4 e e

MINING FOR KNOWLEDGE IN DATABASES:
Goals and General Description of the INLEN System

Kenneth A. Kaufman, Ryszard 5. Michalski and Larry Kerschberg

Artificial Intelligence Center
Mason University
Fairfax VA 22030

ABSTRACT

The INLEN system combines database, knowledge base, and machine learning techniques to
provide a user with an integrated system of tools for conceptually analyzing data and searching for
interesting relationships and regularities in them. Machine learning techniques are used for tasks
such as developing general rules from facts, determining differences between groups of facts,
creating conceptual classifications of data, selecting the most relevant attributes, determining the
most representative examples, and discovering equations governing numeric variables. The
equations discovered are accompanied by conditions under which they apply. The above
techniques are implemented as inference operators that a user can apply to a database and/or
knowledge base in order to perform a given knowledge extraction function. Examples of three
major inference operators are provided, specifically, for learning general rules differentiating
between groups of facts, for creating conceptual classifications of facts, and for discovering
equations characterizing numerical and symbolic data.

1. Introduction

This paper briefly describes the goals and general design of the INLEN system for conceptually
analyz:'m? databases and discovering regularities and patterns in them. The name INLEN derives
from Inference and Leaming, which represent two major capabilities of the system. INLEN
integrates a relational database, a knowledge base, and a number of machine leamning and inference
capabilities. The latter ones enable the system to perform tasks such as creating conceptual
descriptions of facts in the database, inventing classifications of data, discovering rules and
unknown regularities, and formulating equations together with the conditions of their applicability.
We present here a general system design and explain all the basic functions. Major operators,

specifically those for determining rules from examples, for creating classifications, and for
discovering equations, are illustrated by examples.

The motivating idea behind the INLEN system is to integrate three basic technologies - databases,
expert systems and machine learning and inference - in order to provide a user with a powerful tool
for manipulating both data and knowledge, and for extracting from that data and/or knowledge new
or better knowledge. INLEN evolved from the QUIN system (Query and Inference), a combined
database management and data analysis environment [Michalski, Baskin and Spackman, 1982;
Michalski and Baskin, 1983; Spackman, 1983]. QUIN was designed both as a stand-alone

9
i

system, and as a subsystem of ADVISE, a large scale inference system for designing expert
systems [Michalski and Baskin, 1983; Michalski et al., 1987; Baskin and Michalska, 1989].

In the last few years, new tools have been developed; in particular, more advanced inductive
learning systems, e.g., AQ 15 [Michalski et al., 1986) and ABACUS-2 [Greene, 1988], and
expert database systems [Kerschberg. 1986. 1987, 1988]. The above systems have influenced the
development of INLEN. INLEN also draws upon the experiences with AGASSISTANT, a shell
for developing agricultural expert systems [Katz, Fermanian and Michalski, 1986], and AURORA,
a general-purpose PC-based expert system shell with learning and discovery capabilities, designed
by Michalski and Katz [INIS, 1988].

2. INLEN System Design

As mentioned above, INLEN combines database, expert system and machine learning capabilities
in order to create an environment for analyzing and extracting useful knowledge from a data and/or
knowledge base. It includes ideas from the recently developed expert database technology to
combine the storage and access abilities of a database system with the ability to derive well-
founded conclusions from a knowledge-based system [Kerschberg, 1986, 1987, 1988]. INLEN
integrates several advanced machine learning capabilities, which until now have existed only as
separate experimental programs. Many learning systems are capable of but a small subset of what
can be learned from factual data. By integrating a variety of these tools, a user will have access 10
a very powerful and versatile system.

The general design of INLEN is shown in Figure 1. The INLEN system consists of a relational
database for storing known facts about a domain, and a knowledge base for storing rules,
constraints, hierarchies, decision trees, equations accompanied with preconditions, and enabling
conditions for performing various actions on the database and/or knowledge base. The knowledge
base can contain not only knowledge about the contents of the database, but also metaknowledge
for the dynamic upkeep of the knowledge base itself.

The purpose for integrating the above capabilities is to provide a user with a set of advanced tools
for searching for and extracting useful knowledge from a database, for organizing that knowledge
from different viewpoints, to test this knowledge on a set of facts, and to facilitate its integration
within the original knowledge base.

Information in the database consists of relational tables (RTs), and information in the knowledge
base consists of units called knowledge segments. A knowledge segment (KS) can be simple or
compound. Simple KSs include rulesets, equations, networks and hierarchies. Compound KSs
consist of combinations of any of the above, or combinations of simple KSs and RTs. The latter
form may be used, for example, to represent a clustering that consists of groups of objects
(represented as an RT), and the associated descriptions of the groups (represented as rules).
Another example of such a representation is a relational table with a set of constraints and
relationships among its attributes. Those constraints and relationships are represented as rules.
Compound KSs also consist of directory tables that specify the locations of their component parts
in the knowledge base or, in the case of RT components, in the database.

A justification for such knowledge types is that they correspond to natural forms of representing
human knowledge, especially technical knowledge. Also, by distinguishing between these
different forms of knowledge and selecting appropriate data structures to represent them, we can
achieve greater efficiency in storing and manipulating such structures.

mﬂe//w

0 000090 o

9

DMOs

(o)

= m

7] \\\\
“
: @

BO000C

KGO
KMOs

Figure 1. A Functional Diagram of INLEN

INLEN employs three sets of operators: data management operators (DMOs), knowledge
management operators (KMOs), and knowledge generation operators (KGOs). The DMOs are
standard operators for accessing, retrieving and manually altering the information in the database.
Thus, they operate on RTs. The KMOs perform analogous tasks on the knowledge base, in
situations in which manual input, access or adjustments are required. The knowledge generating
operators interact with both the database and the knowledge base. These operators evoke various
situations in which manual input, access and adjustments are required. The KGOs take input from
both the database and the knowledge base. These operators invoke various machine learning
programs to perform tasks such as developing general rules from facts, determining differences
between groups of facts, creating conceptual classifications of data, selecting the most relevant
attributes, determining the most representative examples, and discovering equations governing
numeric variables. The results of KGOs are stored as knowledge scgments. Examples of the
performance of a few basic knowledge generating operators are givenin Section 3.

A brief description of each of the DMOs, KMOs and KGOs follows.

Data Management Operators (DMOs)

The data management operators form a standard set of relational database operations for the
purpose of manipulating the system's collection of facts. They are listed here for the sake of
completeness.

CREATE generates a new relational table. It takes an attribute list as an argument.
APPEND adds a new tuple (row) to a relational table.
CHANGE alters some or all of the values in some or all of the tuples of a table.

DELETE removes rows or columns from a table, as specified respectively by SELECT or
PROJECT operations. Alternatively, entire tables may be removed from the system.

SELECT retrieves a relational table from a database, and retumns the complete table or part
of it. The part represents the subset of its rows that satsfy critena specified in the
arguments of the operator.

PROJECT reduces a table by removing columns. Columns that are kept correspond to
attributes specified in the arguments of the operator. e R

JOIN creates a relational table combining the columns of two tables. The rows are the
subset of the rows of the Cartesian product of the two tables whose attributes satisfy
criteria provided by the user.

UNION, performed on two tables with the same set of attributes, returns the set of tuples
(rows) which appear in either of the two tables.

INTERSECT, performed on two tables with the same set of attributes, returns the set of
tuples which appear in both of the input tables.

Knowledge Management Operalors (KMOs)

The knowledge management Operators are used to create, manipulate and modify INLEN's
knowledge base, thereby allowing the knowledge base to be handizd in @ manner analogous 1o
handling a database. Knowledge may take the form of simple or compound knowledge segments
(KSs). Consequently, most of the knowledge management operators shown in Figure 1 are
generalized for any of these forms. Unless otherwise specified, they should be thought of as
operating on any KS, i.c., they can operate on rules, equations, hierarchies, etc.

The diverse representations of knowledge may be culled from the same database, and will therefore
represent distinct viewpoints obtained using the knowledge generation Operators. For example, a
dynamical system whose behavior is governed by a set of differential equations could have its time
series input-output behavior represented as a relation consisting of all measurable input-output
variables. Each tuple would consist of the input-output variable value at some time. The KGOs
could be used to create knowledge viewpoints such as functional and multi-valued dependencies
from relational database theory, a set of decision rules, a causal and temporal semantic network,
etc. Each of these viewpoints is valid, and should be managed by the KMOs.

Expert database tools and techniques can be used to manage the evolution of the combined
knowledge/data base by incorporating knowledge discovered in the database. The arrow in Figure
1 linking the DB and the KB components represents such an interaction.

The knowledge base management operators listed below are depicted as analogues of INLEN’s
data management operators. Without intensive testing of the system in different domains, one
cannot tell how useful these operators are, but they represent our first approximation based on the
analogy to the data management Operators. Further research may lead to the development of other
operators, and also other knowledge representations, including the likely use of an object-oriented
approach in which one data representation is replaced by an active link to the concept of a formula,
a rule set, or some other representation. :

Under the current design, these are the knowledge management operators and their functions:

CREATE is used to generate a new knowledge segment, with a structure and set of
attributes specified by the user. The KS will be empty until knowledge is added using
either an APPEND operator or one of the knowledge generation operators.

APPEND is used for the manual addition of new knowledge to a KS.

CHANGE is used for the manual alteration of part of one or more items in a knowledge
segment.

DELETE is used to remove selected portions of a knowledge segment from the knowledge
base. Alternatively, an entire KS may be erased by giving no qualifying conditions to the
operator.

SELECT is used to retrieve a knowledge segment from the knowledge base (and from the
database in the case of component RTs.) Criteria may be Egovidcd to return only selected
items (such as rules, subtrees, rows in tables, etc.) in this KS.

6

PROJECT is used to return a subset of a compound KS which ignores entire components
(e.g. rulesets, decision trees, columns of tables) of the KS. The items specified in the
operator’s arguments will be included.

JOIN is used to combine a pair of simple knowledge segments or components of
compound knowledge segments. For example, a set of rules and a data table can be united
into a compound KS, or two rulesets may be combined by finding conditions in the first
ruleset which are satisfied by decisions in the second ruleset. Rules may then be expanded
by replacing the matching conditions in the first ruleset with the conditions leading to the
corresponding decisions in the second ruleset.

UNION is applied to two or more knowledge segments of the same type. It generates a list
of the elements present at least once in any of the segments.

INTERSECT is applied to two or more knowledge segments of the same type. It generates
a list of the elements present at least once in each of the segments.

Knowledge Generating Operators (KGOs)

The KGOs perform complex inferences on knowledge segments in order to creatc new knowledge.
It should be noted that the KGOs also consist of primitives (such as "save" and "retrieve") in order
to facilitate access to the structures they generate. These structures will generally be compound
KSs which include tables in the knowledge base that locate their other components.

Many of these operators work with or generate rules. Rules in INLEN consist of a decision part
implied by a condition part. The decision part consists of a conjunction of one or more statements
or actions, while the condition part consists of a disjunction of conjunctions, each consistinig of
one or more elementary conditions (for examples, see Tables 1 and 2.)

Under the current design, these are the basic KGOs employed by INLEN:

CLUSTER performs conceptual clustering of tuples in a relatonal table in order to create
logical groupings of objects or events represented by the tuples. It also determines a set of
rules characterizing the created groups. Specifically, the operator divides rows of a
relational table into two or more groups, and returns a KS consisting of a relational table,
similar to the input table, but also containing additional information indicating the groups,
and a ruleset characterizing the individual groups. An example of this operator is given in
Section 3. User-defined parameters may influence the creation of the groups. Detailed
descriptions of the conceptual clustering algorithm that performs this operator are in
[Michalski, Stepp and Diday, 1981; Stepp, 1983, 1984).

RULESTRUCT also performs conceptual clustering, but applies it to a ruleset, rather than
to a relational table. A compound KS is returned consisting of the original ruleset with
grouping information, plus a new ruleset to explain the grouping.

DIFF (Differentiate) takes two or more classes of objects (each object represented as a tuple
in a relational table), and induces general rules characterizing the differences between the
classes. The output KS consists of the ruleset created by the operator, and the object
classes, represented by RTs. The AQ program that executes this operator is described in
[Michalski and Larson, 1983]. The rules produced are called discriminant descriptions,

9

i.e., they specify sufficient conditions for distinguishing one class of objects from the other
class(es).

CHAR (Characterize) determines descriptions characterizing a class of objects. This
operator also falls into the domain covered by the AQ program mentioned above. Here,
the emphasis is on finding charactenstic rules describing all examples of a class of objects,
without concern about the differences between this class and other classes. Output includes
the initial class plus the generated descriptions.

ATEST tests a set of decision rules for consistency and completeness on a set of examples
(specified in a relational table). Consistency implies that no event in the example space is
covered by two different rules. Completencss refers to the condition that every possible
example will be covered by the conditions applying to at least one rule. The output KS
consists of the input rules, example sets, and a relational table containing ATEST's
analysis. ATEST is described in detail in [Reinke, 1984).

V ARSEL determines atiributes in a relational table that are most relevant for differentiating
between various classes of objects. Output consists of a rule describing the selection of the
variables given the input classes, and the subtable generated by projecting on the chosen
variables. By keeping only the most relevant attributes in the object (example)
descriptions, one can significantly reduce the computation time required by the CLUSTER
or DIFF operator [Baim, 1982].

ESEL determines the examples (objects) that are most representative for given classes.
Promising examples are returned as output with a rule specifying the input classes and the
cg%ﬁscn examples, while other examples are rejected [Michalski and Larson, 1978; Cramm,
1983].

VARCON applies mathematical operators specified in its argument in order to combine
variables into useful composites. The output KS will consist of the new composite
variables, and a rule specifying the original table, the mathematical operators, and the
created variables. For example, VARCON can be used if the sum or product of two
variables might be more useful than either individual value [Davis, 1979].

TREECON takes a set of rules or decision examples, and organizes them into a decision
tree, which may be a more efficient way for storing and/or using the knowledge
[Michalski, 1978; Layman, 1979].

DISCOR discovers correlations between the values of attributes in a set of examples. It is
mgllemamnd as a standard statistical operation of correlation and returns a table of its
results.

DISMON secks out monotonic relations between attributes in a set of examples, and in
doing so, may discover an interesting relationship within the data. It is an operator that is
utilized in the DISEQ operator.

DISEQ discovers equations that describe numeric data in a set of examples, and formulates
conditions for applying these equations. DISEQ returns a set of equations and the rules
which determine when they apply. It is based on the ABACUS-2 system for integrated
qualitative and quantitative discovery [Falkenhainer and Michalski, 1986; Greene, 1988].
ABACUS-2 is related to programs such as BACON [Langley, Bradshaw and Simon,
1983), FAHRENHEIT [Zytkow, 1987) and COPER [Kokar, 1986].

STANAL performs a statistical analysis of the data in order to determine its various
statistical properties.

3. An Illustration of Selected KGOs: CLUSTER, DIFF, DISEQ

This section gives examples of how some basic KGOs work; specifically, the CLUSTER, DIFF
and DISEQ operators.

CLUSTER

CLUSTER is capable of creating groupings of objects or events, and when used recursively, can
generate an entire taxonomy. Unlike traditional clustering methods, CLUSTER also returns the
rules that describe its grouping. The presented example is based on the results described in
[Michalski and Stepp, 1983], involving the creation of a classification of microcomputers.
Variables considered include the type of processor, the amount of RAM, the ROM size, the type of
display, and the number of keys on the keyboard. Dividing the examples into two groups, the
system grouped them according to RAM size and keyboard, while clustering into three groups was
based on the processor type, ROM size and the display type. Table 1 presents the original data,
and the classifications generated by the CLUSTER operator. The input to CLUSTER was a table
of the characteristics mfF the microcomputers, and the output consisted of a table with new columns
indicating the groups of the objects, plus rules characterizing the groups.

DIFF

The DIFF operator is based on the AQ inductive leaming method that has been effectively used for
many rule learning tasks in areas such as medicine, agriculture, physics, computer vision, chess,
etc. One recent application for diagnosing potential breast cancers, given a few training examples,
is described in [Michalski, Mozetic et al., 1986). The rules generated performed well on new
cases of the disease. An application of the DIFF system to concisely describe the groups created
by the CLUSTER operator (Table 1) is shown in Table 2. The groups of examples are given as
input, and DIFF creates rules that describe the differences between these groups. Note that the
found rules are a little simpler than the descriptions lproduw:l by CLUSTER (a redundant condition
specifying the processor type in the third group of the 3-grouping cluster was removed). DIFF
often produces a significantly simpler description.

While this example showed an application of DIFF to create the discriminant rules for groups of
examples, the AQ algorithm that it employs may also be used to determine characteristic rules that
describe classes of events [Michalski, 1983). In the INLEN system, this function is represented
by the CHAR operator. In case of large example sets, there may be large differences between
characteristic and discriminant rules.

DISEQ

The DISEQ operator is based on the ABACUS-2 discovery system, described in [Greene, 1988].
The operator is capable of learning equations which fit a set of tabular data. It is also capable of
subdividing a set of examples into partitions in which different rules apply, and of coping with
noisy data. It specifies conditions under which different rules apply. ABACUS-2 expands the
capabilities of the earlier system ABACUS [Falkenhainer and Michalski, 1986], and can discover
more complex regularities.

/ INPUT \ /" OUTPUT "\
Microcomputer | Display |[RAM | ROM |Processor |No_Keys 2-Group| 3-Group
Apple I Color TV | 48K |10k | 6502 | 52 1 1
Atari 800 Color TV | 48K |10k | 6502 | 57-63 1 1
Comm. VIC 20 | Color TV | 32K | 11-16K | 6502A 64—‘?3“ 1 2
Exidi Sorceror | BIW_TV | 48K | 4K 780 5763 | 1 2
Zenith 118 BuilLin | 64K | 1K 8080A | 64-73 H 2 3
Zenith 1189 Built_in 64K | 8K Z80 64-73 2 3
HP 85 Builin | 32K [80K | HP 9 | 1 2
Horizon Terminal | 64K | 8K Z80 57-63 || 1 2
Challenger BW_TV | 32K |10k | 6502 | 53-56 u 1 1
0.5 11Series |BW_TV | 48k |10k | eso2c | 53-56 1 2
TRS-801 BW_TV | 48K |12k | 280 53-56 1 1
TRS-80 111 Builtin | 48K | 14K | Z80 64-73 1 1

CLUSTER operator takes as the input the relational table, marked INPUT, and a parameter
requiring it to partition the rows in the table into 2- and then into 3-group clustenings. The
two rightmost columns show the partiions generated. The CLUSTER also generates rules

describing the groups, stored in the KB:

2-Group clustering:
[Group 1] <==[RAM = 16K..48K] or [No_Keys < 63]
[Group 2] <==[RAM =64K] & [No_Keys > 63]

3-Group clustering:
[Group 1] <== [Processor = 6502 v 8080A v Z80] & [ROM = 10K..14K]

[Group 2] <== [Processor = 6502A v 6502C v HP] or [ROM = 1K..8K] & [Display # Built_in]
[Group 3] <== [Processor = 6502 v 8080A v Z80] & [ROM = 1K..8K] & [Display = Built_in]

Table 1. An example of the CLUSTER Operator

Microcomputer | Display |RAM | ROM |Processor | No_Keys 2-Group | 3-Group
Apple II Color_TV | 48K | 10K 6502 52 1 1
Atari 800 Color TV | 48K | 10K 6502 57-63 1 |
Comm. VIC 20 | Color_TV | 32K | 11-16K | 6502A 64-73 1 2
Exidi Sorceror | BW_TV | 48K | 4K ZB0 57-63 1 2
Zenith 118 Built_in 64K | 1K 8080A 64-73 2 3
Zenith 1189 Built_in 64K | 8K Z80 64-73 2 3
HP 85 Built_in 32K | 80K HP 92 1 2
Horizon Terminal | 64K | 8K Z80 57-63 1 2
Challenger B/W_TV | 32K | 10K 6502 53-56 1 1
O-S 11 Series | B/W_TV | 48K | 10K 6502C 53-56 1 2
TRS-801 B/W_TV | 48K | 12K Z80 53-56 1 1
TRS-80 I Built_in | 48K | 14K Z80 64-73 1 1

DIFF takes as input a relational table in which the last column
In this example, the DIFF operator tries to rediscover the rules,

indicates group (class) membership.
invented by CLUSTER, from the

examples of groups:

Rediscovered rules for 2-Group differentiation:

[Group 1] <== [Display # Built_in] or [ROM 2 14K]

[(Group 2] <==[RAM = 64K] & [No_Keys = 64-73]
Rediscovered rules for 3-Group differentiation:

[Group 1] <== [Processor = Z80 v 6502] & [ROM = 10K..14K]

[Group 2] <= [Processor = 6502C v 6502A v HP] or [ROM = 4K..8K] & [Display = B/W_TV v Term.]
[Group 3] <==[ROM = 1K..8K] & [Display = Built_in]

The above rules were generated by DIFF directly from examples. They are similar, but not identical
to the rules created originally by CLUSTER. They provide an altemative, logically consistent,
characterization of individual groups.

Table 2. An example of the DIFF Operator

11

The ABACUS programs have formulated equations characterizing a number of different empirical
data, e.g., data specifying planetary motion, the distances between atoms in a molecule, and
Stoke's Law of falling bodies. Stoke’s Law specifies the velocity of an object falling through
different media, and is presented in Table 3. As is shown in Table 3, the velocity of an object
falling through a fluid is governed by an equation involving different variables than the equation
describing the velocity of an object falling through a vacuum. DISEQ was able to find the
equations for both cases.

4. Conclusion

.

INLEN is a large-scale integrated system capable of performing a wide variety of complex
inferential operations on data in order to discover interesting regularities in them. These
regularities can be detected in qualitative data, quantitative data, and in the knowledge base itsclf.
In addition, INLEN provides functions that acilitate manipulation of both the data and the

knowledge base.

One major novel idea of INLEN is that it integrates a variety of knowledge generation operators
that permit a user to search for various kinds of relationships and regularities in the data. To
achieve such an integration, the concept of a knowledge segment has been introduced. The
knowledge segment stands for a variety of knowledge representations such as rules, networks,
equations, etc., each possibly associated with a relational table in the database (as in the case of a

set of constraints), or for any combination of such basic knowledge segments.

Many of INLEN's modules have already been implemented, as stand-alone systems OF as parts of
larger units. Other wools and the general integrated interface are under development. Future work
will involve bringing these systems together and completing the control system to facilitate access
to them in the form of simple, uniform commands.

Acknowledgements

The authors thank Pawel Stefanski, Jianping Zhang and Jan Zytkow for their comments and
criticism. They are also grateful to Peter Aiken, Kathleen Byrd and Joyce Ralston for their
assistance in the preparation of the paper.

This _tg:search was done in the Artificial Intelligence Center of George Mason University. The
activities of the Center are supported in part by the Defense Advanced Research Projects Agency
under grant, administered by the Office of Naval Research No. N00014-87-K-0874, in part by the
Office of Naval Research under grant No. N00014-88-K-0226, and in part by the Office of Naval
Research under grant No. N00014-88-K-03597.

Substance | Radius (m) | Mass (kg) |Height(m) |[Time (s) [Velocity (m/s)
Vacuum 0.05] 6 0.1 0.98453
Vacuum 0.05 2 2 0.4 393812
Vacuum 0.10 1 3 0.5 2.95359
Vacuum 0.10 2 7 0.1 0.98453
Glycerol 0.05 1 5 0.1 19.112
Glycerol 0.05 2 8 03 38.224
Glycerol 0.10 1 6 05 9.556
Glycerol 0.10 2 7 0.2 19.112
CastorQil 0.05 1 9 0.4 14.672
CastorQil 0.05 2 3 0.1 29.344
CastorQil 0.10 1 5 0.3 7.336
CastorQil 0.10 2 8 0.5 14.672

DISEQ searches for relationships amon dg the data objects. It discovers that equations for

the ball's velocity exist, but they depend on the medium through which the ball is falling.

Here are the rules DISEQ discovered:

If [Substance = Vacuum] then v=98175*1t

If [Substance = Glycerol] then v *r=0.9556* m
If [Substance = CastorQil] then v *r=0.7336*m

where v = velocity, r = radius, t = time, and m = mass.

Table 3. The DISEQ operator formulates Stoke's Law

13

References

A. B. Baskin and R. S. Michalski, “An Integrated Approach to the Construction of Knowledge-
Based Systems: Experiences with ADVISE and Related Programs,” in Topics in Expert System
Design, G. Guida and C. Tasso (eds.), Elsevier Science Publishers B. V., 1989.

P. W. Baim, "The PROMISE Method for Selecting Most Relevant Attributes for Inductive
Learning Systems,” Report No. UIUCDCS-F-82-898, Department of Computer Science,
University of Hlinois, Urbana IL, Sept. 1982.

R. L. Blum, "Automating the Study of Clinical Hypotheses on a Time-Oricnted Data Base: The
RX Project," Report No. STAN-CS-79-816, Department of Computer Science, Stanford
University, Stanford CA, Nov. 1979.

S. A. . Cramm, ESEL/2: "A Program for Selecting the Most Representative Training Events for
Inductive Learning", Report No. UIUCDCS-F-83-901, Department of Computer Science,
University of Illinois, Urbana IL, Jan. 1983.

C. 1. Date, A Guide to INGRES, Addison Wesley, Reading MA, 1987.

J. H. Davis, "CONVART: A Program for Constructive Induction on Time Dependent Data,”
Master's Thesis, Department of Computer Science, University of Illinois, Urbana IL, 1981.

B. Falkenhainer and R. S. Michalski, "Integrating Quantitative and Qualitative Discovery: The
ABACUS System," Report No. UIUCDCS-F-86-967, Department of Computer Science,
University of Illinois, Urbana IL, May 1986.

G. Greene, "Quantitative Discovery: Using Dependencies to Discover Non-Linear Terms,”
Master's Thesis, Department of Computer Science, University of Illinois, Urbana IL, 1988.

J. Hong, L. Mozetic and R. S. Michalski, "AQ15: Incremental Learning of Auribute-Based
Descriptions from Examples, the Method and User’s Guide," Report No. UITUCDCS-F-86-949,
Department of Computer Science, University of Ilinois, Urbana IL, May 1986.

International Intelligent Systems, Inc., "User's Guide to AURORA 2.0: A Discovery System,"
Fairfax VA, International Intelligent Systems, Inc., 1988.

B. Katz, T. W. Fermanian and R. S. Michalski, "AgAssistant: An Experimental Expert System
Builder for Agricultural Applications,” Report No. UTUCDCS-F-87-978, Department of Computer
Science, University of Illinois, Urbana IL, Oct. 1987.

L. Kerschberg, (ed.), Expert Database Systems: Proceedings from the First International
Workshop, Benjamin/Cummings Publishing Company, Menlo Park, CA, 1986.

L. Kerschberg, (ed.), Expert Database Systems: Proceedings from the First International
Conference, Benjamin/Cummings Publishing Company, Menlo Park, CA, 1987. '

L. Kerschberg, (ed.), Expert Database Systems: Proceedings from the Second International
Conference, George Mason University, Fairfax, VA, 1988. (to appear in book form,
Benjamin/Cummings Publishing Company, Menlo Park, CA, 1988.

14

M. M. Kokar, “Coper: A Methodology for Learning Invariant Functional Descriptions,” in
Machine Learning: A Guide to Current Research, Michalski, Mitchell, Carbonell Eds., Kluwer

Academic Publishers, 1986.

P. Langley, G. L. Bradshaw and H. A. Simon. “Rediscovering Chemistry with the BACON
System,” in Machine Learning. An Artificial Intelligence Approach, Michalska, Mitchell, Carbonell
Eds., Morgan Kaufmann, 1983.

T. C. Layman, "A PASCAL Program to Convert Extended Entry Decision Tables into Optimal
Decision Trees,"” Department of Computer Science, Internal Report, University of Illinois, Urbana
IL, 1979.

R. S. Michalski, "Designing Extended Entry Decision Tables and Optimal Decision Trees Using
Decision Diagrams," Report No. UIUCDCS-R-78-898, Department of Computer Science,
University of Illinois, Urbana IL, March 1978.

R. S. Michalski, "Theory and Methodology of Inductive Learning,” in Machine Learning: An
Artificial Intelligence Approach, Michalski, Mitchell, Carbonell Eds., Morgan Kaufmann, 1983.

R. S. Michalski and A. B. Baskin, "Integrating Multiple Knowledge Representations and Leaming
Capabilities in an Expert System: The ADVISE System," Proceedings of the 8th UCALI, Karlsruhe,
West Germany, August 8-12, 1983, pp. 256-258.

R. S. Michalski, A. B. Baskin and K. A. Spackman, "A Logic-based Approach to Conceptual
Database Analysis,” Sixth Annual Symposium on Computer Applications in Medical Care
(SCAMC-6), George Washington University Medical Center, Washington, DC, November 1-2,
1982, pp. 792-796.

R. §. Michalski, A. B. Baskin, C. Uhrik and T. Channic, "The ADVISE.1 Meta-Expert System:
The General Design and a Technical Description,” Report No. UITUCDCS-F-87-962, Department
of Computer Science, University of Illinois, Urbana IL, Jan. 1987.

R. S. Michalski, L. Iwanska, K Chen, H. Ko and P. Haddawy, "Machine Learning and Inference:
An Overview of Programs and Examples of their Performance,” Arificial Intelligence Laboratory,
Department of Computer Science, University of Ilinois, Urbana IL, Sept. 1986.

R. S. Michalski and J. B. Larson, "Selection of Most Representative Training Examples and
Incremental Generation of VL] Hypotheses: the underlying methodology and the description of
programs ESEL and AQ11," Report No. 867, Department of Computer Science, University of
Nlinois, Urbana, May 1978.

R. S. Michalski and J. B. Larson, rev. by K. Chen, "Incremental Generation of VL1 Hypotheses:
The Underlying Methodology and the Description of the Program AQ11", Report No. UIUCDCS-
F-83-905, Department of Computer Science, University of [llinois, Urbana IL, Jan. 1983,

R. S. Michalski, I. Mozetic, J. Hong and N. Lavrac, "The AQIS5 Inductive Learning System: An
Overview and Experiments,” Report No. UTUCDCS-R-86-1260, Department of Computer
Science, University of Illinois, Urbana IL, July 1986.

R. S. Michalski, R. E. Stepp and E. Diday, "A Recent Advance in Data Analysis: Clustering
Objects into Classes Characterized by Conjunctive Concepts,” in Progress in Pantern Recognition,
Vol. 1, L. N. Kanall and A. Rosenfeld (Eds.), New York: North-Holland, pp. 33-56, 1981.

15

R. S. Michalski and R. E. Stepp, "Automated Construction of Ciassifications: Cnncepmal
Clustering Versus Numerical Taxonomy,"” IEEE Transactions on Pz=ern Analysis and Machine
Intelligence, 1983

R. E. Reinke, "Knowledge Acquisition and Refinement Tools for the ADVISE Meta-Expert
System,” Master's Thesis, Department of Computer Science, University of Illinois, Urbana IL,
July 1984,

K. A. Spackman, "QUIN: Integration of Inferential Operators within a Relational Database," ISG
83-13, UTUCDCS-F-83-917, M.S. Thesis, Department of Computer Science, University of
Illinois, Urbana, 1983,

R. E. Stepp, "A Description and User's Guide for CLUSTERY/2, a Program for Conceptual
Clustering," Department of Computer Science, University of Illinois, Urbana IL, Nov. 1983,

R. E. Stepp, "Conjunctive Conceptual Clustering: A Methodology and Experimentation,” PhD
Thesis, Department of Computer Science, University of Dllinois, Urbzna IL, 1984,

G. Wiederhold, M.G. Walker, R. L. Blum, and S. Downs, "Acquisition of Knowledge from
?gaéa“' International Symposium on Methodologies for Intelligent g}’stcms, Knoxville TN, Oct.
6.

J. M. Zytkow, "Combining Many Searches in the FAHRENHEIT Discovery System,"
ings of the Fourth International Workshop on Machine Learning, Irvine, CA, Morgan
Kaufmann, pp. 281-287, 1987.

