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Abstract 

 

 

 

RUIN THEORY 

 

Ashley Fehr, M.S.  

 

George Mason University, 2014 

 

Dissertation Director: Douglas Eckley 

 

 

 

Classical ruin theory was developed by Lundberg in 1907 and refined by Cramer in 1930.  

This theory describes the evolution of the surplus of an insurance company over time.  It 

assumes that an insurance company begins with an initial surplus and then receives 

premiums continuously at a constant rate.  It also assumes that claims of random and 

independent size are paid at random and independent times.  Ruin occurs when the 

surplus becomes negative meaning that the average inflow of money (premiums) is 

smaller than the average outflow of money (claims).  Cramer expanded on this theory to 

show that probability of ruin decays exponentially fast as the initial surplus grows larger.  

This paper will synthesize some of the key results from Ruin Theory.  These results will 

not be proven via formula but will be conclusively demonstrated using simulation.  
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Chapter 1: Introduction 

 

 

 

Ruin theory uses mathematical models to describe an insurer’s vulnerability to 

insolvency and/or ruin.  In order to ensure the sustainability of an insurance operation, 

one must routinely assess the risk associated with the portfolio of insurance contracts.  

Ruin is defined when the surplus of the policy, portfolio, or company becomes negative.  

The amount of surplus is equivalent to the quantity of interest of a policy or portfolio.  

Ruin modeling is necessary for long-run financial planning and maintenance. 

 Two processes, the discrete time process and the continuous time process, can be 

utilized when viewing the evolution of the portfolio over time.  The continuous time 

process may be defined as the total losses paid from time 0 to time t.  The discrete time 

process can be derived from the continuous time process by only viewing the loss values 

at integral times.   

 For both discrete and continuous modeling techniques, we’ll need to define the 

following parameters.  Surplus represents excess funds that would not be needed if the 

policy and/or portfolio were terminated.  Uo  = u, the Initial Surplus, represents the initial 

surplus at time 0.  We are trying to measure {Ut : t ≥ 0}, the Surplus Process, at time t.   

{Pt : t ≥ 0}, the Premium Process, measures all premiums collected up to time t and        
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{St : t ≥ 0} , the Loss Process, measures all losses paid up to time t.  We are now able to 

define the Surplus Process as:  

Ut = Uo + Pt  - St. 

 We will first examine the discrete time model.  The increment in the surplus 

process in year t may be defined as: 

Wt = Pt – Pt-1 – St + St-1, t = 1, 2, … 

Then the progression of surplus is:  

Ut = Ut-1 + Wt , t = 1, 2, … 

Because Wt depends on Pt, we are able to pay dividends based on the surplus at the end of 

the previous year.  The method of computing Ut using a discrete-time model will be 

examined in Chapter 2.  

 The continuous time model presents greater difficulty because we must 

understand the surplus at every point in time rather than just a countable set of time 

points.  The Compound Poisson claim process is typically used for continuous time 

analyses.  In this process premiums are collected at a constant continuous nonrandom rate 

and the total loss process is: 

St = X1 + . . . + XNt, 

where {Nt : t ≥ 0} is the Poisson process.  We will examine continuous time modeling 

techniques in Chapter 3.   
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 Ruin Theory helps us understand whether a portfolio will survive over time.  The 

probability of survival can be defined in four different ways:  

i. Continuous – time, infinite – horizon survival probability is depicted by:  

u) = Pr(Ut  ≥ 0 for all t ≥ 0 ; U0 = u).  

ii. Discrete – time, finite – horizon survival probability is depicted by:  

(u,  = Pr(Ut  ≥ 0 for all t = 0, 1, … , ; U0 = u).  

iii. Continuous – time, finite – horizon survival probability is depicted by:  

(u,  = Pr(Ut  ≥ 0 for all 0 ≤ t ≤  ; U0 = u). 

iv. Discrete – time, infinite – horizon survival probability is depicted by:  

u) = Pr(Ut  ≥ 0 for all t = 0, 1, … ; U0 = u). 

The continuous – time, infinite – horizon survival probability requires that we 

continuously check the surplus and expect the portfolio to survive forever.  Because both 

these requirements are unrealistic, the discrete – time, finite – horizon survival 

probability assessment is more practical.  In this case the portfolio is required to survive 

for a specific number of periods and we only check surplus at the end of each period.  

However, if the Poisson process holds, infinite – horizon probabilities are also easily 

attainable.  As the number of times per year that surplus is checked increases, the discrete 

– time survival probabilities converge to their continuous – time counterparts.  Finally, 

we may define the continuous – time, infinite - horizon ruin probability as: 

(u) = 1 – (u). 
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Chapter 2: Discrete Models 

 

 

 

In this chapter we will examine discrete, finite – time ruin probabilities.  Let Pt 

represent the premium collected in the tth period, St represent the losses paid in the tth 

period, and Ct represent any cash flow other than the collection of premiums and the 

payment of losses.  The surplus at the end of the tth period is: 

Ut = Ut-1 + Pt + Ct – St. 

Assume that the random variable Wt = Pt + Ct – St depends only on Ut-1 and not on any 

other previous experience.  In order to evaluate ruin probability, we’ll define a new 

process U*
t which begins with U*

o = u and assumes the following: 

W*
t = 0 if U*

t-1 < 0  

W*
t = Wt if U

*
t-1 ≥ 0 

U*
t = U*

t-1 + W*
t. 

Note that if U*
t < 0, then U*

q < 0 for all q > t.  The finite – horizon survival probability is  

 (u, ) = Pr(U*
≥ 0). 
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Example 1: 

Consider a process with initial surplus of U0 = 2, a fixed annual premium of Pt = 

2, and losses of St = 0 or St = 5 with probabilities of .7 and .3, respectively.  There are no 

other cash flows.  We will determine (2, 2).  It is evident that surplus in year 1 equals: 

U1 = U0 +P1 – S1 = 2 + 2 – 0 = 4, and 

U1 = 2 + 2 – 5 = -1 

with probabilities of .7 and .3, respectively.  In every year, Wt takes the values of 2 and -3 

with probabilities of .7 and .3.  For example, calculations W1 and W2 are as follows: 

W1 = P1 – P0 – S1 + S0 = 2 – 0 – 0 + 0 = 2 

W1 = 2 – 0 – 5 + 0 = -3 

W2 = P2 – P1 – S2 + S1 = 4 – 2 – 0 + 0 = 2 

W2 = 4 – 2 – 10 + 5 = -3. 

For year 2, there are four possible ways for the process to end as shown below:  

 

Table 1: Discrete Models Example 1 

Case U1 W2 W*
2= W2 if U

*
1 = 4 U*

2 = U*
1 + W*

2 Probability 

1 4 2 2 6 .7*.7 = .49 

2 4 -3 -3 1 .7*.3 = .21 
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3 -1 2 0 -1 .3*.7 = .21 

4 -1 -3 0 -1 .3*.3 = .09 

 

 

We can see that (2, 2) = .49 + .21 = .70.  Note that we only need to check U*
t at time 

because once ruined, the process is not allowed to become positive.   

Example 2:   

We will now evaluate the probability of ruin for a discrete and finite distribution.  

Consider the following assumptions:   

1) Annual losses are 0, 1, 2, and 3 with probabilities .4, .3, .2, and .1 respectively, 

2) U0 = 2, 

3) Pt = .5 

4) Interest is earned at 15% on any surplus available at the beginning of the year because 

losses were paid at the end of the year. 

We will determine the survival probability at the end of the first year.  The first 

year ends with four possible surplus values as noted below.   
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Table 2: Discrete Models Example 2 

U1 = (U0 +P1)(1.15) – S1 Probability 

(2 + .5)(1.15) – 0 = 2.875 .4 

(2 + .5)(1.15) – 1 = 1.875 .3 

(2 + .5)(1.15) – 2 = .875 .2 

(2 + .5)(1.15) – 3 = -.125 .1 

 

 

The only case producing ruin is the last one and thus (2,1) = .1.  In the next chapter, we 

will begin to examine continuous distributions.   
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Chapter 3: Continuous Models and the Adjustment Coefficient 

 

 

 

When working with continuous-time ruin models let us assume the number of 

claims have a Poisson distribution.  The Poisson process {Nt : t ≥ 0} represents the 

number of claims on a portfolio of policies.  The Poisson process has the following 3 

properties: a) N0 = 0, b) stationary and independent increments, and c) the number of 

claims in an interval of length t is Poisson distributed with mean t.  The aggregate 

model of the claim payments becomes the compound Poisson process.  The total Loss 

process {St : t ≥ 0} is a compound Poisson process for fixed t if the following criteria is 

met: a) {Nt : t ≥ 0} is a Poisson process with rate b) the individual losses {X1, X2, …} 

are independent and identically distributed positive random variables, independent of Nt, 

each with cumulative distribution function F(x) and mean  < ∞, and c) St is the total loss 

in (0,t] and it is given by St = 0 if Nt = 0 and St = ∑Xj if Nt > 0.  Note that 

E(St) = E(Nt) E(Xj) = (t)() = t. 

We’ll let c be the premium income per unit time and thus the total net premium in 

(0,t] is ct.  Assuming that the net premium has positive loading, that is, the insurer’s 

premium income (per unit time) is greater than the expected number of outgoing claims 

(per unit time), we see that c > .  Thus let  
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c = (1+),  

where > 0 is called the premium loading factor.  The surplus process is now defined as: 

Ut = u + ct - St,  

where u = U0 is initial surplus.  Ruin occurs if Ut ever becomes negative.  The infinite – 

time survival probability is:  

u) = Pr(Ut  ≥ 0 for all t ≥ 0 ; U0 = u).  

Finally, the infinite – time ruin probability is:  

(u) = 1 – (u).   

Assuming a parameter  > 0, which we will define later, exists, Lundberg’s 

Inequality states that the probability of ruin (u) satisfies: 

(u) ≤ e-u, u ≥ 0. 

 is known as the adjustment coefficient or Lundberg’s exponent.  If the adjustment 

coefficient exists, Lundberg’s Inequality allows us to obtain an upper bound for the 

probability of ruin.  It’s evident that a larger adjustment coefficient value implies smaller 

ruin probabilities.   

 The value of the adjustment coefficient depends on the distribution of aggregate 

claims and the rate of premium income c.  Formally, the adjustment coefficient exists if 

there is a value such that t = is the smallest positive solution to the equation 
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MX(t) =  ct. 

Since we defined c = (1 + θ)λ, the above can be rewritten as: 

MX(t) = 1 + (1+t, 

where MX(t) = E(etX) = ʃ0
∞ etxdF(x)  is the moment generating function of the claim 

severity random variable X.  Note that MX(t) is strictly convex since MII
X(t) = E(X2etX) > 

0, MI
X(0) = E(Xe(0)X) = E(X) < (1+and MX(t) increases ∞ continuously.  Thus if it 

exists, the solution t = is unique and strictly positive per the illustration below. 

 

 

Figure 1: Adjustment Coefficient Graph 

  

In general, it is not possible to explicitly solve for  and we often need to form an 

initial guess.  The following can be used to form an initial value of :  

y = MX(t) 

y = 1 + (1+t 
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< (2)/E(X2).   

This initial value can be seen by expanding the mgf as follows:  

1 + (1+= E(eX) > E(1 + X + .52X2) = 1 +  +.52E(X2).   

Additionally, we’ll define H(t) = 1 + (1+)t –MX(t).  The Newton – Raphson formula 

can be used to solve H(t) = 0 by the iteration: 

j+1 = j – [H(j)/Hˡ(j)].   

Example 3:  

We will now determine an adjustment coefficient given the following conditions: 

1) Poisson parameter is  = 3, 2) premium rate is c = 5, and 3) the individual loss amount 

distribution is given by Pr(X = 1) = .7 and Pr(X = 2) = .3.  We have:  

 = E(X) = (1)(.7) + (2)(.3) = 1.3 and  

E(X2) = (1)2(.7) + (2)2(.3) = 1.9.  

Then  = c()-1 – 1 = 5(3.9)-1 -1 = .282.  We know  must be less than o = (2)/E(X2) 

= 2(.282)(1.3)/1.9 = .3859.  Thus, our initial guess is o = .3859.   

Since MX(t) = .7et + .3e2t, we have the following per the definition above:  

H(t) = 1 + (1.667t) - 7et - .3e2t.  

Additionally, because Mˡ
X(t) = (1et)(.7) + (2e2t)(.3), we also have:  
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Hˡ(t) = 1.667 - .7et - .6e2t.  

Then H(o) = -0.0355  and Hˡ(o) = -.6609 .  Thus by the Newton-Raphson formula, our 

updated estimate is 1 = .3859 – (-.0355/-.6609) = .3322.  

Then H(1) = -.0050 and Hˡ(1) = - 4748 .  Completing another iteration of the 

Newton-Raphson formula, we see that  now equals: 

2 = .3322 – (-.0050/-.4745) = .3215.   

Continuing in this fashion, we get 3 = .3212, 4 = .3212, and 5 = .3212.  Thus, the 

adjustment coefficient is  = .3212 to four decimal places of accuracy. 

Example 4: 

 Let us examine another example based on the following conditions: a) c = 3, b) 

= 4, and c) the individual loss size density is f(x) = e-2x + (3/2)e-3x, x > 0 (Loss Models 

284).  The individual loss size density can be re-written as f(x) = (1/2)(2e-2x) + (1/2)(3e-

3x).   Using integration by parts, we see that  

E(X) = ʃ0
∞ xf(x)dx = (1/2)((1/2) + (1/3)) = (5/12).  

Then, by definition, c = (1+) = (1+)(5/12) =>  = 4/5.  Applying integration by 

parts again, we see 

MX(t) = ʃ0
∞ etXf(x)dx = (1/2)[2 ʃ0

∞ e-(2-t)xdx + 3 ʃ0
∞ e-(3-t)xdx]  

= (1/2)(2/(2-t)) +(1/2)(3/(3-t)), t <2.   
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We know that is the smallest positive root of 1 + (1+)t = MX(t).  Thus,  

1 + (1+))(5/12) = (1/2)(2/(2-)) +(1/2)(3/(3-)).   

Solving for the roots of the above equation we have 0, 1, and 8/3.  Thus the adjustment 

coefficient  is 1.  

 This same example can be solved using the Newton – Raphson methodology that 

was illustrated in the first example.  Using the same initial conditions as the second 

example,   

E(X2) = ʃ0
∞ X2f(x)dx = (1/2)[2 ʃ0

∞ x2e-2xdx + 3 ʃ0
∞ x2e-3xdx] 

= (1/2)[23(1/2)[46 

We know  must be less than o = (2)/E(X2) = 2(4/5)(5/12)(36/13) = 1.8462.  Then,  

H(t) = 1 + (1+)t –MX(t) = 1 + (3/4)t – (1/2)(2/(2-t)) +(1/2)(3/(3-t)), and  

Hˡ(t) = (3/4) – (1/2)(2/(2-t)2) +(1/2)(3/(3-t)2).  

Letting t = 1.8462, the Newton-Raphson formula gives1 = 1.7191.  Per the table below, 

we again find that  = 1 after completing multiple iterations:  

 

Table 3: Newton-Raphson Iterations 

n n 

2 1.5289 
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3 1.3051 

4 1.1178 

5 1.0217 

6 1.0009 

7 1 
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Chapter 4: Cramer’s Asymptotic Ruin Formula and Tijms’ Approximation 

 

 

 

Suppose  > 0 satisfies 1 + (1+)t = MX(t).  Then by Cramer’s Asymptotic Ruin 

Formula, the ruin probability satisfies:  

(u) ~ Ce-u, u -> ∞, where 

C = /(Mˡ
X() – (1+))  

and Mx(t) = E(etX) = ʃ0
∞ etxdF(x) is the moment generating function of the claim severity 

random variable X.  Although an asymptotic approximation, Cramer’s Formula is quite 

accurate even for smaller values of u. 

In order to further improve the accuracy of the estimation for a small u, Tijms’ 

approximation adds an exponential term to Cramer’s asymptotic ruin formula and is 

defined by: 

(u) = ((1/1+) – C)e-u/+ Ce-u, u ≥ 0,    

where  is given by: 

 = [(E(X2)/(2) – C/)]/[1/(1+)) – C].   
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Tijms’ approximation to ruin probability is not only able to provide an accurate solution 

but in some cases it is also able to provide the true value of (u).   

Example 5:  

 Let’s suppose that  = 3/5 and the single claim size density is f(x) = 3e-4x + e-2x/2, 

x ≥ 0 (Loss Models 302).  Using this information, we will determine Cramer’s asymptotic 

ruin formula and Tijms’ approximation to ruin probability.  The moment generating 

function is:  

MX(t) = ʃ0
∞ etxf(x)dx = 3(4 – t)-1 + (1/2)(2-t)-1, and 

Mˡ
X(t) = 3(4 – t)-2 + (1/2)(2-t)-2.  

It follows that  = Mˡ
X(0) = (3/16) + (1/8) = 5/16.  By definition, the adjustment 

coefficient  > 0 satisfies 1 + (1/2) = 3(4 – )-1 + (1/2)(2-)-1.  Multiplication by 2(4 – 

)(2 –) yields:  

2(4 – )(2 –) + (4 – )(2 –) = 6(2 –) + (4 – ), that is,  

2( 

Rearrangement gives the following: 

0 =  

and we can see that  = 1 because it is the smallest positive root.   

 We will next determine Cramer’s asymptotic formula.  By definition,  
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C = [(5/16)(/[(Mˡ
X() – (1/2)] = 9/16, where Mˡ

X() = (1/3) + (1/2)(1) = 5/6.  

Thus Cramer’s asymptotic formula is:  

(u) ~ (9/16)e-u, u -> ∞. 

The last step will be determining Tijms’ approximation.  By definition,  

(u) = ((5/8) – (9/16))e-u/ + (9/16)e-u = (1/16)e-u/ + (9/16)e-u. 

To compute , we note that Mˡˡ
X(t) = 6(4 – t)-3 + (2-t)-3, and thus E(X2) = Mˡˡ

X(0) = (3/32) 

+ (1/8) = 7/32.  Therefore, the mean aggregate loss is:   

(E(X2)/(2)) = (7/32)/[2(3/16)] = 7/12.  

Finally, we are able to determine  as follows: 

 = [(7/12) – (9/16)]/[(5/8) – (9/16)] = 1/3. 

Thus, Tijms’ approximation becomes:  

(u) = (1/16)e-3u + (9/16)e-u.  

 As mentioned above, this example demonstrates that Tijms’ approximation (u) 

is exactly equal to the true value of ruin (u).  This holds true for all claim severity 

distributions with a probability density function of the form:  

f(x) = p(B1e
—B1x) + (1-p)(B2e

—B2x), x ≥ 0.   
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Example 6: 

In the next example, let’s assume that  = 4/5 and the single claim size density is 

f(x) = (1+6x)e-3x, x ≥ 0 (Loss Models 302).  Using this information, we will again 

determine Cramer’s asymptotic ruin formula and Tijms’ approximation to ruin 

probability.   

Note that f(x) can be re-written as f(x) = (1/3)(3e-3x) + (2/3)(9xe-3x).  The moment 

generating function is:  

MX(t) = ʃ0
∞ etxf(x)dx = (1/3)[3/(3 – t)] + (2/3)[3/(3-t)]2 = (3-t)-1 + 6(3-t)-2, and 

Mˡ
X(t) = (3-t)-2 + 12(3-t)-3.  

It follows that  = Mˡ
X(0) = (1/9) + (12/27) = 5/9.  By definition, the adjustment 

coefficient  > 0 satisfies 1 +  = (3 – )-1 + 6(3-)-2.  Rearrangement gives the 

following: 

0 =  

and we can see that  = 1 because it is the smallest positive root.   

 We will next determine Cramer’s asymptotic formula.  By definition,  

C = [(5/9)(/[(MI
X() – 1] =16/27, where Mˡ

X() = (1/4) + (3/2) = 7/4.  

Thus Cramer’s asymptotic formula is:  

(u) ~ (16/27)e-u, u -> ∞. 
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We can now determine Tijms’ approximation.  By definition,  

(u) = ((5/9) – (16/27))e-u/ + (16/27)e-u = -(1/27)e-u/ + (16/27)e-u. 

To compute , we note that Mˡˡ
X(t) = 2(3 – t)-3 + 36(3-t)-4, and thus E(X2) = Mˡˡ

X(0) = 

(2/27) + (36/81) = 14/27.  Therefore, the mean aggregate loss is:   

(E(X2)/(2)) = (14/27)/[2(4/9)] = 7/12.  

Finally, we are able to determine  as follows: 

 = [(7/12) – (16/27)]/[-(1/27)] = 1/4. 

Thus, Tijms’ approximation becomes:  

(u) = (-1/27)e-4u + (16/27)e-u.  

 Similar to the first example, this second example also demonstrates that Tijms’ 

approximation (u) is exactly equal to the true value of ruin (u).  This relationship 

holds true for all claim severity distributions with a probability density function of the 

form:  

f(x) = p(B-1e—x/B) + (1-p)(B-2xe—x/B), x ≥ 0.   

Tijms’ approximation doesn’t always reproduce the true ruin probability like we 

saw in the examples above but it is able to consistently generate an approximation of 

good quality.  Exact ruin probability values, Cramer’s asymptotic values, and Tijms’ 

approximate values will all converge as u -> ∞.   
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Chapter 5: Monte Carlo Simulation 

 

 

 In this chapter we will use a Monte Carlo simulation to test these theories.  Let us 

reconsider the example that was discussed on page 16.  We’ve assumed that  = 3/5 and 

the single claim size density is f(x) = 3e-4x + e-2x/2, x ≥ 0.  As noted on page 17, f(x) can 

be re-written in the following general form f(x) = p(B1e
—B1x) + (1-p)(B2e

—B2x), where 

p=.75, B1=4, and B2= 2.  Additionally, by integrating f(x), we see that F(x) = 1- .75e-4x - 

.25e-2x, x ≥ 0.  We are able to find the below values for F(x) and f(x):   

 

Table 4: Monte Carlo Simulation - Distribution of Claim Size 

Size of 1 Claim 

x F(x) f(x) 

0 0 3.5 

0.1 0.292577277 2.420325515 

0.2 0.495423265 1.683146915 

0.3 0.636901432 1.177988454 

0.4 0.73624537 0.830354036 

0.5 0.806528677 0.58994557 

0.6 0.856662982 0.422750966 

0.7 0.892743212 0.30572867 

0.8 0.918954218 0.223234871 

0.9 0.938182486 0.164620611 

1 0.95242945 0.122614558 

1.1 0.963091205 0.092233599 
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1.2 0.971148201 0.070048218 

1.3 0.977294182 0.053686482 

1.4 0.982024087 0.041498622 

1.5 0.985694169 0.032329791 

1.6 0.988563281 0.025365774 

1.7 0.990821351 0.02002796 

1.8 0.99260913 0.015901619 

1.9 0.994031968 0.01268674 

2 0.995169493 0.010164207 

 

  

Based on the above data, we see the following Distribution graph based on the 

F(x) values and Density graph based on the f(x) values.  It is evident that as claim size 

increases, the probability of that claim actually materializing becomes increasingly lower. 

 

 

Figure 2: Distribution Function Graph 
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Figure 3: Density Function Graph 

 

 To clearly see this, we will simulate 100 claims and then determine the size of 

each claim.  We’ll let F(x) be a randomly generated number and then solve for x to find 

the claim size.  In order to find x, we will first need to solve for e-2x.  Letting A= p =.75, 

B=1-p =.25, and C= F(x)-1, we can use the quadratic formula Ax2 + Bx + C = 0 to solve 

for e-2x as shown in the below table.  Per the simulation below, only 7 out of 100 claims 

exceeded 0.7 in claim size.   

 

Table 5: Monte Carlo Simulation - Size of 100 Claims 

claim # random # = F(x) exp(-2x) 
x ie size of 

claim 

 
rand() (quadratic formula) (natural log) 

1 0.915922162 0.207340769 0.786695807 

2 0.025495885 0.985338801 0.007384868 

3 0.646757705 0.539568071 0.308493164 

4 0.452891771 0.703537572 0.175816998 

5 0.082197972 0.952044116 0.024571952 

6 0.031810287 0.981678836 0.009245537 

7 0.530537791 0.641867433 0.221686744 

8 0.5586417 0.618352767 0.240348082 
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9 0.421257517 0.7274443 0.159108923 

10 0.07793029 0.954584446 0.023239584 

11 0.259788668 0.840669534 0.08677832 

12 0.857819067 0.299543967 0.602747035 

13 0.874035327 0.27574793 0.644134064 

14 0.038743679 0.977646609 0.011303508 

15 0.003075655 0.998241157 0.000880196 

16 0.728112129 0.458069229 0.390367476 

17 0.750853565 0.433310853 0.418149951 

18 0.140653208 0.916649308 0.043515157 

19 0.50896014 0.659467458 0.208161326 

20 0.148237809 0.911971687 0.046073167 

21 0.521181489 0.649545596 0.215741121 

22 0.538154381 0.635562687 0.226622275 

23 0.606341658 0.576741409 0.275180639 

24 0.895042345 0.242871266 0.707611873 

25 0.544826961 0.629998359 0.231019032 

26 0.458488952 0.699238934 0.178881386 

27 0.381591549 0.756546407 0.139495702 

28 0.203159339 0.877475083 0.06535336 

29 0.05739849 0.966726377 0.016919892 

30 0.678541054 0.508899545 0.33775232 

31 0.577744218 0.601959047 0.253782932 

32 0.294859426 0.817185563 0.100944542 

33 0.788716672 0.389650583 0.471252441 

34 0.030820195 0.982253486 0.008952936 

35 0.961860501 0.113744538 1.086900122 

36 0.506946409 0.661090886 0.206931975 

37 0.205113568 0.876226594 0.066065276 

38 0.695582382 0.491868021 0.354772424 

39 0.133929307 0.920779287 0.041267458 

40 0.262484056 0.838884113 0.087841354 

41 0.411965097 0.734346272 0.154387301 

42 0.111131537 0.934666947 0.03378251 

43 0.137862849 0.91836512 0.042580117 

44 0.161576687 0.903695669 0.050631313 

45 0.614272807 0.569594633 0.281415171 

46 0.698642662 0.488762629 0.357939164 

47 0.065418028 0.961999393 0.01937073 
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48 0.351319939 0.778153171 0.125415948 

49 0.177230206 0.893901186 0.05608002 

50 0.79704942 0.379573712 0.484353233 

51 0.735097563 0.450569939 0.398620983 

52 0.468315694 0.691639914 0.184344907 

53 0.908079302 0.221068692 0.754640901 

54 0.119826762 0.929390857 0.03661295 

55 0.699762279 0.487622825 0.359106535 

56 0.429908544 0.720970488 0.163578537 

57 0.638320508 0.547488149 0.301207232 

58 0.054401485 0.968487859 0.016009666 

59 0.236925777 0.855688494 0.077924439 

60 0.478657685 0.683569104 0.190213763 

61 0.750092623 0.434155781 0.417175933 

62 0.418347967 0.729611093 0.157621818 

63 0.260203954 0.840394655 0.086941835 

64 0.385426536 0.753772937 0.141332051 

65 0.127835413 0.924508797 0.039246356 

66 0.065424715 0.961995443 0.019372783 

67 0.231424708 0.85926941 0.075836387 

68 0.096743605 0.943342179 0.0291631 

69 0.467879752 0.691978453 0.18410023 

70 0.3829937 0.755533336 0.140165687 

71 0.890046768 0.250924147 0.691302294 

72 0.57043238 0.608275012 0.248564089 

73 0.172282726 0.897006596 0.054346032 

74 0.909975412 0.217794725 0.762101144 

75 0.723561324 0.462906744 0.385114831 

76 0.197801547 0.880890356 0.063411058 

77 0.267985517 0.835230079 0.090024024 

78 0.070797454 0.958817454 0.021027286 

79 0.800037253 0.375914916 0.489196224 

80 0.581798163 0.598434782 0.256718864 

81 0.462803685 0.695910595 0.181267042 

82 0.720943309 0.465672931 0.382135878 

83 0.255550959 0.843470205 0.085115351 

84 0.659071376 0.527847031 0.319474376 

85 0.471321824 0.689301798 0.18603804 

86 0.884849108 0.259141155 0.675191183 
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87 0.793017848 0.384472136 0.47794198 

88 0.497153007 0.668941157 0.20102959 

89 0.60643701 0.576655895 0.27525478 

90 0.71466864 0.472253978 0.375119174 

91 0.195716659 0.882216342 0.062658984 

92 0.319504728 0.800341507 0.11135838 

93 0.34347396 0.783673184 0.121881602 

94 0.989401385 0.038050857 1.634415831 

95 0.073967817 0.956937959 0.022008359 

96 0.660210254 0.526752955 0.320511808 

97 0.083420378 0.951315417 0.024954801 

98 0.027933942 0.98392703 0.008101771 

99 0.925939276 0.189037438 0.832905099 

100 0.321333307 0.79908004 0.112147082 

 

 

We will now use the Poisson process to simulate the number of claims that will 

materialize in a given amount of time.  Letting time t = .1, we see the following Poisson 

distribution: 

 

Table 6: Monte Carlo Simulation - Poisson Distribution for Number of Total Claims 

Poisson Distribution for # of claims 

k N(k) F(k) 

 =(e-t)(tk)/k! = ∑ Nk 

0 0.904837418 0.904837418 

1 0.090483742 0.99532116 

2 0.004524187 0.999845347 

3 0.000150806 0.999996153 

4 3.77016E-06 0.999999923 

5 7.54031E-08 0.999999999 

6 1.25672E-09 1 
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7 1.79531E-11 1 

8 2.24414E-13 1 

9 2.49349E-15 1 

10 2.49349E-17 1 

 

  

With this information, we can now expand on the simulation shown on page 22 to 

predict the number of expected claims in addition to the expected claim size and thus 

predict either the amount of surplus at time t or the time of ruin.  We will call this Trial 1.  

Let us assume the following: 

a) If a randomly generated number (ie, ‘Rand_1’) is less than all values of F(k) 

shown in above table, then the number of of claims equals 0.  Otherwise, the 

number of claims equals the number of F(k) values greater than ‘Rand_1.’   

b) Beginning Surplus at time 0 is equal to 1.  

c) When there is more than one claim in a given period, each claim is assumed to be 

the same size.  

d) At the end of Trial 1, t = 100.  However, given space constraints, the below table 

only shows values up to t = 5.   

e) Note that if End Surplus is less than 0, ruin occurs at time t.  Otherwise, ruin does 

not occur.  (Note: t = 101 signifies that time of ruin is outside of simulated time 

period).    
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Table 7: Monte Carlo Simulation - Trial 1 

t = 
time 

rand_1 # of 
Claims 

rand_2 exp(-2x) Size of 
Claim 

Beg 
Surplus 

Premium Claim 
End 

Surplus 
Time of 

Ruin 

0 0.7687 0 0.2034 0.8773 0.06545 1 0.05 0 1.05 101 

0.1 0.5852 0 0.8246 0.3449 0.53224 1.05 0.05 0 1.1 101 

0.2 0.5066 0 0.732 0.45392 0.39491 1.1 0.05 0 1.15 101 

0.3 0.9096 1 0.122 0.92809 0.03732 1.15 0.05 0.0373 1.1627 101 

0.4 0.7073 0 0.8157 0.35634 0.51594 1.1627 0.05 0 1.2127 101 

0.5 0.7289 0 0.465 0.69423 0.18248 1.2127 0.05 0 1.2627 101 

0.6 0.91 1 0.1545 0.9081 0.0482 1.2627 0.05 0.0482 1.2645 101 

0.7 0.4261 0 0.953 0.13417 1.00433 1.2645 0.05 0 1.3145 101 

0.8 0.1713 0 0.4346 0.71747 0.16601 1.3145 0.05 0 1.3645 101 

0.9 0.7518 0 0.7914 0.38648 0.47534 1.3645 0.05 0 1.4145 101 

1 0.1587 0 0.0232 0.98666 0.00671 1.4145 0.05 0 1.4645 101 

1.1 0.5386 0 0.8487 0.31247 0.58162 1.4645 0.05 0 1.5145 101 

1.2 0.8468 0 0.5076 0.66054 0.20735 1.5145 0.05 0 1.5645 101 

1.3 0.946 1 0.9736 0.08428 1.2368 1.5645 0.05 1.2368 0.3777 101 

1.4 0.974 1 0.7194 0.46734 0.38034 0.3777 0.05 0.3803 0.0473 101 

1.5 0.003 0 0.1897 0.88606 0.06048 0.0473 0.05 0 0.0973 101 

1.6 0.2935 0 0.6929 0.4946 0.352 0.0973 0.05 0 0.1473 101 

1.7 0.0896 0 0.9582 0.12237 1.05034 0.1473 0.05 0 0.1973 101 

1.8 0.4859 0 0.2373 0.85544 0.07807 0.1973 0.05 0 0.2473 101 

1.9 0.4536 0 0.0284 0.98364 0.00825 0.2473 0.05 0 0.2973 101 

2 0.0214 0 0.996 0.01536 2.08802 0.2973 0.05 0 0.3473 101 

2.1 0.2717 0 0.2358 0.85645 0.07748 0.3473 0.05 0 0.3973 101 

2.2 0.7404 0 0.011 0.99371 0.00316 0.3973 0.05 0 0.4473 101 

2.3 0.0915 0 0.3481 0.78043 0.12396 0.4473 0.05 0 0.4973 101 

2.4 0.3716 0 0.4135 0.73325 0.15514 0.4973 0.05 0 0.5473 101 

2.5 0.3065 0 0.8324 0.33459 0.54742 0.5473 0.05 0 0.5973 101 

2.6 0.8288 0 0.9039 0.22823 0.7387 0.5973 0.05 0 0.6473 101 

2.7 0.2135 0 0.7879 0.39057 0.47007 0.6473 0.05 0 0.6973 101 

2.8 0.9323 1 0.0842 0.95087 0.02519 0.6973 0.05 0.0252 0.7222 101 

2.9 0.1627 0 0.6124 0.57133 0.2799 0.7222 0.05 0 0.7722 101 

3 0.9165 1 0.5717 0.60715 0.24949 0.7722 0.05 0.2495 0.5727 101 

3.1 0.1063 0 0.1152 0.9322 0.0351 0.5727 0.05 0 0.6227 101 

3.2 0.9065 1 0.6375 0.54828 0.30048 0.6227 0.05 0.3005 0.3722 101 

3.3 0.6342 0 0.0478 0.97234 0.01403 0.3722 0.05 0 0.4222 101 

3.4 0.5777 0 0.5222 0.6487 0.21639 0.4222 0.05 0 0.4722 101 

3.5 0.2353 0 0.6974 0.49001 0.35666 0.4722 0.05 0 0.5222 101 

3.6 0.2706 0 0.0053 0.99698 0.00151 0.5222 0.05 0 0.5722 101 
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3.7 0.366 0 0.0419 0.97582 0.01224 0.5722 0.05 0 0.6222 101 

3.8 0.3948 0 0.727 0.45931 0.38902 0.6222 0.05 0 0.6722 101 

3.9 0.7139 0 0.6824 0.50505 0.34154 0.6722 0.05 0 0.7222 101 

4 0.8415 0 0.2661 0.83647 0.08928 0.7222 0.05 0 0.7722 101 

4.1 0.525 0 0.0229 0.98683 0.00663 0.7722 0.05 0 0.8222 101 

4.2 0.947 1 0.6281 0.55695 0.29264 0.8222 0.05 0.2926 0.5795 101 

4.3 0.1704 0 0.222 0.86536 0.0723 0.5795 0.05 0 0.6295 101 

4.4 0.5391 0 0.9415 0.15851 0.92097 0.6295 0.05 0 0.6795 101 

4.5 0.0878 0 0.8355 0.33041 0.55371 0.6795 0.05 0 0.7295 101 

4.6 0.4866 0 0.279 0.82788 0.09444 0.7295 0.05 0 0.7795 101 

4.7 0.1196 0 0.8078 0.36634 0.5021 0.7795 0.05 0 0.8295 101 

4.8 0.8101 0 0.3539 0.77637 0.12657 0.8295 0.05 0 0.8795 101 

4.9 0.2918 0 0.8964 0.2407 0.71211 0.8795 0.05 0 0.9295 101 

5 0.0661 0 0.6801 0.50738 0.33925 0.9295 0.05 0 0.9795 101 

 

  

Based on Trial 1, the average claim equals .03048, ruin does not occur, and final 

surplus equals 29.48.  The theory claims that the expected average claim equals t = 

(5/16)(.1) = .03125 and thus our simulated average claim is off by .00077.  We will try to 

reduce this variance by completing 50 trials similar to the one shown above.  The results 

for these 50 trials are shown below:  

 

Table 8: Monte Carlo Simulation - 50 Trials 

Trial # 
Result         

(Ruin = 1) 
Time of 

Ruin 
Final Surplus Avg Claim 

1 1 0.1 21.11303065 0.029886969 

2 0 101 20.53644314 0.030463557 

3 1 12.4 15.34061492 0.035659385 

4 0 101 17.88353739 0.033116463 

5 0 101 12.95932106 0.038040679 
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6 0 101 26.58011666 0.024419883 

7 0 101 12.15483909 0.038845161 

8 0 101 10.09020161 0.040909798 

9 0 101 25.03053362 0.025969466 

10 0 101 22.77743306 0.028222567 

11 0 101 24.77616589 0.026223834 

12 0 101 24.56262804 0.026437372 

13 1 0.5 12.71530671 0.038284693 

14 0 101 15.0883261 0.035911674 

15 0 101 13.74633577 0.037253664 

16 0 101 23.44922703 0.027550773 

17 0 101 14.13959926 0.036860401 

18 0 101 22.68469419 0.028315306 

19 0 101 13.92597543 0.037074025 

20 0 101 26.0249274 0.024975073 

21 0 101 18.8475669 0.032152433 

22 0 101 20.82976994 0.03017023 

23 0 101 25.63713892 0.025362861 

24 0 101 20.46301874 0.030536981 

25 1 0.1 24.22004922 0.026779951 

26 0 101 13.48033858 0.037519661 

27 0 101 20.33092945 0.030669071 

28 0 101 20.97978879 0.030020211 

29 1 15.4 12.69148086 0.038308519 

30 0 101 19.89882423 0.031101176 

31 0 101 24.82963675 0.026170363 

32 0 101 13.57509373 0.037424906 

33 0 101 21.42755882 0.029572441 

34 0 101 22.25940245 0.028740598 

35 1 12.5 13.01928458 0.037980715 

36 0 101 19.80798268 0.031192017 

37 0 101 14.88874389 0.036111256 

38 0 101 16.80961709 0.034190383 

39 0 101 19.87760133 0.031122399 

40 0 101 29.05211191 0.021947888 

41 1 0.6 22.8049957 0.028195004 

42 0 101 13.50988695 0.037490113 

43 0 101 7.960869309 0.043039131 

44 0 101 16.67443791 0.034325562 
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45 1 2.7 19.02854446 0.031971456 

46 0 101 26.70678611 0.024293214 

47 1 18.1 12.43012662 0.038569873 

48 0 101 21.23661506 0.029763385 

49 0 101 22.58345977 0.02841654 

50 0 101 17.92237415 0.033077626 

.      

  

After completing 50 trials our average claim size becomes .0320.  The .00076 

variance from the theory’s average expected claim value is marginally improved after 

completing 49 more trials.  Additionally, we can see that 9 of the 50 trials ended in ruin.  

Cramer’s Asymptotic Ruin Formula predicts 10.35 ruins after 50 trials and Tijms’ 

approximation predicts 10.5 ruins after 50 trials.   

Continuing in this fashion in an effort to yield the highest level of accuracy, 

50,000 trials produces the below results:  

 

Table 9: Monte Carlo Simulation - Average Claim Size 

Trials Avg Claim 
Variance to 

Theory 

                                     
50  0.03201 0.00076 

                               
1,000  0.03140 0.00015 

                               
5,000  0.03129 0.00004 

                             
10,000  0.03128 0.00003 

                             
20,000  0.03123 0.00002 
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50,000  0.03124 0.00001 

 

Table 10: Monte Carlo Simulation - Project Number of Ruins 

  # of Ruins Variance to Experiment % Variance 

Trials Experiment Cramer Tijms Cramer Tijms Cramer Tijms 

              
50  9.00 10.35 10.50 1.346609 1.502193872 2.69% 3.00% 
        
1,000  218.00 206.93 210.04 11.06781 7.956122568 1.11% 0.80% 
        
5,000  1056.00 1034.66 1050.22 21.33907 5.78061284 0.43% 0.12% 
     
10,000  2124.00 2069.32 2100.44 54.67814 23.56122568 0.55% 0.24% 
     
20,000  4262.00 4138.64 4200.88 123.3563 61.12245136 0.62% 0.31% 
     
50,000  10628.00 10346.61 10502.19 281.3907 125.8061284 0.56% 0.25% 

 

 

As seen above, 50,000 trials takes the average claim size to .00001 accuracy.  

Additionally, the second table depicts the number of ruins the experiment, Cramer, and 

Tijms each predict.  We can see that the % variance decreases as the number of trials 

increases and as discussed earlier in the paper, Tijms’ approximation is proven to yield a 

more exact calculation than Cramer’s asymptotic formula. 

Finally, after 50,000 trials, we can conclude that this single claim size density 

function has a 21.26% probability of ruin.  If ruin does occur, we can expect to see ruin at 

time t=5.75 and if ruin does not occur, we can project that the final surplus will be 19.76.   



32 

 

 

 

Conclusion 

 

 

  Ruin theory has a broad range of applications within the field of insurance.  

Insurance companies utilize Ruin Theory assumptions to set risk limits and ensure that 

their solvency capital requirement coverage ratio stays above a certain level with a large 

enough probability.   

 The principles of this theory help actuaries create risk management plans in an 

effort to analyze and answer the following questions: 

- What is the optimum level of initial capital? 

- How much capital should a company hold given its business plans and strategies? 

- For a fixed amount of capital what is the optimal level of exposures? 

- How much additional premium should be charged to cover a new peril or an 

emerging risk? 

- How much more capital should a company hold to if entering risky corporate 

bonds? 

- Should the company invest $X in an I.T. system to reduce the chances of various 

operational risks? 



33 

 

- If a specific probability of ruin is expected and/or tolerated, what initial surplus 

and premium loading is required to maintain this probability? 

Actuaries form initial assumptions to questions such as those above and as 

demonstrated within this paper, Ruin Theory is able to provide approximated and/or 

explicit probabilities related to the risk of insolvency based on those conditions.  In 

this way, insurance companies are able to effectively manage risk and avoid ruin.   
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