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Interfaces are ubiquitous in natural phenomena. While the description of interfaces in

fluid systems is well developed, solid-fluid and solid-solid interfaces are not well understood.

This deficiency is especially true for solid-solid interfaces, which play critical roles in ma-

terials engineering, solid-state physics and solid-state chemistry. In this thesis, the Gibbs

theory of interfaces is generalized to describe phase boundaries under non-hydrostatic stress

in multicomponent systems. We obtain equations that describe coherent solid-solid inter-

faces with shear stresses parallel to the boundary plane, incoherent solid-solid interfaces for

certain constraint variations, solid-fluid interfaces, grain boundaries and surfaces.

In the second part of the thesis, the developed theory is applied to study particular types

of interfaces using atomistic simulations. We modeled solid surface, solid-liquid interface

and grain boundaries. The simulations allowed to calculate values of key thermodynamic

properties, clarify behavior of these properties with temperature, composition and stress

and test the predictions of the theory.

Surface surface free energy and surface stress in a single component system were com-

puted as functions of temperature. The values of these two excess properties do not converge

near the melting point despite the extensive surface premelting.



Solid-liquid interface free energy was computed using the developed thermodynamic

integration technique as a function of composition in CuAg binary alloy and as a function

of biaxial strain in a single component Cu system. In the later case the equilibrium states

between the non-hydrostatically stressed solid and liquid were accurately predicted using the

derived Clausius–Clapeyron type equation. We show that for non-hydrostatic equilibrium

interfaces stress is not unique and compute different interface stresses using our simulation

data.

We also studied effects of elastic deformation, temperature and chemical composition

on properties of a symmetrical tilt grain boundary in Cu and CuAg alloy. Excess grain

boundary free energy was computed as a function of lateral strain, normal stress and shear

stress parallel to the boundary plane. We also employed the derived thermodynamic inte-

gration method to compute grain boundary free energy as a function of temperature and

composition. Maxwell type relations predicted by the adsorption equation were tested and

verified.

We proposed a thermodynamic model of liquid nucleation on superheated grain bound-

aries based on the sharp-interface approximation with a disjoining potential. The model

predicts the shape and size of the critical nucleus by using a variational approach. Contrary

to the classical nucleation theory, the model predicts the existence of a critical tempera-

ture of superheating and offers a simple formula for its calculation. The model is tested

against molecular dynamic simulations in which liquid nuclei at a superheated boundary

were obtained by an adiabatic trapping procedure.



Chapter 1: Introduction

1.1 Interfaces

Interface is generally defined as a boundary region between two distinct phases. In some

cases an interface can be formed between two grains of the same phase, if they have differ-

ent crystallographic orientation. Such interfaces are called grain boundaries (GBs). Surface

is another type of interface when one of the phases is vacuum. In the interfacial region

thermodynamic properties of one phase transition into the other phase, making this re-

gion inherently inhomogeneous. In equilibrium this inhomogeheous structure is unique.

Interfacial properties both mechanical and electronic are generally different from the bulk

properties.

In multicomponent systems chemical composition of the interface region is generally

distinct from the bulk. Some components tend to have higher concentration in the interface

region. This phenomenon is called interface segregation and it is governed by the “desire” of

the system to minimize its interface free energy. Different chemical composition of interfaces

results in different mechanical properties, which can be either beneficial or catastrophic for

the properties of materials. In some cases, intrinsically ductile materials become brittle

after being exposed to certain chemical environment. Bi segregates to GBs in Cu and Ni

and at high concentration form a uniform layer in the GB region. Due to weaker bonding

between Bi atoms, the GB becomes brittle [1].

Interfaces play a crucial role in material science [2]. They directly affect materials

manufacturing process as well as the subsequent service. Materials are generally not single

crystals but made of grains separated by interfaces. These grains usually appear when

solid is formed from a melt by nucleation process. In this process nuclei of solid phase

appear in the melt and grow until liquid phase disappear. Different nuclei have different
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crystallographic orientation, so when they collide as a result of growth, solid-solid interfaces

are formed. The barrier of nucleation and nucleation rate are directly affected by interface

free energy. The rate of nucleation as well as subsequent thermal treatment will determine

the average grain size of material. As solid nucleus grows solidification happens faster along

some directions resulting in dendritic growth. Snowflakes are familiar example of dendrites

(nucleation and growth of ice in vapor). The process of dendritic growth is affected by

anisotropy of interface free energy [3].

Nucleus of unstable phase can nucleate if solid-liquid interface free energy of this phase

is lower then the interface free energy between melt and stable phase [4]. For example,

nucleation of metastable bcc phase instead of stable fcc occurs in Fe and Ni based alloys

when melt is rapidly quenched [4–7]. From these examples we conclude that both magnitude

and anisotropy of γ determine microstructure of materials, which in turn determines the

properties of materials [3].

The sizes of grains range from nanoscale to microscale. Orientation, shape and size

of grains and interfaces represent a microstructure of a material. Microstructure (grain

size, interfaces) determines mechanical, thermal and electronic properties of materials. For

example, yield strength of material is inversely proportional to grain size. This phenomenon

is called Hall-Petch strengthening. Plastic deformation in materials occurs due to dislocation

motion. GBs impede dislocation motion, as a result higher stresses are required for plastic

deformation of a polycrystalline material. Thus, presence of interfaces inside a material is

often desirable.

Microstructure evolution does not end after material is produced. Larger grains grow at

the expense of smaller ones in a process called Ostwald ripening [8]. In many technological

applications, materials are exposed to extreme conditions such as high temperatures vari-

ations, aggressive chemical environment and severe mechanical loadings. Under changing

external conditions microstructure of materials evolve: interfaces migrate and change their

structure, new phases may nucleate inside existing grains or at interfaces. These processes
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may result in a failure of a material with catastrophic consequences. To develop new ma-

terials that can serve in extreme environments, it is necessary to study how temperature,

composition and stress affect interfaces.

Interfaces and GBs are preferable routes for electromigration in microelectronic devices

[9]. While momentum transfer from the electric current to atoms is negligible in the bulk

material, atoms in the boundaries are able to diffuse in the direction of the current. This

process shortens the lifetime of microelectronic devices.

The magnitude of γ determines contact angles in wetting process. By manipulating

thermodynamic variables, one can modify interface free energies and in turn change contact

angles. This phenomenon is employed in electrowetteng [10], where one can manipulate

with interface free energies in the system containing droplet on the substrate by varying

external electric field. The ability to achieve desired contact angles found applications in

digital microfluidcs (lab-on chip technology) [11]. Using electrowetting large droplet can

be split into smaller droplets of the desired size. These discrete droplets are then used to

store and transport chemical substances and to cause chemical reactions by merging the

individual droplets together. This ability to perform complex operations step by step (by

adding droplets in a discrete way) is useful in applications such as chemical synthesis and

biological assay. Electrowetting have been used to develop liquid lenses with focal lengths

tunable by voltage, change color of pixels in electronic screens and even convert mechanical

energy into electrical energy [12].

The several examples mentioned above demonstrate that interface phenomena plays a

crucial role in many physical processes. In the next section briefly describe current thermo-

dynamic theory of interfaces and point out to unsolved problems that will be addressed in

this work.

1.2 Thermodynamics of interfaces

As we mentioned earlier interface is inherently inhomoheneous. Therefore, thermodynamic

description of homogeneous bulk phases cannot be applied immediately. Thermodynamics
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Figure 1.1: Construction of the Gibbs dividing surface.

of interfaces was developed by Gibbs [13]. He considered two phases α and β in equilibrium

with each other. Thermodynamic properties like density, composition, entropy and energy

are uniform within each phase. Gibbs, argued, that since interface is in thermodynamic

equilibrium with the phases, its properties can be described using the intensive variables

that describe the bulk phases. To treat an inhomogeneus system, Gibbs introduced a

concept of a dividing surface, which is schematically illustrated in Fig. 1.1. On the figure

an imaginary plane is placed between the two homogeneous phases and the properties of each

phase are extrapolated to the dividing surface. The difference between the amounts of an

extensive thermodynamic property X in the system with interface and the two bulk phases

extrapolated to the dividing surface constitutes an excess of this thermodynamic property.

Gibbs introduced excesses of number of components, known as segregation, excess entropy

and energy. These excesses depend on the particular choice of the dividing surface and

can be positive, negative or zero. Gibbs also defined interface free energy γ as a reversible

work required to create a unit of interface. He showed that γ is unique for plane interfaces

and thus a meaningful and measurable quantity. He derived an adsorption equation that

provides a differential of γ in terms of differentials of intensive parameters that describe

phase equilibrium. Gibbs treatment of the interfaces is very general. Interface region is

treated as a black box: particular behavior of thermodynamic properties in the interface

region is irrelevant.
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Gibbs treatment was focused on interfaces in fluid systems. Discussing solid-fluid inter-

faces he pointed out that interface area can change in two ways. One is when a new interface

is created between two phases at a fixed thermodynamic state and the second is when solid

phase is elastically stretched. In these two cases the final interface areas may be the same,

but the thermodynamic states of the phases and the interface are actually different. Gibbs

limited his analysis of solid-fluid interfaces to variations at constant interface area.

Gibbs showed that a non-hydrostatically stressed single-component solid can be equili-

brated with three multicomponent fluids each having a different chemical potential of the

solid component [13]. This implies that the chemical potential of the solid component can-

not be defined uniquely. To avoid the notion of chemical potential of the substance of the

solid, Gibbs placed the dividing surface, so that the excess of this component would vanish.

This eliminates the term in the adsorption equation that would otherwise require knowl-

edge of the chemical potential. Gibbs did not consider continuous variations of the chemical

composition of the solid, although the solid in his treatment was generally multicomponent.

This assumption of constancy of the chemical composition allowed Gibbs to introduce a

substance of the solid and subsequently treat the solid as if it was composed of a single

component. In a two phase system with the solid phase composed of a single component,

it is possible to place the dividing surface so that the excess of this substance vanish.

Using the Gibbsian definition of γ, Cahn [14] derived a more general form of the ad-

sorption equation for hydrostatic systems by solving a system of Gibbs-Duhem equations

for the bulk phases and a layer containing the interface. Cahn’s method is a mathematical

reformulation of Gibbs theory of interfaces. It affords a greater freedom of choice of the

intensive variables used in the adsorption equation. It rigorously introduces the interface

excess volume, a quantity which is zero by definition in the Gibbsian treatment. The free-

dom of choice of variables and the conjugate interface excess quantities offers significant

advantages for experimental and computational applications. Another advantage of Cahn’s

method [14] is that the Gibbs phase rule is directly embedded in the formalism, making all

variations in the adsorption equation automatically consistent with phase coexistence.
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Although Gibbs analyzed solid-fluid interfaces and pointed out to the key differences

from interfaces in fluid systems, his analysis was limited to variations of state at a fixed

interface area. Shuttleworth analyzed elastic variations of the interface. He introduced new

quantity interface stress τ and derived relation between γ and τ [15–17]. Shuttleworth

analysis was limited to single component solid surface and did not address effects of tem-

perature and composition. In Gibbs treatment all the interface properties were rigorously

introduced as excesses over the bulk properties for a given placement of the dividing surface.

Shuttleworth did not provide an expression for interface stress as an excess quantity and did

not give a rigorous recipe how to compute it. As a result, it is not clear how to compute τ

for solid-liquid and solid-solid interfaces. Another open question is weather interface stress

is unique like interface free energy or does it depend on the placement of the dividing surface

(just as all other excess properties).

The second limitation of Gibbs treatment of a constant chemical composition was due

to the thermodynamic model of a solid. This assumption was made by Gibbs because solid

state diffusion was unknown at that time. Thermodynamics of multicomponent solid under

stress with varying chemical composition of both substitutional and interstitial components

was was analyzed by Larche and Cahn [18,19]. They employed the variational approach of

Gibbs to the derive equilibrium conditions for a single solid phase and two phases separated

by coherent and incoherent interfaces. To describe the continuous compositional changes on

the substitutional lattice Larche and Cahn introduced diffusion potentials and showed that

they are uniform throughout the system in equilibrium. They also showed that individual

chemical potentials of interstitial atoms are well defined and uniform throughout the system.

Excess interfacial properties were not considered by Larche and Cahn [18].

Although some limitations of Gibbs theory of interfaces and bulk solids were addressed

by Shuttleworth and Larche and Cahn, description of coherent plane solid-solid interfaces

under general state of stress faces several difficulties. The first difficulty arises from the

necessity of defining the individual chemical potentials of the substitutional atoms [20,21].

If the solid is treaded as multicomponent to account for continuous changes in composition,
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it is impossible to place the dividing surface so that excesses of all substitutional atoms in the

solid would vanish. The same problem arises even in a truly single component system, when

the interface separates two grains of the same material (grain boundaries). In this case the

atomic density is the same in both grains, and no placement of the dividing surface would

make the interfacial excess of this component vanish (unless the density in the interfacial

region is identical to the bulk which is generally not the case).

The second issue arises from the fundamental difference between coherent and incoher-

ent (or solid-fluid) boundaries. Coherent boundaries support shear stresses parallel to the

boundary plane. In case of solid-fluid interfaces analyzed by Gibbs, these shear stresses

were identically zero. The effects of the shear stresses are not included in the current

thermodynamic treatments.

In this work we address the issues discussed above. We develop a thermodynamic

treatment of coherent plane solid-solid interfaces in a multicomponent system with both

substitutional and interstitial components. The phases in equilibrium are under general

non-hydrostatic state of stress, which includes shear stresses parallel to the interface. Once

the thermodynamic theory is developed, we will study excess thermodynamic properties

using atomistic simulations. In particular we compute interface free energy of surfaces, solid-

liquid interfaces and grain boundaries as a functions of temperature, composition and non-

hydrostatic stresses. Atomistic simulations also allow to test the proposed thermodynamic

theory.
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Chapter 2: Coherent phase boundaries

2.1 Thermodynamics of a solid phase

Before presenting thermodynamics of coherent interfaces it is necessary to discuss thermo-

dynamics multicomponent solid phases subject to mechanical stresses and formulate con-

ditions of coherent equilibrium between such phases. In this Section we first describe finite

deformations of a solid and then introduce thermodynamic variables describing equilibrium

with respect to exchange of heat and variations in chemical composition and deformation.

2.1.1 Kinematics of deformation of a solid phase

We will consider the most general case of finite deformations employing the concept of a

reference state [22]. To be able to define deformations, we have to assume that the solid

contains a penetrating network permitting identification of the same physical point in the

reference and deformed states [18,23,24]. This network is also capable of carrying mechanical

loads and allows the solid to reach mechanical equilibrium under non-hydrostatic conditions

(a property which distinguishes a true solid from a viscous fluid) [18, 23, 24]. We do not

associate the network with a particular lattice or sublattice of the crystal structure. We only

assume that the network (i) exists and is not destroyed by any deformations, (ii) supports

non-hydrostatic loads, and (iii) provides markers to identify the same location before and

after deformation.

The choice of the reference state is arbitrary. We assume that both the reference and the

deformed coordinate frames are Cartesian. A physical point is defined by its coordinates

x′i (i = 1, 2, 3) in the reference state [22]. The coordinates xi in the deformed state are

functions of the reference coordinates,
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x = x
(
x′) . (2.1)

Any infinitesimal vector dxi in the deformed state is related to an infinitesimal vector dx′j

in the reference state by a linear transformation

dxi =
∑

j=1,2,3

Fijdx′j , (2.2)

where Fij is the deformation gradient with components

Fij =
∂xi

∂x′j
. (2.3)

The components of F are generally functions of reference coordinates unless the solid is

homogeneous. It is assumed that J ≡ detF 6= 0 and thus the reference coordinates can be

expressed as functions of deformed coordinates:

x′ = x′ (x) . (2.4)

The corresponding infinitesimal vectors are related by the inverse of the deformation gra-

dient F−,

dx′i =
∑

j=1,2,3

F−1
ij dxj . (2.5)

Only six components of F are needed to completely describe all deformations (strains)

of a solid. Without loss of generality we will set all sub-diagonal components of F to zero:
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F =




F11 F12 F13

0 F22 F23

0 0 F33




. (2.6)

Fig. 2.1 illustrates deformations of a small volume element when F is given by Eq. (2.6).

The bottom and top faces of the volume element remain normal to the x′3 axis during the

deformation. Furthermore, the edge parallel to the x′1 axis remains parallel to it during the

deformation. The Jacobian of F equals

J = F11F22F33. (2.7)

F− also has a right triangular form similar to F with diagonal elements

F−1
ii = 1/Fii, i = 1, 2, 3. (2.8)

These relations will be used below to simplify some of the equations.

2.1.2 Thermodynamic description of a homogeneous solid phase

We start with a thermodynamic description of a homogeneous solid phase in a state of

equilibrium. An extension to inhomogeneous phases will be presented later.

We consider a homogeneous multicomponent solid containing K substitutional and L

interstitial chemical components. The substitutional atoms occupy lattice sites and are

subject to the lattice constraint: the total number N of substitutional atoms equals the

number of lattice sites. The interstitial atoms can freely migrate from one place to another

and are not subject to constraints. It is assumed that each chemical component is either

substitutional or interstitial.

Consider a block of such a solid containing a total of N substitutional and n interstitial

atoms and obtained by deformation of a reference region of a volume V ′. Suppose N and
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Figure 2.1: Two-dimensional schematic of a volume element undergoing a finite deformation.
In the reference state (dashed lines), the volume element is a unit square. The components
of the deformation gradient F represent the new lengths or projections of the cube edges in
the deformed state (solid lines.)

V ′ are fixed. Then the internal energy U of the solid is a function of its entropy S, the

amounts of individual chemical components Nk and nl, and the deformation gradient F:

U = U(S, N1, ..., NK , n1, ..., nL,F). (2.9)

Due to the imposed constraint
∑

k Nk = N , only K − 1 independent variations of Nk are

possible. To implement this constraint, we can arbitrarily choose one of the substitutional

components as the reference component and assume that each time we add an atom of

a different component k, we simultaneously remove an atom of the reference component

[18, 23, 24]. We choose component 1 as the reference and treat all other substitutional
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components as independent. The amounts of interstitial components can be varied without

restrictions.

Consider a reversible variation in the state of the solid when it exchanges heat with the

environment, changes its chemical composition and performs mechanical work. Continuing

to keep N , the differential of energy is given by[18,23]

dU = TdS +
K∑

k=2

Mk1dNk +
L∑

l=1

µldnl +
∑

i,j=1,2,3

V ′PijdFji, (2.10)

where T is temperature, µl are chemical potentials of the interstitial atoms and Mk1 are

K−1 diffusion potentials of the substitutional atoms. According to Eq. (2.10), the diffusion

potential Mk1 is the energy change when an atom of component k is substituted for an atom

of component 1 while keeping all other variables fixed:

Mk1 =
∂U

∂Nk
− ∂U

∂N1
, k = 2, ..., K. (2.11)

In the last term of Eq. (2.10), P is the first Piola-Kirchhoff tensor, which is generally

not symmetrical and is related to the symmetrical Cauchy stress tensor σ by [22]

P = JF− · σ (2.12)

(the dot denotes inner product of tensors). Because F− is a right triangular matrix, the

components P31, P32 and P33 are proportional to the corresponding components of σ:

P3i = F11F22σ3i = (J/F33) σ3i, i = 1, 2, 3, (2.13)

where we used Eqs. (2.6), (2.7) and (2.8).

To prepare for the analysis of an interface between phases with boundary normal to 3

axis in Section 2.3, it will be convenient to rewrite the mechanical work term in Eq. (2.10)
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by separating the differentials dF11, dF12 and dF22 from dF13, dF23 and dF33:

dU = TdS +
K∑

k=2

Mk1dNk +
L∑

l=1

µldnl

+
∑

i=1,2,3

V ′F11F22σ3idFi3 +
∑

i,j=1,2

V ′PijdFji. (2.14)

The (K + L + 6) differentials in the right-hand side of Eq. (2.14) are independent and their

number gives the total number of degrees of freedom of a homogeneous solid phase.

2.1.3 Relevant thermodynamic potentials

Various thermodynamic potentials can be derived from Eq. (2.14) by Legendre transfor-

mations. As will become apparent later, the potential which is relevant to the coherent

interface problem is

Φ1 = Φ1(T, M21, ..., MK1, µ1, ..., µL, σ31, σ32, σ33, F11, F12, F22), (2.15)

where subscript 1 indicates the reference chemical component. For a homogeneous solid,

this potential is defined by

Φ1 ≡ U − TS −
K∑

k=2

Mk1Nk −
L∑

l=1

µlnl −
∑

i=1,2,3

(V Fi3/F33)σ3i, (2.16)

where V = JV ′ is the actual (deformed) volume of the block. Using Eq. (2.14), we obtain

dΦ1 = −SdT −
K∑

k=2

NkdMk1 −
L∑

l=1

nldµl

−
∑

i=1,2,3

(V Fi3/F33) dσ3i +
∑

i,j=1,2

V ′QijdFji, (2.17)

13



where

Q ≡ JF−1 ·

σ −

∑

m=1,2,3

Fm3

F33
σ3mI


 (2.18)

(I ≡ δij is the identity tensor). Although Q is a 3× 3 tensor, only its components Q11, Q21

and Q22 appear in Eq. (2.17).

The potential Φ1 depends on the choice of coordinate axes through the variable σ31,

σ32, σ33, F11, F12 and F22. In addition, Φ1 depends on the choice of the reference state of

strain through F.

Eq. (2.16) defines Φ1 for a homogeneous block containing a fixed number N of sub-

stitutional atoms. We can also define an intensive potential φ1 as Φ1 per substitutional

atom:

φ1 ≡ Φ1/N = U/N − TS/N −
K∑

k=2

Mk1Ck

−
L∑

l=1

µlcl −
∑

i=1,2,3

(ΩFi3/F33) σ3i. (2.19)

Here Ck = Nk/N and cl = nl/N are concentrations of substitutional and interstitial atoms

per substitutional atom. Likewise, U/N , S/N and Ω are the energy, entropy and volume

per substitutional atom, respectively.

Furthermore, we can introduce K different potentials Φm, and accordingly φm, by choos-

ing different substitutional components m as the reference species:
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φm ≡ Φm/N = U/N − TS/N −
K∑

k=1

MkmCk

−
L∑

l=1

µlcl −
∑

i=1,2,3

(ΩFi3/F33) σ3i. (2.20)

Note that we have extended the summation with respect to k from 1 to K using the property

Mkk ≡ 0. Combining Eq. (2.20) with other properties of diffusion potentials [18, 23, 24],

Mik = −Mki and Mij = Mkj +Mik, the following relationship between different φ-potentials

can be derived:

φm − φn = Mmn, m, n = 1, ...K. (2.21)

It follows that

K∑

k=1

MkmCk =
K∑

k=1

(φk − φm) Ck =
K∑

k=1

φkCk − φm. (2.22)

Using Eqs. (2.20) and (2.21) we obtain the following relation for a homogeneous non-

hydrostatic solid:

U − TS −
∑

i=1,2,3

(V Fi3/F33) σ3i =
K∑

m=1

Nkφk +
L∑

l=1

nlµl. (2.23)

This equation closely resembles Gibbs’ equation for hydrostatic systems [13], with φk playing

a role of chemical potentials. Indeed, in the hydrostatic case the left-hand side of Eq. (2.23)

reduces to the Gibbs free energy U − TS + pV , where p is external pressure.
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2.1.4 The Gibbs-Duhem equation

We can now derive a Gibbs-Duhem type equation for a stressed solid. To this end, we

again consider a variation of state in which the solid exchanges heat with the environment,

performs mechanical work and changes its chemical composition by switching chemical

sorts of substitutional atoms at a fixed N and changing the amounts of interstitial atoms.

Differentiating Eq. (2.16) and using the relation dΦ1 = Ndφ1 and dU from Eq. (2.14),

we obtain the following Gibbs-Duhem equation for a multicomponent solid under a non-

hydrostatic stress:

0 = −SdT −
K∑

k=2

NkdMk1 −Ndφ1 −
L∑

l=1

nldµl

−
∑

i=1,2,3

(V Fi3/F33) dσ3i +
∑

i,j=1,2

V ′QijdFji. (2.24)

Applying Eq. (2.21), this equation can also be written as

0 = −SdT −
K∑

k=1

Nkdφk −
L∑

l=1

nldµl

−
∑

i=1,2,3

(V Fi3/F33) dσ3i +
∑

i,j=1,2

V QijdFji. (2.25)

For hydrostatic processes Qij ≡ 0 while
∑

i=1,2,3 (V Fi3/F33) dσ3i = −V dp. Furthermore,

φk become real chemical potentials as evident from Eq. (2.23). As a result, Eq. (2.25) reduces

to the classical Gibbs-Duhem equation for fluids [13].
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Figure 2.2: (a) Two-dimensional schematic of a reference volume element (shaded unit
square) transforming to coherent phases α (dashed lines) and β (solid lines). The differences
between the deformation-gradient components F13, F23 and F33 of the phases form the
transformation vector t. (b,c) Two-dimensional schematic of two phases, α and β, separated
by a coherent interface. When the interface moves down, the striped region of phase α shown
in (b) transforms the striped region of phase β shown in (c). During the transformation,
the deformation-gradient components F11, F12 and F22 remain the same in both phases.

2.2 Equilibrium between two solid phases separated by a co-

herent interface

2.2.1 Phase equilibrium conditions

We next discuss coherent equilibrium between two homogeneous solid phases whose ther-

modynamic properties were introduced in Section 2.1. We assume that the phases, which

will be referred to as α and β, contain the same K substitutional and L interstitial compo-

nents and are separated by a plane coherent interface normal to the x3 direction (Fig. 2.2).

The definition of coherency used in this work is essentially the same as given by Robin

[25]. When a region of phase α transforms coherently into a region in phase β by migration

of the interface, the two regions are one-to-one maps of each other. As in the kinematics

of deformation discussed in Section 2.1.1, the one-to-one mapping is established between

network sites and not individual atoms. Atoms are allowed to diffuse during the phase
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transformation as long as their diffusion preserves the network. There is a single network

penetrating through both phases and deformed during the transformation. The one-to-one

mapping implies that there is no slip between the phases along the interface. The interface

structure may contain localized disordered regions such as misfit dislocation cores. As long

as their motion during the interface migration preserves the network, the interface is con-

sidered coherent. Due to the no-slip condition, a coherent two-phase system can support

shear stresses applied parallel to the interface.

The following kinematic description of coherent phases is introduced in this work. The

deformation gradients of the phases, Fα and Fβ, are taken relative to the same reference

state and have the right triangular forms

Fα =




F11 F12 Fα
13

0 F22 Fα
23

0 0 Fα
33




, (2.26)

Fβ =




F11 F12 F β
13

0 F22 F β
23

0 0 F β
33




. (2.27)

These forms ensure that the x3 direction in both phases remains normal to the interface

during all deformations. In addition, the lateral components F11, F12 and F22 are common

to both phases, preserving the interface coherency during all deformations. Thus, the phase

deformations differ only in the components Fi3. The differences between these components

in the phases form a vector,

t =
(
F β

13 − Fα
13, F

β
23 − Fα

23, F
β
33 − Fα

33

)
, (2.28)
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which we call the transformation vector. Its geometric meaning is illustrated by a two-

dimensional schematic in Fig. 2.2(a).

The conditions of the coherent phase equilibrium were derived by Robin[25] for a single

component system. Larch and Cahn [18, 23] generalized Robin’s analysis to (i) multicom-

ponent systems with both substitutional and interstitial components and (ii) non-planar

interfaces between inhomogeneous phases. Their equilibrium conditions can be summa-

rized as follows:

(i) Temperature is uniform throughout the system.

(ii) Diffusion potentials Mk1 of all substitutional components and chemical potentials

µl of all interstitial components are uniform throughout the system.

(iii) The internal mechanical equilibrium condition, ∇′ · P = 0, is satisfied inside each

phase (the divergence is taken with respect to the reference coordinates).

(iv) The traction vector at the interface is continuous,

n′α ·Pα = −n′β ·Pβ, (2.29)

where the superscripts indicate the phases and vectors n′α and n′β = −n′α are their unit

normals in the reference state.1 Using Eqs. (2.29) and (2.13) it follows that the stress

components σ31, σ32 and σ33 are also continuous across the interface.

(v) Finally, the so-called phase change equilibrium condition [18,23] must be satisfied:

Uα − TSα −
K∑

k=2

Mk1N
α
k −

L∑

l=1

µln
α
l −

∑

i=1,2,3

(V Fi3/F33)
α σ3i

= Uβ − TSβ −
K∑

k=2

Mk1N
β
k −

L∑

l=1

µln
β
l −

∑

i=1,2,3

(V Fi3/F33)
β σ3i.

(2.30)

Here U , S, V are the energy, entropy and volume of the phases obtained by deformation of

the same reference region. The total number of substitutional atoms is the same in both
1Larche and Cahn used the first Piola-Kirchoff tensor which is a transpose of the one used in this work.
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phases (Nα = Nβ), whereas the total number of interstitial components can be different

(nα 6= nβ).

The equilibrium conditions (i)-(iii) are common to all types of interfaces. The differ-

ences between the coherent, incoherent and other types of interfaces are reflected only in

conditions (iv) and (v).

2.2.2 Derivation of the phase change equilibrium condition

The phase change equilibrium condition (2.30) can be obtained from equation (41) of

Larch and Cahn [18] by substituting our right triangular deformation gradients (2.26)

and (2.27) and the interface normal n = (0, 0, 1). Note that Eq. (2.30) contains the

terms
(
V βF β

13/F β
33 − V αFα

13/Fα
33

)
σ31 and

(
V βF β

23/F β
23 − V αFα

23/Fα
23

)
σ32 proportional to

the shear stresses σ31 and σ32. These terms are specific to coherent phases and vanish for

incoherent, solid-fluid and fluid-fluid systems. To elucidate the meaning of these terms and

prepare the discussion of interface thermodynamics (Section 2.3), we will present an alter-

nate derivation of Eq. (2.30) assuming that the phase equilibrium conditions (i) through

(iv) are already satisfied.

At fixed values of the intensive variables T , M21, ... , MK1, µ1, ... , µL, σ31, σ32, σ33, F11,

F12 and F22 the equilibrium between the phases is neutral, i.e., the interface can migrate

reversibly up or down without altering the thermodynamic states of the bulk phases. The

phase change equilibrium condition expresses the neutrality of the two-phase equilibrium

with respect to such spontaneous displacements of the interface. To formulate this condition

in terms of thermodynamic properties, consider a region of phase α containing the total

of N substitutional atoms. Suppose the interface traverses this region and transforms it

to a regions phase β containing the same total number of substitutional atoms (the total

number of interstitial atoms may change). The initial and transformed states of the region

are shown schematically in Fig. 2.2(b,c).

What is the change in internal energy of this region? Because the transformation is
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reversible, this change depends only on the initial and final states (homogeneous phases α

and β) and not on the transformation path. As the interface traverses the region, it creates

intermediate states that are not homogeneous. However, instead of this transformation path

we will consider another, imaginary path on which the transformation occurs by homoge-

neous deformation of the region with a simultaneous change in its chemical composition and

entropy. Since the system remains homogeneous during this process, its energy change can

be obtained by integrating Eq. (2.14) derived for homogeneous variations. Remembering

that the intensive parameters are fixed, the integration gives

Uβ − Uα = T
(
Sβ − Sα

)
+

K∑

k=2

Mk1

(
Nβ

k −Nα
k

)
+

L∑

l=1

µl

(
nβ

l − nα
l

)

+
∑

i=1,2,3

σ3i

(
V βF β

i3/F β
33 − V αFα

i3/Fα
33

)
.

(2.31)

The last term in Eq. (2.14) does not contribute to this result because F11, F12 and F22 are

not varied to keep the phases coherent. Eq. (2.31) recovers the phase change equilibrium

condition (2.30).

This derivation shows that the last term in Eq. (2.31) represents the mechanical work,

Wm, done by the stress components σ3i during the phase transformation. This work can be

rewritten as

Wm =
∑

i=1,2,3

σ3iF11F22V
′
(
F β

i3 − Fα
i3

)
= F11F22V

′σ · t, (2.32)

where t is the transformation vector defined by Eq. (2.28) and illustrated in Fig. 2.2(a).2

It is important to note that, while V αFα
i3/Fα

33 and V βF β
i3/F β

33 depend on the choice of the

reference state of strain, t is an invariant and in principle measurable quantity characterizing

the crystallography of the transformation.3 For incoherent and other interfaces not capable

of supporting shear stresses, the work term reduces to F11F22V
′σ33t3 = σ33

(
V β − V α

)
. For

2Robin[25] was the first to express the mechanical work term in the phase change equilibrium condition

through a transformation vector (which he denoted v) instead of F.
3See Section 2.5 for a discussion of possible uniqueness of t.
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coherent interfaces, additional work is done by the shear stresses along the component of t

parallel to the interface plane.

Using the thermodynamic potential φ1 defined by Eq. (2.19), the phase change equilib-

rium condition can be expressed as φα
1 = φβ

1 . Moreover, by choosing other substitutional

components for the reference species, the following K relations can be obtained:

φα
m = φβ

m ≡ φm , m = 1, ..., K. (2.33)

Thus, there are K potentials that have the same value in two phases equilibrated with each

other. Condition in Eq. (2.33) replicates equilibrium conditions (ii) and (v). This resembles

the Gibbsian condition of hydrostatic equilibrium [13] with φm playing the role of chemical

potentials.

2.2.3 Equation of coherent phase coexistence in the parameter space

The Gibbs-Duhem equation (2.24) establishes a relation between differentials of intensive

parameters which characterize the thermodynamic state of a single-phase solid under stress.

When two solid phases coexist, their equilibrium imposes additional constraints on possible

variations of state of the phases. These constraints can be expressed by requiring that

the Gibbs-Duhem equations of the phases be expressed through the same set of intensive

parameters and that these equations hold simultaneously:

0 = −SαdT −
K∑

k=2

Nα
k dMk1 −Nαdφ1

−
L∑

l=1

nα
l dµl −

∑

i=1,2,3

(V αFα
i3/Fα

33) dσ3i +
∑

i,j=1,2

V ′αQα
ijdFji,

(2.34)
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0 = −SβdT −
K∑

k=2

Nβ
k dMk1 −Nβdφ1

−
L∑

l=1

nβ
l dµl −

∑

i=1,2,3

(
V βF β

i3/F β
33

)
dσ3i +

∑

i,j=1,2

V ′βQβ
ijdFji.

(2.35)

Solving this system of equations using Cramer’s rule of linear algebra, we obtain

0 = −{S}XdT −
K∑

k=2

{Nk}XdMk1 − {N}Xdφ1

−
L∑

l=1

{nl}Xdµl −
∑

i=1,2,3

{V Fi3/F33}Xdσ3i

+
∑

i,j=1,2

{V ′Qij}XdFji,

(2.36)

where X is one of the extensive properties S, Nk, N , nl, V Fi3/F33 or V ′Qij . The curly

braces are defined by

{Z}X ≡

∣∣∣∣∣∣∣
Zα Xα

Zβ Xβ

∣∣∣∣∣∣∣
Xβ

= Zα − ZβXα/Xβ (2.37)

for any extensive properties X and Z. By specifying X, one of the differentials in Eq. (2.36)

is eliminated because {X}X = 0. The remaining differentials are independent and form a

differential equation describing a coherent phase coexistence surface in the configuration

space of intensive parameters. Thus, the system of two coherent phases is capable of (K +

L + 5) independent variations, which is one degree of freedom less than for each phase

separately. Knowing one equilibrium state of the system, all other states can be found by

integration of Eq. (2.36) along coexistence paths.

Eq. (2.36) relies on the assumption of coherency of the interface. The phase coexistence

equation for incoherent interfaces cannot be obtained as a particular case of Eq. (2.36)
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when σ31 and σ32 are zero. In the absence of coherency, the lateral deformation-gradient

components Fα
11, Fα

12, Fα
22 and F β

11, F β
12, F β

22 are no longer restricted to be the same, because

the phases can be deformed independently parallel to the interface. The phase coexistence

equation can be re-derived from the beginning in a straitforward manner; however this

derivation is beyond the scope of this paper.

2.3 Interface thermodynamics

2.3.1 The interface free energy γ

We are now ready to discuss thermodynamic properties of coherent interfaces. In this section

we will derive expressions for the interface free energy γ, which is defined as reversible work

of creation of a unit interface area.

As above, we imagine two coexisting phases α and β separated by a coherent plane

interface (Fig. 2.4) but now considering the interface as part of the system. The presence of

the interface makes the thermodynamic treatment more complicated for at least two reasons.

Firstly, recall that the separation of the chemical species into substitutional and interstitial

was introduced in Section 2.1.2 for homogeneous phases. In the inhomogeneous interface

region, this separation can be ambiguous. For example, if the interface structure contains

locally disordered regions such as dislocation cores, the concepts of a lattice, substitutional

and interstitial atoms may lose their significance. Nevertheless, we will continue to refer to

the chemical components present in the system as substitutional or interstitial, according

to their behavior inside the bulk phases. This is only a matter of terminology which does

not imply any additional assumptions. Secondly, the deformation gradients Fα and Fβ

were defined for the bulk phases are not a well-defined within the interface region with an

atomic-level thickness. We therefore need to devise a method of introducing γ and other

interface excess quantities without defining a local deformation gradient.

As discussed earlier, the two-phase equilibrium is neutral when the intensive parame-

ters T,M21, ..., MK1, µ1, ..., µL, σ31, σ32, σ33, F11, F12, F22 are fixed. Consider a homogeneous
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region of phase α with the shape of a parallelepiped two faces of which are parallel to the in-

terface and one edge is parallel to the x′1 axis, as shown by the striped pattern in Fig. 2.4(a).

Suppose the interface spontaneously migrates and enters this region, turning it into a two-

phase system (Fig. 2.4(b)). The interface position within this region is arbitrary as long as

its upper and lower boundaries are located in homogeneous parts of the phases. Suppose

the lower boundary is fixed while the placement of the upper boundary is adjusted so that

to keep the total number N of substitutional atoms in the region fixed. The cross-section of

the region parallel to the interface remains constant and the same at every height due to the

coherency condition. We assume that the shape change of this system with N substitutional

atoms and varying number of interstitial atoms can be traced by monitoring the shape of

an imaginary envelope. In particular systems this shape change can be identified by looking

at lattice planes. Example of such an envelope for solid-liquid interface is given on Fig. 6.1,

in which case the shape remains rectangular but the volume changes.

As a result of this transformation, the upper boundary of the region translates by

a vector B. We formally define a homogeneous deformation gradient, F, mapping the

reference region onto this parallelepiped:

F =




F11 F12 (Fα
13 + B1A

′/V ′)

0 F22 (Fα
23 + B2A

′/V ′)

0 0 (Fα
33 + B3A

′/V ′)




, (2.38)

where V ′ is the volume of the reference region and A′ is the cross-sectional area of the

interface in the reference state. We will refer to F as the average deformation gradient of

the region. Note that both B and F characterize the entire two-phase region and depend

on its reference thickness V ′/A′ and the position of the interface in it. During such a

transformation substitutional atoms rearrange (from bulk structure into interface) and may

become a part of disordered interface dislocation cores; however calculation of the vector

B should be still possible because the upper boundary of the region with N substitutional
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atoms is located inside crystalline phase where lattice is well defined.

We now wish to calculate the change in internal energy of the region when it transforms

from the single-phase state to the two-phase state. Instead of tracking the actual motion

of the interface into the region, we will take its initial and final states and consider a

different reversible process between them. Specifically, consider a process of homogeneous

phase transformation α → β in the upper part of the region at fixed values of the intensive

parameters and N . The transformation occurs in an open system whose energy changes

due to the processes: (i) heat exchange with the environment, (ii) diffusion of atoms in and

out of the system (keeping constant N), (iii) mechanical work Wm performed by stresses

applied to boundaries of the region, and (iv) non-mechanical work Wnm associated with

local atomic rearrangements leading to the formation of the interface.

Since the cross-section of the region remains fixed, the mechanical work is performed

only by the stress components σ3i to displace the upper boundary of the region by the

vector B. Thus, Wm = Anα·σ · B, where nα is the unit normal to the interface pointing

into phase β and A is the cross-sectional area. To keep a similarity with the work terms

derived previously for the homogeneous phases, see e.g. Eq. (2.31), we will express Wm

through F by inserting Bi from Eq. (2.38):

Wm = A
∑

i=1,2,3

σ3iBi =
∑

i=1,2,3

σ3i

(
V F i3/F 33 − V αFα

i3/Fα
33

)
,

where we denoted

F i3 ≡
(
Fα

i3 + BiA
′/V ′) . (2.39)

Using this expression for Wm, the energy change is

U − Uα = T (S − Sα) +
K∑

k=2

Mk1 (Nk −Nα
k ) +

L∑

l=1

µl (nl − nα
l )+

+
∑

i=1,2,3

σ3i

(
V F i3/F 33 − V αFα

i3/Fα
33

)
+ Wnm,

(2.40)
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where the extensive quantities without the superscript α refer to the final state of the

system.

We define the interface free energy γ as the non-mechanical work per unit interface area,

i.e., γA = Wnm. Using Eq. (2.19) for φ1, this finally obtain

γA = U − TS −
K∑

k=2

Mk1Nk − φ1N −
L∑

l=1

µlnl −
∑

i=1,2,3

σ3iV F i3/F 33, (2.41)

or using Eq. (2.21),

γA = U − TS −
K∑

k=1

φkNk −
L∑

l=1

µlnl −
∑

i=1,2,3

σ3iV F i3/F 33. (2.42)

These expressions for γA can be written in a shorter form by defining the Φ1 potential of

the region by analogy with Eq. (2.16):

Φ1 ≡ U − TS −
K∑

k=2

Mk1Nk −
L∑

l=1

µlnl −
∑

i=1,2,3

(
V F i3/F 33

)
σ3i. (2.43)

Then

γA = Φ1 −Nφ1, (2.44)

showing that γ is the excess of the Φ1 potential per unit interface area.

Eqs. (2.41) and (2.42) express the total interface free energy γA through properties of

an arbitrary region containing the interface. While γA is well-defined, the individual terms

appearing in the right-hand side depend on the location of the boundaries of the region.

To express those terms through interface excesses independent of the choice of the region,

we should subtract contributions of the homogeneous phases. To this end, we select two

arbitrary regions inside the homogeneous parts of the phases. Such regions can be chosen
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phase β

phase α
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33

σ

σ

23σ

Interface

  region

Figure 2.3: Two solid phases separated by coherent interface. Interface region shown by
solid red line includes homogeneous parts of phases α and β. Regions inside homogenious
parts of the phases are shown in green.

within the region containing the interface or outside this region. The latter case is illustrated

in Fig. 2.3. Let the total numbers of substitutional species in the homogeneous regions be

Nα and Nβ, respectively. Eq. (2.19) applied to each of these regions gives

0 = Uα − TSα −
K∑

k=2

Mk1N
α
k − φ1N

α −
L∑

l=1

µln
α
l −

∑

i=1,2,3

σ3iV
αFα

i3/Fα
33 (2.45)

and

28



0 = Uβ − TSβ −
K∑

k=2

Mk1N
β
k − φ1N

β −
L∑

l=1

µln
β
l −

∑

i=1,2,3

σ3iV
βF β

i3/F β
33. (2.46)

Eqs. (2.41), (2.45) and (2.46) form a system of linear equations with respect to differ-

entials of the intensive variables. We proceed by solving this system using Cramer’s rule of

linear algebra to obtain [26]

γA = [U ]XY − T [S]XY −
K∑

k=2

Mk1[Nk]XY − φ1[N ]XY

−
L∑

l=1

µl[nl]XY −
∑

i=1,2,3

σ3i[V F i3/F 33]XY , (2.47)

or using Eq. (2.21),

γA = [U ]XY − T [S]XY −
K∑

k=1

φk[Nk]XY

−
L∑

l=1

µl[nl]XY −
∑

i=1,2,3

σ3i[V F i3/F 33]XY . (2.48)

Here X and Y are any two of the extensive quantities U , S, V F i3/F 33, Nk and nl. The

coefficients [Z]XY are computed as a ratio of two determinants [14]
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[Z]XY ≡

∣∣∣∣∣∣∣∣∣∣

Z X Y

Zα Xα Y α

Zβ Xβ Y β

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

Xα Y α

Xβ Y β

∣∣∣∣∣∣∣

. (2.49)

The quantities in the first row of the numerator are computed for a region containing the

interface, whereas the quantities in other rows are computed for homogeneous regions of

phases α and β.

The quantity [Z]XY has the meaning of the interfacial excess of property Z when a

region containing the interface contains the same amounts of X and Y as the bulk phases

combined (i.e., when the excesses of X and Y are both zero). The excess of Z is generally

not unique and depend on the choice of X and Y . Due to properties of determinants,

[X]XY = [Y ]XY = 0. (2.50)

Thus, two terms in Eqs. (2.47) and (2.48) are zero. The excesses [Nk]XY and [nl]XY

have the meaning of interfacial segregation of substitutional and interstitial components,

respectively. The terms [V ]XY , [V F 13/F 33]XY and [V F 23/F 33]XY represent the excess

volume and excess shears of the interface, respectively. The excess shears are properties

specific to coherent interfaces. They have no significance for incoherent and other interfaces

can cannot be equilibrated under shear stresses parallel to their plane. By contrast, the

excess volume [V ]XY is common to all interfaces [14].

As already noted, γA represents an excess of the Φ1 potential. Using the square bracket

notations,
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γA = [U − TS −
K∑

k=2

Mk1Nk −
L∑

l=1

µlnl −
∑

i=1,2

σ3iV F i3/F 33]NV ≡ [Φ1]NV , (2.51)

i.e., the excess of Φ1 should be computed under a fixed total number of substitutional

atoms and a fixed volume. In fact, γA can be expressed through excesses of different

thermodynamic potentials corresponding to different choices of X and Y . For example,

γA = [U −
K∑

k=2

Mk1Nk −
L∑

l=1

µlnl −
∑

i=1,2,3

σ3iV F i3/F 33]NS , (2.52)

where the excesses of the total number of substitutional atoms and entropy are zero. The

flexibility in expressing the same γA through excesses of different thermodynamic potentials

can be useful in applications.

2.3.2 The adsorption equation

Having introduced the interface free energy, we are now in a position to derive the adsorption

equation. As a first step, we will compute the energy differential dU the two-phase region

containing the interface (Fig. 2.4(b,d)). The corners of this region define an imaginary

parallelepiped shown in Fig. 2.4(e). Due to the coherency condition, the region has the same

cross-section at every height x3, as does the parallelepiped. Therefore, the parallelepiped

can be thought of as obtained by mental slicing of the region into infinitely thin layers and

their translation parallel to the interface. Since all properties of the system as assumed

to be uniform in the directions parallel to the interface, the parallelepiped has exactly the

same energy as the region. This remains true at every point of any equilibrium process that

the region may undergo by deformation and or changes.

Thus, instead of computing dU for the initial region we can compute dU for the par-

allelepiped, which in fact is also a two-phase region containing the interface but having a
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B

Figure 2.4: Coherent transformation of the region initially located inside phase α (a) into
a layer containing both phases and an interface (b). (c) is a zoomed view of the reference
region with the dotted line showing an approximate interface position in reference coor-
dinates. (d) is a zoomed view of the deformed region of phase α (dashed lines) and the
two-phase region (solid lines). The dash-dotted line outlines a shape defining the aver-
age deformation gradient F. The open circles mark imaginary markers embedded in the
reference and deformed states of the bulk phases.

different shape. The advantage is that the mechanical work term can now be expressed

through the average deformation gradient F employed in the definition of γA. If the par-

allelepiped changes its shape (while still keeping its bottom face fixed, the top face parallel

to the interface and one of the edges parallel to the x′1 axis), the mechanical work dWm

done by the stresses applied to its facets is the sum of the relevant forces times the facet

displacements. The calculation of this work is simplified by formally considering F as a
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homogeneous deformation gradient relative the same reference space as used for the homo-

geneous phases and mapping the reference region of phase α to the parallelepiped (Fig. 2.4).

This gives

dWm =
∑

i=1,2,3

V ′F11F22σ3idF i3 +
∑

i,j=1,2

V ′P ijdFji, (2.53)

where P ≡ JF− ·σ is a formal analog of the first Piola-Kirchhoff stress tensor and σ is the

true stress tensor averaged over the parallelepiped. Because σ3i are coordinate-independent,

it is only the lateral stress components σ3i, i, j = 1, 2, that should be averaged over the

coordinate x3 to obtain σ.

In a more general variation of state, the region also exchanges heat and matter with its

environment. Keeping, as usual, the total number of substitutional atoms fixed, we obtain

dU = TdS +
K∑

k=2

Mk1dNk +
L∑

l=1

µldnl+

+
∑

i=1,2,3

V ′F11F22σ3idF i3 +
∑

i,j=1,2

V ′P ijdFji.

(2.54)

This equation looks similar to Eq. (2.14) and represents a generalization of the latter to an

inhomogeneous system containing an interface.

As the next step towards the adsorption equation, Differentiating Eq. (2.41) and using

expression for dU from Eq. (2.54) we obtain
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d (γA) = −SdT −
∑

i=1,2,3

(V Fi3/F33) dσ3i −

−
K∑

k=2

NkdMk1 −Ndφ1 −
L∑

l=1

nldµl

+
∑

i,j=1,2

∫

V ′

J
∑

r=1,2,3

F−1
ir


σrj −

∑

m=1,2,3

Fm3

F33
σ3mδrj


 dFijdV ′

= dΦ1 −Ndφ1. (2.55)

Eq. (2.55) provides an expression for tensor Q of a inhomogeneous region

Q =
1
V ′

∫

V ′

JF−1


σ −

∑

m=1,2,3

Fm3

F33
σ3mI


 dV ′ (2.56)

For a homogeneous system Eq. (2.56) reduces to earlier introduced Q in Eq. (2.18).

The differentials in the RHS in Eq. (2.55) are not independent. There are two additional

equations of constraint imposed by the Gibbs-Duhem type equations (2.34) and (2.35) of

the phases α and β. Solving the system of equations (2.55), (2.34) and (2.35) using Cramer’s

rule, we obtain the adsorption equation

d (γA) = −[S]XY dT −
∑

i=1,2,3

[V Fi3/F33]XY dσ3i−

−
K∑

k=2

[Nk]XY dMk1 − [N ]XY dφ1

−
L∑

l=1

[nl]XY dµl +
∑

i,j=1,2

[V ′Qij ]XY dFji.

(2.57)

where X and Y are two of the extensive properties S, V Fi3/F33, Nk, nl or V ′Qij .
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Note the significant difference between Eqs. (2.55) and (2.57) for the same differential

d(γA) In Eq. (2.55), the differential coefficients are the properties of the region containing

the interface. These properties depend on the choice of the region boundaries and thus,

have no physical significance. In the adsorption equation (2.57), on the other hand, the

differential coefficients are the excesses [Z]XY introduced earlier by Eq. (2.49). For a given

choice of X and Y , these excesses are independent of the choice of the interface region or

the bulk regions.

The second major difference is the number of differentials on the RHS. In Eq. (2.55), it

exceeds the number of degrees of freedom available to the system of two coexisting phases.

Eq. (2.55) is not a perfect differential and symbol δ instead of d is perhaps more suitable.

On the other hand, due to the property of determinants two terms in Eq. (2.50), are

eliminated in Eq. (2.57) by specifying X and Y . This leaves only independent differentials

in the adsorption equation. Thus, the number of degrees of freedom is K + L + 5 which

consistent with the phase rule in Eq. (2.36) and the adsorption equation (2.57) is a perfect

differential. As a result, each excess [Z]XY can be expressed as a partial derivative of γA,

and is a measurable quantity.

The adsorption equation corresponding to the Gibbs dividing surface can be obtain by

choosing X = V , so that the volume of the layer containing the interface is equal to sum

of the volumes of the phases α and β. Although the excess volume [V ]V Y is zero in this

case, the terms [V F13/F33]V Y and [V F23/F33]V Y are generally not zero and present in the

adsorption equation for coherent interfaces.

Interface stress

The last term in the adsorption equation describes contribution to γA from elastic deforma-

tion of the interface [16,17]. This deformation is fully described by the lateral components

F11, F12 and F22 of the deformation gradient. The coefficients [V ′Qij ]XY are the excess

quantities which form a (2× 2) tensor and which we identify with components of the inter-

face stress tensor. As other excess quantities, [V ′Qij ]XY generally depends on the choice
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of the extensive variables X and Y and therefore is not unique. It does become unique,

however, when both phases are hydrostatic. Under certain conditions (for example, a free

standing film), different [V ′Qij ]XY are expected to be very close to each other.

If we divide the adsorption equation (2.57) by the interface area in the reference state,

we can introduce Lagrangian excess quantities. The reference area is not affected by elastic

deformation, so each term in the adsorption equation can be divided by the reference area

even the terms under the differential like d(γA). The Lagrangian interface stress, for ex-

ample, gives the excess of stress over the bulk stresses computed per unit of the reference

area.

If the current state of one of the phases is taken as the reference state, F11 = F22 = 1,

F12 = 0 and Eq. (2.57) becomes

d (γA) = −[S]XY dT −
∑

i=1,2,3

[V Fi3/F33]XY dσ3i−

−
K∑

k=2

[Nk]XY dMk1 − [N ]XY dφ1 −
L∑

l=1

[nl]XY dµl +
∑

i,j=1,2

τXY
ij Adeji

(2.58)

where

τXY
11 ≡ 1

A
[V Q11]XY τXY

22 ≡ 1
A

[V Q22]XY τXY
12 = τXY

21 ≡ 1
A

[V Q12]XY (2.59)

In Eq. (2.58) e is the small strain tensor with de11 = dF11, de22 = dF22 and de12 = de21 =

1
2dF12. The components e12 and e21 are identical and should not be treated as independent

variables. τ defined by Eq. (2.59) is the interface stress tensor. It describes the change in

interface free energy due to elastic deformation of the interface. The four components of τ

given in Eq. (2.59) form a (2× 2) symmetrical tensor.

In the remainder of this paper, we will use the small strain e instead of the deformation
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gradient F to describe elastic variations parallel to the interface . However, all relations

derived below can be obtained in a straightforward manner from Eq. (2.57) and rewritten

in a more general form containing F.

2.3.3 Lagrangian and physical forms of the adsorption equation

In the adsorption equation (2.58), the differential of the total interface free energy γA

is expressed through differentials of the intensive parameters. We call this form of the

adsorption equation Lagrangian. One can also derive the physical form of the adsorption

equation by differentiating γA in Eq. (2.58). Using dA = A
∑

i,j=1,2

δijdeij and dividing both

sides of the equation by the physical area A, we obtain

dγ = − [S]XY

A
dT −

∑

i=1,2,3

[V Fi3/F33]XY

A
dσ3i−

−
K∑

k=2

[Nk]XY

A
dMk1 − [N ]XY

A
dφ1

−
L∑

l=1

[nl]
A

dµl +
∑

i,j=1,2

(
τXY
ij − δijγ

)
deji

(2.60)

In Eq. (2.60), the excess quantities are computed per unit of the current physical area.

From Eq. (2.60) we immediately obtain the generalized Shuttleworth equation [15]

(
∂γ

∂eij

)XY

= τXY
ij − δijγ. (2.61)

In Eq. (2.61), the partial derivative with respect to strain is taken while all other

independent variables are held constant. Eq. (2.61) actually represents several equations,

because the set of independent variables in the adsorption equation depends on the choice

of X and Y .
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Eqs. (2.58) and (2.60) represent the perfect differentials of the total and specific in-

terfacial free energy, respectively, and generate two sets of Maxwell relations which will be

discussed in Sec. 2.3.5.

2.3.4 Thermodynamic integration

In this section we derive another version of the adsorption equation which can be useful

in applications. Interface free energy γ can be computed by integration of the adsorp-

tion equation along a coexistence path knowing an initial value. However, in applications

the excess entropy [S]XY is rarely accessible. To avoid calculation of [S]XY , we combine

Eqs. (2.47) and (2.58) to eliminate the entropy term and derive the interface version of the

well known Gibbs-Helmholtz equation:

d

(
γA

T

)
= − [Ψ]XY

T 2
dT +

∑

i=1,2,3

[V Fi3/F33]XY

T
dσ3i−

−
K∑

k=2

[Nk]XY

T
dMk1 − [N ]XY

T
dφ1

−
L∑

l=1

[nl]XY

T
dµl +

1
T

∑

i,j=1,2

τXY
ij deji,

(2.62)

where the thermodynamic potential Ψ is defined by

Ψ ≡ U −
∑

i=1,2,3

σ3iV Fi3/F33 −
K∑

k=2

NkMk1 −Nφ1 −
L∑

l=1

nldµl (2.63)

Eq. (2.62) can be integrated to compute γ as a function of the intensive variables and

does not require knowledge of [S]XY . This equation has the same number of independent

variables as the adsorption equation (2.58). It is strait forward to derive the physical form

of the equation, which will contain the differential d (γ/T ). Since Eq. (2.62) becomes a
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perfect differential after the extensive quantities X and Y are specified, it produces new

Maxwell relations that do not involve the excess entropy. Such relations will be analyzed

in the next section.

2.3.5 Maxwell relations

As we mentioned earlier, the adsorption equation generates a number of Maxwell relations

between derivatives of the excess quantities. We will focus on relations that involve the

effects of mechanical stresses on interface properties. For hydrostatic precesses, such rela-

tions were discussed by Cahn [14]. New variables in the adsorption equation introduced

in this work, such as the shear stresses σ31 and σ32 and the diffusion potentials Mk1 of

substitutional components, lead to new Maxwell type relations. The Lagrangian and phys-

ical forms of the adsorption equation produce different Maxwell relations, which will be

analyzed simultaneously. In the equations appearing below, the variables held constant are

dictated by a particular choice of the extensive variables X and Y . Thus, each Maxwell

relation in fact represents a set of relations corresponding different choices of X and Y .

Mechanical-mechanical relations

The first set of Maxwell relations examines how the lateral deformations eij and the stresses

σ3k affect interface excess volume, excess shear and interface stress. From the Lagrangian

form of the adsorption equation (2.58) and the physical form (2.60), we obtain

∂
(
τXY
ij A

)

∂ekl
=

∂
(
τXY
kl A

)

∂eij
,

∂
(
τXY
ij − δijγ

)

∂ekl
=

∂
(
τXY
kl − δklγ

)

∂eij
,

i, j, k, l = 1, 2,

(2.64)
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∂
(
τXY
ij A

)

∂σ33
= −∂[V ]XY

∂eij
,

∂
(
τXY
ij − δijγ

)

∂σ33
= −∂ ([V ]XY /A)

∂eij
,

i, j = 1, 2,

(2.65)

∂
(
τXY
ij A

)

∂σ3k
= −∂([V Fk3/F33]XY )

∂eij
,

∂
(
τXY
ij − δijγ

)

∂σ3k
= −∂([V Fk3/F33]XY /A)

∂eij
,

i, j, k = 1, 2,

(2.66)

∂([V Fk3/F33]XY )
∂σ33

=
∂[V ]XY

∂σ3k
, k = 1, 2. (2.67)

Eq. (2.65) describes the interfacial Poisson effect, in which lateral deformation of the inter-

face produces change in the “interface thickness” (excess volume per unit area). Because

Eqs. (2.64) - (2.66) involve changes in interface area, Lagrangian and physical forms of these

relations are different. By contrast, the Lagrangian and physical forms of Eq. (2.67) are

identical, because the derivatives are taken at constant area.

Mechanical-chemical relations

Elastic deformation parallel and normal to the interface plane affect segregation. These

changes in segregation, in turn, are related to changes in interface stress and the excess

volume and shear. Here we show the Maxwell relations for substitutional components when

the diffusion potential Mk1 is varied. For interstitial components, the relations have a

similar form with the diffusion potentials replaced by chemical potentials µl. The effect of
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deformation parallel to the interface on segregation is described by the relations

∂
(
τXY
ij A

)

∂Mk1
= −∂[Nk]XY

∂eij
,

∂
(
τXY
ij − δijγ

)

∂Mk1
= −∂ ([Nk]XY /A)

∂eij
,

i, j = 1, 2, k = 2, ..., K.

(2.68)

Because interface area changes, there are two forms of this relation. The effect of the

σ31, σ32 and σ33 stresses on segregation is represented by the relations

∂[V ]XY

∂Mk1
=

∂[Nk]XY

∂σ33
, k = 2, ..., K, (2.69)

∂([V Fi3/F33]XY )
∂Mk1

=
∂[Nk]XY

∂σ3i
,

i, j = 1, 2, k = 2, ..., K.

(2.70)

Since the derivatives are taken at constant area, the Lagrangian and physical forms of

Maxwell relations are identical.

Mechanical-thermal relations

Such relations involve effects of temperature on interface stress, excess volume and excess

shear. The corresponding Maxwell relations generated by Eq. (2.58) would contain a deriva-

tive of [S]XY with respect to strains and stresses. Alternatively, the Gibbs-Helmholtz ver-

sion of the adsorption equation does not require knowledge of [S]XY and gives the Maxwell

relations that involve the temperature derivative. These relations are
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∂
(
τXY
ij A/T

)

∂T
= −∂

(
[Ψ]XY /T 2

)

∂eij
,

∂
{(

τXY
ij − δijγ

)
/T

}

∂T
= −∂ ([Ψ]XY /A)

∂eij
,

i, j = 1, 2,

(2.71)

∂ ([V ]XY /T )
∂T

=
∂

(
[Ψ]XY /T 2

)

∂σ33
, (2.72)

∂ ([V Fk3/F33]XY /T )
∂T

=
∂

(
[Ψ]XY /T 2

)

∂σ3k
, k = 1, 2. (2.73)

In Eq. (2.71), the Lagrangian and physical forms of the relation are different. The

potential Ψ is given by Eq. (2.63).

Chemical-thermal relations

Using the interface version of the Gibbs-Helmholtz equation, Eq. (2.62), we can evaluate

the effect of temperature on segregation of substitutional and interstitial components. The

corresponding derivatives involve [Ψ]XY instead of [S]XY :

∂ ([Nk]XY /T )
∂T

=
∂

(
[Ψ]XY /T 2

)

∂Mk1
, k = 2, ..., K, (2.74)

∂ ([nl]XY /T )
∂T

=
∂

(
[Ψ]XY /T 2

)

∂µl
l = 1, ..., L. (2.75)

For substitutional components, the derivatives are taken with respect to the diffusion

potentials, while for interstitial components with respect to the chemical potentials are

involved.
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2.4 Application of the treatment to other types of interfaces

Thermodynamic equations derived for coherent solid-solid interfaces can be formaly applied

to describe incoherent, solid-fluid and fluid-fluid interfaces by setting terms containing shear

stresses σ31 and σ32 to zero. For incoherent solid-solid interfaces these equations are valid

for variations when Fα
11 = F β

11, Fα
12 = F β

12 and Fα
22 = F β

22. Incoherent solid-solid interfaces

are capable of additional variations when each phase is deformed independently [16,27,28].

These variations are not considered here. In this section we analyze equations for incoherent

solid-solid, solid-fluid and fluid-fluid interfaces as well as equations for surfaces and grain

boundaries.

2.4.1 Interfaces in two-phase systems

Incoherent solid-solid interfaces

Incoherent solid-solid interfaces do not support shear stresses parallel to the interface plane.

Because sliding can occur, excess interface shears have no meaning. However, the excess

volume is still well defined. In the definition of the interface free energy in Eq. (2.47), we

set shear stresses σ31 and σ32 to zero. For the same reason, in the adsorption equation

in Eq. (2.58) the differentials of σ31 and σ32 are identically zero. Keeping in mind the

constraint Fα
11 = F β

11, Fα
12 = F β

12 and Fα
22 = F β

22, the number of degrees of freedom in this

case is K +L+3. The potentials φm are defined for the non-hydrostatically stressed phases

through Eq. (2.20). When shear stresses are zero these potentials are independent of the

reference state.

Solid-fluid interfaces

Just as incoherent solid-solid interfaces, solid-fluid interfaces do not support shear stresses

parallel to the interface. Therefore, vanishing of the shear terms discussed in the preceding

paragraph applies here as well. In addition, the fluid is hydrostatic and potentials φm

become the real chemical potentials in the fluid.
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Fluid-fluid interfaces

Finally, we discuss fluid-fluid interfaces. In the treatment of coherent solid-solid interfaces

we considered elastic deformations of the phases to derive the adsorption equation which

includes a work term with the interface stress τ . For a fluid system, we can imagine that

this elastic work is done by the walls of the rigid envelope which incloses the fluids. The

bulk parts of the phases exert the hydrostatic stress −p on the walls. However, along the

perimeter where the phases meet, the stresses exerted on the walls are different from −p due

to the interface tension. Thus, the average stress exerted on the walls is non-hydrostatic

even though the phased and the interface are fluid. The expression for interface free energy

and the adsorption equation become

γA = [U ]XY − T [S]XY + p[V ]XY −
K+L∑

k=1

µk[Nk]XY , (2.76)

d (γA) = −[S]XY dT + [V ]dp−
K+L∑

k=1

[Nk]XY dµk + τdA, (2.77)

where µk are chemical potentials of the components of the fluids. In fluids there is no need

to separate substitutional and interstitial components and they are grouped together.

The interface stress computed using Eq. (2.59) is

τij = (σij + δijp) V/A, i, j = 1, 2. (2.78)

Here σij are the average lateral components of the stress computed for some region of volume

V that contains interface as well as homogeneous parts of the phases α and β. The terms
(
σα

ij + δijp
)

and
(
σβ

ij + δijp
)

in Eq. (2.59) are identically zero due to the hydrostaticity of

the phases. Thus, as we mentioned earlier, when phases are hydrostatic (not necessarily

fluid), the interface stress is unique (independent of the choices of X and Y ) and is given
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by Eq. (2.78). It is safe to assume that the interface properties are isotropic within a plane

parallel to the interface, which means that τ11 = τ22 and τ12 = 0. This allows us to define

interface tension τ = τ11 = τ22, which has a meaning of the excess force per unit area acting

on the interface. Since τ is a scalar, we wrote τijAdeij in Eq. (2.77) as simply τdA

At this point the interface free energy γ is defined as an excess of the thermodynamic

potential in Eq. (2.76), whereas interface tension τ is introduces through the work term in

the adsorption equation (2.77). Equality of these quantities has not been assumed so far.

To prove this equality, we now consider the following thought experiment at constant T

and µk (open system), when the walls of the envelope slowly (reversibly) move in lateral

dimensions and simultaneously in the direction normal to the interface in a such a way that

p remains constant. As a result of this process, the interfacial area is increased at constant

T , p and µk. Eq. (2.77) for this process becomes

d(γA) = τdA.

In this process we change A at a fixed coexistence point and thus a constant γ. Thus, d(γA)

becomes

γdA = τdA. (2.79)

Eq. (2.79) demonstrates that, for fluid-fluid interfaces, γ and τ are identical, although

they were introduced as two different physical quantities. If one of the phases was solid,

this imaginary process could not be implemented and the relation τ = γ would not have to

be valid.

2.4.2 Interfaces in a single-phase systems

Grain boundaries

Grain boundary is a particular type of phase boundary when the coexisting phases are

thermodynamically identical. Generally, two grains of an elastically anisotropic material
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under stress have different thermodynamic states. If they are brought together, one grain

will begin to grow at the expense of the other. Therefore, such grains should be treated as

two separate phases. The equilibrium can be achieved if the conditions (i) through (v) are

satisfied. Possible variations of state preserving equilibrium are described by Eq. (2.36). An

example of such system is an asymmetrical GB. When non-hydrostatic stresses are present,

energy, entropy and volume per atom will be different in the two grains. Such GBs should

be treated as a heterophase interface.

The equilibrium between two grains can be considered as a single-phase equilibrium,

if the conditions (i) - (iv) hold and the phase change condition (2.31) is satisfied because

all individual terms are zero. In this case all the thermodynamic properties of individual

grains are identical. Possible variations of state also have to be consistent with a single-

phase description. This requires that Eq. (2.36) is also satisfied trivially with all the terms

equal to zero individually. Below we give an example showing that these requirements may

impose constraints on possible variations of state of the system with a GB.

Just as phase boundaries GBs can be coherent and incoherent. Coherent GBs represent

the most complex case of interfaces in a single phase system, because they can support

shear stresses parallel to the GB plane, along with other stresses parallel and normal to

the GB plane. Coherency here should be understood in the same context as for the phase

boundaries. When temperature [29] or chemical composition [30] changes, some GBs change

their structure and grains begin to slide under applied shear stress. We refer to these GBs

as incoherent.

When two grains are thermodynamically identical, certain equilibrium states cannot be

realized. Consider for example two grains of the same phase forming a symmetrical tilt GB.

The transformation of one grain into another is accompanied by a relative displacement

of the grains normal to the tilt axis and parallel to the GB plane. Such transformation

is described by a deformation gradient with one non-zero difference F β
13 − Fα

13, where the

superscripts indicate the two grains. Because the grains are thermodynamically identical, all

terms in Eqs.(2.31) and (2.36) vanish except for the non-zero work due to shear displacement
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in the x1 direction. To satisfy equilibrium, shear stress σ31 must be zero in Eq. (2.31) and

constant in Eq. (2.36). Otherwise, the system is not in equilibrium and the GB moves by

coupled motion [31,32]. This example shows that while both grains can be deformed (under

applied shear σ31) producing identical solids, when they are joined together, the equilibrium

is broken. Notice, that the potentials φα and φβ can still be defined for the two grains.

Their difference φβ − φα =
(
Fα

13 − F β
13

)
σ31Ω gives the driving force per atom for coupled

motion, which is linear in shear stress. Here, Ω is a volume per atom, which is the same in

both grains.

From the phase change equilibrium condition (2.31) and Eq. (2.36) we conclude that,

for a coherent transformation described by a deformation gradient with non-zero differences

F β
13−Fα

13 or F β
23−Fα

23, the corresponding shear stresses must be zero. At the same time, if

F β
13−Fα

13 or F β
23−Fα

23 is identically zero, the corresponding shear stresses may be finite. When

these conditions are satisfied, then two identical grains under stress will be in equilibrium.

Assuming that the system with a GB can be described as a single-phase, Eqs. (2.45) and (2.46)

are the same and γA is obtained by solving the system of only two equations:

γA = [U ]X − T [S]X −
∑

i=1,2,3

σ3i[V Fi3/F33]X−

−
K∑

k=2

Mk1[Nk]X − [N ]Xdφ1 −
L∑

l=1

µl[nl]X ,

(2.80)

where

[Z]X ≡

∣∣∣∣∣∣∣
Z X

Zα Xα

∣∣∣∣∣∣∣
Xα

= Z − ZαX/Xα. (2.81)

By specifying X, only one variable can be eliminated. Similarly, Eqs. (2.34) and (2.35)

are identical and the adsorption equation is obtained by solving a system of only two
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equations:

d (γA) = −[S]XdT −
∑

i=1,2,3

[V Fi3/F33]Xdσ3i −
K∑

k=2

[Nk]XdMk1−

− [N ]Xdφ1 −
L∑

l=1

[nl]Xdµl +
∑

i,j=1,2

τX
ij Adeji.

(2.82)

Again, one variable in Eq. (2.82) is eliminated by specifying the extensive property X.

Notice, that since there is no constraint on phase equilibrium between the two grains, the

number of independent differentials in Eq. (2.82) is one more than in Eq. (2.58) for two

phase equilibrium. In reality in single phase systems not all variations can be realized

because of the equilibrium constraints discussed above.

In the direction with finite shear stress the expression for the excess shear takes a

particularly simple form. Let this finite shear be σ31, then Fα
13 = F β

13 = 0 (current state of

one of the grains taken as a reference) and [V F13/F33]N/A = b1, where we chose X = N .

b1 has a simple physical meaning. It is the excess displacement in the direction of shear of

the system with a GB relative to the bulk system containing the same number of atoms.

The case of incoherent GBs is treated by simply setting shear stresses and their differ-

entials to zero in Eqs. (2.80) and (2.82).

Interfaces with static walls and surfaces

Finally, we discuss static walls and surfaces. In these cases the expression for γA and

the adsorption equation is also obtained by solving a system of only two equations. The

terms containing shear stresses σ31 and σ32 and their differentials disappear. The important

difference between static walls and surfaces is that the former support normal stress σ33

and have a definite excess volume [V ]X . For surfaces it is impossible to define [V ]X and

unnecessary because σ33 is identically zero. Thus, the expression for γA and the adsorption

equation for static walls are
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γA = [U ]X − T [S]X + p[V ]X −
K∑

k=1

φk[Nk]X −
L∑

l=1

µl[nl]X , (2.83)

d (γA) = −[S]XdT + [V ]Xdp−
K∑

k=2

[Nk]XdMk1−

− [N ]Xdφ1 −
L∑

l=1

[nl]Xdµl +
∑

i,j=1,2

τX
ij Adeji,

(2.84)

with p = 0 and dp = 0 for surfaces.

For fluid surfaces the equality of τ and γ can be shown by applying the adsorption

equation to a thought experiment similar to the one discussed in Sec. 2.4.1

2.5 Discussion and conclusions

In this work we developed a thermodynamic treatment of solid-solid interfaces in a multi-

component system under a general non-hydrostatic state of stress that includes shear stresses

parallel to the interface. Shear stresses parallel to the interface affect two-phase equilibrium

conditions. The phase change equilibrium condition derived by Robin [25] contains term

which describes mechanical work of shape change during a coherent transformation under

shear stress.

The later stresses also contribute to work γ required to create a unit of the interface

area between the phases in equilibrium. The expression for γ was derived by considering

a process in which an interface was created reversibly between two solid phases. The total

interface free energy γA was then expressed through excess of an appropriate thermody-

namic potential which included the shear stresses σ31 and σ32 and corresponding excesses of

interface shear. In our analysis we did not use the concept of the dividing surface [13], which

allowed to track the shape change of the system with interface in a straightforward manner

and avoid defining individual chemical potentials of the substitutional atoms. When one of
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the extensive parameters X or Y is equal to V and shear stresses σ31 and σ32 are zero, the

excess quantities are identical to those introduced by Gibbs.

We also derived the adsorption equation which describes change in γ due to thermal,

chemical and mechanical variations of state. In the adsorption equation the diffusion poten-

tials for substitutional components appear instead of the chemical potentials. The expres-

sion for γA and the adsorption equation introduces a new excess quantity: excess of shear

at a coherent interface. The adsorption equation derived in this work describes processes

which include deformation of the interface area and contains the work term of this elastic

deformation parallel to the interface plane. The later work is done by interface stress τ .

The adsorption equation gives a recipe how to compute τ as an excess quantity.

The thermodynamic treatment of interfaces developed in this work assumes that equi-

librium conditions (i)-(v) are satisfied. These conditions, in turn, assume that the path of

coherent transformation is unique. However, crystal symmetry can lead to multiplicity of

paths of coherent transformation [31]. In case of coherent migration of grain boundaries

these path are called coupling modes. A two-phase equilibrium state is defined among

other intensive parameters by the stresses σ31, σ32 and σ33. It is not clear why multiple

equilibrium states should not exist as a result of multiplicity of paths of the coherent trans-

formation. If at a fixed values of σ31, σ32 and σ33, which correspond to one equilibrium

transformation, other coupling modes can be activated, then the very existence of a equi-

librium state becomes questionable and the analysis of interface thermodynamics does not

apply. At the same time, if the crystallography permits multiple paths, but only one mode

is actually realized (because of energetics or boundary conditions) vector t is unique and the

presented analysis holds. Different modes of boundary motion can be dominant in different

regions of the configuration space. For example, different transformation paths can be real-

ized at different temperatures. The switch in the coupling mode, may cause discontinuous

change in the excess shear of the interface, because it is computed as an excess of F for

two different transformations. Therefore, this change can be viewed as an interfacial phase

transition [33].
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As we pointed out that one of the major challenges in thermodynamics of solid-solid

interfaces is a necessity to define chemical potentials of substitutional atoms. Chemical po-

tentials are defined as work required to add an atom to the system. For a non-hydrostatically

stressed solid chemical potentials are not uniquely defined. Analyzing equilibrium of non-

hydrostatic solids Larche and Cahn [18] avoided definition of chemical potentials of sub-

stitutional atoms. In this work we only considered variations in chemical composition of

substitutional atoms (with no restriction on composition and total number of interstitial

atoms) at constant N , so it was unnecessary to define individual chemical potentials of

substitutional atoms.

Performing Legendre transformation of Eq. (2.14) we introduced thermodynamic po-

tentials φm of a homogeneous solid under stress. When two phases, separated by a coherent

interface, are in equilibrium, these potentials have the same value in the phases. The φm

potentials allow to conveniently write thermodynamic equations in a form identical to that

of hydrostatic systems. Moreover, when a phase is hydrostatic, φm become real chemical

potentials. It is important to notice, that in this work, the potentials φm were defined for

a homogeneous solid containing constant number of atoms. Based on this definition alone,

φm cannot be identified with chemical potentials of a substitutional atoms. On the other

hand, there is no ambiguity in their definition.

As we mentioned before, the values of φm depend on the choice of the reference state

and defined up to a term
∑

i=1,2

(V Fi3/F33) σ3i. Also, for the same homogeneous solid three

different potentials φm can be constructed performing Legendre transformation for three

planes perpendicular to the coordinate axis. These three potentials will, in turn, depend

on the orientation of the coordinate axis. At the same time, the diffusion potentials are

invariant with respect to orientation of the coordinate axis and choice of the planes (out of

three) and choice of the reference state. In case of the two-phase coherent equilibrium the

choice of the plane is dictated by the orientation of the interface.

Analysis of interface phenomena requires understanding of the bulk phase equilibrium.
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In this work we derived a Gibbs-Duhem type equation for solid under general state of stress.

Solving a system of two Gibbs-Duhem equations for two solid phases in coherent equilib-

rium, we obtained the equation which describes the equilibrium surface of the two-phase

coexistence in configuration space. This equation is analog of the Clausius–Clapeyron rela-

tion [34] generalized for non-hydrostatic multicomponent solid system. If one equilibrium

state is known, other nearby states can be predicted using this equation. The phase equi-

librium conditions (i)-(v) are embedded in (2.36). Therefore, testing the relations predicted

by this equation one tests the correctness of the equilibrium conditions. Test of Eq. (2.36)

in experiment or atomistic simulations is subject to future work.

2.6 Examples of thermodynamic equations for particular sys-

tems

In this section we provide explicit thermodynamic expressions for three simple and most

common cases of coherent solid-solid coexistence: a single component system, a binary

substitutional alloy and a binary interstitial alloy. These relations are easily transformed

to describe grain boundaries by changing [Z]XY to [Z]X .

2.6.1 Single component system

Common examples of the coherent interface in a single component systems are Ferrite(BCC)-

Austenite(FCC) interface in iron or HCP-FCC interface in cobalt. Equation of the two-

phase coexistence in this case is given by

0 = −{S}XdT −
∑

i=1,2,3

{V Fi3/F33}Xdσ3i−

− {N}Xdφ +
∑

i,j=1,2

{V ′Qij}XdFji.
(2.85)

The potential φ does not have a subscript because there is only one component in the
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system. The expression for the interface free energy given in Eq. (2.47) becomes

γA = [U ]XY − T [S]XY −
∑

i=1,2,3

σ3i[V Fi3/F33]XY − φ[N ]XY . (2.86)

The adsorption equation in Eq. (2.58) becomes

d (γA) = −[S]XY dT −
∑

i=1,2,3

[V Fi3/F33]XY dσ3i−

− [N ]XY dφ +
∑

i,j=1,2

τXY
ij Adeji.

(2.87)

The Gibbs-Helmholtz type equation in this case is given by

d

(
γA

T

)
= − [Ψ]XY

T 2
dT +

∑

i=1,2,3

[V Fi3/F33]XY

T
dσ3i−

− [N ]XY

T
dφ +

1
T

∑

i,j=1,2

τXY
ij deji,

(2.88)

where

Ψ ≡ U −
∑

i=1,2,3

σ3iV Fi3/F33 −Nφ. (2.89)

The most convenient in the equations above is X = N , which makes the calculation or

constancy of the potential φ unnecessary.

A particular example of the two phase single component system is coexistence of two

non-hydrostatically stressed grains of the same material (and same crystalline structure). If

two grains are deformed (one under compression another under tension), properties of the

grains such volume per atom will generally be different.
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2.6.2 Binary substitutional alloy

In the second example, the coherent interface separates two binary solid phases both formed

by substitutional mechanism. The equations will now contain the diffusion potential M21

to describe the compositional changes and segregation [N2]XY of the second component.

The equation describing the phase coexistence becomes

0 = −{S}X dT −
∑

i=1,2,3

{V Fi3/F33}X dσ3i − {N2}X dM21−

− {N}X dφ +
∑

i,j=1,2

{V ′Qij}X dFji.
(2.90)

It contains additional variation dM21 in comparison to the single component case. The

expression for interface free energy in Eq. (2.47) is given by

γA = [U ]XY − T [S]XY −
∑

i=1,2,3

σ3i[V Fi3/F33]XY−

− φ1[N ]XY −M21[N2]XY .

(2.91)

The adsorption equation in Eq. (2.58) takes form

d (γA) = −[S]XY dT −
∑

i=1,2,3

[V Fi3/F33]XY dσ3i−

− [N2]XY dM21 − [N ]XY dφ1 +
∑

i,j=1,2

τXY
ij Adeji.

(2.92)

The Gibbs-Helmholtz type equation for thermodynamic integration

d

(
γA

T

)
= − [Ψ]XY

T 2
dT +

∑

i=1,2,3

[V Fi3/F33]XY

T
dσ3i−

− [N2]XY

T
dM21 − [N ]XY

T
dφ1 +

1
T

∑

i,j=1,2

τXY
ij deji,

(2.93)
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where

Ψ ≡ U −
∑

i=1,2,3

σ3iV Fi3/F33 −N2M21 −Nφ1. (2.94)

2.6.3 Binary interstitial alloy

Finally we consider binary interstitial alloy. In this case the substitutional lattice of the two

phases are different, while the interstitial component freely migrates inside the coexisting

phases. The common example is already mentioned Ferrite(BCC)-Austenite(FCC) inter-

face in iron with a finite concentration of interstitial carbon. The equation of the phase

coexistence is given by

0 = −{S}X dT −
∑

i=1,2,3

{V Fi3/F33}X dσ3i−

− {N}X dφ− {n}X dµ +
∑

i,j=1,2

{V ′Qij}X dFji.
(2.95)

The expression for interface free energy in Eq. (2.47) becomes

γA = [U ]XY − T [S]XY −
∑

i=1,2,3

σ3i[V Fi3/F33]XY−

− φ[N ]XY − µ[n]XY .

(2.96)

The adsorption equation

d (γA) = −[S]XY dT −
∑

i=1,2,3

[V Fi3/F33]XY dσ3i−

− [N ]XY dφ− [n]XY dµ +
∑

i,j=1,2

τXY
ij Adeji.

(2.97)

The Gibbs-Helmholtz type equation for thermodynamic integration
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d

(
γA

T

)
= − [Ψ]XY

T 2
dT +

∑

i=1,2,3

[V Fi3/F33]XY

T
dσ3i−

− [N ]XY

T
dφ1 − [n]XY

T
dµ +

1
T

∑

i,j=1,2

τXY
ij deji,

(2.98)

where

Ψ ≡ U −
∑

i=1,2,3

σ3iV Fi3/F33 −Nφ− ndµ. (2.99)

2.6.4 Interface stress

Interface stress is computed using Eq. (2.59) as an excess of stresses in the system. As

a result, the expression for τ is identical for all of the three systems described above.

When the current state of one of the phases is taken as the reference, then for both phases

F11 = F22 = 1 and F12 = 0. The components F13, F23 and F33 of the other phase and

the layer containing the interface remain finite and have to be known from the coherent

transformation. Then the explicit expressions to compute the components of τ become

τ11 =
1
A




∫

V ′

(F33σ11 − 2F13σ31 − F23σ23 − F33σ33) dV ′




XY

, (2.100)

τ12 =
1
A




∫

V ′

F33σ21 + F−1
23 F33σ31dV ′




XY

, (2.101)

τ22 =
1
A




∫

V ′

(F33σ22 − 2F23σ32 − F13σ13 − F33σ33) dV ′




XY

. (2.102)

In the homogeneous parts of the phases α and β the integration over the reference
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volume is equivalent to multiplication of the terms under the integral sign by V ′α and V ′β

respectively. For the layer containing interface integration gives average stress and average

components of the deformation gradient that are related to vector B. This shows that

precise knowledge of the deformation and atomic rearangement in the interface region is

not required. After the integration over the reference volume we obtain:

τ11 =
1
A

[σ11V − 2AB13σ31 −B23Aσ32 − σ33V ]XY , (2.103)

τ12 = [σ21V −AB23σ31]XY , (2.104)

τ22 =
1
A

[σ22V − 2AB23σ32 −B13Aσ31 − σ33V ]XY . (2.105)

Eqs. (2.100)-(2.105) give a recipe how to compute the components of τ for a given state,

when the current state is taken as the reference.
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Chapter 3: Methodology of Atomistic Simulations

3.1 Simulation Methods

The two methods employed in this work were Molecular Dynamics (MD) and Monte Carlo

(MC). Simulations were performed in canonical (NVT), micro-canonical (NVE) and semi-

grand canonical ensembles. Simulation block shown in Figs. 3.1 and 3.2 contains N particles

which interact according to a known interatomic potential. Varies types of boundary condi-

tions from all periodic to open surfaces can be applied depending on a goal of simulations.

Both methods allow to model equilibrium states. Details of each method are described

below.

3.1.1 Molecular dynamics (MD)

In MD simulation motion of atoms is realized by solving a system of Newton’s equations

of motion. In canonical ensemble the temperature was controlled with Noose-Hoover ther-

mostat. In addition to motion of individual particles, the size of the simulation box can

fluctuate to impose a desired external pressure (NPT ensemble). MD method was imple-

mented in ITAP Molecular Dynamics (IMD) program [35].

3.1.2 Monte Carlo (MC)

In the MC simulations, the temperature is fixed while the atoms are movable. At each MC

step, a randomly chosen atom is displaced by a random amount in a random direction and

this move is accepted or rejected by the Metropolis algorithm [36,37] as shown in Fig. 3.2.

In this work we performed simulations in semi-gran canonical ensemble to model a bi-

nary system. In this ensemble, the temperature, total number of atoms N and the chemical
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Figure 3.1: Schematic representation of a simulation box with particles in MD simulations.
The arrows indicate the velocity vectors.

potential difference M21 are held fixed, whereas positions and chemical sorts of atoms can

vary. Each step of the MC process includes a random selection of an atom and its random

displacement with a simultaneous random change of its chemical species. This trial move

is accepted or rejected according to the Metropolis algorithm. Using this method, the equi-

librium state of a binary system can be reached much faster than by molecular dynamics

simulations, since the redistribution of chemical species in the MC method does not involve

their actual diffusion (a very slow process in solids). In alloys, the formation of an equi-

librium surface/interface segregation requires a redistribution of the chemical species over

the system by diffusion mechanisms, which makes molecular dynamics simulations highly

impractical. MC method was implemented in SOLD software package.

3.2 Modeling of interatomic interactions

3.2.1 Embedded atom method

The energy of atomic interaction is described by Embedded Atom Method (EAM). The

energy of an atom is given by

Ei = Φα


∑

i 6=j

ρβ(rij)


 +

1
2

∑

i6=j

Ψαβ(rij), (3.1)

where the symbols α and β enumerate atoms, i and j are Cartesian components of the

vectors and tensors, ri
αβ is the vector connecting atoms α and β separated by a distance
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Figure 3.2: Schematic representation of a simulation box with particles in MC simulations.
The figure illustrates accepted random displacement.

rij , Φ(rαβ) is the pair interaction function, ρ(rij) is the electron density function assigned

to atoms, Ψ is the embedding energy of atom α. EAM permits direct calculations of the

average stress tensor σij of a system using the virial expression [38].

3.2.2 Employed interatomic potentials

We chose copper as a model material, with atomic interactions described with an embedded-

atom method potential fit to experimental and first-principles data [39]. This potential

accurately reproduces the lattice parameter, cohesive energy, elastic constants, phonon fre-

quencies, thermal expansion, lattice-defect energies and other properties of Cu. The melting

temperature of Cu predicted by this potential is Tm = 1327 K (1356 K in experiment).

We chose the copper-silver system as a model binary system, with atomic interactions

described by the embedded-atom potential developed in Ref. [40]. This potential utilizes ex-

isting Cu [39] and Ag [40] potentials, with the cross-interaction function fit to first-principles

formation energies of several imaginary compounds of the Cu-Ag system. This potential

reproduces the Cu-Ag phase diagram in semi-quantitative agreement with experiment [41].

The phase diagram contains three phases: liquid, Cu-rich and Ag-rich terminal solid so-

lutions formed by the substitutional mechanism.The melting point of Cu and the eutectic

temperature predicted by this potential are 1327 K and 935 K, the experimental values

being 1356 K and 1053 K, respectively [41].
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Chapter 4: Temperature dependence of the surface free

energy and surface stress: An atomistic calculation for Cu

(110).

4.1 Introduction

Gibbs [13] defined the surface free energy as reversible work per unit area needed to create

a new surface, and the surface stress as reversible work of elastically stretching the surface.

These two quantities are related by [15]

τij = δijγ +
∂γ

∂eij
, i, j = 1, 2, (4.1)

where the derivative is taken at a constant temperature, eij is a strain tensor of the surface

and δij is the Kronecker symbol. Two of the Cartesian axes are assumed to be parallel

to the surface and the third one is normal to it. While γ is a scalar, the surface stress

τ is a symmetrical second rank tensor. These quantities are usually of the same order

of magnitude. Due to the second term in Eq. (4.1), components of τ can be larger than

γ, smaller, or even negative, which γ can never be for a plane interface[13]. Defining the

average surface stress as τ = (τ11 + τ22)/2, Eq. (4.1) can be rewritten as

τ = γ + A
∂γ

∂A
, (4.2)

where A is surface area.

The fundamental differences between γ and τ have been recently discussed by Kramer

and Weissmuller [42]. In contrast to solids, γ and τ of liquids are numerically equal because
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liquids respond to strains by exposing more or less atoms to the surface without changing

γ, resulting in ∂γ/∂eij = 0 [14, 16, 42]. At high temperatures, γ of a solid can exceed

the sum of the liquid-vacuum and solid-liquid free energies. To minimize the free energy,

the solid surface can premelt, creating a thin liquid-like layer [43]. Gurney [44] argued

that because at high temperatures surface atoms can migrate like in a liquid, the surface

free energy should become equal to the surface stress. This assumption was later used in

the experimental work of Bailey and Watkins [45]. Herring [46] disagreed with Gurney’s

conclusion, questioning the way Gurney related the chemical potentials of the surface atoms

to the surface stress.

Unfortunately, most of the data for surface stresses reported in the literature refer to

either 0 K or to a certain fixed temperature, making it difficult to determine whether τ and

γ converge with temperature. The temperature dependence of γ was studied experimentally

[47] and by atomistic simulations [48, 49], and it was found that γ decreases with temper-

ature. The experiments of Vermaak and Wilsdorf [47] indicated that the second term in

Eq. (4.1) linearly increased with temperature.

Eq. (4.1) can also be applied to solid-liquid interfaces, provided the derivative is taken

along a constant-temperature direction on the solid-liquid coexistence surface in the param-

eter space. It can be expected that τ and γ would be again different, but this has not been

tested experimentally. Recent atomistic simulations indicate that τ of solid-liquid interfaces

can be positive or negative, depending on the material [50].

The goal of this work is to clarify the behavior of the surface stress and surface free

energy with temperature, particularly near the bulk melting point. We employ atomistic

computer simulations using a (110) copper surface as a model. For the interpretation

of the surface premelting behavior, we have also studied isolated solid-liquid and liquid-

vacuum interfaces. Our calculations of the surface and interface properties are based on

thermodynamics relations that we derive here in a mathematical form suitable for atomistic

calculations.
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bulk liquid region

bulk solid region
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Figure 4.1: Simulation blocks and positions of the interface and bulk regions employed in the
calculations of thermodynamic properties of (a) solid surfaces and (b) solid-liquid interfaces.
The quantities computed in different regions are indicated. The bracketed quantities refer
to the surface/interface layer, whose bounds can be chosen arbitrary as long as they lie
within the homogeneous bulk phases. The bulk regions can lie beyond the surface/interface
layer, as in this figure, or inside it (not shown).

Such derivations are needed for the following reasons. Taking surface stress as an ex-

ample, Eq. (4.1) can be rewritten as

τij =
∂ (γA)
A∂eij

, i, j = 1, 2, (4.3)

where γA is the total excess free energy of a surface whose area A can vary only by elastic

straining.

After introducing our methodology (Section 4.3), we perform atomistic simulations of

thermodynamics of the (110) Cu surface at temperatures from 0 K to the bulk melting

point (Section 4.4). In the same section we compute the stresses of the solid-liquid and

liquid-vacuum interfaces. In Section 4.5 we analyze our results and draw conclusions.
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4.2 Thermodynamic relations

In this Section we review the relations of surface thermodynamics that will be used in this

work. Although we are interested in the surface/interface free energy γ, it is convenient

to formulate all equations in terms of the total excess free energy of the simulation block,

γA, and defer a separation of γ until the end of the calculation. In all thermodynamic

processes considered here, A changes by elastic deformation only. Although in the atomistic

simulations the solid is almost stress-free, it still contains some residual stresses which are

not hydrostatic. To enable corrections for such residual stresses, all equations will be derived

for the general case of a non-hydrostatically stressed solid. The cases of a solid surface and

a solid-liquid interface will be discussed separately.

4.2.1 Solid surface

Consider an elemental solid in a non-hydrostatic state of strain whose plane surface is

exposed to vacuum. A reversible variations of the total excess free energy are given by

d (γA) = − [S]N dT − [N ]N dfs +
∑

i,j=1,2

[σijV ]N deij , (4.4)

where the state variables are temperature T , the Helmholtz free energy per atom of the bulk

solid f s, and the elastic strain tensor ê. Conjugate to these variables are the surface excesses

of the entropy S, of the number of atoms N , and of the volume-averaged lateral components

of the stress tensor σ multiplied by the total volume V . As γA, these excess quantities refer

to the entire simulation block, not per unit surface area. To satisfy mechanical equilibrium,

one of the principal axes of σ must be normal to the surface, with σ33 = 0. Following

Cahn’s method [14], we have expressed the surface excesses through the determinants in
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which, for example,

[S]N ≡

∣∣∣∣∣∣∣
[S] [X]

Ss Xs

∣∣∣∣∣∣∣
Xs

= [S]− Ss[X]/Xs

with similar expressions for the excesses of N and σijV . Here X is one of the extensive

quantities S, N or σijV , which can be chosen arbitrarily. The square brackets, such as [S]

or [X], indicate the amount of the extensive quantity in a thick enough layer containing the

surface (Fig. 4.1(a)). One of the bounds of the layer is placed in vacuum and the other in

the bulk of the solid, both far enough from the surface to neglect its effect. The superscript

s refers to properties of a homogeneous solid region chosen as a comparison system. Since

[X/X] = 0, one of the terms in Eq. (4.4) is necessarily zero, reflecting the constraint imposed

by the bulk equation of state. The remaining terms express d (γA) as a perfect differential

and that the surface excesses do not depend on the thickness of the surface layer as long as

its bounds are beyond the influence of the surface [14].

Choosing X = N , Eq. (4.4) becomes

d (γA) = − [S]N dT +
∑

i,j=1,2

τijAdeij (4.5)

where τij the surface stress tensor given by

τij =
1
A

(
∂(γA)
∂eij

)

T

=
[σijV ]N

A
=

∣∣∣∣∣∣∣
[σijV ] [N ]

σs
ijV

s N s

∣∣∣∣∣∣∣
AN s

=
[σijV ]− σs

ijV
s[N ]/N s

A
(4.6)

Furthermore, with this choice of X, γA itself becomes the excess of the Helmholtz free

energy: γA = [F ]N . Therefore,

γA = [U − TS]N , (4.7)
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where

[U ]N = [U ]− U s[N ]/N s (4.8)

is the total excess of internal energy. Combining Eqs. (4.5) and (4.7), we obtain

d

(
(γA)

T

)
= − [U ]N

T 2
dT +

1
T

∑

i,j=1,2

τijAdeij . (4.9)

This equation can be used for computations of γA by thermodynamic integration. For

example, consider a process in which temperature is increased while the solid is stretched

biaxially to maintain zero bulk stress, σs
ij = 0 (i, j = 1, 2, 3), at every temperature. In

this process, the biaxial strain e increases with temperature to accommodate the thermal

expansion of the solid. As a result, T and e are no longer independent variables and Eq. (4.9)

becomes

d

(
γA

T

)
= − [U ]N

T 2
dT +

2τA

T

(
∂e

∂T

)

σs
ij=0

dT. (4.10)

The second term in the right-hand side includes the linear thermal expansion factor,

α =
1
a

(
∂a

∂T

)

σs
ij=0

=
(

∂e

∂T

)

σs
ij=0

, (4.11)

where a is the bulk lattice parameter of the solid at temperature T . Note that α is a function

of temperature only, as are [U ]N , A and τ . Knowing (γA)0 at some reference temperature

T0, Eq. (4.10) can be integrated to obtain γA at another temperature T :

γA(T ) = (γA)0
T

T0
+ T

∫ T

T0

[
− [U ]N

T ′2
+

2ατA

T ′

]
dT ′. (4.12)

In atomistic simulations, U ex, τ and α can be computed for a set of temperatures and

used to obtain γA(T ) by numerical integration of Eq. (4.12). The physical value of γ is then
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recovered by dividing γA by the physical area of the surface at the respective temperature.

This procedure was implemented in this work as will be discussed later.

4.2.2 Solid-liquid interface

Consider the same non-hydrostatically stressed solid but now in contact and equilibrium

with its melt at a pressure p. The mechanical equilibrium condition between the two phases

requires that one of the principal axes of the stress tensor in the solid be normal to the

interface, with σ33 = −p. The differential of total excess free energy of the solid-liquid

interface is given by

d (γA) = − [S]XY dT + [V ]XY dp− [N ]XY dµ +
∑

i,j=1,2

[(σij + δijp)V ]XY deij , (4.13)

where µ is the chemical potential in the liquid. Any two of the intensive variables S, V , N

or (σij + δijp)V (denoted by X and Y ) can be eliminated, because each phase imposes a

constraint expressed by a Gibbs-Duhem equation [14]. The determinant [Z]XY is defined

by

[Z]XY =

∣∣∣∣∣∣∣∣∣∣

[Z] [X] [Y ]

Zs Xs Y s

Z l X l Y l

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

Xs Y s

X l Y l

∣∣∣∣∣∣∣

. (4.14)

As before, the square brackets designate the extensive property Z of a thick enough layer

containing the interface (Fig. 4.1(b)), whereas the superscipts s and l refer to arbitrarily

chosen regions of the homogeneous solid and liquid phases.
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Choosing N and V for X and Y , Eq. (4.13) reduces to

d (γA) = − [S]N dT +
∑

ij=1,2

τijAdeij (4.15)

with the interface stress tensor given by

τij =
[(σij + δijp)V ]NV

A
=

∣∣∣∣∣∣∣∣∣∣

[(σij + δijp)V ] [N ] [V ]

(σs
ij + δijp)V s N s V s

0 N l V l

∣∣∣∣∣∣∣∣∣∣

A

∣∣∣∣∣∣∣
N s V s

N l V l

∣∣∣∣∣∣∣

. (4.16)

Equations (4.6) and (4.16) express the surface and interface stresses τij as excesses of the

stress tensor σ̂ in forms convenient for computations. They involve only extensive properties

and do not require calculations of interface profiles. For the particular case of a hydrostatic

solid or a liquid system, these equations reduce to

τij = [σijV ] /A, (plane solid or liquid surface) (4.17)

τij = [(σij + δijp)V ] /A (plane solid-liquid interface) (4.18)

Eqs. (4.6) and (4.16) will be used in the atomistic simulations.
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Figure 4.2: Typical MC snapshot of (a) (110) solid film at 1320 K and (b) (110) solid-
liquid coexistence system at 1327 K. The open circles mark instantaneous atomic positions
projected on the ¯(110) plane parallel to the page. The top and bottom surfaces of both
systems are exposed to vacuum. The distances h, d and d

′
are discussed in the text.

4.3 Methodology of atomistic simulations

4.3.1 Simulated models

We chose copper as a model material. The (110) surface was modeled in a 26×25×41 Å (2240

atoms) simulation block with periodic boundaries in the x and y directions and free surfaces

in the z-direction, a geometry which mimics an infinitely large thin film (Fig. 4.2(a)). The

coordinate axes were aligned parallel to [1̄10], [001] and [110], respectively. To study a

liquid surface, the film was completely melted by increasing the temperature above Tm and

cooled down to temperatures of interest around Tm.
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The (110) solid-liquid interface was modeled in a 26 × 25 × 110 Å (5600 atoms) block

containing a ∼ 40 Å thick solid layer sandwiched between two ∼ 35 Å thick liquid layers

exposed to vacuum (Fig. 4.2(b)). The solid part had the same crystallographic orientation

as the previously described solid film, with periodic boundary conditions in x and y. The

exposure to vacuum guaranteed zero pressure in the liquid.

Prior to the Monte Carlo (MC) simulations, each block was uniformly expanded by the

linear thermal expansion factor at the simulated temperature using the expansion factors

computed previously [39]. Although this pre-expansion eliminated most of the thermal

stresses in the solid, there were always some non-hydrostatic residual stresses due to statis-

tical errors in the thermal expansion factors.

4.3.2 Monte Carlo simulations

Off-lattice MC simulations [51, 52] were employed to study the surface and interface prop-

erties at finite temperatures. At each temperature, the initial configuration was brought to

equilibrium by 104-105 MC steps per atom (depending on the system size), followed by a

production run of (2-6)× 105 additional MC steps. Snapshot files containing instantaneous

atomic positions were saved every 20-30 MC steps and used in subsequent calculations of

stresses, energies and other properties.

The solid surface calculations were performed at temperatures from 0 to 1320 K, the

liquid surface calculations at 1300, 1327 and 1350 K, and the solid-liquid interface calcula-

tion at 1327 K only. In the latter case, despite spontaneous random displacements of the

interfaces during the simulations, the solid layer thickness remained at least 35 Å and the

thickness of each liquid layers at least 25 Å. These thicknesses were considered large enough

to neglect interactions between the interfaces.
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4.3.3 Structural order analysis

To analyze the structural changes in the surface region and to identify the interface positions,

we employed the structure factor S(k) whose modulus is given by

|S(k)| = 1
N

√√√√
(∑

i

cos(kri)

)2

+

(∑

i

sin(kri)

)2

, (4.19)

where k = 2π[2
√

2/a, 0, 0] is a chosen reciprocal lattice vector parallel to the x-direction,

ri is the radius vector of atom i, and the summation goes over the N atoms contained in

a region of interest. |S(k)| equals to 1 for perfectly ordered FCC structure at 0 K and 0

for a disordered structure such as liquid. The structure factor was computed for a set of

layers parallel to the surface/interface and plotted as a function of distance z normal to the

layers.

For the solid surface, positions of (220) atomic planes in the bulk were identified and

extrapolated towards the surface, keeping the total number of real and extrapolated planes

constant at all temperatures. Each atom was assigned to the nearest plane and |S(k)|
was computed by summation over the atoms assigned to each plane. At low temperatures,

the |S(k)| values thus obtained refer to actual atomic planes. When the surface becomes

disordered at high temperatures, the |S(k)|values in the surface region are formally assigned

to imaginary planes, whereas the values in the bulk still refer to the actual atomic planes.

The average structure factor, |S(k)|top, of the top two surface layers was used as a metric

of surface disorder. The thickness h of the surface region was estimated as the distance

between the top surface plane and the point at which |S(k)| (z) ≈
(
|S(k)|top + |S(k)|s

)
/2,

where |S(k)|s is the value of the structure factor in the bulk solid.

For the block containing two solid-liquid interfaces, |S(k)| was computed for atoms

located within 6 Å thick windows parallel to the interfaces. The profile |S(k)| (z) was cal-

culated by moving the center of the window by small increments in the z direction. The
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interface positions were estimated from the relation |S(k)| (z) ≈ |S(k)|s /2. The liquid sur-

face positions were identified with the maximum and minimum values of the z-coordinates

of all atoms.

The interface positions defined through the structure factor slightly depend on the choice

of the k-vector. There is also some arbitrariness in the positions of the liquid surfaces. We

emphasize, however, that we do not assign these definitions of the surface/interface positions

any thermodynamic meaning. We use them only as a guide for selecting reasonable bounds

of the homogeneous bulk regions as discussed below.

4.3.4 Surface and interface stress calculations

The surface and interface stresses were computed from Eqs. (4.6), (4.17) and (4.16) for

each individual snapshot and the results were averaged over all snapshots. Note that those

equations contain only products of the stresses times the respective volumes. Thus, the

calculation does not require partitioning of the volume between atoms. For the solid and

liquid surfaces, the quantities [σijV ] and [N ] were computed for the entire simulation block.

For the solid surface, the bulk values of σs
ijV

s and N s were calculated for an inner region

of the film, whose bounds were a distance d away from the upper and lower surfaces.

For the solid-liquid interface, [σijV ], [V ] and [N ] were determined for a layer whose

bounds were a distance d away from the upper and lower liquid surfaces and which contained

two solid-liquid interfaces. A region inside the solid layer that was separated by a distance

d
′

from each of the solid-liquid interfaces was selected to compute σs
ijV

s, V s and N s.

Similarly, V l, and N l were computed for bulk liquid regions chosen a distance d
′

always

from the solid-liquid interfaces and a distance d away from the liquid surfaces.

The distances d and d
′
were chosen to be large enough to exclude the influence of the sur-

faces and interfaces on bulk quantities, which was verified by increasing these distances until

the computed surface/interface stresses reached constant values within statistical errors of

the calculations. Typical values of d and d
′

were around 9 Å. Note that these distances
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700 K 1200 K 1320 K

Figure 4.3: Typical MC snapshot of the solid film at three temperatures. The open circles
mark instantaneous atomic positions projected on the ¯(110) plane parallel to the page.
Note the perfectly ordered surface structure at low temperatures and premelting at high
temperatures.

were taken relative to the instantaneous positions of the interfaces in each snapshot. Since

the interfaces constantly deviated slightly away from their average positions due to thermal

fluctuations, the bulk regions selected for the stress calculations varied from one snapshot

to another, implementing additional statistical averaging of the bulk properties.

In addition to averaging over the snapshots, the final values of the surface/interface

stresses were obtained by averaging over several different choices of d and d
′
. The error

bars of the calculations were estimated by dividing the entire set of 3× 104 snapshots into

10 subsets and computing the standard deviation of the subset averages from the global

average. Clearly, this error bar depends on the number of subsets.

4.3.5 Thermodynamic integration

The free energy γ of the solid surface was computed as a function of temperature by thermo-

dynamic integration based on Eq.(4.12). [U ]N was determined from the MC simulations at
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several temperatures using Eq. (4.8). The values of U and N were computed for the entire

simulation block and U s and N s for the bulk solid region selected as discussed above. The

integrand of Eq. (4.12) computed at several temperatures was approximated by a fourth

order polynomial and integrated analytically. Increasing the power of the polynomial did

not affect the results significantly.

The reference temperature was chosen to be T0 = 300 K. The reference value γ0 was

obtained in the classical quasi-harmonic approximation to atomic vibrations [48]. It was

checked that other choices of T0 within ±50 K produced only minor changes in the results.

4.4 Results

Examination of the MC snapshots shows that the atomically ordered solid surface becomes

increasingly disordered at high temperatures, developing a relatively thick liquid-like layer

near Tm (Fig. 4.3). This trend is quantified in Fig. 4.4, showing that the surface thickness

h is on the order of the interatomic distance at low temperatures but rapidly increases with

temperature at T > 1100 K. The thickness appears to diverge to infinity near Tm, but

this remains to be verified by future detailed calculations in a very close vicinity of Tm.

The surface structure factor |S(k)|top decreases with temperature approximately linearly

until about 800 K (Fig. 4.5), which can be attributed to increased amplitudes of atomic

vibrations in the otherwise atomically perfect surface structure. At temperatures around

800 K, the atoms of the top surface layer begin to abandon their regular positions and jump

on top of the layer, forming adatoms and leaving surface vacancies behind. The amount of

this structural disorder rapidly increases with temperature. Accordingly, |S(k)|top decreases

more rapidly than below 800 K, producing a breaking point on the curve. As expected,

|S(k)|top is small near Tm, reflecting the formation of a liquid-like layer on the surface.

Because the coordinate axes are chosen to be parallel to crystallographic directions with

twofold symmetry, the surface stress tensor is diagonal. Its components calculated at 0 K

using Eq. (4.6) with σs
ij = 0 are τ11 = 1.19 J/m2 and τ22 = 1.33 J/m2, showing moderate
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Figure 4.4: Thickness of the (110) surface layer as a function of temperature. The vertical
dashed line indicates the bulk melting point.
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Figure 4.6: Temperature dependence of the average surface stress computed by MC simu-
lations of systems with 1024, 2240 and 9856 atoms, and by molecular dynamics simulations
of a 896-atom system. Note that the shape of the curve does not depend on the model size
or the simulation method.

anisotropy. Both components are positive and smaller than the 0 K surface energy, γ = 1.472

J/m2. The average surface stress decreases with temperature from τ = 1.26 J/m2 at 0 K to

0.83 J/m2 at 1320 K (Fig. 4.5). This decrease is almost linear between 0 and about 800 K

but accelerates and becomes noticeably nonlinear above 800 K. This behavior is remarkably

similar to the temperature dependence of the surface structure factor, demonstrating that

τ is a sensitive parameter to the surface disordering at high temperatures.

To verify that this similarity is not a numerical artifact arising from the size effect or

the simulation method, additional MC calculations of τ were conducted for two different

block sizes. Furthermore, additional calculations were performed for yet another block size

using molecular dynamics instead of MC. The results are summarized in Fig. 4.6, showing

that all the points lie on a common curve whose shape is very similar to Fig. 4.5.

The anisotropy of the surface stress, τ22 − τ11, increases with temperature as long as

the surface remains perfectly ordered (Fig. 4.7), reaches a maximum around 800 K where
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Figure 4.7: Temperature dependence of the surface-stress anisotropy τ22− τ11. The vertical
dashed line indicates the bulk melting point.

the surface disordering starts, and then drops and reaches a slightly negative value near the

melting point. This behavior confirms the sensitivity of the surface stress to the structural

order at the surface, which is consistent with Fig. 4.5 and 4.6.

The surface free energy decreases with temperature from γ = 1.472 J/m2 at 0 K to 1.130

J/m2 at 1320 K (Fig. 4.8), remaining always larger than τ . The onset of surface disordering

at 800 K is accompanied by a noticeable change in the slope of γ(T ), but the curve is much

smoother than τ(T ). Note that γ and τ do not have the same value at the melting point.

The liquid-vacuum interface stress at Tm is τ l = 0.925 J/m2, which can be identified with

the free energy γl of this interface. This value lies between γ and τ for the solid surface.

The solid-liquid interface stress obtained from the solid-liquid coexistence simulations

is τ sl = −0.131 J/m2. To give an idea of the error bar, the individual components of the

stress are τ sl
11 = −0.129 ± 0.035 J/m2 and τ sl

22 = −0.132 ± 0.033 J/m2. The negative value

of the stress indicates that this interface is in a state of compression. This interface stress

would produce a biaxial expansion in a free-standing (110) Cu film immersed in its melt at
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Figure 4.8: Temperature dependence of the excess free energy and stress of the (110) surface.
Three values of the free energy, γl , of the liquid-vacuum interface are shown for comparison.
The vertical dashed line indicates the bulk melting point.

the solid-liquid equilibrium temperature.

Recall that the calculation of τ sl included corrections for the residual stresses within

the solid. When such corrections were ignored, the interface stress variations during the

MC simulations became much larger, resulting in τ sl
11 = −0.081 ± 0.177 J/m2 and τ sl

22 =

−0.151±0.175 J/m2. Although the residual stresses were relatively small (on the level of 10

MPa), we see clear indications that taking them into account produces a stabilizing effect

and yields more accurate values of the interface stress. The same was found in the surface

stress calculations for the sold and liquid films.

Finally, for the interpretation of the results in the next section, we computed the surface

stress in the solid film as a function of imposed biaxial strain at 0 K. The strain was increased

by small increments from 0 to 0.0252, a range which corresponds to linear thermal expansion

factors at temperatures between 0 and 1320 K. The atomic positions were relaxed after each

increment of strain. The surface stress was found to decrease as a linear function of strain
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Figure 4.9: Temperature and bulk-strain dependencies of the surface stress obtained by
MC simulations and by 0 K static calculations. In the latter case, the data are plotted
against the temperature at which thermal expansion would give the corresponding strain.
The close agreement below 800 K indicates the dominant role of the bond-stretching effect
in the temperature dependence of surface stress of atomically ordered surfaces.

from 1.26 J/m2 at zero strain to 0.941 J/m2 at the maximum strain.
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Figure 4.10: Temperature dependence of the excess entropy of the (110) Cu surface. The
vertical dashed line indicates the bulk melting point.

4.5 Discussion and conclusions

We have shown how surface and interface stresses and free energies in elemental systems

can be computed as appropriate excesses when the solid phase is in a non-hydrostatic state.

Instead of constructing profiles of intensive properties and choosing dividing surfaces [13], we

applied Cahn’s method [14] to express the excess quantities through determinants containing

only extensive properties such as the number of atoms, volume and the total virial stress.

All such quantities are immediately accessible by atomistic simulations employing either

MC or molecular dynamics methods. Our approach is general enough to permit extensions

to multi-component systems, solid-solid interfaces and other complex systems in the future.

We applied this method to examine the temperature dependence of the surface free energy

and surface stress of (110) copper modeled by an embedded-atom potential. Although

thermal expansion was applied to minimize the bulk stress, some residual stress remained

and was taken into account in the calculations.
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The (110) Cu surface stress was found to decrease with temperature, reaching about

66% of its 0 K value near the bulk melting point. The plot of τ versus temperature (Fig. 4.5)

exhibits two distinct parts, which will be discussed separately.

At temperatures from 0 to about 800 K, τ decreases with temperature almost linearly.

The surface structure remains perfectly ordered (Fig. 4.3) and the concomitant decrease of

the surface structure factor |S(k)|top is due to increasing amplitudes of atomic vibrations.

The decrease in τ could be caused by two physical factors: (i) the vibration factor (the

amplitudes at the surface and in the bulk both increase with temperature but at different

rates, leading to a change in the excess entropy of the surface), and (ii) the expansion factor

(the thermal expansion stretches interatomic bonds, altering the state of tension on the

surface). To evaluate the role of the second factor, τ computed as a function of biaxial

strain at 0 K is plotted against the temperatures at which the respective strains would be

produced by thermal expansion (Fig. 4.9). The curve is compared with the actual surface

stress as a function of temperature. In effect, the two curves represent the surfaces stresses

for the same state of lateral strain in the bulk but at different temperatures. Note that the

normal strains in the bulk are different: the thermal expansion in the normal direction is

not captured by the 0 K calculations. The curves are in very close agreement up to 800 K

but diverge at higher temperatures. This agreement indicates that, as long as the surface

structure is perfectly ordered, the decrease of τ with temperature is strongly dominated

by the bond-stretching effect produced by thermal expansion. This conclusion emphasizes

the importance of including thermal expansion factors in surface-stress calculations at finite

temperatures.

At T > 800 K, the surface stress decreases with temperature more rapidly than below

800 K due to rapid accumulation of surface disorder. It is due to this structural disordering

that the plots of τ and |S(k)|top versus temperature have a distinct breaking point at about

800 K.

The surface free energy decreases with temperature (Fig. 4.8) and is less sensitive to the

onset of surface disordering at 800 K. If the strain was kept constant, the slope of γ versus
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T would give us the negative of the excess surface entropy. In our simulations, however, the

strain was varied with temperature to accommodate the thermal expansion. As a result,

our slope includes not only Sex but also the work done against the surface stress, which

is expressed by the additional term in Eqs. (4.5) and (4.10). An omission of this term

would be thermodynamically incorrect and, for the particular surface studied here, would

underestimate its free energy by about 0.1 J/m2 near the melting point. The excess surface

entropy [S]N can be readily determined from Eq. (4.7) using the obtained values of γA

and [U ]N . This quantity per unit physical area is plotted as a function of temperature in

Fig. 4.10, showing a slow initial growth followed by a rapid acceleration above the surface

disordering temperature.

Although the solid surface is covered with a relatively thick (e.g., about 7 Å at 1320 K)

liquid-like film at temperatures approaching Tm, the free energy of the premelted surface

remains quite different from the free energy of the liquid-vacuum interface or from the

surface stress. This difference can be attributed to the excess quantities associated with the

interface between the premelted layer and the bulk solid. As a simple model, the premelted

surface can be considered as a layer of real liquid bounded by the solid-liquid and liquid-

vacuum interfaces. Neglecting interactions (“disjoining potential”) between these interfaces,

the following relations should hold near Tm:

γ = γsl + γl, (4.20)

τ = τ sl + γl. (4.21)

In these relations, γ = 1.130 J/m2, γl = 0.925 ± 0.018 J/m2 and τ = 0.83 ± 0.012 J/m2

have been determined by the MC simulations. Solving these equations for γsl and τ sl, we

obtain γsl = 0.199± 0.018 J/m2 and τ sl = −0.088± 0.018 J/m2. The solid-liquid interface

free energy compares well with the experimental value γsl = 0.177 J/m2 from indirect
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measurements for an average orientation [53]. Likewise, the solid-liquid interface stress

deduced from (4.21) is in adequate agreement with τ sl = −0.131± 0.034 J/m2 obtained by

the MC simulations.

This consistency indicates that our interpretation of the premelted surface structure as

two interfaces is reasonable. We emphasize, however, that this conclusion was reached for

the highly energetic (110) surface orientation, which premelts more readily than low-energy

orientations such as (111). In a separate study, we were able to overheat the (111) Cu sur-

face well above Tm without the formation of a liquid layer or even significant disordering.

The effect of the surface orientation on premelting behavior will be the subject of a sepa-

rate publication. It is interesting to note that, in our simulations of the (110) solid-liquid

coexistence, we clearly observed spontaneous formation and destruction of small facets with

the (111) orientation. Since this faceting increases the actual interface area, we conclude

that the (111) orientation has a lower interface free energy than (110).

Finally, the negative sign of τ sl suggests that the (110) solid-liquid interface is in a state

of compression, a finding which can have implications for crystal nucleation models. Because

this stress is an order of magnitude smaller than typical surface stresses, it is very difficult

to measure or compute. Negative values of solid-liquid interface stresses were previously

reported for Lennard-Jones [49, 54] and hard sphere [55] systems. It is interesting to note

that the hard-sphere simulations gave a larger absolute value of τ sl for the (111) orientation

than for (100) [55]. In a more recent simulation [50], negative τ sl values were obtained

for a binary Lennard-Jones system but positive for Ni and Si modeled by embedded-atom

and Stillinger-Weber potentials, respectively. Further research into anisotropy of interface

stresses is needed to determine whether the negative sign of τ sl is a feature of this particular

orientation or a general property of copper modeled with this potential.
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4.6 Thermodymanic equations

In this section we present derivations of Eqs. (4.4) and (4.13). Consider a rectangular

simulation block containing an interface normal to one of its edges z. The block contains a

fixed number of atoms N , all of which are of the same chemical species, and is subject to

periodic boundary conditions in the x and y directions parallel to the interface. The x-y

cross-section of the solid part of the block contains a fixed number of unit cells. We assume

that the solid is in a non-hydrostatic state of stress. It is either exposed to vacuum or is in

contact and equilibrium with a liquid phase at a pressure p. The temperature T us assumed

to be homogeneous throughout.

This system can only receive/release heat and do mechanical work by deformation. In

such processes, the differential of the total Helmholtz free energy is

dF = −SdT +
∑

i,j=1,2

σijV deij + σ33AdL, (4.22)

where L is the system size in z and σij are the volume-averaged stress components on the

lateral faces of the block. The following mechanical equilibrium conditions are assumed

to be satisfied everywhere inside the solid: (1) σ33 = −p for the solid-liquid interface and

σ33 = 0 for the solid surface, and (2) σ3i = 0, i = 1, 2. According to Gibbs’ definition of γ

as a work term [13], this quantity can be expressed as the free energy cost of creating a unit

area of new surface/interface in a closed system at a constant T without doing any other

work.

For a solid surface, γA can be found as the free energy excess over a bulk solid at a

constant number of atoms:

γA = F − f sN ≡ [F ]X , (4.23)

where f s is the free energy per atom of the homogeneous solid phase. Taking a differential
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of Eq. (4.23) at constant N and combining it with dF from Eq. (4.22),

d (γA) = −SdT −Ndfs +
∑

i,j=1,2

σijV deij . (4.24)

Applying the same procedure to Eq. (4.23) with γA = 0, we obtain the Gibbs-Duhem

equation for the bulk solid:

0 = −SsdT −N sdfs +
∑

i,j=1,2

σs
ijV

sdeij . (4.25)

The system of two equations, (4.24) and (4.25), can be solved for d (γA)using Cramer’s rule

[14],

d (γA) = − [S]X dT − [N ]X dfs +
∑

i,j=1,2

[σijV ]X deij , (4.26)

which is identical to Eq. (4.4) of the main text. Depending on the choice of X, one of

the terms in Eq. (4.26) vanishes and the corresponding variable becomes a function of the

remaining independent variables.

For the solid-liquid interface, since the interface creation can be accompanied by a vol-

ume effect, the corresponding mechanical work (if p 6= 0) must be eliminated by identifying

γA with the excess of F at constant N and V :

γA = [F ]XY =

∣∣∣∣∣∣∣∣∣∣

F N V

F s N s V s

F l N l V l

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N s V s

N l V l

∣∣∣∣∣∣∣

. (4.27)
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The free energies of the bulk phases are given by

F l = −pV l + N lµ, (4.28)

F s = −pV s + N sµ, (4.29)

where µ is the chemical potential in the liquid. (Note that these equations include only the

liquid chemical potential, see Gibbs’ discussion of the non-uniqueness of chemical potential

of non-hydrostatic solids.) Eq. (4.29) expresses the solid-liquid equilibrium condition derived

by Gibbs. Substituting Eqs. (4.28) and (4.29) in Eq. (4.27), it is straightforward to obtain

γA = F − µN + pV. (4.30)

Taking a differential of (4.30) at constant N and using Eq. (4.22) in conjunction with

dV = V
∑

i,j=1,2 δijdeij + AdL , we arrive at

d (γA) = −SdT + V dp−Ndµ +
∑

i,j=1,2

(σij + δijp)V deij . (4.31)

This equation should be considered simultaneously with the Gibbs-Duhem equations for

the bulk phases, which are easily obtained from (4.31) by setting γA ≡ 0:

0 = −SsdT + V sdp−N sdµ +
∑

i,j=1,2

(σs
ij + δijp)V sdeij , (4.32)

0 = −SldT + V ldp−N ldµ. (4.33)

Using these bulk equations, any two terms in Eq. (4.31) can be eliminated by applying
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Cramer’s rule [14]:

d (γA) = − [S]XY dT + [V ]XY dp− [N ]XY dµ +
∑

i,j=1,2

[(σij + δijp)V ]XY deij , (4.34)

where the notation [Z/XY ] is explained by Eq. (4.14).

The above equations include the extensive quantities S, V , N and σijV related to the

entire simulation block. However, their excesses do not change if, instead of the entire block,

we use a more narrow layer containing the surface/interface. As long as the bounds of the

layer are beyond the influence of the surface/interface, the addition of new bulk regions

results only in adding multiples of the second and/or third rows of the determinants to

the first one, which does not change the value of the determinant [14]. Designating the

layer properties by square brackets, Eqs. (4.26) and (4.34) become completely equivalent to

Eqs. (4.4) and (4.13) appearing in the main text.
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Chapter 5: Orientation dependence of the solid-liquid

interface stress: atomistic calculations for copper.

5.1 Introduction

Solid-liquid interfaces have been extensively studied by computer simulations, see e.g. [56]

for a recent review. If the solid is perfectly hydrostatic, the average interface stress τ can

be computed by [57]

τ ≡ 1
2
Tr(τ̂) =

Lz∫

0

[P⊥(z)− P||(z)]dz, (5.1)

where P⊥ and P|| are the negatives of the stress components normal and parallel to the

interface, z is the distance normal to the interface, and Lz is the system size in the z-

direction. Using this hydrostatic approximation, τ was computed for several model systems.

Negative values of τ were reported for Lennard-Jones (LJ) [49, 54, 57, 58] and hard-sphere

[55] solid-liquid systems for several interface orientations. On the other hand, τ was found

positive for systems described by the Stillinger-Weber and embedded-atom method (EAM)

potentials [57]. It was suggested [57] that the different signs of the interface stress could

be explained by the atomic density differences between the solid and liquid phases in the

simulated systems.

After the equilibration of an initially hydrostatic simulation block, its solid part is

often found in a non-hydrostatic state of stress [57, 59]. Although the deviations from

hydrostaticity can be small, Eq. (5.1) is strictly speaking not valid for such cases. Because

the values of P|| in the two bulk phases are different, the interface stress computed from

Eq. (5.1) may depend on the sizes of the solid and liquid portions of the block. Using the full
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non-hydrostatic formulation of the interface stress proposed in in previous chapters, more

accurate and stable values of τ can be obtained. This approach was tested by computing the

principal components of τ for the (110) Cu solid-liquid interface with atomic interactions

described by an EAM potential. Both principal components of τ were found to be negative,

suggesting that this particular interface is in a state of compression.

In this chapter we investigate the orientation dependence of the interface stress by sys-

tematic calculations of τ for the (100), (110), (111) and (310) orientations of the solid-liquid

interface in Cu. Our goal is to evaluate the possible range of the orientation dependence

of τ in real metals using an accurate model of atomic interactions, and to determine if its

sign can be changed by varying the interface orientation for the same material. Using our

methodology described in Sec. 5.2 and 5.3, we compute the interface stress tensor for these

orientations and present our results in Sec. 5.4.

5.2 The interface stress as an excess quantity

The interface stress tensor τ is defined through a partial derivative of the total interface

free energy γA with respect to lateral components of the strain tensor eij [60,61]:

τij =
1
A

∂ (γA)
∂eij

=

∣∣∣∣∣∣∣∣∣∣

(σij + δijP ) V N V
(
σs

ij + δijP
)

V s N s V s

0 N l V l

∣∣∣∣∣∣∣∣∣∣

A

∣∣∣∣∣∣∣
N s V s

N l V l

∣∣∣∣∣∣∣

. (5.2)

Here, indices i, j = 1, 2 are Cartesian coordinates parallel to the interface, δij is the Kron-

neker symbol, A is the interface area, σij is the stress averaged over a layer containing the

solid-liquid interface, σs
ij is the bulk stress tensor in the solid, P is pressure in the liquid,

N and V are the numbers of atoms and volumes of the layer and of homogeneous solid
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(superscript s) and liquid (superscript l) regions, respectively. The thickness of the layer is

chosen so that its boundaries are inside the bulk phases and are not affected by the inter-

face. Likewise, the homogeneous solid and liquid regions are chosen inside the bulk phases

and are assumed to be homogeneous and unperturbed by the interface. Such region may

be chosen either inside or outside the layer containing the interface.

In the particular case when the solid phase is hydrostatic, σs
ij + δijP = 0 and Eq. (5.2)

gives

τij = (σij + δijP ) /A. (5.3)

This equation shows that, although the bulk phases are hydrostatic, the interface stress is

generally anisotropic. This equation is more general than Eq. (5.1) as it permits calculations

of individual components τij . Taking a half of the trace of Eq. (5.3), the average interface

stress τ reduces to Eq. (5.1) with P⊥ ≡ P and P|| ≡ − (σ11 + σ22) /2. In this work, however,

the interface stress tensor was computed from the most general equation (5.2).

5.3 Methodology of atomistic simulations

5.3.1 Simulated models

Four simulation blocks with the (100), (110), (111) and (310) oriented plane copper solid-

liquid interfaces were created, each containing a ∼ 100 Å thick layer of the solid phase

sandwiched between two ∼ 100 Å thick layers of liquid. The dimensions and the total

numbers of atoms in the simulation blocks are listed in Table 5.1. Periodic boundary

conditions were imposed in the x and y directions parallel to the interface, with open

surfaces in the z direction. The open surfaces of the liquid portions of the block ensured

zero pressure in the liquid phase.

Prior to the molecular dynamics (MD) simulations, the block was pre-expanded by the

thermal expansion factor at the simulated temperature in order to minimize the bulk stresses
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Table 5.1: Dimensions of the simulation block (in Å) and the total number of atoms N

used in this work for different orientations of the solid-liquid interface. The interface plane
is normal to the z direction.

Interface orientation Lx Ly Lz N

(100) 59.3 59.3 290 76800
(110) 62.9 59.3 325 92160
(111) 62.9 54.5 300 77760
(310) 51.9 70.4 340 94080

in the solid. In spite of this pre-expansion, the solid was still under some residual non-

hydrostatic stresses arising from the statistical errors of the thermal expansion coefficient

and other factors.

5.3.2 MD simulations

The prepared blocks were used as initial configurations for the MD simulations, which were

performed in the NV E (microcanonical) ensemble. The solid-liquid coexistence could also

be modeled in the NV T (canonical) ensemble. However, NV T simulations require the

knowledge of the exact melting temperature Tm in order to prevent a drift of the interface

towards one of the phases. Even in this ideal case, the thermodynamic equilibrium is neutral

and the interface can freely wander inside the simulation block by a random walk caused

by thermal fluctuations. Over a long simulation time, this walk can result in a significant

displacement of the interface in a randomly chosen direction. In some cases, the system can

even completely melt or completely crystallize.

By contrast, in NV E simulations the total energy of the system is conserved and the

solid-liquid coexistence is stable, preventing the interface from large displacements [62]. To

understand why, consider a fluctuation away from the NV E equilibrium accompanied by

melting of a small portion of the solid phase. The latent heat required for the melting will

come from the kinetic energy of the atoms since the system is adiabatic. This will cause

a decrease of temperature, which will stabilize the solid phase relative to the liquid and

prevent the solid from further melting. Similarly, a spontaneous crystallization releases some
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amount of heat and increases the temperature, stabilizing the liquid against the solid. As

a result, once the system has reached equilibrium, the interface can only implement limited

displacements around its average position, accompanied by small temperature fluctuations

around the melting point. This stability permits very long simulation runs without changing

the average amounts of the phases.

In our simulations, the initial configuration was equilibrated by a 2 ns NV E run. To

verify that the system has been equilibrated, the probability distribution of potential energy

was computed and found to be Gaussian. The equilibration was followed by a 30 ns long

production run. During this run, snapshots containing atomic positions and stresses on

individual atoms were saved every 2 ps and used during post-processing. This interval is on

the time scale of noticeable structural changes in the system. The stresses were computed

using the standard virial expression. In addition, we monitored the interface position to

verify that there was no significant change of the thickness of the solid portion of the block

during the production run. The equilibrium temperature was found to be very close to 1327

K.

5.3.3 Interface positions and profiles

For each interface orientation, profiles of the number density of atoms and the stress com-

ponents across the interface were computed at the post-processing stage. Although such

profiles were not used directly for the interface stress calculations, it was instructive to

examine their shapes and compare them for difference interface orientations.

To create a profile, the simulation block was divided into a set of bins of equal width.

To obtain profiles independent of the binning process [55], each atom was represented by a

Gaussian instead of a single point. Accordingly, all properties such as density and stress were

distributed over an interval of finite length (perpendicular to the interface) and weighted

according to the Gaussian distribution. The property of interest was then averaged within

each bin and plotted as a function of z. The Gaussian width of the atoms was adjusted to

produce smooth profiles while preserving their detailed shapes in the interface region. The
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size of the bins reported in this work was 0.3 Å.

Although the average amounts of the solid and liquid phases were preserved during

the MD simulations, the interface could slightly migrate around its average position by

simultaneous crystallization of material on one side and melting on the other. The interface

movements led to an additional smearing of the profiles. To eliminate this extra smearing,

the profiles computed for individual snapshots were centered relative to the instantaneous

interface position and then averaged. The interface positions in individual snapshots were

identified using the profile of the structure factor |S(k)|, where k is a reciprocal lattice vector

chosen differently for each interface orientation. Its magnitude is inversely proportional to

the crystal periodicity in the respective direction. Although the interface positions defined

through the structure factor may slightly depend on the choice of the k-vector, the final

profile shape is not affected significantly. To compare the profiles computed for different

interface orientations, their positions were centered at the Gibbsian dividing surface, which

was found from the density profiles.

5.3.4 Interface excesses calculations

The interface stress was calculated directly from Eq. (5.2). The quantities appearing in the

determinants in Eq. (5.2) were computed for individual snapshots using homogeneous bulk

regions and layers containing the interfaces. The obtained quantities were then averaged

over all snapshots before inserting them in the determinants.

To select the appropriate regions in a given snapshot, we first computed approximate

positions of the solid-liquid interfaces and of the liquid surfaces. The positions of the solid-

liquid interfaces were determined using the profile of |S(k)|(z) [60,61]. The positions of the

liquid surfaces were identified with the maximum and minimum values of the z-coordinates

of all atoms. Fig. 5.1 illustrates how the regions were selected. The solid part of the block

separated from the solid-liquid interfaces by a distance d was chosen as a bulk solid region.

Two liquid regions separated from the solid-liquid interfaces and from the liquid surfaces

by a distance d were identified as bulk liquid. The interface layer included two solid-liquid
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Figure 5.1: a) A typical snapshot of the simulation block containing two solid-liquid inter-
faces with the (110) orientation. The liquid regions are exposed to vacuum. b) Schematic
presentation of the simulation block showing the regions used for the interface stress calcu-
lations.

interfaces and its boundaries were located a distance d away from the liquid surfaces. This

layer is designated by L in Fig. 5.1. The distance d is chosen to be large enough to exclude

any effect of the surfaces and interfaces on bulk properties while keeping the bulk regions as

large as possible for better statistics. In this work we used d = 20 Å. When computing the

quantities appearing in the determinants, the atoms of the chosen regions were represented

by the same Gaussian as in profiles calculations (Sec. 5.3.3). The error bars were estimated

by dividing the snapshots into several groups and computing the standard deviation of the

group-averaged values from the global average.
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(100) (110) (111) (310)

Figure 5.2: Typical snapshots of the simulated solid-liquid interfaces with different orienta-
tions. For clarity, only a part of the simulation block is shown in each case. Note the (111)
facets formed by the (110) interface.

5.4 Results and discussion

Figure 5.2 illustrates the atomic structure of the interfaces with different orientations studied

in this work. The crystallographic direction normal to the page is [001] for the (100) and

(310) interfaces and [11̄0] for the (110) and (111) interfaces. Note that the (110) interface

tends to form facets with the (111) orientation. Such facets are dynamic, in that they

constantly form and disappear in the course of the simulations. It is also apparent that the

(100) and (111) interfaces are sharper than the (110) and (310) interfaces.

Figure 5.3 shows the density profile computed for the (110) interface. The interface

thickness estimated from this profile is a few angstroms, which is consistent with its atomic

structure. The density profiles computed for other interface orientations look very similar

and are not shown here.

The profiles of the lateral components of the stress tensor across the interfaces are

presented in Fig. 5.4. By crystal symmetry, the principal directions of the stress tensor are

parallel to the coordinate axes. Thus, σ11 and σ22 shown in these plots are two principal
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Figure 5.3: The number density of atoms (n, in Å−3) as a function of distance from the
solid-liquid interface with the (110) orientation.

values of σij (the third principal value being σ33 = −P = 0). Furthermore, due to the

fourfold and threefold symmetries of the (100) and (111) interfaces, the stress tensor must

be isotropic in these cases. Our calculations confirm that the profiles of σ11 and σ22 for

these interfaces are indeed identical within statistical errors; accordingly, we plot only the

average of σ11 and σ22. For the (110) and (310) interfaces, both stress components are

shown and are seen to be different as expected.

Fig. 5.4 reveals that for the (100) and (310) interfaces, a narrow solid region adjacent

to the interface is under lateral compression (negative stress) whereas the opposing liquid

region is under lateral tension (positive stress). The same is true for σ11 (parallel to [100]) in

the (110) interface, but in this case σ22 (parallel to [11̄0]) remains compressive in the entire

interface region. For the (111) orientation, most of the interface region is under lateral

compression in all directions. For all orientations, the stress becomes very small away from

the interface region, but it is different from zero; it is too small to be seen clearly on the

scale of Fig. 5.4.

For the (100), (110) and (111) interfaces, the shapes of the computed stress profiles are

similar to those observed in the previous hard-sphere [55] and LJ [58] calculations. This

may reflect structural similarities between the interfaces modeled with different atomic
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Table 5.2: Interface stress components (τ11 and τ22) and their average (τ) in J/m2 for
different orientations of the solid-liquid interface in copper.

Interface orientation τ11 τ22 τ

(100) 0.081 ± 0.003 0.081± 0.003 0.081± 0.003
(110) -0.105± 0.004 -0.110± 0.002 -0.107± 0.004
(111) -0.103± 0.004 -0.103± 0.004 -0.103± 0.004
(310) 0.038± 0.003 0.062± 0.002 0.050± 0.003

interaction models.

Table 5.2 summarizes the computed interface stresses for each orientation. The interface

stresses of the (100) and (310) orientations are positive, i.e. these interfaces are under

tension. The stress profiles of these interfaces (Fig. 5.4) suggest that the positive sign

of their τ11 and τ22 originates primarily from the tensile state of the narrow liquid layer

adjacent to the interface. Likewise, for the (110) and (111) orientations the negative sign of

the interface stresses can be associated with the compressive state of the narrow solid layer

next to the interface (Fig. 5.4). In other words, it appears that the sign of the interface stress

is decided by competition between two trends in the stress behavior within the interface

region: the liquid layer “wants” to shrink while the solid layer “wants” to expand. If the first

trend is stronger than the second, the interface stress is positive; otherwise it is negative.

For the (100) and (111) orientations, the computed τ11 and τ22 are identical as expected

from crystal symmetry. The (110) interface shows only a slight anisotropy in agreement

with our previous calculations [60]. (In [60], this interface was modeled using a Monte

Carlo method and a much smaller simulation block.) The (310) interface has the smallest

magnitude of the interface stress and the largest anisotropy.
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Figure 5.4: Computed profiles of the lateral stresses across solid-liquid interfaces with dif-
ferent orientations. For the (100) and (111) orientations, only the average of the two stress
components is shown.
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5.5 Discussion

We computed the interface stress tensor for four different orientations of the solid-liquid

interface in EAM Cu. Our methodology of stress calculations is applicable to solids in a

non-hydrostatic state of stress and does not require the construction of accurate profiles of

stresses or any other properties across the interface region. All calculations are made in

terms of extensive properties, such as the number of atoms, volume and integrated stress

for selected regions. These extensive properties serve as input to the determinants defined

by Eq. (5.2). We find, however, that accurate profiles can be very useful as a guide during

the selection of the homogeneous phase regions and at other steps of the data processing.

Furthermore, they can be very helpful for understanding the interface structure and the

origin of the interface stress. Although the bulk stresses implemented in this work were

small, making appropriate corrections for such stresses was important as it leads to more

accurate and stable values of the interface stresses [60,61].

We have shown that the average interface stress τ can be positive or negative for the

same material, depending on the interface orientation (Table 5.2). A change of sign with

orientation was also observed in previous studies. For example, τ was computed for the

(100), (110) and (111) interfaces in a LJ system [58]. For the (110) and (111) orientations,

the stress was found to be negative in agreement with our calculations. For these two

orientations, negative interface stresses were also reported in hard-sphere simulations [55].

For the (100) interface, however, the situation is more complex. In [58], the interface stress

was found to be negative at the critical point but increased with temperature and became

positive at higher temperatures. The positive sign of τ for this interface is consistent with

our calculations performed at a temperature which is much higher than the critical point. A

positive τ for the (100) interface was also found in recent EAM Ni simulations [57]. But the

same paper reported a negative value of τ for the same interface in a LJ system [57]. Thus,

while the negative signs of the (110) and (111) interface stresses were reproduced in several

studies using different atomic interaction models, the results for the (100) orientation are
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less robust. The reason is not apparent and requires further investigations.

Our calculations also demonstrate that the solid-liquid interface stress can be anisotropic,

unless its isotropy is prescribed by crystal symmetry. In fact, we find that the (310) in-

terface displays a very significant anisotropy, even though the magnitude of the stress is

relatively small.

The fact that the interface orientation can reverse the sign of τ for the same material

suggests that the explanations of the sign of τ based on just the solid and liquid densities

and/or the type of interatomic bonding (e.g., pairwise versus many-body, with or without

angular forces) [57] may need further refinement. An interesting trend revealed by the

stress profiles (Fig. 5.4) is that the interface region contains adjacent liquid and solid layers

that are under lateral tension and compression, respectively. The sign of τ is ultimately

decided by balance between the tensile and compressive contributions, whose magnitudes

vary with the interface orientation. For example, the relatively small magnitude of the (310)

interface stress is the result of near cancellation of the tensile and compressive stresses in

the interface region, although the magnitudes of these stresses are as large as for all other

interface orientations (Fig. 5.4). A predictive model should include a link between the

lateral stresses developed in the solid and liquid layers and the crystallography of the solid

surface abutting the liquid.
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Chapter 6: Solid-liquid interface free energy in binary

systems: theory and atomistic calculations for the (110)

Cu-Ag interface

6.1 Introduction

Discussing solid-liquid interfaces, Gibbs treated the solid as a single-component substance

and placed the dividing surface so that the interface excess of this component would vanish.

This resulted in an adsorption equation that did not contain a term with the chemical

potential of the solid component. As was recently pointed out [20], this procedure cannot

be easily extended to binary or multicomponent solids. Indeed, no choice of the dividing

surface can guarantee that the excesses of all solid components would vanish simultaneously.

The complication with a proper definition of γ for multicomponent systems arises from

two sources. One is that the state of stress of a solid can be non-hydrostatic. As was shown

by Gibbs, a non-hydrostatically stressed solid can be equilibrated with three liquids having

different chemical potentials of the components forming the solid. This means that chemical

potentials of such components inside the solid are undefined. This was exactly the reason

why Gibbs chose to eliminate the interface excess of the solid component. Secondly, the

Gibbsian construction of the dividing surface is just one possible way of introducing excess

quantities. Cahn [14] proposed a more general formulation of the adsorption equation, in

which the differential coefficients are defined without using the concept of a dividing surface.

Instead, they are expressed via certain determinants composed of extensive properties of

the system as will be discussed below. Taking volume as one of such properties is equivalent

to introducing a dividing surface, but this is only one particular case in Cahn’s formulation

[14].
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Cahn’s [14] adsorption equation was derived for interfaces between fluids and hydrostat-

ically stressed solids. In a subsequent paper [63], Cahn analyzed the effect of the interface

free energy and interface stress on equilibrium between a spherical solid particle and a

fluid, but again for a hydrostatic solid. On the other hand, solid-liquid coexistence in mul-

ticomponent non-hydrostatic systems was extensively analyzed by Larche and Cahn [18,23].

They showed that under equilibrium conditions, the chemical potentials of all interstitial

components in the solid exist and are equal to their chemical potentials in the liquid. For

substitutional components, Larche and Cahn [18, 23] introduced another quantity Mαβ ,

which they called a “diffusion potential” and whose definition will be given below (Section

6.2). They showed that at equilibrium, Mαβ is constant everywhere in the system and is

equal to the difference between the chemical potentials of components α and β in the liquid.

Note, however, Larche and Cahn [18,23] analyzed only equilibrium between bulk phases and

did not address interface thermodynamics.

We use the Larche-Cahn [18, 23] equilibrium conditions as the starting point in or-

der to express the interface free energy γ and interface stress as excesses of appropriate

thermodynamic potentials. We also derive a generalized adsorption equation and a Gibbs-

Helmholtz-type differential equation that can be conveniently applied for thermodynamic

integration in atomistic computer simulations.

As a demonstration of utility of our analysis, we apply it to atomistic simulations of a

binary solid-liquid coexistence system. In recent years, thermodynamic properties of inter-

faces have been studied by different simulation methods [50, 59, 64–66]. The interface free

energy was computed by the cleavage technique [67, 68], the capillary fluctuation method

(CFM) [69], and thermodynamic integration [48, 49, 60]. Unfortunately, the cleavage tech-

nique can be only applied to single-component systems or to binary systems where the

solute component is insoluble in one of the phases. The CFM method was employed for

calculations of γ in hard-sphere [70] and Lennard-Jones systems [50, 71, 72]. Thermody-

namic integration was successfully applied to surfaces [48, 49, 60] but not to interfaces in

binary two-phase systems. This work appears to be the first one where γ was computed by
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thermodynamic integration along a solid-liquid coexistence path.

In Section 6.2 we derive equations for interface thermodynamics of binary solid-liquid

systems with a non-hydrostatic solid. These equations and the associated thermodynamic

integration schemes are then applied to simulations of a (110) solid-liquid interface in the

Cu-Ag system. After introducing our simulation methodology (Section 6.3.1), we present

our results (Section 6.4) and draw conclusions of this work (Section 6.5).

6.2 Thermodynamic relations for a binary solid-liquid inter-

face

In this section we derive relations of interface thermodynamics that will be used in our

atomistic simulations. As in the previous work [60], all equations are formulated in terms

of the total interface excess γA. The interface free energy γ can be recovered by dividing

this total excess by the interface area A at the end of the calculation.

6.2.1 Interface free energy as an excess quantity

Consider a rectangular block of material containing two coexisting binary phases, solid

and liquid, separated by a planar interface. We assume that the solid phase is formed

by the substitutional mechanism and is in a non-hydrostatic state of stress. The case of

the interstitial solubility mechanism will be discussed later (Section 6.2.4). The Cartesian

direction z is perpendicular to interface, with periodic boundary conditions applied in the

x and y directions. The total number of atoms in the system is fixed.

The conditions of phase equilibrium in this system can be formulated as follows [18,23]:

• Thermal equilibrium: temperature T is uniform over the system.

• Mechanical equilibrium: the direction perpendicular to the interface is one of the

principal axes of the stress tensor in the solid and σ33 = −p , were p is pressure in the

liquid.
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Figure 6.1: Schematic presentation of a binary solid-liquid system. The left part of the block
is the solid phase, the right part is the liquid phase. The vertical dashed line indicates the
approximate position of the interface. Atoms in circles belong to a conceptually selected
layer bounded by imaginary planes aa’ and bb’. Three positions of the layer are shown: (a)
the layer is inside the solid, (b) the layer is just touching the interface, and (c) the interface
is approximately in the middle of the later. The total number of atoms inside the layer is
constant while its volume and average chemical composition can vary.

• Chemical equilibrium:

– The quantity

M21 ≡
(

∂U

∂N2

)

N,S,V,eij

(6.1)

is constant everywhere in the system. Here, U , S, and V are the internal energy,

entropy and volume of a region containing N = N1 + N2 atoms, where N1 and
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N2 are the numbers of atoms of species 1 and 2. The derivative is taken at

constant N , S and V . For solid regions, the elastic strain tensor eij (i, j refer

to Cartesian coordinates) is also fixed.1 Applying Eq. (6.1) to the liquid phase

gives the relation

M21 = µ2 − µ1, (6.2)

where µ1 and µ2 are chemical potentials of the components in the liquid.

– For all homogeneous regions inside the phases,

0 = U s − TSs + pV − µ1N
s
1 − µ2N

s
2 , (6.3)

0 = U l − TSl + pV − µ1N
l
1 − µ2N

l
2, (6.4)

where superscripts s and l refer to the solid and liquid, respectively.

To introduce the interface free energy γ, first consider a homogeneous region inside one of

the phases. Let this phase be the solid, although it could as well be the liquid. Let the

region have the form of a layer bounded by two imaginary geometric planes aa’ and bb’ with

the same area as the cross-section of our system (Fig. 6.1). We assume that the thickness

of this layer (i.e., distance between aa’ and bb’) is much larger than the thickness of the

region perturbed by the interface. Consider a thought process in which the bounding plane

aa’ is moved to the right, whereas bb’ is simultaneously displaced in the same direction

in a such a way that the total number N of atoms contained between the planes aa’ and

bb’ is conserved (the encircled atoms in Fig. 6.1). Since the solid and liquid phases have

different densities and chemical compositions, the volume enclosed between aa’ and bb’ and

its average chemical composition will vary. Now take the view of an observer who moves

with the plane aa’ and can see only the atoms contained within the layer abb’a’. The
1The equilibrium condition M21 = const with M21 defined by Eq. (6.1) applies not only to solid-liquid

but also to solid-solid equilibria. Solid-solid interfaces will be discussed in a separate publication.
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observer will see a reversible process going on in an open system, in which the temperature,

the normal stress σ33 = −P and M21 remain uniform throughout, whereas the volume and

chemical composition vary. New atoms enter this system through its boundary bb’, while

the same number of atoms leaves the system through aa’.

Let the process stop when the interface is inside the moving layer and the planes aa’ and

bb’ are in homogeneous solid and liquid regions, respectively. Comparing the initial and

final states of the layer, we can write the combined first and second laws of thermodynamics

as follows:

U − U s = T (S − Ss)− p(V − V s) + M21(N2 −N s
2 ) + Wnm, (6.5)

where the quantities with and without the superscript s refer to the initial (solid) and final

(two-phase system) states, respectively. The last term in Eq. (6.5) represents the non-

mechanical work done on the system during this process. Since the creation of the interface

is the only outcome that required non-mechanical work, we follow Gibbs’ definition and

equate Wnm to γA, where A is the cross-sectional area of the system. Thus, we arrive at

the following expression for γA:

γA = U − U s − T (S − Ss) + p(V − V s)−M21(N2 −N s
2 ). (6.6)

Now recall that the initial state of the layer abb’a’ satisfies the solid-liquid equilibrium

condition (6.3) with N s
1 + N s

2 = N . Subtracting Eq. (6.3) from (6.6) and using (6.2), we

finally obtain

γA = U − TS + pV − µ1N1 − µ2N2. (6.7)

Although this equation looks similar to the Gibbsian equation for γA in fluid systems

[13], we have derived it for a solid-liquid interface with a non-hydrostatic solid. Although

only the normal stress component in the solid (−P ) appears in this equation explicitly,

γA actually depends also on the non-hydrostatic stress components. This dependence will

become apparent later when we derive the adsorption equation in Section 6.2.2. Note also
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that Eq. (6.7) expresses γA through chemical potentials in the liquid phase.

Eq. (6.7) is written for an arbitrarily chosen layer containing the interface. It is obvious,

however, that homogeneous regions inside this layer that are not influenced by the interface

do not contribute to γA. Indeed, for such regions the right-hand side of Eq. (6.7) is zero

by Eqs. (6.3) and (6.4). It should be possible, therefore, to formulate γA as an excess over

such homogeneous regions.

To this end, consider Eq. (6.7) together with Eqs. (6.3) and (6.4) applied to some ar-

bitrarily chosen homogeneous solid and liquid regions. These equations together constitute

a system of three linear equations with respect to γA and the intensive variables T , p, µ1

and µ2. Two of these variables can be eliminated to express γA as a linear function of two

remaining variables. Technically, this is accomplished by solving this system of equations

for γA using Cramer’s rule of linear algebra [14]:

γA = [U ]XY − T [S]XY + p[V ]XY − µ1[N1]XY − µ2[N2]XY , (6.8)

where X and Y are any two of the extensive properties S, V , N1 and N2. The coefficients

[Z]XY are defined through the following determinants:

[Z]XY ≡

∣∣∣∣∣∣∣∣∣∣

Z X Y

Zs Xs Y s

Z l X l Y l

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

Xs Y s

X l Y l

∣∣∣∣∣∣∣

. (6.9)

Here, the first row of the 3 × 3 determinant is composed on the amounts of Z, X and Y

in a layer containing the interface together with adjacent homogeneous regions, whereas all

other rows of the determinants represent properties of homogeneous solid and liquid regions.

It can be shown [14] that [Z]XY is independent of the volumes of the homogeneous

107



regions and of the thickness of the layer as long as the latter is large enough to include

all regions perturbed by the interface. Representative homogeneous regions can be chosen

either inside or outside the layer. It has also been shown [14] that [Z]XY has the meaning

of the excess of property Z when the interface is formed out of two homogeneous regions

in such a way that the amounts of X and Y remain the same before and after the interface

formation. In other words, the interface excesses of X and Y are zero. We will be, therefore,

referring to X and Y as conserved properties. Finally, two terms in Eq. (8.4) are zero because

[X]XY = [Y ]XY = 0.

Eq. (8.4) expresses γA through excesses of U and any two properties out of the set S,

V , N1 and N2. This can be written as

γA = [Φ]XY , (6.10)

where

Φ ≡ U − TS + pV − µ1N1 − µ2N2 (6.11)

is the right-hand side of Eq. (6.7). Since two terms in Φ have zero excesses and can be

omitted, the final form of Φ depends on the choice of X and Y . For example, Φ = U −
TS − µ2N2 if we choose X = N1 and Y = V . Since V is one of the conserved variables, γA

can be interpreted as excess of Φ with respect to a diving surface placed so that the excess

of N1 is zero. Alternatively, Φ = U − TS + PV if we choose X = N1 and Y = N2. In this

case, the excess of Φ cannot be expressed in terms of a dividing surface because volume

itself now has a non-zero excess.

We emphasize that these or any other choices of X and Y do not affect the final value

of γA. Thus,

γA = [U − TS − µ2N2]N1V = [U − TS + pV ]N1N2 = . . . . (6.12)

Furthermore, transformations of variables can produce other expressions of γA in the form
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of [Φ]XY . For example, introducing the variable N = N1 + N2 instead of N1 we have

γA = [U ]XY − T [S]XY + p[V ]XY − µ1[N ]XY −M21[N2]XY (6.13)

and thus

Φ ≡ U − TS + pV − µ1N −M21N2, (6.14)

with conserved properties X and Y selected out of the set S, V , N and N2. Choosing N

as one of the conserved properties, we eliminate µ1 and obtain Φ = U − TS −M21N2. The

advantage of this form is that M21 is readily accessible by atomistic simulations.

6.2.2 Adsorption equation

In this Section we derive an adsorption equation for a solid-liquid interface. We consider the

same binary solid-liquid system as above. The total number of atoms is fixed while the the

chemical composition is allowed to vary by exchanging atoms with surrounding bulk regions.

We will additionally assume that in all processes considered here, the cross-section of the

solid contains a fixed number of lattice sites of its crystal structure. In other words, the

Largangian area of the interface is constant, whereas the physical area A can vary by elastic

deformation of the solid. Our system can receive or release heat, do mechanical work, and

exchange atoms with the environment. Thus, the reversible variation of its internal energy

is

dU = TdS +
∑

i,j=1,2

σijV deij + σ33AdL + M21dN2, (6.15)

where σij the stress tensor averaged over the entire volume of our system and L is the

dimension of the system normal to the interface.

Taking a full differential of Eq. (6.7) and combining it with Eq. (6.15), we obtain
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d (γA) = −SdT + V dp−N1dµ1 −N2dµ2 +
∑

i,j=1,2

(σij + δijp) V deij , (6.16)

where we used dV =
∑

i,j=1,2 δijdeij+AdL and Eq. (6.2). The seven differentials appearing

in the right-hand side are not independent because this equation must satisfy the phase

coexistence conditions. Equations expressing such conditions can be readily obtained by

applying Eq. (6.16) to homogeneous solid and liquid regions with γA ≡ 0. (Alternatively,

the above derivation of Eq. (6.16) can be repeated with Eqs. (6.3) and (6.4) instead of (6.7)).

This immediately gives us the Gibbs-Duhem equations for the solid and liquid phases:

0 = −SsdT + V sdp−N s
1dµ1 −N s

2dµ2 +
∑

i,j=1,2

(
σs

ij + δijp
)
V sdeij , (6.17)

0 = −SldT + V ldp−N l
1dµ1 −N l

2dµ2. (6.18)

Since the liquid is in a hydrostatic state, the term σl
ij + δijp has vanished. This system of

two equations describes the 5-dimensional phase coexistence surface in the parameter space.

To impose the phase coexistence conditions on variations in equation (6.16), we use

Eqs. (6.17) and (6.18) to eliminate two differentials from this equation. This can be done

by applying Cramer’s rule to solve the system of equations (6.16)-(6.18) for d(γA):

d (γA) = − [S]XY dT + [V ]XY dp− [N1]XY dµ1 − [N2]XY dµ2

+
∑

i,j=1,2

[(σij + δijp)V ]XY deij . (6.19)

Here, X and Y are any two of the seven extensive properties S, V , N1, N2 and

(σij + δijp)V . Each differential coefficient [Z]XY is defined through determinants according

110



to Eq. (8.5). Recall that [Z]XY has the meaning of interface excess of property Z, the ex-

cesses of X and Y being zero. Because two of the seven differential coefficients in Eq. (6.19)

are zero, this equation expresses d(γA) as a function of five independent differentials. This

equation gives a variation of γA along a particular direction on the 5-dimensional phase co-

existence surface. The independent variables describing this surface depend on the selection

of the conserved properties X and Y .

The last term in Eq. (6.19) describes variations of γA due to elastic straining of the

interface and is identified with interface stress tensor τij :

τij =
1
A

(
∂ (γA)
∂eij

)
=

1
A

[(σij + δijp)V ]XY

=
1
A

∣∣∣∣∣∣∣∣∣∣

(σij + δijp) V X Y
(
σs

ij + δijp
)

V s Xs Y s

0 X l Y l

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

Xs Y s

X l Y l

∣∣∣∣∣∣∣

. (6.20)

The derivative of γA is taken along the coexistence surface by varying a particular strain

component eij while keeping the other strain components and two of the intensive variables

T , p, µ1 and µ2 fixed. This equation represents the interface stress as an excess over bulk

stresses and gives a recipe for its calculation for non-hydrostatic solids. Because τij depends

on the choice of the conserved variables, it is generally not unique.

In the particular case when the solid is in a hydrostatic state of stress, we have
(
σs

ij + δijp
)

V s =

0 and the number of degrees of freedom of the coexistence system reduces to two. The solid

and liquid are under the same pressure p. The conserved properties can now be chosen only
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out of the set S, V , N1 and N2. It is evident from Eq. (6.20) that the interface stress be-

comes unique and equal to τij = (σij + δijp) V/A regardless of the choices of X and Y . We

emphasize, however, that all other excess quantities (the differential coefficients in (6.19))

are still non-unique even in the hydrostatic case.

The adsorption equation (6.19) constitutes the main result of this Section. As before,

transformations of variables can produce different parameterizations of γA on the phase

coexistence surface. For example, using the variable N = N1 + N2 instead of N1 we can

rewrite the adsorption equation in the form

d (γA) = − [S]XY dT + [V ]XY dp− [N ]XY dµ1 − [N2]XY dM21

+
∑

i,j=1,2

[(σij + δijp)V ]XY deij . (6.21)

As will be seen below, this form has certain advantages for atomistic simulations.

6.2.3 Thermodynamic integration schemes

We are now in a position to derive equations that can be applied for thermodynamic in-

tegration of the interface free energy. To this end, we eliminate [S]XY from Eq. (6.21)

by inserting [S]XY from Eq. (6.13). After some transformations, we obtain the following

Gibbs-Helmholtz type equation

d

(
γA

T

)
= − [Ψ]XY

T 2
dT +

[V ]XY

T
dP − [N ]XY

T
dµ1 − [N2]XY

T
dM12

+
1
T

∑

i,j=1,2

[(σij + δijp)V ]XY deij . (6.22)

where we denoted
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Ψ ≡ U + pV − µ1N −M12N2. (6.23)

If N is selected as one of the conserved properties, then the term with dµ1 in Eq. (6.22)

and−µ1N in Eq. (6.23) vanish, leaving only properties that are readily accessible by atom-

istic methods. After elimination of another term, only five independent differentials will

remain in the right-hand side of Eq. (6.22). This equation can be then integrated along any

path on the phase coexistence surface to find γ at all points of the path knowing its value

at the initial point.

For example, if we choose N and V for X and Y , then Eq. (6.22) becomes

d

(
γA

T

)
= − [U −N2M21]NV

T 2
dT − [N2]NV

T
dM12

+
1
T

∑

i,j=1,2

[(σij + δijp)V ]NV deij . (6.24)

We can also take N and N2 for X and Y , which gives

d

(
γA

T

)
= − [U + pV ]NN2

T 2
dT +

1
T

[V ]NN2dp

+
1
T

∑

i,j=1,2

[(σij + δijp)V ]NN2
deij . (6.25)

To demonstrate an application of these equations, consider a process in which pressure

in the liquid is constant while temperature and the strain components eij in the solid vary

maintaining the two-phase equilibrium. This process can be mapped on a path on the

phase coexistence surface on which dp = 0. This path can be parameterized by any of the
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intensive variables. Let this variable be temperature, i.e., M21 = M21 (T ) and eij = eij (T ).

Then

dM21 =
(

dM21

dT

)

P,coex.

dT,

deij =
(

deij

dT

)

P,coex.

dT,

where the subscript p, coex. is a reminder that the derivatives are taken on the phase

coexistence surface at a constant pressure. Eqs. (6.24) and (6.25) can now be integrated

along this path to give

γA =
(γA)0 T

T0
− T

T∫

T0

(
[U −N2M21]NV

T ′2

−
∑

i,j=1,2

[(σij + δijp)V ]NV

T ′

(
deij

dT

)

P,coex.

+
[N2]NV

T ′

(
dM21

dT

)

P,coex.

)
dT ′, (6.26)

γA =
(γA)0 T

T0
− T

T∫

T0

(
[U + pV ]NN2

T ′2

−
∑

i,j=1,2

[(σij + δijp)V ]NN2

T ′

(
deij

dT

)

P,coex.

)
dT ′, (6.27)

where superscript 0 refers to the initial state of the path.
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It should be emphasized that the integrals (6.26) and (6.27) are performed along the

same path and only differ in the choice of the conserved properties X and Y selected

for computing the excess quantities. Since the value of γA at any point of the path is

independent of the choice of X and Y , we can equate the two integrands to obtain

[U −N2M21]NV

T 2
−

∑

i,j=1,2

[(σij + δijp)V ]NV

T

(
deij

dT

)

P,coex.

+
[N2]NV

T

(
dM21

dT

)

p,coex.

=
[U + pV ]NN2

T 2
−

∑

i,j=1,2

[(σij + δijp)V ]NN2

T

(
deij

dT

)

p,coex.

. (6.28)

This relation can be used to express the segregation [N2]NV through excesses of other

properties and derivatives of M21 and eij along the path:

[N2]NV =

{
[U + pV ]NN2 − [U ]NV

− T
∑

i,j=1,2

{
[(σij + δijp)V ]NN2

− [(σij + δijp)V ]NV

}(
deij

dT

)

P,coex.

}

/

(
T

(
dM21

dT

)

P,coex.

−M21

)
. (6.29)

This relation will be used in Section 6.4 for cross-checking our simulation methodology.

6.2.4 The case of an interstitial solid solution

All previous equations were derived assuming that the solid phase is a substitutional solu-

tion. Now suppose that the chemical component 2 dissolves in the solid by the interstitial
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mechanism. Assume for simplicity that this component does not change its atomic or

molecular state during the dissolution. In this case, the solid-liquid equilibrium conditions

formulated in Section 6.2.1 remain valid with one modification: the constancy of M12 should

be replaced by the condition that the chemical potential µ2 of the interstitial species (which

is now well-defined in the sold [13,18,23]) be uniform throughout the system, µ2 = const.

To derive γA, we again consider a thought process in which we conceptually select a

solid layer bounded by two planes aa’ and bb’ (Fig. 6.1) and move these planes towards the

interface until the latter is approximately in the middle of the layer. This time, however,

we keep a fixed number of atoms N1 of component 1 inside the layer. Comparing the initial

(superscript s) and final states of the layer, we write the combined first and second laws of

thermodynamics for an open system in the form

U − U s = T (S − Ss)− p(V − V s) + µ2(N2 −N s
2 ) + Wnm. (6.30)

Recognizing that the non-mechanical work Wnm is spent to create the interface, we obtain

γA = U − U s − T (S − Ss) + p(V − V s)− µ2(N2 −N s
2 ). (6.31)

Finally, combining this equation with the phase equilibrium condition (6.3) with N s
1 = N1,

we exactly recover Eq. (6.7) derived previously for a substitutional solid. It is convenient

to rewrite this equation in the form

γA = U − TS + pV − µ1N − (µ2 − µ1) N2, (6.32)

or in the excess form [Φ]XY with Φ equal to the right-hand side of Eq. (6.32). The latter

equation, as well as the corresponding adsorption equation and all thermodynamic inte-

gration schemes derived previously, remain the same except that M12 must be replaced by

µ2 − µ1.
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6.3 Methodology of atomistic simulations

6.3.1 Model system and methodology of Monte Carlo simulations

We chose the copper-silver system as a model binary system, with atomic interactions de-

scribed by the embedded-atom potential developed in Ref. [40]. Our goal is to study an

interface between the Cu-rich solid solution and the liquid solution. The chemical composi-

tions of the coexisting solid and liquid phases at different temperatures are defined by the

solidus and liquidus lines shown in Fig. 6.2 in red. As temperature decreases starting from

pure Cu, the concentration (atomic fraction) of Ag atoms in the liquid phase increases from

0 to 0.46 (eutectic composition), while the concentration in the solid phase never exceeds

a few percent. This leads to very large composition differences across the interface at low

temperatures.

The (110) orientation of the solid-liquid interface was chosen for this study because the

same orientation was used in our previous work on pure Cu [60]. This interface was modeled

in a rectangular 26×25×190 Å(8,960 atoms) simulation block containing a 80 Å thick solid

layer and two 55 Å thick liquid layers exposed to vacuum (Fig. 6.3). The [11̄0] and [001]

crystallographic directions of the solid part were aligned parallel to the x and y coordinate

axes, respectively. Periodic boundary conditions were applied in the x and y directions,

with free surfaces in the z direction. The exposure to vacuum guaranteed zero pressure in

the liquid phase.

Prior to the Monte Carlo (MC) simulations (see next paragraph), the block was uni-

formly expanded by the thermal expansion factor corresponding to the simulated tem-

perature and equilibrium chemical composition of the solid. The expansion factors were

computed in separate MC simulations using a single-phase solid block. This pre-expansion

procedure eliminated most of the thermal stresses that would otherwise be created in the

solid phase. Nevertheless, some non-hydrostatic residual stresses remained due to statistical

errors in the expansion factor. We, therefore, applied the full non-hydrostatic treatment of

the problem (Section 6.2) to introduce corrections for the residual stresses.
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Figure 6.2: The Cu-Ag phase diagram predicted by the embedded-atom potential used in
this work. The red lines mark the equilibrium solid and liquid compositions implemented
in this work.

The semi-grand canonical MC method [36, 48, 51] was applied to calculate equilibrium

thermodynamic properties of the interface. The MC simulations were performed at tem-

peratures from 1327 K (melting point of pure Cu) down to 1000 K. The values of M21

corresponding to solid-liquid coexistence at different temperatures were previously com-

puted using the same MC technique [40]. For each T and M21, the initial configuration of

the simulation block was equilibrated by 105 MC steps per atom, followed by a production

run of 106 additional MC steps. Snapshot files containing instantaneous atomic positions,

stresses and energies were saved every 50 MC steps and used for calculations of excess quan-

tities at the post-processing stage. The stresses were computed from the standard virial

expression.
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Figure 6.3: (a) Snapshot of the simulation block at 1000 K. The solid phase is sandwiched
between two liquid layers, each exposed to vacuum to ensure zero pressure in the z-direction.
The yellow and gray colors designate Cu and Ag atoms, respectively. (b) Schematic pre-
sentation of different regions involved in the calculations of excess quantities. L is the total
thickness of the layer used for interface excess calculations. The solid-liquid interfaces are
indicated by vertical red lines. The curly braces mark homogeneous solid and liquid regions.
Distances d and d′ are discussed in the text.

6.3.2 Interface excess quantities and thermodynamic integration

The excess values of energy, stresses and amounts of components were calculated from the

determinants (8.5) introduced in Section 6.2. The quantities appearing in those determi-

nants were first computed for individual snapshots and then averaged over all snapshots

before inserting them in the determinants. This calculation requires an appropriate selec-

tion of the bounds of the homogeneous and interfacial regions (Fig. 6.3(b)). This selection

was made automatically and was guided by the knowledge of approximate positions of inter-

faces in individual snapshots. It should be mentioned that the interface positions somewhat

varied during the simulations as a result of thermal fluctuations. The solid-liquid inter-

face positions were estimated from profiles of the structure factor S(k) using the reciprocal

119



-100 100-50 500
0.0

0.3

0.6

0.9

C
o

m
p

o
s
it
io

n

-100 100-50 500

Distance (A)
o

0

1

2

3

-1S
tr

e
s
s
 (

G
P

a
)

[001]
[110]

(a)

(b)

Distance (A)
o

Liquid Solid

SolidLiquid Liquid

Liquid

Figure 6.4: Profiles of (a) Ag concentration and (b) lateral components of stress in the [11̄0]
and [001] directions of the solid at 1000 K.

lattice vector k =2π[2
√

2/a, 0, 0]. The procedure of interface location by this method was

described in detail in our previous work [60]. The approximate liquid-vacuum interface

positions were identified with the maximum and minimum z-coordinates of all atoms.

Knowing the approximate interface locations, the bulk solid was represented by a solid

layer separated by a distance d
′
from each of the solid-liquid interfaces (Fig. 6.3(b)). The

bounds of the bulk liquid layers were placed a distance d from a liquid-vacuum interface

and a distance d
′. from the solid-liquid interface. The solid-liquid interface region itself was

represented by the entire simulation block less the two near-surface layers of thickness d.

This region is shown in Fig. 6.3(b) as the layer with the thickness L. (All interface excess

quantities of this region were divided by two since it contains two solid-liquid interfaces.)

Because the estimated interface positions fluctuated from one snapshot to the next, the
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bounds of the bulk and interface regions were re-defined on the fly, keeping the values of d

and d
′
constant. These values were adjusted to be large enough to exclude the influence of

the interfaces on bulk properties. The latter was verified by increasing these distances until

the computed excess quantities reached constant values within statistical errors. Typical

values of d and d
′
were around 19 Å. In order to place error bars of the calculated quantities,

the entire set of snapshots was divided into 6 subsets. The error bar was identified with the

standard deviation of the subset averages from the global average.

When one of the conserved properties X and Y in Eq. (8.5) was volume, slight changes

in the exact positions of the bounding surfaces could sometimes produce small but sudden

variations in the interface excess quantities, reflecting the discrete atomic nature of the se-

lected regions. To average over such fluctuations, we found it useful to represent atoms by

small cubes with sides λ parallel to the coordinate axes. Accordingly, all physical properties

assigned to atoms were uniformly distributed over the volumes of the cubes. This “smear-

ing” of atoms is similar to the finite impulse response filtering method [55]. For reasonable

choices of λ, the average values of the excess quantities were not noticeably affected by λ.

The results reported below were obtained with λ = 2 Å.

Although our calculations of the interface excesses did not require a construction of

interface profiles, such profiles were still computed as they often give insights into the struc-

ture of the interface region. As an illustration, Fig. (6.4) presents profiles of composition

and lateral components of stress at 1000 K. They were obtained by dividing the simulation

block into 0.7 Å thick slices normal to the z direction and averaging the composition and

stress components within each slice. In addition, each profile was averaged over 2,000 snap-

shots. At this relatively low temperature the random interface displacements were small.

The latter was verified by dividing the entire series of snapshots into groups according to

the progress of the simulation and computing the profiles for each group. It should also be

mentioned that the shape of the profiles depended to some extent on the size λ of the cubes

representing the atoms. Larger values of λ tended to give smoother profiles, but at the risk

of losing interesting details. The particular profiles shown in Fig. (6.4) were computed with
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λ = 3 Å. The details revealed by their shapes will be discussed later.

The free energy γ of the solid-liquid interface was computed as a function of temperature

(and thus the chemical compositions of the phases) by thermodynamic integration based

on Eqs. (6.26) and (6.27). These two equations are based on different choices of X and Y

and were used to check the invariance of the obtained γ values. After the excess quantities

appearing in these equations were computed from MC simulations as functions of T , the

integrands were approximated by cubic splines and integrated to recover γ(T ). The reference

temperature for the integration was chosen to be T0 = 1300 K. The corresponding reference

value γ0 was chosen so that the plot of γ(T ) would be smoothly connected to γ = 0.199

J/m2 for pure copper (1327 K). The latter value was obtained in our previous work for the

same interface orientation [60].

6.4 Simulation results

Examples of composition and lateral stress profiles are shown in Fig. 6.4. Observe the

large difference between the bulk solid and liquid compositions. The stresses fluctuate

around zero in the liquid phase and are non-zero but very small in the solid phase (residual

thermal stresses). The large concentration peaks at the ends of the composition profile

reflect the strong segregation of Ag to the open surfaces of the liquid. Note that these

peaks are followed by oscillations penetrating deep into the liquid. The large positive peaks

of the lateral stress are due to the large positive tension of the open surfaces. Both stress

components produce identical peaks as expected from the anisotropy of the liquid surface.

The solid-liquid interfaces are characterized by smaller peaks of Ag concentration, whose

positive sign is indicative of Ag attraction to these interfaces. The negative sign of the stress

peaks suggests that the solid-liquid interface is under compression. The different magnitudes

of the peaks for different stress components indicate that the interface stress is significantly

anisotropic. It is interesting to note that the positions of the composition and stress peaks

at the solid-liquid interfaces do not coincide, with the composition peaks being slightly
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depends on the choice of the conserved variables.

123



shifted towards the liquid phase. In other words, if the interface position is identified with

the maximum of stress, then Ag atoms segregate to the interface on the liquid side. At

high temperatures, the Ag concentration peaks at the solid-liquid interfaces could not be

resolved due to larger thermal fluctuations and more extensive interface movements.

Because the coordinate axes are chosen to be parallel to crystallographic directions with

twofold symmetry, the interface stress tensor τij is diagonal. Let us denote the principal

components of τij by τ[001] and τ[11̄0], with the subscripts indicating the principal directions.

These stress components were computed from Eq. (6.20) for two different choices of the

conserved properties X and Y : X = N, Y = V and X = N, Y = N2. These choices were

found to give identical interface stresses within statistical errors. This is not surprising

given that the residual thermal stresses in the solid are very small. Recall that τij must

be independent of the choice of X and Y if the bulk state of stress is hydrostatic, which

includes the stress-free case.

The temperature dependence of the principal components of τij is shown in Fig. 6.5.

In pure Cu, both components are negative and nearly equal. In the binary system they

remain negative and their magnitude drastically increases with decreasing temperature.

As T approaches the eutectic temperature, the average magnitude of the interface stress

becomes almost by order of magnitude larger than in pure Cu. Furthermore, the interface

stress becomes highly anisotropic, with the magnitude of compression in the [11̄0] direction

being more than a factor of two larger than in the [001] direction.

Fig. 6.6 shows the excesses of internal energy U computed with different choices of X

and Y . The excess values are clearly different, especially at the ends of the temperature

interval. This was to be expected since interface excess of energy is not unique but depends

on the choice of the conserved properties. These two different excesses of U were used for

both thermodynamic integration and for indirect evaluation of the segregation.

The interface segregation [N2]NV was calculated by two methods: directly using the

determinants and indirectly using Eq. (6.29). Since we have already established that our

interface stress is virtually independent of the choices of X and Y , Eq. (6.29) reduces to
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[N2]NV =
[U ]NN2 − [U ]NV

T

(
dM21

dT

)

P,coex.

−M21

. (6.33)

To evaluate (dM21/dT )P,coex. for this equation, M21 as a function of T was fitted with

cubic splines and differentiated. The obtained temperature dependence of the segregation

is plotted in Fig. 6.7. The good agreement between the direct and indirect calculations

confirms the correctness of our methodology. Note that the segregation is negative at

high temperatures but becomes positive below 1175 K. The temperature dependence of the

segregation is almost linear when approaching the eutectic point.

Finally, Fig. 6.8 displays the interface free energy obtained by thermodynamic integra-

tion as a function of T for different choices of X and Y . As expected, the results are

identical within the accuracy of the calculations. γ decreases with decreasing temperature
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approximately linearly from 0.199 J/m2 for pure copper to 0.178 J/m2 in the alloy system at

1000 K. A similar trend was found in recent CFM calculations for a Lennard-Jones system

with lens-type solid-liquid phase digram [71]. The variation of γ is much smaller than the

change in the interface stress in the same temperature interval.

6.5 Discussion and conclusions

Starting from the general Gibbsian definition of interface free energy γ as non-mechanical

reversible work of interface creation, we have derived expressions for γ in binary solid-liquid

systems with a non-hydrostatically stressed solid. Although chemical potentials of one (for

an interstitial solution) or both (for a substitutional solution) components are undefined

inside of the solid, the familiar expression (6.7) derived by Gibbs for fluid systems still holds

with µ1 and µ2 taken as chemical potentials in the liquid phase. γ can also be expressed
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as an excess of a thermodynamic potential Φ introduced in Section 6.2.1. The excess of Φ,

as well as all other interface excess properties, can be calculated from determinants (8.5)

without constructing interface profiles or introducing dividing surfaces. This formulation

offers significant advantages for atomistic simulations.

We have also derived an adsorption equation expressing variations of γA in terms of

variations of seven intensive properties which are uniform throughout the solid-liquid system

at equilibrium. The differential coefficients in this equation have the meaning of interface

excesses of extensive properties. Two of these excesses must be zero, leaving five independent

terms corresponding to the five degrees of freedom of the two-phase coexistence system.

The final form of the adsorption equation depends on the arbitrary choice of two conserved

properties X and Y whose excesses must be zero. Taking the total number of atoms

as one of such conserved properties, the adsorption equation contains only the chemical

potential difference µ2 − µ1, which for substitutional solid solutions is identical to the

diffusion potential M21 [18,23]. A formulation of the adsorption equation in terms of µ2−µ1

is important because µ2−µ1 is the control parameter in semi-grand canonical Monte Carlo

simulations.

Three terms in the adsorption equation define the interface stress tensor τij , representing

it as an excess over the bulk stress tensor σij . While the interface free energy is independent

of the choice of conserved properties, the interface stress does generally depend on X and Y

(unless the solid is hydrostatic). The non-uniqueness of interface stress in non-hydrostatic

systems is an interesting fact that should be taken into account in the interpretation of

simulation results and experimental data. For example, interface stresses create a non-

hydrostatic state of bulk stress inside a free-standing thin solid film in equilibrium with

its melt. If the film thickness is on the order of a few nanometers, the non-hydrostatic

components of the bulk stress can be quite significant, creating some uncertainty in the

interface stress extracted from the measured bulk stresses inside and outside the film.

More generally, it should be remembered that all interface excesses are non-unique

with the exception of γ. Considering the freedom of choice of the variables used in the
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adsorption equation, care should be taken when assigning a physical meaning to excess

quantities or comparing them with experiment. For example, solute segregation can be

characterized by different excess quantities, such as [N2]NV /A, [N2]N1V /A, [N2]SV /A, etc.

Gibbs [13] used the segregation Γ2(1) which in our notations is [N2]N1V /A. In this work

we preferred [N2]NV /A whose positive sign at low temperatures is consistent with the peak

of Ag concentration in the interface region (Fig. (6.4)). However, all other definitions of

segregation would be equally legitimate and could give us positive, negative or zero values.

As another example, Fig. (6.6) demonstrates that the interface energy is non-unique and

strongly depends on the choice of the conserved variables.

Finally, our simulations demonstrate that the interface free energy and interface stress

can be very different in magnitude and even sign. The conceptual difference between the two

quantities was emphasized by Gibbs [13], who defined γ as reversible work of creation of a

unit area of new interface, while τij as work of elastically stretching a unit area of an existing

interface. For stable interfaces, γ is always positive and usually varies with crystallographic

orientation within a few percent [71]. By contrast, we find that both principal components

of τij for the (110) solid-liquid interface are negative and drastically increase in magnitude

with increasing alloying. At the same time, γ decreases by only about 10%. Furthermore,

the anisotropy τij also drastically increases with alloying, reaching a factor of two near the

eutectic point. The difference between the interface free energy and interface stress is an

important factor in phase nucleation theory. For example, in the spherical model of a solid

particle nucleating from a fluid, assuming that the interface properties are isotropic, the

difference between chemical potentials of components inside the phases is proportional to

γ−τ [20,63]. For negative and large τ values such as those found in this work, the difference

γ − τ is positive and could be significant.
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Chapter 7: Effect of non-hydrostatic stresses on solid-fluid

equilibrium. I. Bulk thermodynamics

7.1 Introduction

The problem of equilibrium between non-hydrostatically stressed solids and fluids is relevant

to many processes encountered in nature and technological applications. For example,

crystallization of solid materials may occur in the presence of pressure in the liquid. The

pressure gives rise to mechanical stresses in the growing solid, which are generally not

hydrostatic. As another example, during deposition of thin solid films by growth from

vapor, the films are often subject to non-hydrostatic stresses imposed by the substrate,

especially during epitaxial growth. In a more general context, non-hydrostatic stresses

can strongly affect phase stability and phase transformations and are very important in

high-pressure physics.

Equilibrium between non-hydrostatically stressed solids and fluids was first discussed by

Gibbs [13]. He derived equilibrium conditions between the phases and showed that a non-

hydrostatic single-component solid1 can be equilibrated with three separate multicomponent

fluids each having a different chemical potential. Gibbs also showed that a multicomponent

fluid equilibrated with a single-component solid is supersaturated with respect to the sub-

stance of the solid except when the solid is hydrostatic. He pointed out that for variations

of stress away from the hydrostatic state at a constant pressure p in the fluid, the change

in the equilibrium temperature T is zero to first order. Using isotropic linear elasticity,

Sekerka and Cahn [73] recently showed that the change in equilibrium temperature in a

single-component system at a fixed pressure in the fluid is quadratic in non-hydrostatic
1Gibbs[13] allowed the solid to contain several chemical elements but assumed its chemical composition

to be unvaried. This fixed chemical composition defines the single component of the solid.
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components of the stress in the solid.

In this work we analyze general variations of state of an equilibrium solid-fluid system.

We evaluate the changes in T and p caused by stress variations away from an initially

hydrostatic state along a hydrostatic path, as well as along non-hydrostatic isobaric and

isothermal paths. Our treatment includes analysis of special points where volumes per atom

or entropy per atom in the initial hydrostatic state are the same in both phases. We treat

the elastic deformations of the solid within a small-strain approximation and anisotropic

linear elastically. Using atomistic simulations with a semi-empirical potential, we study non-

hydrostatic solid-liquid equilibrium in pure copper with a (110) oriented interface. As most

crystalline solids, copper is elastically anisotropic. Using molecular dynamics (MD), we

directly compute several equilibrium temperatures at a fixed zero pressure in the liquid and

several equilibrium pressures at a constant temperature. The calculations are performed for

a set of different states of stress in the solid, including biaxial deformations. The results are

compared with our theoretical predictions and are found to be in quantitative agreement.

We also study the instability of non-hydrostatic systems predicted by Gibbs and show how

a non-hydrostatic system can transform to hydrostatic by growth of hydrostatically stressed

solid layers.

The chapter is organized as follows. In Sec. 7.2 we analyze thermodynamic relations for

non-hydrostatic solid-fluid equilibrium and derive analytical expressions for the equilibrium

temperature and pressure. In Sec. 7.3 we describe our methodology of atomistic simula-

tions. The results of the simulations are presented in Sec. 7.4, followed by a discussion

in Sec. 7.5. The results obtained in this work will be used for the analysis of solid-fluid

interface thermodynamics [74].
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7.2 Thermodynamics of non-hydrostatic solid-fluid equilib-

rium

7.2.1 Thermodynamic relations

Consider a rectangular block containing a single-component homogeneous solid under a

general state of mechanical stress at equilibrium with a fluid of the same component. The

phases are separated by a planar interface and the effect of gravity [75, 76] is neglected.

Gibbs derived the following equilibrium conditions for this system: 1) temperature T is

uniform throughout the system; 2) one of the principal axes of the Cauchy stress tensor σij

in the solid (call it axis 3) is perpendicular to the solid-fluid interface, with the principal

value σ33 = −p, where p is pressure in the fluid; and 3) the phase-change equilibrium

condition requires

us − Tss + pΩs = µf . (7.1)

Here us, ss and Ωs are the energy, entropy and volume per atom in the solid and µf is the

chemical potential in the fluid.

For a general variation of the state of stress and the entropy of the solid, the differential

of us is given by the fundamental equation

dus = Tdss +
∑

i,j=1,2,3

Ωs
0σijdeij , (7.2)

where eij is the small-strain tensor and Ωs
0 is atomic volume in the reference state used to

define the strain. As the reference state we choose the stress-free state of the solid at a fixed

reference temperature T0. The differential of the chemical potential in the fluid is given by

dµf = −sfdT + Ωfdp, (7.3)
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where sf and Ωf are entropy and volume per atom in the fluid. Taking a differential of

Eq. (7.1) and using Eqs. (7.2) and (7.3) in conjunction with the relation

dΩs =
∑

i,j=1,2,3

Ωs
0δijdeij (7.4)

(δij being the Kronneker symbol) we obtain

∆sdT −∆Ωdp +
∑

i,j=1,2

Ωs
0 (σij + δijp) deij = 0 (7.5)

where we denoted ∆s = sf − ss and ∆Ω = Ωf −Ωs. Note that the summation now extends

only to i, j = 1, 2 because σ3k + δ3kp = 0 for k = 1, 2, 3. Gibbs derived Eq. (7.5) for a more

general case of finite strains [13]. This equation contains five differentials and defines a

four-dimensional (4D) phase coexistence surface in the 5D configuration space of variables.

Thus the system has four degrees of freedom (four independent variables).

Eq. (7.5) immediately leads to two important conclusions regarding the behavior of T

and p on the phase coexistence surface. If Eq. (7.5) is applied to a variation away from a

hydrostatic state, the coefficients σij + δijp vanish. Then, if ∆s in the hydrostatic state is

finite and the solid is deformed elastically at a constant pressure in the fluid, the change in

temperature is zero to first order: dT = 0. Similarly, if ∆Ω in the hydrostatic state is finite

and temperature is constant, the change in pressure due to elastic strains is zero to the first

order: dp = 0.

To make further progress in this analysis, additional approximations have to be made.

Specifically, we will adopt the approximation of anisotropic linear elasticity, in which the

strain and stress tensors are related by

eij =
∑

k,l=1,2,3

Sijklσkl + ηij . (7.6)
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Here Sijkl is the tensor of isothermal compliances, which we assume to be constant. ηij

is a tensor function of T − T0, where T0 is the chosen reference temperature. This tensor

represents the contribution to strain due to thermal expansion of the stress-free solid. If ηij

is approximated by a linear function of T − T0, Eq. (7.6) becomes the Duhamel-Neumann

form of Hooke’s law [22].

Inserting Eq. (7.6) in Eq. (7.5) and denoting the non-hydrostatic components of the

stress by qij = σij + δijp, we obtain

(
∆s + Ωs

0qijη
′
ij

)
dT −


∆Ω + Ωs

0

∑

i,j,k,l=1,2,3

qijSijklδkl


 dp

+Ωs
0

∑

i,j,k,l=1,2

Sijklqijdqkl = 0 (7.7)

where η′ij is the temperature derivative of ηij representing the thermal expansion tensor.

Although the summation in the differential coefficient before dp goes from 1 to 3, some of

the terms are zero because qi3 = 0.

Some of the quantities appearing in the differential coefficients of Eq. (7.7) are related

to each other. Using the Maxwell relations derived in Section 7.6, it can be shown that the

following differential equations must be satisfied:

∂ss

∂qij
= Ωs

0η
′
ij , i, j = 1, 2, (7.8)

∂Ωs

∂qij
= Ωs

0

∑

k=1,2,3

Sijkk, i, j = 1, 2, (7.9)

∂Ωs

∂T
= −∂ss

∂p
, (7.10)
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∂Ωf

∂T
= −∂sf

∂p
. (7.11)

These equations will be used at the next step of the calculations.

Suppose the solid-fluid system is initially in an equilibrium state, denoted H, in which

the solid is hydrostatic (qij = 0) and the temperature and pressure are TH and pH , respec-

tively. Our goal is to integrate Eq. (7.7) from state H to other (generally, non-hydrostatic)

equilibrium states in a small vicinity of H. The integration will involve a linearization of

the differential coefficients of dT and dp. To this end, we expand sf , ss, Ωf and Ωs in Taylor

series in the variables T − TH , p− pH and qij and limit the expansions to linear terms:

sf = s̄f +
(

∂sf

∂T

)

H

(T − TH) +
(

∂sf

∂p

)

H

(p− pH) , (7.12)

ss = s̄s +
(

∂ss

∂T

)

H

(T − TH) +
(

∂ss

∂p

)

H

(p− pH) +
∑

i,j=1,2

(
∂ss

∂qij

)

H

qij , (7.13)

Ωf = Ω̄f +
(

∂Ωf

∂T

)

H

(T − TH) +
(

∂Ωf

∂p

)

H

(p− pH) , (7.14)

Ωs = Ω̄s +
(

∂Ωs

∂T

)

H

(T − TH) +
(

∂Ωs

∂p

)

H

(p− pH)

+
∑

i,j=1,2

(
∂Ωs

∂qij

)

H

qij . (7.15)

The quantities s̄f , s̄s, Ω̄f and Ω̄s are properties of the initial hydrostatic state and subscript

H emphasizes that the derivatives are evaluated at that state. The derivatives
(
∂sf/∂T

)
H

,
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(∂ss/∂T )H ,
(
∂Ωf/∂p

)
H

, (∂Ωs/∂p)H ,
(
∂Ωf/∂T

)
H

and (∂Ωs/∂T )H correspond to variations

from state H along hydrostatic paths and are related to the heat capacities, compressibil-

ities and thermal expansions of the phases. By contrast, the derivatives (∂ss/∂qij)H and

(∂Ωs/∂qij)H correspond to non-hydrostatic variations of the solid away from state H. No

qij terms appear in the expansions for sf and Ωf because the fluid is incapable of non-

hydrostatic variations.

Substituting expansions (7.12)-(7.15) in Eq. (7.7) and using relations (7.8)-(7.11) we

obtain

[
∆s +

(
∂∆s

∂T

)

H

(T − TH)−
(

∂∆Ω
∂T

)

H

(p− pH)
]

dT

−
[
∆Ω +

(
∂∆Ω
∂T

)

H

(T − TH) +
(

∂∆Ω
∂p

)

H

(p− pH)
]

dp

+Ωs
0

∑

i,j,k,l=1,2

Sijklqijdqkl = 0.

(7.16)

We can now integrate Eq. (7.16) from the hydrostatic state H to a new state with T , p, qij

to obtain

∆s (T − TH) +
1
2

(
∂∆s

∂T

)

H

(T − TH)2 −∆Ω(p− pH)

−1
2

(
∂∆Ω
∂p

)

H

(p− pH)2 −
(

∂∆Ω
∂T

)

H

(T − TH) (p− pH)

+
Ωs

0

2

∑

i,j,k,l=1,2

Sijklqijqkl = 0.

(7.17)

Mathematically, this equation defines a 4D quadric surface representing two-phase equilib-

rium states in the 5D configuration space of the variables T , p, q11, q12 and q22.

Eq. (7.17) is the central result of our thermodynamic analysis of solid-fluid equilibrium.

This equation permits predictions of temperature-pressure-stress relations for equilibrium

processes in which the two-phase system deviates from a given hydrostatic state H along

hydrostatic or non-hydrostatic paths. This equation is also valid for processes whose path
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is confined to a small vicinity of point H but does not necessarily go through this point.

Below we will analyze three particular paths on the 4D coexistence surface: hydrostatic,

isobaric and isothermal. Yet another path will be discussed separately in Sec. 7.2.2.

Hydrostatic path

The solid-fluid system is initially in the hydrostatic state H. Consider a process in which

p and T vary but the solid phase remains hydrostatic, i.e. all qij remain zero. Since three

variables are fixed, the system has only one degree of freedom. Eq. (7.17) becomes

∆s (T − TH) +
1
2

(
∂∆s

∂T

)

H

(T − TH)2 −∆Ω(p− pH)

−1
2

(
∂∆Ω
∂p

)

H

(p− pH)2 −
(

∂∆Ω
∂T

)

H

(T − TH) (p− pH) = 0.
(7.18)

Suppose ∆s and ∆Ω are nonzero, i.e. state H is not a special point. Then in a small enough

vicinity of this state the second-order terms can be neglected and Eq. (7.18) reduces to

∆s (T − TH) = ∆Ω (p− pH) . (7.19)

As expected, this is an integrated form of the Clapeyron-Clausius equation for hydrostatic

phases. This equation is often written in the form

∆h(T − TH) = ∆ΩTH (p− pH) , (7.20)

where∆h ≡ ∆s/TH is the latent heat of the hydrostatic solid-fluid transformation. The

latter is experimentally more readily accessible than ∆s.

A special case arises when ∆s = 0 (and thus ∆h = 0) but ∆Ω 6= 0. At this point the

equilibrium pressure is an extremum as a function of temperature. 3He is an example of

a system exhibiting this type of behavior [77, 78]. Keeping the term with (T − TH)2 and
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(p−pH) and neglecting higher-order terms, Eq. (7.18) gives the parabolic equilibrium curve

p− pH =
1

2∆Ω

(
∂∆s

∂T

)

H

(T − TH)2 . (7.21)

For 3He ∆s is negative below TH and positive above TH , whereas ∆Ω remains positive.

This produces a minimum of the melting pressure at TH [77, 78].

In another special case ∆Ω= 0 but ∆s 6= 0. The equilibrium temperature is an extremum

as a function of pressure. Retaining the terms with (T − TH) and (p− pH)2 and neglecting

all other terms, the phase coexistence equation is again parabolic,

T − TH =
TH

2∆h

(
∂∆Ω
∂p

)

H

(p− pH)2 . (7.22)

For melting, ∆h is usually positive while ∆Ω is likely to decrease with pressure due to

larger compressibility of the liquid phase. In such cases the melting temperature reaches a

maximum at a certain pressure, as observed experimentally and in simulations for several

materials [79–82].

Isobaric path

In the second type of variation, the pressure in the fluid is fixed while the solid is subject to

a non-hydrostatic stress. The system has three degrees of freedom and Eq. (7.17) reduces

to

∆s (T − TH) +
1
2

(
∂∆s

∂T

)

H

(T − TH)2 +
Ωs

0

2

∑

i,j=1,2

Sijklqijqkl = 0. (7.23)

If the ∆s̄ is finite and the second term can be neglected in a given temperature range, we

obtain

T − TH = −Ωs
0TH

2∆h

∑

i,j=1,2

Sijklqijqkl. (7.24)
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Thus the temperature change is quadratic in non-hydrostatic stresses. The equilibrium

surface is a 3D paraboloid in the coordinates T , q11, q12 and q22 (see Fig. 7.1a,b for a

particular case when q12 = 0 and the surface is a 2D paraboloid). Eq. (7.24) generalizes

the Sekerka and Cahn [73] result which was derived for an elastically isotropic solid. The

quadratic form on the right hand side of Eq. (7.24) is positive-definite because it can be

formally identified with work of elastic straining from a stress-free state to a state with

σij = qij , which is always positive for a stable crystal. Thus, if ∆h is positive (as it usually

is for melting), then the equilibrium temperature decreases under non-hydrostatic stresses

regardless of their sign.

For some cases it is advantageous to reformulate Eq. (7.24) in terms of strains instead of

stresses. An expression for the equilibrium temperature as a function of lateral components

of the strain tensor is derived in Section 7.7. The strain formulation will be used in Part II

of this work.

Combining Eqs. (7.3) and (7.24) we can evaluate the change in the chemical potential µf

in the fluid due to deviation from hydrostatic equilibrium along a path defined by solid-fluid

coexistence at a constant p:

µf (T, pH)− µf (TH , pH) =
s̄fΩs

0TH

2∆h̄

∑

i,j,k,l=1,2

Sijklqijqkl. (7.25)

To evaluate the stability of the fluid with respect to crystallization, µf should be compared

with the chemical potential, µs∗, of a hydrostatic solid at the same temperature and the

same pressure. The latter can be evaluated by

µs
∗(T, pH) = µf (TH , pH)− ss (T − TH) . (7.26)

Thus,

µf (T, pH)− µs
∗(T, pH) = −∆s (T − TH) =

Ωs
0

2

∑

i,j=1,2

Sijklqijqkl, (7.27)
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where we used Eq. (7.24). Because this difference is positive, the fluid equilibrated with a

non-hydrostatic solid is unstable with respect to crystallization to a hydrostatic solid.

If the initial hydrostatic state is a special point with ∆s = 0, then we keep the quadratic

term in Eq. (7.23) to obtain

(T − TH)2 = − Ωs
0(

∂∆s

∂T

)

H

∑

i,j,k,l=1,2

Sijklqijqkl. (7.28)

Recall that the quadratic form ΣSijklqijqkl is positive-definite. Therefore, if (∂∆s/∂T )H > 0

as in the case of 3He melting [78], the only solution of this equation is T = TH and qij = 0.

Thus, any infinitely small non-hydrostatic stress applied at constant p destroys the phase

equilibrium. But if (∂∆s/∂T )H < 0, then Eq. (7.28) has two solutions with opposite

signs of T − TH for each nonzero qij . Geometrically, the vicinity of this bifurcation point

can be represented by two ellipsoidal 3D-cones with touching tips in the 4D configuration

space of T , q11, q12 and q22 (see Fig. 7.1c for a particular case of q12 = 0 when the cones

are 2D surfaces). Indeed, at a fixed value of |T − TH | Eq. (7.28) defines an ellipsoid in

the coordinates qij . In the full space of T and qij , there are two such ellipsoids lying

in hyperplanes intersecting the temperature axis at ±(T − TH). The dimensions of the

ellipsoids scale linearly with |T − TH | and shrink to a point at |T − TH | → 0, producing

3D double-cone. If all components of qij are increased simultaneously in proportion to each

other, then T − TH increases, or respectively decreases, linearly with qij .

Isothermal path

A third example is an isothermal variation from the hydrostatic state H. Just as in the

isobaric case, the system has three degrees of freedom. Eq. (7.17) gives the phase equilibrium
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Figure 7.1: Schematic illustration of solid-fluid coexistence surfaces at constant pressure
p in the fluid and q12 = 0 in the solid. The equilibrium temperature T is plotted as a
function of two remaining non-hydrostatic components of the stress in the solid. (a) Path
of biaxial tension and compression on the coexistence surface. (b) Iso-fluid path obtained
by intersection of the paraboloid with an isothermal plane. (c) Phase coexistence surface
when the initial hydrostatic state is a special point. If q12 6= 0, the coexistence surfaces
shown here become 3D and are difficult to visualize, but they remain paraboloids in (a) and
(b) and an ellipsoidal double-cone in (c).

condition

−∆Ω(p− pH)− 1
2

(
∂∆Ω
∂p

)

H

(p− pH)2 +
Ωs

0

2

∑

i,j=1,2

Sijklqijqkl = 0. (7.29)

If ∆Ω̄ is finite and the second term is small in a given pressure range, we obtain the equation

p− pH =
Ωs

0

2∆Ω

∑

i,j,k,l=1,2

Sijklqijqkl, (7.30)

showing that the pressure change is quadratic in non-hydrostatic stresses. Combining

Eqs. (7.3) and (7.30), the change in the chemical potential µf in the fluid due to the

deviation from the hydrostatic equilibrium along a path defined by solid-fluid coexistence

at a constant T is
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µf (TH , p)− µf (TH , pH) =
ΩfΩs

0

2∆Ω

∑

i,j,k,l=1,2

Sijklqijqkl. (7.31)

Similarly to the isobaric variation, the change in chemical potential is quadratic in non-

hydrostatic stresses. Crystallization of the fluid to a hydrostatic solid is accompanied by a

change in the chemical potential

µf (TH , p)− µs
∗(TH , p) = ∆Ω (p− pH) =

Ωs
0

2

∑

i,j=1,2

Sijklqijqkl, (7.32)

where we used the chemical potential of a hydrostatic solid

µs
∗(TH , p) = µf (TH , pH) + Ωs (p− pH) . (7.33)

Since the right-hand side of Eq. (7.32) is positive, the liquid is unstable against crystalliza-

tion to a hydrostatic solid.

For a special point with ∆Ω = 0, the linear term in Eq. (7.29) drops out and we obtain

(p− pH)2 =
Ωs

0(
∂∆Ω
∂p

)

H

∑

i,j,k,l=1,2

Sijklqijqkl. (7.34)

If (∂∆Ω/∂p)H < 0, this equation has only a zero solution, so that any non-hydrostatic stress

applied at constant T destroys the phase equilibrium. If (∂∆Ω/∂p)H > 0, the hydrostatic

state is a bifurcation point generating two different equilibrium pressures ±(p−pH) for each

set of non-hydrostatic stresses qij . The geometric model of touching cones is again valid but

the configuration space is now p, qij (in Fig. 7.1c, the T -axis is replaced by p). Increasing

all components of qij in proportion to each other results in a linear shift of the equilibrium

pressure up or down.
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7.2.2 Deformation of a solid in equilibrium with the same fluid

So far we have only discussed equilibrium processes in which the solid-fluid system deviates

away from its initial hydrostatic state along a hydrostatic, isobaric or isothermal paths. We

will now consider equilibrium processes in which both T and p remain constant. Because

temperature and pressure uniquely define the state of a single-component fluid, it is only

the solid that can change its state due to the additional degrees of freedom associated with

the non-hydrostatic stresses q11, q12 and q22. Due to these degrees of freedom, solids in

different non-hydrostatic states can be equilibrated with the same fluid. We will refer to

such states as “iso-fluid” states. Accordingly, processes in which the solid changes its state

while maintaining equilibrium with the same fluid will be called iso-fluid process.

The equation of iso-fluid processes is obtained from Eq. (7.17) by fixing the values of

T − TH and p− pH . The general form of this equation is

∑

i,j=1,2

Sijklqijqkl = const, (7.35)

describing an ellipsoid in the 3D space of q11, q12 and q22. If the constant in this equation

is zero, the ellipsoid shrinks to a point and the only solution is qij = 0, which precludes

any processes. If the constant is not zero, the ellipsoid has finite dimensions and does not

contain a point at which qij = 0. Thus, an iso-fluid path cannot contain a hydrostatic point.

The solid must always remain in a non-hydrostatic state.

As a simple illustration, consider processes in which q12 remains zero. At a fixed pressure,

the equilibrium temperature is a function of the principal non-hydrostatic stresses q11 and

q22. For a non-special point, this function is given by Eq. (7.24) and its plot is a paraboloid

shown in Fig. 7.1b. The plane T = const intersects the paraboloid along an ellipse on which

both p and T are constant and thus the state of the fluid is fixed. This ellipse contains

all iso-fluid processes possible in the system (at q12 = 0). During such processes, the solid

undergoes a compression along one principal direction of stress and simultaneous tension

along the other direction, so that Eq. (7.35) is satisfied.
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Referring to Fig. 7.1b, one can imagine that if the temperature increases, the size of

the ellipse decreases until it collapses to a single point at T → TH . At this point the

isothermal plane touches the paraboloid at the hydrostatic point (T = TH , q11 = q22 = 0),

prohibiting any changes in the state of the solid without changing the state of the fluid. This

construction graphically illustrates the impossibility of iso-fluid processes passing through

a hydrostatic state. The latter conclusion remains valid for special points, which is evident

from examining the double-cone plot in Fig. 7.1c.

Iso-fluid processes can also be represented by ellipsoidal surfaces (ellipses if e12 = const)

in terms of lateral strains instead of stresses. An expression for the slope (de22/de11)T,p,e12
,

which will be used Part II of this work [74], is derived in Section 7.8.

7.3 Methodology of atomistic simulations

In this Section we describe our methodology of atomistic simulations of solid-liquid equi-

librium. The simulations included non-hydrostatic variations of two types: (i) at zero

pressure in the liquid (isobaric path) and (ii) at constant temperature (isothermal path).

As the initial hydrostatic state H we chose the liquid at zero pressure and the stress-free

solid in equilibrium with each other. For the material which we study, this state is not a

special point, i.e. both ∆Ω̄ and ∆s̄ are finite. Furthermore, within the range of simulated

non-hydrostatic stresses, ∆Ω and ∆s vary but do not go through zero.

7.3.1 Simulated models

We used copper as a model material. The simulation block composed of 23, 040 atoms

contained a layer of solid phase sandwiched between two liquid layers. The (110) oriented

solid-liquid interfaces were perpendicular to the z direction of the block. The x and y

directions were parallel to crystallographic directions [1̄10] and [001], respectively. The

boundary conditions in the x and y directions were periodic. Two types of boundary

conditions were used in the z direction. For simulations at constant zero pressure in the
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liquid, the liquid layers were terminated at open surfaces. The exposure of the liquid layers

to vacuum ensured p = 0 in the liquid. For isothermal simulations, periodic boundary

conditions were applied in the z direction.

To create non-hydrostatic states of stress in the solid, the block was subject to tensile

or compressive deformations parallel to the coordinate axes by scaling the respective di-

mensions of the block. Due to crystallographic symmetry of the solid, the principal axes of

stress and strain coincide and are parallel to the coordinate axes. For example, an applied

biaxial strain creates a biaxial state of stress.

Four types of deformation were applied to the initially hydrostatic simulation block: (i)

biaxial compression parallel to the lateral directions x and y, (ii) biaxial tension in the x and

y directions, (iii) compression in x with simultaneous tension in y, and (iv) compression

in y with simultaneous tension in x. All strains applied are listed in Tables 7.2 and 7.3

together with the stresses that arise. The stress components range from -2.3 GPa to 3.4

GPa. In some of the cases (iii) and (iv), σ11 and σ22 were close to each other in magnitude

but opposite in sign, so that the trace (σ11 + σ22 + σ33) was small.

Application of strain to the initially stress-free block destroyed the phase equilibrium. To

re-equilibrate the phases at a constant zero pressure or at a constant temperature, different

MD ensembles were implemented as explained below.

7.3.2 Simulations at constant zero pressure in the liquid

To equilibrate the phases at p = 0 in the liquid, a 2 ns long MD run in micro-canonical

(NV E) ensemble was performed [62]. The zero pressure in the liquid was maintained by

the liquid surfaces. During the equilibration, the temperature changed from the initial TH

to an equilibrium value T as a result of partial melting or crystallization of the phases. For

example, if a part of the solid melts, the potential energy of the system increases by the

amount of latent heat expended for the melting. To keep the total energy of the system

constant, this heat is taken from the kinetic energy of atoms, resulting in a decrease in tem-

perature. This temperature decrease reduces and eventually reverses the thermodynamic
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driving force of melting. Similar processes occur during partial crystallization of the liquid.

As a result, after equilibration the temperature and the amounts of phases fluctuate around

their equilibrium average values by spontaneous melting-crystallization processes. To verify

that the system has reached the true equilibrium, we checked that the temperature and

energy distributions were Gaussian. We also verified that the average amounts of solid and

liquid phases remained constant after the equilibration.

The equilibration stage was followed by a 40 ns production run using again NV E en-

semble. During this run, snapshots of the system were saved every 0.01 ns. The snapshots

contained information about positions and energies of all atoms, as well as the atomic

stresses. This data was used at the post-processing stage. The equilibrium temperatures T

reported below were computed by averaging over the production stage.

7.3.3 Simulations at constant temperature

Isothermal equilibration was achieved by a 2 ns MD run in the canonical (NV T ) ensemble

using a Noose-Hoover thermostat at TH and all-periodic boundary conditions. During the

run, the liquid pressure p changes from zero to an equilibrium value. The equilibration is

reached due to the constant volume of the system and the existence of the volume effect of

melting. Indeed, consider a fluctuation in which a small part of the solid melts or crystallizes.

Because the atomic volume of solid Cu, Ωs, is smaller than the atomic volume of liquid Cu,

Ωl, in the simulated temperature and strain range, this fluctuation results in an increase, or

respectively decrease, of pressure in the liquid. This change of p counteracts further melting

or crystallization and eventually stops them. As a result, p begins to fluctuate around an

equilibrium value. As in the isobaric case, the equilibration was followed by a 40 ns NV T

production run to compute the pressure and stress and to produce snapshots for subsequent

post-processing.
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7.3.4 Calculation of elastic constants and elastic compliances

To compare the MD results with the equilibrium temperatures and pressures predicted by

Eqs. (7.24) and (7.30), we needed to know the elastic compliances of the material at TH . The

elastic constants and compliances were computed by MD simulations in the NV T ensemble

at TH using a Noose-Hoover thermostat. The solid block with periodic boundary conditions

in all directions had the same crystallographic orientation and dimensions as the solid layer

in the solid-liquid simulations. To compute the components of the elastic constant tensor

Cijkl, three different types of elastic deformations were applied to the initially unstressed

solid. Each time the block was deformed along one of the principal axes of strain, keeping

two other components of strain zero. During subsequent MD simulations at TH , the stresses

produced by the deformation were computed for each of the three directions of the strain.

The elastic constants Cijkl were computed from linear fits of stress versus strain. Inverting

the elastic constants tensor gives the elastic compliances tensor Sijkl.

7.4 Results

7.4.1 The phase coexistence surface

Due to crystal symmetry and the geometric setup of our system, the principal axes of the

stress and strain coincide with the coordinate axes, resulting in q12 = 0 in the stressed solid.

At p = 0, the heat of melting equals the difference, ∆ū, between the energies per atom of

the phases. Eq. (7.24) thus reduces to

T − TH = −Ωs
TH

2∆ū

[
S1111σ

2
11 + 2S1122σ11σ22 + S2222σ

2
22

]
. (7.36)

For isothermal variations at T = TH and q12 = 0, Eq. (7.30) becomes

p− pH =
Ωs

TH

2∆Ω̄
[
S1111q

2
11 + 2S1122q11q22 + S2222q

2
22

]
. (7.37)
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Table 7.1: Elastic constants and elastic compliances of Cu at TH = 1327 K with [1̄10],
[001] and [110] crystallographic directions aligned with x, y and z axes. Due to crystal
symmetry, there are only four distinct elastic constants (compliances), only three of which
are independent. The two-index elastic constants in the cubic system at TH are c11 = 106.6
GPa, c12 = 86.4 GPa and c44 = 41.1 GPa, which are smaller than the 0 K values c11 = 169.9
GPa, c12 = 122.6 GPa and c44 = 76.2 GPa.

Elastic constants C1111 C2222 C3333 C1122 C1133 C2233

Value (GPa) 137.6 105.7 137.6 86.4 55.5 86.4
Elastic compliances S1111 S2222 S3333 S1122 S1133 S2233

Value (104 GPa−1) 157.7 353.8 157.7 −158.4 35.9 −158.4

Table 7.2: Lateral strains and stresses in the solid and the corresponding solid-liquid equi-
librium temperatures predicted by Eq. (7.36) (TTheor) and computed directly from MD
simulations (TMD) for variations at constant zero pressure in the liquid.

e11(%) e22 (%) σ11 (GPa) σ22 (GPa) TMD (K) TTheor (K)
-1.196 biaxial −2.147 −1.262 1308.9 1308.2
-0.895 biaxial −1.563 −0.936 1316.5 1316.1
-0.593 biaxial −1.048 −0.642 1321.9 1321.8
-0.290 biaxial −0.509 −0.322 1324.9 1325.2
0.000 biaxial 0.004 −0.009 1326.4 1326.4
0.165 biaxial 0.286 0.167 1325.5 1326.0
0.333 biaxial 0.577 0.350 1324.0 1325.0
0.628 biaxial 1.077 0.674 1321.2 1321.5
0.928 biaxial 1.583 1.010 1315.0 1315.8
1.236 biaxial 2.095 1.360 1306.4 1307.3
1.544 biaxial 2.604 1.714 1295.0 1296.1
2.020 biaxial 3.394 2.282 1271.0 1275.6
-3.399 5.559 −1.652 1.480 1267.7 1242.3
2.240 -3.469 0.720 −0.433 1309.6 1315.9
1.798 -2.899 0.448 −0.489 1315.2 1318.5
-0.960 1.4709 −0.414 0.301 1323.0 1322.2

Table 7.1 summarizes the elastic constants and elastic compliances of the solid computed

by MD simulations at TH for the particular crystallographic orientation implemented in this

work. The elastic constants recomputed to the cubic coordinate system and expressed via

the standard two-index notations cij are included in the caption to this Table. For the

hydrostatic state at temperature TH , the energies per atom in the solid and liquid phases
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Table 7.3: Biaxial lateral strains, stresses in the solid, and the equilibrium pressures in the
liquid predicted by Eq. (7.37) (pTheor) and computed directly from MD simulations (pMD)
for isothermal variation at TH .

e (%) σs
11 (GPa) σs

22 (GPa) pMD (GPa) pTheor (GPa)
-1.155 -2.256 -1.479 0.339 0.348
-0.803 -1.501 -0.970 0.174 0.168
-0.466 -0.838 -0.552 0.068 0.059
0.000 0.000 0.000 0.000 0.000
0.300 0.519 0.296 0.041 0.030
0.631 1.015 0.590 0.152 0.135
0.803 1.269 0.723 0.234 0.225
1.155 1.709 0.920 0.558 0.523
1.266 1.827 0.965 0.686 0.647
1.503 2.058 1.014 1.056 1.005
1.650 2.180 1.015 1.339 1.292
1.740 2.238 0.979 1.619 1.563

were found to be ūs = −3.17 eV and ūl = −3.04 eV, respectively, giving the latent heat

∆ū = 0.13 eV. The atomic volumes of the phases at TH were Ω̄s = 12.75 Å3 and Ω̄l = 13.37

Å3, respectively. Using this data, we computed the equilibrium temperatures T at zero

pressure in the liquid from Eq. (7.36) and the equilibrium liquid pressures p at constant

temperature TH from Eq. (7.37) for a set of non-hydrostatic stresses qij . The results are

reported in Figs. 7.2-7.4 and in Tables 7.2 and 7.3.

We will now compare these theoretical predictions with results of MD simulations. For

isobaric variations, Table 7.2 demonstrates that, for biaxial stresses, the predicted temper-

atures agree with the MD results within 1 K or better, except for the largest stress when

the discrepancy reaches 4.6 K. For some of the mixed tension-compression loads associ-

ated with relatively large strains, the discrepancies become larger. Nevertheless, the entire

set of MD points shows a very close agreement with the paraboloidal coexistence surface

predicted by Eq. (7.36) (Fig. 7.2). In particular, for all stresses tested, the coexistence

temperature is reduced in comparison with TH independently of the signs of the stress com-

ponents. Furthermore, calculations from Eq. (7.36) demonstrate excellent agreement with
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MD simulations for the biaxial tension and compression paths as shown in Fig. 7.3.

In addition, the MD results directly confirm that the hydrostatic part of the stress tensor,
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p = − (σ11 + σ22 + σ33) /3, is not a meaningful physical parameter to characterize the effect

of stresses on phase equilibrium. As was discussed by Sekerka and Cahn [73], previous

theories attempting to fold the stress effect into the “solid pressure” p were erroneous. For

example, the last but one line in Table 7.2 refers to a mixed-load case when σ11 = 0.448

GPa, σ22 = −0.489 GPa and σ33 = 0, thus giving a very small “solid pressure” p = −0.014

GPa. Nonetheless, the reduction in temperature of about 10 K found for this case is close to

that for biaxial compression by e11 = −0.895 % when p = 0.833 GPa and for biaxial tension

by e11 = 0.928 % when p = −0.864 GPa. This example is a clear demonstration that it is

the combination of non-hydrostatic stress components qij appearing in the right-hand side

of Eq. (7.36) that determines the temperature depression T − TH , not p alone.

For isothermal variations at T = TH (Table 7.3), the equilibrium liquid pressure in-

creases as the solid deviates from the hydrostatic state of stress regardless of the sign of
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the deviation. Fig. 7.4 shows an excellent agreement between the liquid pressures pre-

dicted theoretically from Eq. (7.37) and obtained by MD simulations for biaxial tension

and compression.

7.4.2 Instability of non-hydrostatic systems

As discussed in Sec. 7.2, a liquid equilibrated with a non-hydrostatically stressed solid is

unstable or metastable and should eventually crystallize into a hydrostatically stressed solid.

The liquid is metastable when there is a nucleation barrier that prevents it from immediate

crystallization into a hydrostatic solid. If liquid is equilibrated with a solid under sufficiently

large non-hydrostatic stresses, the barrier can be reduced to a level when crystallization can

be observed on a given time scale.

To verify this prediction, we performed MD simulations of a solid-liquid system in which

the solid was stressed by σ11 = 2.3 GPa and σ22 = 3.4 GPa. As above, the NV E ensemble

was implemented to bring the system to phase equilibrium at p = 0, which was reached

at T = 1271 K (66 K below TH). The size of the simulation block was then increased to

207,360 atoms by multiplying the x and y dimensions by a factor of three while keeping

the same dimension in the z direction. The ensemble was switched to NV T to allow heat

absorption by a thermostat should crystallization begin.

After 0.12 ns of the NV T simulation, the liquid began to crystallize. Fig. 7.5a shows

a typical snapshot of the simulation block during the crystallization process. The block

contains a region of the initial solid under tension, newly crystallized solid regions, and the

remaining liquid. The stress profiles (Fig. 7.5b) reveal that the initial solid has approxi-

mately the same stresses as prior to the crystallization. The new solid regions grow under a

much smaller stress and are nearly hydrostatic (within uncertainties caused by fluctuations).

The stress in the liquid layers is equally small and also nearly hydrostatic as it should. The

peaks at the liquid surfaces are due to the surface tension. During the subsequent 0.5 ns

time the remaining liquid crystallizes completely.
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Figure 7.5: (a) Snapshot of the simulation block during crystallization at T = 1271 K. (b)
Profiles of the lateral components of stress σ11 and σ22 across the simulation block. Before
the crystallization, the stresses in the solid were σ11 = 3.4 GPa and σ22 = 2.3 GPa.

Upon completion of crystallization, the block contains two sold-solid interfaces sepa-

rating layers of the same material with the same crystallographic orientation but slightly

different lattice constants due to different stress states. The lattice misfit between the old

and new solid regions is accommodated by 1
2 [110] edge dislocations [83, 84], which were

identified by construction of Burger circuits. These dislocations dissociate into Shockley

partials on {111} gliding planes, which are not parallel to the interfaces. As a result, the

dislocation lines are not straight but have zigzag shapes with 〈211〉 segments dissociated

on {111} facets. Fig. 7.6a shows the entire simulation block with the solid-solid interfaces,

while Fig. 7.6b illustrates separately the zigzag dislocation lines with dissociated segments.
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Figure 7.6: (a) Simulation block with edge dislocations visualized using central symmetry
analysis. Atoms with large values of the symmetry parameter are invisible. (b) Different
views of 1

2 [110] edge dislocations showing its dissociation into partials.

The solid contains a few vacancies revealed by the centrosymmetry parameter [85].

The delayed start of the crystallization is consistent with the existence of a nucleation

barrier. Furthermore, similar simulations in a block containing only 23, 040 atoms did not

produce a crystallization on time scales accessible by MD, suggesting that the barrier is

size-dependent.
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7.5 Discussion and conclusions

As pointed out in Sec. 7.1, the problem of solid-fluid equilibrium is relevant to many materi-

als phenomena and applications. It is important to have a clear understanding of the effect

of non-hydrostatic stresses on solid-fluid equilibrium. Unfortunately, literature contains a

number of misconceptions, such as the “solid pressure” discussed in Section 7.4.1.

For a single-component system, Gibbs [13] derived an equation (406) which is similar

to our Eq. (7.5) and to Sekerka and Cahn’s [73] Eq. (14) (they assumed dp = 0). On

p. 199 Gibbs pointed out that if p = const, equation (406) can be used for predicting how

the equilibrium temperature is affected by strain variations in the solid. He then noted

that if the initial state of the solid is hydrostatic, the differentials of temperature with

respect to strain components vanish. This comment can be understood, although it was

not stated by Gibbs explicitly, that non-hydrostatic deformations produce high-order effects

on equilibrium temperature.

Sekerka and Cahn [73] employed isotropic linear elasticity to show that this effect is

quadratic in non-hydrostatic stresses qij , which is consistent with Gibbs. Their analysis

was focused on isobaric variations from a hydrostatic state and assumed a non-zero latent

heat (a non-special point).

In this work we have extended Sekerka and Cahn’s work [73] in several ways. We

treat elastic deformations of the solid using anisotropic linear elasticity and a generalized

Hooke’s law which includes the thermal expansion effect η, see Eq. (7.6). In the future, this

approach could be readily generalized to multicomponent systems, in which η is a function of

not only temperature but also chemical composition (compositional strain) [24]. Our main

result is expressed by Eq. (7.17) which relates deviations of the equilibrium temperature,

pressure and lateral stress components from their hydrostatic values. This equation permits

predictions of the non-hydrostaticity effect on the equilibrium temperature and pressure.

Furthermore, this effect has been analyzed not only for non-special points considered by

Gibbs [13] and Sekerka and Cahn [73] but also special points where the latent heat or volume
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effect go through zero. To make our equations and their ramifications more intuitive, we

have presented a geometric interpretation of the phase coexistence surface as a quadric or

its sections by appropriate planes.

For non-special points, our analysis predicts that if pressure in the liquid is fixed, the

change in the equilibrium temperature is quadratic in qij , which is in agreement with Sek-

erka and Cahn’s result for isotropic solids [73]. If temperature is fixed, the change in the

equilibrium pressure is quadratic in qij . If both temperature and pressure are fixed, which

fixes the thermodynamic state of the fluid, the stress state of the solid can still be varied

along a so-called “iso-fluid” path without violating the phase coexistence. In short, the

same fluid can be equilibrated with many solids, all of which are non-hydrostatic.

In special points, the stress effect can be very different from that in non-special points.

Depending on the material properties, non-hydrostatic stresses can either completely destroy

the phase coexistence or produce a bifurcation in which the equilibrium temperature or

pressure can either increase or decrease. Special points exist in a number of systems. It

would be interesting to test our predictions for such systems by experiment or atomistic

simulations in the future.

Our analysis for non-special points has been tested against MD simulations of solid-

liquid equilibrium in copper. Very encouraging agreement has been observed between our

theory and the simulations for both isobaric and isothermal variations from hydrostatic

equilibrium.

Another interesting effect studied in this work is the instability of the fluid with respect

to crystallization to a hydrostatic solid. This instability was discussed in detail by Gibbs

[13] (p. 196-197) who showed that the chemical potential of the solid component in a fluid

equilibrated with a non-hydrostatic solid is greater than in a fluid equilibrated with a

hydrostatic solid at the same temperature and pressure. Gibbs concluded that the fluid is

always supersaturated with respect to the solid component unless the solid is hydrostatic.

He predicted that, if a fluid equilibrated with a non-hydrostatic solid contains a fragment

of hydrostatic solid composed of the same substance, this fragment will tend to grow. Even
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if such fragments are not present in the fluid, Gibbs asserted that layers of hydrostatically

stressed solid will grow on the surface of the non-hydrostatically distorted solid.

Formally, this latter prediction has been verified by our MD simulations, in which a

nearly stress-free solid layer was found to grow on top of a stressed solid (Figs. 7.5 and

7.6). It should be noted, however, that Gibbs’ discussion was for a fluid that contained not

only the component of the solid (Gibbs always assumed that a homogeneous solid could be

composed of only one component) but also at least one other component insoluble in the

solid.2 It is only under this condition that the chemical potential of the solid component in

the fluid could vary at a fixed temperature and pressure.

By contrast, our analysis as well as simulations were for a truly single-component sys-

tem. Nevertheless, we have shown that the chemical potential of a single-component fluid

equilibrated with a non-hydrostatic solid composed of the same component is always larger

than the chemical potential of a hydrostatic solid at the same temperature and pressure.

Specifically, the chemical potential differences for isobaric and isothermal deformations are

given by Eqs. (7.27) and (7.32), respectively. This result is especially intuitive when ∆h > 0,

as in our simulations for the melting of copper. In this case Eq. (7.24) predicts that the fluid

equilibrated with a non-hydrostatic solid is overcooled relative to the hydrostatic melting

point. This overcooled fluid is ready to crystallize to a hydrostatic solid. It is important to

recognize that Eqs. (7.27) and (7.32) are valid regardless of the signs of the latent heat or

the transformation volume. In particular, since the latent heat of melting of 3He is negative

at temperatures below the minimum of the melting pressure [77,78], the liquid equilibrated

with a non-hydrostatic solid is overheated relative to the hydrostatic state. Nevertheless,

this liquid is still unstable against crystallization to a hydrostatic solid. This fact, which

was noted by Sekerka and Cahn (their footnote 7) [73], follows immediately from Eq. (7.27).
2The fluid components insoluble in the solid can be composed of chemical elements whose concentrations

in the solid are negligibly small. As another case, the liquid can be composed of the same elements as the
solid but have a different chemical composition. In the latter case, the difference between the composition of
the fluid and the fixed composition of the solid can be formally described in terms of additional components
insoluble in the solid. When the chemical compositions of the solid and fluid remain equal, the system can
be treated as a single-component one.
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Likewise, non-hydrostatic distortions destabilize not only typical materials with ∆Ω > 0

but also Si, Ge and other elements whose density increases upon melting.

Thus, our analysis shows that the Gibbsian prediction of crystallization of hydrostatic

layers on surfaces of non-hydrostatically distorted solids remains valid also for single-

component systems. Although we arrived at this conclusion in Sec. 7.2 assuming linear

elasticity and the small-strain approximation, it actually reflects a general rule. In Section

7.9 we derive this rule from general principles of thermodynamics without any approxima-

tions.

Finally, some of our results can be applied to incoherent solid-solid interfaces. If the

system is deformed along a path on which the one of the phases remains hydrostatic while

the other is not, our equations can be applied by formally treating the hydrostatic phase as

a “fluid”.

7.6 Maxwell relations for an elastic solid

In this section we derive Maxwell relations for a single-component solid phase whose elastic

properties are described by Eq. (7.6) with a constant compliance tensor Sijkl. Consider a

thermodynamic function φ per atom of the solid phase, defined by

φ = us − Tss + pΩs. (7.38)

Here, −p is the principal component σ33 of the stress tensor whose other principal compo-

nents are not necessarily equal to −p. Differentiating φ and using Eqs. (7.2) and (7.4), we

obtain

dφ = −ssdT + Ωsdp + Ωs
0

∑

i,j=1,2

qijdeij . (7.39)

After substituting eij from Eq. (7.6), this equation becomes
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dφ = −

ss − Ωs

0

∑

i,j=1,2

qijη
′
ij


 dT +


Ωs − Ωs

0

∑

i,j,m=1,2,3

qijSijmm


 dp

+ Ωs
0

∑

i,j,k,l=1,2

Sijklqijdqkl. (7.40)

Since Eq. (7.40) is a perfect differential in the variables T , p, q11, q12 and q22, the following

Maxwell relations must be satisfied

−
∂


ss − Ωs

0

∑

i,j=1,2

qijη
′
ij




∂qkl
=

∂


Ωs

0

∑

i,j=1,2

Sijklqij




∂T
, k, l = 1, 2, (7.41)

∂


Ωs − Ωs

0

∑

i,j,m=1,2,3

qijSijmm




∂qkl
=

∂


Ωs

0

∑

i,j=1,2

Sijklqij




∂p
, k, l = 1, 2, (7.42)

−
∂


ss − Ωs

0

∑

i,j=1,2

qijη
′
ij




∂p
=

∂


Ωs − Ωs

0

∑

i,j,m=1,2,3

Sijmmqij




∂T
. (7.43)

In Eqs. (7.41) and (7.42), the terms in the right had side are independent of T and p and the

partial derivatives are zero. In Eq. (7.43), the derivatives are computed at fixed qij . Thus,

the terms containing qij vanish. The final form of these relations is given by Eqs. (7.8)-(7.10)

in the main text.
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7.7 Non-hydrostatic stress-strain transformation

We will derive an expression for the temperature change at a constant pressure p in terms

of strains instead of non-hydrostatic stresses. For convenience of the derivation, we will use

the matrix form of Hooke’s law obtained by inversion of Eq. (7.6):

σ̂ = C · (ê− η̂) . (7.44)

Here σ̂ and ê are columns containing six different components of the stress and strain

tensors, respectively, C is a 6 × 6 symmetrical matrix of elastic constants, and the dot

denotes matrix-column multiplication (contraction). The thermal strain is also represented

by a column η̂ whose six components depend on T − T0. The order in which we list the

components of the stress and strain tensors is dictated by the goal of our calculation and is

different from the standard Voight notation. Specifically, we first list the lateral components

of the stress and strain followed by the components related to the solid-fluid interface:
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σ̂ =




σ11

σ22

σ12

σ13

σ23

σ33




≡




σ1

σ2

σ3

σ4

σ5

σ6




, ê =




e11

e22

2e12

2e13

2e23

e33




≡




e1

e2

e3

e4

e5

e6




,

η̂ =




η11

η22

2η12

2η13

2η23

η33




≡




η1

η2

η3

η4

η5

η6




. (7.45)

The matrix of the elastic constants is
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C =




C1111 C1122 C1112 C1113 C1123 C1133

C2211 C2222 C2212 C2213 C2223 C2233

C1211 C1222 C1212 C1213 C1223 C1233

C1311 C1322 C1312 C1313 C1323 C1333

C2311 C2322 C2312 C2313 C2323 C2333

C3311 C3322 C3312 C3313 C3323 C3333




≡




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66




. (7.46)

When the solid is hydrostatic at a temperature TH , the stress components σ1, σ2 and σ6 are

identical and equal to −p, whereas the three shear components are zero. This hydrostatic

stress σ̂H and the respective strain êH satisfy Hooke’s law

σ̂H = C · (êH − η̂H) . (7.47)

Here êH has the meaning of strain required for bringing the solid from the stress-free

reference state at a temperature T0 to the hydrostatic state at temperature TH . η̂H is

the stress-free thermal strain measured when the temperature changes from T0 to TH .

We choose the coordinate system so that the principal component of stress σ6 = −p

and the shear components σ4 and σ5 are zero. Furthermore, we choose TH as the reference

temperature T0, resulting in η̂H = 0. Subtracting Eqs. (7.44) and (7.47) we obtain
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


q1

q2

q3

0

0

0




=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66




·




E1 − η1

E2 − η2

E3 − η3

E4 − η4

E5 − η5

E6 − η6




, (7.48)

where q̂ ≡ σ̂−σ̂H and Ê ≡ ê−êH are the non-hydrostatic stress and strain, respectively. The

meaning of Ê is the strain of bringing the solid from the hydrostatic state at temperature TH

to a given non-hydrostatic state at a temperature T and a constant pressure p in the fluid.

The non-zero components q1, q2 and q3 are the lateral components of the non-hydrostatic

stress. All components of η̂ are functions of T − TH .

Our next goal is to express the lateral components of q̂ in terms of the lateral components

of Ê. To this end, we rewrite Eq. (7.48) in the form




q̂L

q̂⊥


 =




C1 C2

C3 C4


 ·




ÊL − η̂L

Ê⊥ − η̂⊥


 , (7.49)

where we break C into 3× 3 matrices C1, C2, C3 and C4 and introduce the notations
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q̂L ≡




q1

q2

q3




, q̂⊥ ≡




0

0

0




,

ÊL − η̂L ≡

ˆ


E1 − η1

E2 − η2

E3 − η3




, E⊥ − η̂⊥ ≡




E4 − η4

E5 − η5

E6 − η6




. (7.50)

Due to the symmetry of matrix C (Eq. (7.46)), matrices C1 and C4 are also symmetric,

while C2 and C3 are transpose of each other and generally not symmetric.

Eq. (7.49) can be rewritten as a system of two matrix equations:

q̂L = C1 ·
(
ÊL − η̂L

)
+ C2 ·

(
Ê⊥ − η̂⊥

)
, (7.51)

0 = CT
2 ·

(
ÊL − η̂L

)
+ C4 ·

(
Ê⊥ − η̂⊥

)
, (7.52)

where superscript T denotes transposition. Solving Eq. (7.52) for Ê⊥ − η̂⊥ and inserting

this in Eq. (7.51), we arrive at the following expression for q̂L in terms of ÊL − η̂L:

q̂L = A ·
(
ÊL − η̂L

)
. (7.53)

Here

A ≡ C1 −C2·C−1
4 ·CT

2 (7.54)
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is a symmetric 3× 3 matrix. Eq. (7.53) can be inverted to

ÊL − η̂L = A−1 · q̂L. (7.55)

Furthermore, it can be easily shown that

A−1 = SL, (7.56)

where SL is the upper-left-corner 3×3 matrix of the 6×6 matrix of compliances S defined in

a matter similar to Eq. (7.48). Matrix S appears in Hooke’s law rewritten in our notations

as Ê− η̂ = S · q̂. Using Eqs. (7.53)-(7.56), the quadratic form of q’s which frequently appears

in our equations can now be written as

∑

i,j=1,2

Sijklqijqkl = q̂T
L · SL · q̂L = qT

L ·
(
ÊL − η̂L

)

=
(
ÊL − η̂L

)T
·A ·

(
ÊL − η̂L

)
. (7.57)

We can now derive an expression for the equilibrium temperature at a constant pressure.

Changing variables in Eq. (7.23) by means of Eq. (7.57) we obtain

∆s̄ (T − TH) +
1
2

(
∂∆s

∂T

)

H

(T − TH)2

+
Ωs

0

2

∑

i,j=1,2,3

Aij (EiEj − 2Eiηj + ηiηj) = 0. (7.58)

If the hydrostatic state H is far enough from special points, Eq. (7.58) reduces to
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T − TH = −Ωs
0TH

2∆h̄

∑

i,j=1,2,3

AijEiEj . (7.59)

Combining Eqs. (7.59) and (7.3), the respective change in the chemical potential in the fluid

is

µf (T, pH)− µf (TH , pH) =
s̄fΩs

0TH

2∆h̄

∑

i,j=1,2,3

AijEiEj . (7.60)

Thus, for isobaric variations from the hydrostatic state the changes in T and µf are quadratic

in lateral components of the strain.

7.8 Iso-fluid equations in terms of strains

Eq. (7.58) can be applied to iso-fluid processes. Indeed, for a fixed temperature this equation

defines an ellipsoid in the variables E1, E2 and E3:

∑

i,j=1,2,3

Aij (EiEj − 2Eiηj + ηiηj) = const. (7.61)

This ellipsoid is centered at point η̂L and represents the phase coexistence surface when the

state of strain of the solid varies continuously at constant temperature and pressure, i.e. for

a fixed state of the fluid.

Consider a particular iso-fluid path on which the shear strain E3 remains zero. In this

case Eq. (7.61) defines an ellipse (a cross-section of the ellipsoid by the E3 = 0 plane) in the

variables E1 and E2. When the system undergoes a variation along this ellipse, the solid

strained by an amount dE1 has to simultaneously contract by an amount dE2 to maintain

the equilibrium with the fluid. To evaluate the derivative (dE2/dE1)T,p,E3
along this path,

we take a derivative of Eq. (7.61) and take into account that at fixed T and p we have
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dÊ = dê and dη̂L = 0. This gives

(
dE2

dE1

)

T,p,E3

=
(

de22

de11

)

T,p,e12

= −A11 (E1 − η1) + A12 (E2 − η2)
A21 (E1 − η1) + A22 (E2 − η2)

. (7.62)

For cubic crystals thermal expansion is isotropic and η1 = η2. In particular, for a

biaxially deformed cubic solid E1 = E2 and Eq. (7.62) becomes

(
de22

de11

)

T,p,e12

= −A11 + A12

A22 + A12
. (7.63)

Since our calculations assume that elastic properties are temperature independent, so is the

right hand side of this equation.

Calculations of matrix A are simplified in the presence of crystal symmetry. For exam-

ple, if the solid-fluid interface has the point symmetry of the group 2mm with the twofold

axis along its normal, the full elastic constant matrix reduces to

C =




C11 C12 0 0 0 C16

C21 C22 0 0 0 C26

0 0 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

C61 C62 0 0 0 C66




(7.64)

Accordingly, matrix A computed by Eq. (7.54) is

Aij = Cij − Ci6C6j

C66
i, j = 1, 2, 3. (7.65)

Using this equation, the coefficients A11, A12 and A22 appearing in Eq. (7.63) can be

computed from the elastic constants Cijkl as follows: A11 = C1111 − C2
1133/C3333, A22 =
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C2222−C2
2233/C3333, A12 = C1122−C1133C2233/C3333. These expressions in conjunction with

Eq. (7.63) will be used in Part II of this work [?].

7.9 Stability of the fluid with respect to crystallization to a

hydrostatic solid

In this section we give a general proof that a single-component fluid equilibrated with a

non-hydrostatically stressed solid composed of the same component tends to crystallize to a

hydrostatic solid at the same temperature T and pressure p. The proof follows the general

line of Gibbs’ derivation [13], which was for a fluid containing at least one more component

and thus capable of changing the chemical potential at fixed T and p.

We will first revisit Gibbs’ famous example with three fluids and point to differences

between his multi-component case and our single-component case. Consider a cubic block

of a homogeneous solid whose faces are normal to principal axes of the stress tensor. The

principal stresses σii are generally different. Suppose the block is immersed in a fluid of

the same component and the whole system is in contact with a thermostat. Suppose the

solid could be locally equilibrated with the fluid on each face of the cube. Then, the local

equilibrium conditions on the separate faces would be

us − Tss + piΩs = µf (T, pi), i = 1, 2, 3, (7.66)

where pi = −σii are pressures in the fluids. For the multicomponent fluid considered

by Gibbs, these three equations could be satisfied with three different chemical potentials

adjusted by varying the chemical compositions of the fluids. Thus the solid could be equi-

librated with three different fluids. For a single-component fluid, its pressure is the only

parameter that could be varied in attempt to satisfy equations Eqs. (7.66). It is generally

impossible to satisfy all three equations for any realistic pressure dependence of µf at a

fixed temperature. Thus, in a single-component system a non-hydrostatic solid cannot be

167



equilibrated with three fluids.

We now proceed to our proof. For a hydrostatically stressed solid, its chemical potential

µs∗ is a well-defined quantity that follows the standard relation [13]

us
∗ − Tss

∗ + pΩs
∗ = µs

∗(T, p), (7.67)

where the asterisk is a reminder that the state is hydrostatic. Subtracting this equation

from Eq. (7.66) for p = p1,

[(us − us
∗)− T (ss − ss

∗)] + p1 (Ωs − Ωs
∗) = µf (T, p1)− µs

∗(T, p1). (7.68)

Note that left-hand side of this equation depends on properties of the solid, the only property

of the fluid being its pressure p1. Therefore, the sign of the left-hand side can be determined

from the following thought experiment. Immerse the same solid in a large container filled

with some other fluid medium (e.g., inert gas) which is not soluble in the solid, nor is the

solid component soluble in that fluid. The fluid has pressure p1 and the whole system is

sealed in a rigid container embedded in a thermostat at temperature T . Initially, the solid

is in a hydrostatic state at pressure p1 and thus in mechanical and thermal equilibrium

with the fluid. Consider another state in which the solid has the stresses σii. It is again

in thermal equilibrium with the fluid at temperature T but obviously not in mechanical

equilibrium.

In Eq. (7.68), the term in the square brackets is the change in the Helmholtz free energy

per atom of the solid upon its deformation at a fixed temperature T from the initial state

to the final. The next term has the meaning of mechanical work done by the solid when

displacing the surrounding large mass of the fluid at pressure p1. Thus, the left-hand side

of Eq. (7.68) equals the change (per atom of the solid) in Helmholtz free energy of an

isothermal closed system in a rigid container. Since in the initial state the system is in full
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equilibrium while in the final state not, this change must be positive. It follows that

µf (T, p1) > µs
∗(T, p1). (7.69)

Return to the solid in contact with the actual fluid composed on the same component.

Eq. (7.69) shows that the fluid equilibrated with the solid locally at the face with pressure

p1 will tend to crystallize to a hydrostatic solid at the same temperature and pressure. The

same is obviously true for two other pressures p2 and p3.
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Chapter 8: Effect of non-hydrostatic stresses on solid-fluid

equilibrium. II. Interface thermodynamics.

8.1 Introduction

In many situations, the solid phase is subject to non-hydrostatic mechanical stresses. At

present, there is no clear understanding of how such stresses can affect interface properties.

The goal of this work is to perform a rigorous analysis of interface thermodynamics in the

presence of non-hydrostatic stresses in the solid. As in Part I of this work dedicated to

bulk thermodynamics of non-hydrostatic systems [86], we study a simple case of a single-

component material as an example. We also perform atomistic simulations in order to

verify some of our theoretical results and to evaluate the relative strength of different effects

predicted by the analysis.

A relation between γ and τ was first established for a single-component solid surface by

Shuttleworth [15]. In this simple case, arbitrary lateral strains can be applied at a constant

temperature, performing work against τ and changing γ. By contrast, elastic deforma-

tions of a solid-fluid interface cannot be arbitrary but must satisfy the phase coexistence

conditions. For example, in a single-component system, elastic stretching at a constant

temperature and pressure in the fluid can result in complete melting/evaporation of the

solid phase. Such prohibited strains cannot be used in a definition of the interface stress

and cannot appear in the Shuttleworth equation.

In this chapter we analyze possible elastic deformations of a solid-fluid interface which

are consistent with phase equilibrium. The interface stress tensor is defined through an

appropriate term in the adsorption equation. This term represents the work of reversible

elastic deformation of the interface without violating the phase coexistence. For a given

initial state of a two-phase system, there are multiple paths on the phase coexistence surface,
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each corresponding to a different physical process, on which the interface area can change

elastically. The work of stretching along different paths is generally different, making τ a

non-unique thermodynamic quantity. We analyze different definitions of the interface stress

implied by the adsorption equation and compute three of such stresses using atomistic

computer simulations.

Most of the thermodynamic quantities appearing in the adsorption equation cannot be

directly measured in experiments but are readily accessible by computer simulations. The

interface free energy along phase coexistence paths was previously computed for several

single-component and binary solid-liquid interfaces using the cleaving technique [54, 68],

the capillary fluctuation method [62, 69, 71], various thermodynamic integration schemes

[58, 60, 61, 87] and other approaches [88, 89]. For curved interfaces, γ was computed from

modeling of homogeneous nucleation events [90–92]. However, previous atomistic studies

of solid-liquid interfaces were restricted to systems in which the solid was either unstressed

or stressed hydrostatically (or nearly hydrostatically). In this work we apply atomistic

simulations to compute γ and different interface stresses τ̂ along strongly non-hydrostatic

coexistence paths. Such paths were obtained by equilibration of a biaxially strained solid

with its melt at a constant zero pressure p in the melt. When designing and interpreting

our simulations, we used results for non-hydrostatic solid-fluid equilibrium between bulk

phases presented in Part I of this work [86].

The rest of the chapter is organized as follows. In Sec. 8.2 we analyze interface ther-

modynamics of non-hydrostatic single-component systems. After introducing our atomistic

simulation methodology in Sec. 8.3, we present the simulation results in Sec. 8.4 and draw

conclusions in Sec. 8.5.
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8.2 Thermodynamics of solid-fluid interfaces

8.2.1 Interface free energy γ and the adsorption equation.

Interface free energy.

Consider a rectangular block containing a single-component solid under a general state

of mechanical stress in thermodynamic equilibrium with a fluid of the same component

(Fig. 8.1). The solid-fluid interface is planar and perpendicular to the z direction of the

block. Thermal equilibrium between the phases requires that temperature T be uniform

throughout the system. Due to mechanical equilibrium, the principal component σs
33 of the

stress tensor σs
ij in the solid is perpendicular to the interface and equal to negative pressure

p in the fluid. The phase-change equilibrium condition relates properties of the solid to the

chemical potential µf in the fluid [13],

U s − TSs + pV s = µfN s, (8.1)

where U s, Ss, V s and N s are the energy, entropy, volume and number of atoms of an

arbitrary homogeneous region of the solid phase. For any homogeneous region of the fluid

phase we have

Uf − TSf + pV f = µfNf , (8.2)

where Uf , Sf , V f and Nf are the energy, entropy, volume and number of atoms of the fluid

region. Examples of homogeneous regions inside the phases are illustrated in Fig. 8.1.

Consider a layer containing the solid-fluid interface (Fig. 8.1). The choice of this layer

is arbitrary as long as its boundaries are placed inside of homogeneous parts of the solid

and fluid phases. Using Gibbs’ definition of the interface free energy1 in conjunction with

Eqs. (8.1) and (8.2), it can be shown that [13]
1This definition is valid for single-component systems. Multicomponent systems require a separate treat-

ment.[61]
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Figure 8.1: Schematic of a solid-fluid system with a plane interface. The interface layer and
the homogeneous solid and fluid regions are outlined.

γA = U − TS + pV − µfN, (8.3)

where U , S, V and N are the total energy, entropy, volume and number of atoms in the

layer and A is the physical area of the interface. The extensive quantities U , S, V and

N are not physically meaningful interface properties because they depend on the choice of

the boundaries of the layer. To eliminate this dependence, we solve the system of three

Eqs. (8.1), (8.2) and (8.3) for γA using Cramer’s rule of linear algebra. This results in the

following expression for γA in terms of interface excesses of extensive properties [61]:

γA = [U ]XY − T [S]XY + p[V ]XY − µf [N ]XY . (8.4)

Here X and Y are any two out of four extensive properties U , S, V and N . In Eq. (8.4)
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and other equations appearing below, [Z]XY denotes the ratio of two determinants [14]:

[Z]XY ≡

∣∣∣∣∣∣∣∣∣∣

Z X Y

Zs Xs Y s

Zf Xf Y f

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

Xs Y s

Xf Y f

∣∣∣∣∣∣∣

. (8.5)

The quantities appearing in the first row of the 3 × 3 determinant are computed for the

chosen layer containing the interface, whereas the quantities with superscripts s and f are

computed for homogeneous regions in the solid and fluid phases, respectively. When two

columns in the 3× 3 determinant in Eq. (8.5) are identical, the excess is zero:

[X]XY = [Y ]XY = 0. (8.6)

In other words, excesses of the properties X and Y are identically zero. Due to Eq. (8.6),

two terms in the right-hand side of Eq. (8.4) are eliminated by specifying X and Y , leaving

only two nonzero terms.

The adsorption equation.

Our next goal is to derive a differential equation for reversible variations of γA in terms

of variations of intensive properties. Consider a closed solid-fluid block, as in Fig. 8.1,

containing a fixed number of unit cells of the solid in the cross-section parallel to the

interface (in other words, a fixed Lagrangian area of the interface). Consider a reversible

variation of state of the system in which it can receive/release heat and do mechanical

work by changing its shape and dimensions, including changes in the physical area of the

interface by elastic deformation. Differentiating Eqs. (8.1), (8.2) and (8.3) one can derive

the following Gibbs-Duhem-type equations for the interface layer and the bulk solid and
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fluid regions:

d(γA) = −SdT + V dp−Ndµf +
∑

i,j=1,2

(σij + δijp)V dεij , (8.7)

0 = −SsdT + V sdp−N sdµf +
∑

i,j=1,2

(σs
ij + δijp)V sdεij , (8.8)

0 = −SfdT + V fdp−Nfdµf . (8.9)

Here, σij is the stress tensor averaged over the layer and εij is a symmetrical 2× 2 lateral

strain tensor computed relative to the current state. We are assuming that the distorted

shape of the block is triclinic, hence dεij is the same in all three equations. Gibbs derived

Eq. (8.8) for a more general case of finite deformations [13],

The differentials appearing in the right-hand side of Eq. (8.7) are not independent. They

are subject to constraints imposed by thermodynamic equilibrium between the bulk phases

and expressed by Eqs. (8.8) and (8.9) [14]. Solving the system of these three equations, we

obtain the adsorption equation expressing a variation of the total interface free energy γA

in terms of independent intensive variables:

d (γA) = − [S]XY dT + [V ]XY dp− [N ]XY dµf +

+
∑

i,j=1,2

[(σij + δijp)V ]XY dεij . (8.10)

The excess quantities [Z]XY appearing in Eq. (8.10) are computed by Eq. (8.5), where Z,

X and Y are three out of the extensive properties S, V , N and (σij + δijp)V . By specifying

X and Y , two terms in Eq. (8.10) are eliminated, leaving four variables that can be varied
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independently.2

It is important to note that some choices of the extensive properties X and Y are

prohibited by Cramer’s rule. For example, if X = (σ11 + p) V and Y = (σ22 + p) V , then

Xf = Y f = 0 and the excess [Z]XY of any property Z is undefined. This restriction on the

choice of X and Y originates from the fact that the solid and fluid phases have different

numbers of degrees of freedom: two for the fluid and five for the solid 3. The Gibbs-Duhem

equation for fluid phase, Eq. (8.9), does not contain the lateral strain variables. As a result,

only one strain variable can be eliminated from the system of three equations but not

two. Thus, the four degrees of freedom of the solid-fluid system can be represented by four

intensive variables from the set
(
T, p, µf , ε11, ε22, ε12

)
, with the requirement that at least

two of them are strain components.

8.2.2 The interface stress

Definition and multiplicity of interface stresses

In this section we analyze different interface stresses introduced through the adsorption

equation. By choosing different extensive variables X and Y in Eq. (8.10), several forms

of the adsorption equation can be obtained, each having a different set of independent

variables and leading to different definitions of the interface stress. Indeed, the change of

γA due to elastic work done by or against interface stress is represented by the last term in

Eq. (8.10). From this term we can express τ as an excess of the tensor (σij + δijp) V over

its bulk values on either side of the interface:
2Out of the four differentials dεij , only three are independent due to the symmetry of tensor εij .
3A generally stressed single-component solid has seven degrees of freedom, e.g. T and σs

ij . Mechanical

equilibrium with the fluid requires that σs
13 and σs

23 be identically zero, imposing two constraints.
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τXY
ij =

1
A

∂ (γA)
∂εij

=
1
A

[(σij + δijp)V ]XY

=
1
A

∣∣∣∣∣∣∣∣∣∣

(σij + δijp) V X Y
(
σs

ij + δijp
)

V s Xs Y s

0 Xf Y f

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

Xs Y s

Xf Y f

∣∣∣∣∣∣∣

, (8.11)

where i, j = 1, 2.4 The variables held constant during the variation of εij depend on the

choice of X and Y . The only case when the interface stress is independent of X and Y

is when the solid is hydrostatic, in which case σs
ij + δijp = 0 and τij has a unique value

τij = (σij + δijp) V/A.

To further demonstrate that the interface stress is not unique if the solid is non-

hydrostatic, we will consider examples of different choices of X and Y . Three examples

will be given in this section and one more in Sec. 8.2.2.

First, let X = V and Y = N . The adsorption equation becomes

d (γA) = − [S]NV dT +
∑

i,j=1,2

[(σij + δijp)V ]NV dεij , (8.12)

with four independent variables T , ε11, ε12 and ε22. Consider an elastic deformation of the

interface at a constant temperature when one of the strain components, εij , varies while

other components are fixed. The interface stress obtained, which we denote τNV , represents

the change in γA at a constant T and is given by
4Although εij is a symmetric tensor, the partial derivative ∂(γA)/∂εij is taken by formally treating the

four components of εij as independent variables.
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τNV
ij =

1
A

(
∂ (γA)
∂eij

)

T

=
1
A

[(σij + δijp)V ]NV

=
1
A

∣∣∣∣∣∣∣∣∣∣

(σij + δijp) V N V
(
σs

ij + δijp
)

V s N s V s

0 Nf V f

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N s V s

Nf V f

∣∣∣∣∣∣∣

. (8.13)

This deformation is implemented along the isothermal path discussed in Part I [86], on which

p and µf vary in order to maintain equilibrium. For variations away from a hydrostatic

state of the solid, the changes in p and µf were shown to be quadratic in non-hydrostatic

components of the stress tensor in the solid.

In the second example, we choose X = S and Y = N . This eliminates the differentials

dT and dµf in the adsorption equation, which becomes

d (γA) = [V ]NS dp +
∑

ij=1,2

[(σij + δijp)V ]NS dεij . (8.14)

The independent variables are now p, ε11, ε12 and ε22, whereas T and µf vary to maintain

equilibrium. By contrast to the previous case, the interface now has an excess volume

[V ]NS .5 The interface stress τNS is defined through the work of elastic deformation at a

constant pressure in the fluid:
5If related per unit area, excess volume of an interface is the relative rigid translation of the phases normal

to the interface during its formation.
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τNS
ij =

1
A

(
∂ (γA)
∂eij

)

p

=
1
A

[(σij + δijp)V ]NS

=
1
A

∣∣∣∣∣∣∣∣∣∣

(σij + δijp) V N S
(
σs

ij + δijp
)

V s N s Ss

0 Nf Sf

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

N s Ss

Nf Sf

∣∣∣∣∣∣∣

. (8.15)

The deformation path implied by Eq. (8.15) corresponds to the isobaric case discussed in

Part I [86]. For variations away from a hydrostatic state of the solid, the changes in T and

µf are quadratic in non-hydrostatic stresses in the solid.

The interface stresses τNV and τNS are generally different. They could be determined

by measuring changes of γA during elastic deformations in two different thermodynamic

processes: an isothermal and isobaric, respectively. Another possible interface stress is τNS ,

corresponding to elastic deformation at a constant chemical potential µf in the fluid (T and

p vary to maintain equilibrium). We do not discuss this case in details, but this interface

stress can also be expressed as an appropriate excess of the non-hydrostatic stress tensor in

a manner similar to τNV and τNS .

Interface stress on an iso-fluid path

We will now introduce yet another definition of the interface stress. Let X or Y be one of

the non-hydrostatic stresses (σij + δijp)V . For example, suppose Y = (σ22 + p)V while X

is one of the extensive variables S, V or N . This choice of Y eliminates dε22 in Eq. (8.10)

and reduces it to
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d (γA) = − [S]X (σ22+p)V dT + [V ]X (σ22+p)V dp

− [N ]X (σ22+p)V dµf + [(σ11 + p)V ]X (σ22+p)V dε11

+ [σ12V ] X (σ22+p)V dε12 + [σ21V ] X (σ22+p)V dε21. (8.16)

In this equation, one variable out of set
(
T, p, µf

)
is eliminated by specifying X, leav-

ing four independent variables (recall that ε12 = ε21). For example, (T, p, ε11, ε12) or
(
T, µf , ε11, ε12

)
are possible sets of independent variables.

Note that if any two variables from the set
(
T, p, µf

)
are fixed, the third variable is also

fixed because a single-component fluid has two degrees of freedom. A relation between these

three variables is given by the Gibbs-Duhem equation (8.9). Thus, if any two variables from

the set (T , p, µf ) are held constant, γA can only vary due to the remaining strain terms,

which represent the work of elastic deformation of the interface. This elastic work is done by

an interface stress which we denote τ̂ (22). The superscript (22) indicates the component of

the strain tensor which is eliminated from the adsorption equation and becomes a dependent

variable. The components of τ̂ (22) are

τ
(22)
11 =

1
A

(
∂ (γA)
∂ε11

)

T,p,ε12

=
1
A

[(σ11 + p)V ]X (σ22+p)V , (8.17)

τ
(22)
12 = τ

(22)
21 =

1
2A

(
∂ (γA)
∂ε12

)

T,p,ε11

=
1
A

[(σ12 + p)V ]X (σ22+p)V , (8.18)

whereas τ
(22)
22 is identically zero due to the property of determinants (8.6).

Computing the determinants in Eqs. (8.17) and (8.18) explicitly,
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τ
(22)
11 =

1
A

∣∣∣∣∣∣∣∣∣∣

(σ11 + p) V (σ22 + p) V X

(σs
11 + p) V s (σs

22 + p) V s Xs

0 0 Xf

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

(σs
22 + p) V s Xs

0 Xf

∣∣∣∣∣∣∣

=

=
V

A

{
(σ11 + p)− (σs

11 + p)
(σ22 + p)
(σs

22 + p)

}
, (8.19)

τ
(22)
12 = τ

(22)
21 =

1
A

∣∣∣∣∣∣∣∣∣∣

σ12V (σ22 + p) V X

σs
12V

s (σs
22 + p) V s Xs

0 0 Xf

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

σs
22V

s Xs

0 Xf

∣∣∣∣∣∣∣

=

=
V

A

{
σ12 − σs

12

(σ22 + p)
(σs

22 + p)

}
. (8.20)

Note that these expressions are independent of X.

Having introduced the interface stress τ (kl), we will now discuss the physical processes

which can be implemented to measure it. The process to determine τ
(22)
11 is a variation of

ε11 at constant ε12, T and p. In this process, µf is automatically fixed by the equation of

state of the fluid. The remaining strain component ε22 is varied simultaneously with ε11 to

maintain phase equilibrium. Likewise, τ
(22)
12 and τ

(22)
21 are determined in a process in which

ε11, T , p (and thus µf ) are fixed while ε12 and ε22 vary simultaneously to maintain phase

equilibrium. While the state of stress of the solid changes in these processes, the state of the
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fluid remains the same. Such processes were introduced in Part I of this work,[86] where

they were called iso-fluid processes. Thus, τ (kl) can be referred to as iso-fluid interface

stress.

There is a unique hydrostatic state of the solid, denoted H, in which it is equilibrated

with a given fluid. It was shown [86] that no iso-fluid path can go through or originate from

the hydrostatic point (TH , pH). Thus, τ̂ (kl) is only defined for non-hydrostatic states of the

solid.

Iso-fluid processes have the following geometric interpretation in the configuration space

of variables. The iso-fluid constraints eliminate two degrees of freedom, leaving a single-

component solid-fluid system with two remaining degrees of freedom. Iso-fluid states can

be represented by a surface in the three-dimensional space of strain variables E11, E12 and

E22. The strain Eij was introduced in Part I [86] and is defined relative to the reference

hydrostatic state (TH , pH). In the linear elasticity approximation, the iso-fluid surface is

an ellipsoid centered at E11 = E12 = E22 = 0 (Appendix C of Part I) [86].

To apply this analysis to atomistic simulations discussed later, let us consider a partic-

ular case in which E12 remains fixed at zero. Then the iso-fluid path is an ellipse in the

coordinates E11 and E22, which can be obtained as an intersection of the ellipsoid mentioned

above with the plane E12 = 0. Alternatively, this ellipse can be viewed as an intersection

of two other surfaces. Specifically, at E12 = 0 and a fixed pressure in the fluid, the solid-

fluid coexistence surface is an elliptical paraboloid in the coordinates T versus E11 and E22

(Fig. 8.2a). The equation of this paraboloid was derived in Appendix B of Part I [86]. The

iso-fluid ellipse is obtained as an intersection of this paraboloid with a constant-temperature

plane (Fig. 8.2b).

For any infinitesimal iso-fluid process on the ellipse, the solid phase is stretched by an

amount dE11 and simultaneously compressed in the perpendicular direction by an amount

dE22 in order to maintain equilibrium with the same fluid. Some of the equations involving

the iso-fluid interface stress (see below) contain the slope of the iso-fluid curve. Since the

reference state (TH , pH) is fixed during iso-fluid processes, the slope equals dE22/dE11 =
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Figure 8.2: Equilibrium temperature T as a function of non-hydrostatic components of
strain Eij at a constant pressure p in the fluid and a constant E12. (a) The line of biaxial
tension/compression. (b) An iso-fluid path. The triangle shows the slope of the iso-fluid
path at a particular point marked by a cross.

dε22/dε11, where the strain εij is defined relative to the current state.

Relations between different interface stresses

In this section we analyze relations between different interface stresses. Such relations are

readily obtained by equating right-hand sides of the adsorption equation for different choices

of X and Y . Some of these relations will be later tested by atomistic simulations. We will

limit the discussion to the particular case of dε12 = 0.

Since there is no preference of choosing dε11 over dε22 as the independent variable to

describe iso-fluid processes, we have two versions of the adsorption equation:

d (γA) = τ
(22)
11 dε11 = τ

(11)
22 dε22. (8.21)

It follows that the components τ
(22)
11 and τ

(11)
22 are proportional to each other,
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τ
(22)
11

τ
(11)
22

=
(

∂ε22

∂ε11

)

T,p,ε12

. (8.22)

The slope of the iso-fluid curve (Fig. 8.2b) is assumed to be known from bulk thermodynamic

properties. On the other hand, using Eq. (8.19) τ
(22)
11 /τ

(11)
22 can be expressed as a ratio of

non-hydrostatic components of stress in the solid:

τ
(22)
11

τ
(11)
22

=
σs

11 + p

σs
22 + p

. (8.23)

These relations permit useful cross-checks during interface stress calculations, which will be

done in Sec. 8.4.

A relation between τNV and τ (22) can be obtained by applying Eq. (8.12) to the par-

ticular case of an iso-fluid variation (dT = 0):

d (γA) = τNV
11 dε11 + τNV

22 dε22. (8.24)

Because dε11 and dε22 must be proportional to each other to keep the system on the iso-fluid

path, we can rewrite this equation as

d (γA) =

{
τNV
11 + τNV

22

(
∂ε22

∂ε11

)

T,p,ε12

}
dε11. (8.25)

Comparing this equation with Eq. (8.21), we obtain

τ
(22)
11 = τNV

11 + τNV
22

(
∂ε22

∂ε11

)

T,p,ε12

. (8.26)

This relation suggests another cross-check because τNV and τ (22) can be computed inde-

pendently.
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The derivative (∂ε22/∂ε11)T,p,ε12
appearing in the above equations was computed in Part

I [86] in the linear elasticity approximation. It can be expressed through elastic constants

of the solid phase and the strain Eij relative to the hydrostatic state:

(
∂ε22

∂ε11

)

T,p,ε12

= −A11E11 + A12E22

A22E22 + A12E11
. (8.27)

Here A11 = C1111−C2
1133/C3333, A22 = C2222−C2

2233/C3333 and A12 = C1122−C1133C2233/C3333,

Cijkl being the tensor of elastic constants in the hydrostatic state.

For each of the different interface stresses introduced in this work, there are points on

the phase coexistence surface where the particular type of interface stress is undefined. For

example, τ (kl) cannot be defined whenever σs
kl + δklp = 0, although τNV , τNS and τSV

generally remain well-defined at such points. τNV is undefined when a non-hydrostatic solid

and a fluid have the same volume per atom (atomic density). Likewise, τNS is undefined

when entropy per atom is the same in both phases.

8.2.3 Relation to the Shuttleworth equation

The adsorption equation derived in Sec. 8.2.1 can be rewritten in a form similar to the

Shuttleworth equation for open surfaces [15]. Taking the differential of γA in the left-hand

side of Eq. (8.10) and using dA = A
∑

i,j=1,2

δijdεij we obtain

Adγ = − [S]XY dT + [V ]XY dp− [N ]XY dµf +
∑

i,j=1,2

(
τXY
ij − δijγ

)
Adεij . (8.28)

As before, two differentials in Eq. (8.28) are eliminated by specifying X and Y and the

remaining differentials are independent. Taking a partial derivative of γ with respect to the
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elastic strain tensor while holding all the other independent variables fixed, we obtain 6

∂γ

∂εij
= τXY

ij − δijγ. (8.29)

In this equation, τXY
ij depends on the choice of X and Y . Accordingly, the derivative

∂γ/∂εij is taken along a path on the coexistence surface on which the intensive variables

conjugate to the chosen X and Y are allowed to vary while all other variables are fixed.

In effect, Eq. (8.29) represents a set of equations for different interface stresses τXY
ij and

different partial derivatives ∂γ/∂εij taken along corresponding paths.

8.2.4 Thermodynamic integration methods

If γ is known at one point on the phase coexistence surface, the adsorption equation (8.10)

can be integrated along a chosen path on this surface to compute γ as a function of intensive

variables. However, if temperature varies along the path, the integration requires knowledge

of the excess entropy [S]XY . The latter is rarely accessible in experiments or simulations. To

circumvent this problem, we combine Eqs. (8.4) and (8.10) to derive the interface version of

the Gibbs-Helmholtz equation, which is more suitable for thermodynamic integration [26]:

d

(
γA

T

)
= − [Ψ]XY

T 2
dT +

[V ]XY

T
dp− [N ]XY

T
dµf +

1
T

∑

i,j=1,2

τXY
ij dεij . (8.30)

Here

Ψ ≡ U + pV − µfN (8.31)

is a thermodynamic potential that does not contain the entropy term. Just as the adsorption

equation (8.10), Eq. (8.30) contains four independent variables. It can be integrated starting

from a chosen reference point to recover γ along the path.
6Although εij is a symmetric tensor, the partial derivative ∂γ/∂εij is taken by formally treating the four

components of εij as independent variables.
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As an example, consider a path on the coexistence surface obtained by biaxial de-

formation of the solid at zero pressure p in the fluid. Due to the constraints dp = 0,

dε11 = dε22 ≡ dε and dε12 = 0, we have only one independent variable. Choosing T as the

independent variable, Eq. (8.30) is readily integrated to give

γA =
(γA)0 T

T0
− T

T∫

T0

(
[U ]NV

T ′2
−

(
τNV
11 + τNV

22

)

T ′

(
∂ε

∂T ′

)

coex.

)
dT ′. (8.32)

Here (γA)0 and T0 are the reference values of total interface free energy and temperature.

The derivative (∂ε/∂T )coex is taken along the coexistence path. An advantage of Eq. (8.32) is

that all quantities appearing in the integrand are readily accessible in atomistic calculations.

Consider another integration path on which pressure is fixed at zero. Choosing X = N ,

Eq. (8.30) reduces to

d

(
γA

T

)
= − [U ]NY

T 2
dT +

1
T

∑

i,j=1,2

τNY
ij dεij . (8.33)

Taking U for Y and integrating, we obtain

γA =
(γA)0 T

T0
+ T

T∫

T0

(
[σ11 + p]NU + [σ22 + p]NU

T ′

(
∂ε

∂T ′

)

coex.

)
dT ′. (8.34)

This integration path requires calculation of only two excess quantities, [σ11 + p]NU and

[σ22 + p]NU , instead of three in Eq. (8.32). Calculations of excesses [Z]NU instead of [Z]NV

have some computational advantages in atomistic simulations. Both Eqs. (8.32) and (8.34)

will be used below to compute the interface free energy along biaxial tension and compression

paths at zero pressure in the liquid.
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Figure 8.3: (a) Typical snapshot of the simulation block with the solid and liquid phases.
(b) Schematic illustration of regions selected for calculations of excess quantities.

8.3 Methodology of atomistic simulations

8.3.1 Simulation block and molecular dynamics methodology

The simulation block with dimensions x × y × z = 32 × 30 × 325 Å3 contained the total

of 23, 040 atoms. A 105 thick layer of the solid phase was located in the middle of the

block between two 110 thick liquid layers (Fig. 8.3a). The solid and liquid phases were

separated by (110) oriented solid-liquid interfaces perpendicular to the z direction. The

[1̄10] and [001] crystallographic directions in the solid were parallel to the x and y axes,

respectively. The boundary conditions in the x and y directions were periodic, with the free

surface condition in the z direction. The termination of the liquid layers at open surfaces

ensured constant zero pressure in the liquid phase (p = 0).

To create non-hydrostatic stresses in the solid phase, the block was subject to biaxial

deformation parallel to the interface. Eleven simulation blocks were prepared with different

biaxial tensions and compressions. The lateral stresses created in the solid layer ranged

from −2.1 GPa (compression) to 3.4 GPa (tension). The normal stress σ33 remained zero

due to mechanical equilibrium with the liquid.
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After application of the deformation, each simulation block was equilibrated by a 2 ns

NV E MD run. The obtained equilibrium temperature and lateral stresses in the solid

were functions of the applied deformation. In the linear elasticity approximation, T is

a paraboloid as a function of the lateral strains E11 and E22 as shown schematically in

Fig. 8.2a [86]. The red dashed line indicates the biaxial deformation path implemented in

this work. The equilibration step was followed by a 40 ns production run (also in the NV E

ensemble) with snapshots generated every 0.01 ns. The snapshots contained coordinates,

energies and stresses for all atoms and were used for post-processing.

8.3.2 Calculation of profiles and excess quantities

Profiles of energy, atomic density and stress components as functions of distance in the z

direction provide useful information about internal structure of the interface region. To

compute such profiles, each snapshot was divided into bins of equal width and the property

of interest was averaged within each bin. To obtain smooth profiles, each atom was smeared

into a Gaussian along the z axis. Properties related to each atom, such as density, energy

and stress, were distributed over its vicinity with the Gaussian distribution.

During an MD run, the position of the interface constantly changes due to thermal

fluctuations. The interface implements a random walk along the z axis by spontaneous

melting and crystallization processes within thin layers adjacent to the interface.7 This

interface motion can result in a broadening of the profiles. To avoid the broadening, the

interface motion was monitored by computing profiles of the structure factor |S(k)| (k being

a suitable vector of reciprocal lattice), which gave us an approximate interface position in

every snapshot [60]. The profiles of other properties computed for individual snapshots were

centered relative to the instantaneous position of the interface as identified by |S(k)| and

then averaged. After computing the averaged profiles of all properties, they were shifted

so that the Gibbsian dividing surface determined from the density profile was at z = 0.

This shift is dictated by convenience of presentation of profiles and does not constitute any
7In the NV E ensemble, the walks of the two interfaces are not completely random. They are constrained

to keep the average amount of each phase constant.
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approximation of our analysis.

All excess quantities, such as the interface stress, excess energy etc., were calculated

from Eq. (8.5). Each entry of the determinants was computed for individual snapshots

and then averaged. Such entries represented extensive quantities that were computed for

selected regions of the simulation block. Properties of individual atoms continued to be

represented by Gaussians. The profiles of |S(k)| were used as a guide during the region

selection as they indicated approximate positions of the solid-liquid interfaces. The liquid

surfaces were identified with the maximum and minimum values of the z coordinate of

atoms. An inner region of the solid layer separated by a distance d from both solid-liquid

interfaces was taken as the bulk solid region (Fig. (8.3b). Two liquid regions separated by d

from the solid-liquid interfaces and from the liquid surfaces represented by the bulk liquid

phase. Finally, the region containing two solid-liquid interfaces and separated by a distance

d from the liquid surfaces was selected as the interface layer. In Fig. (8.3b this layer is

labeled by L. Since boundaries of the regions were placed relative to the instantaneous

positions of the interfaces and surfaces, they slightly varied from one snapshot to the next.

Due to properties of determinants in Eq. (8.5), the locations of the boundaries do not affect

the excesses as long as these boundaries are within homogeneous phases [14]. A choice of

d = 20 was found to satisfy this condition. Note that the profiles of properties discussed

above were not used for interface excess calculations. They were constructed for illustration

purposes only.

8.4 Results

Figs. 8.4a and b display typical profiles of atomic density and energy density across the

simulation block when the solid phase is under tension, under compression and nearly

hydrostatic. The profiles shown in Fig. 8.4b reveal that the internal energy in the solid

decreases with biaxial compression. This is not surprising since quadratic behavior of energy

with applied biaxial strain is not expected in this case. It is the free energy that is quadratic

in strain and stress, whereas the internal energy is linear. Figs. 8.4c and d show the
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corresponding profiles of the stress components σ11 and σ22. These two components exhibit

different behaviors in the interface region. The σ11 component has a peak of compression on

the solid side of the Gibbsian dividing surface accompanied by a peak of slight tension on the

liquid side. By contrast, σ22 shows a single compressive peak. Note also that the magnitudes

of the stress components inside the solid are significantly different, which is explained by the

anisotropy of elastic constants. The overall thickness of the non-homogeneous interfacial

region is about 20 .

The excess energy per unit area, [U ]NV /A, which is needed for thermodynamic integra-

tion by Eq. (8.32), is plotted in Fig. 8.5 as a function of biaxial compression and tension.

Within the relatively narrow temperature range implemented in this work, [U ]NV /A does

not change significantly. It slightly decreases as the solid deviates from the hydrostatic state

but increases again under a larger tension. The magnitude of [U ]NV /A is nearly an order

of magnitude smaller than the interface free energy (see below).

The diagonal components of the interface stress τ̂NV are shown in Fig. 8.6 as functions of

biaxial strain. When the solid is hydrostatic, the interface stress is only slightly anisotropic

with the components τNV
11 = −0.105±0.004 J/m2 and τNV

22 = −0.110±0.002 J/m2 [93]. The

negative sign indicates that the interface is in a state of compression. As the solid deviates

from the hydrostatic state, the anisotropy of τ̂NV increases significantly. A reversal of the

bulk stress from compression to tension changes the sense of the anisotropy. It should be

mentioned, however, that the average of τNV
11 and τNV

22 is much less affected by the applied

stresses than the individual components.

Fig. 8.7 shows a plot of the iso-fluid interface stresses τ
(22)
11 and τ

(11)
22 as functions of

lateral strain. Both stresses were computed from Eq. (8.19) with switches between (11) and

(22). Note that these two stresses have different signs which change within the simulated

range of lateral strains. As discussed in Sec. 8.2.2, the ratio of these interface stresses equals

(∂ε22/∂ε11)T,p,ε12
, which has the meaning of the slope of the iso-fluid path in the coordinates

E11 and E22. In the linear elasticity approximation, the derivative (∂ε22/∂ε11)T,p,ε12
must
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Figure 8.4: Profiles of (a) atomic density, (b) energy density, and stress components (c) σ11

and (d) σ22 when the solid is under compression (T = 1325.2 K), tension (T = 1325.5 K)
and nearly hydrostatic (T = 1326.4 K). The vertical dashed line indicates the position of
the Gibbsian dividing surface.
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be constant along a biaxial deformation path. This constant value was calculated from

Eq. (8.27) using the elastic constants of the solid determined in Part I [86] at the temperature
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TH . The value obtained, (∂ε/∂ε11)T,p,ε12
= −1.62, is shown by the dashed line in Fig. 8.8.

The individual points on this plot are the ratios τ
(22)
11 /τ

(11)
22 computed for different states

of tension and compression. Although the points display noticeable deviations from the

predicted line, the relation (8.22) is approximately followed. There can be several reasons

for the discrepancy, including deviations from linear elasticity, the system size effect and

other factors. It should be noted that reducing the magnitude of the applied strain does

not improve the accuracy of the calculations because the iso-fluid ellipse becomes too small

(Fig. 8.2). In the limit of a hydrostatic solid, the ellipsoid shrinks to a point and the ratio

(∂ε22/∂ε11)T,p,ε12
becomes undefined.

Finally, Fig. 8.9 reports the temperature dependence of the interface free energy γ

obtained by thermodynamic integration of Eqs. (8.32) and (8.34). As the reference state

we used the hydrostatic solid-liquid coexistence at p = 0. The interface free energy for

this state, 0.199 J/m2, was computed in our previous work [60]. To find the derivative

(∂ε/∂T )coex appearing in Eqs. (8.32) and (8.34), the previously obtained[86] biaxial strain
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ε as a function of T was fitted with a cubic spline and differentiated numerically. Fig. 8.9

shows that the interface free energy decreases under biaxial tension but increases under

biaxial compression. In the latter case, it reaches a maximum at 1307 K and apparently

reverses. In the range of strains studied in this work, the maximum decrease of γ under

tension is 9.1% and the maximum increase under compression is 2.3%. Thus, the effect

of non-hydrostaticity on γ is much weaker than the effect on the interface stresses. As

expected, the values of γ computed by the different integration methods are identical within

the accuracy of the calculations.
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8.5 Summary and conclusions

We have studied thermodynamics solid-fluid interfaces in a single-component system in the

presence of non-hydrostatic stresses in the solid phase. While some aspects of this analysis

can be found in our previous work dedicated to binary systems [26], the present study

was focused on the multiplicity of definitions of the interface stress τ and its dependence

on applied bulk stresses. The interface stress is generally defined as reversible work of

elastic deformation of the interface. More specifically, it is defined through the term in the

adsorption equation which is responsible for elastic deformations of the interface. We have

shown how this term can be expressed as an interface excess quantity similar to excesses

of energy, entropy, volume and other properties. The extensive property whose excess per

unit area gives the interface stress is the tensor (σij + δijp)V representing non-hydrostatic

stresses in the system (p being pressure in the fluid).
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The physical origin of the non-uniqueness of τ is in the fact that the elastic deformations

implied by its definition can be implemented under different conditions. Thus, one can talk

about an isothermal interface stress τNV , isobaric τSV , or an open-system interface stress

τSV (Sec. 8.2.2). As another example, τ can be defined through an iso-fluid process, in

which two or more components of strain vary simultaneously while the state of the fluid

remains the same. Furthermore, because of the multiplicity of possible iso-fluid deformation

paths, there is a multiplicity of iso-fluid interface stresses τ (kl). It is important to note that

the interface stresses not only differ conceptually but can also have different magnitudes or

even signs. Thus, care should be exercised when comparing interface stresses obtained by

different measurements or simulations. It is only when the solid is hydrostatic that τ has a

unique value.

Mathematically, the non-uniqueness of τ arises from the freedom of choice of the inde-

pendent intensive variables in the adsorption equation. This choice is controlled through

the selection of two extensive properties X and Y in the definition of excess quantities by

Eq. (8.5). Depending of this choice, different variables are held constant during the defor-

mation, leading to different definitions of τ . By analyzing various choices of variables in the

adsorption equation, relationships between different interface stresses can be established as

discussed in Sec. 8.2.2. Such relations can be useful for cross-checking results of different

experiments or simulations. It should also be pointed out that the formalism presented in

this work automatically guarantees that the deformation paths chosen for the definition of

τ lie on the phase coexistence surface and are consistent with the Gibbs phase rule. This

helps avoid meaningless definitions, such as the derivative τij = (∂γA/∂εij)p,T which cannot

be obtained from Eq. (8.10) and constitutes an impossible variation (a change of a single

component of strain at fixed other components, p and T destroys the phase coexistence).

We have applied molecular dynamics simulations to compute several different interface

stresses for a (110) solid-liquid interface in copper. The solid phase was subject to biaxial

tension and compression producing non-hydrostatic stresses reaching the GPa level. These

non-hydrostatic stresses were found to strongly affect the magnitude, anisotropy and even
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sign of various interface stresses. As expected from the above analysis, differently defined

interface stresses were found to be very different in magnitude, anisotropy and sign. By

contrast, the interface free energy is much less sensitive to non-hydrostatic stresses. This

observation can be of interest for understanding various interface phenomena, some of which

are controlled by the interface free energy while others by interface stress. We hope that

this work will motivate further analysis of such phenomena and their dependence on applied

stresses.
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Chapter 9: Grain boundaries under stress

9.1 Introduction

Thermodynamic properties of GBs are affected by temperature, chemical composition and

mechanical stresses. Under hydrostatic conditions effects of temperature [29, 33, 94] and

chemical composition [95,96] have been intensively studied by both experiments and atom-

istic simulations. In a polycrystalline material subjected to hydrostatic stress the individual

grains will generally experience non-hydrostatic stresses due to geometry, anisotropy of the

excess GB stress and other factors. The GB stress affects the solubility of nanocrystalline

materials which is different from that of the coarse grained materials. The solubility of

polycrystalline materials is affected by both segregation at GBs and stresses inside individ-

ual grains induced by the excess GB stress [97,98]. In the absence of sliding at GBs, shear

stresses parallel to the boundary plane will be present. The effect of these stresses is not

included in the current thermodynamic descriptions of GBs.

In this chapter we GBs in a binary system under stress. Thermodynamic equations

introduce a new excess quantity: excess GB shear. The later excess describes a contribution

to GB free energy from shear stress parallel to the GB plane. The adsorption equation

generates new Maxwell relations [14] that involve derivatives of excess GB properties with

respect to shear stress.

In the second part of this work we apply the theory to atomistic simulations. While in

experiments measured GB properties are usually averaged over many GBs with different

misorientations [97–99], atomistic simulations provide great details about the structure of

a particular boundary on the atomic scale and allow for precise calculations of excess GB

properties. We studied symmetrical tilt Σ5(310)[001] GB in copper and copper-silver binary

alloy. While many of the excess GB properties such as GB stress, segregation, excess volume
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and excess shear can be computed directly in atomistic simulations, more sophisticated

approaches are necessary to compute γ at finite temperatures. In this work we employ

thermodynamic integration to compute GB free energy as a function of temperature and

composition. Using the adsorption equation, we evaluate the effects of elastic deformation

as well as temperature and chemical composition on γ. We also test Maxwell relations

predicted by theory using atomistic simulations.

9.2 Thermodynamics of grain boundaries

9.2.1 Grain boundaries versus phase boundaries

First, we define a GB and emphasise the difference between grain boundaries and phase

boundaries. We refer to interfaces that separate two thermodynamically identical grains

as GBs. By this definition GB is an interface in a single phase system. Under hydrostatic

conditions grains of the same material separated by a planar GB are in equilibrium with

each other and represent the same phase. Thus, an interface in such a system satisfies

the given definition of a GB. Applied non-hydrostatic stresses usually create driving forces

for GB motion. In this case, one grain grows at the expense of the other in absence of

curvature, which means that the grains have different thermodynamic states and should be

treated as two different phases. Under certain conditions, even when non-hydrostatic stress

are present, these phases can be in equilibrium with each other. For example, two grains

of the same material one under compression, another under tension (parallel to the GB

plane) can be in equilibrium if the elastic energy density is the same in both grains and the

stress normal to the GB plane is zero. We call the interface in the later example a phase

boundary, since the thermodynamic states of the phases in equilibrium are distinct.

In some cases, due to crystallographic symmetries present in the system, non-hydrostatic

stresses preserve equilibrium, while keeping the thermodynamic states of both grains iden-

tical, so the bicrystal can still be described as a single phase. These are the type of systems
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Figure 9.1: Schematics of a bicrystal forming a symmetrical tilt biundary. The grain bound-
ary plane in normal to the z direction.

that will be studied in this work, the general case of phase boundaries was analized chap-

ter 2. One example of such a system is symmetrical tilt boundaries. We will focus our

discussion on this type of GBs.

Consider a symmetrical tilt boundary schematically shown in Fig. 9.1. The boundary

plane is normal to the z direction. The tilt axis is parallel to the x direction. The bicrystal

has a twofold symmetry axis parallel to the y direction, which is indicated in Fig. 9.1.

There is no twofold symmetry axis parallel to the tilt axis. These symmetries dictate

possible equilibrium states under non-hydrostatic stresses. When a symmetrical tilt GB is

elastically deformed parallel to the x, y or z axes, the grains remain thermodynamically

identical and, therefore, in equilibrium with each other.

Due to the twofold symmetry around the y axis, shear stress σ31, applied parallel to the

tilt axis with σ32 = 0, creates identical states stress in the grains and preserves equilibrium.

Again, the bicrystal can be treated as a single phase.

When shear is applied normal to the tilt axis (the x2 direction), symmetrical tilt GBs

move by coupled motion, due to the lack of symmetry around the tilt axis [31, 32]. In
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this type of GB migration, the normal displacement of the boundary is accompanied by a

displacement of grains relative to each other in the direction of the of applied shear stress.

At the same time, the relative displacement of grains in the direction parallel to the tilt

axis is zero. This coherent transformation (called coupling) is a process, which means that

the grains are not in equilibrium: one grain growth at the expense of the other. Because

our goal is a study of GB properties at equilibrium, states with non-zero shear stress σ32

will not be considered.

The two different behaviors of the bicrystal with a boundary, when shear is applied

parallel to the GB plane in different directions, can be explained treating the grains as two

phases and employing Clausius–Clapeyron type equation (2.36) derived in chapter 2.

From the previous discussion we conclude, that symmetrical tilt boundaries can be de-

scribed as interfaces in a single-phase systems under non-hydrostatic stresses, which include

shear parallel to the GB plane in the direction parallel to the tilt axis. In some cases, due

to crystallographic symmetries of the bulk, a boundary can be described as symmetrical

tilt, with different orientations of the tilt axes and different misorientation angles. This

multiplicity of descriptions results in multiplicity of coupling modes and the coupling may

occur when shear is applied in any direction. In such system, equilibrium between to ther-

modynamically identical grains under shear is unlikely to occur and such GBs are not a

subject of this work.

We finally point out that other systems with GBs under stress (besides the symmetrical

tilt) fit into the description of a single phase. In case of pure twist boundaries, elastic

deformation parallel to the axis of symmetry will preserve equilibrium. Shear parallel to

the GB plane can be applied in two mutually perpendicular directions preserving identical

thermodynamic states of the bulk. Shear in other directions will not lead to coupled motion

because the gliding planes of the GB dislocations are parallel to the GB plane; however,

sliding may occure or due to the elastic anisotropy the generated stresses will be different

in the two grains, producing the bulk driving force for boundary motion (by mechanism

other than coupling).
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9.2.2 Thermodynamic description of the system

We will analize a system with two crystals of the same phase separated by a coherent

GB. The coherency of the boundary should be understood in the same was as discussed in

chapter 2 which implies the absence of slip. Atoms in the bulk part and the GB region are

allowed to diffuse. Because we consider only equilibrium states, the net diffusive flux must

be zero (no creep). The GB may contain disordered regions such as premelted dislocations

and remain coherent, as long as the GB migration happens without a slip. This situation

is appropriate for low angle GBs, then the premelted GB dislocations are separated by

perfectly crystalline parts of the boundary that prohibit slip. There are other premelting

scenarios when GBs turn into uniform liquid-like layer near the melting point [100]. Such

GBs are incoherent and the grains will slip if shear is applied parallel to the GB plane.

Note, that the analysis developed below will remain valid for such GBs, if the shear stresses

in the equations are set to zero and remain constant.

The bicrystal and the GB is schematically illustrated in Fig. 9.2 with the GB plane

normal to the z direction. To describe elastic variations of a GB with area A we use the

small strain e. The four components e11, e12, e21 and e22 are variables common to the both

grains and the GB region. The local elastic strain normal to the GB plane is not uniform in

the system: while it is the same in the homogeneous parts of the grains, it depends on the z

coordinate in the GB region. The bicrystal in consideration is under general non-hydrostatic

state of stress, described by the Cauchy stress tensor σij . Inside the homogeneous parts of

the grains 1 and 2, σ1
ij = σ2

ij . However, inside inhomogeneous GB region the components

σ11, σ12, and σ22 take values which depend on z and different from the bulk values. These

deviation of stress from the bulk values result in excess GB stress.

Here we consider a case of a binary system with solid formed by substitutional mech-

anism. To describe compositional changes on the substitutional lattice we employ the

diffusion potential M21, introduced by Larche and Cahn [18]. The diffusion potential equals

the change in the energy of the system when an atom of sort 1 is substituted by an atom

of sort 2 at constant total number of substitutional atoms
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Figure 9.2: Schematic representation of the system with the GB. Grains 1 and 2 are in
neutral equilibrium. The figure shows a spontaneous migration of the GB.

M21 =
(

∂U

∂N2

)
−

(
∂U

∂N1

)
, (9.1)

where U is the energy of the system, N1 and N2 are the numbers of atoms of the first and

second components, respectively. In Eq. (9.1) the derivatives are taken at constant entropy

and state of strain. To define the diffusion potential M21, component 1 was chosen as the

reference one.

The equilibrium between two grains requires that [18] 1) Temperature is uniform through-

out the system 2) The diffusion potential M21 is uniform in the system 3) Due to mechanical

equilibrium, the components of the Cauchy stress tensor σ31, σ32 and σ33 are continuous

across the GB. Here, we consider a case when the system with the GB supports shear σ31

only in one direction, so that the other component of the shear stress σ32 is always zero.
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9.2.3 Excess GB free energy

We start the analysis deriving an expression for GB free energy γ as a reversible work

required to create a unit of GB area. Consider the same two grains separated by a coherent

GB in equilibrium (Fig. 9.2). Let us select an imaginary region containing N atoms in

the homogeneous part of the grain 1 not affected by the GB. The region is indicated in

Fig. 9.2a by a solid red line. Because the two grains are thermodynamically identical, the

GB can migrate spontaneously without altering the thermodynamic state of the system.

This state is defined by values of the intensive parameters T,M21, σ31, σ33 and strains e11,

e12 and e22. Consider such a migration of the GB at c constant T,M21, σ31, σ33 and fixed

strains e11, e12 and e22, when the GB enters the selected region. The migration may occur

due to coupled motion with grains displacing relative to each other in the direction 2 at

zero shear stress σ32 or due to diffusive motion of GB atoms. In the direction of shear σ31

the relative displacement of grains during this migration is identically zero. In the varied

state, shown in Fig. 9.2b by a solid red line, the region contains the GB as well as some

homogeneous parts of grains 1 and 2. The location of the GB inside the selected region

is arbitrary, as long as the boundaries of the region are located inside of the homogeneous

parts of grains 1 and 2. The regions in the initial and final state contain the same total

number of atoms, however, the average chemical composition is different. Let us compare

the energies of the region in the initial state and in the varied state. The energy changed

due to the heat supplied to the system, the mechanical work done by stresses σ31 and σ33

and the chemical work (change of the average composition at constant value of diffusion

potential M21). The lateral stresses do not contribute to the energy change, because the

transformation happens at a fixed area and shape of the GB. In the varied state the system

contains the GB and we denote this contribution to energy of the region as γA, where A

is the GB area. Because this process is reversible (the initial and final configurations are

equilibrium states), we only need to compare the initial and final states to evaluate the

energy change. Thus, we obtain
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U − U1 = T
(
S − S1

)
+ Ab1σ31 + Ab3σ33 + M21

(
N2 −N1

2

)
+ γA, (9.2)

where U , S, V and N2 refer to the energy, entropy, volume and number of atoms of the

second component in the region containing the GB and the quantities with the superscript

1 refer to the properties of the grain 1 (or simply bulk properties). The components b1 and

b3 of the displacement vector are illustrated in Fig. 9.23 and have meaning of the excess

shear and excess thickness of the GB, respectively. Quantities U −U1, S−S1 and N2−N1
2

are the excess energy, entropy and GB segregation.1 Because the region with the GB and

the initial homogeneous region contain the same total number of atoms, Eq. (9.2) can be

written in notations introduced by Cahn [14] as

γA = [U ]N − T [S]N − σ33[V ]N − σ31Ab1 −M21[N2]N . (9.3)

The terms [Z]N are computed as [14]

[Z]N ≡

∣∣∣∣∣∣∣
Z N

Z1 N1

∣∣∣∣∣∣∣
N1

= Z − Z1 N

N1
. (9.4)

[Z]N has a meaning of excess GB property Z when the region with the GB has the same

total number of substitutional atoms as the bulk system. In Eq. (9.4) the quantities

with and without the superscript are computed inside of the bulk part and the GB region,

respectively. In Eq. (9.2) U1, S1, etc, refer to a bulk region with the same number of atoms

N , while in Eq. (9.4) the same bulk properties are computed inside arbitrary bulk region

containing arbitrary number of atoms (N1 6= N). The rule of the excess calculation in Eq.

(9.4) ensures, that Eqs. (9.2) and (9.3) are identical.

The term Ab3 is equal to the volume change V −V 1 = [V ]N of the region due to the GB,
1N2 −N1

2 is different from Gibbsian segregation introduced through the dividing surface.

206



so we wrote it as σ33[V ]N . Thus, in Eq. (9.3) [U ]N , [S]N , [V ]N , and [N2]N are the total

excesses of energy, entropy, volume and segregation of the GB with area A. These excesses

are different from those introduced by Gibbs using a concept of the dividing surface, in

which case excess volume is zero by definition [13].

9.2.4 The adsorption equation.

Having derived the expression for GB free energy γ, we are now in a position to derive the

adsorption equation. Consider a reversible variation in the state of the system with the GB,

when it exchanges heat, elastically deforms and changes its composition. The differentials

of energy of the region containing the GB and the bulk region with the same total number

of atoms N are given by

dU = TdS + M21dN2 +
∑

i=1,2

(σijV − δijσ3iAbi)deij +
∑

i=1,3

Aσ3idui, (9.5)

and

dU1 = TdS1 + M21dN1
2 +

∑

i=1,2

σ1
ijV

1deij +
∑

i=1,3

Aσ3idu1
i , (9.6)

where σij are the components of stress averaged over the volume with the GB. The first

terms Eqs (9.5) and (9.6) describes heat exchange, second terms describe change in chemical

composition at constant total number of atoms and the rest describes elastic deformation.

Work of the deformation parallel to the GB plane (e11, e12 and e22) was separated from

work of stresses σ31 and σ33. Because we do not consider rotation, six variables describe

possible independent elastic deformations (e12 and e21 represent one variable). Thus, each

solid has eight degrees of freedom.

In Eqs (9.5) and (9.6) the elastic work is computed as traction vector times the dis-

placement integrated over the surface of the two regions. Here, dui and du1
i denote the

displacement of the upper face of the region containing the GB and the homogeneous bulk
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region, respectively. While the vectors du and du1 each have three components, du2 and

du1
2 do not appear in Eqs. (9.5) and (9.6) because σ32 is zero. Differentiating Eq. (9.2) and

using the differentials of energy from Eqs. (9.5) and (9.6) in conjunction with dbi = dui−du1
i

we obtain

d (γA) = −(S − S1)dT −Ab1dσ31 −Ab3dσ33 − (N2 −N1
2 )dM21 +

∑

i,j=1,2

τijAdeji, (9.7)

with the components of τ given by

τijA = σijV − σ1
ijV

1 − δijσ3iAbi − δij

∑

k=1,3

Abkσ3k. (9.8)

τ is a (2× 2) symmetrical tensor.

Again, Eq. (9.7) can be written using the determinants notation introduced by Cahn

[14] as

d (γA) = −[S]NdT − [V ]Ndσ33 −Ab1dσ31 − [N2]NdM21 +
∑

i,j=1,2

τijAdeji. (9.9)

Eq. (9.9) is the adsorption equation. It provides a differential of the total GB free energy

γA in terms of differentials of the intensive parameters. The number of degrees of freedom in

the adsorption equation is eight and each differential coefficient (excess quantity) correspond

to a partial derivative of γA. If applied to a hydrostatic process, Eq. (9.9) corresponds to

the adsorption equation with differential dµ1 eliminated, where µ1 is the chemical potential

of the component 1 [14].

τ describes the change in GB free energy due to elastic deformation of GB area. We
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identify it with the excess GB stress tensor. τ naturally appears in the adsorption equation

as an excess of stresses in the region containing the GB relative to the bulk stresses σ1
ij .

Note that the shear stress σ31 is involved in the expression for τ .

Eq. (9.9) shows that both stresses σ31 and σ33 affect γ. The new term Ab1dσ31 in

the adsorption equation is specific to coherent GBs. While excess GB volume [V ]N was

measured both experimentally and in simulations [101, 102], the excess GB shear has not

been estimated before. In the atomistic simulation part of this work we calculate b1 as a

function of σ31 and analyze the significance of this term in comparison with other terms.

9.2.5 Lagrangian and physical forms of the adsorption equation

Eq. (9.9) expresses a differential of the total GB free energy γA through differentials of

intensive parameters. We will refer to this form of the adsorption equation as Lagrangian.

We now derive physical form of the adsorption equation which operates with excess quanti-

ties per unit of the current physical area. Differentiating the product γA in Eq. (9.9) using

dA = δijAdeij and dividing both sides of the equation by the physical area A of the current

state, we obtain the differential of the specific GB free energy γ

dγ = − [S]N
A

dT − [V ]N
A

dσ33 − b1dσ31 − [N2]N
A

dM21 +
∑

i,j=1,2

(τij − δijγ) deji. (9.10)

In Eq. (9.10) the excess quantities are computed per unit of physical area. The differ-

entials of the intensive parameters in the adsorption equation are independent variables.

Therefore, the differential coefficients correspond to partial derivatives of γ. From Eq. (9.10)

we immediately obtain :

∂γ

∂eij
= τij − δijγ (9.11)
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The partial derivative in Eq. (9.11) is taken at constant T , M21, σ31 and σ33. Thus, Eq.

(9.11) is the version of the Shuttleworth equation generalized for a GB in open binary

system under stress normal to the GB plane.

The two forms of the adsorption equation in Eqs. (9.9) and (9.10) are perfect differentials

and generate two sets of Maxwell relations between the partial derivatives of the excess

properties. These relations will be discussed in Sec. 9.2.7.

9.2.6 Thermodynamic integration

Here we derive another version of the adsorption equation, which can be useful in applica-

tions. GB free energy as a function of intensive properties can be computed by integration

of the adsorption equation. However, in applications excess entropy [S]N is rarely accessi-

ble. Combining Eqs. (9.3) and (9.9), we eliminate [S]N and derive the interface version of

the Gibbs-Helmholtz equation

d

(
γA

T

)
= − [Ψ]N

T 2
dT − [V ]N

T
dσ33 − Ab1

T
dσ31 − [N2]N

T
dM21 +

1
T

∑

i,j=1,2

τijdeji, (9.12)

where the excess of the thermodynamic potential Ψ is given by

[Ψ]N ≡ [U ]N − [V ]Ndσ33 −Ab1σ31 − [N2]NM21. (9.13)

Eq. (9.12) does not contain the entropy term and can be integrated from some reference

point to recover γ as a function of the intensive variables. Eq. (9.12) is yet another form

of the adsorption equation and has the same set of intensive variables. It produces another

set of Maxwell relations, which do not involve excess entropy.
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9.2.7 Maxwell relations

As we mentioned before, the adsorption equation (9.9) (and its various forms (9.10) and

(9.12)) is an exact differential. It generates Maxwell relations between the derivatives of the

excess quantities. We will analyze these Maxwell relations in the Lagrangian and physical

forms simultaneously. Maxwell relations in the Lagrangian form involve derivatives of the

total excesses, while in the physical form the excesses are computed per unit of the current

area. Some of the relations in the physical form involve the derivatives of τij − δijγ and

require knowledge of γ as a function of intensive parameters to evaluate the derivatives.

The advantage of the Lagrangian formulation is that the knowledge of γ is not required.

In subsequent equations of this section the first relation corresponds to the Lagrangian

formulation and second to the physical. We discuss separately the following cross relations

1) mechanical-mechanical 2) mechanical-chemical 3) mechanical-thermal and 4) thermal-

chemical. The partial derivatives involved in the equations below will be computed in

atomistic simulations to test the Maxwell relations.

Mechanical-mechanical relations

Equations of this section examine effects of lateral strains e11, e22 and e12 and stresses σ31

and σ33 on GB stress, GB volume and shear. The partial derivatives in the equations below

are taken at constant T and M21:

∂ (τijA)
∂ekl

=
∂ (τklA)

∂eij
,

∂ (τij − δijγ)
∂ekl

=
∂ (τkl − δijγ)

∂eij
, (9.14)

∂ (τijA)
∂σ33

= −∂[V ]N
∂eij

,
∂ (τij − δijγ)

∂σ33
= −∂ ([V ]N/A)

∂eij
, (9.15)

∂ (τijA)
∂σ31

= −∂ (b1A)
∂eij

,
∂ (τij − δijγ)

∂σ31
= − ∂b1

∂eij
, (9.16)
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∂ (b1A)
∂σ33

=
∂[V ]N
∂σ31

. (9.17)

Eqs. (9.14) - (9.16) correspond to variations of state, in which interfacial area changes. As

a result, the Lagrangian and physical forms of the relations are different. In Eq. (9.17) the

Lagrangian and physical forms are identical, because the partial derivatives are taken at

fixed crossection.

Mechanical-chemical relations

The following equations examine effects of mechanical deformation on GB segregation. All

the relations in this section correspond to isothermal processes. The adsorption equation

allow to examine how GB segregation is affected by lateral strains eij and stresses σ31 and

σ33

∂ (τijA)
∂M21

= −∂[N2]N
∂eij

,
∂ (τij − δijγ)

∂M21
= −∂ ([N2]N/A)

∂eij
. (9.18)

Variations in Eq. (9.18) involve change in GB area, which results in different physical and

Lagrangian forms of the relation. Elastic deformation (the derivative on the right hand

side) happens at constant value of the diffusion potential M21, so the system is open and

the average composition changes.

The following two relations examine effect of the stresses σ31 and σ33 on segregation

∂ (b1A)
∂M21

=
∂[N2]N
∂σ31

, (9.19)

∂[V ]N
∂M21

=
∂[N2]N
∂σ33

. (9.20)

In Eqs. (9.19) and (9.20) variations happen at a fixed crossection (therefore, constant
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A), so the Lagrangian and physical forms are identical. Eq. (9.19) show that if excess shear

of the GB only exists under shear stress, then the effect of σ31 on segregation is at most

quadratic (linear term is zero). On the other hand, segregation should depend linearly on

σ33, since excess volume is generally not zero even for a stress free state and depends on

M21.

Mechanical-thermal relations

Temperature changes affect GB properties. Relevant Maxwell relations involve partial

derivatives of the excess entropy [S]N . Evaluation of such derivatives can be difficult or

impossible in applications. To analyze effects of temperature on GB properties, we employ

interface version of the Gibbs-Helmholtz equation (9.12). The derivatives in these Maxwell

relations involve the potential Ψ instead of S. The first set of relations involves change in

GB stress τ with temperature:

∂ (τijA/T )
∂T

= −∂
(
[Ψ]N/T 2

)

∂eij
,

∂ {(τij − δijγ) /T}
∂T

= −∂ ([Ψ]N/A)
∂eij

. (9.21)

Again, in Eq. (9.21) the GB area change and Lagrangian and physical forms of the ad-

sorption equation are different. The following two relations relate changes in GB volume

and shear at fixed crossection to changes in the potential Ψ with stresses σ33 and σ31,

respectively

∂ ([V ]N/T )
∂T

=
∂

(
[Ψ]N/T 2

)

∂σ33
, (9.22)

∂ (b1A/T )
∂T

=
∂

(
[Ψ]N/T 2

)

∂σ31
. (9.23)

The first derivative in Eq. (9.22) represents the thermal expansion of a GB in the
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direction normal to the GB plane at fixed crossection.

Chemical-thermal relations

Finally, we examen the effect of temperature on GB segregation. We will again use Gibbs-

Helmholtz type equation to avoid calculation of [S]N

∂ ([N2]N/T )
∂T

=
∂

(
[Ψ]N/T 2

)

∂M21
. (9.24)

In Eq. (9.24) variations happen at a fixed lateral dimensions and constant σ31 and σ33.

9.3 Methodology of atomistic simulations

The theory developed in the previous section provides expressions for excess quantities

and gives relations between them. In this section we apply the developed thermodynamic

treatment to study of a symmetrical tilt GB by atomistic simulations. We examine effects

of elastic deformation, temperature and chemical composition on interfacial properties and

test the derived Maxwell relations.

9.3.1 Description of the studied GB

In this work we studied a symmetrical tilt Σ5 (310) GB in Cu and binary CuAg system.

The GB was created by joining two crystals of different orientation along a plane normal

to the z axis. The structure of the boundary is illustrated in Fig. 9.3. The crystals were

rotated relative to each other by angle 36.87 around the (001) tilt axis which was parallel to

the x direction. The (001) planes of both grains are parallel to the plane of the figure. (001)

and (310) crystallographic directions of the bicrystal are parallel to the x and y directions,

respectively. The twofold rotation symmetry axis is parallel to the x direction.

Due to the symmetries of the system with the GB elastic deformation can be applied

parallel to the coordinate axis x, y, and z preserving equilibrium between the two grains.
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Figure 9.3: Structure of the symmetrical tilt Σ5(310) GB. The figure shows projections of
the perfect atomic positions on the (001) plane. The tilt axis is normal to the plane of the
figure.
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Figure 9.4: Simulation block with the GB. The position of the GB is indicated by red
coloration. Atoms colored in grey belong to boundary regions 1 and 2. Boundary conditions
in the GB plane are periodic.

The system also supports shear stress σ31 parallel to the tilt axis. Due to the lack of the

twofold symmetry around the tilt axis, the GB moves by coupled motion [31,32] when shear

σ32 is applied in the y direction. The coupling factor for this boundary is β = −1.0. It is

defined as a ratio of the parallel and normal GB displacements during the GB migration.

While the migration of the GB during the simulations may occur by coupled motion, the

corresponding component of the shear stress σ32. Thus, such a migration is not a continuous

process and does not modify the equilibrium state.
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9.3.2 Simulation block

The simulation block with the GB had dimensions 22 × 23 × 145 and contained 5256

atoms (Fig. 9.4 [85]). The atoms in the GB region are shown in red in Fig 9.4 to indicate

the position of the boundary. Periodic boundary conditions were applied in the x and

y directions. In the z directions the boundary conditions were not periodic. The grains

and the GB were sandwiched between two layers of “boundary” atoms. These layers are

indicated in Fig. 9.4 as boundary regions 1 and 2. The thickness of each region is twice

the cutoff radius of atomic interaction. Different restrictions, imposed on motion of atoms

in the boundary regions during simulation, allow to implement a desired state of stress. In

different types of simulations described below positions of atoms in the region 2 were fixed

(unless otherwise stated), so that the simulation block could not rigidly displace in the z

directions.

9.3.3 Single component copper system and copper-silver binary alloy

The GB properties were studied in both single component and binary systems. We used

pure copper (Cu) and copper-silver (CuAg) alloy as model materials in these two cases.

In this work we studied GB between grains that are Cu rich solid solutions with atomic

concentration of silver less than 1 %.

9.3.4 0K calculations. Single component Cu system.

We start the study of GB properties by investigating the effects of mechanical deformation.

To exclude effects of segregation and temperature the simulations were performed in a single

component copper system at 0 K (Isothermal calculation still requires calculation of excess

entropy [S]N to evaluate γ). To compute the excess GB properties as functions of e11, e22,

σ31 and σ33 and test Maxwell relations (9.14) - (9.17), we performed several simulations in

which the system was elastically deformed. These deformations include tension/compression

parallel to the x, y and z directions, as well as shear parallel to the tilt axis (the x direction).

Below we describe implementations of these deformations in each case.
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Deformation parallel to the GB plane: uniaxial and biaxial

The simulation block with the GB was elastically deformed parallel to the GB plane at

constant zero components of stress σ31, σ32 and σ33. Three different lateral deformations

were applied: two uniaxial and biaxial. In the case of biaxial deformation the bicrystal was

strained along the x and y directions by the same amount. The strains were applied parallel

to (001) and (310) crystallographic directions, which are the principal axes of strain of the

system. As a result, no shear stresses were generated in the deformed state.

In each type of deformation, the simulation block was elastically strained by small

discrete amounts and statically relaxed after each subsequent deformation. During the

relaxation the lateral dimensions of the system were kept fixed, while atoms allowed to

move until the total energy was minimized. Atoms in the boundary region 1 were allowed

to move only in the z direction. Because there were no periodic boundary conditions in

the z direction the component of stress σ33 was identically zero after the relaxation. In the

deformed blocks the lateral strain ranged from −1.6 % (compression) to 1.6 % (tension).

Deformation normal to the GB plain

Tension and compression were applied to the system normal to the GB plane at fixed lateral

dimensions. The deformation was realized by scaling of the z coordinates of all atoms by

small discrete amounts. After each scaling the system was statically relaxed. During the

relaxation atoms in the boundary regions 1 and 2 were fixed. Although there were no

periodic boundary conditions in the z direction, the two fixed boundary regions prohibit

the system relaxation in the z direction resulting in the finite normal stress σ33. Due to the

mirror symmetry relative to the boundary plane the shear components of stress σ31 and σ32

remained zero. In the obtained relaxed structures σ33 ranged form −2.4 GPa (compression)

to 2.7 GPa (tension).
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Shear deformation parallel to the tilt axis

Shear was applied parallel to the tilt axis at fixed lateral dimensions (e11, e12 and e22) and

zero σ33. The elastic deformation was implemented by rigid displacement of the boundary

region 1 in the x direction (parallel to the tilt axis) by a small distance, keeping the positions

of atoms in the region 2 were fixed. After each incremental displacement the system was

statically relaxed. During the relaxation lateral dimensions of the system were kept fixed,

while atoms in the region 1 were allowed to move only in the z direction. As a result, after

the relaxation the normal component of stress σ33 was zero, but σ31 had a finite value.

Increasing the amount of the total rigid displacement of the atoms in the region 1 and

relaxing the system after each incremental displacement, we obtained several states of the

system with σ31 ranging from 0 GPa to 1.49 GPa.

Maxwell relations

To test Maxwell relations discussed in Sec. 9.2.7 at 0 K temperature, we computed the

derivatives of the excess quantities with respect to the intensive parameters: e11, e22, σ31 and

σ33. Discrete data points obtained from atomistic simulations were fitted with polynomial

of the second order and the derivative was then evaluated for the stress free state of the

bulk grains.

9.3.5 Single component Cu system at finite temperatures

To study GB properties at finite temperature we employed Molecular Dynamics (MD)

simulations in NVT ensemble. The simulations were performed in the temperature range

from 0K to 900K with 100K interval. At each simulated temperature the simulation block

was preexpanded by the thermal expansion factor computed previously in Ref. [39] Due to

the expansion procedure the bulk stresses were nearly zero. The components of stress σ11

and σ22 remained non zero in the GB region due to the excess GB stress. During the MD

simulations no restrictions were applied on the motion of atoms in the boundary regions 1

and 2. This type of boundary conditions is equivalent to open surfaces in the z direction
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and guarantees that the stresses σ31 and σ33 are identically zero. At each temperature

the system was first equilibrated during 2 ns. The equilibration stage was followed by a

production stage during which snapshots of the system were generated. The snapshots

contain positions of atoms as well as the energies and stresses on atoms. This data was

used later for post processing.

9.3.6 Binary CuAg System

To model binary CuAg system at finite temperatures we used Monte Carlo (MC) simulations

in semi-grand canonical ensemble [36, 48, 51]. We performed MC simulations of the binary

system at constant temperature T = 800K and sampled the composition range from 0 to

0.58% of Ag in the bulk part of the grains. Simulation blocks with different composition

at the same temperature were obtained by changing the value of the diffusion potential

M21. In each simulation with a given value of M21, the system was preexpanded according

to expansion of the bulk solid at given temperature and composition (value of M21). The

expansion coefficient was computed separately by performing simulation of the single crystal

with all periodic boundary conditions in semi-grand canonical NPT ensemble with a given

value of M21 and zero pressure. The expansion procedure was implemented to minimize

bulk stresses. During the simulation of the system with the GB the x and y dimensions were

fixed. The boundary conditions in the z direction were identical to the boundary conditions

in the MD simulations of pure copper, which ensured zero σ31 and σ33 stresses. In each

simulation the system was first equilibrated during 5×104 MC steps. The equilibration stage

was followed by a production stage, during which snapshots of the system were generated.

The snapshots contained information about energies, stresses and atomic sorts of individual

atoms. This data was used later for post processing.
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9.3.7 Test of Maxwell relations in case of binary system at finite temper-

ature

To test Maxwell relations in the binary system that involve change in segregation we per-

formed four types of simulations: 1) biaxial tension/compression e = e11 = e22 parallel to

the GB plane at constant T , M21, σ31 and σ33 2) tension/compression normal to the GB

plane at constant T , M21 and e, 3) variation of M21 at constant T , σ31, σ33 and e and

4) variation of T at constant M21, σ31, σ33 and e. The elastic deformations were imple-

mented using methodology similar to 0 K calculations described earlier. In each out of

the four variations, several separate MC simulations were performed at different values of

the relevant intensive parameter (e, σ33, M21 and T ). The discrete data points obtained

from these individual simulations were fitted with polynomial of second order to evaluate

the derivatives. The reference state of the system at which the derivatives were evaluated

was chosen at T = 800K and M21 = 0.4 eV with stress free bulk grains. This value of the

diffusion potential corresponds to cAg = 0.036% in the bulk. The selected state is shown

in Fig. 9.15a. In each MC simulation, the system was first equilibrated during 5× 104 MC

steps. After the equilibration stage, the data was collected to compute relevant properties

of the system.

9.4 Results

In this section we report calculated GB properties as functions of the intensive parameters.

In each of the calculations performed the general expressions for GB free energy (9.3)

and the adsorption equation (9.9) take particular forms. Below we report the results of

the calculations and provide particular expressions for GB free energy and the adsorption

equation in each case. The results obtained at 0 K are followed by data calculated at finite

temperatures.
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9.4.1 0K calculations

As we noted before, at 0 K there is no need to compute the excess GB entropy [S]N . As a

result, thermodynamic equations take simple form and all the excess properties including

γ can be computed directly. This, in turn, allows to test the thermodynamic integration

scheme by comparing values of γ calculated directly and obtained by integration of the

adsorption equation.

Deformation parallel to the GB plane

GB free energy as a function of strain was computed for two uniaxial (independent variation

of e11 and e22) and biaxial deformations. At constant zero σ31 and σ33 stresses, Eq. (9.3)

becomes

γ = [U ]N/A. (9.25)

The integrated form of Eq. (9.9) for the three types of deformation is given by

γA =
γ0A0

A
+

1
A

∫
τ11A

′de11, (9.26)

γA =
γ0A0

A
+

1
A

∫
τ22A

′de22, (9.27)

γA =
γ0A0

A
+

1
A

∫
(τ11 + τ22) A′de. (9.28)

γ0 and A0 are the GB free energy and area of the reference state. The reference state was

chosen as the stress free state of the bulk with γ0 = 0.905 J/m2. The components of the

GB stress at this state are τ11 = 1.305 J/m2GB τ22 = 1.774 J/m2. The components of GB

stress are decreasing functions of corresponding components of strain, which means that

GB region is softer than the bulk. The plots of individual components of the GB stress in
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Figure 9.5: Single component Cu system, 0 K. γ as a function of lateral strain at constant
zero σ31 and σ33 a) the simulation block was elastic ally deformed by the same amount
along x and y directions (biaxially e = e11 = e22) b) uniaxial strain e11 was applied along
the x direction c) uniaxial strain e22 was applied along the y direction

the uniaxial and biaxial deformations can be found in supplemental material.
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GB free energy was computed directly using Eq. (9.25) and by thermodynamic integra-

tion using Eqs. (9.26), (9.27) and (9.28). Figures. 9.5 (a), (b) and (c) show γ as a function

of strain computed for these three cases. The discrete points on the plots correspond to

the direct calculations, while the continuous line corresponds to values of γ computed by

thermodynamic integration. Because the GB is under tension and both components of τ

are large then γ, GB free energy increases with tension and decreases with compression. γ

changes differently in the two uniaxial deformations due to anisotropy of τ . It is apparent

from the plots that ∂2γ/∂e2 is negative.

Deformation normal to the GB plane

When the component of stress σ33 is not zero, γ is not just excess of energy. In addi-

tion to [U ]N there is a term that represents the mechanical work of the normal stress.

Eqs. (9.3) and (9.9) in this case become

γ = [U ]N /A− σ33[V ]N/A, (9.29)

and

γ = γ0 − 1
A

∫
[V ]N dσ33, (9.30)

respectively. Excess GB volume per unit area as a function of σ33 is illustrated in Fig. 9.6.

It increases with tension and decreases with compression. The dependence of [V ]N/A on

σ33 is not linear in the stress range studied here with significant difference between tension

and compression. The stress free state value of [V ]N/A was 0.316 . It increased by 3.5 %

with maximum normal tension applied and decreased by 1% with maximum compression.

Fig. 9.7 shows GB free energy computed as a function of the normal component of stress

σ33 computed directly from Eq. (9.29) (discrete points) and by thermodynamic integration

(9.30) (solid line). γ nearly linearly decreases with tension and increases with compression.
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Figure 9.6: Single component Cu system, 0 K. Excess GB volume per unit area [V ]N/A as
a function of σ33 computed at fixed lateral dimensions.
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Figure 9.7: Single component Cu system, 0 K. γ as a function of normal stress σ33 at fixed
lateral dimensions. The discrete point on the plot correspond to direct calculation of γ
using Eq. (9.29), while the continuous line was obtained from thermodynamic integration
using Eq. (9.30).

This behavior was expected, since the excess GB volume is positive and does not change

significantly with σ33.

224



Shear deformation parallel to the tilt axis

Under a finite shear stress σ31 atoms displace in the direction parallel to the tilt axis.

Fig. 9.8a demonstrates the displacements of atoms relative to the stress free state in the x

direction as a function of z coordinate, when the system is subject to shear stress σ31 = 1.5

GPa. The displacement vectors were computed for each atom and then averaged over

the atoms in the same atomic plane parallel to the GB plane (the same coordinate z). The

displacement of atoms in the direction x is proportional to the z coordinate. The slope of the

displacement is the same inside bulk parts of grains 1 and 2. The figure demonstrates that

there is an excess of shear (displacement) at the GB. This excess shear contributes to the

total elastic deformation of the bicrystal [103]. If the atomic displacements are computed

not relative to the stress free state, but relative to displacement of the bulk atoms, one

recovers the deformation profile schematically shown in Fig. 9.2.

The expression for γ includes work of the shear stress and Eqs. (9.3) becomes

γ = [U ]N /A− σ31b1. (9.31)

The integrated form of the adsorption equation (9.9) in this case is given by

γ = γ0 −
∫

b1dσ31. (9.32)

Excess GB shear b1 was computed by subtracting the total shear displacement in the

x direction of the region with GB and the total displacement of the bulk region containing

the same number of atoms N . b1 is plotted in Fig. 9.8b as a function of shear stress σ31. It

linearly increases with the shear stress. Fig. 9.9 shows GB free energy γ computed directly

using Eq. (9.31) (discrete points) and by thermodynamic integration (solid line) (9.32). γ

decreases with increasing shear stress. The excess shear is zero in the stress free state of

the bulk. As a result, the effect of σ31 on γ is is higher than the first order. The maximum

GB free energy decrease of 0.88% was achieved at σ31 = 1.5 GPa.
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Figure 9.9: Single component Cu system, 0 K. γ shear as a function of shear stress σ31

parallel to the tilt axes. The discrete points on the plot correspond to direct calculations
from Eq. (9.31), while the continuous line was obtained from thermodynamic integration
using Eq. (9.32).

Maxwell relations at 0 K

We conclude the results of 0 K calculations reporting the values of the derivatives involved

in Maxwell relations. The adsorption equation for this GB generates six Maxwell relations.
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Figure 9.10: Single component Cu system at 0 K. Test of Maxwell relation (9.14) in the
physical form.

The physical and Lagrangian formulations of the adsorption equation gives the total of

twelve Maxwell relations. We demonstrate the tests of two relations in details, by looking

at the dependence of excess properties on the relevant intensive variables.

First, we examine the relation given in Eq. (9.14) in the physical form. Each derivative

corresponds to a separate uniaxial deformation described in Sec. 9.3.4. To evaluate the

derivatives, we need to calculate both τ and γ as functions of e11 and e22 for these two

separate uniaxial deformations. τ and γ were computed using Eqs. (9.8) and (9.25),

respectively for each deformed state. The terms τ11−γ and τ22−γ are plotted as functions

of strains e22 and e11 in Fig. 9.10a and b, respectively. The discrete points on the plot

correspond to separate simulations with different strains. The continuous line shows the

slope at zero stress in the bulk. The computed slopes were 0.0159 and 0.0159. The values

are identical within the accuracy of our calculation as predicted by Eq. (9.14).

In the second example, we examine the relation in Eq. (9.15), this time in the Lagrangian

form. To evaluate the first derivative, we computed τ11 as a function of σ33 for the elastic

deformation described in Sec. 9.3.4. To evaluate the second derivative, excess GB volume

was computed as a function of e11 (Sec. 9.3.4). The two excess quantities at different values

of the relevant intensive parameters are shown in Fig. 9.11a and b. The plotted value of

the excess GB volume was divided by the GB area of the unstrained state. The derivatives

were evaluated at a state of zero stress in the bulk and were found to be −0.113 × 10−10
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Figure 9.11: Single component Cu system at 0 K. Test of Maxwell relation (9.15) in the
Lagrangian form.

Table 9.1: Derivatives involved in the Lagrangian form of Maxwell relations Eqs. (9.14)
- (9.17) computed at 0 K. The expressions in the first row represent the denominator of
the partial derivative, while the first column contains the numerators The derivatives were
evaluated at a stress free state of the bulk. The table is symmetrical (within accuracy of
our calculations) in accord with predictions of the Maxwell relations.

∂τL
11 ∂τL

22 ∂b1 ∂[V ]N
∂e11 - 0.0376 0.0 0.114e-10
∂e22 0.0376 - 0.0 0.3749e-10
∂σ31 0.0 0.0 - 0.0
∂σ33 -0.113e-10 -0.3771e-10 0.0 -

and 0.114× 10−10. The computed values are in excellent agreement with Eq. (9.15).

The calculations of the partial derivatives in all other Maxwell relations are summarized

in Table 9.1 (Lagrangian) and Table 9.2 (physical). Notice, that it was possible to compute

the derivatives in physical form which involve GB area change, only because γ as function

of e11, e22, σ31 and σ33 was known. Plots illustrating the dependence of the GB properties

on the intensive variables are included as supplemental material.

9.4.2 Single component Cu system at finite temperature

In a single component system at finite temperature the expression for GB free energy (2.47)

contains the entropy contribution and is given by
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Table 9.2: Derivatives involved in the physical form of Maxwell relations Eqs. (9.14) -
(9.17) computed at 0 K. The expressions in the first row represent the denominator of the
partial derivative, while the first column contains the numerators. The derivatives were
evaluated at a stress free state of the bulk. The table is symmetrical (within accuracy of
our calculations) in accord with predictions of the Maxwell relations.

∂ (τ11 − γ) ∂ (τ22 − γ) ∂ (b1) ∂ ([V ]N/A)
∂e11 - 0.0159 0.0 0.203e-10
∂e22 0.0159 - 0.0 -0.06086e-10
∂σ31 0.0 0.0 - 0.0
∂σ33 0.203e-10 -0.06086e-10 0.0 -

γA = [U ]N − T [S]N , (9.33)

where the stresses σ31 and σ33 where assumed to be zero. The excess entropy [S]N in Eq.

(9.33) cannot be computed directly in MD simulations. As a result, γ as a function of

temperature was computed by thermodynamic integration using the interface version of the

Gibbs-Helmholtz equation. Along the integration path the stresses σ31 and σ33 were zero

and constant, while the lateral strain varied biaxially due to the thermal expansion. In this

case Eq. (9.12) in the integrated form becomes

γA =
(γ0A0) T

T0
− T

T∫

T0

(
[U ]N
T ′2

−
(
τN
11 + τN

22

)
A′

T ′

(
de

dT ′

)

coex

)
dT. (9.34)

Here e = e11 = e22 is the biaxial strain and the derivative de/dT represents the thermal

expansion. Quantities γ0, A0 and T0 are the GB free energy, area and temperature of a

reference state. Excess quantities involved in Eq. (9.34) were computed at each simulated

temperature. The excess energy [U ]N/A and the two components τ11 and τ22 of the excess

GB stress are shown in Figs. 9.12 and 9.13 respectively. The discrete points on the plots

were computed in isothermal MD simulations. The points are connected by a solid line to

guide an eye. [U ]N/A increases with temperature. Excess GB stress τ is anisotropic with
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Figure 9.12: Single component Cu system. Excess GB energy per unit area [U ]N/A as a
function of temperature. The discrete points were obtained from MD simulations. The
continuous line was plotted to guide an eye.

both components decreasing with temperature.

The solid line in Fig. 9.14 shows GB free energy γ computed using Eq. (9.34) as a

function of temperature. From the reference temperature T0 = 300 K, γ was calculated by

thermodynamic integration in the ranges of increasing and decreasing temperatures. Two

solid circles on the plot indicate values of γ computed at 0 K and at 300 K. The reference

value γ0 was computed from harmonic calculations [48], while the 0 K value was computed

directly using Eq. (9.25). In the decreasing temperature range the value calculated by

integration approaches the 0 K value of γ. In the temperature range studied, γ decreases

from 0.905J/m2 at 0 K to 0.66J/m2 at 900 K. This trend is consistent with previous studies

[29,94].

9.4.3 Binary CuAg system at finite temperature

Fig. 9.15a, b and c shows snapshots of the simulation block with 0.036%, 0.24% and 0.58%

of Ag in the bulk at 800 K. Cu atoms are shown in yellow and silver atoms are shown in
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Figure 9.13: Single component Cu system. Components τ11 and τ22 of excess GB stress as
functions of temperature. The discrete points were obtained from MD simulations. The
continuous line was plotted to guide an eye.

dark blue. As it is apparent from the pictures, silver atoms strongly segregate to the GB.

At highest Ag concentrations studied in this work the boundary becomes visibly disordered.

To quantify the effect of chemical composition on the GB thickness, we computed excess

GB volume per unit area (thickness). Fig. 9.16 demonstrates [V ]N/A as a function of bulk

composition. The discrete points on the plot correspond to individual MC simulations at

a given value of the diffusion potential M21. The excess GB volume increases with cAg in

the entire range of sampled compositions, the slope becomes increasingly large when the

boundary begins to disorder. At highest silver concentration the GB thickness becomes

almost four times greater than that of pure Cu.

The expression for GB free energy (9.3) for this isotherm is given by

γA = [U ]N − T [S]N − [N2]NM21. (9.35)
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Figure 9.14: Single component Cu system. GB free energy γ as a function of temperature
computed by thermodynamic integration (9.34). The reference value of γ at T = 300 K
indicated by a solid circle was computed from harmonic approximation. The value of γ at
T = 0 K is indicated by a solid circle.

It again requires knowledge of [S]N which cannot be computed directly in the MC simula-

tions, and contains the segregation term. Isotherm of γ as a function of cAg was computed

by integration of the adsorption equation from the state with cAg = 0 (pure copper). The

reference value of GB free energy was taken from the previous MD calculations. On the

integration path the components of stress σ31 and σ33 were zero and constant, while the

value of the diffusion potential M21 varied with composition. The lateral dimensions of the

system also varied with M21 due to the compositional change. For this isotherm, Eq. (9.9)

in the integrated form becomes

γA = γ0A0 −
cAg∫

0

{
[N2]N

(
dM21

dc′Ag

)
+ (τ11 + τ22) A′

(
de

dc′Ag

)}
dc′Ag. (9.36)

The derivative de/dc′ reflects the change of the stress free lattice constant with composition.
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(a) (b) (c)

Figure 9.15: Binary CuAg system. Snapshots of the simulation block with the bulk con-
centration of silver cAg (a) 0.036%, (b) 0.24%, and (c) 0.58% at T = 800 K.

Excess GB properties in involved in Eq. (9.36) were computed as functions of composi-

tion. GB segregation is demonstrated in Fig. 9.18, it increases with cAg. In the composition

range when boundary preserves its ordered structure the shape of the segregation curve

is consistent with Langmuir–McLean model. At high Ag concentration the slope of segre-

gation increases. Fig. 9.17 shows components of τ as functions of cAg. Both τ11 and τ22

decrease with concentration and τ becomes almost isotropic at higher concentrations of

silver.

Finally, Fig. 9.19 shows GB free energy γ computed by thermodynamic integration

(9.36) as a function of bulk composition. γ decreases with alloying. All the mentioned GB

properties are affected by increasing GB disorder at high cAg. As more segregation sites

appear in the GB region, segregation of Ag becomes higher, leading, in turn, to a large
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Figure 9.16: Binary CuAg system. Excess GB volume per area [V ]N/A as a function of
silver concentration cAg in the bulk at T = 800 K.
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Figure 9.17: Binary CuAg system. Components τ11 and τ22 of GB stress as a function of
silver concentration cAg in the bulk at T = 800 K.

decrease in γ. GB free energy decreases from γ = 0.7 J/m2 of pure Cu, to γ = 0.54 J/m2

at cAg = 0.58%.
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Figure 9.18: Binary CuAg system. GB segregation [N2]N/A as a function of silver concen-
tration cAg in the bulk at T = 800 K.
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Figure 9.19: Binary CuAg system. GB free energy γ as a function of silver concentration
cAg in the bulk at T = 800 K.
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Figure 9.20: Test of the Lagrangian form of Maxwell relation in Eq. (9.18) in binary CuAg
system. The discrete points on the figures correspond to MC simulations data, while the
dashed lines are linear fits. (a) GB segregation [N2]N as a function of biaxial strain parallel
to the boundary. (b) Sum of the principal components τ11 and τ22 of the GB stress as
a function of the diffusion potential M21 ≡ MAg. The derivative was evaluated for a
stress free state in the bulk at T = 800 K and cAg = 0.036%. On the plots this state is

indicated by vertical dashed lines. The computed derivatives
∂ [N2]N /Aref

∂e
= 0.46 ± 0.01

−2 and
∂ (τ11 + τ22) /Aref

∂MAg
= −0.46±0.08 −2 confirms the correctness of the relation within

accuracy of our calculations.

9.4.4 Effects of mechanical deformation and temperature on segregation

Using MC simulations we examined how elastic deformation (parallel and normal to the

GB plane) and temperature affect GB segregation. To test the theory we used only the

Lagrangian form of Maxwell relations, so the calculation of γ as a function of the intensive

variables was unnecessary.

First, we examine the effect of the elastic deformation parallel to the GB plane on GB

segregation. In the MC simulations the boundary was deformed biaxially, which means that

the strains e11 and e22 were not varied independently. In this case Eq. (9.18) becomes

∂ ((τ11 + τ22) A)
∂M21

= −∂[N2]N
∂e

. (9.37)
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Fig. 9.20a illustrates the total GB segregation per unit area of the unstrained state as a

function of strain computed at constant M21 and constant zero σ31 and σ33. The total

amount of segregation increases linearly within this range of strain. Fig. 9.20,b illustrates

τ11 + τ22 as a function of the diffusion potential. The sum of the components of GB stress

decreases with M21 (with increasing cAg). The slopes of the functions at the reference state

with area Aref are indicated by the triangles. The computed slopes of the segregation and

stress curves were
∂ [N2]N /Aref

∂e
= 0.46 ± 0.01 −2 and

∂ (τ11 + τ22) /Aref

∂MAg
= −0.46 ± 0.08

−2, which agrees with the prediction in Eq. (9.37).

Secondly, we examine the effect of σ33 stress on segregation and test the relevant Maxwell

relation (9.20). According to Eq. (9.37) the change in segregation is related to change

in [V ]N with M21. Fig. 9.21a shows the segregation [N2]N/A as a function of normal

component of stress σ33 at fixed lateral dimensions, constant value of M21 and constant

zero σ31. Segregation increases with increasing σ33 (tension).

Excess GB volume [V ]N/A linearly increases with M21 (cAg)(Fig. 9.21a). The slopes of

the segregation and the excess volume were
∂ [N2]N /Aref

∂σ33
= 0.030 ± 0.0006 −2GPa−1 and

∂ [V ]N /Aref

∂MAg
= 0.027±0.004 −2GPa−1, and are indicated on the plots by triangles. Within

the error of our calculation, these slopes agree with the prediction in Eq. (9.20).

Finally, we tested Eq. (9.24) which involves segregation change with temperature.

Fig. 9.22a and b shows ([N2]N/T ) and
(
[Ψ]N/T 2

)
as a functions of T and M21 respec-

tively. The later variation happens at constant zero σ31 and σ33, temperature and fixed

area. According to Eq. (9.13), the potential Ψ becomes [U ]N − [N2]NM21. Within the

accuracy of our calculation the values of slopes
∂ ([N2]N /T ) /Aref

∂T
= − (2.7± 0.1) × 10−8

−2K−2 and
∂

(
[Ψ]N /T 2

)
/Aref

∂MAg
= − (3.0± 0.9)× 10−8 −2K−2 agree with Eq. (9.24).

Effect of shear stress σ31 on segregation is expected to have second or higher order effect
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Figure 9.21: Test of the Maxwell relation in Eq. (9.20) in binary CuAg system. The discrete
points on the figures correspond to MC simulations data, while the dashed lines are linear
fits. (a) GB segregation [N2]N as a function of stress σ33 normal to the plane of the
GB. (b) Excess GB volume per area (GB thickness) as a function of the diffusion potential
M21 ≡ MAg. The derivative was evaluated for a stress free state in the bulk at T = 800K and
cAg = 0.036%. On the plots this state is indicated by vertical dashed lines. The computed

derivatives
∂ [N2]N /Aref

∂σ33
= 0.030 ± 0.0006 −2GPa−1 and

∂ [V ]N /Aref

∂MAg
= 0.027 ± 0.004

−2GPa−1 confirms the correctness of the relation within accuracy of our calculations.

for this GB and was not studied here.
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Figure 9.22: Test of the Lagrangian form of Maxwell relation in Eq. (9.24) in binary CuAg
system. The discrete points on the figures correspond to MC simulations data, while the
dashed lines are linear fits. (a) GB segregation [N2]N divided by temperature as a function
of temperature. (b) Potential [Ψ]N /T 2 = [U −N2M21]N /T 2 as a function of the diffusion
potential M21 ≡ MAg. The derivative was evaluated for a stress free state in the bulk at
T = 800 K and cAg = 0.036%. On the plots this state is indicated by vertical dashed

lines. The computed derivatives
∂ ([N2]N /T ) /Aref

∂T
= − (2.7± 0.1) × 10−8 −2K−2 and

∂
(
[Ψ]N /T 2

)
/Aref

∂MAg
= − (3.0± 0.9) × 10−8 −2K−2 confirms the correctness of the relation

within accuracy of our calculations.

9.5 Discussion and conclusions

In this work we presented a thermodynamic treatment of GBs in a binary system under

stress. The stresses include shear stress parallel to the plain of the boundary. The distinction

was made between GBs and phase boundaries. GB in this work was defined as an interface

in a single phase system. We discussed the cases when such a description is appropriate

and focused on the case of the symmetrical tilt boundaries. These boundaries and twist

boundaries with shear stresses applied in certain directions form a special class of systems

that can be treated as a single phase system. Other boundaries under non-hydrostatic

conditions should be treated as heterophase interfaces.

The developed thermodynamic treatment was applied to atomistic simulation of sym-

metrical tilt Σ5(310) GB. We first tested the theory at 0 K calculations for the GB in
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a single component copper system. We systematically computed excess GB properties as

functions of strains and stresses. γ was computed directly and by thermodynamic inte-

gration of the adsorption equation for all possible independent mechanical deformations.

The values obtained directly and by integration are in excellent agreement, which confirms

correctness of our equations. We tested Maxwell relations in both Lagrangian and physical

forms.

Elastic deformation of up to 1.7% was applied to the solid with GB normal and parallel

to the plane of the boundary. The strains of this magnitude generate stresses on the order

of GPa. Effects of stresses normal and parallel to the GB plane on γ have the same order

of magnitude. Normal stress σ33 had largest effect on value of γ. The effect of shear stress

σ31 is quadratic, however at large stresses it affects γ as much as interface stress τ or σ33.

It is also interesting to notice how differently excess volume and excess shear are affected

by stresses. For the boundary studied in this work, excess shear linearly increased with

σ31, from zero to b1 = 0.11 at σ31 = 1.5 GPa. Excess volume is less sensitive to σ33 and

remains about 0.3 at stresses as high as 3 GPa. [V ]N dependence on σ33 is also not linear.

Extending linear trend of excess shear, we estimate it to be 0.2 at 3 GPa, which approaches

the value of the excess volume. Thus, in this work we showed that the effect of shear stress

on γ is significant and cannot be neglected. We finally notice that there are GB that have

non-zero excess shear even at the stress free state. An example of such boundary is the

symmetrical tilt Σ13(34̄1)[111] in Al which was studied in atomistic simulations [104]. The

(111) planes of this bicrystal are discontinuous across the GB region due to the relative

displacement of 0.2 parallel to the tilt axis. This displacement represents the excess shear

at zero stress σ31. In this case we expect shear stresses to produce linear effect on GB free

energy.

At finite temperatures in a single component Cu system γ was computed by thermo-

dynamic integration of the interface version of the Gibbs-Helmholtz equation. γ showed

a significant reduction with temperature. We then continued thermodynamic integration

along an isothermal path at 800 K adding Ag to the system. γ reduces further with cAg.
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The total decrease in free energy compare to the 0 K value was 40 %. Considering hetero-

geneous nucleation classical nucleation theory usually assumes that γ is constant. Strong

dependence of γ on temperature and composition may have an important effect on the

barrier of heterogeneous nucleation [105] and contact angle. We also notice, that other

GB properties were affected by temperature and composition even stronger than γ. Excess

volume [V ]N increased 4 times and interface stress changed sign with cAg.

We also checked Maxwell relations for the binary system at finite temperature and exam-

ined mechanical and thermal effects on the GB segregation. These derivatives (Lagrangian

form) computed in simulations are in agreement with predictions of Maxwell relations within

accuracy of our calculations. Both lateral and normal deformations at constant M21 pro-

duce change in the bulk composition and GB segregation. While, the effects of these to

elastic deformations have different effect on GB segregation, they cannot be compared in a

rigorous manner, because the state of stress of the bicrystal is different. We could compare

GB segregation of the two GBs under different state of stress which have the same bulk

concentration cAg. In this case the slope of segregation versus composition would be large

for deformation normal to the GB plane.

9.6 Work of lateral deformation

The elastic work can be evaluated as traction vector times displacement integrated over

the surface of the selected region. We focus on the contribution to lateral work from the

GB region. The region is schematically illustrated in Fig. 9.23. The normal illustrated in

the figure can be computed from the components of the vector b and dimensions L3 of the

revefence bulk system as

n =

(
L3 + b3√

b2
1 + (L3 + b3)2

,− b1√
b2
1 + (L3 + b3)2

)
. (9.38)

Now we compute the traction vector t on this face
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t = σ · n =

=

(
L3 + b3√

b2
1 + (L3 + b3)2

σ11 − b1√
b2
1 + (L3 + b3)2

σ31,

L3 + b3√
b2
1 + (L3 + b3)2

σ31 − b1√
b2
1 + (L3 + b3)2

σ33

)
,

(9.39)

where the dot denotes the tensor product. Therefore, the work δW of the lateral displace-

ment (δx1, 0) of the face with area L2

√
b2
1 + (L3 + b3)2 becomes

δW =
∫

t · δx = (σ11V −Ab1σ31) de11 (9.40)

A is a GB area, L2 is the dimension of the system in the x2 direction, and Ab3 represents

the excess volume of the GB, σ11 should be understood as the average over the volume (σ11

depends on z).
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Chapter 10: Liquid nucleation at superheated grain

boundaries

10.1 Introduction

Solids are difficult to superheat above the melting point Tm due to the relative easiness

of heterogeneous nucleation of the liquid phase on the surface, at grain boundaries (GBs)

and at other defects. Diffuse-interface modeling [106–109] and molecular dynamics (MD)

simulations [100] reveal two different modes of GB melting, depending on the relation

between the GB free energy γGB and the solid-liquid interface free energy γSL at Tm. If

γGB > 2γSL, the GB cannot be superheated and its thickness diverges when temperature

T approaches Tm. If γGB < 2γSL, the GB thickness remains finite at Tm and the boundary

can be superheated. Both modes of GB melting can be reproduced within a sharp interface

model representing the premelted GB by a thin liquid layer with interactions between the

two solid-liquid interfaces described by a disjoining potential (DP). A repulsive DP leads

to continuous GB melting while a DP with a minimum reproduces the superheating. Both

types of DPs were found in MD simulations of different GBs [100].

The previous DP-based models assumed uniform thickness of the stable or metastable

GB, precluding direct comparison with the classical nucleation theory (CNT) [110]. Here

we propose a more general model enabling calculations of the size and shape of the critical

nucleus, as well as the nucleation barrier, as functions of the superheating T−Tm. The same

quantities are computed in the heterogeneous CNT using a purely geometric treatment of

the interfaces. The proposed model adopts the sharp-interface approach with a DP but

makes the critical step of performing a variational calculation of the nucleus shape and

size. This step was inspired by Cahn’s 1957 paper on nucleation on dislocations [111].

Furthermore, a known limitation of CNT is that it predicts a finite nucleation barrier at
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Figure 10.1: Schematics presentation of the GB model with a disjoining potential. (a)
Equilibrium GB; (b) Liquid nucleation on the boundary.

arbitrarily high temperatures [110, 112]. The proposed model removes this limitation by

incorporating a DP which accounts for the atomistic nature of the GB in a rather general

way. This leads to prediction of a critical point of superheating at which the nucleation

barrier vanishes.

10.2 GB premelting

The GB is modeled by a liquid layer of a width W separated from the grains by two solid-

liquid interfaces (Fig. 10.1a)). The interfaces interact by a DP Ψ(W ) with a minimum at
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a thickness W0. For definitiveness, we will adopt the Morse potential

Ψ(W ) = (2γSL − γGB)
[
e−2a(W−W0) − 2e−a(W−W0)

]
, (10.1)

which has a minimum of depth Ψ(W0) = (γGB − 2γSL) < 0. Here γGB and γSL refer to Tm

and are assumed to be constant; a−1 defines the range of the potential. The free energy per

unit area of a uniform GB is

γ(W ) = ∆GV W + 2γSL + Ψ(W ), (10.2)

where ∆GV is the difference between Gibbs free energies per unit volume of the solid and

liquid phases. In this model we neglect the volume effect of melting , so that ∆GV is

proportional to the chemical potential difference between the phases. At temperatures

close to Tm, ∆GV ≈ Hm(Tm − T )/Tm, where Hm is the latent heat of melting per unit

volume. At Tm, ∆GV = 0 and γ(W ) reaches the minimum value γGB at W = W0.

Introducing the dimensionless variables w = W/W0, Γ = γ/γGB, g = −∆GV W0/γGB,

β = (2γSL − γGB) /γGB, α = aW0 and ϕ = Ψ/γGB, Eq. (10.2) becomes

Γ(w) = −gw + (1 + β) + ϕ(w). (10.3)

In these variables, length is measured in units of W0 and free energy per unit area in units of

γGB. The equilibrium GB thickness we is found by minimizing Γ(w) at a fixed temperature.

The condition Γ′(we) = 0 gives the equation

− g + ϕ′(we) = 0. (10.4)

Several general statements can be made about solutions of Eq. (10.4) without specifying

the exact analytical form of ϕ(w). For example, suppose ϕ(w) is a continuous function to-

gether with its first and second derivatives that has a single minimum and a single inflection
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point (zero of ϕ′′(w)) and approaches zero at w → ∞. Under these conditions, the plot

of ϕ′(w) must have the shape shown schematically in Fig. 10.2a. Solutions of Eq. (10.3)

correspond to intersections of this plot with the horizontal line g = const. When the GB

is not superheated (g ≤ 0), there is only one intersection and thus a single solution. This

solution gives the equilibrium width we of a stable GB and corresponds to the minimum of

Γ(w) shown in Fig. 10.2b. When g = 0 (bulk melting point), Γ(w) coincides with the DP

(up to a shift by the constant 1+β) and the minimum occurs at we = 1. In the superheating

region (g > 0), Eq. (10.4) has either two solutions or none (Fig. 10.2a). If the superheating

is relatively small, there are two solutions: one for the minimum of Γ(w) and the other

for the maximum which appears at large w. The maximum represents an unstable state

of the GB. As superheating increases, the GB widths corresponding to the minimum and

maximum shift towards each other until they merge at a critical value g = gc. At g > gc,

Eq. (10.4) has no solutions and Γ is a monotonically decreasing function of w. Thus, the

boundary is absolutely unstable and the entire system transforms to liquid. This analysis

shows that, for any DP satisfying the shape conditions formulated above, the model pre-

dicts a single critical point. The superheated GB exhibits two branches of we(g), stable and

unstable, which merge at the critical point. The Morse potential employed in this study

satisfies the above conditions, as does for example the Lennard-Jones potential and many

other commonly used potential forms.

For the particular case of a DP given by the Morse function, Eq. (10.4) can be solved

analytically. Denoting χ = e−α(w−1), Γ(w) is written as

Γ(w) = −gw + 1 + β + β(χ2 − 2χ) (10.5)

and Eq. (10.4) becomes

− g − 2αβ(χ2
e − χe) = 0 (10.6)

where χe = e−α(we−1). Solving this quadratic equation we obtain
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χe =
1
2

(
1±

√
1− 2g

αβ

)
, (10.7)

and thus the equilibrium GB width

we = 1− β

2gc
ln

1
2

(
1±

√
1− g

gc

)
, (10.8)

where gc is the critical superheating parameter given by

gc =
αβ

2
. (10.9)

The positive sign gives the stable or metastable GB thickness (minimum of Γ), whereas the

negative sign corresponds to unstable equilibrium (maximum of Γ) existing only at g > 0

(superheating). The two solutions merge at g = gc when a critical temperature Tc > Tm is

reached. This temperature sets the upper bound of possible superheating of the GB. Above

Tc, Γ is a monotonically decreasing function of w and the GB is absolutely unstable against

melting. The GB thickness at the critical point is

wc
e = 1 + (β/2gc) ln 2, (10.10)

i.e., W c
e = W0 + a−1 ln 2. Physically a−1 is comparable with W0, thus the critical GB

thickness is not expected to be much greater than W0. Inserting (10.8) in (10.3), one

obtains an analytical expression for the equilibrium GB free energy as a function of g and

thus temperature.

At the bulk melting temperature Tm, the difference in free energies of the liquid and

solid phases ∆GV = 0. In the narrow temperature range around Tm, this difference can be

approximated by the linear function
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∆GV ≈ −∆SV (T − Tm) , (10.11)

where ∆SV is the entropy difference (per unit volume) between the liquid and solid phases

at Tm. This difference can be expressed by

Hm = Tm∆SV , (10.12)

where Hm is the latent heat of melting per unit volume. Thus ∆GV ≈ Hm (Tm − T ) /Tm,

which leads to the superheating parameter

g ≈ W0Hm (T − Tm)
γGBTm

. (10.13)

Using this expression, the equilibrium GB width we can be expressed as a function of

temperature,

we = 1− β

2gc
ln

1
2

(
1 +

√
1− ∆T

∆Tc

)
, (10.14)

where ∆T = T −Tm and ∆Tc = Tc−Tm is the critical superheating. Combining Eqs. (10.9)

and (10.13), the critical temperature equals

Tc = Tm +
aTm (2γSL − γGB)

2Hm
, (10.15)

Inserting we from Eq. (10.8) into Eq. (10.3), we obtain the GB free energy γ(we) as a

function of temperature,

γ(we) =
g

gc

(
gc − β

2
lnχe

)
+ 1 + β (χe − 1)2 , (10.16)
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Figure 10.2: Schematic representation of the functions ϕ′(w) and Γ(w) involved in the
calculation of equilibrium states of a plane grain boundary. (a) Typical shape of ϕ′(w)
for a disjoining potential with a single minimum and a single inflection point. Solutions
of Eq. (10.27) correspond to intersections of the plot with horizontal lines g = const for
different values of the superheating parameter g. The equation has one solution when g ≤ 0
(no superheating), two solutions when 0 < g < gc and no solutions when g > gc. (b) The
GB free energy Γ as a function of boundary width w for selected values of g. When g = 0,
this plot gives the disjoining potential ϕ(w) (shifted by 1 + β) with a minimum at w = 1.
For a superheated boundary, Γ(w) has a minimum at we and a maximum at w−e . The plot
also shows the construction to determine the critical thickness w∗ of 2D nucleus. The three
widths we, w−e and w∗ converge to a common value wc

e at the critical point shown by a filled
circle.

where

χe =
1
2

(
1 +

√
1− g

gc

)
. (10.17)

Suppose instead of the Morse function, the DP is some other function satisfying the

shape conditions stated above. The ansatz for the GB free energy adopted in the model is

γ(W ) = ∆GV W + 2γSL + Ψ(W ), (10.18)

where the minimum value of Ψ(W ) is always Ψ(W0) = (γGB − 2γSL). The range of the DP
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can be estimated as the distance, l, from its minimum to the inflection point. Referring to

Fig. 10.2b, the maximum of the free energy appears due to the addition to Ψ(W ) of the

linear term ∆GV W with a negative coefficient ∆GV . At the critical temperature, the linear

term is large enough to suppress the maximum. The value of ∆GV required for this can be

roughly estimated by equating ∆GV l to the depth of the minimum. This gives the critical

value

∆Gc
V ≈ Ψ(W0)/l = (γGB − 2γSL)/l.

Using the approximation ∆Gc
V ≈ Hm (Tm − Tc) /Tm (see above), we obtain the estimate of

Tc :

Tc ≈ Tm +
Tm (2γSL − γGB)

lHm
. (10.19)

This is obviously a crude estimate since the range of the DP is defined up to a numerical

factor. For the particular case of the Morse potential, the distance between the minimum

and the inflection point equals l = ln 2/a.

10.3 Nucleation

In the previous Section we identified an unstable state of the superheated plane GB which

exists between its metastable state and the bulk liquid (see the curve for gc > g > 0

Fig. 10.2b). However, melting of an infinitely large GB cannot occur by transition through

this unstable state because the associated free energy barrier is infinitely large. Instead, the

transition occurs by the formation and growth of a local nucleus (Fig. 10.1b) which, after

reaching the shape and size with the largest free energy, continues to grow with reduction in

free energy until the entire systems turns into liquid. Since the formation of the nucleus is

a local event, the nucleation barrier is finite. Finding the shape, size and free energy of the

critical nucleus is a variational problem which will be solved in this Section. The 2D and

3D cases will be discussed separately because their mathematical solutions are different.
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Figure 10.3: Shapes of a critical nucleus in the 2D and 3D cases. (a) 2D case: w is a
function of x. The nucleus extends infinitely in the direction y normal to the figure. (b)
3D case: w is a function of the radial distance ρ. The shape of the nucleus in cylindrical
coordinates ρ and z is obtained by rotation of w(ρ) around the z axis. we indicates the
equilibrium thickness of the premelted GB.

10.3.1 2D

Consider two-dimensional nucleation on a superheated GB. This case can arise when a 3D

system is subject to a periodic boundary condition in the y direction with a short period

L (Fig. 10.3a). Under this condition, the width and all other properties of the GB can be

considered independent of the y coordinate, which reduces the problem to two dimensions.

Because all boundary properties are uniform and isotropic, the function w(x) describing

the nucleus shape must be symmetric, w(−x) = w(x) for all x. For the same reason, the

upper and lower boundaries of the nucleus are described by functions w(x)/2 and −w(x)/2,

respectively. Because we neglect the orientation dependence of the solid-liquid interface

free energy, faceting is excluded and we can assume that w(x) is a smooth function. This
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function is obtained from the zero variational derivative of the excess free energy

G = γGBW0L

∫ ∞

0

{
−g(w − we) + (1 + β)

[√
(w′)2 /4 + 1− 1

]
+ ϕ(w)− ϕ(we)

}
dx,

(10.20)

(L being the GB dimension normal to x) with similar boundary conditions. The first term

in the integrand represents the decrease in free energy due to the liquid phase being more

stable than the solid phase (g > 0). The second term is the penalty for the increase in

interface area relative to the plane interface. The last term represents the contribution

from the DP.

For the critical nucleus, the function w(x) maximizes the functional (10.20) subject to

the boundary conditions

w′ = 0 at x = 0, (10.21)

w′ = 0 at w → we. (10.22)

Because the integrand F of Eq. (10.20) does not depend on x explicitly, we can use the

form of the Euler-Lagrange equation known as the Beltrami identity [113]:

F − w′
∂F

∂w′
= C, (10.23)

where C is an integration constant. Evaluating Eq. (10.23) with the integrand from

Eq. (10.20), we obtain

(w′)2 /4√
(w′)2 /4 + 1

(1+β)+g(w−we)−(1+β)(
√

(w′)2 /4 + 1−1)−[ϕ (w)− ϕ(we)] = C. (10.24)

Due to the boundary condition (10.22), C = 0 and Eq. (10.24) gives the following differential
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equation for w(x):

w′ = 2
√

q2 − 1, (10.25)

where q is a function of w given by

q =
− (β + 1)

− (β + 1)− g (w − we) + ϕ (w)− ϕ (we)
. (10.26)

The width of the critical nucleus is defined as w∗ = w(0). Using Eq. (10.24) and the

boundary condition (10.21), we obtain the equation for w∗:

− g (w∗ − we) + ϕ (w∗)− ϕ (we) = 0 (10.27)

Knowing the DP, this equation can be solved numerically for any given superheating g. For

the particular case of the Morse function, there is only one solution different from w∗ = we

as long as 0 < g < gc. In fact, the solution continues to be unique for more general forms

of the DP formulated above. Indeed, Eq. (10.27) can be written in the form

Γ(w∗) = Γ(we), (10.28)

where function Γ(w) is defined by Eq. (10.3). A geometric interpretation of this equation

is shown in Fig. 10.2b, where w∗is obtained from the intersection of the tangent to the plot

of Γ(w) at w = we with the right-hand-side branch of the plot. As long as the DP has the

shape shown in this figure, the intersection is unique. This construction also shows that

we ≤ w−e ≤ w∗, where w−e is the position of the maximum. Thus, the critical width of a

local nucleus is always larger than the critical width of a plane GB. As g approaches gc,

the three widths we, w−e and w∗ converge to a common value wc
e representing the unstable

width of a plane GB.

The barrier of nucleation, G∗, is defined as the amount of free energy required to form
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the critical nucleus on the initial uniform superheated GB. It can be obtained by integration

of Eq. (10.20) with w(x) computed from Eq. (10.25), which gives

G∗ = γSLW0L

∫ ∞

0

(w′)2√
1 + (w′)2 /4

dx = 2γSLW0L

∫ w∗

we

√
q2 − 1
q

dw. (10.29)

Taking we from Eq. (10.4) and w∗ from Eq. (10.27), the nucleation barrier can be

computed numerically as a function of superheating g.

10.3.2 3D

In the 3D case we assume that the shape of the critical nucleus has cylindrical symmetry

(Fig. 10.2b). This shape is defined by the width w as a function of radius ρ measured in

units of W0. Similar to the 2D case, the upper and lower parts of the nucleus are described

by the functions w(ρ)/2 and −w(ρ)/2, respectively. The free energy change due to the

nucleation on a uniform GB of width we is

G = γGBW 2
0

∫ ∞

0

{
−gV (w − we) + (1 + β)(

√
(w′)2 /4 + 1− 1) + ϕ(w)− ϕ(we)

}
2πρdρ.

(10.30)

The boundary conditions are analogous to the 2D case:

w′ = 0 at ρ = 0, (10.31)

w′ = 0 at w → we. (10.32)

The critical nucleus shape is found from the condition δG = 0.

Because the integrand F of the functional (10.30) depends explicitly on ρ, the Beltrami

identity cannot be applied and the calculation requires the use of the full Euler-Lagrange

equation [113]:
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∂F

∂w
− d

dρ

(
∂F

∂w′

)
= 0 (10.33)

Inserting F from Eq. (10.30) into Eq. (10.33), we obtain the non-linear second order differ-

ential equation

− gρ + ϕ′(w)ρ−
(1 + β)

[
w′ + (w′)3 /4 + ρw′′

]

4
(
1 + (w′)2 /4

)3/2
= 0. (10.34)

This equation was solved numerically with the boundary conditions (10.31) and (10.32)

for a given values of g. The critical nucleus width w∗ was obtained as w(0). Knowing the

critical nucleus shape w(ρ), the nucleation barrier G∗ was computed from Eq. (10.30).

It can be shown analytically that this model reduces to CNT when the superheating is

small and thus w∗ À 1. In this limit the model recovers the CNT results

W ∗ = 2
γGB − 2γSL

∆GV
, (10.35)

G∗ =
16πγ3

SL

3∆G2
V

(
1− 3

2
cos

θ

2
+

1
2

cos3
θ

2

)
(10.36)

in the 3D model and

W ∗ =
γGB − 2γSL

∆GV
, (10.37)

G∗ = −Lγ2
SL

∆GV
(θ − sin θ) (10.38)

in 2D. Here, θ is the contact angle satisfying the Young relation 2γSL cos(θ/2) = γGB. For

homogeneous nucleation, the diameter of the spherical droplet W ∗ and the barrier G∗are

obtained from (10.35) and (10.36) with γGB = 0 and θ = π.
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Figure 10.4: Shapes of the critical nuclei computed from the model at T = 1349 K for the
2D (blue) and 3D (red) geometries. The finite thickness away from the nuclei represents
the premelted boundary and equals 0.5 nm at Tm.

10.4 MD simulations of nucleation

We tested our model by atomistic simulations of the (540)[001] symmetrical tilt GB in Cu

with the misoriention angle 77◦ and the reciprocal density of coincidence sites
∑

= 41. The

GB was created in a simulation block with dimensions 20×20×20nm3 (543296 atoms). The

block had periodic boundary conditions parallel to the GB and terminated at open surfaces

in the normal direction. The atoms in thin layers near the surfaces were constrained to

move only in the normal direction, imposing zero normal stress. The atomic interactions

were modeled with an embedded-atom potential [39] giving Tm = 1327 K and Hm = 9.72

eV/nm3. The GB structure consists if an array of closely spaced (1/2) [110] dislocations

aligned parallel to the tilt axis [001] (Fig. 4d in [31]).

The MD simulations were performed in the canonical and microcanonical ensembles for

times up to 50 ns. The temperature was increased by steps starting from 0 K. The block

was pre-expanded according to the thermal expansion factor and annealed to achieve point-

defect equilibrium at each temperature. At temperatures approaching 1410 K, spontaneous

melting was observed by nucleation and growth of a liquid droplet on the GB. Since it was

impossible to superheat the GB above 1410 K, it was concluded that this temperature was

approximately equal to the critical point Tc.
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After a droplet of the liquid phase nucleates and begins to grow on the boundary.

Eventually the entire simulation block turns into homogeneous liquid. It should be noted

that in the canonical ensemble, the critical nucleus is in a state of unstable equilibrium

with the solid phase. Thus, if the size of the droplet is less than critical, it will shrink. If

it exceeds the critical size, the droplet will grow indefinitely. It order to study properties

of the critical nucleus, we had to abandon the canonical ensemble and apply the adiabatic

trapping procedure described below.

As soon as a nucleus began to grow in a canonical simulation, we switched the ensem-

ble to microcanonical. The system becomes adiabatic, which cuts the heat supply from

the thermostat needed for continuing growth of the droplet. If the droplet stops growing

and begins to shrink, the crystallization releases latent heat and the temperature begins to

increase. Note that the critical nucleus size decreases with increasing temperature. Thus,

when the temperature reaches a high enough value, the droplet size becomes supercritical

and it begins to grow. But the growth requires heat supply, which will be drawn from

surrounding regions until the temperature of the system drops and the droplet size become

sub-critical. As a result, the droplet size and temperature fluctuate and eventually settle on

certain values, at which the droplet size is exactly critical at the final value of the temper-

ature. Because the amounts of the liquid and solid phases generally change in this process

while the volume is fixed, the equilibration produces some lateral stresses in the system (the

stress normal to the boundary plane remains zero due to the boundary conditions). These

stresses were eliminated by slightly adjusting the system dimensions and re-equilibrating it.

This obtained droplet represented the critical nucleus at the temperature T stabilized by the

adiabatic trap. To model different sizes of critical nuclei, some amount of heat was added

or removed from a system containing a critical nucleus. This was achieved by switching to

NV T ensemble, making a picosecond long run at a slightly higher or lower temperature,

and then switching back to the NV E ensemble and equilibrating. A similar methodology

was applied to study homogeneous nucleation. The simulation block of the same size but
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with all-periodic boundary conditions was superheated and small nucleus of liquid was in-

troduced at its center. This method stabilizing critical nuclei by adiabatic trapping is novel

and can be applied to other materials and phase nucleation phenomena in the future.

To visualize the nuclei, each atom was assigned to either the solid or the liquid according

to its energy relative to a chosen discrimination level. This method was used to compute

the GB and nucleus thicknesses We and W ∗. Alternatively, the centrosymmetry method

was applied to produce images revealing the nucleus shape and the surrounding vacancies

(Fig. 10.5). To model a heterogeneous 2D nucleation, the block dimension parallel to

the tilt axis was reduced by half, resulting in nucleation of droplets whose thickness was

uniform in that direction. A similar procedure was used to create nearly spherical droplets

representing homogeneous nuclei in the lattice. (The residual stresses were removed by a

short isothermo-isobaric run with a switch back to the microcanonical ensemble.)

10.4.1 Results and Discussion

The MD results are summarized in Fig. 10.6. Homogeneous melting is characterized

by a large nucleus size and can be treated within the CNT. Fitting the CNT equation

W ∗ = −2γSL/∆GV to the MD points gives γSL = 0.201 J/m2, a number which is in good

agreement with the experimental value 0.177 J/m2 [53] and recent direct calculations for

the (110) solid-liquid Cu interface, 0.199 J/m2 [60]. Using this γSL, the proposed model and

CNT were fitted to the MD data for heterogeneous nucleation in 3D and 2D by optimizing

the value of γGB. The numbers obtained (in J/m2) are 0.332 (3D model), 0.341 (2D model),

0.331 (3D CNT) and 0.333 (2D CNT). They are remarkably consistent and are reasonably

below the 0 K value of 0.595 J/m2 in agreement with the established temperature trend

[94]. The contact angle computed within CNT is θ = 67.8◦. Fig. 10.4 illustrates typical

shapes of critical nuclei predicted by the model, which are consistent with typical shapes

observed in the MD simulations (Fig. 10.5). The DP parameters obtained from the fit are

W0 = 0.5 nm and 1/a = 0.36 nm.

Despite the close agreement of the computed γGB values, the CNT and the proposed
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(a)

(b)

(c)

Figure 10.5: Premelted grain boundary (GB) with a three-dimensional critical nucleus at
1357 K stabilized by adiabatic trapping and visualized by centrosymmetry coloring. Atoms
with fcc coordination are not shown for clarity. (a) Top view; the dislocation lines are
vertical. (b) Dislocation lines are normal to the page. (c) Dislocation lines are horizontal.
Although not apparent due to fluctuations, the average shape of the nucleus does not possess
a twofold symmetry around the GB normal due to the lack of such symmetry in the GB
structure and anisotropy of γSL. The dots in the grains mark vacancies. See supplementary
materials for animations.

model show qualitatively different behaviors near Tc. While the model barrier vanishes at

Tc, the CNT barrier continues to decrease with temperature and remains finite and as high

as 3.6 eV at Tc (Fig. 10.7). The probability of overcoming this barrier is small, contradicting

the MD observations. Overall the model demonstrates a reassuring agreement with the MD
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Figure 10.6: The grain boundary (GB) thickness We (4) and the nucleus thickness W ∗

(¤,©) as functions of temperature. The points are results of molecular dynamics (MD)
simulations. The GB thickness increases from 0.5 nm at Tm to 0.75 nm at Tc. In (a) the
lines are fits of the classical nucleation theory (CNT) to the MD data; in (b) the lines are
fits of the proposed model. Note the qualitative difference at high temperatures.

results.

The proposed model is more general than the heterogeneous CNT [110]. While the

latter is not expected to be valid when the nucleus and the barrier are small, our model

continues to give physically reasonable results due to the incorporation of the atomic-scale

information via the DP. The particular Morse form (10.1) of the DP was used as an example.

The results remain qualitatively similar for other smooth functions with a single minimum
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Figure 10.7: Nucleation barriers computed from the proposed model and classical nucleation
theory (CNT). The model predicts a critical temperature of superheating at which the
barrier vanishes and the boundary becomes unstable against melting. Note that CNT gives
a finite barrier at all temperatures and is not capable of predicting a critical temperature.

and a single inflection point. All such functions predict a single critical temperature of

superheating, which is obtained from the condition g = gc:

Tc = Tm + Tm (2γSL − γGB) /2Hml, (10.39)

where l is a characteristic lengthscale of the DP (on the order of a nanometer). In the

future, the model could be applied for the analysis of the triple line effect. It could also

incorporate the effect of applied mechanical stresses.
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Chapter 11: Summary

11.1 Thermodynamics of phase boundaries

We developed a thermodynamic treatment of coherent solid-solid interfaces in a multicom-

ponent system under a general non-hydrostatic state of stress. The theory generalizes Gibb-

sian treatment of interfaces which focused mainly on fluid interfaces and did not consider

elastic deformation of an interface or shear stresses parallel to the interface.

In this work the expression for γ was derived by considering a process in which an

interface was created reversibly between two solid phases. The total interface free energy

γA was then expressed through excess of an appropriate thermodynamic potential which

included the shear stresses σ31 and σ32 and corresponding excesses of interface shear. In our

analysis we did not use the concept of the dividing surface [13], which allowed to track the

shape change of the system with interface in a straightforward manner and avoid defining

individual chemical potentials of the substitutional atoms. When one of the extensive

parameters X or Y is equal to V and shear stresses σ31 and σ32 are zero, the excess

quantities are identical to those introduced by Gibbs.

We also derived the adsorption equation which describes change in γ due to thermal,

chemical and mechanical variations of state. In the adsorption equation the diffusion poten-

tials for substitutional components appear instead of the chemical potentials. The expres-

sion for γA and the adsorption equation introduces a new excess quantity: excess of shear

at a coherent interface. The adsorption equation derived in this work describes processes

which include deformation of the interface area and contains the work term of this elastic

deformation parallel to the interface plane. The later work is done by interface stress τ .

The adsorption equation rigorously defines τ and gives a recipe how to compute it as an

excess quantity. We also showed that τ is not unique for non-hydrostatic systems.
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One of the major challenges in thermodynamics of solid-solid interfaces is a necessity to

define chemical potentials of substitutional atoms. Chemical potentials are defined as work

required to add an atom to the system. Gibbs showed that for a non-hydrostatically stressed

solid chemical potentials are not uniquely defined. Analyzing equilibrium of non-hydrostatic

solids Larche and Cahn [18] avoided definition of chemical potentials of substitutional atoms.

In this work we only considered variations in chemical composition of substitutional atoms at

constant N , so it was unnecessary to define individual chemical potentials of substitutional

atoms.

We introduced thermodynamic potentials φm of a homogeneous solid under stress. When

two phases, separated by a coherent interface, are in equilibrium, these potentials have the

same value in the phases. The φm potentials allow to conveniently write thermodynamic

equations in a form identical to that of hydrostatic systems. Moreover, when a phase is

hydrostatic, φm become real chemical potentials. It is important to notice, that in this

work, the potentials φm were defined for a homogeneous solid containing constant number

of atoms. Based on this definition alone, φm cannot be identified with chemical potentials

of a substitutional atoms. On the other hand, there is no ambiguity in their definition.

Analysis of interface phenomena requires understanding of the bulk phase equilibrium.

In this work we derived a Gibbs-Duhem type equation for solid under general state of stress.

Solving a system of two Gibbs-Duhem equations for two solid phases in coherent equilibrium,

we obtained the equation which describes the equilibrium surface of the two-phase coexis-

tence in configuration space. This equation is analog of the Clausius–Clapeyron relation[34]

generalized for non-hydrostatic multicomponent solid system. It includes includes the effect

of non-hydrostatic stresses, temperature and chemical composition on the phase equilibrium

conditions. If one equilibrium state is known, other nearby states can be predicted using

this equation. The phase equilibrium conditions (i)-(v) are embedded in (2.36). Therefore,

testing the relations predicted by this equation one tests the correctness of the equilibrium

conditions. Employing the approximation of linear elasticity (and perhaps ideal solution
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model), the derived differential equations of phase equilibrium can be integrated along a co-

existence path to predict the equilibrium states of the phases as functions of non-hydrostatic

stresses, temperature and composition. Thus, the phase transformation conditions under

non-hydrostatic conditions can be predicted by theory and tested by extensive atomistic

simulations.

The derived Clausius–Clapeyron type relation can be used to predict the effect of large

non-hydrostatic stress conditions on the phase transformation temperatures during mechan-

ical processing of high-strength alloys, in materials exposed to extreme environments, and

in high-pressure zones of the Earth crust. The equation can be useful not only in metallur-

gical applications in the context of thermo-mechanical treatment of alloys, but also in high

pressure physics, geophysics and planetary sciences.

11.2 Symmary of atomistic simulation

Proposed thermodynamic theory offers new thermodynamic integration methods to com-

pute interface free energy γ and gives recipe how to compute other excess properties. Sig-

nificant efforts in the materials science community are devoted to development of methods,

both computational and experimental, for accurate determination of the interface free en-

ergy [67–69]. The proposed new methodology for interface free energy calculations is based

on integration of the Gibbs-Helmholts type equation. This approach was employed in atom-

istic simulations of a number of systems both in our work [26, 60, 74] and by other groups

[58, 87] and proved to be accurate and more computationally efficient then existing meth-

ods. The important advantage of the method is its generality. It is not specific to any

particular types of interfaces and can be applied to general multicomponent systems with

solid or fluid surfaces, grain boundaries, solid-fluid and solid-solid phase boundaries. This

thermodynamic integration method can be used to study coherent and semi-coherent solid-

solid phase boundaries at finite temperature, which are not well understood. The proposed

thermodynamic integration method will allow to compute γ of such interfaces for the first

time as a function of temperature, chemical composition and mechanical stresses.
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Application of the thermodynamic integration method allowed us to clarify the behav-

ior of key surface properties with temperature [60], resolving some of the long-standing

controversies in surface science. It was argued that due to high mobility of surface atoms,

surface stress and surface energy converge near the melting point to surface tension of liq-

uid. Using atomistic simulations we investigated effect of surface premelting on γ and τ .

We computed the two properties as functions of temperature employing the thermodynamic

integration method and found that despite extensive premelting γ and τ do not converge

at the melting point and both values were different from surface tension of liquid. The

difference was due to solid-liquid interface below the premelted layer. Calculation of γ

using our thermodynamic integration method allowed to estimate interface free energy of

the solid-liquid interface γsl for this particular orientation. From the study of premelting

we estimated negative value of τ sl. Our theory provides an expression for calculation of

interface stress tensor of solid-liquid interface for a general case of non-hydrostatic system.

τ sl was computed for solid-liquid interface with the same crystallographic orientation and

was also found to be negative. The close agreement between the estimated and directly

computed values confirms the correctness of our interpretation of the premelting data.

Interface stress had been computed previously for solid-liquid interfaces in several sys-

tems using expression for hydrostatic systems. However, in atomistic simulations small

non-hydrostatic stresses are unavoidable. These stresses affect accuracy of calculations

and, thus, the full non-hydrostatic approach is desirable. The calculations in various sys-

tems showed that τ can be both positive and negative. It was suggested that the sign of

interface stress correlates with density differences between solid and liquid phases. Using

our expression for interface stress, we computed individual components of τ in a single com-

ponent solid-liquid system for different crystallographic orientations of the interface [93].

Both positive and negative values were obtained for different orientations with the same

thermodynamic states of bulk phases, which means that the sign of τ cannot be predicted

base on the densities of the bulk phases.

We continued to study solid-liquid interfaces by exploring effects of varying composition.
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Previously, γ in a binary system was computed in a single study that used CFM [71]. Using

our thermodynamic integration method, interface free energy was computed in CuAg system

[26]. γ was found to decrease with alloying in agreement with the previous study of a generic

binary alloy [71]. Our calculation also demonstrated strong effect of alloying on magnitude

and anisotropy of interface stress. Some of the interface excess properties were computed

by different methods and demonstrated accurate agreement with each other, confirming the

correctness of our analysis.

In a single component system we analyzed effects of strong non-hydrostatic stresses on

phase equilibrium and interface properties [86]. Using our generalized Clausius–Clapeyron

type relation (for solid-fluid system it was fist derived by Gibbs) and employing approxi-

mation of linear elasticity we derived expressions for equilibrium temperature and pressure

in the fluid as functions of non-hydrostatic stresses. We also considered particular vari-

ations of state: hydrostatic, non-hydrostatic at constant temperature, non-hydrostatic at

constant pressure in the liquid. The change in equilibrium temperature or pressure with

non-hydrostatic stress was found to be quadratic in general case. In special cases when

volume per atom or entropy per atom are the same in both phases, non-hydrostatic effects

were found to be linear.

Atomistic simulations were employed to model thermodynamic equilibrium between

liquid and solid under non-hydrostatic stress. If the stresses are large enough Asaro-Tiller-

Grinfield (ATG) instability may occur [114], in which interface undergoes a morphological

change destroying non-hydrostatic equilibrium state. In atomistic simulations we were able

to avoid this instability by choosing relatively small crossection of the interface. Using

micro-canonical ensemble, we were able to model a stable solid-liquid coexistence state and

measure equilibrium temperature, pressure in the liquid and stresses in the solid. Elastic

compliances of the solid and non-hydrostatic stresses were used as input data in our equa-

tions to predict equilibrium temperature at constant pressure and equilibrium pressure at

constant temperature. The predicted values were in excellent agreement with temperature

and pressure computed directly from atomistic simulations of phase coexistence.
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This study demonstrated that equilibrium states of solid-liquid coexistence can be pre-

dicted if one equilibrium state and properties of individual phases are known. Gibbs ana-

lyzed non-hydrostatic solid-fluid equilibrium in a single component system and did not con-

sider compositional variations in the solid. Our generalized Clausius–Clapeyron type equa-

tion was derived for a multicomponent system. Using linear elasticity in conjunction with

approximation of ideal solution model, we can derive equations to predict non-hydrostatic

solid-fluid equilibrium states in a multicomponent system. This analysis would employ open

system elastic constants introduced by Larche and Cahn. Prediction of coherent solid-solid

equilibrium states can be addressed in the same manner.

Excess interface properties were computed for non-hydrostatic compression and tension

at constant zero pressure in the liquid [74]. Our analysis reveals that when the solid is

non-hydrostatic, the interface stress is not unique as other excess properties. We showed

the existence of several specific types of interface stresses, formulate them as interface

excess quantities, and established relationships between them. Using molecular dynamics

simulations we computed several different interface stresses. The simulations showed that

biaxial tension and compression of the solid produce a strong effect on the magnitude, sign,

and anisotropy of the interface stresses. The free energy of the interface was computed

by thermodynamic integration along biaxial tension and compression paths. The effect of

non-hydrostatic stresses on the interface free energy was much weaker than the effect on

interface stresses.

The theory of coherent interfaces was applied to study a symmetrical tilt grain boundary

in Cu and CuAg binary system. Grain boundary is an interfaces in a single phase system

and represents one of the simplest examples of coherent interfaces. In the study excess

properties of the interface were computed as functions of normal and shear stresses, lateral

strains, temperature and composition. The new excess quantity introduced in this work,

excess shear, was measured for this boundary as a function shear stress. Thermodynamic

relations were tested by computing γ directly from definition and by integration of the

adsorption equation. Excellent agreement was found between values computed by these two
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approaches. The theory was also tested by checking the predictions of Maxwell relations.

The derivatives involved in the relations were computed in a single component as well as

in the binary system. Excellent agreement between predictions of the theory and results of

calculations confirm the correctness of the theory. Temperature and chemical composition

were found to significantly reduce γ. It is necessary to take this reduction into account

to accurately predict barriers of heterogeneous nucleation on grain boundaries and contact

angles between solid and liquid phase.

Understanding the thermodynamic properties of interfaces is crucial to study of hetero-

geneous phase transformations. At high temperatures some grain boundaries and surfaces

turn into liquid like layers while some become more disordered but remain crystalline.

Weather or not an interface will premelt can be determined comparing interface free ener-

gies of GBs and surfaces to free energies of solid-liquid interface and liquid surface. This

premelting behavour will determine the mechanism of melting of a material with surfaces

and interfaces. If premelting is present, the material will melt approaching the melting

point. Otherwise material can be superheated and will melt by nucleation of liquid phase.

Grain boundaries with relatively low energies can be superheated above the melting

temperature. We developed a thermodynamic model of heterogeneous nucleation of a liquid

phase on grain boundaries, which captures the effect of grain boundary premelting and

interface-interface interactions on the nucleation properties through incorporation of the

so called disjoining potential (DP) [105]. The concept of the DP was successfully used in

the past [115] to explain wetting of liquid films on solid substrates and shapes of liquid

droplets. Application of DP to grain boundary premelting is a relatively new and rapidly

developing concept [100, 116]. The nucleation model with a DP allowed to compute the

shape of the critical nucleus and predict important effects of interface-interface interactions

on the nucleation barrier, which is a significant improvement over the classical nucleation

theory.

The proposed model was tested against atomistic simulations of liquid nucleation at a

grain boundary in copper. A novel simulation approach was proposed, which allowed to
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study equilibrium states that are unstable under usual conditions. This approach, which

we call adiabatic trapping, was used to model critical nuclei for homogeneous (in the bulk

solid) and heterogeneous (at grain boundaries) nucleation of the liquid phase. Equilibrium

shapes of the liquid nuclei were obtained for the first time, which enabled direct comparison

of the theory with results of atomistic simulations. The simulation results demonstrated a

reassuring agreement with the proposed thermodynamic model.

The proposed method of adiabatic trapping is novel and can be applied to study nucle-

ation in a wide variety of systems. It can be employed in study of homogeneous nucleation

to investigate thermodynamic properties of coexisting phases and test equilibrium condi-

tions. The method can also be applied to study equilibrium shapes of liquid droplets on

various defects such as dislocations, triple lines, grain boundary dislocations and steps of

vicinal surfaces. Such studies will demonstrate if these defects are indeed preferable sites for

nucleation and may allow to estimate excess free energy of these defects at high temperature.
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