

regression there is frequently a scaling problem involved. He recommends adjusting the

initial step-size so that initial changes in θj run 20 to 50 percent, in order to assure that the

algorithm do not allow the values to swing wildly and fail to converge. This was the case

for this problem initially. We finally settled on an initial alpha of 0.01. While this may

seem ridiculously small, it proved very effective. The figure below shows a smoothed

plot of SSE during a run using this initial step-size in the Search-then-Decay strategy.

Despite the small step size, SSE values are still large and variable, from the log-normal

distribution heavy tails.

129

Figure 4-22 Smoothed Plot SSE for Stage t=1

The issue then becomes how to choose basis functions. Konedaris (2008)

describes many approaches to value function approximation basis functions, and

emphasizing the utility of the Fourier series. These and other sigmoid basis functions

such as the Gompertz curve were tried. While none of these worked particularly well,

this exploration led to the insight that the value function is ultimately a weighted sum of

the value distributions of the arriving initiatives. Since these are uniformly distributed

and proportional to the cost distribution, then the value function should have the shape of

a log-normal cumulative distribution function (cdf). The question was: what parameters

to use? The parameters for the log-normal distribution have to remain constant, since the

search algorithm varies the regression parameters, not the basis functions themselves.

130

We conducted some preliminary investigation of using log-normal cdf basis

functions for linear regression using output data from previous runs. It became apparent

that for different stages, the best fit required a different set of log-normal parameters.

The approach we chose was to use a set of log-normal basis functions with the means

drawn from a sequence that started with the means of a single arrival and proceeded up in

steps to a mean larger than might be expected to arrive during the entire decision epoch.

For the set we choose to use a log-variance of 1.0 since from our preliminary

investigation this seemed to be a good choice. The idea was that for a single time step we

should get exactly the mean of a single arrival, save for the randomness of the arrival

process while, for the full epoch, we would get a log-normal with a mean close if not

equal to sum of all the arrivals.

For our initial attempt via this example problem we used 6 basis functions, with

the log-means sequence running from 2.0 to 4.0, in steps of 0.4. The figure below shows

the resulting approximated value function alongside our initial attempts.

131

Figure 4-23 Side by Side Comparison of the Table Look Up Value Function vs Recursive Regression
Value Function Approximation using Log Normal basis functions

Qualitatively, there seem to be two areas of concern: for late stages (t=12) the

slope actually goes negative and at lower values of b the slope appears too steep

compared to the output. Other than this, the value approximation seems to compare well

with the table look-up approach. It also begs comparison to the “exact” values obtained

from the DSKP DP algorithm. The figure below compares these two results.

132

Figure 4-24 Side by Side Comparison of the exact DSKP DP solution vs Recursive Regression Value
Function Approximation using Log Normal basis functions

This comparison reinforces the previously observed negative slope in the late

stages and subtle differences in the shape of the curve. We also note that there is too

little concavity for very small values of b. It is important to get this fitting on a sound

basis because for the full-scale problem we will not have the luxury of an exact solution

for comparison.

This led us to question of whether there was a “right” number of basis functions.

In order to explore the right number we needed to understand how to choose the sequence

of log-means for a given number of functions. In the previous sequence, we used a

sequence from 2 to 4. To make the process more general, we have the range for the

sequence start on the mean (not log-mean) of the distribution, which in log space is µ +

σ2/2. The upper range of the sequence we set as the product of exp(µ + σ2/2) and the

number of expected arrivals over the entire epoch. Translating this back into log space

133

the upper extreme of the basis range is ln(pTexp(µ + σ2/2)). The approach we chose was

to use this range to generate a basis sequence would be to use mid-points of increasing

numbers of even partitions. The table below illustrates this process for the one through

four bases.

Table 4-4 Selecting Log-Means Based on Number of Basis Functions

Using log-means generating via this sequence, the figure below shows a panel of

the same plot of the Regression ADP for the set of bases {1, 2, 3, 4, 6, 12}.

#"Bases LL UL
1 2.25 2.94 3.64
2 2.25 2.71 3.17 3.64
3 2.25 2.60 2.94 3.29 3.64
4 2.25 2.53 2.80 3.08 3.36 3.64

Log6Means

134

Figure 4-25 Panel of Recursive Regression Value Functions Approximations Varying the Number of

Basis Functions with log variance of 1.0

To compare these numerically, we examine the mean of the smoothed sum of

squared errors (MSSSE). As shown in Figure 4-22 we use an exponential smoothed sum

of square errors to observe convergence behavior. Observing the mean of this time series

provides a useful basis for comparison among different numbers of basis functions. To

ensure that these comparisons are useful, we reduce variance by using the same random

seed throughout.

As the table shows, these are very close. Perhaps only a few basis functions are

really needed.

135

Table 4-5 Mean Smoothed Sum of Squared Errors for Different Number of Lognormal Basis
Functions

Even a single log-normal basis function captures the basic dynamics. Comparing

the shapes of the curves to the DSKP DP solution, there is still a relative lack of

concavity with too sleep for t=1. The issue seems to be that in this regression scheme the

“wrong” basis functions are still allowed to have some influence over the fit. For

example, the log-mean of 2.25 equates the mean value we expect for a single arrival –

which is a scenario aligned with t=12, the last stage. Yet a 12-basis function scheme

would allow this particular basis to have influence over stage 1, from which we expect

four arrivals. Even a scheme with only two basis functions can produce negative

coefficients for some the stage solutions as per the table below.

#"Bases MSSSE
1 250.73
2 249.98
3 249.97
4 250.24
6 251.18
12 254.96

136

Table 4-6 Regression Coefficients Resulting from a Two Basis Function Regression Solutions to the
ADP WPSP Example Problem

 The other aspect that required examination was the variance of the basis

functions. The various basis functions used above all employed the same log variance of

1.0. We arrived at this figure from our preliminary regressions on output data; not

because it was the ideal figure but, because if only one variance was to be used, it seemed

to be the best case for the data employed. Given our approach there’s no reason we could

not employ a set of basis functions where we vary both log-means and log-variance.

We use the same log-means generation approach, but for each log-mean we

generate two basis functions. Recall that the distribution of initiative value depends upon

the cost c of the most recent arrival, being U(0, 2c). So we should expect that the cdf of

the log-normal used to fit should have a log-variance of 0.5 (which corresponds to the

cost distribution in this example problem) and one larger – but how much larger?

For the following panel we use 2 and 4 separate log-means, the top row being

those with 2 log-means. The three columns compare by size of the second log-variance

as a multiple of the first: 50% larger, twice as large, and four times larger.

BasisLogMean t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12
2.17 19.16 21.41 22.64 24.54 25.67 26.61 25.52 25.30 23.08 20.72 17.53 12.39
3.17 18.23 12.85 8.33 3.29 81.01 85.21 87.26 810.08 811.16 812.21 812.33 810.58

137

Figure 4-26 Panel of Recursive Regression Value Functions Approximations Varying the number of

Log-Means and Log-Variances

As before, we examine the mean smoothed square error versus the number of log-

means used. Here the best fit seems to occur when we use four log-means with the

variance of the second set being twice the size.

Table 4-7 Mean Smoothed Sum of Squared Errors for Different Numbers of Log-Means with Two
Log-Variances

#Log%Means/2dVarMultiple MSSSE
27/71.5 257.12
47/71.5 280.49
27/72 245.32
47/72 244.05
27/74 248.39
47/74 248.29

138

Comparing the best of these (per MSSSE) to the DSKP DP allows us to see if matters

have improved qualitatively. While it seems that concavity has certainly improved and

we have eliminated the issue with negative slope, the general shape of the curve still does

not have quite the right shape.

Figure 4-27 Side by Side Comparison of the exact DSKP DP solution vs Recursive Regression Value
Function Approximation using eight Log Normal basis functions, using a sequence of four log-means

by two log-variances

We decided to explore one more twist on this scheme to see if we could develop a

more nuanced regression solution based on the problem’s structure. We would have only

one basis function, however, we would employ an estimate of the log-mean based upon

the number arrivals for a given stage t. Thus we would seek to squeeze as much as

139

possible out of the problem structure. We called this approach the “Tuned Lognormal

Bases Regression ADP”.

Figure 4-28 Comparing the DSKP Value function to the result from the tuned log-normal bases

regression

While the thought was initially attractive, it shows that while the cumulative value

functions may have a log-normal shape, that their parameters do not follow neat rules of

thumb.

Of the approaches we tried, the approach that seems to have best promise is one

that uses a fixed set of bases functions where we combinations of various log means and

variances. Our “best of breed” is the case of 4 log-means, using midpoints based on the

even partition of a range from the cost of a single arrival to the cost of the expected

number of arrivals, and 2 variances, using first the variance of a single arrivals cost and

140

twice that for the second variance. Our goal is determine the ability of this algorithm to

handle the large-scale problem: 9 order magnitude variation in costs and a 50-week

epoch. In preparation for this, we briefly consider an important aspect of the problem

data: relative resourcing level.

Relative Resourcing Level

We use this term to describe the extent to which the dynamic stochastic knapsack

problem is constrained. At one extreme we can consider a severely constrained problem,

where the budget is on the order of 25% of the expected total cost of arrivals. For the

example scenario this would equate to being able to afford only one of the roughly four

expected arrivals. At the other extreme, we consider a budget level that exceeds the cost

of all arrivals in the overwhelming number of sampled epochs, a situation which can be

described as only mildly constrained.

In the case of the severely constrained budget, we can estimate the resulting

cumulative value via a simple “back-of-the-envelope” calculation: the budget equals the

expected cost of a single arrival and value is proportional to cost. The latter extreme

must be sampled since, while we know the cumulative cost distribution is log-normal, we

do not know its parameters. For the middle case, we consider the case where the budget

equals the expect cost of arrivals per epoch.

The budgets are, based on our example problem’s data, 10, 40, and 100 budget

units. We also wish to explore the variance. As we will see later the variance in the full

141

data set is much larger than in the base case. Thus, we will explore log-variances ranging

from a low smaller than the example case to one equivalent to a variance similar to full

data set: 0.125, 1.0, and 4.0.

Figure 4-29 Different Constraint Levels, From Severely to Mildly Constrained (from budget of 10 to

budget of 100), Compared to Changes in Variance from Low to High (Log-variance = (0.125, 1.0,
4.0))

142

We can see that because in each case where we have the same log-mean and log-

variance, the panels show the same curve, with the only difference being one of scale.

With lower variance, budget values much below the single arrival mean allow little to be

acquired. At higher variance, the cumulative value line at lower budget levels

approaches linearity.

The other tale being told is the contrast between budget, arrival cost, and time in

which to acquire arrivals. The left-most column shows the situation where there is just

not enough resources. Every additional bit of resources added to the budget produces a

strong return. At the other extreme, relative to the amount of value expected in the

epoch, there are just too many resources. And, adding resources does not help much –

what is needed relative to the resourcing level is to either increase the number of arrivals

or to make these of greater value.

Initiative Arrival Rate

 The rate at which initiatives arrive is another parameter that impacts the shape of

the value curve. The previous examples looked at 12 time steps and a budget of 100 with

an arrival probability p of 1/3. What happens as the arrival rate increases?

143

Figure 4-30 Comparison of the Value Curve for the Same Distribution for Different Arrival Rates

One of the observations one might have made earlier was that the amount of value

returned relative to the budget seemed deficient. If value was proportional to cost then

why was it hard to see this value realized; that is, if the budget was 100 when does the

value realized begin to approach 100. The issue was that there was not enough time

given the arrival rate; or equivalently, the arrival rate was low given the amount of time.

Here we see that the curves are almost identical as the arrival is increased. What has

changed is the scale.

Armed with these insights we can test the ability of the Recursive Regression

ADP to run the large-scale problem from the JIEDDO case using the data initially

described in Chapter 1, and also to make qualitative assessments of the nature of the

problem based on its data and resulting cumulative value curve.

4.4.3 Modeling the full scale problem

The full-scale problem employs the following data.

144

Full Scale Problem Data

T = 52 time periods

B = 2,500,000,000 resource units

p = 1/3 - likelihood of binary arrival in any given time step

C ~ Log-normal(16.58, 3.57) distribution of cost given an arrival

V ~ Uniform(0, 2C) distribution of value of an arrival given its cost

A litmus test is to examine the likelihood that a single arrival exceeds the available

budget. For a single arrival we can calculate this directly: 0.0038. While small, this is

several orders of magnitude higher than in the example problem. As the histogram

shows, this particular distribution has a very long and pronounced right tail.

Figure 4-31 Histogram of individual log-normal costs for a sample of 1 million.

145

The next issue is how well the Bernoulli arrival process approximates the Poisson,

both in terms of the number of arrivals and in terms of the distribution of total cost per

decision epoch, which dictates the likelihood that the total cost might exceed the

available budget.

Figure 4-32 Panel Comparing Poisson Arrivals to Bernoulli Arrivals and their Respective Summed

Cost Histograms

The extreme tails make comparison difficult. We are able to estimate numerically

the likelihood that the summed cost will exceed the budget of 2.5B in the base case. For

the Poisson arrivals the probability 0.159 and for the Bernoulli it is 0.157. We note two

146

things: there is a much higher probability in this case than in sample case that in a given

epoch the cost of arrivals will exceed the available budget; and the Bernoulli arrivals

result is virtually indistinguishable from the Poisson. This latter result is attributable to

the four-fold increase in the number of time steps – which theory tells us results in

increased convergence by the binomial approximation towards the Poisson.

Run Time. In the standard DP implementation, the cardinality of a state variable

has profound effect on run time because the algorithm must visit every state. Without a

means of approximating the value function, our initial ADP approach was worse, since

we had to visit every state multiple times in order to calculate a means. Thus, the main

technical obstacle for addressing the large-scale problem was the issue of run time.

The recursive regression value function approximation approach we have good

reason to believe will change this. Theoretically, the scaling of the magnitude of the

budget – whether 100 dollars or $2.5B – should have no effect on run times in our

recursive regression ADP implementation. Using a budget of multi-billion resource units

– where the fundamental resource unit that differentiates between buy and no buy could

be a single dollar – is clearly a case of spurious precision. However, just as proof of

principle we will use dollars to test the effect on run time. If correct, we should expect

the only change in run time to be an increase from the number of stages, from twelve

stages in the sample problem of 12 time stages to 52 stages representing the weeks in a

year. The following table compares run times for these different approaches.

147

Table 4-8 Comparing Run Times of Different Approaches and Effect of Larger Size Problems on
Recursive Regression Value Function Approximation

Using representative JIEDDO data from the time frame we first examined this

problem – which provides a kind of worst case scenario – we showed that the ADP with

value function approximation solved this very large problem with relative ease.

Next we examine the quality of the resulting solution.

Figure 4-33 Cumulative Value Curve Using Large Scale Problem Data – Preliminary Solution

Approach Stages Budget Runs Time Comments

DSKP 12 100 na 73>sec Upper@bound>of>arcs:>>20*100*100*12>=>2,400,000
Look>Up>Table>Value>Function 12 100 12,000 245>sec Outer>loop>procedure:>>7>outer>loops
Recursive>Regression>Approx. 12 100 12,000 13>sec
Recursive>Regression>Approx. 52 100 12,000 54>sec Shows>the>effect>of>increased>stages:>>essentially>linear
Recursive>Regression>Approx. 52 2.50E+09 12,000 59>sec Effect>of>large>numbers>on>computational>arithmetic?

148

This curve shows that the problem data falls into the category of being mildly

constrained. As one of their senior acquisition officials relayed to us at that time, “We

are not really resource constrained.” We must ask whether the apparent lack of concavity

is normal. The lack of a point of comparison for this large-scale solution makes the ADP

solution suspect.

4.4.4 Effect of Varying Variance

At first blush, it is natural to be concerned with the scale of the problem: costs for

these decisions range in magnitude from hundreds of thousands to billions of dollars.

However, when we make the units millions of dollars, the scale really becomes one of

three orders of magnitude – from one million to one billion, or equivalently one to one-

thousand. The example problem was concerned with two orders of magnitude. We could

just as easily have made the base unit tens of millions of dollars and mimicked the scale

of the example problem. But the other difference in these data is the variance of these

two distributions. The example problem had a variance in log space of 0.5. The example

problem has variance in log space of 3.5.

Lemma: Rescaling the distribution in linear space changes the mean but not the

variance.

Proof. Let X ~ LogNormal(µ, σ2).

If Z = log(X) then Exp[Z] = µ and Var[Z] = σ2.

149

Let Y = X/k – the rescaled version of X.

Then log(Y) = log(X/k) = log(X) – log(k),

Which implies that Exp[log(Y)] = Exp[log(X) – log(k)] = µ – log(k).

But Var[log(Y)] = Exp[log(Y)2] – Exp[log(Y)]2

è Exp[log(X)2 – 2log(X)log(k) + log(k)2] – (µ2 – 2µlog(k) + log(k)2)

è Exp[log(X)2] – 2µlog(k) + log(k)2 – µ2 + 2µlog(k) – log(k)2

è Exp[log(X)2] – µ2 = Exp[Z2] – Exp[Z]2 = Var[Z].

Thus, rescaling a log-normal does not change its variance. Our initial focus on

the need to scale appropriately was misplaced. The scale of the sample problem was

sufficient – what was necessary for this particular distribution was to appropriately reflect

the variance. The long right tail of the log-normal, particularly in cases of high variance,

may be creating special difficulties for calculating the expectation of a dynamic

stochastic knapsack. In the next section we revisit the sample problem but explore the

effect of differing levels of variance.

The Effect of Differing Levels of Variance on Solution Methods

The main goal of this section is to revisit our comparison of DSKP and ADP

solution methods. The sample problem had variance of 0.5 in log-space while the “full”

problem data had log-space variance of 3.5. Our run matrix will include these two end-

points plus solutions at 1.5 and 2.5 times the log-variance. In conducting the trial runs to

prepare for this comparison, we discovered two things.

150

First, the increase in variance greatly slowed down the DSKP algorithm. This

was not wholly unexpected but the increase in run time was startling and highlighted

Dynamic Programming’s Curse of Dimensionality.

The second discovery was that our sequence of log-means for the basis functions

was ill adapted to the increase in variance. Recall, that our sequence means started on the

mean of a single arrival and had as its end point the product of this mean and the

expected number of arrivals. The steps between the log-means were the ratio of this

distance in log-space to the number of required terms. However, as variance increased

this sequence did not adequately address the resulting value functions and the fit suffered

compared to the DSKP solution.

Noting that the mean of the log-normal is Exp(µ + σ2/2), we experimented with

using sequences where the steps in the sequence were multiples of log-variance σ2/2 and

the square root of this term. We finally settled on using the latter term as producing a fit

that adapted to both low and high variance cases.

The table below compares the two approaches using two different cases of log-

variance in the data. The case assumes a log-mean of 2, 4 expected arrivals and 4 terms

in the log sequence. The variance-based sequence generates a similar sequence to the

means-based sequence when variance is small but when variance it large, it expands the

sequence accordingly. Note that the sequence starts not with the µ + σ2/2 but with µ +

σ2/2 + σ2; this means that first term in the regression would result in a mean larger than

that of the single arrival.

151

Table 4-9 Comparing two methods for generating basis functions means, the old method depending
upon the mean and number of the arrivals, the new strictly using variance/2

While this might seem counter-intuitive, this was an adjustment we made based

on the observation that the recursive regression seemed to place a lot of emphasis on the

first term. Forcing the first term to be small, especially as the variance got larger,

resulted in a poor fit. The table below compares the resulting log-mean sequences

Armed with this new approach we set about completing the comparison of the

ADP and DSKP approaches for the aforementioned four cases. We compare them

graphically, via run time, and the value at the boundary conditions (t=1, b=B). This last

is important because the solution at the boundary conditions is what informs the current

decision.

Variance Method Step Log1mean31 Log1mean32 Log1mean33 Log1mean34
0.5 Old 0.2773 2.5273 2.8045 3.0818 3.3590
0.5 New 0.5000 2.7500 3.2500 3.7500 4.2500
3.5 Old 0.2773 4.0273 4.3045 4.5818 4.8590
3.5 New 3.5000 7.2500 10.7500 14.2500 17.7500

Note:33Employes3log1mean3of32,343expected3arrivals,3and343terms3in3the3log1mean3sequence

152

Case 1: Variance = 0.5

Figure 4-34 Comparing DP and ADP for Cost Log-Variance of 0.5

The solution times for the DSKP took 70 seconds while the ADP solution

required 11 seconds. Qualitatively we see that the curve shapes are not exactly the same.

Both share the early period of concavity but it is more pronounced in the ADP. The

boundary condition value (t=1, b=100) for the DP approach was 37.54 while the ADP

provided a starting value of 38.43.

153

Case 2: Variance = 1.5

Figure 4-35 Comparing DP and ADP for Cost Log-Variance of 1.5

For the DSKP solution the additive increase in log-variance resulted in a 10 fold

increase in run-time: the solution required 718 seconds. The ADP solution required

increased to 16 seconds. Qualitatively, the ADP solutions tend to show more convexity,

while the period of concavity has diminished for both. Boundary condition values were

for DP 45.65 and for ADP 45.63.

154

Case 3: Variance = 2.5

Figure 4-36 Comparing DP and ADP for Cost Log-Variance of 2.5

Once again the ADP solution was basically unchanged with a solution time of 11

seconds. For the DSKP the same increase in log-variance resulted in another order of

magnitude increase in run-time. The solution required 8974 seconds. While we see more

convexity from the ADP solution there is very little concavity left in either graph. The

value of the boundary condition for the DP was 46.20 and for the ADP was 44.54.

155

Case 4: Variance 3.5

Figure 4-37 Comparing DP and ADP for Cost Log-Variance of 3.5

DSKP run time exploded to 126,361 seconds. ADP run time was 11 seconds.

The ADP solution retains more pronounced convexity versus the DSKP solution. DSKP

DP starting value was 45.29, while the ADP solution was 40.45.

Intuition tells us that the increase in variance should have led to a higher value for

this case in the DP solution over the lower variances cases. However, value has dropped

off slightly. It is our suspicion that the errors are numerical and may be a failing of the

discretization scheme to effectively capture the effect of the very long tail of the log-

normal with this high a variance. This same issue appears to have affected the ADP

solution as well. This emphasizes the difficulty of effectively hedging against the effect

of rare events.

156

Obtaining a good fit through the whole state-space for a log-normal cumulative

curve of unknown parameters via recursive regression is obviously a challenge. We

make no argument that the approach here is the best. However, at the starting conditions

it provided a useful solution.

4.5 Summary

In this chapter we provided a brief introduction to DP and considered how to use

DP to solve the binary knapsack problem. We introduced stochasticity and considered

different variations on the static stochastic binary knapsack in order to build concepts we

would need for the dynamic stochastic knapsack problem (DSKP), the simplified general

case of the WPSP. We then delved into the DP approach for the DSKP developed by

Papastavrou, Rajagopalan, and Kleywegt. While the WPSP’s log-normal distribution of

cost violated the consistency requirement for the DSKP, the violation was small and did

not affect the quality of the solutions. We learned, however, that relying on the recursion

to solve the WPSP lead to the “curse of dimensionality”. The tremendous variance in the

observed log-normal distribution would require hours if not days of computation time to

solve useful instances of the problem.

ADP offered a solution approach. Instead of stepping backwards in order to

calculate the value function by visit every node in a potentially huge discrete network

representation of the entire state space, ADP generates samples of likely paths through

the networks and learns the value function.

157

Implementing this vision required a lot of computational work, the greatest

challeng being the implementation of machine learning. Learning requires a way of

statistically estimating the value function. Because each problem is different, the method

that works best requires much customization and adaption. In the WPSP, the log-normal

distribution of cost of value led to the realization that the shape of value function as a

function of state would be a cumulative log-normal, only we did not know the

parameters. Thus, the machine learning became the challenge of recursively fitting a

regression model that consisted of the linear combination of various log-normal basis

functions. This effort yielded value functions for the full-scale problem that required

about ten seconds of computation time (on average), in contrast with hundreds of

thousands of seconds for the DP approach.

4.5.1 Implementing an ADP Solution

For those with an affinity for scientific computing, the lessons learned here from

developing and coding an ADP approach for solving specific instances of the DSKP may

be useful. Based on what we have learned the basic steps to implementing this approach

for a similar dynamic stochastic knapsack problem are:

1. Implement a small scale solution via recursive DP. This is important to

develop intuition to the nature of the problem and for validating your initial ADP

solution.

158

2. Determine the shape of the value function. For the DSKP, one works to find

an appropriate cumulative distribution. Learning will entail recursively fitting a set of

basis functions.

3. Develop the ADP solution for the small scale problem. For the DSKP, the

double pass algorithm was best.

4. Begin with a single basis function while you develop the best step-size

approach for your problem.

5. Validate your ADP results with the small scale DP solution prior to

implementing the approach on full-scale problems.

4.5.2 The Nature of the ADP Solution

Overall the quality of solutions produced by ADP still leaves something to be

desired compared to the exact DP approach. In fairness, ADP is just that: an

approximation. It is important also to recognize that the big differences in results

between the two approaches arose in the portion of the state-space farthest from the

starting conditions: time “now” and the current budget. This is not a large impediment

since we are interested in the decision to be made today but need to account for the

impact of likely decisions tomorrow. In support of a decision, we would like to rerun the

model with current data versus relying on a look-up table that was created several time

steps before and at a different resource level.

159

This way of looking at the problem – decisions today (boundary conditions)

versus decisions that must be made in the future - provides a segue to our next topic:

stochastic programming.

160

CHAPTER 5 – SOLUTION METHODS: STOCHASTIC PROGRAMMING

5.1 Stochastic Programming Introduction – The Two-Stage Problem

Stochastic programming has its roots in linear programming. As described

previously, Dantzig (1955) and Beale (1955) independently described linear programs

with uncertain elements. In his paper, Dantzig described the essence of what is now the

standard two-stage stochastic problem.

We draw, with modifications to suit our purposes, on Birge and Louveaux for

their formulation of the two-stage program. The central modification is our perspective

of value maximization subject to resource constraints as opposed to minimizing costs

subject to meeting requirements. The two-stage formulation provides the fundamental

insight into a variety of planning problems. There is a given set of the facts we know

today: current constraints on choices A, values v, and current resource bounds b. The

choices we make today we describe via the decision variable x.

There are beliefs we hold about the future. We envision our decisions occurring

over an epoch, beyond which we will not extend our analysis. Our beliefs about the

future we describe via a random vector ξ, whose realizations we indicate by ω. This

future encompasses constraints FA(ω), values fv(ω), resource bounds fb(ω), and, linking

our present decisions to the future, the matrix T(ω). Compactly, ξ(ω) = (FA(ω), T(ω),

fv(ω), fb(ω)). For decisions in the future we use the variable y. We wish to maximize

161

total value over the decision epoch, the benefits to be gained today and those in the

future. Since the future is uncertain, we are maximizing an expectation over ξ.

General Two-Stage Stochastic Program (G2SSP):

Maximize 𝒗𝑻𝒙+ 𝔼![𝒇𝒗𝑻𝒚]

Subject to 𝐴𝒙 ≤ 𝒃

 𝐹𝐴 𝜔 𝒚+ 𝑇(𝜔)𝒙 ≤ 𝒇𝒃(𝜔)

 𝒙,𝒚 ≥ 𝟎

The objective function contains both deterministic and stochastic elements, the

latter addressed via an expectation. The constraint structure is two fold, representing

deterministic and random constraints. The deterministic constraints are presented in

standard canonical form for maximization.

The random constraints contain two matrices. Birge and Louveaux label FA as

the recourse matrix and T as the technology matrix. The name for the former is self-

evident. In the future, the random vector ξ has been realized and FA defines our

recourse: it provides the coefficients for the constraints on our recourse decisions. The

origin of the term “technology matrix” is murky. Our interpretation is that “technology”

conveys the extent of our knowledge on the eventual impact of present decisions. The

better our technology, the more we understand what impact our decisions will have. In

the two-stage context, “perfect” technology would arguably lead to a deterministic T

162

matrix. Another way to look at the two-stage problem is via the so-called deterministic

equivalent.

Deterministic Equivalent of the General Two-Stage Stochastic Program

Maximize 𝒗𝑻𝒙+ 𝑄(𝒙)

Subject to 𝐴𝒙 ≤ 𝒃

 𝒙 ≥ 𝟎

Where

 𝑄 𝒙 = 𝔼![𝑄 𝒙, 𝝃(𝜔)]

and

 𝑄 𝒙, 𝝃(𝜔) = max𝒚{𝒇𝒗𝑻𝒚|𝐹𝐴 𝜔 𝒚 ≤ 𝒇𝒃 𝜔 − 𝑇 𝜔 𝒙,𝒚 ≥ 𝟎}.

Birge and Louveaux call Q(x) the value function of x. This formulation highlights

that any decision x seeks to maximize a sum of current value, which faces constraints and

future value which depends on x. The general idea is that the random vector ξ has a finite

index set of realizations Ω, where each realization ξ(ω) is indexed by ω ε Ω, each with

probability pω. This means that the value function can be expressed as a weighted sum of

the solutions of these realizations, or scenarios.

 𝑄 𝒙 = 𝑝!𝑄 𝒙, 𝝃(𝜔)|!|
!!! ,where 𝑝! = 1 and 𝑝! > 0 ∀𝜔.|!|

!!!

163

5.1.1 Feasibility Sets

In two-stage problems there needs to be a particular concern with whether

decisions in the first stage may result in an infeasible second stage. Our discussion again

relies on Birge and Louveaux. The value function Q(x) clearly depends on x. As shown

above, Q(x) is the weighted average of individual scenario solutions Q(x, ξ(ω)). If some

x for some scenario ξ(ω) results in Q(x, ξ(ω)) being infeasible, by convention we let Q(x,

ξ(ω)) = -∞. To make our convention complete (since we are maximizing), we have that

+∞ + -∞ = -∞. That is, when we calculate the value function of x, we do not want the

possibility of one infinitely good scenario to somehow outweigh the presence of an

infeasible one. Thus, any infeasible scenario Q(x, ξ(ω)) makes Q(x) infeasible. With

these conventions in place we define two feasible sets, one for the first phase and one for

the second.

Definition:

 𝐾! = 𝒙 𝐴𝒙 ≤ 𝒃,𝒙 ≥ 𝟎}

 𝐾! = 𝒙 𝑄 𝒙 > −∞}

This allows us to rewrite the deterministic equivalent as follows:

Maximize 𝒗𝑻𝒙+ 𝑄(𝒙)

Subject to 𝒙 ∈ 𝐾! ∩ 𝐾!

164

Note that both feasibility sets depend on x. Implicit is the idea that we may find

an x in K1 that is not in K2.

5.1.2 Special Cases

In the general case we described above, we have that all second stage data are

stochastic. It is useful to identify special cases, which are identified by what portions of

the second stage are random and their theoretical effects on feasibility. Birge and

Louveaux provide a thorough discussion on the conditions associated with different cases

of the two-stage problem and their affect on determining theoretical feasibility. We

provide a highlight of these, while marching towards our goal of being able to use

stochastic programming to address the WPSP.

5.1.3 Fixed Recourse and Random Technology

The standard two-stage problem, as presented originally by Beale and Dantzig

and employed throughout most of Birge and Louveaux, assumes fixed recourse; that is,

that FA is deterministic while the technology matrix contains the random elements.

When the recourse matrix is fixed and the random vector is finite or has finite moments,

the stochastic program is convex and in general amenable to a variety of solution

methods. Within fixed recourse there are some additional conditions worth noting.

165

Relatively Complete Recourse. This is the case when every x that satisfies the

first phase constraints also satisfies the second phase constraints. That is, 𝐾! ⊂ 𝐾!.

Unless you have a case of special structure, it may be hard to determine in general if

relatively complete recourse exists.

Complete Recourse. This is a special case of relatively complete recourse where

we can test whether 𝐾! ⊂ 𝐾!. Complete recourse holds when there exists some y ≥ 0 so

that FAy = t for all t in R.

5.2 Basic Approach

When we first encountered what we would later describe as the WPSP, we were

struck by the following insights:

• The urgency of wartime requires that solutions be acquired as soon as

possible.

• Bad choices today reduce the ability to acquire better solutions tomorrow.

This simplistic but powerful partitioning of the sequence of decisions between the

deterministic “now” and the stochastic “tomorrow” led to the idea to formulate this as a

two-stage stochastic integer program.

We lay out our assumptions about the future, which are the same as employed in

the WPSP formulation in the previous chapter on the Dynamic Programming approach.

• Initiatives arrive via a constant-rate Bernoulli arrival process; that is, in every

time unit a single unit arrives with probability p.

• After an initiative arrives, its attributes and costs become known.

166

• We assume the existence of an accepted method to translate the attributes of

any initiative into a common measure of military value, and assume that these

military values are additive.

• Based on past history, we can determine a joint distribution of future initiative

costs and values.

• For a given finite period of time into the future, we represent this joint

probability distribution as the random vector ξ. An instance of this random

vector is a possible future. For clarity, a possible future will consist of three

ordered sets: an index set of future time steps where in each time period a

initiative can arrive with probability p {k | k=1,…,K}, the set of their costs

{futCostk}, and the set of their values { futValuek }, where in any time step k

where there is no arrival

• Future initiative costs are log-normally distribution.

• Future initiative value depends upon the cost of the initiative. Given the cost

futCostk of the k-th arrival, its value futValuek is drawn from a uniform

distribution U(0, 2 futCostk), with mean equal to the sampled cost of the

arrival.

Note that the decision horizon is finite – a natural assumption given that

governments base many of their discretionary fiscal decisions on the available funds from

an annual budget. Also, while the original process we observed behaved more like a

167

Poisson process, we use a Bernoulli process to approximate a Poisson arrival process and

thereby bound the total possible number of arrivals in the future.

In most weeks, the decision to fund the recently arrived initiatives is feasible:

The budget far exceeds the cost of any one initiative. Intuitively, the decision should

consider both the present demands for funding (the value and cost of the recently arrived

initiatives) and the future demands that may yet arrive before the end of the funding

period.

To illustrate our approach to modeling this arrival process we provide an example

of a set of samples drawn from the random vector.

Table 5-1 Scenario Data Example

Costs
Scenario\	
 Wks 1 2 3 45 46 47 48 49 50 51 52

1 0 0 1 4 6 0 0 0 161 0 38
2 8 0 0 0 310 0 1 0 0 0 0
3 0 0 0 4 0 0 0 0 18 293 0
4 0 50 4 0 0 10 13204 0 0 0 289
5 0 0 0 0 0 0 0 30 0 9 0

Values
Scenario\	
 Wks 1 2 3 45 46 47 48 49 50 51 52

1 0 0 0 1 1 0 0 0 289 0 58
2 3 0 0 0 425 0 3 0 0 0 0
3 0 0 0 5 0 0 0 0 9 180 0
4 0 58 8 0 0 2 15018 0 0 0 230
5 0 0 0 0 0 0 0 52 0 7 0

168

The table consists of a 52 week year where we have drawn 5 instances from the

random vector. For brevity we obscure all but the beginning and ending weeks. Cells

with a zero show weeks where there was no arrival. The costs are log-normally

distributed: note the large range in values. The arrivals’ values are drawn from a

uniform distribution that ranges from 0 to twice the corresponding cost, resulting in a

distribution mean equal to the cost. The resulting values are values that are on average

proportional to their costs. As described in Chapter 4, this results in random values that

are on average proportional to cost.

These assumptions about the future are clearly very simplistic, but they are based

in part on the observations we summarized in Chapter 1 and are consistent with the

assumptions we used for the approaches outlined in Chapter 4. The stochastic

programming approach certainly allows for more nuanced representations of the future,

such as removing assumptions about independence between arrivals, since all it needs is a

process for generating a representative set of scenarios.

5.2.1 Formulation

We start with a formulation WSPS as a two-stage integer stochastic program. The

reader may ask why not employ an n-stage formulation of the stochastic binary knapsack.

But in essence we have already dealt with this as the dynamic programming

representation of the WPSP. Here we employ the two-stage formulation as a useful and

easy to solve approximation. We justify our approach by noting that we can solve

169

determinist binary knapsacks as either a dynamic program – a very simple n-stage

problem – or as an single stage integer program. This sample logic can be carried over to

stochastic knapsacks, where we will collapse the n-stages into a initial deterministic stage

(the “here and now”) and a second stage (“the future”), that consists of the remaining n-1

stochastic stages.

The first stage represents the present decision; that is, in the current week of the

funding period, choose from among the set of recent arrived initiatives which to fund.

The second stage – the recourse stage - consists of the future initiatives from which to

choose in the remainder of the funding period with a budget decremented by the first

stage decision. The future is random so we will represent it by generating a set of

possible futures; the sample is used to approximate the distribution of the random vector

ξ. The objective is to maximize expected value across both stages.

Two-Stage Stochastic Integer Program formulation of the WPSP (WPSP2SSIP)

Indices

i recently arrived initiative in set of current initiatives I

s possible future scenario in set of scenarios S – the index of the sample set

k time steps remaining in the decision epoch

Data

Costi cost of recently arrived initiative i

170

Valuei value of recently arrived initiative i

futCostsk cost of future initiative k in scenario s

futValuesk value of future initiative k in scenario s

Ps probability of scenario s

Budget available budget

Variables

Buyi binary decision variable, 1 if initiative i is funded, 0 otherwise

futBuysk binary decision variable; 1 if initiative k in scenario s is funded, 0 otherwise

Objective

Maximize

𝑉𝑎𝑙𝑢𝑒! ∗ 𝐵𝑢𝑦! +
!

𝑃! 𝑓𝑢𝑡𝑉𝑎𝑙𝑢𝑒!" ∗
!!

𝑓𝑢𝑡𝐵𝑢𝑦!"

Constraints

Stay within Budget

𝑉𝑎𝑙𝑢𝑒!
!

∗ 𝐵𝑢𝑦! + 𝑓𝑢𝑡𝐶𝑜𝑠𝑡!" ∗ 𝑓𝑢𝑡𝐵𝑢𝑦!" ≤ 𝐵𝑢𝑑𝑔𝑒𝑡,∀𝑠
!

The budgetary constraint is intuitive – under any given future we must stay within

budget. Additional constraints that could enrich model include constraints that address

interactions amongst first stage initiatives and constraints aimed at satisfying strategic

goals within the portfolio.

171

How does this formulation map back to the G2SSP? Recall the general

formulation of the two-stage problem.

G2SSP

Maximize 𝒗𝑻𝒙 + 𝔼![𝒇𝒗𝑻𝒚]

Subject to 𝐴𝒙 ≤ 𝒃

 𝐹𝐴 𝜔 𝒚 + 𝑻(𝜔)𝒙 ≤ 𝒇𝒃(𝜔)

 𝒙,𝒚 ≥ 𝟎

The v and fv vectors are represented by Valuei and futValuei. The recourse matrix

FA(ω) is matrix of futCostsk, which stands in contrast to the deterministic recourse matrix

in the standard two-stage fixed recourse problem. The budget is fixed throughout so b =

fb. The technology matrix – the effect of x on future scenarios – is the deterministic

Costi. In the deterministic equivalent, and when we decompose the problem, it is useful to

think about the matrix A as also consisting of Costi so that A = T. This makes Ax ≤ b

redundant. Thus, our basic formulation does not include this first stage constraint. If we

extended the problem to consider different first stage constraints – for example,

interaction and satisficing constraints – then by necessity these would be included in the

first stage constraint Ax ≤ b.

In the classic two-stage thinking, though, this makes no sense. We may have a

particularly expensive initiative recently arrived in the first phase – one that exceeds the

current budget – so that if we did not have the budget constraint in the first stage we

172

might make an acquisition that makes the second phase infeasible. While this does not

change the fact that the constraint is redundant and any solver would promptly drop it, we

need this constraint when we formulate the deterministic equivalent of the WPSP.

Deterministic Equivalent of the WPSP2SSIP

Maximize 𝑽𝒂𝒍𝒖𝒆𝑻𝑩𝒖𝒚 + 𝑄(𝑩𝒖𝒚)

Subject to 𝑪𝒐𝒔𝒕𝑻𝑩𝒖𝒚 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡

Where

𝑄 𝑩𝒖𝒚 = 𝔼![𝑄 𝑩𝒖𝒚, 𝑠]

and

𝑄 𝑩𝒖𝒚, 𝑠 = max𝒇𝒖𝒕𝑩𝒖𝒚𝒔{𝒇𝒖𝒕𝑽𝒂𝒍𝒖𝒆𝒔
𝑻𝒇𝒖𝒕𝑩𝒖𝒚𝒔|𝒇𝒖𝒕𝑪𝒐𝒔𝒕𝒔

𝑻𝒇𝒖𝒕𝑩𝒖𝒚𝒔 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡 − 𝑪𝒐𝒔𝒕𝑻𝑩𝒖𝒚 ≥ 𝟎}.

The utility of the deterministic equivalent approach is that it provides the key

insight that our goal is to optimize total value – the value of the decision today and the

future value this decision is expected to yield. As described earlier, Q(x) is called the

value function of x.

As discussed earlier, two-stage problems without fixed recourse create special

problems in establishing whether complete recourse exists. It should be relatively

apparent that in the case of the WPSP SIP formation, since the first phase will never be

allowed to exceed budget, then the second phase will always be feasible – particularly

since buying nothing in the second phase is still a feasible answer. One question then is

how to generate these future scenarios.

173

5.2.2 Monte Carlo Scenario Generation and Sample Average Approximation

As described in the assumptions above, a scenario consists of a set of arrivals of

random cardinality, with for each arrival a random pair of cost and value, which come

from a joint-distribution. This is not a finite distribution, since the values of costs and

values have continuous distributions. Our intended approach is to use Monte Carlo

simulation to generate a set of futures and solve the resulting stochastic integer program

(SIP). While this approach seems natural enough, questions arise. Is there a theoretical

foundation for this approach? With larger sample sizes we expect better solutions, but

given the nature of integer programming we also expect exponentially increasing

difficulty in solving them. Is there an ideal sample size? Since we are solving an

expectation over a sample, is there a way to characterize the quality of our solutions?

Kleywegt et al (2001) examine the use of Monte Carlo simulation as an approach

to solve stochastic programs of the following general form.

General Discrete Stochastic Program (GDSP)

min
!∈!

𝑔 𝑥 ≔ 𝔼!𝐺(𝑥, 𝜉)

where

𝔼!𝐺 𝑥, 𝜉 = 𝐺 𝑥, 𝜉 𝑑𝜉 and S is finite.

174

They assume that the random vector has a continuous distribution with finite

moments. Their intent is to develop an algorithm for solving these problems using Monte

Carlo simulation to generate N i.i.d. samples from the random vector: ξ1,…, ξN. This

leads to the sample average approximation to the stochastic problem.

Sample Average Approximation (SAA) to GDSP

min
!∈!

𝑔 𝑥 ≔
1
𝑁 𝐺(𝑥, 𝜉!)

!

!!!

They define u* as the solution of the true problem and S* the solution set of the

true problem; and ûN as the solution to the SAA and ŜN as the corresponding solution set.

Note that E(ûN) = u*. They build theory supporting a Monte Carlo strategy, of which we

provide a brief overview.

They start by showing that for large N, ûN converges exponentially on u* but that

the rate depends upon many things including sample size and K – a condition number

they define for discrete stochastic problems that provides a rough measure of the

likelihood that the sample N will result in ûN = u*. In proving the exponential

convergence they rely on the use of the tolerance parameter ε. They define the concept of

the ε-optimal solution set ŜN
ε: all solutions ûN where |ûN - u*| < ε. They show that the

error term ûN – u* is normally distributed with mean zero and with variance equal to the

variance of the objective function. Prior to laying out their algorithm, they discuss

175

practical considerations such as the opposition between, on the one hand increasing N to

improving solution quality, and on the other hand decreasing N to improve the solution

time.

We use their results to create a simplified version of their algorithm built on

experience with the WPSP SIP and our experience with the stochastic gradient algorithm

from the previous chapter. Recall the recursive mean updating equation from Chapter 4

where θn is the mean at the n-th iteration and R(ω) is the latest sample.

Equation 5-1: Mean Updating Equation

𝜃! =
𝑛 − 1
𝑛 𝜃!!! +

1
𝑛𝑅(𝜔)

First we note that since E(ûN) = u*, then for M iterations can define !
!
∗ 𝑢!!!

!!!

∶= 𝑢!! which as M increases converges on E(E(ûN)) = u*. Then define at the m-th

iteration our estimate of the error, 𝑒! = 𝑢!! − 𝑢!!!! . As M grows this is guaranteed to

converge to zero, however, we also know that the convergence is not monotonic. So we

should set ε to higher precision than needed in order to prevent premature convergence.

Prudence dictates that we should start with a prefixed set of iterations M.

176

Simplified SAA Algorithm

1. Choose sample size N, initial set of iterations M, tolerance ε, and factor β.

2. For m = 1,…, M:

a. Generate sample of N instances of random vector.

b. Solve SAA to find 𝑢!!.

c. Let 𝑢!! = !
!
∗ 𝑢!! + 𝑚 − 1 ∗ 𝑢!!!!

d. Let 𝑒! = 𝑢!! − 𝑢!!!!

e. Return 𝑢!!, if 𝑒! < 𝜀, else continue.

3. Let M = βM , return to step 2.

Comparing the WPSP to the GDSP, we make a couple of observations. The

WPSP is an example of a two-stage recourse problem. The first stage in the simplest

form of this problem consists of a single decision – whether or not to acquire the latest

arrival. This decision is weighed against the expected value of future arrivals. It is

SIP Computational Details:

We employed the free-ware statistical language R to code the algorithms, to
generate the samples from the random vector ξ and to formulate the SIP. Via
Gurobi’s interface with R, we called Gurobi from R. To handle the large size of
some of the SIPs, we made extensive use of sparse matrices. The codes were all run
on a MacBook Pro, with 2.3 GHz Intel Core i7 and 8 GB of 1600 MHz RAM.

177

determining this expected value that provides the necessary context for this binary

decision: Q(x=0) < Q(x=1)?

The practical question to ask is to what precision is needed to answer this

question? Since the decision is binary (we either buy or not buy), then for any initiative

where the difference between Q(x=0) and Q(x=1) is infinitesimal, this simply reflects that

we are indifferent as to whether we acquire or not. In the next section we explore the

precision of the solutions obtained from the WPSP SIP implementation.

5.3 Numerical Solutions of the WPSP2SSIP

We explore numerical solutions generated by the WPSP2SSIP implementation

starting with the example problem used in the previous chapter.

5.3.1 Example Problem Implementation

The sample problem used the following data.

Example Problem Data

T = 12 time periods

B = 100 resource units

p = 1/3 - likelihood of binary arrival in any given time step

C ~ Log-normal(2, 0.5) distribution of cost given an arrival

V ~ Uniform(0, 2C) distribution of value of an arrival given its cost

178

What we are trying to understand is the value function Q(x). Thus for the first

phase we use an arrival with value and cost both 0. Thus, solving the problem yields the

first stage value of 0 plus Q(x).

Effect of the choice of N on a single replication of the SIP

From past observation, we know that this system is only “loosely” constrained. In

most samples of future scenarios, resources exceed constraints; that is, in most scenarios

the solution is to buy all future arrivals. Below we show how the solution varies by the

number of sampled scenarios for a single iteration of the SIP. Each sample is generated

using the same random seed. The second column of table highlights how many scenarios

require more total resources than available: we see that approximately 1.4% of the

samples are constrained.

Table 5-2 Effect of Sample Sizes on WPSP SIP Solution for the Example Problem

179

We employed a variance reduction technique by generating a very large single

sample from the Monte Carlo simulation, i.e., we ran the simulation only once. From this

data table, we selected from the start the required number of rows. Thus, when solving

for N=100, 250,…, 50,000, all cases share the first 100 rows, all but the first share the

first 250 shares, and so on. As N increased, the number of scenarios that had a total cost

of arrivals exceeding the budget converged to approximately 1.4%, which is why we call

this problem “loosely constrained”.

Our best estimate for the true mean is 37.88 after 100K replications. We would

like to know more about the variability of this solution. As a point of comparison, the

value function for the Dynamic Programming implementation of the DSKP at t=1 and

capacity 100 was 37.54, and the value function of the final ADP implementation at the

same point was 38.43.

Solution times were very fast compared to our earlier efforts. Via R’s integration

with Gurobi and the extensive use of R’s matrix operations and sparse matrices, not only

did we obtain very fast solutions to these large, albeit loosely constrained, problems, but

the entire run of 10 SIPs of increasing size took a total of 6 seconds. For the largest

scenario samples, the 25,000 size sample instance yielded a solution in .7 seconds, the

50K in 1.5 second, and the 100K in 3.8 seconds. However, what appears to really be

driving solution time is the number of constrained scenarios. We should expect that

under less loosely constrained conditions we should see the solution times slow down, all

else being equal.

180

To examine the effect of increasing variance, we examined a sample of the

scenario sizes and compared these over different levels of log-variance. The results are

presented on the table below.

Table 5-3 Results from increasing levels of Log-Variance and N for the Example Problem

 Increasing run times were seen from increasing log-variance within the number of

scenarios, but the effect was weak compared to the effect of increasing the number of

scenarios. Note that any measure we collect from solving an instance of a SIP is itself a

random variable: the solution, the run time, the number of constrained solutions.

Moving forward, we should use multiple replications to understand each of these random

variables.

181

Effect of N on the Simplified SAA algorithm

Recall that in choosing 𝜀 we must select a precision higher than needed. The data

in this current set has no meaningful unit but for sake of argument we say that our desired

precision is a unit of resource – which equates to 1% of our budget. The tolerance for the

algorithm should be of higher precision to avoid premature convergence, so choose an

order of magnitude tighter 𝜀: 0.1 resource units.

To explore the stochastic gradient, we decided to arbitrarily run the algorithm for

a fixed number of iterations regardless of stopping conditions for a set where N the

number of scenarios varied in size from 2,500 to 25,000. We then examined the

iterations to see where we should have stopped for our desired precision. We show our

results in both tabular form and graphical.

182

Figure 5-1 The effect of sample size on stopping conditions for the simplified SAA algorithm

The 2.5K sample required 5 iterations, that is, we generated and solved 5

instances of the problem before reaching the stopping criterion. Note that the error did

not decrease monotonically, growing to exceed the stopping conditions a couple of times

in this limited set of replications. The 10K and 25K samples both stopped on the second

iteration. They both would have been roughly a tenth value unit from the u-hat10 value,

well within the desired precision.

183

As discussed in the previous section, any measure we obtain from running the SIP

is itself a random variable. It then follows that the number of iterations required before

the SAA meets the stopping conditions is itself a random variable dependent on the

number of scenarios N.

To develop a stronger contrast among the choices for N, we decided to run the

SAA ten times at a broader range of scenario samples, from 1,000 to 100,000. We

tracked both the number of iterations required and the solution time for each run of the

algorithm. From the ten runs of the algorithm, we calculated the average number of

iterations required before the algorithm stopped and the average of the solutions obtained

when the algorithm stopped.

Lastly, we also calculated a 95% confidence interval half-width around the mean

of the 10 SAA runs to show the precision of the answer obtained by the algorithm at each

case. Smaller half-widths indicate that the algorithm solution were closer together over

the 10 runs. It could be that running the small problem a few iterations might find the

answer to the same precision as the large problem in quicker time.

184

Table 5-4 Results from 10 runs of SAA at increasing levels of Log-Variance and N

 The SAA algorithm, for the SIP implementation of the WPSP, showed good

solutions very quickly from small N solutions but the precision was not comparable to the

larger N. There is a clear trade between precision and run time. In terms of trades

between run-time and precision, the N=10,000 appears to be a good compromise.

The next issue to study is the shape of the value function as a function of

remaining budget. We have seen that for the 0.5 log-variance cost, 100 unit-budget case,

the DSKP, ADP, and SIP approaches all align with values in the range of 37.5-38.4.

Q(x) as a function of B

The next issue to study is the shape of the value function as a function of

remaining budget. We have seen that for the 100-unit budget case, the DSKP, ADP, and

185

SIP approaches all align with values in the range of 37.5-38.4. From the previous chapter

we know that while the shape of the value function is largely concave, for very small

budgets the curve becomes convex due to the pronounced left skew of the log-normal

distribution. Essentially for these very small budgets, the shape of the value functions

reflects that the cost of a single arrival, approaching the shape of the left tail of the log-

normal distribution.

Figure 5-2 Q(x) vs Resource Budget, with computation time plotted on a secondary axis on the left
chart, and the number of constrained futures plotted on the secondary axis on the right chart.

Before comparing these results to the dynamic programming results, we should

note the solution times observed. Our intuition was that as the number of future scenarios

that became constrained increase, solution times would slow down. This was initially

true. When the number of constrained scenarios increased to about 50%, the solution

times were highest. However, as the constrained cases increased further, the solution

186

times reduced from this peak time. Finally, when the system was severely constrained,

solution times were the same as when the system was essentially unconstrained.

The very swift solution times when the system is largely unconstrained and when

the system is severely constrained are the result of pre-processing. Pre-processing

searches for special cases such as redundant constraints, and, in particular to this case,

constraints that are always slack, or constraints that can only be satisfied by a null

solution vector. Once these are eliminated, the solution algorithm proceeds in earnest.

Thus, it was only in the “middle ground” when there were roughly similar numbers of

unconstrained and constrained futures that the problem was most challenging to solve.

The shape of the value function is similar to past shapes. The graph below

compares the three curves for the T=1 time step (12 remaining time steps).

Figure 5-3 Comparing DSKP, ADP, and SIP Value Curves as a function of budget for T=1 on the 12
time step example problem

187

The curves are generally well aligned. The ADP and SIP implementations are

slightly more aligned with each other than either is with the DSKP as the following

matrix shows.

Table 5-5 Maximum absolute deviation between value functions for DSKP, ADP, & SIP approaches

What might explain these differences? In the DSKP dynamic programming

implementation, we necessarily have to discretize the random vector to generate the

expected value. In the ADP implementation, we employ recursive regression machine

learning to fit the parameters of a set of log-normal basis functions. However, this fit is

done over a sample. Had we used a different random seed, the result would have been

slightly different. In the SIP implementation, one structural difference is that we are

approximating an N-stage problem with a two-stage formulation. This result is also the

product of a sample, which though large enough to give us answers within the desired

precision, would also give slightly different answers for a different random seed. Given

these differences, we will interpret these curves as being closely aligned. We turn our

attention now to solving the full scale problem.

Approaches MaxAbsDev
DSKP	
 vs	
 ADP 3.00
DSKP	
 vs	
 SIP 2.65
ADP	
 vs	
 SIP 1.42

188

5.3.2 Full Scale Problem Implementation

From the previous chapter the full-scale problem, which represents the system

behavior we observed while at JIEDDO, employs the following data.

Full Scale Problem Data

T = 50 time periods

B = 2,500,000,000 resource units (but in units of millions)

p = 1/3 - likelihood of binary arrival in any given time step

C ~ Log-normal(16.58, 3.57) distribution of cost given an arrival

V ~ Uniform(0, 2C) distribution of value of an arrival given its cost

Recall our discussion in the previous chapter, where we recognized that while the

resource budget is $2.5B, that were we to operate our models in unit of dollars we are

essentially saying that a decision could hinge on a single dollar. The least cost we

recorded at JIEDDO – our case study for the WPSP – was $100K. Thus, we scale our

data in units of millions of dollars. Instead of rescaling the log-normal distribution, we

employ the pragmatic short cut of re-scaling the sample.

Again we follow the same procedure of generating the random scenarios via a

Monte Carlo simulation, dividing each element of the sample by $1M, rounding the

results to one significant digit, which would equate to $100K, and then using this set as

data for the SIP. The following table shows run times to solve single instances of the Full

189

Scale problem by increasing sizes of N. The SAA algorithm gives us a better solution

and the means to determine the precision of our answer.

Table 5-6 Results of single instance of Full Scale Problem by increasing N

We employ a desired error bound of 1% of the budget, which translates to 25

resource units. Applying our rule of thumb for the stochastic gradient of using an order

of magnitude increase in precision to protect against premature convergence, we use an

epsilon of 2.5 resource units.

Our desire is to find an N that balances between SAA stop time and the precision

of the solution. We run SAA ten times at each level of N in order to determine the

average number of iterations and the average stop time. From the same ten runs we also

get an average solution and a 95% confidence interval for the true mean. To give the

190

confidence interval context, we use the term “precision”, which is the confidence as a

percentage of the mean SIP solution. Since the solution to the SIP is itself a random

variable, it gives us some notion of the increase in solution precision we get from

employing additional scenarios.

Table 5-7 Results from 10 Runs of the Simplified SAA Algorithm for varying N

 The table reinforces our intuitions. The mean iterations required before stopping

declined gradually while the SAA mean stop time increased exponentially. Similar to

many sampling statistics, the change in the confidence interval is roughly inversely

proportional to the root of the change in the sample size. The chart below illustrates the

trade between precision and computation time.

191

Figure 5-4 Illustrating the trade between computation time and precision for the Simplified SAA
Application for the large scale problem for a range of scenarios N

In the quest for better answers we encounter again the issue of spurious precision.

Recall that the values used come from a value model such as described in Chapter 3.

While these models provide valuable information on the value of solutions, the answers

they provide cannot be described as very precise since they reflect preference and choice.

Thus as a rule of thumb, a process that generates mean solutions with a confidence

interval of 1% of the mean is precise enough. The range of N between 5,000 and 10,000

highlights a potential high-payoff trade: precision increases by only 0.3% of the mean at

a price of a five-fold increase in computation time.

We turn now to the generation of the Q(x) curve as a function of available budget.

In the ADP approach, this curve was a natural part of generating a solution. We had to

explore the whole space to get that solution. In our 2-stage SIP approach we get that

solution in two phases – now and future. However, there is a certain intrinsic value from

understanding the shape of the curve. To generate the curve we need to repeatedly run

192

the model for gradually smaller budgets – in this case a sample of 34 budget levels evenly

distributed between 0 and 2500. Of note, the computation time required to generate the

curve was 1938 seconds.

The following figures compare Q(x) to computation time and to the number of

constrained future scenarios. Compared to the example problem data, computation time

tracks closely with the number of constrained scenarios until the very end, when the

resource budget so constrained most scenarios that in most scenarios the solution was a

null vector.

Figure 5-5 Q(x) compared to solution times (left graph) and constrained futures (right graph)

Qualitatively the plot has changed. What happened with the interval of convexity

for the initial part of the resource budget range? To understand this, we need to examine

the effect of variance on the log-normal distribution. In our example problem, the log-

193

variance was 0.5. In the large problem the log-variance is 3.5. In the plot below, we

show how the increase in variance affects the density plot of the log-normal.

Figure 5-6 Depicting the effect of increasing log-variance on the log-normal distribution while
holding the log-mean constant. The exponential with the same log-mean is shown as a point of

comparison.

For comparison we plot an exponential curve. All the log-normal distributions

have the same log-space mean: ln(15), while the exponential has a mean of 15. Note that

as log-variance increases the mode of the distributions moves closer and closer to zero.

For the log-variance of 3.5, which relates to our observed data, the period of increasing

density is miniscule: as the table below shows, the mode is at x=0.45.

194

Table 5-8 Comparing Measures of Centrality for varying levels of Log-Variance

The mode in the density distribution of the log-normal distribution of cost is what

dictates the period of convexity in the value function. With the mode so close to zero, in

the full scale problem the period of convexity is undetectable.

Our last view in this section is to compare output from our 2-stage SIP (2SSIP) to

the output from the ADP solution. We reran our ADP approach using these data.

Because the state space was bigger we used more runs, 100,000 versus the 12,000, in

order to allow the learning algorithm more time to converge. This resulted in a slower

run time of 1486 seconds – which is on an order with the 1938 seconds of computation

time required for the SIP approach to generate the comparable curve. However, it took

only a minute to solve the SIP for any particular budget-stage combination.

195

Figure 5-7 Comparing ADP to SIP value functions for the large scale problems

There are qualitative and quantitative differences in these curves. While there

was relatively close alignment in the example problem, the differences here are more

pronounced. Which curve to believe?

The ADP solution comes from a single run of the model. The value at t=1 with a

full budget represents the expected value we can expect to accrue through the decision

epoch at the start of the year. This value comes from a recursive regression fitting on a

basis set of functions. In one run, it is trying to fit the entire state space trajectory. As we

saw in Chapter 4, the quality of the fit is subject to the selection of the appropriate basis

functions, which can involve some trial and error. The SIP implementation does not need

to fit the values to a model – it yields an exact constrained sample mean for that point in

the state space. Thus, our inclination is to trust the SIP solution.

0"

200"

400"

600"

800"

1000"

1200"

1400"

0" 500" 1000" 1500" 2000" 2500"

Va
lu
e&

Budget&

ADP&vs&2SSIP:&&t=1&Curve&

ADP"

2SSIP"

196

5.4 Addressing Initiative Investment Options (First Stage Decisions)

The funding decision for a given initiative is not truly binary. An initiative may

be acquired for different users in varying tactical scenarios. Examples in the counter-IED

realm include route clearance, convoy operations, defenses for forwarding operating

bases, and dismounted patrols. We might consider acquiring quantities just for the forces

engaged, or only in the particular theater of war where most needed, or for the entire

force. Thus, each initiative decision could actually represent a set of options.

We illustrate this principle with a system with two types of users and in different

theaters of war: system A for user X in theater I, system A for user Y in theater I, system

A for user X in theater II, and system A for user Y in theater II. In cases like these, it

may improve the value of the decision to decompose each initiative decision into a set of

binary options. Then the value and cost of each of these options must be estimated

separately.

Occasionally, there may be a need to address interactions between initiatives.

Two initiatives operating in the same tactical scenario may improve each other’s

operation through physical or operational synergies; in the negative of this effect, they

may interfere with each other; or they may have independent effects but these must still

be de-conflicted because they are operating in the same scenario and compete to defeat

the same set of IEDs. In none of these cases can we treat the individual value of the

options in these cases additively. We advocate that for each of the scenarios where these

197

interactions exist, the value and cost of each initiative combination be estimated

separately.

For example, assume that the values of systems A and B in a particular theater or

tactical domain vary based on whether the other system is present or not. Then we

identify the value and cost of three cases: system A alone, system B alone, and system A

and B. For the particular tactical domain, we can only choose at most one of these

mutually exclusive combinations. This allows us to treat the values of any set of

initiative options chosen as additive, since for scenarios with non-additive values we can

only chose one option. Obviously, were we to have to many initiatives in the first stage

that might be decomposed to these kind of mutually exclusive options, we might face a

combinatorial explosion.

This ability to address nuances in the first-stage decisions is a modeling strength

of the SIP approach. We show how the basic formulation might be modified to address

interactions among first-stage initiatives.

5.4.1 Modified Formulation – Addressing Interactions

We revisit our previous deterministic equivalent formulation in order to describe how

we might address interactions among the first-stage decisions. To refresh our

recollection we show this formulation here again.

198

Deterministic Equivalent of the WPSP2SSIP

Maximize 𝑽𝒂𝒍𝒖𝒆𝑻𝑩𝒖𝒚 + 𝑄(𝑩𝒖𝒚)

Subject to 𝑪𝒐𝒔𝒕𝑻𝑩𝒖𝒚 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡

Where

𝑄 𝑩𝒖𝒚 = 𝔼![𝑄 𝑩𝒖𝒚, 𝑠]

and

𝑄 𝑩𝒖𝒚, 𝑠 = max𝒇𝒖𝒕𝑩𝒖𝒚𝒔{𝒇𝒖𝒕𝑽𝒂𝒍𝒖𝒆𝒔
𝑻𝒇𝒖𝒕𝑩𝒖𝒚𝒔|𝒇𝒖𝒕𝑪𝒐𝒔𝒕𝒔

𝑻𝒇𝒖𝒕𝑩𝒖𝒚𝒔 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡 − 𝑪𝒐𝒔𝒕𝑻𝑩𝒖𝒚 ≥ 𝟎}.

We assume that all required initiative options and their mutually exclusive

combinations have been defined. The data for these new options are all described in the

first-stage data vectors Value and Cost. We note the new changes needed before

presenting the modified formulation.

• Create the index o which identifies an option, o ε O.

• Create sets Combination(Κ), subsets of O. Each K relates to a particular theater or

employment domain where we must consider interactions among the options in

the first stage.

• Each Combination(Κ) which have as their members all the options o under a

particular combination Κ that are judged to be mutually exclusive.

• We add a constraint specifying that for each K only one option can be chosen.

With these changes we obtain the following formulation.

199

Deterministic Equivalent of the WPSP2SSIP with Side Constraints

Maximize 𝑽𝒂𝒍𝒖𝒆𝑻𝑩𝒖𝒚 + 𝑄(𝑩𝒖𝒚)

Subject to 𝑪𝒐𝒔𝒕𝑻𝑩𝒖𝒚 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡

 𝐵𝑢𝑦𝒄 ≤ 1,∀𝑐 ∈ 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛(Κ)

Where

𝑄 𝑩𝒖𝒚 = 𝔼![𝑄 𝑩𝒖𝒚, 𝑠]

and

𝑄 𝑩𝒖𝒚, 𝑠 = max𝒇𝒖𝒕𝑩𝒖𝒚𝒔{𝒇𝒖𝒕𝑽𝒂𝒍𝒖𝒆𝒔
𝑻𝒇𝒖𝒕𝑩𝒖𝒚𝒔|𝒇𝒖𝒕𝑪𝒐𝒔𝒕𝒔

𝑻𝒇𝒖𝒕𝑩𝒖𝒚𝒔 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡 − 𝑪𝒐𝒔𝒕𝑻𝑩𝒖𝒚 ≥ 𝟎}.

5.5 An Attempt to Apply Bender’s Decomposition WPSP

While we have shown that commercial solvers like Gurobi are readily able to

solve useful sized instances of the WPSP, we describe here our attempt to apply Bender’s

Decomposition to solve WPSP. As the reader will see, the WPSP’s structure does not

allow for the generation of feasibility cuts and its optimality cuts do not yield strong

bounds. The original L-shaped decomposition approach is owed to Bender (1962). For

our presentation of the material we adapt from Freund (2004).

5.5.1 Special Structure of the WPSP Constraint Matrix

Allowing for K realizations of the random vector ξ, each with probability α, the

WPSP two-stage stochastic integer program can be expressed in the following expanded

200

form. Note that αTK = 1. For compactness, we use x to indicate first stage buy decisions

and yω for the second stage binary decision for a given scenario ω, c is the vector of first

stage costs, v is the vector of first stage values, and fcω and fvω are the vectors of second

stage costs and values respectively for scenario ω.

max vTx + αfv1
Ty1 + αfv2

Ty2 + αfv3
Ty3 + … + αfvk

Tyk

s.t. cTx ≤ b

 cTx + fc1
Ty1 ≤ b

 cTx + fc2
Ty2 ≤ b

 cTx + fc3
Ty3 ≤ b

 … … … … … … … …

 cTx fck
Tyk ≤ b

 x, yω ∈ {0,1}

This “block-ladder” structure lends itself to an iterative solution approach known

as Bender’s decomposition. The WPSP in particular has a simplistic structure because

each of the blocks is a single horizontal vector.

The basic approach is to iterate between a) solving an approximation of the

problem made up of the first-stage constraints and cuts generated by a subset of the

second-stage, and b) solving the sub-problems that represent the distinct second-stage

realizations to in order to generate the cuts. In general, solving these sub-problems

provides feasibility and optimality cuts that are then inserted as additional constraints in

the approximation of the master problem.

201

The intent of this approach is to avoid solving the entire problem all at once,

inserting only the constraints that might be active in the final basis. When the sub-

problems no longer provide cuts, the problem is solved. As we shall see, only optimality

cuts would apply to the WPSP.

5.5.2 Benders’ Decomposition for Stochastic LP

We start by expressing the linear relaxation WPSPLP in the Deterministic

Equivalent Program formulation. Note that while we have replaced the integrality

constraint with an upper bound of 1 on the decision variables.

Deterministic Equivalent of WPSPLP

Maximize z = vTx + Q(x)

Subject to cTx ≤ b

1 ≥ x ≥ 0, x is 1 x n.

Where

Q(x) = Eξ [Qω(x)]

And

Qω(x) = max𝒚{𝒇𝒗𝝎
𝐓𝒚𝝎|𝒇𝒄𝝎

𝐓𝒚𝝎 ≤ 𝑏 − 𝒄!𝒙,𝟏 ≥ 𝒚 ≥ 𝟎}

202

Recall that for each realization ω of the random vector ξ there is the

corresponding second-stage constraint cTx + fcωyω ≤ b. As described previously, fcω

provides the cost data of the arrivals under a given scenario ω, while fvω provides the

value data for the same. For this scenario ω, we construct Sub-Problem ω (SPω).

SPω

Qω(x) = max fvωTyω

s.t. fcωTyω ≤ b – cTx

1 ≥ yω ≥ 0

We want to maximize the expected portfolio over the distribution of possible

futures. The sub-problem restates this objective as it applies to a single instance ω of the

possible futures. Note how the right hand side emphasizes that the knapsack capacity has

been reduced as a result of first stage decisions. From the SPω, we define the dual

problem DSPω, using pω,1 as the scalar dual variable for the knapsack constraint and

pω,2,…, pω,n+1 as the vector dual variable for the upper bounds on y.

DSPω

Ξω = min [(b – cTx),1T] pω

s.t. [fcω + In] pω ≥ fvω

pω ≥ 0

203

For DSPω’s feasible region, assume we care to enumerate all the feasible extreme

points pω1,…, pωI, and likewise all the extreme rays rω1,…, rωJ. Solving DSPω leads to

two possible outcomes: either the problem is unbounded below and yields a feasibility

cut, or there is an optimal solution to the problem, yielding an optimality cut.

If this dual problem is unbounded (primal infeasible), then the solution algorithm

returns an extreme ray rω* with the property [(b – cTx), 1T] rω* < 0, generating the

corresponding feasibility cut for the is [(b – cTx), 1T] rω* ≥ 0. However, if we assume

that [(b – cTx), 1T] is always non-negative (cannot violate the entire budget using only 1st

stage decisions), the second stage is always feasible.

Theorem 1: If we assume that (b – cTx) ≥ 0 then:

a) the WPSPLP has complete recourse,

b) Bender’s Decomposition for the WPSPLP cannot generate feasibility

cuts.

Proof: The WPSPLP will not have complete recourse if there exist {x, ω} such

that Κ2= {yω|fcωTyω ≤ b – cTx, yω ∈ (0,1)} = ∅. For any given ω, Κ2 is only

empty if some x was chosen in the first stage such that cTx > b. We assumed that

b – cTx ≥ 0, therefore there is some yω satisfying Κ2 – even if it is only zero – and

there will be no infeasibilities from which to generate cuts.

204

We define the variable θω which we will use as a surrogate for Qω(x). Solving the

sub-problem DSPω yields a solution Ξω = [(b – cTx), 1T] pω*. Note that by strong duality,

Ξω = Qω(x). This will yield the optimality cut [(b – cTx), 1T] pω* ≥ θω. Recall the vector

of probabilities α for the K instances of the random vector ξ. We can restate our problem

in the following fashion, which we term the Full Master Problem (FMP), which we first

express first with the cuts added to the Deterministic Equivalent, and then immediately

below we convert the cuts to show the FMP in standard canonical form.

FMP

maxx z = vTx + αTθ

s.t. cTx ≤ b

 [(b – cTx), 1T] pωi ≥ θω; i = 1,…, I; ω = 1,…,K

 x ≥ 0, θ unrestricted.

FMP – Canonical Form

maxx z = vTx + αTθ

s.t. cTx ≤ b

 cTxpω1
i + θω ≤ [b,1T] pωi; i = 1,…, I; ω = 1,…,K

 x ≥ 0, θ unrestricted.

205

The FMP has replaced K decision variable vectors yω with K scalar variables θω.

The trade however is a very large number of constraints – all the extreme points of the

dual of the second stage. Bender’s Decomposition solution approach is to work with a

Reduced Master Problem (RMP), adding these constraints only as we need them.

Consider an iteration of this approach, using j of the extreme points and k scenarios.

RMP

max zk = vTx + αTθ

s.t. cTx ≤ b

 cTxpω1
i + θω ≤ [b,1T]pωi; i = 1,…, j; ω = 1,…, k

 x ≥ 0, θ unrestricted

After solving this problem, we obtain a value zk and a solution xk. This value zk is

an upper bound on z from FMP, since we cannot hope to improve on the value obtained

from RMP by adding more constraints. We check whether xk violates any of the non-

included constraints [(b – cTx), 1T]pωi ≥ θω, i = j+1,…, I by solving the K-k sub-problems

DPω. If no new optimality constraints are generated, we are done.

This is the basic approach employed for stochastic linear programming. We next

describe how we extend these concepts to the integer programming case.

206

5.5.3 Delayed Constraint Generation Algorithm for WPSP

We describe an adaptation of Bender’s decomposition for the WPSP. Birge and

Louveaux describe the Integer L-shaped Method wherein the master and sub-problem

iteration is embedded within a branch and cut scheme. They describe three relaxations:

the integer constraints for x in the first stage are relaxed in the branch and cut scheme, the

feasibility constraints on x in the second stage are replaced with feasibility cuts, and the

definition of the value function Q(x) is modified to allow its approximation via a

continuous decision variable θ.

In the WPSP, the first stage problem is generally small, frequently a single binary

decision. The main issue is estimating the value of Q(x). The decomposition allows us

to solve individually k dual linear sub-problems, each yielding a corresponding set of k

cuts on θ which are returned to the reduced master integer program.

In the LP case, we had strong duality between primal and dual sub-problem

solutions. In the integer case, this is no longer true, but the linear dual can still be used to

provide optimality cuts. This does, however, introduce the question of when to stop the

algorithm.

The random vector ξ in the WPSP is not finite; instead, in our approaches to date

we have approximated our solution by using Monte Carlo sampling from ξ. In our

approach here, for each sample, we will generate optimality cuts via the linear dual sub-

problems. We will then use the values of the sub-problems to provide an estimate of

master-problem objective function and thereby a lower bound. The optimality cuts are

207

introduced and the reduced master problem is solved to generate an upper bound. When

the optimality gap between the upper and lower bound is small enough, the algorithm

stops.

WPSP Delayed Constraint Generation Algorithm

0. Initialize: OldSol = ∞, NewSol = 0, CutSet = Ø, k = 0.

1. Define RMPk with CutSet from k scenarios.

a. If CutSet not empty, solve zk = maxx ε X vTxk + αTθk. Else, set xk = 1.

b. If CutSet not empty, OldSol <– zk.

c. Let xk be the incumbent solution.

2. Generate new increment of K scenarios; k = k + K

3. For ω = 1,…,K, solve the sub-problems:

a. Ξω = min{[(b	
 –	
 cTx),	
 1T]	
 pω, s.t. [fcω	
 +	
 In]	
 pω	
 ≥	
 fvω,	
 pω	
 ≥	
 0}.

b. Generate CutSet = {θω ≤ [(b	
 –	
 cTx),	
 1T]pω, ω =1,…,k}

4. Set NewSol <– max{LB, vTxk + αTΞk].

5. If abs(OldSol – NewSol) ≤ ε, then stop. Else, add CutSet to RMP(k) and return to

step 1.

5.5.4 Computational Results

We reconsider the dual sub-problem to see what structure can be exploited.

Recall that each of these is the dual of a single constraint knapsack problem.

208

DSPω

Ξω = min [(b – cTx), 1T] pω

s.t. [fcω + In] pω ≥ fvω

pω ≥ 0

There are two possibilities; (1) The knapsack constraint is taught, and we solve

the DSB as a linear program via a solver, or (2) The constraint is slack, so we set pωT =

[0, fvωT]; i.e., all the items will be acquired. The table below shows the results we

obtained compared to the previously shown results from solving via Gurobi. Note that in

general only 3 or 4 iterations are required. We used an epsilon of 0.5% of the budget.

Table 5-9 Bender Decomposition Approach Results Compared to Standard Gurobi Solver Approach

209

The resulting algorithm runs initially slower than the SIP but Bender’s run times

grow at a slower pace, eventually catching up to the solver approach before 50,000

scenarios. The issue though is that the resulting solutions are biased high. The figure

below provides a graphical comparison.

Figure 5-8 Comparing Bender's Decomposition Approach Results to those obtained via the Gurobi
Solver

From the SIP and the ADP solutions, we know the solution should run around

1200 but Bender’s yields solutions around 1315, about 10% high. The linearization of

the binary knapsack with the high variance in the log-normal distribution, results in a

210

disparity between the binary solution and the continuous knapsack with an upper bound

of 1. We illustrate with a simple example using the data shown earlier in the chapter.

Table 5-10 Example Scenario Data

Consider scenario 1 of the example data. We will only use the visible data, items

1-3 and 45-52. If the available budget were 100, under the binary decision variable

constraint we can only accept items 3, 45, 46, and 52. This only consumes 49 of the 100

resource units available and yields a value of 60. But if remove integrality and allow the

amount of an item be any number between 0 and 1, the results are quite different. We

would consume 0.62 of item 50, for a yield of 179.50. This is an extreme example, but it

should give the reader some insight into the source of the gap.

Costs
Scenario\	
 Wks 1 2 3 45 46 47 48 49 50 51 52

1 0 0 1 4 6 0 0 0 161 0 38
2 8 0 0 0 310 0 1 0 0 0 0
3 0 0 0 4 0 0 0 0 18 293 0
4 0 50 4 0 0 10 13204 0 0 0 289
5 0 0 0 0 0 0 0 30 0 9 0

Values
Scenario\	
 Wks 1 2 3 45 46 47 48 49 50 51 52

1 0 0 0 1 1 0 0 0 289 0 58
2 3 0 0 0 425 0 3 0 0 0 0
3 0 0 0 5 0 0 0 0 9 180 0
4 0 58 8 0 0 2 15018 0 0 0 230
5 0 0 0 0 0 0 0 52 0 7 0

211

There are strong parallels between Bender’s decomposition and SAA algorithm.

In both cases we were solving the SIP by increasing the overall sample size until we

converged to a desired degree of precision. The attraction of the SAA algorithm is that it

requires less customized coding and it yields the statistics necessary to create a

confidence interval around the result.

5.6 Summary

In our exploration of stochastic integer programming approaches to the WPSP we

have gained some insights about this method: its low barriers to implementation, its ease

of use, and its modeling flexibility.

Implementing the WPSP2SSIP requires two basic technologies: the ability to

generate scenarios via Monte Carlo, and a commercial solver able to handle reasonably

sized integer programs. Some commercial packages now incorporate the ability to

generate Monte Carlo simulations and solve the resulting stochastic program. The

technologies are readily available to government organizations, most of which employ

operations researchers, industrial engineers, and other mathematical scientists able to use

implement this technology.

Once implemented, for the analyst it is a simple question to update the data from

the most recent decision data, add the recent arrival(s) data, run the simulation to generate

the constraint data, and then solve. With a little experimentation, it should be readily

apparent which size problem – how many scenarios – solves in a timely fashion. Solving

212

a few times with different random samples informs the analyst as to the variability of the

solution. The solution informs the decision maker as to whether to acquire or not. A

simple parameterized sensitivity analysis can inform the decision make what

increase/decrease in value or cost for the initiative might result in a change of solution.

Should decision makers wish to explore partitioning recent initiatives into options

which could then be examined as combinations of options, the 2SSIP formulation adapts

effortless to address this change. It also readily accepts other constraints such as

satisficing strategic goals or imposing interaction constraints.

In the following chapter, we conclude this thesis by comparing the dynamic

programming approaches to the stochastic integer programming approach, and consider

further research.

213

CHAPTER 6 – CONTRIBUTION, FUTURE RESEARCH, AND CONCLUSIONS

6.1 Contributions

In this dissertation, we described a dynamic resource allocation problem faced by

governments during longer conflicts. During the fluid, urgent needs of an enduring

conflict, new war-fighting solutions present themselves over time randomly. Which of

these should they choose and which should they decline? Using the Joint Improvised

Explosive Device Defeat Organization (JIEDDO) as a motivational example for this

problem, we developed solution methods to two sides of this particular problem.

• Military solutions are not fungible – their value lies in the utility they provide the

using government across a variety of functional domains. Yet they ultimately

compete for the same dollars. To address this need, we developed a decision

analytic approach for how decision makers might put on a common scale of value

different types of solutions, arriving sequentially over time, coming to fruition at

different points in the future, all with varying likelihood of success. Via this

methodology, using their own values, beliefs about the future, and discounting

preferences, decision makers can compare disparate initiatives on a common scale

of value.

• Given a means to assign value to arriving solutions, and some history of past

arrivals, it may not be clear at a given point in the execution of an annual budget

214

what is a good investment and what is a bad one. This sequential decision-

making naturally fits the type of challenge addressed by dynamic programming,

but the need to solve the problem reasonably fast led us to develop an

approximate dynamic programming. This approach provides fast approximate

solutions.

• In parallel, we also developed a stochastic programming approach to the same

problem. We demonstrated for a set of different example problems how the two

approaches yield similar answers for the same data. This stochastic programming

approach can also provide fast approximate solutions, but with more time can

provide more precise solutions, and provides greater modeling flexibility.

Given that this thesis dealt with three separate intellectual thrusts - decision analysis,

dynamic programming, and stochastic programming - we reflect on how they might all

function in concert and the implications for future research.

6.2 Lessons Learned

6.2.1 Value functions and their use in Military Planning

Chapter 3 described a decision analytic approach measuring the military value of

initiatives in a wartime portfolio acquisition context. This measure approach, Discounted

Expected Net Initiative Value (DENIV), employed several concepts. First, an initiative’s

value is fundamentally measured in the context of the current portfolio: the net change in

portfolio value resulting from adding the initiative. The net change in value must be

modified by its likelihood of being realized, and discounted by the time expected until it

215

may be realized. Having this method in place allowed us to consider numerical

optimization since we now had benefit and cost data for initiatives.

DENIV was heavily influenced by our experiences with JIEDDO, our

inspirational case study. Implementing DENIV requires that the defense agency have in

a place a portfolio value model and that they update the model regularly. With this

process in place, the determination of an initiative’s net contribution to the portfolio

becomes feasible. It is our belief that this process was done qualitatively in the mind of

the decision makers. Taking the additional steps to convert this qualitative understanding

of the portfolio into a quantitative understanding would not just enable DENIV but

provide a clearer context for the strategic identification of shortfalls and their

prioritization in other venues such as science and technology investment.

6.2.2 Other Applications in Sequential Decision Making

The DENIV model offered an approach for addressing sequential valuation of

non-fungible items arriving at random intervals to a decision maker. This is a similar

situation to many entities that engage in research and development, where there is an

urgency to bring new solutions to market, where there is a sequential nature to decision

making, and where there is some element of preference in the portfolio beyond the

measure of future profit.

For these kinds of entities, portfolio thinking is a valuable first step. Describe the

desired theoretical portfolio, and what are the features of this desired portfolio. Contrast

that with the as-is portfolio. The value of any new addition to the portfolio should be

216

viewed as the net improvement this would create between the as-is and the desired state.

Because this value has not been realized, one should realistically consider both the

likelihood and the time frame of its realization; that is, one should employ the discounted

expectation of value. Many organizations develop solutions with similar time frames and

similar likelihoods, and therefore may by force of habit overlook these considerations.

Using discounted expected net value may ensure that solutions they may actually value

do not get overlooked.

6.2.3 Lessons Learned

Case Studies

Development of this approach would benefit from a strong set of case studies that

will help clarify many issues: in particular the issues of discounting and accounting for

the likelihood of success. While discounting is common when the metric is monetary

units, discounting a normalized measure of value is not. Furthermore, in this paper we

described a situation where decision makers would discount at different rates for different

kinds of solutions. In general what aspects of preference might lead decision makers to

discount at different rates? Some solution types will naturally take longer to bring to

fruition than others. While one might be able to develop useable software in a few

months, warships take years to build. Likewise, the best pharmaceuticals still require

years to go from initial lab results to general use. It would make sense then that

217

discounting should then take into account a “normal” wait time for a solution of certain

types. The “right” way to do this will likely take case studies and experimentation.

Risk Preference and Utility

While expectation is a natural way of addressing uncertainty, in wartime decision

makers may not be risk-neutral. Might not a utility-based approach – one that takes

decision makers risk preferences into account - be more appropriate? In the example we

provided in this paper, we only provided binary results: success or failure. Furthermore

the probability of success was elicited from subject matter experts. A richer more

informative approach may come via Monte Carlo simulation of project schedules (for an

example, see McCabe, 2003). This kind of approach can provide a joint distribution of

success, time to completion, and cost. In this context, one could envision an integrated

approach to addressing risk, utility and discounting.

6.2.4 Implications for Optimization: Are initiative values proportional to their costs?

In Chapters 4 and 5 we considered two different approaches to optimization.

While JIEDDO acquisition history provided the insight that initiative costs were log-

normally distributed, there was no history of the value of initiatives. Thus, we had to

make a critical assumption about the value of initiatives: that the value of an arriving

initiative was randomly distributed around a mean proportional to the arrival’s cost.

Since costs were log-normally distributed, then by this assumption the values should be

218

similarly distributed. If the values were not in some sense proportional to cost, it might

easily happen that the very expensive solutions are never acquired because their costs far

exceed their value.

This assumption seemed perfectly rational in the context of an optimization study

using randomly generated data. A real question remains how well that assumption might

hold once DENIV were employed. Because DENIV measures value primarily as a net

change in portfolio, only a few initiatives might have the ability to truly make an impact

on the portfolio. It may be then that a system like DENIV results in a few very valuable

initiatives and lots of low impact, but necessary, initiatives; a result which may parallel

their cost distribution. But this is only speculation. This is a clear area for further

research.

6.3 Optimization Approaches to WPSP

6.3.1 Comparing the two approaches

We examined these two different approaches by first developing specific

quantitative approaches, testing these via numerical examples using a “small” problem

and then extended from that to the large problem. A key insight we gained into the

nature of this problem with both approaches is that what made the problem “big” was not

so much the log-mean of the cost distribution but its log-variance. Rescaling the

distribution changed the log-mean but not the log-variance.

219

Approximate Dynamic Programming

The approximate dynamic programming (ADP) yielded fast solutions: run times

ranged from 10 seconds to a few minutes depending upon how many iterations of the

problem were desired and the number of time steps in the decision epoch. The solutions

compared favorably to the dynamic programming method, but yielded solutions in the

worst case we examined that were thousands times faster.

However, the value curve was the result of extensive effort to fit a cumulative

log-normal distribution of unknown parameters via recursive regression. While we

developed a workable approach to doing this, whether this method was the best way to do

so is open to debate. If we consider merely the value of the solution at the boundary, then

this approach yielded workable solutions.

In the absence of any other viable approaches, the extensive coding,

experimenting, and tuning required to develop this approach might be worth it. Indeed,

to paraphrase Powell, ADP offers solutions to problems where no other solution method

exists. However, as we saw for the WPSP, there exists another approach.

Stochastic Integer Programming

The stochastic integer programming (SIP) approach to the WPSP also offered fast

approximate solutions with small Monte Carlo samples. Since the solution of the SIP-

WPSP is itself a random variable, greater precision could be obtained by generating a

220

larger sample of futures. However, pursuit of greater precision might be a quixotic quest

since the problem’s input data is imprecise.

Conversely, the need for incorporating rare event information translates to a need

for as large a sample from the random vector ξ as possible. The Sample Average

Approximation (SAA) methodology proved a valuable complement to the SIP approach

in this regard. Compared to solving an instance of the SIP with N samples from the

random vector ξ, the SAA methodology allowed the same order of sampling via a solving

a sequence of SIP using smaller samples. Sampling this way yielded not just an optimal

expected value but also a measure of the precision of the answer via the variance the

sequence of solutions.

Comparing the Approaches

Compared to ADP, defense organizations may find SIP much simpler to

implement: the problem data can be generated easily from spreadsheets and the

formulation is relatively simple to implement for individuals with an exposure to

mathematical programming. Lastly, the SIP offers inherent modeling flexibility not

present in the ADP approach. The SIP implementation can easily handle common

scenarios such as multiple arrivals in the same week, decomposing arrivals into multiple

dependent options, or the layering on of strategic priorities. It can easily handle changes

in the assumptions about the random distribution of arrivals – changes which could lead

to changes in the structural implementation of the ADP approach.

221

The fundamental difference between the two approaches is that in ADP the

decision logic is embedded in the simulation framework. Decisions are made in the

context of the simulation, and via recursive regression, we “learn” the value function, for

any given state. The recursive regression requires an understanding of good basis

functions. In SIP, the decision logic is orthogonal to the simulation framework. If

something changes regarding how we perceive the future, we can change the simulation

framework but preserve the decision logic.

6.3.2 Future Research

Multi-Stage Decision Making

The optimization approach employed here has obvious applications to the other

sequential decision making entities such as the pharmaceutical industry. In this problem

we focused on the single phase decision, which is more a worst-case scenario. In

practice, both in pharmaceuticals and as we saw in JIEDDO, development of sequential

projects is done in stages with decision points along the way. Keles and Hartman (2007)

use ADP to explore decision making in multi-stage R&D pharmaceutical context. Their

assumptions made projects, while stochastic, rather uniform in their randomness

compared to the very large range in data variance we observed at JIEDDO. While we

found the single stage problem was more easily and flexibly modeled via SIP, this multi-

stage context may prove more amenable to modeling via ADP.

222

Fitting Log-Normal Cumulative Curves Recursively

One challenge for ADP in particular was how to best recursively fit the

parameters of a log-normal cumulative distribution. This was a challenging problem,

since fitting this curve essentially dictated the value curve solution of the ADP. This by

itself would likely make a useful journal paper.

Using Sample Average Approximation as a Sensitivity Analysis Tool

The SAA methodology employed a simple gradient function stopping criteria.

Another methodology that has its roots in discrete event simulation is Optimal

Computing Budget Allocation (OCBA) (Chen, 1995). This approach is used to optimize

the use of computing time in a simulation. The idea is for the simulation to generate only

the number of samples needed to support the decision. If a choice has to be made

between two random variables, the simulation uses a sequence of samples to determine

which variable is superior to within a desired statistical confidence level.

Linking this approach to SAA may yield a fast and innovative approach for

conducting dynamic sensitivity analysis for SIP. For a single instance of the SIP, assume

a result x. A decision maker may want to know how sensitive the result is to input

parameters. One approach might be to conduct a parameterized study of the inputs,

where the SAA method is blended with OCBA logic to run only enough SIP iterations as

needed to determine the sensitivity of the solution x.

223

6.4 Conclusion

Sequential decision making surrounds us. Sequential decision making is a natural

situation that arises in competitive environments where decision makers may not have

time to wait to perform holistic decisions. Instead, the decisions must be made as the

decision opportunities present themselves. Christmas shoppers buy on Black Friday

hoping better deals do not arrive before Christmas. In tight real estate markets, buyers

cannot simply sleep on it because the attractive house may be gone by the time they come

back. Employers often need to fill vacancies quickly and must balance between “best

qualified” and “first come, first served”.

Our focus in this paper was on wartime acquisition decision making: how to best

acquire wartime capabilities sequentially. As these words are written the United States

has been at war, in one fashion or another, for more than thirteen years, with new threats

looming. Hopefully, the application of quantitative and qualitative analytic methods will

contribute to making the world a safer place and might also be applied to a variety of

other endeavors where the decisions made today can have significant impact on the long-

term profitability, efficiency or well-being of an organization.

224

APPENDIX A. WPSP DYNAMIC PROGRAMMING CODE

As described in the main body of this dissertation, we employed the statistical

programming language R for all the code in this dissertation. The DP code employs the

recursive logic described by Papastavrou, Rajagopalan, Kleywegt (1996).

start.time	
 <-­‐	
 proc.time()	
 	
 #initializes	
 timing	
 of	
 the	
 loop	
 to	
 give	
 us	
 a	
 run	
 time	
 measure.	

	

Capacity	
 <-­‐	
 100	

Deadline	
 <-­‐	
 12	

	

p	
 <-­‐	
 1/3	

minWt	
 <-­‐	
 1	
 #not	
 truly	
 the	
 min	
 weight	
 -­‐	
 but	
 the	
 "observed	
 min"	

maxWt	
 <-­‐	
 50	
 #not	
 truly	
 the	
 max	
 weight	
 –	
 used	
 initially	
 to	
 characterize	
 the	
 distribution	

meanLogNorm	
 <-­‐2	
 #log(maxWt*minWt)/2	

varLogNorm	
 <-­‐	
 2.5	

rate	
 <-­‐	
 1/exp(meanLogNorm	
 +	
 .5*varLogNorm)	

sdLogNorm	
 <-­‐	
 varLogNorm^(1/2)	

	

set.seed(501)	

totalSamples	
 <-­‐	
 5000000	

lnDenDraw	
 <-­‐	
 array(round(rlnorm(totalSamples,meanLogNorm,sdLogNorm),0))	

maxWt	
 <-­‐	
 max(lnDenDraw)	

	

numRwdCases	
 <-­‐	
 20	

EV	
 <-­‐	
 array(0,c(Deadline+1,Capacity+1))	

R	
 <-­‐	
 array(2*maxWt,c(Deadline+1,Capacity+1,maxWt+1))	

rwdLevels	
 <-­‐	
 array(0,c(maxWt+1,numRwdCases))	

rwdSteps	
 <-­‐	
 array(0,maxWt+1)	

lnDens	
 <-­‐array(0,maxWt+1)	

mass	
 <-­‐	
 array(0,	
 maxWt+1)	

	

	

tb<-­‐table(lnDenDraw)	

225

freqs	
 <-­‐	
 tb/totalSamples	

	

if	
 (min(lnDenDraw)==0){	

	
 	
 for	
 (i	
 in	
 0:maxWt)	
 {	

	
 	
 	
 	
 if	
 (i+1>dim(freqs))	
 {	

	
 	
 	
 	
 	
 	
 lnDens[i+1]	
 <-­‐	
 0	

	
 	
 	
 	
 }	
 else	
 {	

	
 	
 	
 	
 	
 	
 lnDens[i+1]	
 <-­‐	
 freqs[i+1]	

	
 	
 	
 	
 }	

	
 	
 }	

}	
 else	
 {	

	
 	
 lnDens[1]	
 <-­‐0	

	
 	
 for	
 (i	
 in	
 1:maxWt)	
 {	

	
 	
 	
 	
 if	
 (i+1>dim(freqs))	
 {	

	
 	
 	
 	
 	
 	
 lnDens[i+1]	
 <-­‐	
 0	

	
 	
 	
 	
 }	
 else	
 {	

	
 	
 	
 	
 	
 	
 lnDens[i+1]	
 <-­‐	
 freqs[i]	

	
 	
 	
 	
 }	

	
 	
 }	

}	

	

ruDens	
 <-­‐	
 1/(numRwdCases)	

	

for	
 (w	
 in	
 0:maxWt)	
 {	

	
 	
 rwdSteps[w+1]<-­‐2*w/(numRwdCases-­‐1)	

	
 	
 rwdLevels[w+1,1]<-­‐0	

	
 	
 for	
 (r	
 in	
 2:numRwdCases)	
 {	

	
 	
 	
 	
 rwdLevels[w+1,r]<-­‐rwdLevels[w+1,r-­‐1]+rwdSteps[w+1]	

	
 	
 }	

}	

	

#	
 make	
 the	
 join	
 mass	
 distribution	

mass	
 <-­‐	
 lnDens*ruDens	

	

#	
 print(ruDens)	

#	
 print(mass)	

for	
 (t	
 in	
 Deadline:1)	
 {	

	
 	
 cat("\nt	
 =	
 ",t,"\n")	

	
 	
 flush.console()	

	
 for	
 (c	
 in	
 Capacity:0)	
 {	

	
 	
 for	
 (w	
 in	
 0:maxWt)	
 {	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 for	
 (r	
 in	
 1:numRwdCases)	
 {	

	
 	
 	
 	
 if	
 (w	
 <=	
 c)	
 {	

	
 	
 	
 	
 	
 R[t,c+1,w+1]	
 <-­‐	
 EV[t+1,c+1]	
 -­‐	
 EV[t+1,c+1-­‐w]	

	
 	
 	
 	
 	
 if	
 (rwdLevels[w+1,r]	
 <=	
 R[t,c+1,w+1])	
 {	

	
 	
 	
 	
 	
 	
 EV[t,c+1]	
 <-­‐	
 EV[t,c+1]	
 +	
 p*EV[t+1,c+1]*mass[w+1]	

	
 	
 	
 	
 	
 }	
 else	
 {	

	
 	
 	
 	
 	
 	
 EV[t,c+1]	
 <-­‐	
 EV[t,c+1]	
 +	
 p*(rwdLevels[w+1,r]	
 +	
 	

226

	
 	
 	
 	
 	
 	
 	
 EV[t+1,c+1-­‐w])*mass[w+1]	

	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 }	
 else	
 {	

	
 	
 	
 	
 	
 EV[t,c+1]	
 <-­‐	
 EV[t,c+1]	
 +	
 p*EV[t+1,c+1]*mass[w+1]	

	
 	
 	
 	
 }	

	
 	
 	
 }	

	
 	
 }	

	
 	
 EV[t,c+1]	
 <-­‐	
 EV[t,c+1]	
 +	
 (1-­‐p)*EV[t+1,c+1]	

	
 }	

}	

end.start<-­‐	
 proc.time()-­‐start.time	

print(c("Runtime=",end.start))	

	

#	
 Plotting	
 results	

maxTime<-­‐Deadline+1	

timeRng	
 <-­‐	
 1:maxTime	

x	
 <-­‐	
 0:Capacity	

qtrStep	
 <-­‐	
 round(maxTime/4)	

#qtrStep	

midStep	
 <-­‐	
 round(maxTime/2)	

threeQtrStep	
 <-­‐	
 round(3*maxTime/4)	

#midStep	

nearEnd	
 <-­‐	
 Deadline	

qtrWt	
 <-­‐	
 wtLevels[max(1,round(numWtCases/4))]	

qtrWt	

midWt	
 <-­‐	
 wtLevels[max(2,round(numWtCases/2))]	

midWt	

twoThirdsWt	
 <-­‐	
 wtLevels[max(3,round(numWtCases*2/3))]	

twoThirdsWt	

yRange	
 <-­‐	
 max(EV)	

	

maxCap	
 <-­‐	
 Capacity+1	

capRng	
 <-­‐	
 1:maxCap	

outPuts	
 <-­‐	
 EV[,capRng]	

capRng	
 <-­‐1:Capacity	

plot(main=paste("DSKP	
 DP	
 (CostMean:",meanLogNorm,",	
 CostVar:",	
 varLogNorm,")"),	
 x,	
 outPuts[1,],	
 	

ylim	
 =	
 c(0,1.2*max(EV)),	
 xlab="State	
 b",	
 ylab="f()",	
 type="l")	

lines(x,outPuts[qtrStep,],lty="dashed")	

lines(x,outPuts[midStep,],lty="dotdash")	

lines(x,outPuts[threeQtrStep,],lty="dotted")	

lines(x,outPuts[nearEnd,],lty="longdash")	

legend("topleft",c("t=1",qtrStep,midStep,threeQtrStep,nearEnd),lty=c("solid","dashed","dotdash",	

	
 "dotted","longdash"),cex=0.8)	

	

nearEnd	
 <-­‐	
 1	

tenthStep	
 <-­‐	
 ceiling(Capacity/10)	

qtrStep	
 <-­‐	
 ceiling(Capacity/4)	

midStep	
 <-­‐	
 ceiling(Capacity/2)	

227

timeRng	
 <-­‐1:maxTime	

plot(main="DSKP	
 DP:	
 	
 f()	
 vs	
 Stage	
 t	
 by	
 State	
 b",timeRng,EV[,maxCap],ylim	
 =	
 c(0,1.1*max(EV)),	
 	

	
 xlab=paste("Stage	
 t"),	
 ylab="f()",type="l")	

lines(timeRng,EV[,midStep+1],lty="dotdash")	

lines(timeRng,EV[,qtrStep+1],lty="dashed")	

lines(timeRng,EV[,tenthStep+1],lty="dotted")	

lines(timeRng,EV[,nearEnd+1],lty="longdash")	

legend("topright",c(paste("b=",Capacity),midStep,qtrStep,tenthStep,nearEnd),lty=c("solid",	
 "dotdash",	
 	

	
 "dashed",	
 "dotted","longdash"),cex=0.7)	

	

tt	
 <-­‐	
 floor(Deadline/2)	

x	
 <-­‐	
 0:Capacity	

qtrStep	
 <-­‐	
 round(Capacity*.2)	

midStep	
 <-­‐	
 round(Capacity*.4)	

threeQtrStep	
 <-­‐	
 round(Capacity*.6)	

nearEnd	
 <-­‐	
 1	

maxCap	
 <-­‐	
 Capacity+1	

capRng	
 <-­‐	
 1:maxCap	

outPuts	
 <-­‐	
 R[tt,capRng,]	

	
 	

plot(main=paste("CritRwd	
 vs	
 State	
 b	
 by	
 Cost	
 c	
 at	
 t=",	
 tt),	
 x,	
 utPuts[
 Capacity*.8],	
 ylim=c(0,max(EV)),	
 	

	
 xlab="State	
 b",	
 lab="CritRwd",type="l")	

lines(x,outPuts[,qtrStep],lty="dotdash")	

lines(x,outPuts[,midStep],lty="dotted")	

lines(x,outPuts[,threeQtrStep],lty="longdash")	

legend("topright",c(paste("cost=",Capacity*.8),	
 threeQtrStep,	
 midStep,	
 qtrStep),	
 	

lty=c("solid",	
 "dotdash",	
 "dotted",	
 "longdash"),	
 cex=0.7)	

	

tt	
 <-­‐	
 floor(3*Deadline/4)	

outPuts	
 <-­‐	
 R[tt,capRng,]	

plot(main=paste("CritRwd	
 vs	
 Capacity	
 by	
 Wt	
 at	
 t=",	
 t),	
 x,	
 outPuts[,maxWt],	
 ylim=c(0,max(R)),	
 	

	
 xlab="Capacity",	
 ylab="CritRwd",type="l")	

lines(x,outPuts[,qtrStep],lty="dotdash")	

lines(x,outPuts[,midStep],lty="dotted")	

lines(x,outPuts[,threeQtrStep],lty="longdash")	

legend("topright",c(paste("wt=",maxWt),qtrStep,midStep,threeQtrStep),	

lty=c("solid","dotdash","dotted","longdash"),cex=0.7)	

	

max(EV)	

write.csv(EV,	
 "EVdefaultCase12.csv")	

fileName	
 <-­‐	
 paste("DSKP_startValue_logMean_",meanLogNorm,"_logVar_",varLogNorm,".txt",	
 sep	
 =	
 "")	

write(outPuts[1,],file=fileName,ncolumns=1)	

outPuts[1,Capacity]	
 #	
 print	
 out	
 the	
 expected	
 value	
 for	
 the	
 full	
 budget	
 at	
 t=1	

	
 	

228

	

APPENDIX B. WPSP APROXIMATE DYNAMIC PROGRAMMING CODE

As described in the main body of this dissertation, we employed the statistical

programming language R for all the code in this dissertation. The ADP code employs the

described the double pass algorithm found in Powell (2007), the basis functions, step-size

scheme, and recursive regression all as described in Chapter 4.

#	
 ADP	
 WPSP	
 Double	
 pass	
 algorithm	
 -­‐	
 uses	
 a	
 set	
 of	
 log-­‐normal	
 basis	
 functions	
 in	
 recursive	
 regression	

scheme	
 to	
 approximate	
 the	
 value	
 function	

#	
 Programmed	
 by	
 Ronald	
 F.	
 A.	
 Woodaman,	
 this	
 version	
 dated	
 10	
 June	
 14,	
 as	
 part	
 of	
 GMU	
 SEOR	

dissertation	
 research	

	

start.time	
 <-­‐	
 proc.time()	
 	
 #initializes	
 timing	
 of	
 the	
 loop	
 to	
 give	
 us	
 a	
 run	
 time	
 measure.	

#problem	
 features	

	

#general	
 attributes	

scaler	
 <-­‐	
 1000000	

Deadline	
 <-­‐	
 50	

p	
 <-­‐	
 1/3	

Capacity	
 <-­‐	
 2500000000/scaler	

maxN	
 <-­‐	
 100000#12000	

randomize	
 <-­‐	
 1	
 #starts	
 at	
 different	
 levels	
 of	
 budget	
 in	
 order	
 to	
 populate	
 value	
 space	

seed	
 <-­‐	
 round(301)	
 #controling	
 the	
 random	
 seed	
 to	
 ensure	
 replicability	
 of	
 results	

plotPoints	
 <-­‐300	

plotStep	
 <-­‐	
 ceiling(Capacity/plotPoints)	
 #controlling	
 density	
 of	
 plot	

	

#cost/value	
 distribution	

meanLogNorm	
 <-­‐	
 16.58-­‐log(scaler)	

varLogNorm	
 <-­‐	
 3.57	

sdLogNorm	
 <-­‐	
 varLogNorm^(1/2)	

	

#regression	
 basis	
 setup	

meanArrival	
 <-­‐	
 exp(meanLogNorm	
 +	
 .5*varLogNorm)	

meanTotalArrival	
 <-­‐	
 meanArrival*p*Deadline	

229

meanTotalLogNorm	
 <-­‐log(meanTotalArrival)	

rate	
 <-­‐	
 1/meanArrival	

numTerms	
 <-­‐	
 4#round(Deadline/6,0)	
 +	
 1	

startPoint	
 <-­‐	
 0	

secondVarianceFactor	
 <-­‐	
 2	

termVariances	
 <-­‐	
 2	

stepTuner	
 <-­‐	
 .5^(.5)	

startTuner	
 <-­‐	
 1	

termStart	
 <-­‐	
 startTuner*(meanLogNorm	
 +	
 .5*varLogNorm)	

termStep	
 <-­‐	
 sdLogNorm*stepTuner#(meanTotalLogNorm	
 -­‐	
 meanLogNorm	
 -­‐	

.5*varLogNorm)/(numTerms+1)	

term	
 <-­‐	
 (1:numTerms-­‐startPoint)*termStep	
 +	
 termStart	

termSD	
 <-­‐	
 sdLogNorm	

termSDtwo	
 <-­‐	
 sdLogNorm*secondVarianceFactor^0.5	

theta	
 <-­‐	
 array(0,c(Deadline+1,numTerms))	
 #coefficient	
 for	
 linear	
 function	

if	
 (termVariances	
 >	
 1)	
 thetaTwo	
 <-­‐	
 array(0,c(Deadline+1,numTerms))	
 #coefficient	
 for	
 linear	
 function	

phi	
 <-­‐	
 array(0,c(numTerms))	

if	
 (termVariances	
 >	
 1)	
 phiTwo	
 <-­‐	
 array(0,c(numTerms))	

print(paste("Mean	
 Arrival	
 Cost:	
 ",format(meanArrival,	
 nsmall=2,big.mark=",")))	

	

#learning	
 parameters	

alpha	
 <-­‐	
 0.001	

tuneUpPoint	
 <-­‐	
 1/5	

shrinkPoint	
 <-­‐	
 3/4	

shrinker	
 <-­‐	
 0.9999	

infintesimal	
 <-­‐	
 0.001	

ssqeAlpha	
 <-­‐	
 0.01	

ssqe	
 <-­‐	
 array(0,c(Deadline+1,maxN))	

stochErr	
 <-­‐	
 array(0,Deadline+1)	

	

#turns	
 on	
 automated	
 debugging	
 features	

deBugging	
 <-­‐	
 1	

if	
 (maxN>10)	
 {	

	
 	
 deBugging	
 <-­‐0	

}	
 	

	

v	
 <-­‐	
 array(0,c(Deadline+1,maxN))	
 #array(0,Deadline+1)	

	

	
 	
 	

#start	
 loop	
 	

for	
 (n	
 in	
 1:maxN)	
 {	

	
 	
 #display	
 progress	

	
 	
 percentDone	
 <-­‐	
 100*n/maxN	

	
 	
 	
 	
 	
 	
 if	
 (percentDone%%10==0)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 print(paste("Iteration:	
 ",n,",	
 ",percentDone,"	
 percent	
 Done"))	

	
 	
 	
 	
 	
 	
 	
 	
 flush.console()	

	
 	
 	
 	
 	
 	
 }	

	
 	
 	

230

	
 	
 	

	
 	
 if	
 (randomize	
 >0)	
 {	

	
 	
 	
 	
 budget	
 <-­‐	
 max(1,round((1-­‐runif(1)^3)*Capacity,0))	

	
 	
 	
 	
 #startTime	
 <-­‐max(1,round((runif(1)^3)*Deadline,0))	

	
 	
 	
 	
 startTime	
 <-­‐1	

	
 	
 }	
 else	
 {	

	
 	
 	
 	
 budget	
 <-­‐	
 Capacity	

	
 	
 	
 	
 startTime	
 <-­‐1	

	
 	
 }	

	
 	
 arrival	
 <-­‐	
 array(0,	
 Deadline)	

	
 	
 cost	
 <-­‐	
 array(0,Deadline)	

	
 	
 reward	
 <-­‐	
 array(0,Deadline)	

	
 	
 buy	
 <-­‐	
 array(0,Deadline)	

	
 	
 	

	
 	
 	

	
 	
 if	
 (deBugging	
 >	
 0)	
 print(paste("Starting	
 n:	
 ",n,"budget:	
 ",budget,"startTime:	
 ",startTime))	

	
 	
 	

	
 	
 for	
 (step	
 in	
 startTime:Deadline)	
 {	

	
 	
 	
 	
 arrival[step]	
 <-­‐	
 (runif(1)	
 <	
 p)	

	
 	
 	
 	
 if	
 (arrival[step])	
 {	

	
 	
 	
 	
 	
 	
 cost[step]	
 <-­‐	
 round(rlnorm(1,meanLogNorm,sdLogNorm))	

	
 	
 	
 	
 	
 	
 reward[step]<-­‐	
 runif(1,0,2*cost[step])	

	
 	
 	
 	
 	
 	
 if	
 (cost[step]<=budget)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 budgetAfterbuy	
 <-­‐	
 budget	
 -­‐	
 cost[step]	

	
 	
 	
 	
 	
 	
 	
 	
 oldValueIfbuy	
 <-­‐	
 sum(theta[step+1]*plnorm(budgetAfterbuy+infintesimal,term,termSD))	
 +	

sum(thetaTwo[step+1]*plnorm(budgetAfterbuy+infintesimal,term,termSDtwo))	
 	

	
 	
 	
 	
 	
 	
 	
 	
 oldValueIfpass	
 <-­‐	
 sum(theta[step+1]*plnorm(budget+infintesimal,term,termSD))	
 +	

sum(thetaTwo[step+1]*plnorm(budget+infintesimal,term,termSDtwo))	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 delT	
 <-­‐	
 oldValueIfbuy	
 -­‐	
 oldValueIfpass	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 (reward[step]>delT)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 buy[step]<-­‐TRUE	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 budget	
 <-­‐	
 budgetAfterbuy	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 }	
 	

	
 	
 	
 	
 }	

	
 	
 	
 	
 if	
 (deBugging	
 >	
 0)	
 print(paste("After	
 step=",step,"Arrival	

Data:",arrival[step],cost[step],reward[step],"Action:	
 ",buy[step],"New	
 Budget:	
 ",budget))	

	
 	
 	
 	
 	

	
 	
 }	

	
 	
 if	
 (deBugging	
 >	
 0)	
 print(paste("Starting	
 backward	
 pass	
 with	
 budget:",budget))	

	
 	
 for	
 (step	
 in	
 Deadline:startTime)	
 {	

	
 	
 	
 	
 rise	
 <-­‐	
 reward[step]*buy[step]	

	
 	
 	
 	
 run	
 <-­‐	
 cost[step]*buy[step]	

	
 	
 	
 	
 v[step,n]	
 <-­‐	
 rise	
 +	
 v[step+1,n]	
 	

	
 	
 	
 	
 nextBudget	
 <-­‐	
 run	
 +	
 budget	
 	

	
 	
 	
 	
 if	
 (deBugging	
 >	
 0)	
 print(paste("Step:	
 ",step,",	
 Buy:	
 ",buy[step],",	
 v:	
 ",v[step,n],",	
 budget:	
 ",budget,",	

nextBudget:	
 ",nextBudget))	

	
 	
 	
 	
 	
 	
 	
 	
 	

231

	
 	
 	
 	
 #Recursive	
 Regression	

	
 	
 	
 	
 oldTheta	
 <-­‐	
 theta[step,]	

	
 	
 	
 	
 if	
 (termVariances	
 >	
 1)	
 oldThetaTwo	
 <-­‐	
 thetaTwo[step,]	

	
 	
 	
 	
 oldRegVal	
 <-­‐	
 sum(oldTheta*plnorm(budget+infintesimal,term,termSD))	
 +	

sum(oldThetaTwo*plnorm(budget+infintesimal,term,termSDtwo))	
 	

	
 	
 	
 	
 stochErr[step]	
 <-­‐	
 oldRegVal	
 -­‐	
 v[step,n]	

	
 	
 	
 	
 	

	
 	
 	
 	
 if	
 (n>1)	
 {	

	
 	
 	
 	
 	
 	
 ssqe[step,n]	
 <-­‐	
 ssqeAlpha*stochErr[step]^2	
 +	
 (1-­‐ssqeAlpha)*ssqe[step,n-­‐1]	

	
 	
 	
 	
 }	
 else	
 {	

	
 	
 	
 	
 	
 	
 ssqe[step,n]	
 =	
 stochErr[step]^2	

	
 	
 	
 	
 }	

	
 	
 	
 	
 	

	
 	
 	
 	
 if	
 (n>maxN*shrinkPoint)	
 {	
 	

	
 	
 	
 	
 	
 	
 alpha	
 <-­‐	
 alpha*shrinker	

	
 	
 	
 	
 }	

	
 	
 	
 	
 	

	
 	
 	
 	
 phi	
 <-­‐	
 plnorm(budget+infintesimal,term,termSD)	

	
 	
 	
 	
 phiTwo	
 <-­‐	
 plnorm(budget+infintesimal,term,termSDtwo)	

	
 	
 	
 	
 theta[step,]	
 <-­‐	
 oldTheta	
 -­‐	
 alpha*(stochErr[step])*(phi)	

	
 	
 	
 	
 thetaTwo[step,]	
 <-­‐	
 oldThetaTwo	
 -­‐	
 alpha*(stochErr[step])*(phiTwo)	

	
 	
 	
 	
 	

	
 	
 	
 	
 if	
 (deBugging	
 >	
 0)	
 print(paste("StochErr:	
 ",stochErr[step],"Phi:	
 ",phi))	

	
 	
 	
 	
 if	
 (deBugging	
 >	
 0)	
 print(paste("Theta:	
 ",theta[step,]))	

	
 	
 	
 	
 	

	
 	
 	
 	
 budget	
 <-­‐	
 nextBudget	

	
 	
 }	

}	

	

	

	

capRng	
 <-­‐	
 seq(0,	
 Capacity,	
 plotStep)	

qtrStep	
 <-­‐	
 round(Deadline/4)	

midStep	
 <-­‐	
 round(Deadline/2)	

threeQtrStep	
 <-­‐	
 round(3*Deadline/4)	

nearEnd	
 <-­‐	
 Deadline	

t1curve	
 <-­‐	
 array(0,c(2,Capacity))	

	

nearEndValue	
 <-­‐	
 array(0,length(capRng))	

threeQtrStepValue	
 <-­‐	
 array(0,length(capRng))	

midStepValue	
 <-­‐	
 array(0,length(capRng))	

qtrStepValue	
 <-­‐	
 array(0,length(capRng))	

startValue	
 <-­‐	
 array(0,length(capRng))	

	

for	
 (cap	
 in	
 capRng)	
 {	

	
 	
 nearEndValue[cap/plotStep+1]	
 <-­‐	
 sum(theta[nearEnd,]*plnorm(cap,term,termSD))	
 +	
 	

	
 sum(thetaTwo[nearEnd,]*plnorm(cap,term,termSDtwo))	

	
 	
 threeQtrStepValue[cap/plotStep+1]	
 <-­‐	
 sum(theta[threeQtrStep,]*plnorm(cap,term,termSD))	
 +	
 	

232

	
 sum(thetaTwo[threeQtrStep,]*plnorm(cap,term,termSDtwo))	

	
 	
 midStepValue[cap/plotStep+1]	
 <-­‐	
 sum(theta[midStep,]*plnorm(cap,term,termSD))	
 +	
 	

	
 sum(thetaTwo[midStep,]*plnorm(cap,term,termSDtwo))	

	
 	
 qtrStepValue[cap/plotStep+1]	
 <-­‐	
 sum(theta[qtrStep,]*plnorm(cap,term,termSD))	
 +	
 	

	
 sum(thetaTwo[qtrStep,]*plnorm(cap,term,termSDtwo))	

	
 	
 startValue[cap/plotStep+1]	
 <-­‐	
 sum(theta[1,]*plnorm(cap,term,termSD))	
 +	
 	

	
 sum(thetaTwo[1,]*plnorm(cap,term,termSDtwo))	

	
 	
 t1curve[1,cap/plotStep+1]	
 <-­‐	
 cap	

	
 	
 t1curve[2,cap/plotStep+1]	
 <-­‐	
 startValue[cap/plotStep+1]	

	
 	
 #print(paste("Cap:	
 ",cap,",startValue:	
 ",startValue[cap]))	

}	

	

plot(main=paste("ADP	
 (CostMean:	
 ",meanLogNorm,",	
 CostVar:	
 ",varLogNorm,",	
 p:	

1/3",")",sep=""),capRng,startValue,ylim	
 =	
 c(0,1.2*max(startValue)),xlab=paste("State	
 b	

(N=",maxN,")"),ylab="Value",type="l")	

lines(capRng,qtrStepValue,lty="dashed")	

lines(capRng,midStepValue,lty="dotdash")	

lines(capRng,threeQtrStepValue,lty="dotted")	

lines(capRng,nearEndValue,lty="longdash")	

legend("topleft",c("t=1",qtrStep,midStep,threeQtrStep,	

nearEnd),lty=c("solid","dashed","dotdash","dotted","longdash"),	
 cex	
 =	
 0.7)	

	

#print(paste("Basis	
 Fns#:	
 ",numTerms,",	
 mean(ssqe):	
 ",format(mean(ssqe),	
 nsmall=2,big.mark=",")))	

	

end.start<-­‐	
 proc.time()-­‐start.time	

print(end.start)	

write(t1curve,file="ADP_startValue.txt",ncolumns=2)	

	

startLastVcount	
 <-­‐	
 .95*maxN	

lastV	
 <-­‐	
 v[,startLastVcount:maxN]	

means	
 <-­‐	
 array(0,	
 Deadline	
 +	
 1)	

for	
 (step	
 in	
 1:Deadline)	
 means[step]	
 <-­‐	
 mean(lastV[step,])	

plot(means)	

plot(main="ExpSmoothed	
 SSE	
 (alpha=0.01),	
 t=1",ssqe[1,],	
 xlab	
 =	
 "Iteration",	
 ylab	
 =	
 "SSE",type	
 =	
 "l")	

plot(main="thetaOne	
 t=1",theta[1,])	

plot(main="thetaTwo	
 t=1",thetaTwo[1,])	

plot(main="v	
 =	
 1",v[1,])	

startValue[cap/plotStep+1]	

	
 	

233

	

	

	

APPENDIX C. WPSP 2SSIP SAMPLE AVERAGE APPROXIMATION CODE

As described in the main body of this dissertation, we employed the statistical

programming language R for all the code in this dissertation. From the R code we called

the Gurobi solver. The SIP code employs an adaptation of the Sample Average

Approximation algorithm developed by Kleywegt, Shapiro, and Homem-De-Mello

(2001) and as described in Chapter 5.

	

#	
 This	
 is	
 the	
 SAA	
 algorithm	

#	
 allows	
 for	
 running	
 multiple	
 scenairo	
 cases	

#	
 This	
 file	
 generates	
 all	
 the	
 data	
 needed	

#	
 It	
 contains	
 the	
 model	
 logic	

#	
 It	
 makes	
 the	
 call	
 to	
 gurobi	
 and	
 generates	
 the	
 output	

#	
 All	
 of	
 this	
 is	
 embedded	
 in	
 a	
 for	
 loop	
 so	
 that	
 we	
 can	
 solve	
 multiple	
 instances	
 of	
 same	
 SIP	

	

library("gurobi")	

library("Matrix")	

setwd("~/Documents/GMU/Dissertation/Computational	
 Approaches/StochIP/R	
 Scripts")	

start.time	
 <-­‐	
 proc.time()	
 	
 #initializes	
 timing	
 of	
 the	
 loop	
 to	
 give	
 us	
 a	
 run	
 time	
 measure.	

last.time	
 <-­‐	
 proc.time()	
 #timer	
 log	
 check	

	

reDo	
 <-­‐	
 TRUE	

	

set.seed(301)	
 #seed	
 for	
 default	
 =	
 ?	

#basic	
 parameters	

deadline	
 <-­‐	
 12#50	

capacity	
 <-­‐	
 100#2500000000#100	

scaler	
 <-­‐	
 1#000000	

capacityScaled	
 <-­‐	
 capacity/scaler	

Nset	
 <-­‐	
 c(250)#,500,1000,2500,5000,10000,25000)#,10000)	

initiatives	
 <-­‐	
 1	

	

	

234

#data	
 collection	
 	

reps	
 <-­‐	
 length(Nset)	

saaSample	
 <-­‐	
 10	
 #	
 must	
 be	
 greater	
 than	
 1	

scenarios	
 <-­‐	
 max(Nset)	
 #how	
 many	
 scenarios	
 per	
 instance	

epsilonAverage	
 <-­‐	
 rep(0,reps)	

defaultStop	
 <-­‐	
 20	

worstCaseRun	
 <-­‐	
 deadline*scenarios*saaSample*defaultStop	

zeros	
 <-­‐	
 rep(0,deadline)	

initiativeZeros	
 <-­‐	
 rep(0,initiatives)	

	

weekIndex	
 <-­‐	
 1:deadline	

initiativeIndex	
 <-­‐1:initiatives	

futureIndex	
 <-­‐1:scenarios	

epsilon	
 <-­‐	
 capacityScaled/1000	

cost<-­‐array(0,initiativeIndex)	

value<-­‐array(0,initiativeIndex)	

discountFactor<-­‐array(1,deadline)	

runTimeLog	
 <-­‐	
 array(0,c(reps+1,5))	

outputTable	
 <-­‐	
 array(0,c(reps*saaSample*defaultStop,6))	

saaStopTable	
 <-­‐	
 array(0,c(reps*saaSample,7))	

meanSaaStopTable	
 <-­‐	
 array(0,c(reps,5))	

	

#Generate	
 future	
 arrivals	
 data	

p	
 <-­‐	
 1/3	

meanLogNorm	
 <-­‐2#16.58	

varLogNorm	
 <-­‐	
 0.5#3.57	

sdLogNorm	
 <-­‐	
 varLogNorm^.5	

meanArrival	
 <-­‐	
 exp(meanLogNorm	
 +	
 .5*varLogNorm)	

rate	
 <-­‐	
 1/meanArrival	

	

if	
 (reDo)	
 {	

	
 	
 worstCaseCost	
 <-­‐	

round(rlnorm(worstCaseRun,meanLogNorm,sdLogNorm)*(runif(worstCaseRun)<p)/scaler,digits	
 =	
 1)	

	
 	
 worstCaseValue	
 <-­‐	
 round(worstCaseCost*2*runif(worstCaseRun),digits=1)	

}	

	

#	
 interim.time	
 <-­‐proc.time()	
 -­‐	
 last.time	

last.time	
 <-­‐	
 proc.time()	

#	
 runTimeLog[1,1]	
 <-­‐	
 "prep"	

#	
 runTimeLog[1,2]	
 <-­‐	
 interim.time[3]	

	

for	
 (rep	
 in	
 1:reps)	
 {	

	
 	
 scenarios	
 <-­‐	
 Nset[rep]	

	
 	
 sampleSize	
 <-­‐	
 deadline*scenarios	

	
 	
 saaSampleSize	
 <-­‐	
 deadline*scenarios*defaultStop	

	
 	
 nCols	
 =	
 initiatives	
 +	
 sampleSize	

	
 	
 nRows	
 =	
 1	
 +	
 scenarios	

	
 	
 meanStopCount	
 <-­‐	
 0	

235

	
 	
 meanStopTime	
 <-­‐	
 0	

	
 	
 mumu	
 <-­‐	
 0	

	
 	
 K	
 <-­‐	
 p*capacity	

	
 	
 summu	
 <-­‐	
 0	

	
 	
 sumSqr	
 <-­‐	
 0	

	
 	
 	

	
 	
 for	
 (iteration	
 in	
 1:saaSample)	
 {	

	
 	
 	
 	
 for	
 (trial	
 in	
 1:defaultStop)	
 {	

	
 	
 	
 	
 	
 	
 step	
 <-­‐	
 trial	
 +	
 defaultStop*(iteration-­‐1)	
 +	
 saaSample*defaultStop*(rep-­‐1)	

	
 	
 	
 	
 	
 	
 trialRun	
 <-­‐	
 1:sampleSize	
 +	
 sampleSize*(trial-­‐1)	
 +	
 saaSampleSize*(iteration-­‐1)	

#	
 	
 	
 	
 	
 	
 	
 print(trialRun)	

	
 	
 	
 	
 	
 	
 futCost	
 <-­‐	
 worstCaseCost[trialRun]	

	
 	
 	
 	
 	
 	
 futValue	
 <-­‐	
 worstCaseValue[trialRun]	

	
 	
 	

#	
 	
 	
 	
 	
 	
 	
 preMatrix.time	
 <-­‐	
 proc.time()	
 -­‐	
 last.time	

#	
 	
 	
 	
 	
 	
 	
 last.time	
 <-­‐	
 proc.time()	
 	
 	

	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 #create	
 the	
 sparse	
 matrix	

	
 	
 	
 	
 	
 	
 rowNonZeros	
 <-­‐	
 initiatives+deadline	

	
 	
 	
 	
 	
 	
 totalNonZeros	
 <-­‐	
 rowNonZeros*scenarios	

	
 	
 	
 	
 	
 	
 i	
 <-­‐	
 c(rep(1,initiatives),ceiling((1:totalNonZeros)/rowNonZeros)+1)	

	
 	
 	
 	
 	
 	
 j	
 <-­‐	
 rep(0,	
 initiatives	
 +	
 totalNonZeros)	

	
 	
 	
 	
 	
 	
 x	
 <-­‐	
 rep(0,	
 initiatives	
 +	
 totalNonZeros)	

	
 	
 	
 	
 	
 	
 j[initiativeIndex]	
 <-­‐	
 initiativeIndex	

	
 	
 	
 	
 	
 	
 x[initiativeIndex]	
 <-­‐	
 cost	

	
 	
 	
 	
 	
 	
 for	
 (k	
 in	
 1:scenarios)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 startPt	
 <-­‐	
 (k-­‐1)*rowNonZeros	
 +	
 1	
 +	
 initiatives	

	
 	
 	
 	
 	
 	
 	
 	
 endPt	
 <-­‐	
 startPt	
 +	
 initiatives	
 -­‐	
 1	

	
 	
 	
 	
 	
 	
 	
 	
 j[startPt:endPt]	
 =	
 initiativeIndex	

	
 	
 	
 	
 	
 	
 	
 	
 x[startPt:endPt]	
 =	
 cost	

	
 	
 	
 	
 	
 	
 	
 	
 startPt	
 <-­‐	
 endPt	
 +	
 1	

	
 	
 	
 	
 	
 	
 	
 	
 endPt	
 <-­‐	
 startPt	
 +	
 deadline	
 -­‐	
 1	

	
 	
 	
 	
 	
 	
 	
 	
 thisScenarioIndex	
 <-­‐	
 1:deadline	
 +	
 (k-­‐1)*deadline	

	
 	
 	
 	
 	
 	
 	
 	
 j[startPt:endPt]	
 <-­‐	
 1:deadline	
 +	
 initiatives	
 +	
 (k-­‐1)*deadline	

	
 	
 	
 	
 	
 	
 	
 	
 x[startPt:endPt]	
 <-­‐	
 futCost[thisScenarioIndex]	

	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 Amatrix	
 <-­‐	
 sparseMatrix(i,j,x=x)	

	
 	
 	
 	
 	
 	
 	

#	
 	
 	
 	
 	
 	
 	
 matrix.time	
 <-­‐	
 proc.time()	
 -­‐	
 last.time	

#	
 	
 	
 	
 	
 	
 	
 last.time	
 <-­‐	
 proc.time()	

	

	
 	
 	
 	
 	
 	
 #	
 create	
 the	
 objective	
 values	
 vector	

	
 	
 	
 	
 	
 	
 Vvector	
 <-­‐	
 c(value,(1/scenarios)*futValue)	
 	
 	

	
 	
 	

	
 	
 	
 	
 	
 	
 #	
 build	
 rhs	

	
 	
 	
 	
 	
 	
 RHS	
 <-­‐	
 rep(capacityScaled,scenarios+1)	

	
 	
 	
 	
 	
 	
 inEquality	
 <-­‐	
 rep("<=",scenarios+1)	

236

	

	
 	
 	
 	
 	
 	
 model	
 <-­‐	
 list()	

	
 	
 	

	
 	
 	
 	
 	
 	
 model$A	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 <-­‐	
 Amatrix	

	
 	
 	
 	
 	
 	
 model$obj	
 	
 	
 	
 	
 	
 	
 	
 <-­‐	
 Vvector	

	
 	
 	
 	
 	
 	
 model$modelsense	
 <-­‐	
 "max"	

	
 	
 	
 	
 	
 	
 model$rhs	
 	
 	
 	
 	
 	
 	
 	
 <-­‐	
 RHS	

	
 	
 	
 	
 	
 	
 model$sense	
 	
 	
 	
 	
 	
 <-­‐	
 inEquality	

	
 	
 	
 	
 	
 	
 model$vtype	
 	
 	
 	
 	
 	
 <-­‐	
 'B'	

	
 	
 	

	
 	
 	
 	
 	
 	
 params	
 <-­‐	
 list(OutputFlag=0,	
 MIPGap	
 =	
 0.0001)	

	
 	
 	

#	
 	
 	
 	
 	
 	
 	
 build.time	
 <-­‐proc.time()	
 -­‐	
 last.time	

#	
 	
 	
 	
 	
 	
 	
 last.time	
 <-­‐	
 proc.time()	

	

	
 	
 	
 	
 	
 	
 result	
 <-­‐	
 gurobi(model,	
 params)	

	
 	
 	
 	
 	
 	
 sipSolution	
 <-­‐	
 result$objval	

	

	
 	
 	

	
 	
 	
 	
 	
 	
 #	
 	
 	
 solFirst	
 <-­‐	
 result$x[1:initiatives]	

	
 	
 	
 	
 	
 	
 #	
 	
 	
 solSecond	
 <-­‐	
 result$x[(initiatives+1):length(result$x)]	

	
 	
 	
 	
 	
 	
 #	
 	
 	
 solMatrix	
 <-­‐	
 matrix(solSecond,nrow	
 =	
 scenarios,	
 ncol	
 =	
 deadline,	
 byrow	
 =	
 T)	

	
 	
 	
 	
 	
 	
 #	
 	
 	
 print(solMatrix)	

	
 	
 	
 	
 	
 	
 #	
 	
 	
 print(futCost)	

	

	
 	
 	
 	
 	
 	
 #	
 update	
 estimate	
 of	
 mu	

	

	
 	
 	
 	
 	
 	
 if	
 (trial	
 ==	
 1)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 mu	
 <-­‐	
 sipSolution	

	
 	
 	
 	
 	
 	
 	
 	
 muLast	
 <-­‐	
 capacity	

	
 	
 	
 	
 	
 	
 }	
 else	
 {	
 	

	
 	
 	
 	
 	
 	
 	
 	
 muLast	
 <-­‐	
 mu	

	
 	
 	
 	
 	
 	
 	
 	
 mu	
 <-­‐	
 sipSolution*(1/trial)	
 +	
 ((trial-­‐1)/trial)*muLast	

	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 #	
 update	
 estimate	
 of	
 error	

	
 	
 	
 	
 	
 	
 error	
 <-­‐	
 abs(mu-­‐muLast)	

	
 	
 	
 	
 	

	
 	
 	

	
 	
 	
 	
 	
 	
 #	
 update	
 outputTable	

	
 	
 	
 	
 	
 	
 outputTable[step,1]	
 <-­‐	
 scenarios	

	
 	
 	
 	
 	
 	
 outputTable[step,2]	
 <-­‐	
 iteration	

	
 	
 	
 	
 	
 	
 outputTable[step,3]	
 <-­‐	
 trial	

	
 	
 	
 	
 	
 	
 outputTable[step,4]	
 <-­‐	
 sipSolution	

	
 	
 	
 	
 	
 	
 outputTable[step,5]	
 <-­‐	
 mu	

	
 	
 	
 	
 	
 	
 outputTable[step,6]	
 <-­‐	
 error	

	

	
 	
 	
 	
 	
 	
 #	
 check	
 SAA	
 stopping	
 condition	
 -­‐	
 stop	
 for	
 loop	
 if	
 met	

237

	
 	
 	
 	
 	
 	
 if	
 (error	
 <	
 epsilon)	
 {	
 	

	
 	
 	
 	
 	
 	
 	
 	
 step	
 <-­‐	
 iteration	
 +	
 (rep-­‐1)*saaSample	

	
 	
 	
 	
 	
 	
 	
 	
 runTime	
 <-­‐proc.time()	
 -­‐	
 last.time	

	
 	
 	
 	
 	
 	
 	
 	
 last.time	
 <-­‐	
 proc.time()	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 saaStopTable[step,1]	
 <-­‐	
 rep	

	
 	
 	
 	
 	
 	
 	
 	
 saaStopTable[step,2]	
 <-­‐	
 scenarios	

	
 	
 	
 	
 	
 	
 	
 	
 saaStopTable[step,3]	
 <-­‐	
 iteration	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 saaStopTable[step,4]	
 <-­‐	
 trial	

	
 	
 	
 	
 	
 	
 	
 	
 saaStopTable[step,5]	
 <-­‐	
 runTime[3]	

	
 	
 	
 	
 	
 	
 	
 	
 saaStopTable[step,6]	
 <-­‐	
 mu	

	
 	
 	
 	
 	
 	
 	
 	
 saaStopTable[step,7]	
 <-­‐	
 error	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 meanStopCount	
 <-­‐	
 (iteration-­‐1)/iteration*meanStopCount	
 +	
 1/iteration*trial	

	
 	
 	
 	
 	
 	
 	
 	
 meanStopTime	
 <-­‐	
 (iteration-­‐1)/iteration*meanStopTime	
 +	
 1/iteration*runTime[3]	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 mumu	
 <-­‐	
 (iteration-­‐1)/iteration*mumu	
 +	
 1/iteration*mu	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 shiftMu	
 <-­‐	
 mu	
 -­‐	
 K	

	
 	
 	
 	
 	
 	
 	
 	
 summu	
 <-­‐	
 summu	
 +	
 shiftMu	

	
 	
 	
 	
 	
 	
 	
 	
 sumSqr	
 <-­‐	
 sumSqr	
 +	
 shiftMu*shiftMu	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 break	
 	

	
 	
 	
 	
 	
 	
 }	

#	
 	
 	
 	
 	
 	
 	
 runTimeLog[rep+1,1]	
 <-­‐	
 rep	

#	
 	
 	
 	
 	
 	
 	
 runTimeLog[rep+1,2]	
 <-­‐	
 preMatrix.time[3]	

#	
 	
 	
 	
 	
 	
 	
 runTimeLog[rep+1,3]	
 <-­‐	
 matrix.time[3]	

#	
 	
 	
 	
 	
 	
 	
 runTimeLog[rep+1,4]	
 <-­‐	
 build.time[3]	

#	
 	
 	
 	
 	
 	
 	
 runTimeLog[rep+1,5]	
 <-­‐	
 runTime[3]	

	
 	
 	
 	
 }	

	
 	
 }	

	
 	
 meanSaaStopTable[rep,1]	
 <-­‐	
 Nset[rep]	

	
 	
 meanSaaStopTable[rep,2]	
 <-­‐	
 meanStopCount	

	
 	
 meanSaaStopTable[rep,3]	
 <-­‐	
 meanStopTime	

	
 	
 meanSaaStopTable[rep,4]	
 <-­‐	
 mumu	

	
 	
 meanSaaStopTable[rep,5]	
 <-­‐	
 (sumSqr	
 -­‐	
 summu*summu/saaSample)/(saaSample-­‐1)	

}	

	

	

end.start<-­‐	
 proc.time()-­‐start.time	

print(c("Runtime=",end.start))	

#	
 print(outputTable)	

print(saaStopTable)	

print(meanSaaStopTable)	

238

REFERENCES

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. New Jersey: Prentice-Hall, Inc., 1993.

Artzner, P., F. Delbaen, J. M. Eber, and D. Heath. Thinking coherently. Risk, 10 (1997), 68-71.

Bellman, R. E. Dynamic Programming. Princeton: Princeton University Press, 1957.

Beale, E. L. M. On minimizing a convex function subject to linear inequalities. Journal of the

Royal Statistical Society Series B, 17 (1955), 173–184.

Benders, J. Partitioning procedures for solving mixed-variables programming problems.

Numerische Mathematik, 4 (1962), 238–252.

Bertha, R. L. and R. L. Shelton. “Combat Operations Analysis.” In Methods for Conducting

Military Operational Analysis, edited by A. G. Loerch and L. B. Rainey, Washington:
Military Operations Research Society, 2007.

Birge, J. R. and F. Louveaux. Introduction to Stochastic Programming. New York: Springer-

Velag, 1997.

Brown, G. G., R. F. Dell, A. G. Loerch, A. M. Newman. “Optimizing Capital Planning.” In

Methods for Conducting Military Operational Analysis, edited by A. G. Loerch and L. B.
Rainey, Washington: Military Operations Research Society, 2007.

Charnes, A. and W. W. Cooper. Deterministic Equivalents for Optimization and Satisficing

under Chance Constraints. Operations Research, 11 (1963), 18-39.

Chen, C. H. “An Effective Approach to Smartly Allocate Computing Budget for Discrete Event

Simulation.” Proceedings of the 34th IEEE Conference on Decision and Control, pp.
2598-2605, December, 1995.

Cohn, A. and C. Barnhart. The stochastic knapsack problem with random weights: A heuristic

approach to robust transportation planning. Proceedings of the Triennial Symposium on
Transportation Analysis (TRISTAN III), (1998).

Cord, J. A Method for Allocating Funds to Investment Projects when Returns Are Subject to

Uncertainty. Management Science, 10 (1964), 335-341.

239

Crain, W. F. “Theater Campaign Analysis.” In Methods for Conducting Military Operational

Analysis, edited by Andrew G. Loerch and Larry B. Rainey, Washington: Military
Operations Research Society, 2007.

Dantzig, G. B. Linear Programming under Uncertainty. Management Science, 1, (1955), 197–

206.

Dantzig, G. B. Discrete–Variable Extremum Problems. Operations Research, 5 (1957), 266–

277.

Dean, B. C., M. X. Goemans, and J. Vondrak. Approximating the Stochastic Knapsack Problem:

The Benefit of Adaptivity. Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science (2004), 208-217.

Dell, R. F. and W. F. Tarantino. How Optimization Supports Army Base Closure and

Realignment. Technical Report, NPS-OR-03-003-PR, Naval Postgraduate School, 2003.

Denardo, E. V. Dynamic Programming: Models and Applications. Mineola, NY: Dover

Publications, Inc., 2003.

Dinkelbach, W. On nonlinear fractional programming. Management Science, 13 (1967), 492-

498.

Ellis, R. F., R. D. Rogers, and B. M. Cochran. Joint Improvised Explosive Device Defeat

Organization (JIEDDO): Tactical Successes Mired in Organizational Chaos; Roadblock
in the Counter-IED Fight. Thesis, Joint Forces Staff College, National Defense
University. 2007.

Fortz, B., M. Labbé, F. Louveaux, and M. Poss. A non-linear approach to the stochastic

knapsack problem with recourse. VI ALIO/EURO Workshop on Applied Combinatorial
Optimization, (2008).

Freeman, P. R. The secretary problem and its extensions: A review. International Statistical

Review / Revue Internationale de Statistique, 51 (1983), 189-206.

Freund, R. M. “Benders’ Decomposition Methods for Structured Optimization, including

Stochastic Optimization.” Lecture Notes, Massachusetts Institute of Technology, 2004.

Greenberg, H. J. Dynamic Programming with Linear Uncertainty. Operations Research, 16

(1968), 675-678.

Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual. 2015. http://www.gurobi.com

Henig, M. Risk Criteria in a Stochastic Knapsack Problem. Operations Research, 38 (1990),

820-825.

240

Howard, R. A. Dynamic Programming and Markov Processes. New York: Wiley, 1960.

Joint Improvised Explosive Device Defeat Organization. Joint Improvised Explosive Device

Defeat (JIEDD) Capability Approval and Acquisition Management Process (JCAAMP).
Washington: JIEDDO Instruction 5000.01, 2007.

Joint Improvised Explosive Device Defeat Organization. Annual Report FY 2008. Washington:

2009.

Joint Improvised Explosive Device Defeat Organization. JIEDDO Strategy for FY09-10.

Washington: 2009.

Joint Improvised Explosive Device Defeat Organization. Annual Report FY 2010. Washington,

2011.

Kaplan, E. H. and M. Kress. Operational Effectiveness of Suicide-Bomber-Detector Schemes: A

Best-Case Analysis. Proceedings of the National Academy of Sciences of the United
States of America, 102 (2005),10399-10404.

Keeney, R. L. and H. Raiffa, H. Decision Making with Multiple Objectives: Preferences and

Value Tradeoffs. New York: Wiley, 1976.

Keles, P. and J. C. Hartman. Evaluating Portfolios of Multi-Stage R&D Portfolios with

Approximate Dynamic Programming. Industrial and Systems Engineering Technical
Report No. 07T-002, Lehigh University, 2007.

Kirkwood, C. W. Strategic Decision Making: Multiobjective Decision Analysis with

Spreadsheets. Belmont, CA: Duxbury Press, 1997.

Kleywegt, A. J. Dynamic and Stochastic Models with Freight Distribution Applications. Ph.D.

thesis, School of Industrial Engineering, Purdue University, 1996.

Kleywegt, A. J. and J. D. Papastavrou. The Dynamic and Stochastic Knapsack Problem.

Operations Research, 46 (1998), 17-35.

Kleywegt, A. J. and J. D. Papastavrou. The Dynamic and Stochastic Knapsack Problem with

random sized items. Operations Research, 46 (2001), 17-35.

Kleywegt, A. J., A. Shapiro, T. Homem-De-Mello. The sample average approximation method

for stochastic discrete optimization. SIAM Journal on Optimization, 12 (2001), 479–502.

Kolesar, P. J. A Branch and Bound Algorithm for the Knapsack Problem. Management Science,

13 (1967), 723-735.

241

Konedaris, G. Value Function Approximation in Reinforcement Learning using the Fourier
Basis. (2008). University of Massachusetts – Amherst, Computer Science Department
Faculty Publication Series. Paper 101.
http://scholarworks.umass.edu/cs_faculty_pubs/101.

Lewis, T. P., D. A. Fulk, and G. Castro. “Analysis of Alternatives.” In Methods for Conducting

Military Operational Analysis, edited by A. G. Loerch and L. B. Rainey, Washington:
Military Operations Research Society, 2007.

Loerch, A. G., R. R. Koury, and D. T. Maxwell. Value Added Analysis for Army Equipment

Modernization. Naval Research Logistics, 46 (1999), 233-253.

Lu, L. L., S. Y. Chiu, and L. A. Cox, Jr. Optimal project selection: Stochastic knapsack with

finite time horizon. Journal of the Operational Research Society, 50 (1999), 645-650.

Markowitz, H. M. Portfolio Selection. The Journal of Finance, 7 (1952), 77–91.

Markowitz, H. M. Portfolio Selection: Efficient Diversification of Investments, New York: John

Wiley. 1959.

McCabe, B. Monte Carlo Simulation for Schedule Risks, Proceedings of the 2003 Winter

Simulation Conference (S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, Editors),
Institute of Electrical and Electronics Engineers, New Orleans, Louisiana, USA, 7–10
December, 1561-1565.

Morison, S. E. The Two-Ocean War, New York: Little Brown and Co. 1963.

Morita, H., H. Ishii, and T. Nishida. Stochastic linear knapsack programming problem and its

application to a portfolio selection problem. European Journal of Operational Research,
40 (1989), 329-336.

Morton, D. P. and R. K. Wood. “On a Stochastic Knapsack Problem and Generalizations.” In

Advances in Computational and Stochastic Optimization, Logic Programming and
Heuristic Search, edited by D. L. Woodruff, New York: Springer, 1998.

Nash, S. G. and A. Sofer. Linear and Nonlinear Programming, Singapore: McGraw-Hill. 1996.

Orgeron, H. J. “Analysis of Smaller Scale Contingencies.” In Methods for Conducting Military

Operational Analysis, edited by A. G. Loerch and L. B. Rainey, Washington: Military
Operations Research Society, 2007.

Papastavrou, J.D., S. Rajagopalan, and A. J. Kleywegt. The Dynamic and Stochastic Knapsack

Problem with Deadlines. Management Science, 42 (1996), 1706-1718.

242

Parnell, G. “Value-Focused Thinking.” In Methods for Conducting Military Operational
Analysis, edited by A. G. Loerch and L. B. Rainey, Washington: Military Operations
Research Society, 2007.

Parnell, G.S., G.E. Bennett, J.A. Engelbrecht, R. Szafranski. Improving resource allocation

within the National Reconnaissance Office. Interfaces, 32 (2002), 77-90.

Parnell, G. S. et al. Air Force Research Laboratory Space Technology Value Model: Creating

Capabilities for Future Customers. Military Operations Research, 9 (2003), 5-17.

Perry, W. “Linking Systems Performance and Operational Effectiveness.” In Methods for

Conducting Military Operational Analysis, edited by A. G. Loerch and L. B. Rainey,
Washington: Military Operations Research Society, 2007.

Powell, W. B. Approximate Dynamic Programming (2nd ed), Hoboken: John Wiley & Sons,

2010.

R Core Team. R: A Language and Environment for Statistical Computing, Vienna: R

Foundation for Statistical Computing, 2014. http://www.R-project.org

Ross, K.W. and D.H.K. Tsang. The stochastic knapsack problem. IEEE Transactions on

Communications, 37 (1989), 740-747.

Ross, S. M. Introduction to Probability Models (6th ed), San Diego: Academic Press, 1997.

Salkin, H. M. and C. A. de Kluyver. The knapsack problem: a survey. Naval Research Logistics

Quarterly, 22 (1975), 127-144.

Turnbull, D. “Portfolio Management Project Plan.” Presentation to JIEDDO J-9, Arlington, VA,

30 October, 2008.

U.S. Congress. House of Representatives. Committee on Armed Services. Joint Improvised

Explosive Device Defeat Organization: DoD’s Fight Against IEDS Today and
Tomorrow. Committee Print 110-11, Nov 2008.

U.S. Government Accountability Office. Spending Patterns of the Departments and Agencies of

the Federal Government. PAD 80-34. Washington: Government Printing Office, Dec
1979.

U.S. Government Accountability Office. Report to Congressional Committees. Defense

Management: More Transparency Needed Over the Financial and Human Capital
Operations of the Joint Improvised Explosive Device Defeat Organization. Washington:
Government Printing Office, Mar 2008.

243

U.S. Government Accountability Office. Report to Congressional Committees. Challenges
Confronting DOD’s Ability to Coordinate and Oversee Its Counter-Improvised Explosive
Device Efforts. Washington: Government Printing Office, Oct 2009.

Van Slyke, R., and Young, Y. Finite Horizon Stochastic Knapsacks with Applications to Yield

Management. Operations Research, 48 (2000), 155-172.

Washburn, A. R. Search and Detection, (4th ed). Linthicum: Institute for Operations Research

and the Management Sciences, 2002.

Washburn, A.R. Continuous Network Interdiction. Technical Report, NPS-OR-06-007, Naval

Postgraduate School, 2006.

Welford, B. P. Note on a method for calculating corrected sums of squares and products.

Technometrics, 4(3) (1962), 419–420.

Wilbaut, C., S. Hanafi, and S. Salhi. A survey of effective heuristics and their application to a

variety of knapsack problems. IMA Journal of Management Mathematics, 19 (2008),
227−244.

244

BIOGRAPHY

Ronald F. A. “Fred” Woodaman was born at Portsmouth Naval Hospital, Norfolk , VA.
His father, Ronald E. H. Woodaman, USNA ’59, was a Navy frogman, then a professor
of linguistics, and finally a career intelligence officer. His grandfather, RADM Ronald J.
Woodaman, USN (Ret.), USNA ’31, commanded two destroyers in World War II,
fighting in both the Atlantic and the Pacific. His mother, Nivia Luz Woodaman nee
Torres de Estanga, is a proud naturalized American citizen, having been born and raised
in Venezuela. Fred spent his childhood in Maracay, Venezuela, returning to the United
States to graduate high school from J.W. Robinson, Jr. Secondary School in Fairfax, VA.
He graduated from the U.S. Naval Academy with Bachelor of Science in Systems
Engineering in 1987. He served 20 years in the Marine Corps as an infantry officer,
participating in operations in Panama, DESERT STORM, and IRAQI FREEDOM. Mid-
career, he attended the Naval Postgraduate School, Monterey, CA, earning a Master of
Science (with Distinction) in Operations Analysis. He retired from the Marine Corps in
2007, eventually becoming a Research Assistant from 2007-2010, with George Mason
University’s C4I Center. There he worked chiefly on a research contract for the Joint
Improvised Explosive Device Defeat Organization, which provided the genesis for his
dissertation. Subsequently he worked for Innovative Decisions Incorporated, where he
led a variety of operations research projects for the Navy and Marine Corps until late
2013. He currently works for NTVI Federal Inc., providing operations research support
to the Defense Suicide Prevention Office. He is married to the former Michelle L.
Wolpert, with whom he has three children: Zoe, Iain, and Isabella. They reside in
Stafford, VA, where he is active in youth sports and church activities. Taught by his
father, he remains a life-long devotee of the Great Highland Bagpipe.

