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INTRODUCTION

It has been argued [1l] that an information system serving as a computer
consultant on a specific domain of human knowledge should have not only deductive
capabilities but also inductive capabilities. The latter capabilities would
enable such a system to infer decision rules from examples and specific facts
and to automatically modify the rules in view of new information. To facilitate
the implementation of inductive processes the organization of the data base is
guite important. The organization employed in a relational data base, as described
by Codd [2] and others [3-5], seems to be especially adequate for this purpose.
In such a data base facts and examples representing different decision classes
are stored in the form of relational tables; i.e., tables whose individual rows
are seguences of values of certain multivalued descriptors (variables) and
columns correspond to individual descriptors. A relational table represents a

relation over a Cartesian product of the domains of the descriptors.

To illustrate an inductive inference problem, let us assume that there is
given a large number of such relational tables, and that each table is associ-
ated with a certain decision class. Suppose, that for any given seguence
of descriptor values ('event'}, one has to quickly determine the. decision class
associated with the relational table which either contains this event or is in
some sense 'close' to this event. If the relational tables are large, an effi-
cient way of finding such associations is to use a simple, if possible, and
generalized description of each relational table rather than the table itself.

To create simple and generalized descriptions of relational tables, one could



use inductive inference programs such as AQVAL/]l programs* {7.8] or

others [e.g., 92]. The AQVAL/1l programs can determine an optimal or guasi-
optimal (according to a user selected criteria) description of relational tables
which is expressed in the form of a DVL, formula(s); (i.e., a formula of the
variable-valued logic system le [a]]: A DVL1 formula consists of a sequence of
sonstructs called selectors linked by certain operators. A simple form of a
salector would be a test to determine whether the value of a variable is a
member of a certain set. Operators might be: ‘and', ‘or', 'not', 'min', 'max’',
‘exception', 'separation'. The DVL1 formulas are very easy to interpret,
evaluate, and modify. For this reason the AQVAL/1 programs are potentially use-
ful for a variety of inductive inference problems. However, when the size of
relational tables exceeds certain limits (say, a few hundred rows and fifty or
s columns) then the computational time required by the programs for inferring
table descriptions may become cxcessively long (say, more than ten minutes+ on
IBM 360/75)- The problems with so large learning data sets cCan occur, for

example, in medical decision making, in the diagnosis of plant diseases, in

*There are four basic AQVAL/l programs at the present time:

AQ-T7 --- which infers from the given event sets an optimized description of one
decision class in relation to other classes. The program permits the
user to define different optimization functicnals, define modes of

program operation and some other parameters [51. .
AQ-8 --— which determines an optimized description of each decision class

(Uni- separately, under the constraint that the 'deoree of generalization’
class) of the description will not exceed a certain threshold value. .
AQ-9 --- which optimizes a given set of DVLl formulas according to a certain
optimality functional.

SyM=1 -- which determines symmetry {(with regard to a set of variables) in
variable-valued functions and creates Dle formulas with symmetric
salectors.

In determining a description of a given class(s) of objects, the AQVAL/l programs
are used as modules that can be applied step-by-step to transform the original
data into the desired Dle formalals) .

aba
'AQVAL/1 programs are currently implemented in PL/1.
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learning the value of a position in chess and other games, etec.)

One way to combat this problem efficiently, is to reduce the original
relational tables into smaller tables consisting of the 'most representative'
examples. The purpose of this paper is to discuss different methods for making

such a reduction and to propose a specific reduction algorithm.

2. NOTATION ANMD BASIC CONCEPTS

Let E[dl, dz,..., dn} or, briefly, E, denote a set of all n-tuples
T O - X, , 1= . n, i i
{xl, Xy i xn]. xIE:Di i I, 2, ., n where i are certain sets and d1 is

the cardinality of D, . Thus:

o {1}
E(dl,.... dn} 2 Dl 2D, X ... X Dn

2
E is called the universe of events and its elements are called events. ii and

Di denote a value and the domain of the descriptor Koo respectively. Descriptors?*
are certain direct or derived measurements or characteristics of objects or
situations. Depending on the nature of a descriptor, its domain may hawve a

different structure; e.g., it can be a linearly ordered set, a partially

ordered set, or an unordered set.

In this paper we will distinguish between three categories of descriptors,

depending on the structure of their domains:

I Interval or ordered descriptors, whose domains are any linearly ordered sets.

Thus, this category includes orxdinal, interval, ratio and absoclute variables

as defined in the theory of measurements.
*A descriptor, as described here, is eguivalent to a variable. In a more general

sense, not considered here, a descriptor can also be an n/ary relation or function.
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II Structural descriptors, whose domains are partially ordered sets < S, <> that
are neither linearly ordered nor totally unordered. In this paper we will
restrict ourselves to the case of partially ordered sets having the property
that for any two elements a,b€ 5, there exists at least one element ¢ such
that

a<¢ and b <c

Sets with such structures will be called generalization structures

or g-structures. Figure 1 presents a Hasse diagram of a g-structure.

An example of g-structure
Figure 1
In the diagram, a relation a > b is represented by placing node a
above node b and linking the nodes by an arc.

III Nominal or cartesian descriptors whose domains are sets that have no order.

For example, the height or weight of a person is an interval
descriptor, the position of the person in an hierarchy of an
institution is a structural descriptor and blood type is a
nominal descriptor.

Suppose, without loss of generality, that we are given just two relational

1 2 1 2 p 2 ; R
tables, E* and E (where E , E E;E}, each associated with a certain decision or



action k (k = 1 and 2, respectively). These sets define a set of functions

f: E~»+oD (2)
such that

{effte} =k};n:]‘, kw1, 2 (3)
where

eCE and D = {0, 1, 2} . ‘0" in D means 'no decision’.

A problem of inductive inference would be to determine an expression
V (of a function £), which is optimal, with respect to some criterion, among
all the expressions of all the functions (2). Such an expression will usually
also assign values 1 or 2 to events not included in Ek; i.e., the expression
will be a certain generalization of the sets Ek. Mamely, the initial sets Ek
?ill ba transferred intoc sets Ek{V};Ek, where

Ek(v}={e;‘ﬂ?{e! =k}, k=1, 2

V{el - the value of the expression V for the event e.

As mentioned before, AQVAL/l programs can be used to solve the problem if

the expression V is restricted to the class of DVL, expressions and the size of

1
the sets Ek does not exceed certain limits. If, however, sets Ek are very
large, (e.g., more than 500 rows and more than 50 columns), then the computa-
tional time reguired by the programs may be too long. The problem arises as to
whether sets Ek could not be reduced to more manageable sizes and still provide
sufficient information about decision classes from the viewpoint of inductive

inference. The reduction can be made by reducing the number of columns or

number of rows, or both.



The reduction of the number of columns means a reduction of descriptors,
which is a known problem of "feature selection" in pattern recognition. Most
methods developed for this purpose select those descriptors (from the original
set of descriptors) whose 'information content' is large in a global sense;
i.e., those descriptors that are important with regard to classification of
events into all the decision classes. That means, e.g., that if a descriptor
is perfect for distinguishing between two particular classes and not very use-
ful for distinguishing between any other classes, it will have lew 'information
content' and, conseguently, will not be selected. These'methods also undesirably
separate the problem of 'feature selection' from the development of decisien
rules. It should be the goal of an inductive processor to find out, in the
process of the determination of decision rules, which descriptors are important

and in which sense they are important for describing individual classes.

Taking the above into consideration, we will be interested here only in

the reduction of rows ('events') in a relational table.

If a precise measure of a "deqgree of representativeness" of each event
eE:Ek were available, then an event reducticn process could be performed simply
by selecting events whose-'degree of representativeness' is above a certain
threshold. E.g., the frequency of cccurrence of an object with the description
2 in the class k could serve as an estimate of such a measure. This estimate,
however, in many practical problems is either not available or is not adequate.
Consequently, some other means must be developed for selecting the most

'representative’ events.
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In this paper we will outline three different methods for solving this

problem, and then describe a specific algorithm implementing one of those methods.

3. REDUCTION METHODS OR, NM and CC

3.1. An cutline of methods

The reduction methods to be discussed here require the introduction of a
certain distance function between events (rows in a relational table (RT)).
This is not an easy task in view of the different structures which the domains

of the variables may have. Section 3.2 proposes two distance measures which

can be used in the methods described.

Method OR ('Outstanding Representatives')

In thi; method, the original event set (represented by a relational table)
is reduced to a set consisting of events which are most ‘distant' from each
other. An important feature of this method is that the resulting set will
include events which delineate the 'outside beoarder' of the events in the
original set. For example, if the "true' but unknown decision class is a circle
and its interior, and the original event set consists of a number of randomly
selected points from this class, then the reduced set will be a set of nodes
lying on or close to the perimeter of the circle and spanning a polygon of
approximately egual sides.

The method is, however, very sensitive to events which differ significantly

from the rest of the ewvents in the original set. If such events happened te be



errors, then these errors would have a strong effect on the result. Figure 2

illustrates this method.

Method KM ('Near Miss')

This method selects events ('Near Misses') which lie close to 'critical
lines' separating events belonging to different decision classes. For example,
if there were only two decision classes, each consisting of two circles with
their interiors, then the selected events would be as shown in Figure 3. One
difficulty with this method is that the determination of such 'near misses' can

be guite costly computationally.

Method CC ('Cluster centroids')

In this method, each original event set is partitioned, using some cluster-
ing technique, into a number of clusters. Centroids of the clusters are selected
as representatives of the original relaticnal table. In addition to centroids,
one could also select some events which are of if distance from each centroid
(where & is the standard deviation for the given centroid and i some integer,

€.g., 1 = 2) and are at maximum possible distances from each other.

3.2. A measure of distance between two events

Let e, and e, denote two given ewvents:

1 2
o) T B R N S g N Saa Faasarer )
b fxi, x;,..., x;], xrl;l+l‘x::;1+2""’ xﬁz' x;2+1' x;2+2""* x;]
A S \“n_ﬁ___—u—___;-’f
interval structural cartesian
descriptors descriptors : descriptors
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original ewvents
@ selected events

FIGURE 2

An illustration of OR method

original events

selected events

- class 1

II = class 2

FIGURE 3

An illustration of MM method



FIGURE 4

An illustration of CC method



where xi and x; denote values of descriptors Xy in e and e, respectively. Assume,
without loss of generality, that the first nl descriptors in the events above are
interval descriptors, the following n2 descriptors are structural descriptors, and

those remaining are cartesian descriptors.*

First, we will define a measure of the distance dixi, xi] between the
values of a descriptor depending on the type of the descriptor.

I For interwval descriptors:
5?1
d(xir Ki] = plflfnl (4)

It is assumed here that the domain of each interval descriptor is represented by

the set {0, 1, 2,...., Ri.]

1l For structural descriptors:

NB
MNB (5)

dix!, x%) =
i i
nl < i < n2 {see Figure 5)
where NB is the length (number of branches) of the shortest path linking xi with

x; in the Hasse diagram representing the domain of ®; and MNE is the length of

the longest of all the shortest paths lirking any two nodes of the diagram.

III For cartesian descriptors:

" 1, if x! is not identical to x%
dix!, =) = L i
1 i 0, otherwise

(n2 < i < n)

*Tt is assumed here that if the domain of a structural descriptor is not a g-
" structure, theén the descriptor is treated as a cartesian descriptor.
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FIGURE 5

Illustration of a distance between wvalues of a structural variable.



We will introduce two types of distance measures between events:

I. Quantized measure:

n2 n
d ey ) =2 qldx}, "i’f’Ti’.*‘E wd(x!, x}) (6)
i=1 i=nl+l
where T, = {t.., t£..,---, £, ) is a sequence of thresholds t . associated with
i il 12 ip i
descriptor x., i =1, 2,..., n2, 0<¢t, 6 <1
i ]

q is a guantization function
. " il - s
q: dfxi.u xi} {Dr ll’ zr il P}
defined as
P : il -
0, if d[xlr xi} 2%y

< d(x', x"7) £t
i i’ —

1
1, if t,
%

i 8

q[d{“i' x;)fTi = iz2

p, iIf dfxi, xz} > t.lp

w - an integer representing a 'weight' of cartesian descriptors in relation

to non-cartesian descriptors.

II. Continuous measure:

n

Y w.oax!, x9) (7
I

where w, is a weight associated with the descriptor X, .

d.ley. 8,1 =

The threshold seguence Ti in the guantized measure and the weight Wy in the
continuous measure represent two different means to control the effect of a

single descriptor on the distance between events.
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ks we can see, control by the threshold sequence avoids a multipliCaticn.
operation in computing the distance, as opposed to control by weight, and is
thus computationally simpler than the latter. It does, however, regquire a
knowledge of the value of p and the p numbers (thresholds) for each wvariable,

as opposed to the single number (weight), reguired in control by weight.

3.3. Algorithm ORl

We will now describe a specific algorithm implementing the OR method. The
. . L ' K
algorithm is applied in the same way to every set E , k=1, 2, .... Let us
then assume that E stands for anyone of these sets. Either of the distance

measures introduced in section 3.2 can be used in the algorithm.

1. For each eEE determine the distance d(e, eD}, where

ED = (D, 0, O-u.: O).

2. Find events e_, and e such that
min max

dle . , e ) = min dl(e, aﬂ}
min e €E

dle . 8.1 = max dle, e_) {steps 1 and 2 can be done simultanecusly]
max O eCE 0

3. Determine the distance die ;@ } and divide it
m max

in
into r interwvals*, where r is between 0.01 and 0.1
of the size c¢(E) of the original set E (e.g., if
¢{E) = 3000 then r is between 30 and 300.)

*The interwvals do not have to be egual. The desired situation here is to have

intervals which will lead to the subsets E. {determined in step 4) of
approximately the same size.
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4, Partition E into r subsets, El' Ez""' E , such that E,
" E 1

consists of events whose distance die, ED} lies in the

ith intexrval, i = 1, 2,..., ©:

< <
a1 die, ED] Lay
where a, and a, are the endpoints of the ith interwval
fao = d{emin' eO] and &= d{Emax' EU}}.

5. From each set E v i=1 2,..., r, select a subsget Eiggﬁi

consisting of events (where s is such that res gives the
desired size of the reduced relational table}. The

selection is made in the following way:

1.) Find e and e, in E:i such that

dle., e.) = max die e }*
2 L
1 ea-ebE E, ati T

2.) Find e3 such that

d‘EE' elﬂ- ﬂ{e3, ezi = max {d(e,e) .d{e,ez}]

1
eCEi
s-1.} Find e_ such that
5-1 s-1
dle , es) = m [N dle, e.}
j=1 s” 7 Eééi i=1 ]

4
where » and [l dencotes the arithmetic multiplication.

*A more computationally efficient process, though one which might lead to a

less desirable result, is to replace step 1 by two steps:

la) find e such that

d{elf eD} = e%fﬁ.d{e' eD}

1h) find ez such that

d{el, eQJ = e?fé,d{e' el}-
1

B
The reason for using multiplication in steps 2,..., s-1, is to select events

which are at similar distances from sach other.
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6. The union of the sets Eis;

r
E_ = U E £8)

gives the reduced relational set.

The number of operations required by the aloorithm is of the order:
> s-1
N o= t, 4 ricy +Ezj(t-jj,
]:

where tG' t is the cardinality of E and setsg Eilr respectively. {Ei are assumed
to be all of equal size). An 'operation' may invelve computing the distance
between two ewvents, the comparison of two distances, the comparison of the
distance with a thresheold, etc. In the modified form of the algorithm we have:
s-1
A : §

N = tO + rz:j(t‘j} .

=1
For example, if tCI = 3000, t = 100, r = 30, 5 = 10, then N = 273000

{ HN' = 268000) and the cardinality of the reduced set would hbe c{ES} = 300.
4. CONCLUSION

Three methods have been proposed for selecting the 'most representative'
events (rows) from large relational tables for the purpose of inductive
inference:

OR- which selects events that stand at greatest distances from each other,

NM- which selects events close to the 'critical lines' that separate

events from different decision classes,

cc- which selects events that are the centers of clusters detected within

the original sets, plus events at some fixed distance from the centers.
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Also, an algorithm OR, has been described which is a computaticnally

1
efficient implementation of the OR method. The algorithm is oriented toward
relational tables of a size ranging from a few hundred to a few thousand

events (rows).
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