
AUTOMATIC FUNCTIONAL ANNOTATION OF PROKARYOTES 

by 

Philip Goetz� 
A Thesis� 

Submitted to the� 
Graduate Faculty� 

of� 
George Mason University� 
in Partial Fulfillment of� 

The Requirements for the Degree� 
of� 

Master of Science� 
Bioinformatics� 

Committee: 
",--.. 

Dr. Iosif Vaisman. Thesis Director 

Dr. Ancha Baranova, Committee Member 

Dr. Don Seto, Committee Member 

Dr. James Willett, Director, School of 
Systems Biology 

/~LBI	 Dr. Timothy L. Born, Associate Dean for 
Student and Academic Affairs, College of 
Science 

r;;?)i~ o.-~,U.,v 

Dr. Vikas Chandhoke, Dean, College of 
Science 

Date: Dec.. h 1 lOlt� Fall Semester 2011 
George Mason University 
Fairfax, VA 



Automatic Functional Annotation of Prokaryotes

A Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Philip Goetz
Doctor of Science

State University of New York at Buffalo, 1997

Director:  Iosif Vaisman, Professor
Department of Bioinformatics

Fall Semester 2011
George Mason University

Fairfax, VA



ii

Copyright: 2011, Philip Goetz

All Rights Reserved



iii

Dedication

To my nieces and nephews, who had to play the monster game on their own while
their uncle was writing this thesis.



iv

Acknowledgements

The following people also contributed to the development and testing of

AutoAnnotate:

 Tanja Davidsen, Granger Sutton, and Lauren Brinkac: Project managers

 Ramana Madupu:  HMP liason

 Tanja Davidsen, Ramana Madupu, Scott Durkin, Bob Dodson, Scott Durkins:

Annotators, specified requirements, testing and production use

 Bill Nelson, Kevin Galens: Wrote the prior version of autoAnnotate

 Alex Richter: Wrote code to parse BLAST output; perpetual Perl consultant

 Bob Montgomery:  Revised the comparison tool



v

Table of Contents

Page

List of Tables...................................................................................................................... vi

Abstract .............................................................................................................................. iii

Chapter 1: Overview ........................................................................................................... 1

Chapter 2: Literature Review.............................................................................................. 5

Chapter 3: The JCVI prokaryote annotation pipeline ....................................................... 22

Chapter 4: Simplifying the ranking system ...................................................................... 34

Chapter 5: Automatically constructing the ranking system .............................................. 40

Chapter 6: Building a gold-standard annotation set.......................................................... 44

Chapter 7: Comparing protein names ............................................................................... 47

Chapter 8: Training and testing on the validation set ....................................................... 58

Chapter 9: Conclusions and Future Work ......................................................................... 69

References......................................................................................................................... 76



vi

List of Tables

Table Page

Table 1.  Rank table for HMM hits, by isotype and match quality................................... 28

Table 2.  BLAST hit ranking table. ................................................................................... 32

Table 3.  Frequency of outcomes with an annotation source A that is correct 98% of the
time, and a source B that is correct 95% of the time................................................. 35

Table 4.  Probability that the annotation on a BLAST hit provides the correct annotation
for the query sequence .............................................................................................. 39

Table 5.  Misspellings of 'protein' meeting constraints found in existing annotations. .... 50

Table 6.  An example of HMMs intended to be less functionally specific that nonetheless
hit exactly the same proteins in SwissProt as the more-specific TIGRFAM............ 57

Table 7. PSF: Estimated probability that a protein BLAST hit with the given %identity
and %length values has the same function as the query sequence............................ 64

Table 8.  Estimated probability of good annotation by annotation source........................ 65

Table 9.  Test results, given as fraction of sample. ........................................................... 67



Abstract

AUTOMATED CONSTRUCTION OF A RANKING SYSTEM FOR AUTOMATIC
FUNCTIONAL GENE ANNOTATION

Philip Goetz, MS

George Mason University, 2011

Thesis Director: Dr. Iosif Vaisman

One key method of automatic functional annotation of a prokaryote gene is

finding BLAST hits to the gene in question that have functional annotations, choosing the

best single hit, and copying the annotation from that hit if it is of sufficient quality as

measured by a p-value or other criterion.  In the JCVI prokaryote automatic functional

annotation system, the best hit is chosen by looking up categories in a manually-

constructed table stating how reliable the annotation is depending on who made the

annotation, what percent identity the BLAST hit had, and what percentage of the query

gene and the hit gene were involved in the match.

Constructing this table is labor-intensive; and humans are incapable of processing

enough data to construct it correctly.  I therefore reduced the data requirements by

breaking the table into orthogonal components; and I developed an iterative method to



minimize the least-squares error of the table on a training set.  I also constructed a

validation set of 50,000 manually-annotated proteins from JCVI data, and developed a

protein name thesaurus and ontology to make it possible to tell when two names meant

the same thing, or when one name was a more-specific refinement of another name.

Training on 9/10 of the validation set, and testing on the held-out 1/10, showed an

improvement in accuracy from 61.5% to 72.4%.



1

Chapter 1: Overview

1.1. Functional Annotation

Annotation is divided into two parts. Structural annotation means noting where

genome features begin and end, and other features such as frameshifts.  (Structural

annotation is more complicated for eukaryotes; I consider only annotation of

prokaryotes.) Functional annotation means describing what a genome feature does.

In this thesis, the only type of genome feature we will talk about is genes.  Gene

features also include RNAs; notably, rRNAs, tRNAs, and various regulatory RNAs.

(Viral inserts and pseudogenes are generally annotated as if they were genes.)

Annotations must fit into the Genbank format, since otherwise they are lost when

the data are uploaded to Genbank.  Genbank does not use any controlled vocabulary other

than EC number; and EC numbers are often not very specific.  So while you can write

programs that guess at a protein’s cellular localization, expression pattern, operon

membership, melting temperature, or other properties, you can’t store that information in

a way so that it will be found again.  This is because Genbank, and annotation in general,

still has a “one-gene” culture, where the expectation is that the users of annotation are

scientists investigating a single gene, who look up that gene’s annotation and read it.



2

Even today, you can find papers on functional annotation that never describe what the

annotations are (e.g, Aziz et al. 2008).  In such cases, you can usually presume that the

annotations are simply descriptions of function in English.

The Genbank format accepts the following fields relevant to functional annotation

of genes:

 Gene name

 Secondary gene name

 Standard name (unclear what this means)

 Protein product name

 Function

 EC number

 Definition:  This is usually taken as a “common name” plus comments.

 Keywords

 Database accession numbers (dbxref; used to store GO terms)

 Notes

The situation was greatly improved with the adoption of the Gene Ontology

(Gene Ontology Consortium 2000).  Functional annotations can now include assignments

of GO IDs. Usually, these are from the biological process and molecular function

hierarchies; less work has been done using the cellular component hierarchy.  The great

advantage of the GO IDs is that different software and different genome sequencing

centers can assign the same GO IDs.  This means there is some hope of noting whether



3

different annotations agree or disagree; of summing up evidence from multiple sources;

and of searching for genes with particular annotations.

Genbank can accept GO ID annotations (using the /db_xref keyword), but JCVI

does not submit GO IDs to Genbank, because Genbank throws away the GO evidence

codes (http://www.geneontology.org/GO.evidence.shtml) and the comments on

experimental parameters.  Hence, although we have a standard ontology, it still is not

very useful for finding genes with particular annotations.

Genbank does not accept any statement about confidence level in an annotation.

This has had a bad effect on annotation, and on the culture of annotation; the annotators

at JCVI have spent over a decade trying to make annotations only when they were about

98% certain of the truth.  TIGR (and, by extension, JCVI) have achieved a reputation as

being a genome sequencing center with very high standards of evidence needed for

annotation, and they pride themselves on that.  But that results in a higher false negative

rate, which is a problem for some users. Because Genbank does not accept a confidence

level for an annotation, JCVI has never computed one, beyond deciding how specific to

make the protein name.  But different end-users have different costs for false positives,

and so should be able to make their own decisions about what level of confidence they

require in an annotation (King et al. 2001).

The limited number of evidence types specifiable using the GO Consortium's

evidence codes (http://www.geneontology.org/GO.evidence.shtml) is also a problem.

These codes were developed for curated annotations; there is only one code, IEA, used

for all automated annotation.  Thus, there is no way to distinguish between annotations

http://www.geneontology.org/GO.evidence.shtml
http://www.geneontology.org/GO.evidence.shtml


4

produced from reliable, curated sources; and annotations produced from unreliable,

uncurated sources.  Despite the fact that the go Consortium web page explicitly says, in

large red letters, that evidence codes are not to be used to indicate reliability of

annotations, that is what people mainly use them for; and it is common practice to throw

out any annotations using the evidence code IEA due to this inability to distinguish good

from bad automatic annotation.

Originally, annotations were made by humans for humans.  Today, annotations are

made by computers for humans.  Inevitably, annotations will be made by computers for

computers (Slater et al. 2008).  That is, whereas today we have an investigator look up

the annotation for a single gene, in the future we will more and more see computer

programs retrieving the annotations for many genes.  It is wrong to hide information from

a computer program by declining to say anything about a protein, rather than saying that

you have an idea what the protein is, but are only 80% confident.  One of the goals of this

work is to provide a way for the JCVI annotation pipeline to produce calibrated

probabilities for its annotations, in preparation for the day when there is a demand for

them and a way to record them.



5

Chapter 2: Literature Review

Automatic functional annotation systems can be usefully categorized according to

the data sources used; the method used for classifications; whether classification uses

machine learning or not; and how to combine multiple evidence sources.

Most papers on automated annotation give validation results.  However, it is

impossible to compare results across any two papers, because they are measured using

different statistics (precision vs. recall and sensitivity versus specificity are popular),

annotating different genes, using different evidence types and different annotation

databases to transfer annotation from, producing different output classes, using different

cutoffs for classification.  It would probably be preferable to express results in terms of

reduction of output distribution entropy.  No one has done this to date.  Papers that

compare several different automatic annotation under the same conditions include (Lee et

al. 2006, Chua et al. 2007, and Peña-Castillo et al. 2008).

2.1. Data sources

The following list accounts for almost all, if not all, data used in automated

functional annotation:



6

 Sequence: Gene nucleotide or protein sequences can be compared via BLAST or

multiple alignments; or they can be matched using regular expressions, hidden

Markov models, or machine-learning classifiers.

 Protein interactions:  This is a variety of predictions or experimental evidence that

two proteins either associate with each other, are members of the same protein

complex, or interact with the same small molecules or pathogens.  Most of this

data is experimental; predictions are mainly restricted to predicted binding sites

through which proteins might interact.

 Co-occurrence:  This includes co-occurrence in text (usually PubMed abstracts),

and gene co-expression data.

 Genome context:  This refers both to synteny, when genes that work together to

fulfil one function are located next to each other on the genome; and to

expectations about whether the larger pathways that a protein function takes part

in occur or do not occur in this organism, and which particular genes in those

pathways have not yet been identified.

 Structure:  Using 3D structure to predict function, in much the way sequence is

used.  (When 3D structure is predicted from sequence, we treat this as being

sequence-based.)

Some data is simple (not a standard term), meaning that it is taken directly from

the world using an unambiguous procedure.  This includes sequence data, textual co-

occurrence, gene co-expression, and other experimental data. Complex data is a term I

shall use for data that has been aggregated from simple data, to such a degree that the



7

aggregations themselves are controversial and need to be validated or curated.  For

example, the construction of protein families (e.g., COGs (Tatusov et al. 2000) or

TIGRFAMs (Haft et al. 2003) or expert-system rules (e.g., RuleBase (Biswas et al. 2002)

or BrainGrab) produces complex data.

For simple evidence, reliability is a matter of the accuracy of the measurements

(for experimental data), and the strength of the evidence type.  Gene co-expression data

or protein interaction data are not reliable enough to base an annotation on, even if the

data were perfect.

For complex evidence, including previous annotations, reliability is primarily a

function of the degree of curation. Curated data has been either experimentally verified,

or each piece of data has been inspected by a human.  This includes data that is machine-

generated, but later inspected by humans.  For example, NCBI COGs are generated

automatically using BLAST, and then checked and refined by human curators.

Uncurated data was machine-generated and may never have been checked by a human.

This includes previous automatically-assigned annotations.  EMBL divides their database

of annotations into curated (Swiss-Prot) and uncurated (TrEMBL) annotations.

Transitive annotation is when a new gene is given an annotation based on

sequence similarity to a gene with annotation. JCVI does not allow transitive annotation

from uncurated annotation.

Validation and curation are operationally similar but conceptually different.

Curation means the goal is to verify the correctness of the particular annotation being



8

made, while validation means performing curation in order to verify the correctness of

the process that assigned the annotation. For instance, a TIGRFAM specifies a process

for determining whether a protein sequence matches that TIGRFAM; and when a curator

constructs a TIGRFAM, the curator adjusts its cutoff levels and phylogenetic scope until

it gives no false positives on JCVI’s genome database. This is validation of the

TIGRFAM rather than curation of a particular annotation.  It is a special case of

validating an automatic annotation method against a database, and then trusting its output

in the future.

Different data sources are curated to different degrees.  SwissProt annotations and

TIGRFAMs are considered by many annotators to be reliable enough to make an

annotation based on a single match to a gene with a SwissProt annotation or a TIGRFAM

family (see Louie et al. 2008 for a validation competition including SwissProt and

TIGRFAMs).

Automatic annotation faces a major difficulty in the near future.  More and more

genomes are being sequenced, and fewer and fewer curated annotations are being

produced.  Funding agencies would generally rather pay to have hundreds of new

genomes sequenced and run through an automatic annotation system, than to have five

genomes sequenced and annotated by hand.  But automatic annotation relies on

identifying previously-annotated genes and transferring their annotation to the new gene.

There are no reliable de-novo predictions of protein function; even if the technical

problems were solved, it would be very difficult to translate a de-novo predicted function

into English that a biologist would recognize.  Doubling the number of curated



9

annotations would improve automatic annotation more than all the fancy algorithms in

the world.

2.1.1 Sequence

Almost all evidence sources used for functional annotation are sequence-based.

The primary sequence-based tool is BLAST, which is used to find similar genes.  If a

sequence matches an already-annotated sequence closely enough, it is presumed that the

two sequences have the same function.  Sometimes there are additional requirements.

The JCVI automatic annotation will not transfer annotation unless the original annotation

was experimentally characterized.

BLAST is the primary tool for functional annotation.  The precision-recall graphs

in figure 6 of (Chua et al. 2007) show that BLAST alone accounts for perhaps 95% of the

area under the precision-recall curve for predicting molecular function when 10 different

evidence types were used.  BLAST is less dominant, though still dominant, for biological

process and cellular component.  It is therefore crucial to be aware, when comparing the

performance of different annotation systems, whether or not they are using BLAST.

(Deng et al. 2004) do not use BLAST in their system, and so their not-very-impressive-

sounding 57% precision at 87% recall with only 13 output categories should not be

compared directly to the results of a system using BLAST.

Hidden Markov models (HMMs) are also sequence-based; for example,

TIGRfams (Haft et al. 2003), Pfams (Finn et al. 2008), and PANTHER (Mi et al. 2005,

2007).  Regular expressions can be matched to sequences, as PROSITE does (Sigrist et



10

al. 2002).  There are also a host of special-purpose sequence-based methods for guessing

at particular properties of proteins; the most commonly-used are SignalP (for predicting

signal peptide cleavage sites; Emanuelsson et al. 2007), TargetP (Emanuelsson et al.

2000) and Psort (Gardy et al. 2005) (for predicting subcellular localization based on

sorting signals), and TMHMM (for predicting transmembrane helices; Krogh et al. 2001).

All protein families used for annotation are sequence-based.  That seems like an

outrageous claim, given that there exist well-developed non-sequence-based protein

families in databases such as CATH, SCOP, and FSSP.  However, I am not aware of

anyone using any of these for functional annotation.  Besides the already-mentioned

Pfams, TIGRFAMs, and PANTHER, there are also FIGfams (Overbeek et al. 2005) and

NCBI COGs (Tatusov et al. 2000).  The Ensembl annotation pipeline (Curwen et al.

2004; but this reference doesn’t describe this fact, which was relayed at a recent

conference) relies heavily on combining evidence from these, and other, protein families.

The predominance of sequence-based data is a major problem for automated

annotation.  Different types of sequence-based data are never orthogonal.  Many

annotation systems are built using a variety of sequence-based data; the marginal

improvement gained by adding each new type of sequence-based data is slim, because it

is all correlated.  Often, adding a new sequence-based data source gives no improvement

at all (Chua et al. 2007).



11

2.1.2 Protein interactions

There is a large literature on interaction-based (also called network-based)

annotation; see (Sharan et al. 2007) for a review.  However, they are seldom used in

functional annotation, because the evidence provided is very weak; and, as mentioned

above, the annotation community would rather say nothing about a gene than assert a

function with only 80% confidence.  There is also a tendency for interaction-based

function prediction to be of interest to a more mathy community that prefers approaches

that are too computationally-intensive to actually produce annotations, as witnessed by

the fact that (Sharan et al. 2007) cites over 100 references, yet has not a single reference

to an operating functional annotation system; and only a handful of his 100+ citations

have been cited in papers by people who actually do functional annotation. (Chua et al.

2007 is the source through which I originally found the aforementioned handful of papers

cited by Sharan et al., and they note that most of them – Deng et al. 2004, Lanckriet et al.

2004, and Lee et al. 2006 – use methods that are too computationally intensive to be

practical.)

STRING (von Mering et al. 2007) and STITCH (Kuhn et al. 2008), both from

EMBL, combine sets of non-sequence based evidence, including co-occurrence in

Pubmed abstracts, microarray co-expression, gene fusions, and protein-protein interaction

data.  (I am not aware of any automatic annotation systems that use STRING; we hope to

use it at JCVI.  EMBL’s automatic Ensembl annotation pipeline does not use STRING; an

Ensembl trainer I spoke to was not even aware of its existence.)



12

Mass spectrometry can give information about post-translational modifications

that indicate cellular localization or turnover rate.  However, to date, the only use of mass

spectrometry in annotation has been for structural annotation, where it can be very useful

for determining the correct start and stop sites for a gene, and for detecting frame shifts

(Ishino et al. 2007).

2.1.3 Co-occurrence

One form of co-occurrence is co-citation in PubMed abstracts.  One co-citation is

very weak evidence; but according to automated validation using the KEGG pathways as

a gold standard (von Mering et al. 2007), a large number of co-citations can sometimes

give a 90% confidence that two proteins interact.  Interaction, however, is no guarantee of

sharing function.  As mentioned above, STRING and STITCH use co-occurrence

information.

Another form of co-occurrence is gene expression, as determined by microarrays.

STRING provides co-expression data.  Gene expression was used by (Pavlidis et al.

2002), as well as by all entrants in the functional annotation competitions described in

(Chua et al. 2007) and (Peña-Castillo et al. 2008).  By itself, it is not very useful

evidence; (Chua et al. 2007) demonstrated that in order to have more than 20% precision

in predicting GO IDs from co-expression data alone, it is necessary to reduce recall to

less than 5% for biological process, and 10% for cellular component and molecular

function.  For these latter two categories, however, precision can be as high as 85%, if



13

recall is reduced to about 3%.  Predicting function for 3% of proteins of unknown

function would be a worthwhile accomplishment.

2.1.4 Genome context

Genome context, usually synteny, is a powerful tool frequently used by human

annotators.  The RAST annotation pipeline, which has been used on 350 genomes (Aziz

et al. 2008), uses genome “subsystems” (Overbeek et al. 2005), which are pathways or

systems known to occur in several genomes.  STRING (von Mering et al. 2007) also uses

synteny as one of its data sources.  If an unidentified gene is surrounded by other genes

that are homologs to genes in one of these subsystems, its homology to one of the other

genes in the subsystem is strongly indicated.  JCVI uses a similar system called Genome

Properties (Selengut et al. 2007) for curated annotation.  Xanthippe, used by EMBL, also

uses genome context:  It uses machine learning of decision trees to remove annotations

that are unlikely due to taxonomy (Wieser et al. 2004).

FIGENIX (Gouret et al. 2005) uses phylogeny to supplement BLAST to

distinguish orthologs from paralogs.  TIGRFAMs also use phylogeny to restrict hits to

within a certain phylogenetic scope of the species used to construct the TIGRFAM (Haft

et al. 2003).  It is surprising how little phylogeny is used in automatic functional

annotation, since a major source (likely the major source) of errors in functional

annotation is the assignment of function based on a BLAST hit to a paralog.



14

2.1.5 Structure

Structure-based methods are rarely used, other than structure inferred from

sequence (e.g., Warmr, in King et al. 2001).  Structural homology is more predictive of

function than sequence homology, but most newly-sequence genomes have no known

protein structures.  Because of the high cost of determining a protein's structure, few

structures are known (fewer than 10,000 unique structures are in PDB); and it used to be

a process reserved mainly for proteins of known function.  The Protein Structure

Initiative, however, solves the structures mostly of proteins of unknown function

(Chandonia & Brenner 2006).  As the number of known structures for proteins of

unknown function increases, use of structure should increase.  (Ward et al. 2008) used 3D

motif-matching to achieve in predicting the EC numbers of 1314 proteins with 39% recall

and 92% precision.

2.1.6 Enzymatic screening

(Kuznetsova et al. 2005) appears to be the only publication so far describing the

use of high-throughput enzymatic microarray screening to provide functional annotations

for uncharacterized proteins.  The authors devised general enzymatic assays for different

broad classes of protein function. Other groups are beginning similar projects, including

the Yeast Integrative Biology Projects at the Ontario Genomics Institute, and the

Biosciences Division of Argonne National Laboratories.  Neither have any publications

listed on their websites as of November 2011.



15

2.2. Classifiers and machine learning

Other than gene names and descriptions, annotations are usually classifications

(one or more labels from a finite set of labels).  These include EC number (Haft et al.

2003, Jensen et al. 2003, C. Yu et al. 2008), GO IDs (Haft et al. 2003, Jensen et al. 2003,

Eisner et al. 2005, C. Yu et al. 2008) or GO slims (Biswas et al. 2002), TIGR role / Riley

classification (Genequiz Andrade et al. 1999, Warmr King et al. 2001, Haft et al. 2003,

Jensen et al. 2003), subcellular location (Emanuelsson et al. 2000, Biswas et al. 2002,

Gardy et al. 2005), MIPS functional class (Deng et al. 2002, Pavlidis et al. 2002), and

Swiss-Prot keyword (Biswas et al. 2002, Schroeder et al. 2002, Gattiker et al. 2003).

After BLAST match to an annotated gene, one can simply transfer the annotations

from one gene to another.  Other types of evidence, however, are not so conclusive, and

so different pieces of evidence, and different types of evidence, must be combined by a

classifier to guess at an output category.

Rules can be built by hand to produce classifications.  Alternately, many machine-

learning techniques can be used to automatically construct classifiers from gold-standard

curated annotations.  (Machine-learning techniques can also produce rules, but this is not

usually the case.  Likewise, one could create a decision tree, or even a neural network, by

hand; this is not usually done.)

A single classifier can be used for each output type to combine all data from all

evidence types and produce an output class.  We will revisit rule-based systems and

decision trees in the next section because that is how they are usually used, whether or



16

not they are produced via machine learning.  In some cases, however, classifiers are used

to produce intermediate outputs, which will later be combined to produce the final

annotations. For example, PSORTb (Gardy et al. 2005) uses 9 support vector machines to

produce yes/no decisions for each of its 9 output classes; and uses a completely different

approach – a Bayesian network – to combine the outputs of these 9 classifiers into a final

decision.  In this section, I will cover only machine learning of classifiers, and not data

integration using classifiers.

2.2.1 Rule-based systems

RuleBase generates conjunctive rules from InterPro accession hits (Fleischmann

et al. 1999, Biswas et al. 2002).  (G. Yu 2004) describes itself as a rule-based system that

automatically construct rules, but it is not clear whether these “rules” have variable

bindings or conjunctions, or are just a big lookup table.

Learning cutoffs that determine when a match to a protein motif or family should

apply, as in (C. Yu et al. 2008), is a more restricted form of rule learning.

2.2.2 Decision trees

Decision trees are similar to rule-based systems; but instead of having a collection

of rules, any one of which can make a classification, they are a tree of (usually binary)

decisions.  A path from the root of the tree to a leaf is analogous to a rule in a rule-based

system.  Whereas rules in rule-based systems are independent of each other, and the

construction of one rule does not have much effect on other rules; a decision tree is

constructed by using information theory to place the most informative test at each branch



17

point in the tree; changing the test used at one branch point would change all of the tests

underneath it.

Decision trees work with input data that comes in discrete classes.  Continuous

data (e.g., BLAST e-values) must be divided into bins.  This is both their greatest

advantage (different evidence types don’t need to be normalized in order to be used

together), and their greatest disadvantage (much information is lost during the binning).

They are used in Warmr (King et al. 2001), Spearmint (Kretschmann et al. 2001),

Xanthippe (Wieser et al. 2004), and in (Schroeder et al. 2002).

2.2.3 Neural networks

Neural networks are used in (Schroeder et al. 2002), who found them to be

99.23% accurate, but no better than decision trees, and less easy to understand the output

from.  The high accuracy claimed may be attributed to the fact that they restricted

themselves to transitive annotation within the Mycoplasmataceae family and excluded

hypothetical proteins.  It is difficult to know whether anything can be learned from

performance on such an easy task.  (Jensen et al. 2003) found a recall of 60-80% with

10% false positives.

2.2.4 Support vector machines (SVMs)

SVMs project input vectors into a higher dimensional space, and then find a plane

that best discriminates between two classes in that space.  They are used in (Pavlidis et al.

2002, Jensen et al. 2003, Lanckriet et al. 2004, Gardy et al. 2005, Eisner et al. 2005).

They were shown to be very effective compared to other classification methods in (Lee et



18

al. 2006, Chua et al. 2007, and Peña-Castillo et al. 2008).  Computationally, they are very

demanding.  Because they perform only binary classifications, what is typically done is to

train a separate yes/no SVM for each output class, and then combine the outputs of the

SVMs.  This increases the computational burden.

2.3. Combining different evidence types

The data sources listed above provide different levels of coverage, different levels

of certainty to infer similar properties across a link that depend on the type of property

you are trying to infer, and different degrees of independence from other data sources

(Chua et al. 2007, Peña-Castillo et al. 2008).  For example, sequence-based methods can

infer similar molecular function with high confidence from a single association, but

provide less certainty when inferring biological process (Chua et al. 2007).  Co-

expression provides information that is of little value for inferring similar molecular

function by itself (Chua et al. 2007), but may be valuable in supplementing sequence-

based information because it is highly non-correlated with it.  Experimental validation

shows that different experimental protein-protein interaction paradigms provide largely

independent data on interactions between different types of proteins (H. Yu et al. 2008).

It is thus important to have a statistical method for combining all of this

information, both for summarizing to users, and to use in automated functional

annotation; and to validate this method for every data source using experimental data.



19

2.3.1 Best hit

“Best hit” means that each evidence type provides a confidence level with each

piece of data, and for each gene, you find the piece of data of any evidence type that has

the highest confidence level, and use it, and throw the rest out.  You may take a different

best hit for each type of output you produce.  JCVI’s prokaryotic automatic annotation

system does this.  The main advantage is that you don’t have to do any training to set

weights (as in voting) or to map confidence scores into probabilities (as with naïve

Bayes).

2.3.2 Decision tree

Decision trees, described above, are typically used to produce a final output when

they are used at all, since it is always easy to throw more data into a decision tree.  If they

are given many different data inputs, they can have the problem that the constructed tree

comes to a leaf node, at which all training samples are classified correctly, before it has

used all of its input types.  This can cause it to throw away large amounts of information.

2.3.3 Voting

In voting, each evidence, or each evidence type, produces an output class, and

some algorithm determines the final output class from those votes.  The simplest scheme

is majority voting.  Precision can be increased at the expense of recall, by requiring at

least two votes to produce an annotation.  (This is, of course, a bad thing to do; better is

to always produce an annotation, but also record the confidence of that annotation.



20

However, if evidence types are not validated (and they often are not), producing

confidences is not very meaningful.)

Different evidence can be weighted differently from validation data.  (Pavlidis et

al. 2002) weighted voting by validation.  Warmr (King et al. 2001) and GeneMANIA

(Mostafavi et al. 2008) used validation with regression to weigh votes.  Regression

prevents correlated evidence types from exerting too much combined influence.  (Eisner

et al. 2005) found weighted voting was no better than majority vote when combining

PFams, Proteome Analyst features, HMMs, and BLAST hits.  Regression-weighted

voting might have improved that.

2.3.4 Naïve Bayes

Naïve Bayes computes a probability for each annotation by assuming that all of

the evidence sources are statistically independent.  STRING (von Mering et al. 2007)

uses naïve Bayes.  PIPA (C. Yu et al. 2008) showed Naïve Bayes to be superior to taking

the best hit, although they did not use BLAST as a simple data source, but to construct

protein family profiles.  Two recent comparisons of different annotation systems gave

opposing results about the effectiveness of Naïve Bayes:  (Chua et al. 2007) indicates that

naïve Bayes performed as well as any more sophisticated integration techniques; while

(Peña-Castillo et al. 2008) indicated that naïve Bayes performed much worse than all

other integration techniques.  The difference may be attributed to the fact that the former

used BLAST, which so dominated the results that the addition of other data sources



21

hardly mattered; while the latter did not use BLAST as evidence, and so how data sources

were integrated had a larger effect on the result.

A disadvantage of naïve Bayes is that, unlike machine learning methods that

automatically convert whatever numeric scales you provide your inputs in, into

appropriate outputs; or regression, which automatically adjusts for scale (although not for

centering); with naïve Bayes, you must provide a probability for each piece of evidence.

This requires validation for every possible range of output values, as described in (Chua

et al. 2007).

2.3.5 Rule-based

Like best-hit, rule-based systems do not require any training.  In addition to those

mentioned above, which automatically construct rules, MAGPIE (Gaasterland et al.

1996) and HAMAP (Gattiker et al. 2003) use rule-based systems.

2.3.6 Bayesian

A full Bayesian analysis should give the best possible results, if priors are

available.  However, a full analysis is not merely computationally demanding, but usually

intractable, so that some approximation is used, as in (Deng et al. 2002).  PSORTb

(Gardy et al. 2005) uses a Bayesian network to integrate outputs from nine SVMs.



22

Chapter 3: The JCVI prokaryote annotation pipeline

The J. Craig Venter Institute (JCVI) expects to process thousands of prokaryote

genomes in 2012.  Some genomes are processed beginning with the assembly from reads;

others begin with a complete assembled genomes.  The section below describes all of the

steps in the pipeline after assembling a genome.  (Note that eukaryotes, viruses, and

metagenomic samples have different pipelines.  There is also a separate prokaryotic

annotation pipeline, TransAAP, for finding transporter proteins.)

JCVI’s AutoAnnotate program is used by all of the Human Microbiome Project

(HMP) centers:

 JCVI

 The Broad Institute

 Baylor College of Medicine

 Washington University in St. Louis, Missouri

Over the next year, these 4 centers will use AutoAnnotate to annotate at least 2000

microbial genomes.



23

3.1. Structural annotation: Gene calling

Glimmer 3 (http://www.cbcb.umd.edu/software/glimmer/, Delcher et al. 1999) is

used to find genes using hidden Markov models (HMMs).  It is specialized for

prokaryotes; a different version exists for eukaryotes.  Other software finds other

specialized features, such as RNAs.

Genes are initially called using Glimmer 3.  Later, after automatic annotation,

intergenic spaces are searched for particular difficult-to-find small genes using HMMs,

and start sites are refined using multiple alignments of BLAST hits.

3.2. Functional annotation

3.2.1 Homology searches (BLAST and HMM)

BLAST-Extend-Repraze (BER, http://sourceforge.net/projects/ber/) is a program

that uses protein BLAST (Altschul et al. 1990) on each gene against a database of all

known genes, and then does a Smith-Waterman alignment (Smith & Waterman 1981) on

the top hits, extending beyond the called start and stop sites. (We blast prokaryote genes

against prokaryotic, viral, and eukaryotic genes, although we haven’t evaluated whether

using the eukaryotic genes improves or degrades our results.)  I will refer to these as

BLAST hits, because that is what external sites running AutoAnnotate use instead of

BER hits.  BER is a post-processing step on BLAST hits to look for possible missed

orthology and to correct frameshifts; this functionality is not considered in this thesis.

http://www.cbcb.umd.edu/software/glimmer/
http://sourceforge.net/projects/ber/


24

HMMER3 (http://hmmer.janelia.org/) is a program for building hidden Markov

models (HMMs) from multiple alignments, and then matching genes against sets of those

HMMs.  We use two sources of HMM's: Pfams (http://pfam.sanger.ac.uk/, Finn et al.

2008) and TIGRFAMs (http://www.jcvi.org/cms/research/projects/tigrfams/overview/,

Haft et al. 2003).

A JCVI program called AutoAnnotate uses the BER hits and HMM hits for each

called gene to produce six outputs for each gene:

 A free-text common name, e.g., “ATP synthase F1, gamma subunit”

 A gene symbol

 An enzyme commission number (EC#) or transporter number (TC#)

 Gene ontology (GO) terms (The GO Consortium 2000)

 TIGR roles (an extension of the Riley roles, Riley & Space 1995)

 A species name or NCBI taxon number

Every gene either receives a name, or is called “conserved hypothetical protein” if

it resembles other sequences believed to be genes, or simply “hypothetical protein” if it

was called as a gene but does not have homology to a gene called in a previous genome.

(The name "conserved hypothetical protein" is deprecated, and will no longer be assigned

once homology information is stored elsewhere.) The other fields may all be left empty.

Functional annotation finds BER hits (up to 250) and any HMM hits for a gene,

each of which may have different values for name, gene symbol, etc.  It assigns each a

rank, and takes annotation from the evidence with the lowest rank.  It may pull some

http://hmmer.janelia.org/
http://pfam.sanger.ac.uk/
http://www.jcvi.org/cms/research/projects/tigrfams/overview/


25

additional annotation from additional hits if it is missing from the top-ranking hit (GO

terms, and role ID; and EC#, if the two pieces of annotation have very similar protein

names).

Protein names from some evidence sources, which are known to contain names

not conformant with NCBI naming standards, are modified using from 121 to 603 regular

expressions, depending on parameter settings.  They are then run through the full-name

rules in the Protein Naming Utility, which contains specific protein name rewrites made

by JCVI's annotators on an on-going basis.

The name is then further modified based on the evidence used to assign it.  Each

evidence rank has an assigned naming rule.  HMMs below trusted cutoff, and BLAST

hits below a threshold of reliability, or from less-curated sources, either prepend

"putative" to the name, or have the phrases "family protein", "domain protein",  or "-like

protein" appended.  BLAST hits of the poorest ranks are annotated as "conserved domain

protein".

3.3. Evidence ranking

3.3.1 HMM ranking

HMMs fall into one of two general types:

 Equivalogs: HMMs that span the entire length of a protein and are specific to a

protein function.



26

 Domains: HMMs that span only a portion of a protein, to recognize a particular

domain within a protein.  The presence of a domain indicates membership in a

family or superfamily of proteins.  An equivalog domain spans part of a protein,

but indicates a specific protein function.

 Repeats:  HMMs that are like domains, but must hit multiple times to count.

We categorize Pfams and TIGRFAMs into more-specific types, called isotypes,

that indicate the origin of the HMM (Pfam or TIGRFAM), its length (full-length or

domain), and its specificity.

Every HMM has three cutoff scores: noise, trusted, and trusted2. Each match (or

“hit”) by an HMM to a gene generates a domain score.  The total score for that HMM and

that gene is the sum of all the domain scores from all the different places that HMM

matched that gene.  This is important for HMMs that identify repeats, which may need to

occur some particular number of times in a gene for the protein to form a particular

structure. An HMM hit also reports a match length, which is meant to indicate what

fraction of the HMM matched the protein.1

Only HMMs with total score > noise are considered.  They are given a starting

quality score of zero, which is penalized by one for each of the following that are true:

 Match length < 75%

 Match length < 60%

 Total score < trusted

1 Match length was used in HMMER2 but is always 100% in HMMER3.



27

 No domain score > trusted2

HMMs that have a quality score of 0-2 are retained, and ranked according to

their isotype and quality.  (Pfam isotypes of domain, family, and motif are assigned

by the Pfam curators; other Pfam isotypes were assigned at JCVI and are not in the

Pfam releases.)



28

Table 1.  Rank table for HMM hits, by isotype and match quality.  Note a lower

“quality” score is better.

Isotype Q=0 Q=1 Q=2

exception 1 15 23.1

equivalog 1.5 15.5 23.5

equivalog_domain 2 16 24.1

PFAM_equivalog 3 17 25.1

PFAM_equivalog_domain 4 18 26

hypothetical_equivalog 5 19 27

paralog 5.5 19.5 27.5

hypothetical_equivalog_domain 6 20.1 28

PFAM_hypothetical_equivalog 7 21 29

PFAM_paralog 7.5 21.5 29.5

PFAM_hypothetical_equivalog_domain 8 22.1 30

subfamily 40 42.1 74

PFAM_family, PFAM_subfamily 41 43.1 75

domain 47 49.1 76

PFAM_domain 48 50.1 77

subfamily_domain 51 53 78

PFAM_subfamily_domain 52.1 54.1 79

superfamily 64 66 80

repeat 68 70 82

signature 68.5 70.5 82.5

PFAM_repeat 69 71 83

PFAM_signature 69.5 71.5 83.5

paralog_domain 72.5 73.5 84.5

paralog_repeat 72.7 73.7 84.7

3.3.2 BLAST ranking



29

The accession to every BLAST hit is mapped to a "root accession" that is

identical for every identical protein sequence, using our in-house Panda database which I

created by starting with the NCBI non-redundant (NR) protein database and adding

accessions for Trembl and genes we have annotated at TIGR and JCVI..  All evidence

databases were previously also mapped to root accessions using Panda, so BLAST hits

can be quickly matched to evidence that was annotated to the same sequence using a

different accession.

Annotation is taken from the JCVI characterized protein database (Char),

SwissProt, the NCBI clusters, and the set of 100,000 manual annotations made at TIGR

or JCVI that I describe in Chapter 6: (“manatee”).  Char is split into char_curated,

char_uniprot, and char_trusted, where char_curated are annotations entered at JCVI based

on publications of experimental validation of function, char_uniprot has entries imported

from SwissProt that have experimental evidence for the functions annotated, and

char_trusted consists of annotations imported from a variety of other sources. (FigFams

are not ordinarily used.)  Hits to the NCBI NR database that have no annotation in these

databases are annotated as conserved hypotheticals.

NCBI clusters (PRK) 2 and FigFams (called NMPDR, following Uniprot

conventions) additionally have a membership function:  If a gene passes a test based on

having BLAST hits to most members of the family ranked above BLAST hits to

2 PRK clusters include only prokaryote proteins.  AutoAnnotate can also use the CHL (chloroplast)

and MTH (mitochondria) NCBI clusters, but we use it almost only for bacterial genomes.



30

members of similar families, all the hits to that family are replaced by a single hit

indicating that the query gene itself is a member of the family.  (This provides the same

annotation, but has a superior rank.)  The official membership function for FigFams

implemented by their web-server is more complicated, as it involves checking for

BLAST hits to members of other FigFams specific to the FigFam being tested.  At the

time I wrote the software, there was no documentation of the FigFam membership

function other than the source code, which appears to be buggy, as one would expect it to

exclude a query protein from membership if it also has BLAST hits to members of

similar FigFams, whereas the code as written declares it is a member if it does have such

hits.  I therefore implemented my own membership function, which promotes a BLAST

hit of type NMPDR to NMPDR_member if the query protein’s BLAST hits include at

least 15 and at least 1/3 of the FigFam’s recognized members3.

The NCBI cluster membership test requires that all BLAST hits to members of

the PRK cluster outrank all BLAST hits to any other PRK clusters (Klimke et al. 2009).  I

tested 30 members of different PRK clusters that were annotated with an equivalent

protein name by both the PRK cluster and by SwissProt.  6 of them (20%) failed this

strict test due to BLAST hits to other PRK clusters.  This likely gave results that

conflicted with NCBI’s construction of the clusters due to their unspecified BLAST score

3 Enumerating the members of FigFams was challenging, as they are listed in a text file that

specifies proteins using a wide variety of accessions, with no documentation as to their meaning, and many

that are specified only by MD5 checksum values that were all calculated incorrectly.  These latter could not

be identified.



31

modification.  I thus changed this membership function to require that 80% of hits to a

cluster outrank all hits to other clusters.

All sequence annotation databases are searched for entries matching all BLAST

hits. BLAST hits are then assigned a rank based on their identity over the match region,

the fraction of the query or of the target involved in the match (whichever is smaller), and

the annotation source, according to Table 2.4

4 Note that NCBI BLAST’s percent identity calculation counts filtered low-complexity regions as

non-matching rather than excluding them from the percent identity computation.



32

Table 2.  BLAST hit ranking table.  Pink row and column intersect in the red cell,

giving the rank of a BLAST hit with 50-80% identity and involving at least 65% of

the length of both query and hit sequence, to a target gene that has a PRK-

Validated annotation, when the list of BLAST hits passes the membership test for

the PRK-Validated cluster that target gene is in.  All values were chosen manually.

The decimals result from re-ordering entries after the initial ranking.

% identity 80-100 50-80 35-50

% length >80 >65 >35 >80 >65 >35 >80 >65 >35

Source of annotation

SwissProt 85 87.1 108 86.1 88 109 99 100 110

PRK-Reviewed_member 10 32.1 56 13 38 59 35 45 62

PRK-Validated_member 11 33 57 14 39 60 36 46 63

manatee 89 91.3 111 90 92 112 93 101 113

char_curated 9 31 55 12 37 58 34 44 61

char_trusted 54.2 54.4 55.3 54.33 54.7 58.8 54.8 83.45 61.3

char_uniprot 32.3 33.3 55.4 37.3 39.2 58.4 42.3 46.1 63.1

PRK-Provision_member 94 96 142 95 97 143 98 140 144

PRK-Reviewed 62 63 85 67 69 88 72 76 93

PRK-Validated 63 64 86 68 70 89 73 77 94

PRK-Provisional 94 96 142 95 97 143 98 140 144

NMPDR_member 10.3 32.4 56.4 13.1 38.4 59.4 35.3 45.4 62.4

NMPDR 63 64 86 68 70 89 73 77 94

If multiple hits have the same rank, ties are broken using the following rules:



33

 A hit with any name other than “conserved hypothetical protein” outranks a hit

resulting in that name.

 A hit with more annotation (EC# and gene symbol) is favored over a hit with less

annotation.

 A hit with a higher praze score (closeness of Smith-Waterman match) is favored

over a hit with a lower praze score.



34

Chapter 4: Simplifying the ranking system

AutoAnnotate's ranking system has 13 categories of evidence source, 3 categories

for %ID, and 3 categories for %length.  It has a separate rank for each possible

combination of these three factors, for a total of 117 ranks of BLAST hits.

Since the precision of the items near the middle of the list is believed to be around

85%, this means that the difference in precision between two adjacent ranks is about

.17%.  For two sources, one with a 90% accuracy and one with a 90.17% accuracy, in

order to correctly identify the higher-accuracy source 90% of the time with a Student's t-

test in which the statistics being compared are the number correct for each source, we

expect to find a difference of .0017n in the number correct.  For a two-tailed test we need

a Z-value of 1.64, so we require .0017n / sqrt(2*variance/n) > 1.64.  The variance of the

binomial distribution being used is (.90)(.9017)n = .8115n.  So we find that we require n

> 1.64 * sqrt(2*.8115) / .0017 = 1229 comparisons of two sources to discern their rank

correctly 90% of the time.

We can also compute the number of bits needed to construct the entire ranking

table:  It orders 117 BLAST hit types, and sorting 117 objects requires log2(117!) bits.

Using Stirling’s approximation, ln(n!) ~ nln(n) – n, we find this is about 440 bits.



35

During a run, we are lucky if each gene has on average good BLAST hits to

entries in two different annotation sources A and B.  So a typical gene in a training set

will give us one comparison.  Suppose A is 98% reliable, and B is 95% reliable.  This

table shows the distribution of A and B being right and wrong:

Table 3.  Frequency of outcomes with an annotation source A that is correct 98%

of the time, and a source B that is correct 95% of the time.

A right A wrong

B right .931 .019

B wrong .049 .001

They will give different answers (.019 + .049) = .068 of the time.  In the cases

where they give different answers, A will be right and B will be wrong .019 / (.019 +

.049) = .721 of the time.  This means our useful outcomes have a binomial distribution

with p = .721. To produce the 1 bit of information that A is more reliable than B, with

90% confidence, we need enough samples that a binomial test will give us the right

answer 90% of the time.  That means we need u useful samples (samples in which A and

B disagree) where the cumulative distribution of the binomial up to u/2 is less than .10,

and the cumulative distribution from u/2 to u is greater than .90.  For p = .721, this means

u = 11.  To get 11 useful observations, we require .068n ≥ 11, n ≥ 162 gene comparisons.

To get the total of 440 bits needed to construct our entire BLAST ranking system,

we therefore need 440 * 162 = 71,280 genes in our validation set.



36

We typically use about 1000 genes to construct the entire ranking table; yet this is

not even enough comparisons to reliably rank two evidence sources correctly.  It would

take humans too much time to make enough observations to properly rank 117 evidence

sources; and they wouldn't be able to remember the results anyway if they operate (as we

do) by reviewing sources and gathering an impression in their heads of which is more

correct, rather than counting.

As a result of the large number of rankings to be made, the rankings that come out

of the meetings among the annotators are never complete (there are always cells left

blank that I must fill in), and always have parts that look suspicious.  In Table 2, a

char_trusted 35% ID 35% length hit outranks a char_trusted 35% ID 65% length hit;

char_trusted 50% ID 35% length is about the same rank as char_trusted 80% ID 80%

length; and SwissProt, generally acknowledged to be the most-reliable source of

manually-curated annotations, is ranked lower than most sources.  For some annotation

sources, 35% ID 80% length outranks 50% ID 65% length; for some, it is vice-versa.

The quality>0 rankings for all of the HMMs are too high when compared to the BLAST

hit table, as a below-trusted HMM hit is not trusted, while specific function is preserved

94% of the time for proteins of greater than 50% identity (Sangar et al. 2007).

I factored the rankings to reduce the number of observations needed.  Two

different factors go into a ranking.  One is the accuracy pga of an annotation source

(“probability good annotation”, the probability that it gives a correct, acceptable name for

a protein it lists).  The other is the accuracy of transfer of annotation from an evidence



37

category, psf (“probability same function”, the probability that the BLAST hit h has the

same function as the query protein q).

Consider a query sequence q, a BLAST hit h with %ID=I, %length=L, and an

annotation for that sequence from evidence source S.  Ignore the probability that h has a

different function from q, and h has a bad name for that function which luckily is the

right name for q. pga depends on the evidence source S; psf depends on I and L.

Combine I and L into a single %ID/%length bin B.  We can write the probability of

providing a correct annotation for q from h, pc, as

pc(S, B) = psf(B) × pga(S)

We only need to estimate psf for each (%ID,%length) bin B, and pga for each

evidence source S.  This gives us only one set of 13 sources and one set of 3*3 hit

qualities to order, instead of 117.  Getting them in the right order requires only about 31

bits of information.  Furthermore, we will not have problems with sparse data for any of

these ranks, as we do with the larger rank table.

It can result in less precision only when there is an interaction between pga and

psf.  This would mean, for instance, that some evidence sources preferentially include

proteins that are more or less likely to have the same function as a protein matched to it at

some %ID and %length; or that some evidence sources are annotated more accurately in

certain phylogenetic clades, which are likely to be a particular distance away from the

query protein in %ID and %length.  The most likely source of such an interaction is

biased phylogenetic coverage of different evidence sources with respect to the phylogeny



38

of the genomes we sequence.  Even if such an interaction exists, it should therefore be

factored out rather than included in the model, because we don't want to train

AutoAnnotate to work best for any particular type of bacteria.

This new factored ranking system will look like Table 4.  For a hit to a target gene

in SwissProt at 47% identity and covering 72% of the length of both genes, this table

would assign a probability of 1 x .95 = .95 that the annotation was correct.

As mentioned in 0, two types of annotation sources, PRK and FigFams, have a

membership criterion, satisfaction of which promotes a BLAST hit from PRK-X to PRK-

X_member or from NMPDR to NMPDR_member.  This membership criterion is based

on sequence similarity, and so affects the probability of having the same function as the

query protein (psf), not pga.  Numerically, however, it will make no difference if we list

the member and non-member varieties as different sources, and factor the effect of the

membership function into pga rather than psf.  The resulting program is considerably

simpler.



39

Table 4.  Probability that the annotation on a BLAST hit provides the correct

annotation for the query sequence, as a product of the probability that it has the

same function and the probability that the annotation is correct.

BLAST hit goodness: %ID: 80-100 50-80 35-50

%len: >80 >65 >35 >80 >65 >35 >80 >65 >35

psf: 1 .99 .98 .99 .98 .96 .98 .95 .88

Source of annotation pga

SwissProt 1 1 .99 .98 .99 .98 .96 .98 .95 .88

PRK-Reviewed_member1 1 .99 .98 .99 .98 .96 .98 .95 .88

PRK-Validated_member 1 1 .99 .98 .99 .98 .96 .98 .95 .88

PRK-Provision_member .93 .93 .92 .91 .92 .91 .89 .91 .88 .82

manatee .91 .91 .90 .89 .90 .89 .87 .89 .86 .80

char_curated .97 .97 .96 .95 .96 .95 .93 .95 .92 .85

char_uniprot .89 .89 .88 .87 .88 .87 .85 .87 .85 .78

char_trusted .96 .96 .95 .94 .95 .94 .92 .94 .92 .84

NMPDR_member .86 .86 .85 .84 .85 .84 .83 .84 .82 .76

PRK-Reviewed .80 .8 .79 .78 .79 .78 .77 .78 .76 .70

PRK-Validated .78 .78 .77 .76 .77 .76 .75 .76 .74 .69

PRK-Provisional .64 .64 .63 .63 .63 .63 .61 .63 .61 .56

NMPDR .36 .36 .35 .35 .36 .35 .35 .35 .34 .32



40

Chapter 5: Automatically constructing

the ranking system

5.1. Measuring error

When we run the validation set, we get an estimate of pc(s,b) for every (s,b)

combination, that says how often an annotation from source s to a hit with %ID=I and

%length=L was judged to be correct by the validation program:

Equation 1.  Estimate of fraction of corrections that are correct for a (source, bin)

combination.

right(s,b)/trials(s,b) = pc(s,b) ≈ psf(b) × pga(s)

where trials(s,b) is the number of hits from source s and bin b that were evaluated,

and right(s,b) is the number of them judged to have the right annotation. The "≈" means

we want to set psf(b) and pga(s) so that it is an equality, but may have to settle for getting

close.



41

Call the set of all bins B.  Call the set of different sources S.  I'll also use B to

mean the number of bins in B, and S to mean the number of sources in S.  (This should

not be a problem for Perl programmers.  S is a list when evaluated in list context, and a

scalar when evaluated in scalar context.)

We want to find psf(B) and pga(S) that minimize some error measure.  The error

of predictions in one (s,b) pair is the number of hits in that bin that were right, minus the

number predicted to be right using particular values for psf(b) and pga(s):

Equation 2.  Error of prediction based on new ranking method.

Err(s,b) = right(s,b) – trials(s,b)*psf(b)*pga(s)

(I used right(s,b) – trials(s,b)*psf(b)*pga(s) instead of pc(s,b) - psf(b)*pga(s)

because the former gives more importance to settings the values for bins and sources that

have a lot of hits.)

This is the sum of squared error over (s,b) pairs, which should be minimized:



42

Equation 3.  Sum of squared error, to be minimized to set psf and pga vectors.

 
 


Ss Bb

Err 2pga(s)psf(b)b) trials(s,-b)right(s,2

5.2. Minimizing error

Where the error is minimal, all the partial derivatives are zero:

Equation 4.  Partial derivatives to be set to zero to minimize Equation 3.

  






Ssbpsf

Err
pga(s)b) trials(s,-pga(s)psf(b)b) trials(s,-b)right(s,20

)(

2

  






Bbspga

Err
psf(b)b) trials(s,-pga(s)psf(b)b) trials(s,-b)right(s,20

)(

2

So we have S+B unknowns and S+B equations.  This means we can solve for the

psf(B) and pga(S) that will give us the minimum squared error.  Not only will our ranking

be more accurate, but we’ll have a calibrated probability-of-correctness of each

annotation.  The only catch is that it requires automatic validation to work well.

Because we have fewer parameters to determine than with the old ranking system,

we could break up %ID, %length into more bins.  Instead, I wrote a program to

interpolate between bins. The program could use some sort of regression over %ID and

%length to determine their contributions to psf as a continuous function. But linear

regression would be inappropriate, as this contribution is nonlinear; and linear piecewise



43

regression may be appropriate, but probably no more accurate than linear interpolation

between these bins.

To solve this difficult system of equations, I used Newton's method. We know

f(x+dx) – f(x) ~ f'(x)dx, and wish to find x such that f(x+dx) = 0 = f(x) + f'(x)dx.  This is

given by dx ~ -f(x) / f'(x). Iterating this for all s+b equations above until convergence

provides optimized values for all of the variables.  In practice, if the vectors psf and pga

are initialized with either .95 or with priors based on the training set, the program always

converges within 400 iterations, which takes less than a second.



44

Chapter 6: Building a gold-standard annotation set

We need a set of genes with known correct annotations, both to train and to test an

annotation system.  There are several available sets:

 Genome annotations for model organisms, such as E. coli

 SwissProt

 The NCBI ProtClust clusters

 The NMPDR FigFams

There are two problems with these sources.  First, none of them give protein

names according to JCVI naming conventions; so results would not be very convincing to

JCVI annotators.  Second, I was at the same time using all of these as the annotation

sources that I wanted to rate.  Any source would test as very accurate when it is its own

gold standard.  Third, some of them, especially the first two, were used as the basis for

constructing TIGRFAMs and for constructing the other annotation sources, so the

measured accuracy of FigFams as measured by comparison Swissprot might depend

more on the degree to which NMPDR used SwissProt annotations, than on the accuracy

of the FigFams.



45

I gathered 100,000 manual gene annotations made at JCVI and TIGR over the

past 5 years.  I began with 686 manually-curated bacterial genomes.  About 200 of them

have been removed from our databases and are no longer accessible.  Several of them had

project names, NCBI taxon IDs, or annotation indicating they were not really bacterial

genomes.  A few had almost every gene manually curated; most had only a dozen or so

manually curated.

I wrote a Perl program to scan all of the annotations for these genomes, and find

those that were made by humans rather than by a computer program, and which had more

than one GO annotation (Gene Ontology Consortium 2000).  (Filtering on GO

annotations is intended to select for annotations made more carefully.)  Out of roughly

100,000 manually-annotated genes, this selected 63,777.

To reduce redundancy, I constructed a BLAST database from these 63,777 genes,

blasted them all against each other, and removed any gene that was more than 85%

identical to another gene with an alphabetically-earlier name.  This removed 14,260

genes, leaving 49,517.

Initially, I assembled these genes into two genomes, one gram-positive, and one

gram-negative.  AutoAnnotate uses SignalP 3.0 (Bendtsen et al. 2004), a program to

identify signal peptides; this program must know whether a gene comes from a gram+ or

gram- bacteria.  However, this was unworkable, because AutoAnnotate runs on a single

processor, and a 30,000-gene genome takes days to run.



46

I then instead assembled these genes into 55 virtual genomes, organized

taxonomically, so as to put genes from the same species or genus in a single genome.

(This step was extremely time-consuming, and so far has no impact on the result, since

each gene is evaluated separately without regard to properties of the organism it resides

in other than whether it is gram-positive or gram-negative.)  Then I wrote a script to run

AutoAnnotate on these 55 virtual genomes among different nodes in our computational

grid, so they could be done in a somewhat parallel manner.



47

Chapter 7: Comparing protein names

AutoAnnotate produces protein names, EC numbers, GO terms, and TIGR role

IDs.  Of these, JCVI believes users care about the protein names, and a little bit about the

EC numbers.  Most annotations don't have EC numbers.  Therefore, getting the protein

names right is the main criterion on which AutoAnnotate's performance is judged.

When using the gold-standard annotation set to assess the accuracy of

AutoAnnotate, or to assess the accuracy of a particular evidence type (and provide a rank

for it), it is necessary to compare the protein names assigned by AutoAnnotate, to those

given by annotators.  One annotator might describe a protein as “3-dehydroquinate

dehydratase, type I”, while the annotation taken from one of the evidence databases

might describe it as “Dehydroquinase class I”, or “Type I 3-dehydroquinase”.  These

names will be judged different, and the annotation as inaccurate, unless we can provide

an automated method to tell that they refer to the same protein function.

7.1. Simplifying protein names

I began by writing code to strip uninformative words and phrases from protein

names, such as “protein”, “putative”, “-like”, or “homolog”.  In many cases, it's a

judgement call whether to keep a phrase that makes a distinction, such as “homolog”,



48

“family”, or “similar to”.  Is it better, or worse, to group annotations identifying a protein

as being similar to protein Y together with annotations identifying it as protein Y?  If you

have candidate annotations that differ greatly in function, it's better to group similar

annotations.  But if most of the candidate annotations are already Y-like, then the task is

just to discriminate between Y and Y-like; and grouping those together makes that

impossible.

Many changes are not controversial: mapping synonyms into one standard word,

including Roman numerals to Arabic, and English spellings to American; removing

comments appended in parenthesis or giving identifying information such as gene symbol

and EC number; and converting letters to lowercase.

7.2. Correcting misspellings

I approached spellchecking in several ways.

I made a list of common misspellings in annotations, and code to correct those.

I used the spelling corrections built in to the JCVI Protein Naming Utility (PNU)

(Goll et al. 2009).

I investigated using GNU Aspell, an automatic spellchecker.  I did not use it

because it requires a dictionary of all allowable words.  I had no such dictionary; nor

would compiling one from i.e. Uniprot work, since people continue to make new

annotations that may include new gene symbols, locus tags, taxon identifiers, or strange

abbreviations.



49

I made a list of commonly-misspelled words, and wrote a program that respells a

query word as a correctly-spelled target word if it:

 is from one less to one more letter in length

 has no letters not in the target

 is missing at most 1 of the letters in the target

 starts and ends with the same letters as the target

 is missing at most 3 bigrams (letter pairs) of those in the target

Removing a letter removes 2 bigrams and adds 1; inserting a letter removes 1 and

adds 2; swapping 2 adjacent letters changes 3 bigrams.  That is why I allowed the query

(potential misspelling) to be missing up to 3 bigrams present in the target (correct) word.

Just using the target words 'conserved', 'hypothetical', 'protein', 'phosphatase', 'putative',

and 'transporter' corrected 176 distinct misspellings in BioThesaurus 6.  Analysis of the

word 'protein' showed that roughly ¼ of all possible misspellings under these rules were

found.  Here are the misspellings of the word “protein” that were corrected:



50

Table 5.  Misspellings of 'protein' meeting constraints found in existing

annotations.

peotein proein proteinn protrein

perotein proetein proteion prottein

pnrotein proetin proten prptein

pootein proiein protenin prrotein

porotein proitein proteon prtein

portein prootein proterin prtoein

potein propein proterin prtotein

pprotein proptein protetin ptotein

preotein prortein protiein ptrotein

pretein proteein protien

pritein proteiin protin

The Broad Institute distributes a Python tool called PIDGIN

(http://genepidgin.sourceforge.net/) for judging when two protein names mean the same

thing.  It was not available until after I finished the above work, however.  Study of the

technique used by “Pidgin compare” does not convince me it will perform any better.

, and an ontology saying when one protein name is a child of another (describes a

subset of the set its parent refers to).  I describe them below.

7.3. Protein name thesaurus

Validation relies on being able to group annotations into sets of annotations with

the same meaning.  Because protein names are non-standards, many annotation sources

don't provide EC numbers or gene symbols or GO terms, and because gene symbols are

http://genepidgin.sourceforge.net/


51

non-standard, this is difficult.  Also, while GO terms are standard, their assignment to a

particular protein is not; therefore, GO terms can't be used to determine whether two

annotations refer to the same protein even if they're present.

I therefore built a thesaurus of protein names judged to probably be equivalent.  I

took assertions that names were equivalent from the following sources.  Protein names

from all of them were used only if they passed a filter to screen out useless names

('hypothetical', 'protein fragment') non-descriptive names ('DUF2349'), or nonsensical

names (‘brl34_jg’, of which there are many in BioThesaurus).  The thesaurus records

only names, not any protein families that the names may be taken from.

7.3.1 Enzyme commission synonyms

The Enzyme Commission provides recommended names and alternate names for

enzymes that they have given an EC number to.  These names can be downloaded from

the ENZYME database at ftp://au.expasy.org/databases/enzyme/.  This provided less than

8000 synonym sets.

7.3.2 The JCVI Protein Naming Utility

When annotators find a protein name that's misspelled or misleading, and change

it to another name indicating the same function, they record that change in a database

called the PNU (Protein Naming Utility).  This provided 11,511 synonym sets.



52

7.3.3 COGs

I tried to construct synonyms from COGs (Tatusov et al. 2000), by declaring that

the annotations in SwissProt of proteins from the same COG family were synonyms.

Inspecting the results showed this method often grouped together proteins with different

functions in SwissProt, so I stopped using it.

7.3.4 TIGRFAMs (Haft  et al. 2003)

Each TIGRFAM gives both a family protein name, and an extended name

(meaning a more-descriptive name that some annotators object to on aesthetic grounds).

These were therefore declared to be synonyms.  This provided 592 sets of synonyms.

I also tried looking up annotations on all of the proteins used as seeds in

constructing a TIGRFAM, and declaring them synonymous.  Inspecting the results

showed this to be unreliable, so I stopped using it.

7.3.5 The InterPro protein hierarchy

When looking up protein family information on InterPro's website, you can

sometimes find information on its InterPro parent and child families.  This information is

taken from a 6,211-line file that can be found at

ftp://ftp.ebi.ac.uk/pub/databases/interpro/ParentChildTreeFile.txt.  It lists an InterPro

family name, equivalent family names in other protein family systems, and the InterPro

families that are subsets of the first InterPro family.  This provided 2747 synonym sets.



53

7.3.6 Uniprot

Uniprot often lists synonyms for names, tagged with “AltName”.  I parsed

Uniprot and added all synonyms there.  This provided 21,803 sets of synonyms.

7.3.7 BioThesaurus (Lui et al. 2006)

BioThesaurus gives millions different protein names, and puts them in groups that

are believed to mean the same thing.  Most of these millions of names have no useful

synonyms other than the same name re-written in uppercase or lowercase, so that statistic

is misleading.  From 30 million protein names, I was able to extract 177,000 sets of

usable synonyms that passed my filter.  Many of these were not very useful, such as

“DEHA0C04686g = deha2c04092g”.

7.4. Protein name ontology

Having sets of equivalent protein names does not address the situation where one

annotation gives a name that specifies a subset of the proteins described by another name.

For instance, according to Interpro, “Septin 7” is a subclass of “Septin”, which is a subset

of “Cell division/GTP binding protein”.  If one annotation assigns the name “Septin”, and

another assigns the name Cell division/GTP binding protein”, they are in partial

agreement, and should not be scored the same as if they were completely different.

Therefore, I built a hierarchy of protein families, giving subset and equality

relations between different protein families.  Below are the sources I used or tried to use.



54

7.4.1 PRO, the Georgetown protein ontology (Natale et al. 2007)

PRO does not provide information about what protein families are subsets of

other protein families.  It provides information about what proteins are variations of other

proteins.  It mostly contains information on alternate splicing of eukaryotic genes.

Therefore, I decided it was not worth my time to parse information from this database.

7.4.2 PIRSF (Wu et al. 2004)

PIRSF provides subfamily/superfamily relationships for some of its families.

This provided 1153 subset relationships.

7.4.3 The InterPro protein hierarchy

Using the same file ParentChildTreeFile.txt as for the thesaurus, I instead

extracted equivalence and subset relations for the named protein families.  This provided

4534 subset and 5035 equivalance relations.

7.4.4 Protein familes

I downloaded the data describing the protein families COG (Tatusov et al. 2000),

HAMAP (Lima et al. 2008), InterPro (Hunter et al. 2009), KEGG (Kanehisa & Goto

2000), NMPDR (FigFam, Overbeek et al. 2005), PIRSF (Wu et al. 2004), and NCBI

ProtClustDB clusters of type PRK (Prokaryote; Klimke et al. 2009).  This provided

118,390 protein families.



55

I then compared each protein family to all other protein families that it shares at

least one protein with, and declared it a subset of another family if more than some

threshold percentage of its members were in that family.  PIRSF uses a threshold of 75%

for that purpose.

7.4.5 Uniprot

Uniprot provides family-membership information telling which proteins are in

HAMAP, HSSP, InterPro, KEGG, NMPDR, PANTHER, PIRSF, PROSITE, Pfam,

STRING (von Mering et al. 2007), and TIGRFAM (Haft et al. 2003) families.  I parsed

the swissprot data file, and created a database listing all those protein family

memberships.  I intend to construct families from this data and incorporate them into the

ontology as was done for the protein families listed in the previous section.  So far, I have

done this for Pfams and TIGRFAMs, and use Uniprot to supplement the original-source

data files for KEGG, HAMAP, NMPDR, and PIRSF.

Using a threshold of 80% and at least 3 members per family, the original source

data for protein families plus Uniprot provided 307,960 subset relations.  Upping the

threshold to 90% still provided 252,712 subset relations.

7.4.6 Construction of equivalence classes

In addition to the equivalence classes specified by InterPro, I declared that two

families were equivalent if they were each subsets of each other.  I constructed a list of all

equivalence families thus created.  This was something the annotators wanted anyway, so



56

they could compare the protein names on equivalent families, and decide which data

sources gave the best and most-accurate protein names.

Note that my definition of subset is not the same as in set theory.  It is not even

transitive:  If A < B (A is a subset of B), that means, say, 90% of the proteins in A are in

B.  Likewise for B < C.  But this guarantees at most that 81% of the proteins in A are in

C.  Similarly, the equivalence relation '=' induced by this definition of subset is not

transitive.

I found that constructing equivalence relations between families this way

sometimes gave bad equivalence relations. It can happen that one HMM identifies a

domain or subunit, and another family identifies the complete protein, and there are

almost no proteins with the domain that are not in the family.  This results, for instance,

in the following names being declared equivalent:



57

Table 6.  An example of HMMs intended to be less functionally specific that

nonetheless hit exactly the same proteins in SwissProt as the more-specific

TIGRFAM.

Source Accession Protein name

Pfam PF01624 MutS domain I

Pfam PF05188 MutS domain II

Pfam PF05192 MutS domain III

Pfam PF05190 MutS family domain IV

Pfam PF00488 MutS domain V

TIGRFAM TIGR01070 DNA mismatch repair protein MutS

These Pfam domains will be scored, as a source, as being as precise as the

function-specific protein family TIGR01070.  This results in the precision of Pfam

domain names being over-estimated.  However, it does not appear to be a problem when

considering only BLAST hits.



58

Chapter 8: Training and testing on the validation set

8.1. Training and testing sets

The validation set was divided into two parts, a large part for training and a small

part for testing.  Each gene in the validation set had a name ending with a 5-digit number.

All genes with names not ending in ‘1’ were used for training; all genes with names

ending in ‘1’ were used for testing.

8.2. Grouping BLAST hits by annotation

The simplest approach would be to train by rating each BLAST hit individually as

being correct (the same as the name assigned by the manual curator) or incorrect.  Doing

so still resulted in most BLAST hits being judged incorrect, whether they were or not, as

the number of minor variations on protein names is unlimited.

Therefore, when training, I grouped all BLAST hits according to their protein

names and other annotation.  Hits with protein names that were judged to be synonymous

after stripping and running through the thesaurus, or with identical gene symbols or EC

numbers, were placed in the same group, provided that gene symbols and EC numbers

did not conflict.



59

Hits that could not be assigned to a group based on perfect match, had a similarity

metric computed between their protein name, and all the protein names of all grouped

BLAST hits.  This metric counted the fraction of trigrams found in either name that

occurred in both, plus the fraction of GO terms associated with either hit that were

associated with both, and so produced a score from 0 to 2.  If the hit had a similarity > 0.8

to any grouped hit, it was placed in the group of the hit that its similarity to was greatest.

Hits that still could not be grouped were ignored for training.

8.3. Grouping BLAST hits by sequence

I also wrote methods for grouping BLAST hits by sequence similarity.  One such

method grouped together all BLAST hits that were themselves matched by equivalog

HMMs.  Another used k-means clustering to group BLAST hits based on trigam counts

in their protein sequence, followed by generation of a multiple alignment using

MUSCLE, and then a position-specific scoring matrix (PSSM) built from the multiple

alignment using PSI-BLAST.  Each gene was then re-grouped into the group whose

PSSM it best matched.  These methods performed very well at grouping proteins of the

same function together, regardless of their annotation.  However, they were very slow

(taking roughly 100 times as long to run).  More importantly, the method proposed here

requires grouping BLAST hits together based on their annotation, and whether or not

they truly have the correct annotation, or the same function as each other, is estimated

statistically for their annotation type, not individually for each hit.  Grouping by sequence

can be useful for annotation – possibly more useful than what was done here – but it does



60

not fit easily into this framework, and certainly cannot be done at the same time as

grouping by annotation.

8.4. Estimating psf and pga for individual BLAST hits

I retained some of this functionality, by noting when BLAST hits were annotated

in Uniprot as having HMM hits to them, where the same HMM hit the query sequence

and thus was another piece of evidence, and was also grouped based on its name.  I

marked such BLAST hits as having correct annotation if they were in the same group as

the HMM that hit them, and incorrect annotation otherwise.  I marked them as having the

same function as the query if they were hit by an equivalog HMM that also hit the query,

and having a different function if they were not hit by such an equivalog.

I also estimated pga for BLAST hits by finding the ontology group associated

with their name, finding any protein groups that Swissprot said that BLAST hit was a

member of using sequence-based methods, finding the number of proteins in SwissProt

that are members of both the ontology group and the protein group, and then taking the

maximum of that number divided by the size of the name ontology group or the protein

group.

8.5. Judging the correctness of annotation groups

After grouping, each group is checked to see if its names specify a group in the

ontology.  For each group that can be matched to an ontology group, its parent ontology

groups are recorded.



61

To choose which group was correct, AutoAnnotate groups the query protein in the

same manner as other BLAST hits.  The group that it is placed in is judged to be correct,

with a probability of correct judgement (PCJ) based on the similarity score of the query

protein to the group. If no group was judged to be correct, that gene was skipped for

training. All HMM equivalogs that were placed in the correct group (according to their

name) are recorded, and called correct equivalogs.

AutoAnnotate then goes through all of the groups again, to look for groups

labeled as wrong that could still be correct for a number of reasons.  First it assigns each

hit in each group a probability of being correct that is the fraction of the correct

equivalogs that hit that BLAST hit, and a probability based on the top similarity of its

name to names in the correct group.  These two probabilities are combined according to

Equation 5.5

5 Oddly, I found no guidance in the mathematical literature on how to combine multiple

independent probability estimates for the same event – probably because this is regarded as theoretically

nonsensical, despite its empirical necessity.  I had to come up with Equation 1Equation 5 myself.



62

Equation 5.  Approximating a new probability based on multiple independent

probability judgements of the same event.





i

i
i

i

i
i

pp

p

)1(

Each group is then given a probability, computed using Equation 5 again over the

probabilities just assigned to all of its hits.  For all groups other than the chosen group,

this probability is multiplied by PCJ, since it is conditional on the correct group having

been chosen.

All groups assigned a probability less than .5 are removed from the training set if

they contain a name that is a substring of a name in the correct group, or if the group is a

child of the correct group according to the ontology, because either condition indicates

the group is likely to contain annotation that is nearly correct.  Any group that is a parent

of the correct group is marked as correct, with a probability equal to PCJ.

Training is done on all groups that at this point have a probability less than .4 or

greater than .6. Each value right(s,b) in Equation 1 is computed as the sum, over all

BLAST hits in bin (s,b), of the probability of that hit’s annotation group.

I mentioned in 8.3 that I could in some cases judge a BLAST hit to have the same

function or a different function from the query protein based on how many of the same

HMMs hit it; and also, whether its annotation was good or bad based on whether it was in



63

the same annotation group as the HMMs that hit it.  In cases where the confidence in the

estimate was high (psf or pga < .2 or > .8), I excluded such BLAST hits h from the error

minimization described in Section 5.2, and applied them afterwards to adjust the psf for

their %ID/%length bin (if psf(h) was known), and the pga for their annotation source (if

pga(h) was known). Equation 6 shows how this was computed for pga. psf is updated

analogously.

Equation 6.  Re-computing pga using BLAST hits h with reliable estimates for

pga(h) .

||)(

)()(
)(

BLASTsourcetrials

hpgasourceright
sourcepga BLASTh









Running AutoAnnotate on my training set, and then performing these

computations on the gathered data, produced these estimates for the vectors psf and pga:



64

Table 7. PSF: Estimated probability that a protein BLAST hit with the given

%identity and %length values has the same function as the query sequence.

%ID

% length >80 >50 >35 >25

>80 .993 .997 .994 .974

>65 .810 .979 .970 .966

>35 .940 .978 .959 .913

The values are reasonable, with the exception of the >80%ID / >65% length and

>80%ID / >35% cells, which had only 35 and 10 samples (versus thousands for most

other cells).  I changed the leftmost column (>80% ID) to .998, .966, and .940, to

maintain monotonicity going left-to-right and up-to-down in the table.  I changed >50%

ID, >35% length to .975, to make the drop from 65% to 35% length more in keeping with

the other columns.

The adjustment for PGA, however, adjusted all values too strongly downward.  I

believe that estimating values of pga for individual hits based on intersections of

ontology groups and protein groups often produced values significantly below 1 even for

correct annotations. Also, the ontology database that this calculation used contained

many erroneous entries due to a bug that assigned the wrong identifiers to many protein

families. I therefore re-ran the computation of PGA without holding out BLAST hits

with estimated values of pga, and without doing the adjustment afterwards described by

Equation 6.  This gave the vector for PGA in Table 8.



65

Table 8.  Estimated probability of good annotation by annotation source.

Source of annotation pga samples

manatee 1 20256

char_curated 1 645

SwissProt .996 3677

PRK-Reviewed_member 1 119

PRK-Validated_member 1 95

PRK-Provisional_member .999 327

PRK-Reviewed .998 129

char_uniprot .990 1401

PRK-Validated .998 81

NMPDR_member .965 2537

PRK-Provisional .972 302

char_trusted .850 1272

NMPDR .771 1256

Note that manatee is the same database used for the validation set.  However,

manatee hits of 100% identity were excluded from the training, ensuring that no manatee

entry was ever used to annotate itself.  Its high performance can be partly attributed to the

fact that the manatee annotations were made using JCVI-style protein names.  For our

purposes at JCVI, however, that is not something we want to compensate for in our

ranking.  The large number of manatee samples also suggests that the training set

contained many similar proteins.



66

The low scores of non-member hits from NMPDR should not be seen as

reflecting the annotation quality of NMPDR in general.  As you will recall, that number is

reduced by the probability that a NMPDR hit that does not satisfy the membership

function does not have the same function.  Also, the reason JCVI does not currently

annotation from NMPDR annotations is not because they are inaccurate, but because

their naming conventions are very different from JCVI’s.  This would give them a low

pga value.  Again, for JCVI’s purposes, this unfair low score is desirable.

I downgraded all the non-member PRK sources to .94 or less, based on their

lower scores in previous tests.

8.6. Testing

Testing is simple compared to training.  The values of psf and pga computed from

the training set are entered into AutoAnnotate and used to run the new ranking method on

the test set.  The accuracy is judged by the number of times that the annotation group that

the manually-curated annotation for the query gene was assigned to is the same as the

group that the top-ranked annotation is in. We then compare the results for new and old

methods.  I turned off HMMs for the testing run, as leaving them on would result in

HMMs (which are more reliable than BLAST hits) being used on different query proteins

in the two tests.  I also turned off the use of the similarity metric for grouping

annotations, as I observed that using name similarity sometimes resulted in cases where

one method got the correct answer and the other chose a similar but incorrect annotation,

but still received full credit for it because their names were similar.



67

“False positives” are cases where the ranking system chose an annotation group,

but did not assign the curated annotation to any of the annotation groups. These are not

necessarily errors, as the curated annotation might properly belong to the chosen

annotation group. “False negatives” are cases where the system assigned the curated

annotation to an annotation group, but was unable to choose an annotation group with

high confidence. “True errors”, the remaining cases, are the worst kind of error, where

the curated annotation was assigned to one annotation group and the system chose

another.

Table 9.  Test results, given as fraction of sample.

Ranking
method

Samples Correct False
positives

False
negatives

True
errors

original 4508 .615 .082 .064 .239

new 4508 .724 .082 .068 .126

A one-tailed binomial test of the chance of getting 4508 .724 = 3264 correct

answers from 4508 samples if the chances of getting a correct answer were .615,

produces a Z-score of (.724 - .615) / sqrt(.615 * (1-.615) / 4508) = 15.04, which indicates

a probability of 4.4E-54.  Hence, the new method produces more correct answers.

The true accuracy of AutoAnnotate is higher in both cases, as annotations that

were not judged correct can still be correct due to either being different ways of

describing the same function, or describing the same function at a greater or lesser level



68

of specificity.  Also, AutoAnnotate normally uses HMMs to annotate about one-third of

all proteins, with high reliability.



69

Chapter 9: Conclusions and Future Work

9.1. Discussion

Breaking the reliability of a transitive annotation into two independent

components, and automatically assigning values to the parameter vectors PSF and PGA,

both appear to work as hoped for.  The values assigned are largely congruent with

expectations about the reliabilities of different degrees of BLAST hit similarity and of

different evidence sources.

Using the two vectors PSF and PGA is less controversial than assigning their

values automatically.  The new method performs better when measured by the metric that

it is designed to optimize, which is not surprising.  If the validation set, or the procedure

for identifying correct and incorrect annotations, is biased in some way, the automatic

construction of PSF and PGA could optimize for those biases.  In the most extreme case,

about half of the annotations in char_trusted are different components of taxon-antitoxin

systems, which may be difficult to identify using the thesaurus.

The automatic construction of PSF should be less controversial, since no one has

firm opinions on what the relative reliabilities are of different combinations of percent

identity and length in a BLAST hit, and since bias in the validation set or in the



70

construction of the thesaurus is likely to affect all of the different %ID / % length

categories equally.  The automatic construction of PGA is more controversial.  One issue

is that SwissProt is a standard curated annotation set, and was directly or indirectly used

to construct or check many of the other curated sets.  Other sets could therefore be biased

to have annotation concordant with SwissProt, whether it is correct or incorrect.  Another

issue is that the validation set consists of manually-curated genes; and owing to the

increasing rarity of manual curation, most of these genes were annotated more than 4

years ago. The validation set could therefore be biased to favor older annotation sources

that have not been corrected.  The validation set was culled to not have proteins with

more than 85% sequence identity to each other; but it could still contain many

orthologous proteins from related organisms, giving manatee a higher score than it

deserves.  The values produced by the optimization process described in section 5.2

therefore cannot be taken at face value.

On the other hand, as shown in Chapter 4:, human judgements cannot be taken at

face value either.  It takes a great deal of effort for a human to study even a hundred cases

for each evidence source; and that is a tiny fraction of even the smallest evidence source

(let alone the 18 million entries in Trembl release 2011_11).  There is no reason to think

that the bias inherent in picking out such a small sample is less than the bias of the

thesaurus at recognizing the names of particular protein families, or the bias of the

validation set.

A larger problem is the tradeoff between accuracy and adherence to naming

conventions.  PDB may be the most accurate of all curated annotation sources, as every



71

protein in PDB has a known three-dimensional structure; and when a function-specific

name is provided, it is highly probable that that name was assigned on the basis of

functional assays performed prior to the expensive task of determining a protein’s

structure.  Yet JCVI does not use PDB for names at all anymore, due to dislike of PDB’s

lack of naming conventions and proclivity for extremely long, descriptive names.

In the absence of good high-throughput methods for validating the accuracy of

annotations, annotators have focused instead on naming conventions.  When annotators

from different centers convene, as at the NCBI Annotation Workshop held at JCVI in

April 26-27, 2010, discussion of structural annotation focuses on its accuracy, because

there are methods for evaluating its accuracy; while most discussion of functional

annotation is about naming conventions.  This is made worse by two factors:  First,

GenBank has hundreds of restrictions on the names that may be used in functional

annotations submitted to them, and will reject and send back genomes with any

violations; but they have not way to screen functional annotation for accuracy.

Sequencing centers are thus motivated to prefer names that conform to GenBank

standards over names that are more accurate, and to devote their time to protein naming

conventions rather than to accuracy.  Second, annotators have little contact with end

users.  This has enabled an annotation culture to develop that focuses most of its attention

on naming conventions that may have no importance for end-users, and that sets

standards for accuracy without reference to user requirements. It is impossible to discuss

the optimal tradeoff of false positives versus false negatives when many annotators

believe that no false positives are acceptable.



72

It is therefore difficult to apply the work in this thesis.  The purpose of the work is

to improve on the ability of humans to rank different annotation sources; yet ultimately

those human judgements are the standard by which the work’s performance will be

measured.  Any improvement in performance will thus be interpreted as a degradation in

performance, since it means lesser agreement with human judgement. It is easy to see

why all other recent work on automation of functional annotation assigns GO terms

rather than protein names.  GO terms are standardized, and so an evaluation can more

authoritatively say whether the assigned GO terms are the same as those in the validation

set or not.  But we are judged, by GenBank and by other annotation centers, more on our

protein names than on GO terms; and we have no validation set of GO annotations of

known reliability.

One reasonable experiment would be to compare scores with automatically-

generated vectors for PSF and PGA, versus automatically-generated PSF and annotator-

produced PGA, and annotator-generated PSF and automatically-generated PGA.  This

would indicate how much of the improvement came from the choice for PSF, and how

much came from the choice for PGA.

It is my expectation that considerable improvement comes from the automatic

construction of PGA, particularly because SwissProt is a large source of what I believe is

good annotation.  The JCVI ranking system assigns SwissProt a ranking so poor that it is

almost never used for annotation, and it provides only generic, hesitant names when used.

It is possible that most of the gains of this system come simply from increasing the use of



73

SwissProt for annotations.  If this is so, manual “correction” of the automatically-

constructed PGA vector will destroy most of the gains made.

9.2. Future work

The test should be re-run after the thesaurus-generating code is improved to

incorporate Trembl accessions, which would improve the coverage of the protein names

and protein families used to construct the thesaurus.  Alternately, the test could be run

using GO terms, if a positive performance would be interpreted as an indication of

similar performance with protein names.

Estimating the probability that a BLAST hit has the same function using only

percent identity and length of hit ignores the fact that different protein families have

different numbers of orthologs, and hence different criteria should be applied to each

protein family to determine whether a BLAST hit has the same function.  The

phylogenetic distance between the query and the BLAST hit, as well as the diversity of

the protein family it is in and the amino-acid Hamming distance to nearby families,

should be taken into account.

The current approach still takes all annotation from a single piece of annotation.

It does not make use of evidence groups other than for validation.  Annotation could be

assigned with higher priority if multiple, independent pieces of annotation agreed.  Also,

if BLAST hits were grouped by sequence rather than by annotation, a multiple alignment

of the different groups could be used to re-evaluate query/hit similarity in a way that

emphasized conserved sequence.



74



75

References



76

References

SF Altschul, W Gish, W Miller, WE Myers, DJ Lipman (1990). Basic local alignment
search tool. J Mol Biol 215 (3): 403–410. doi:10.1006/jmbi.1990.9999. PMID
2231712. http://www-math.mit.edu/~lippert/18.417/papers/altschuletal1990.pdf.

MAAndrade, NP Brown, CS Leroy, S Hoersch, A de Daruvar, C Reich, A Franchina, J
Tamames, A Valencia, C Ouzounis, C Sander (1999). Automated genome sequence
analysis and annotation. Bioinformatics 15, 391-412.

A K Aziz, D Bartels, AA Best, M DeJongh, T Disz, RA Edwards, K Formsma, S Gerdes,
EM Glass, M Kubal, F Meyer, GJ Olsen, R Olson, AL Osterman, RA Overbeek, LK
McNeil, D Paarmann, T Paczian, B Parrello, GD Pusch, C Reich, R Stevens, O
Vassieva, V Vonstein, Andreas Wilke, O Zagnitko (2008). The RAST Server: Rapid
Annotations using Subsystems Technology. BMC Genomics 9:75, doi:10.1186/1471-
2105-9-75.

M Biswas, JF O’Rourke, E Camon, G Fraser, A Kanapin, Y Karavidopoulou, P Kersey, E
Kriventseva, V Mittard, N Mulder, I Phan, F Servant, R Apweiler (2002).
Applications of InterPro in protein annotation and genome analysis. Briefings in
Bioinformatics 3, 285–295. (RuleBase)

J Boekhorst, B Snel (2007).  Identification of homologs in insignificant blast hits by
exploiting extrinsic gene properties. BMC Bioinformatics 8:356-362.

JM Chandonia, SE Brenner (2006). The impact of structural genomics:  expectations and
outcomes. Science 311: 347–351.

HN Chua, WK Sung, L Wong (2007). An efficient strategy for extensive integration of
diverse biological data for protein function prediction. Briefings in Bioinformatics
23(24):3364-3373, doi:10.1093/bioinformatics/btm520.

JCA Chung, G Dinkov, WC Barker (2004).  PIRSF:  Family classification system at the
Protein Information Resource. Nucleic Acids Res. 32(Database): D112-114.

http://www-math.mit.edu/~lippert/18.417/


77

V Curwen, E Eyras, T Daniel Andrews (2004).  The Ensembl automatic gene annotation
system. Genome Res. 14: 942-950.

AL Delcher, D Harmon, S Kasif, O White, & SL Salzberg (1999).  Improved microbial
gene identification with GLIMMER. Nucleic Acids Research 27(23): 4636-4641.

M Deng, T Chen, F Sun (2004). An integrated probabilistic model for functional
prediction of proteins. Journal of Computational Biology 11(2–3):463-475.

R Eisner, B Poulin B, D Szafron, P Lu, R Greiner (2005). Improving Protein Function
Prediction using the Hierarchical Structure of the Gene Ontology. IEEE Symposium
on Computational Intelligence in Bioinformatics and Computational Biology 2005.

O Emanuelsson, H Nielsen, S Brunak, G von Heijne (2000). Predicting subcellular
localization of proteins based on their N-terminal amino acid sequence. J.Mol. Biol.
300:1005-1016.

O Emanuelsson, S Brunak, G von Heijne, H Nielsen (2007). Locating proteins in the cell
using TargetP, SignalP, and related tools. Nature Protocols 2:953-971.

R.D. Finn, J. Tate, J. Mistry, P.C. Coggill, J.S. Sammut, H.R. Hotz, G. Ceric, K. Forslund,
S.R. Eddy, E.L. Sonnhammer, A. Bateman (2008). The Pfam protein families
database. Nucleic Acids Research Database Issue 36:D281-D288.

W Fleischmann, S Möller, A Gateau, R Apweiler (1999).  A novel method for automatic
functional annotation of proteins. Bioinformatics 15:228–233.

T Gaasterland, C Sensen (1996). Fully automated genome analysis that reflects user
needs and preferences-a detailed introduction to the MAGPIE system architechure.
Biochimie 78:302-310.

JL Gardy, MR Laird, F Chen, S Rey, CJ Walsh, M Ester, FSL Brinkman (2005). PSORTb
v.2.0: expanded prediction of bacterial protein subcellular localization and insights
gained from comparative proteome analysis. Bioinformatics 21:617-623.

A Gattiker, K Michoud, C Rivoire, AH Auchincloss, E Coudert, T Lima, P Kersey, M
Pagni, CJ Sigrist, C Lachaize, AL Veuthey, E Gasteiger, A Bairoch (2003).
Automated annotation of microbial proteomes in SWISS-PROT. Computational Bio.
& Chem. 27(1):49-58.

The Gene Ontology Consortium (2000). Gene Ontology: tool for the unification of
biology. Nature Genetics 25:25-29.



78

RA George, RV Spriggs, GJ Bartlett, A Gutteridge, MW MacArthur, CT Porter, B Al-
Lazikani, J Thornton, M Swindells (2005). Effective function annotation through
catalytic residue conservation. Proc. National Acad. Of Sciences 102(35):12299-
12304.

J Goll, R Montgomery, LM Brinkac, S Schobel, DM Harkins, Y Sebastian, S Shrivastava,
S Durkin, G Sutton (2009).  The Protein Naming Utility:  A rules database for protein
nomenclature. Nucleic Acids Res. 38:D336-D339.  doi:10.1093/nar/gkp958.

DH Haft, JD Selengut, O White (2003). The TIGRFAMs database of protein families.
Nucleic Acids Res. 31:371-373, PMID: 12520025.

DH Haft, JD Selengut, LM Brinkac, N Zafar, O White (2005).  Genome Properties: a
system for the investigation of prokaryotic genetic content for microbiology, genome
annotation and comparative genomics. Bioinformatics 21(3):293-306,
doi:10.1093/bioinformatics/bti015

S Hunter, R Apweiler, T Attwood, A Bairoch, A Bateman, D Binns, P Bork, U Das, L
Daugherty, L Duquenne, R Finn, J Gough, D Haft, N Hulo, D Kahn, E Kelly, A
Laugraud, I Letunic, D Lonsdale, R Lopez, M Madera, J Maslen, C McAnulla, J
McDowall, J Mistry, A Mitchell, N Mulder, D Natale, C Orengo, A Quinn, J Selengut,
C Sigrist, M Thimma, P Thomas, F Valentin, D Wilson, C Wu, & C Yeats (2009).
Nucleic Acids Res. 37:D211-D215.

Y Ishino, H Okada, M Ikeuchi, H Taniguchi (2007). Mass spectrometry-based
prokaryote gene annotation. Proteomics 7: 4053-4065.

LJ Jensen, R Gupta, HH Staerfeldt, S Brunak (2003).  Prediction of human protein
function according to Gene Ontology categories. Bioinformatics 2003, 19(5):635-642.

M Kanehisa, S Goto (2000).  KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Res. 28:27-30.

Peter D. Karp, Suzanne Paley, Pedro Romero (2002). The pathway tools software.
Bioinformatics 18(Suppl. 1):S225-S232.

RD King, A Karwath, A Clare, L Dehaspe (2001). The utility of different representations
of protein sequence for predicting functional class. Bioinformatics 17(5):445-454.

W Klimke,  R Agarwala, A Badretdin, S Chetvernin, S Ciufo, B Fedorov, B Kiryutin, K
O'Neill, W Resch, S Resenchuck, S Schafer, I Tolstoy, T Tatusova (2009).  The
National Center for Biotechnology Information's protein clusters database. Nucleic
Acids Res. 37:D216-D223.



79

E Kretschmann, W Fleischmann, R Apweiler (2001) Automatic rule generation for
protein annotation with the C4.5 data mining algorithm applied on Swiss-Prot.
Bioinformatics 17:920–926.

A Krogh, B Larsson, G von Heijne, EL Sonnhammer (2001).  Predicting transmembrane
protein topology with a hidden Markov model: application to complete genomes. J.
Mol Biol. 305(3):567-80.

M Kuhn, C von Mering, M Campillos, LJ Jensen, P Bork (2008).  STITCH: interaction
networks of chemicals and proteins. Nucleic Acids Res. 36:D684-8.

E Kuznetsova, Michael Proudfoot, Stephen A Sanders, Jeffrey Reinking, Alexei
Savchenko, Cheryl H Arrowsmith, Aled M Edwards, Alexander F Yakunin (2005).
Enzyme genomics: Application of general enzymatic screens to discover new
enzymes. FEMS Microbiology Reviews 29(2): 263-279.
doi:10.1016/j.fmrre.2004.12.006.

GRG Lanckriet, M Deng, N Cristianini, MI Jordan, WS Noble (2004). Kernel-based Data
Fusion and its Application to Protein Function Prediction in Yeast . Proceedings of the
Pacific Symposium on Biocomputing 9: 300-311.

Hyunju Lee, Zhidong Tu, Minghua Deng, Fengzhu Sun, Ting Chen (2006). Diffusion
Kernel-Based Logistic Regression Models for Protein Function Prediction. Omics
10(1): 40-55. doi:10.1089/omi.2006.10.40.

T Lima, A Auchincloss, E Coudert, G Keller, K Michoud, C Rivoire, V Bulliard, E de
Castro, C Lachaize, D Baratin, I Phan, L Bougueleret, A Bairoch (2008).  HAMAP: A
database of completely sequenced microbial proteome sets and manually curated
microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Res.
37(Database): D471-D478.

H Liu, Z-Z Hu, J Zhang, C Wu (2006).  BioThesaurus: a web-based thesaurus of protein
and gene names. Bioinformatics 22(1): 103-105.

B Louie, P Tarczy-Hornoch, R Higdon, E Kolker (2008). Validating annotations for
uncharacterized proteins in Shewanella oneidensis. Omics 2008(12):211-5.

Ramana Madupu, Lauren M. Brinkac, Jennifer Harrow, Laurens G. Wilming, Ulrike
Böhme, Philippe Lamesch, Linda I. Hannick (2010). Meeting report: a workshop on
Best Practices in Genome Annotation. Database 2010: baq001.
doi:10.1093/database/baq001. http://manatee.sourceforge.net/.

Aron Marchler-Bauer, John B. Anderson, Praveen F. Cherukuri, Carol DeWeese-Scott,
Lewis Y. Geer, Marc Gwadz, Siqian He, David I. Hurwitz, John D. Jackson, Zhaoxi

http://manatee.sourceforge.net/


80

Ke, Christopher J. Lanczycki, Cynthia A. Liebert, Chunlei Liu, Fu Lu, Gabriele H.
Marchler, Mikhail Mullokandov, Benjamin A. Shoemaker, Vahan Simonyan, James S.
Song, Paul A. Thiessen, Roxanne A. Yamashita, Jodie J. Yin, Dachuan Zhang, and
Stephen H. Bryant (2005). CDD: a Conserved Domain Database for protein
classification. Nucleic Acids Research 33(Database): D192-D196.

C von Mering, LJ Jensen, M Kuhn, S CHaffron, T Doerks, B Krūger, B Snel, P Bork
(2007). STRING 7 – recent developments in the integration and prediction of protein
interactions. Nucleic Acids Research 35:D358-D362.

Huaiyu Mi, Betty Lazareva-Ulitsky, Rozina Loo, Anish Kejariwal, Jody Vandergriff,
Steven Rabkin, Nan Guo, Anushya Muruganujan, Olivier Doremieux, Michael J.
Campbell, Hiroaki Kitano and Paul D. Thomas (2005).  The PANTHER database of
protein families, subfamilies, functions and pathways. Nucleic Acids Research
33:D284-D288.

Huaiyu Mi, Nan Guo, Anish Kejariwal, Paul D. Thomas (2007).  PANTHER version 6:
protein sequence and function evolution data with expanded representation of
biological pathways. Nucleic Acids Res. 35:D247–D252.

S Mostafavi S, D Ray, D Warde-Farley, C Grouios, Q Morris (2008) GeneMANIA: a
real-time multiple association network integration algorithm for predicting gene
function. Genome Biology 9:S4. doi:10.1186/gb-2008-9-s1-s4.

D Natale, C Arighi, WC Barker, J Blake, T-C Chang, Z Hu, H Liu, B Smith, CH Wu
(2007).  Framework for a protein ontology. BMC Bioinformatics 8(Suppl 9):S1.

R Overbeek, T Begley, RM Butler RM, JV Choudhuri, HY Chuang, M Cohoon M, V de
Crecy-Lagard, N Diaz, EM Glass, A Goesmann, A Hanson, D Iwata-Reuyl, R Jensen,
N Jamshidi, L Krause, M Kubal, N Larsen, B Linke, AC McHardy, F Meyer, H
Neuweger, G Olsen, R Olson, A Osterman, V Portnoy, GD Pusch, DA Rodionov, C
Rückert, J Steiner, R Stevens, I Thiele, O Vassieva, Y Ye, O Zagnitko, V Vonstein
(2005).  The subsystems approach to genome annotation and its use in the project to
annotate 1000 genomes. Nucleic Acids Research 13(17): 5691-5702.

P Pavlidis, J Weston, J Cai, WS Noble (2002). Learning gene functional classifications
from multiple data types. J Comp Bio 9: 401-411.

L Peña-Castillo, M Tasan, CL Myers, H Lee, T Josh, C Zhang, Y Guan, M Leone, A
Pagnani, WK Kim, C Krumpelman, W Tian, G Obozinski, Y Qi, S Mostafavi, GN
Lin, GF Berriz, FD Gibbons, G Lanckriet, J Qiu, C Grant, Z Barutcuoglu, DP Hill, D
Warde-Farley, C Grouios, D Ray, JA Blacke, M Deng, MI Jordan, WS Noble, Q
Morris, J Klein-Seetharaman, Z Bar-Joseph, T Chen, F Sun, OG Troyanskaya, EM
Marcotte, D Xu, TR Hughes, FP Roth (2008). A Critical Assessment of M. Musculus



81

Gene Function Prediction using Integrated Genomic Evidence. Genome Biology
9(Suppl.1):S2.

M Riley, DB Space (1995).  Genes and proteins of Escherichia coli (GenProtEc).
Nucleic Acids Research 24(1):40.

V Sangar, DJ Blankenberg, N Altman, AM Lesk (2007).  Quantitative sequence-function
relationships in proteins based on gene ontology. BMC Bioinformatics 8:294.
doi:10.1186/1471-2105-8-294.

LF Schroeder, ALC Bazzan, JF Valiati, PM Engel, S Ceroni (2002). A comparison
between symbolic and non-symbolic machine learning techniques in automated
annotation of the "Keywords" field of SWISS-PROT. In Gramado, RS. Proc. of the
First Brazilian Workshop on Bioinformatics. Soc. Bras. Computação.

Jeremy Selengut, Daniel Haft, Tanja Davidsen, A. Ganapathy, M. Gwinn-Giglio, William
Nelson, Alex Richter, Owen White (2007).  TIGRFAMs and Genome Properties:
tools for the assignment of molecular function and biological process in prokaryotic
genomes. Nucleic Acids Res. 35:D260-4.

B Shahbaba, RM Neal RM (2006). Gene function classification using Bayesian models
with hierarchy-based priors. BMC Bioinfo 7:448.

Roden Sharan, Igor Ulitsky, Ron Shamir (2007).  Network-based prediction of protein
function. Molecular Systems Biology 3(88): 1-13.

CJA Sigrist, L Cerutti, N Hulo, A Gattiker, L Falquet, M Pagni, A Bairoch, P Bucher
(2002).  PROSITE: a documented database using patterns and profiles as motif
descriptors. Briefings in Bioinform. 3:265-274.

T Slater, C Bouton, ES. Huang (2008). Beyond data integration. Drug Discovery Today
13: p. 584-589.

TF Smith, MS Waterman (1981). Identification of Common Molecular Subsequences.
Journal of Molecular Biology 147: 195–197.

Roman L. Tatusov, Michael Y. Galperin, Darren A. Natale, and Eugene V. Koonin (2000).
The COG database: a tool for genome-scale analysis of protein functions and
evolution. Nucleic Acids Res. 28(1): 33–36.

RM Ward, S Erdin, TA Tran, DM Kristensen, AM Lisewski (2008).  De-Orphaning the
Structural Proteome through Reciprocal Comparison of Evolutionarily Important
Structural Features. PLoS ONE 3(5): e2136 doi:10.1371/journal.pone.0002136



82

O Whelehan, M Earll, E Johansson, M Toft, L Eriksson (2006). Detection of ovarian
cancer using chemometric analysis of proteomic profiles. Chemometrics and
intelligent Laboratory System 84 (1/2):82-87

D Wieser, E Kretschmann, R Apweiler (2004) Filtering erroneous protein annotation.
Bioinformatics, 20, i342-i347.

C Wu, A Nikolskaya, H Huang, L-S Yeh, D Natale, CR Vinayaka, Z-Z Hu, R Mazumder,
S Kumar, P Kourtesis, RS Ledley, BE Suzek, L Arminski, Y Chen, J Zhang, JL
Cardenas, S Chung, J Castro-Alvear, G Dinkov, W Barker (2004).  PIRSF: Family
classification system at the Protein Information Resource. Nucleic Acids Res. 2004
32(Database): D112-D114.

C Yu, N Zavaljevski, V Desai, S Johnson, FJ Stevens, J Reifman (2008). The
development of PIPA: an integrated and automated pipeline for genome-wide protein
function annotation. BMC Bioinformatics 9: 52.

GX Yu (2004) RuleMiner: a knowledge system for supporting high-throughput protein
function annotations. J of Bioinformatics and Comp Bio 2:595-617.

Haiyuan Yu, Pascal Braun, Muhammed A. Yildirim, Irma Lemmens, Kavitha Venkatesan,
Julie Sahalie, Tomoko Hirozane-Kishikawa, Fana Gebreab, Na Li, Nicolas Simonis,
Tong Hao, Jean-François Rual, Amélie Dricot, Alexei Vazquez, Ryan R. Murray,
Christophe Simon, Leah Tardivo, Stanley Tam, Nenad Svrzikapa, Changyu Fan,
Anne-Sophie de Smet, Adriana Motyl, Michael E. Hudson, Juyong Park, Xiaofeng
Xin, Michael E. Cusick, Troy Moore, Charlie Boone, Michael Snyder, Frederick P.
Roth, Albert-László Barabási, Jan Tavernier, David E. Hill, and Marc Vidal (2008).
High-Quality Binary Protein Interaction Map of the Yeast Interactome Network.
Science 3 October 2008: 104-110.



83

Curriculum Vitae

Philip Goetz attended Loyola College in Maryland, receiving a Bachelor of
Science in Mathematics with a minor in Writing in 1989.  He received a Doctorate in
Computer Science, with a minor in Linguistics, from the State University of New York at
Buffalo in 1997.  He has done work for the National Aeronautics and Space
Administration, the U.S. Army Advanced Research Labs, the Defense Advanced
Research Projects Agency, and the National Institutes of Health.  He currently works for
the J. Craig Venter Institute, where he performed the work described in this thesis.


