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In this dissertation, I present advanced mathematical methods underpinning networks,

graphs and matrices. I develop a methodology to manipulate multi-mode high-dimensional

networks and operate a mechanism for storing and performing matrix arithmetics on such

networks and graphs. Additionally, I introduce the concept of having infinite networks and

matrices and expand the literature involving traditional networks and matrices. Further-

more, I build up a model to estimate missing edges and vertices in a graph using covariate

information and similarities among actors. The covariates are the exogenous attributes

of entities, which could be numerical as well as categorical attributes. The model can be

applied to social networks in addition to other networks. I then utilize the mathematical

model to estimate missing vertices in a graph, a process that can be achieved through ma-

trix transformation.

In the next stage, I present a method to predict the emergence of new actors in a net-

work based on stochastic processes and suggest a model of preferential attachment. Finally,

I apply quantitative methods to examine evolving networks.



Ultimately, I examine the structure of real networks and model their behavior. I perform a

comprehensive analysis and simulation on applications in the social networks field, which in-

cludes coauthorship social networks (social networks of coauthors of scholarly publications),

road fatal crashes networks in the United States, and news documents networks.



Chapter 1: Introduction

Social Network Analysis (SNA) or Network Theory is becoming important tools to analyze,

model, and simulate the behavior of groups of people or entities both on the global level

(how two or more groups interact with other group(s)) and on the local level (how indi-

viduals interact with each other within the same network.) In the past two decades, SNA

has been used to analyze relations and ties among individuals of the same network and

similarities between different networks to obtain a better understanding on how societies

interact.

Social Network Simulation (SNS) is the branch of social networks that involves building,

running and simulating artificial social networks. The fundamental component of network

simulation is a set of homogeneous agents (actors) together with their individual properties

and tasks [53]. Theses agents interact according to behaviorial rules set forth by the pro-

grammer, which resemble, in a simplified form, real world rules.

1.1 What is a Social Network?

A social network is an emerging tool frequently used in quantitative social science to un-

derstand how individuals or organizations are related. The basic mathematical structure

for visualizing the social network is a graph. A graph is a pair V,E where V is a set of

nodes or vertices and E is a set of edges or links. Social network analysis (also called

network theory) has emerged as a key technique and a topic of study in modern sociology,

anthropology, social psychology and organizational theory. The shape of the social network
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helps determine a network’s usefulness to its individuals. Smaller, tighter networks can be

less useful to their members than networks with lots of loose connections (weak ties) to

individuals outside the main network. More “open” networks, with many weak ties and so-

cial connections, are more likely to introduce new ideas and opportunities to their members

than closed networks with many redundant ties.

Social network analysis is concerned with understanding the linkages among social enti-

ties and the implications of these linkages. The social entities are referred to as actors that

are represented by the vertices of the graph. Most social network applications consider a

collection of actors that are all of the same type. These are known as one-mode networks.

Social ties link actors to one another. The range and type of social ties can be quite exten-

sive. A tie establishes a linkage between a pair of actors. Linkages are represented by edges

of the graph. Examples of linkages include the evaluation of one person by another (such as

expressed friendship, liking, respect), transfer of material resources (such as business trans-

actions, lending or borrowing things), association or affiliation (such as jointly attending

the same social event or belonging to the same social club), behavioral interaction (talk-

ing together, sending messages), movement between places or statues (migration, social or

physical mobility), physical connection (a road, river, bridge connecting two points), formal

relations such as authority and biological relationships such as kinship or descent. A linkage

or relationship establishes a tie at the most basic level between a pair of actors. The tie

is an inherent property of the pair. Many kinds of network analysis are concerned with

understanding ties among pairs and are based on the dyad as the unit of analysis.

A network consists of a finite set or sets of actors and the relation or relations defined

on them. The presence of relational information is a significant feature of a social network.

A partition of a network is a classification or clustering of the vertices in the network so that

each vertex, sometimes called node, is assigned to exactly one class or cluster. Partitions

may specify some property that depends on attributes of the vertices. Partitions divide
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the vertices of a network into a number of mutually exclusive subsets. That is, a partition

splits a network into parts. Partitions are also sometimes called blocks or block models.

These are essentially a way to cluster actors together in groups that behave in a similar way.

In a network setting, actors or entities have several attributes to identify their role, be-

havior, background, and/or assets; some of which are unique to that actor and some are

common among other actors. These attributes are the nodes’ properties such as gender,

age, political affiliation, ethnicity, race, nationality, religion, spoken languages, scientific

field, income, education level, job class, and geographic location.

1.2 Preliminaries

Networks can be treated as directed graphs in which actors (individuals) are represented

by vertices (nodes) while interactions between actors are represented by edges (ties), which

may have weights. There are three basic representations of a network – the planar graph

visualization, the adjacency matrix, and the sparse-graph representation.

There are several algorithms to study interactions within the network include centrality mea-

sures (vertex degree and closeness), network partitioning (cliques and clique overlapping),

network connectivity (cut-points and bridges), structural equivalence, structural holes, bro-

kerage roles and block-modeling, which will all be defined shortly.

Definition 1.1. A graph G, is a collection of vertices V and edges E; G = {V,E}, where

V =
{
v1, v2, v3, · · · , vi, · · · , v|V |

}
and E =

{
e1, e2, e3, · · · , el, · · · , e|E|

}
.

Definition 1.2. An adjacency matrix A associated with a graph G, is a matrix of size
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Figure 1.1: Example of a simple ego-network. Node Ego has degree = 7, vertices A and C
have both degree = 2, vertices B, D, E, F and G all have degree = 1.

|V | × |V | and whose elements aij are

aij =

 1, if ∃ an edge el connecting vertices vi and vj .

0, if @ an edge el connecting vertices vi and vj .

1 ≤ i, j ≤ |V | and 1 ≤ l ≤ |E|.

1.2.1 Centrality Measures

There are three main centrality measures defined in [61]; namely, degree centrality, closeness

centrality and betweenness centrality. To serve the purposes of this research, I will define

degree and closeness centrality measures only. Degree of a vertex is the number of edges

that connect it to other vertices, see Figure 1.1. Degree can be interpreted as measure of

power or importance of a vertex, or measure of workload. The actor with most ties is the

most important figure in a network. It has been shown that in a simple random graph,

degree centrality has the Poisson distribution. Nodes with high degree are likely to be at

the intuitive center. Deviations from a Poisson distribution suggest non-random processes,

such processes form “scale-free” networks.
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Definition 1.3. Degree of a vertex vi; denoted d(vi), is defined by

d(vi) =
|V |∑
j=1

aij , aij ∈ A, (1.1)

where d represents degree measure, and A is the adjacency matrix.

Closeness centrality measure is based on the inverse of the distance of each actor to every

other actor in the network. Distance in this context is defined to be the number of steps a

vertex vi needs to reach a vertex vj . If an actor is close to all other actors then this actor

is considered important.

Definition 1.4. Closeness; denoted c(vi), is defined by

c(vi) =

 |V |∑
j=1

d(vi, vj)

−1

, (1.2)

where c represents closeness, d(vi, vj) is the shortest distance between vi and vj .

Definition 1.5. The geodesic is the length of the shortest path between any two vertices.

1.2.2 Cohesive Sub-Groups: Cliques

Definition 1.6. A dyad is a pair of vertices and the edge connecting them.

Definition 1.7. A triad is a set of three vertices and the edges connecting them.

A triad is identified by a M-A-N number system of three digits and a letter; for more details

refer to [14].
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One of the interesting features in a network that caught structural analysts’ attention is

secondary sub-structures such as network cohesion. Researchers interested in cohesive sub-

groups gathered and studied sociometric data on affective ties in order to identify “cliquish”

subgroups (face-to-face group). The clique is the foundational idea for studying and ana-

lyzing cohesive subgroups in social networks.

Definition 1.8. A clique in a graph is a maximal complete subgraph of three or more

nodes, mutual dyads (2 nodes) are not considered to be cliques [61].

It consists of a subset of vertices all of which are adjacent to each other, and there are no

other vertices that are also adjacent to all of the members of the clique. A clique is a very

strict definition of cohesive subgroups. Cliques are a subset of the network in which the

actors are more closely and intensely tied to one another than they are to other members

of the network and if one actor disappears for any reason, the other two can still write/talk

to each other. As an illustration, in Figure 1.1, the vertices {Ego, A, C} form a clique.

1.2.3 Structural Equivalence

Definition 1.9. Two actors are structurally equivalent if they have the same type of ties

to the same people.

Identifying structurally equivalent actors can be done through the method of partitioning

actors into subsets so that actors within each subset are closer to being equivalent than

are actors in different subsets. One way to display the results of a series of partitions is to

construct a dendrogram indicating the degree of structural equivalence among the positions

and identifying their members. Each level of the diagram indicates the division resulting

from a split of the previous subset [61]. A dendrogram thus represents a clustering of the
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actors, those actors who are connected by branches low in the diagram are closer to being

perfectly structurally equivalent, whereas subsets of actors who are joined only through

paths high up the diagram are less structurally equivalent (or are not equivalent at all).

In brief, the lowest position in the diagram indicates that every actor is different while the

highest position indicates that all actors are the same; what is in between is more important

in terms of structural equivalence.

1.2.4 Blockmodel

Definition 1.10. A blockmodel is the process of identifying positions in the network. A

block is a section of the adjacency matrix “a group of people” structurally equivalent. It

consists of two things according to Wasserman and Faust [61]:

• A partition of actors in the network into discrete subsets called positions.

• For each pair of positions a statement of the presence or absence of a tie within or

between the positions on each of the relations.

A blockmodel is thus a hypothesis about a multirelational network. It presents general

features of the network, such as the ties between positions, rather than information about

individual actors.

A blockmodel is a simplified representation of multirelational network that captures some of

the general features of a network’s structure. Specifically, positions in a blockmodel contain

actors who are approximately structurally equivalent. Actors in the same position have

identical or similar ties to and from all actors in other positions. Thus, the blockmodel is

stated at the level of the positions, not individual actors.
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1.2.5 Structural Holes

Structural holes provide important information about the structure of a socio-network, they

have low redundancy and cause stress because there are too many vertices connected to the

brokerage. The basic form of structural holes is a triad with one edge missing, in which two

actors communicate with the same person, but do not communicate with each other.

The purpose of equivalence analysis is to identify and visualize “classes” or clusters. In clus-

ter analysis, it is implicitly assumed that the similarity or distance among actors reflects as

single underlying dimension. It is possible, however, that there are multiple “aspects”, “at-

tributes” or “dimensions” underlying the observed similarities of cases. Components analy-

sis could be applied to correlations among actors. Alternatively, MDS (Multi-Dimensional

Scaling) could be used (metric for data that are inherently valued) to cluster the actors.

MDS represents the patterns of similarity or dissimilarity in the tie profiles among the ac-

tors (when applied to adjacency or distances) as a “map” in multi-dimensional space. This

map lets us see how “close” actors are, whether they “cluster” in multi-dimensional space,

and how much variation there is along each dimension. The aim of MDS is to minimize

stress – distance between vertices. “Stress” is a measure of badness of fit; 0 ≤ stress ≤ 1. In

MDS, we look at a range of solutions with more dimensions, so we can assess the extent to

which the distances are uni-dimensional. The “meaning” of the dimensions can sometimes

be assessed by comparing agents that are at the extreme poles of each dimension.

1.3 Motivation

There are several applications to social network analysis in the areas of science and technol-

ogy, this includes co-authorship social networks (social networks of coauthors of scholarly

publications,) alcohol user social networks (or alcohol ecology networks,) covert and espi-

onage networks, terrorist networks, disease social networks, and computer social networks.

8



1.3.1 Co-authorship Social Networks

Figure 1.2: Sample author-coauthor social network [5].

Scholarly publication is considered a vital aspect in academia both for faculty members

and researchers. Authors have many incentives to publish. For one reason it is prestigious.

For another, authors of scholarly publications get financial compensation through research

grants as well as promotions. Different disciplines and individuals have evolved distinguish-

able mechanisms for coping with the publication pressures [56]. Co-author social networks

can reveal information on the style of co-authorship, which can be summarized as solo or

no co-authors models, mentor models, entrepreneurial models, and team models. These

styles are made evident clustering members of the network. I conjecture based on two pa-

pers published recently [55, 56] that certain styles of co-authorship lead to the possibility

of group-think, reduced creativity, and the possibility of less rigorous reviewing processes.

Of all the work that has been done on social networks, very few scientists had considered
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coauthorship networks. The main goal of analyzing coauthorship networks is to be able to

answer the question of “who-wrote-with-whom” and with what frequency. A sample social

network of coauthors [5] is depicted in Figure 1.2.

The mathematical model for estimating missing edges in this scenario can reveal if two

authors have worked together at some point even though they have not published based

on their similarities in the field, geographic location, language, and school. It is worth

mentioning that relationship among coauthors is generally symmetric, with the possible

exception of the case when a distinction of leading coauthor and other coauthors is made.

A symmetric relationship means that if author A published with author B, then this also

implies that author B published with author A. This can be represented by a directed

graph through the relations A
published with←→ B.

1.3.2 Covert and Espionage Social Networks

In covert social networks of both individuals and organizations such as gang networks,

smuggling networks, alliances networks, analysts seek information about missing edges and

actors in addition to key figures in the network. The method I propose in this disserta-

tion can be used to estimate the probability of missing elements in a network taking into

account edge dependency. Individuals and organizations strive to suppress their identities

and interactions and try not to divulge any information of any kind to non-members. It is

their interest to give the impression that there is a missing member or linkage/connection

in the network, so that the network would look incomplete or dysfunctional to the outsider.

In such networks, analysts would want to predict the role of the members in the network

who are intentionally hiding their roles and tasks. These networks can be divided into two

subnetworks (the support network and active cell network). The study of the network’s

structure over time provides information on the formation of the network as well as the

emergence of vertices (actors) and ties (linkages).
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1.3.3 Alcohol Ecology Social Networks

The alcohol ecology social network is yet another important type to study and research

because the outcome of heavy alcohol users has direct impact on the society. Alcohol abuse

leads to acute outcomes that are violence related leading to injuries, assault, domestic vio-

lence, child abuse, sexual assault, murder, DWI, fatal crashes, violent crime, death due to

trauma, juvenile violence, crime associated with drugs and deaths due to suicide as stated

in [53]. Thus, the need for a social network model for ecological alcohol systems is needed.

The alcohol system involves the complex interactions among users, their family and peers,

non-users, producers and distributors of alcohol products, law enforcement, courts, preven-

tion activities, and treatment centers [53]. Figures 1.3 and 1.4 present a bipartite social

network and matrix respectively of alcohol users and institutions. The interactions are

asymmetric. For example, alcohol user may deal with one law enforcement officer, while an

officer may deal with many alcohol users. Finally, Figure 1.5 shows the bipartite network

of the ecological alcohol system.

Figure 1.3: A two-mode graph for social network of alcohol users and institutions [62].

The analysis and modeling of alcohol user social networks may provide a policy tool for
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Figure 1.4: A two-mode “bipartite” adjacency matrix for social network of alcohol users [62].

Figure 1.5: A two-mode social network of alcohol users [62].
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examining the effects of interventions and encourage policy decision makers and law en-

forcement implement new rules for alcohol consumption for a more sophisticated and safer

society. For instance, limiting alcohol usage to a certain individuals and places or even not

allowing drinking at all in certain areas can reduce drastically the negative consequences of

alcohol abuse. Policies should also involve courts, prevention activities and treatment facil-

ities. It is of great importance to investigate the evolution of alcohol user social networks.

Figure 1.6 shows a graph model for interventions. As suggested by [53], acute outcomes may

occur any time in the day but the likelihood changes during the day. The social network

probability changes during the day, week, and month depending on the circumstance.

Figure 1.6: Graph model for interventions [62].

The terminal vertices in the one-mode alcohol user networks represent either acute or be-

nign outcomes. An important concept in the work is to realize that suppression of one acute
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outcome could increase the probability of another. Extra policing of off-license alcohol out-

lets may reduce assaults in the vicinity, but could lead to an increase in DWI and domestic

violence. The goal is the simultaneous suppression of acute outcomes.

1.3.4 Computer Social Networks

There is an exponentially increasing interaction between the computers/Internet and people.

Computer social networks link people to organizations in a bipartite asymmetric relation-

ship. The acute outcomes related to computer intrusion include a clog in the Internet

with junk email, viruses, worms, trojans, and major fraud risks. For example, if a com-

puter attack happens, both private and public sectors are subject to disruption including

E-commerce, critical military command and control functions, telecommunications, supply

chains, and ordinary commerce.

1.3.5 Disease Social Networks

The evolving disease social network network of individuals and diseases may be represented

by dynamic bipartite graphs. It is constantly changing and individuals and diseases continu-

ously move and change locations. The contact network of individuals is a heavily connected

graph. The major issue is the uncontrolled disease propagation, which raises an important

question: How can several cases of disease cases be contained before becoming an epidemic?

In such networks, the knowledge of degree distribution and clustering is important for local

propagation. Yet, global propagation can be deduced from the general structure of the

graph.

1.4 Problem Statement

1.4.1 Relational Networks

Some social network relationships can be treated as a two-mode “bipartite” networks, or
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Table 1.1: The PCANS model.

Person Resource Task
Person N S A

1-mode 2-mode 2-mode
Resource C

2-mode
Task P

1-mode

three-mode “tripartite” networks. As an example, consider the author-paper networks,

there are two types of vertices, one class of vertices represents authors while the other rep-

resents papers. There is one relationship type; “person A authored/coauthored paper P”.

This two-mode relational socio-network can be concluded from the PCANS model [34], [8].

Table 1.1 portrays the PCANS model.

I can perform matrix operations such as the product of matrices to obtain interesting

results given that the two-mode matrix is binary. Let the two-mode “author-by-paper”

binary social matrix AP be given, then

AP ×AP T = AP × PA = AA,

is the one-mode network of authors related through papers. Similarly,

AP T ×AP = PA×AP = PP,

is the one-mode network of papers related through authors.

The author-by-author social matrix AA is one of interest, it reveals relationships among au-

thors, in other words, the author-by-author matrix resembles the “who-wrote-with-whom”

relationship.
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One of the issues I address in this dissertation is how to produce a one-mode relational

network from a weighted two-mode matrix; the traditional matrix matrix-transpose multi-

plication fails to give meaningful values as the product generates perfect squares.

Consider a bipartite “coauthor-by-paper” social network. Let A be the adjacency ma-

trix of size m × n representing the graph of the network, with m = number of coauthors,

and n = number of papers. Then,

Cm×m = Am×n ·AT
n×m = coauthorship proximity matrix, and

Pn×n = AT
n×m ·Am×n = paper-by-paper proximity matrix.

where,

cii =
n∑

j=1

aij = number of papers author i published,

pjj =
m∑

i=1

aij = number of coauthors coauthored paper j, and

cij = tie-strength between coauthors i and j.

Finally, if Dm×m = C2
m×m then

dii = vertex degree of coauthor i.

Example 1. Suppose the coauthor-by-paper adjacency matrix A is given by
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paper1 paper2 paper3

coauthor1 1 0 1

coauthor2 0 1 1

coauthor3 1 1 0

coauthor4 1 0 0

⇒ A =



1 0 1

0 1 1

1 1 0

1 0 0


4×3

There is a one-to-one correspondence between the matrix representation of a social network

and directed graphs. Graphical representations of the above matrices are depicted in Fig-

ures 1.7 and 1.8

(a) Two-mode network (b) Bipartite graph

(c) One-mode network

Figure 1.7: Example of a co-authorship network

If we carefully examine the networks in Figures 1.7(a) and 1.8(a) we observe that these

different 2-mode networks in fact have the same 1-mode graphical network representation,

see Figures 1.7(c) and 1.8(c). This is due to the fact that when converting to 1-mode some

network features are lost; the same effect when someone projects from 3-D to 2-D. This is

an example of how the 1-mode network does not provide sufficient answer of how peer-ties

17



(a) Two-mode network (b) Bipartite graph

(c) One-mode network

Figure 1.8: Example of a co-authorship network

are formed. As a result, the one-mode network should be constructed from the two-mode

and the two-mode network should the primary source to preserve any network features.

This is important when cliques are present and one needs to determine which members

formed which clique. The entrepreneurial and laboratory styles of coauthorship networks

are different styles [55,56], yet the blockmodel of the 1-mode network identifies both as one

style. The blockmodel does not show how cliques were formed. The ultimate solution to this

problem is to consider the weighted adjacency matrix as opposed to the binary adjacency

and then construct the distributions of dyads, triads, tetrads, pentads, hexads, heptads,

and octads. In section 2.3, I adopt a matrix representation that helps keep track of cliques

at each time step.

Throughout this research I have encountered multidimensional networks some of which

are weighted (not dichotomous) networks in which the traditional product of the matrix

and its transpose fails to provide a meaningful outcome. I have invented in Chapter 2 a

mechanism for manipulating multi-mode networks and developed a method to generate the

one-mode network from a weighted two-mode network. The PCANS model presented above
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is only a special case of a multidimensional network.

1.4.2 Covariate Information and Missing Edges

This research study provides a tool to model the interaction and co-relations between ac-

tors in social and other networks using covariate information defined on actors or entities.

In this regard, I adopt a theoretical approach to analyze networks quantitatively and use

advanced mathematical concepts to address certain issues related to networks and then

present results and visualization of sample real networks.

Generally speaking, edges (ties) and vertices (nodes) in real networks may be imperfectly

observed. This could be due to bad sampling, undercoverage, or more importantly, actors

intentionally attempt to hide their roles or linkages to serve different purposes, which makes

the network incompletely observed and difficult to monitor the behavior of its members and

analyze its structure.

In some social networks such as covert and alliances networks, knowing whether there

is a missing edge may be of interest. Actors in such networks strive to hide their identities

giving the illusion there is a broken link. The method of estimating missing edges addresses

this issue; it is based on using nodes’ attributes to measure the level of similarity among

vertices. If two vertices are very similar then it is more likely that they are connected or

there is a strong potential for a link in the future; however, if they are very dissimilar then

most likely these two vertices are not connected.

Thus, the objective is to predict the unobserved vertices and edges in incompletely observed

social network using actors’ attributes. Each entity has a vector of covariate information

based on the external structure of the network; which can be used to derive pairwise similar-

ity measures among actors. Conceptually, this is done through applying the inner product

on the vector of attributes.
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The probability of an edge between vertex vi and vertex vj is then the estimate ̂P(E(vi, vj)) =

S(vi, vj), where S is the similarity measure. The basic idea of similarity, is to have a quan-

titative measure of those attributes that intersect, actors with more shared attributes are

more likely to be similar. Thus, an edge with high probability implies the two actors are

very similar and that the link may in fact exist, and if otherwise not, then this is an indi-

cation of a missing potential edge or there is a high potential to form a link in the future,

which is in both cases a useful information. This helps predicting potential edges in the im-

perfect graph more accurately and offers valuable information to analysts to disambiguate

any unknown relations among actors.

It is possible for the covariates to carry categorical attributes including nominal and or-

dinal. Ordinal values may be treated as discrete interval scale with no problem; however,

nominal data may be quantified by introducing a dummy variable or an indicator variable.

For example the variables “age” and “income” are continuous that take numerical values,

“gender”, “discipline”, “spoken languages”, “ethnicity” are all nominal, and “political af-

filiation”, “degree” are considered ordinal. For these types of variables, I use contingency

tables and the χ2−test to obtain the similarities. The level of similarity between two given

vertices is proportional to all common attributes these vertices have.

1.4.3 Evolutionary Networks

The next topic that needs to be addressed is the continuously changing networks. The

purpose of studying the evolution of networks over time is, based on the current and previ-

ous structures of the network, to predict and simulate the future behavior of the network

as a whole (macro/global level analysis) and evaluate the performance of each individual

(micro/local level analysis.) One great advantage of observing and analyzing time series

networks is the fact that analysts are able to monitor the process of introducing new actors,
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edges, and roles as well as keep track of the changes, bookkeep and watch the status of the

current actors and their roles. My approach helps identifying similar networks and similar

figures in a network as well as recognizing “elite” subgroups within a network.

The mathematical model I propose to analyze evolutionary networks makes use of the

similarity measures obtained on actors using covariate information. The measures are used

to predict the behavior of evolving networks as well as predicting emerging groups within

networks. The model essentially utilizes transition probabilities in a finite state stochastic

process in discrete time. The status of the network at current state depends upon previous

network settings in accordance to a Markov process. The sequence of states is time depen-

dent and recursive. Thus, the transition adjacency matrix at time t + 1 can be expressed

as a function of the previous transition adjacency matrix at time t.

1.4.4 Simulated Social Networks

To conclude, I present a mathematical model of preferential attachment in coauthorship

socio-networks. The process of one actor (new or existing) attaching to another actor and

strengthening ties over time is a stochastic random process. The distributions of tie-strength

and clique-size are derived from empirical data and utilized to determine the low level

processes. The mathematical algorithm is then implemented using Agent Based Simulation

model to simulate a coauthorship network. An agent is a computer representation of a

human or other entity together with rules of behavior [53]. An agent follows these rules

in interaction with other agents. These rules are usually probabilistic in nature. If many

agents are introduced into the system, the general behavior of the system may be simulated.
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1.5 Literature Review

1.5.1 Predicting Unobserved Edges

Marchette and Priebe [41] suggested a model to predict unobserved edges in incompletely

observed networks. They used the constrained random dot product graph (CRDPG) model

and covariates measured on actors to rank potential edges according to a probability that

they are in fact present based on the internal network structure. It is the assumption some-

times that vertices and edges in an observed social networks are fully known and accurate;

i.e. the network is well-observed.

Unless there is a complete database on the researched social network, it is almost im-

possible to have a clear picture of the entire network (actors, edges, and members’ roles)

regardless of the type of the network, either due to sampling problems (either because of

missing data or undercoverage) or; more importantly, because actors attempt to suppress

their existence and role in the network.

The model is based on the Erdös-Renýı random graph and runs by fitting an CRDPG

to an observed network, and then rank potential edges according to the probabilities in-

duced by the estimated model.

If x ∈ Rd is a vector assigned to vertex v. The conditional probability of an edge from

vi to vj is a function of the dot product of the vectors:

P [vivj ∈ E|xi, xj ] := pij = f(xi · xj),

where f is a simple threshold:
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The vectors xi correspond to latent variables. The iterative algorithm computes the max-

imum likelihood estimate and if there are missing values (edges) in the adjacency matrix,

they are replaced with the estimated probability of the edge. For more details about the

CRDPG algorithm, refer to [41]. It is illustrated on a dataset of alliances between 173

nations collected from 1816 to 2000.

The difference between this model and what I suggest in this dissertation though is the

fact that; first of all, my method utilizes quantitative and qualitative covariates to esti-

mate the probability of missing edges and vertices (using line graphs) as well. However,

most importantly their method relies on the internal structure of the network, whereas, my

method uses covariate information associated with vertices – an approach that depends on

the external structure of the network.

1.5.2 The MDS For Clustering Similar Actors

The Multi-Dimensional Scaling (MDS) technique uses the feature matrix to cluster sim-

ilar actors. The feature matrix F , is formalized as a set of observations, in which each

observation consists of a set of variables “covariates”.

F = {{a1,1, a2,1, · · · , an,1}, · · · , {a1,m, a2,m, · · · , an,m}}

ID Name Gender Age Income City Education

1 Peter M 22 $35,000 Fairfax BS

2 Sarah F 18 $21,000 Baltimore HS
...

...
...

...
...

...
...

n Zach M 34 $65,000 Washington DC PhD

MDS clusters vertices by partitioning them into exhaustive non-overlapping subsets. It pro-

vides a spatial representation of similarity patterns among actors, in which similar vertices
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appear closer together and dissimilar ones appear far apart. The input may be a set of at-

tributes, Euclidean distances or graphical distances, while the output is a set of coordinates

in 2-D, 3-D or higher dimensional space.

1.5.3 Mantel’s Test for Association Between Transition Matrices

Because there is no mathematical model predicts any observed network perfectly, uncer-

tainties and errors are generated. I define the residual matrix to be

Residual Matrix = Observed Matrix - Predicted Matrix.

R(t+ 1) = A(t+ 1)− Â(t+ 1).

In this section, I use Mantel’s test to assess the model. Mantel’s test measures the goodness

of fit, which is done through applying a multivariate matrix regression analysis to measure

the goodness of fit [44], [49]. But, since all the entries of the co-occurrence matrix are de-

pendent upon each other (inter-correlated) and upon the status of the network at previous

states, the traditional regression analysis methods would not provide the best association

measure given such conditions.

In 1967, Nathan Mantel a biostatistician at the National Institute of Health suggested

an approach that overcomes dependency issues. His test is widely used to assess species-

environmental relationships. I believe the test can also be applied to networks as well.

Mantel’s test is essentially a regression in which the variables are themselves distance or

similarity matrices summarizing pairwise similarities among sample location (in the so-

cial networks context, it summarizes pairwise similarities among actors.) The power and

versatility of Mantel’s test stems from the various ways that the distance matrices or the

regression itself can be framed.

I proceed by applying Mantel’s procedure to networks. Suppose there are two matrices
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of interrelations at time t+ 1, an observed and predictor matrices. Without loss of general-

ity assume the matrices are symmetric with zero elements along the main diagonal, i.e. no

self-ties, the matrices are given below.

A(t+ 1) =



0 a12 a13 · · · a1n

a12 0 a23 · · · a2n

a13 a23 0 · · · a3n

...
...

...
. . .

...

a1n a2n a3n · · · 0


n×n

, Â(t+ 1) =



0 â12 â13 · · · â1n

â12 0 â23 · · · â2n

â13 â23 0 · · · â3n

...
...

...
. . .

...

â1n â2n â3n · · · 0


n×n

Note that the matrices must be of the same rank and because the matrix is symmetrical, the

correlation between the upper triangular parts and the lower triangular parts is the same.

And if there are n actors, the matrix contains m = n(n−1)
2 edges or adjacencies. They are

not independent of each other: changing the “position” of one object would change n−1 of

these adjacencies. As a result, the relationship between the two matrices cannot be assessed

by evaluating the correlation coefficient between the two sets of adjacencies and testing its

statistical significance.

Mantel’s procedure is considered a randomization test. The correlation between the two

sets of n(n−1)
2 distances is calculated. Because the elements of the adjacency matrix are

dependent, the test of significance is evaluated via permutation procedures; the rows and

columns of the distance matrices are randomly rearranged.

For the randomization test the elements of the either of the two matrices say the observed

matrix are randomly permuted, while the elements of the second matrix say the predictor

matrix are left in the same order. For example if a random permutation gives the order
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5, 3, · · · , 1, then the randomly permuted matrix is

Arand
n (t+1) =



0 a35 an5 · · · a15

a35 0 an3 · · · a13

an5 an3 0 · · · a1n

...
...

...
. . .

...

a15 a13 a1n · · · 0


n×n

= Bn(t+1) =



0 b12 b13 · · · b1n

b12 0 b23 · · · b2n

b13 b23 0 · · · b3n

...
...

...
. . .

...

b1n b2n b3n · · · 0


n×n

Mantel test is based on linear correlation and hence is subject to the same assumptions that

beset the correlation. The Mantel’s statistic is defined by

r =
1

n− 1

n∑
i=1

n∑
j=1

(
aij − ā
sa

)
·
(
bij − b̄
sb

)
(1.3)

where r is the conventional Pearson correlation coefficient bounded on [−1, 1].

bij ∈ B(t+ 1) is the permuted matrix.

A randomized value of the correlation between the two matrices (one of which is the per-

muted matrix) is then calculated, and the distribution of values for the statistic is generated

via many iterations ≈ 5000 for α = 0.05, [30].

To assess significance, however, the rows and columns of one of the matrices are sub-

jected to random permutations many times, with the correlation being recalculated after

each permutation. The significance of the observed correlation is the proportion of such

permutations that lead to a higher correlation coefficient.

If the null hypothesis of no correlation between the two matrices is true, then permut-

ing the rows and columns of the matrix should be equally likely to produce a larger or a
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smaller coefficient. The test can discover changes in the pattern of correlation at different

scales.

The test considers explicitly the relationship between the observed adjacency matrix and the

predictor adjacency matrix suggested by the model. As a formal hypothesis test, Mantel’s

test can be used to compare an observed covariate similarity matrix to the one posed by

the numerical model. The test summarizes the strength of the correspondence between the

two adjacency matrices. The model adjacency matrix can be provided as a simple binary

matrix of 0’s and 1’s (dichotomous), or the transition probability matrix (weighted).

The samples of the test are sets of permuted matrices derived from the estimated adja-

cency matrix Â(t + 1). The question is, “Are samples taken from the predicted network

also similar in terms of the observed network?” In this case two samples are similar having

distance=0 if they both portray the same network feature, otherwise they are dissimilar

having distance=1. The test is similar to an F−ratio test.

The test of significance can be determined by sampling the randomization distribution.

Although, Mantel used normal approximation for the randomization distribution of Z to

carry out the test of significance of an observed matrix, Mielke (1978) and Faust and Rom-

ney (1985) questioned the normal assumption and suggested that the significance can be

determined by comparing the test statistic directly with the randomization distribution.

There are n! possible permutation for any matrix of order n which implies it is practical to

determine the distribution of computed correlations.

1.6 Methodology

In the previous sections I have provided a brief introduction to networks and the current

problems related to networks. In the introductory part, I covered basic concepts in network
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theory such as centrality measures, cohesion, structural equivalence, structural holes, and

blockmodeling. There are number of the challenges concerning social networks such as

the manipulation of large-scale multi-dimensional networks, the continuously growing and

changing networks (evolutionary networks), the prediction of edges and vertices, and the

lack of advanced mathematical models. In this dissertation, I present solutions and vision

to remedy these problems.

1.6.1 Road Map

In Chapter 2, I have focused on the mathematics underpinning networks both static and

evolving. This part of the dissertation is largely theoretical and covers concepts in matrix

theory, graph theory, estimation, geometry and fuzzy logic. For example, I have worked out

a technique to undergo the storage and manipulation of a large-scale network that is contin-

uously expanding using primitive network blocks represented with sub-matrices stored in a

global matrix. This matrix representation has the advantage of keeping track of the changes

the network endures and the magnitude of each change over time, but most importantly

performing arithmetic operations on the matrix is simple due to the fact that the matrix is

block-diagonal and the elements are sub-matrices whose entries are ones. To some extent

the algorithm I presented is envisioned by the Finite Element Method (FEM) in the sense

that small blocks (elements) contribute to the formation of the global network (matrix).

To address the issue of having a continuously growing network, I invented a tool to expand

on vertices by introducing a matrix of infinite dimension resembling an infinite network in

which vertices are categorized as active or inactive. The infinite matrix offers a mechanism

of observing the development of a network over time.

Then I have developed an advanced approach which can be used to derive one-mode net-

works from weighted (valued) two-mode networks. For higher-mode dichotomous (binary)
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networks the derivation is straightforward, more details are presented in the literature re-

view section. I invented a mechanism to express the weighted network as a combination of

binary networks that are used to obtain the one-mode weighted network. Perhaps one of

the major contributions of my dissertation in the network theory field is the manipulation

of higher dimensional relational networks to extract information and gain knowledge about

networks on the different lower dimensions and modes. I have extended the differential of

one-mode from two-mode networks on higher-mode networks and have defined new matrix

multiplications accordingly.

The rest of Chapter 2 concerns mathematical tricks that efficiently compute graph and

network measures such as the computation of edge count and graph density, an iterative

algorithm to compute the network diameter, degree centrality of vertices and degree and

distance matrices. Lastly, I have studied edge and vertex duality, in which edges transform

to vertices and vertices transforms to edges through what is known as line graphs. A portion

of this section has been utilized to discuss the importance and properties of some special

line graphs.

In Chapter 3, I have focused my research on studying edges and vertices in a network.

This part relates to the interchangeability and duality between vertices and edges in a

graph. I have suggested a method that uses covariate information associated with vertices

to estimate the probability of missing edges and covariate information associated with edges

to estimate the probability of missing vertices. In order to predict missing vertices, I have

utilized the line graph transformation to convert edges to vertices and vertices to edges and

the problem now is to compute the probability of an edge in the line graph. Estimating the

probability of an edge is obtained by taking the inner product of the vectors of covariates.

Ultimately, I have extended the methodology of predicting edges (dyadic ties) to predict

edges in a triad. The method incorporates covariate information as well; however, it is

based on geometry and fuzzy logic rather than the inner product of two vectors. It is worth
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mentioning, though, that my model assumes that if two entities share many common values

and are close to each other distance-wise then these entities are similar and more likely to

connect/communicate. I had a discussion on this issue with Dr. Tsvetovat in which he

pointed out that in Social Sciences you can give a degenerate scenario. For instance, if a

married person and his mother in-law are not close to each other geographically then they

are more likely to be happy and content. However, if they live in a close distance from each

other then they are more likely to argue and be dissatisfied.

In Chapter 4, I have integrated concepts from Chapters 2 and 3 to build models for evolu-

tionary networks and preferential attachment. A common property of many large networks

is the vertex connectivities (dyadic edges). This feature is a consequence of two generic

mechanisms; the continuous expansion of networks by adding new vertices, which is called

growth, and the preferential attachment of new vertices to sites that are already well con-

nected. Network growth means that the number of vertices increases with time. Subse-

quently, I implement the notion of having an infinite matrix and the ideal edgeless graph,

which are defined in Chapter 2. Preferential attachment means that the more connected a

vertex is, the more likely it is to acquire new edges. Intuitively, preferential attachment can

be understood if we think in terms of social networks connecting people. Here an edge from

actor A to actor B means that actor A “knows” or “is acquainted with” actor B. Vertices

with many edges represent well-known people with lots of relations. When a new actor

enters the community, he or she is more likely to become acquainted with one of those more

visible actors rather than with a relative unknown.

In Chapter 5, I have implemented the theory of networks on real-life social networks and

other types to portray the different levels of interactivity, which includes the coauthorship

social network of prominent statisticians, road fatalities network in the United States, news

documents network, preferential attachment and the emergence of scientific subfields. In
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coauthorship social networks, I identified special groups of coauthors that are high in de-

gree and tie strength in which I called elite group. Coauthorship social networks data were

collected from the online Current Index to Statistics (CIS) database [12] as well as personal

curriculum vitae. The CIS database is jointly published by the American Statistical Asso-

ciation (ASA) and the Institute of Mathematical Statistics (IMS). Road fatalities network

presents how states relate to other states through different crash factors and how states are

similar with respect to crash factors. Road fatalities data were collected from the online

Fatality Analysis Reporting System’s (FARS) website [21], an affiliation of the National

Center for Statistics and Analysis (NHTSA) on traffic safety facts. And finally, in the news

documents example I performed an assessment of the documents network derived from the

term-document and bigram-document networks. Text data were collected by the Linguistic

Data Consortium in 1997. This is a superset of the data used in Martinez (2002). The data

consisted of 15,863 news reports collected from Reuters and CNN from July 1, 1994 to June

30, 1995.

I have concluded the chapter with simulation of two evolutionary social networks to demon-

strate preferential attachment; the first model simulates the evolution of a coauthorship

social network, while the second simulates the evolution of a online music friendship social

network.

The literature I present in the following chapters is solely my own work and represents

my contribution to the field of network theory and analysis with the exception of few def-

initions in which it was difficult to separate them from other material. Consequently, I

preferred to keep these definitions that were named after scholars or previous defined in the

science in context. The dissertation offers solutions to many of the problems encountered

by analysts and researchers and many of the ideas that are presented in the dissertation

can be used successfully in the fields of network theory, graph theory and matrix theory.
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Chapter 2: Network, Graph And Matrix Theory

The purpose of this dissertation as a whole is to elaborate mathematical thoughts in the

field of networks. This chapter discusses advanced mathematical techniques and their ap-

plications to static and evolutionary networks. I start by introducing a new graph and

matrix theory notation and terminology, followed by theory on multi-mode networks. One

of the goals of this research is to integrate network theory, graph theory and matrix theory.

Consequently, the approach is mostly theoretical and abstract.

2.1 Network Recipes

2.1.1 The Star Graph Sn

In this section I present a deeper analysis to matrices and their properties and how matrices

are related to networks and graphs. I begin with studying some primitive building blocks

of networks and their properties. Given a completely star shape graph G(V,E) = Sn of size

n with n− 1 leaves as in Figure 2.1, where |V | = n is the number of vertices. Let A be the

Figure 2.1: The Star Network.
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square adjacency matrix of size n corresponding to Sn. An is of the form

An×n =



0 1 1 · · · 1

1 0 0 · · · 0

1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0


n×n

Then,

A2
n =



n− 1 0 0 · · · 0

0 1 1 · · · 1

0 1 1 · · · 1
...

...
...

. . .
...

0 1 1 · · · 1


n×n

, and A3
n =



0 n− 1 n− 1 · · · n− 1

n− 1 0 0 · · · 0

n− 1 0 0 · · · 0
...

...
...

. . .
...

n− 1 0 0 · · · 0


n×n

We observe that,

A2
n = 1n + (n− 1) ·On −An, and

A3
n = (n− 1) ·An.

With 1n being a square matrix whose elements are all 1’s “complete graph” Kn, and On

being the matrix whose elements are zeros except o11 = 1.

Corollary 1. In general, if An is the proximity matrix corresponding to a star-like (ego)

network, then for p = 1, 2, 3, · · · , we have

A2p+1
n = (n− 1)p ·An
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A2p
n = 1n + (n− 1)p ·On −An

In general, if Bn = 1
n−1 · A

2
n, then B2

n = Bn, i.e Bn is idempotent. Furthermore, if Bn =

1√
n−1
·An, then B2p+1

n = Bn and B2p
n = B2

n.

2.1.2 The Complete Graph Kn

Corollary 2. Consider the complete graph G(V,E) = Kn; a clique network with self-ties

present. Let Bn = 1
n1n, then Bp

n = Bn is idempotent for p = 1, 2 · · · . More specifically,

1p
n = np−1 · 1n,

where

1n =



1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1


n×n

In addition,

e1n = In +
en − 1
n

1n,

where In is the identity matrix of size n.

Suppose An is the adjacency matrix corresponding to a complete graph (clique) of size
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n with no self-ties imposed,

An =



0 1 · · · 1 1

1 0 · · · 1 1
...

...
. . .

...
...

1 1 · · · 0 1

1 1 · · · 1 0


n×n

Then,

A2
n =



n− 1 n− 2 n− 2 · · · n− 2

n− 2 n− 1 n− 2 · · · n− 2

n− 2 n− 2 n− 1 · · · n− 2
...

...
...

. . .
...

n− 2 n− 2 n− 2 · · · n− 1


n×n

Thus,

A2
n = (n− 2) ·An + (n− 1) · In = (n− 2) · 1n + In

Moreover,

A3
n = (n− 2)2An + (n− 1)(n− 2)In + (n− 1)An

We can write An in terms of 1n and In,

An = 1n − In

Therefore,

A2
n = (n− 2) · 1n + In
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In general,

Ap
n = (1n − In)p =

p∑
i=0

p
i

 1i
n(−1 · In)p−i =

p∑
i=0

p
i

 · ni−1 · 1n · (−1)p−i · In

=
p∑

i=0

p
i

 · ni−1 · (−1)p+i · 1n

2.1.3 The `p−norm and Networks

Because new actors can emerge at any time and become active members, the dimensions

of the evolving adjacency matrices increase indefinitely and computations can be cumber-

some. Consequently, the need for a tool to tackle the dimensionality issue is essential. The

`p−norm offers a mechanism to expand on vertices (nodes) and allows having null vertices.

The `p−norm is defined on an infinite dimensional vector space. In a sense, there will be a

set of infinite vertices categorized as active or inactive, a zero will be assigned to all inac-

tive null vertices. Thus, the adjacency matrix becomes very sparse and the infinite matrix

functions as the operator. Actors can change status from inactive to active and vice versa

if the network in evolutionary mode and the process of introducing new actors (vertices)

to a network in a fixed period of time is a stochastic process modeled by the Poisson process.

Definition 2.1. The `p−norm is the vector norm ||~x||p defined by

||~x||p =

(
n∑

k=1

|xk|p
) 1

p

= (|x1|p + |x2|p + · · ·+ |xn|p)
1
p ,

where ~x = (x1, x2, · · · , xn).
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The `p−norm is commonly encountered in vector algebra and operations such as the inner

product, which I heavily rely on to compute similarities.

Definition 2.2. A real Hilbert space is a real inner product space that is a complete normed

space (Banach space) under the norm defined by the inner product.

Definition 2.3. The inner product < ·, · > for a vector v is defined by

〈x, y〉 =
∑

i

xiyi.

The `p−inner product of vectors produces a scalar. If p = 2, then the `2−inner product

gives the cosine distance between the two vectors in Euclidean space.

2.2 The Theory of Infinite Networks

When the size of the network increases tremendously and new vertices and edges are con-

stantly being added, the traditional matrix operations become computationally expensive.

In this part of the dissertation, I present a tool to perform matrix multiplication on the

micro level, in which the contribution of each element (a clique in this case) at a given time

step is embedded into the global matrix. The mathematical model involves new entities

(edges and vertices) introduced to the network in addition to existing edges and vertices.

It applies to static and dynamic networks as well. In this regard, I adopt a new notation

and terminology to deal with these issues.

Definition 2.4. Let G(V,E) be a graph. The order of G(V,E) is the number of its vertices,

denoted o(G(V,E)) = |V |; or simply o(G).

37



Definition 2.5. Let G(V,E) be a graph. The size of G(V,E) is the number of its edges,

denoted s(G(V,E)) = |E|; or simply s(G).

Definition 2.6. The edgeless graph; sometimes call the empty graph, is the graph with no

edges, denoted G◦(V,E = φ), where o(G◦) = |V | = n, 0 ≤ n <∞, and s(G◦) = |E| = 0.

The edgeless graph is the initial object in the category of graphs.

Definition 2.7. The infinite edgeless graph, denoted N(V,E = φ), is a graph in which

the number of vertices is infinite with no edges, where V = {v1, v2, · · · }, o(N) = ∞ and

s(N) = 0.

Definition 2.8. An infinite matrix is a matrix with infinite number of rows and columns,

denoted A∞.

Technically, the infinite edgeless graph is a graph with infinite vertices all of which are

disconnected (isolated). It can be represented with the infinite zero-matrix 0A∞, whose

elements 0aij are all zeros.

Definition 2.9. The infinite complete graph; or simply the infinite graph, is the graph

I(V,E) = K∞ with o(I) =∞ and s(I) =∞.

Definition 2.10. The n−component infinite subgraph is a graph with n connected sub-

groups of vertices excluding isolates, in which each component must contain at least one

edge.

Any network with a finite number of entities can be treated as an infinite network, so that

inactive entities are idle, they are represented with isolated vertices. Thus, the infinite graph

representation of the network consists of infinitely many disconnected vertices in addition

to a finite number of connected vertices. The vertices are labeled according to the natural
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numbers system.

To mathematically formulate these concepts using matrices, I introduce a modified ma-

trix notation. I define
t

bA∞ to be binary infinite dimensional adjacency matrix at time step

t whose elements are zeros and ones.
t

wA∞ refers to the weighted infinite dimensional prox-

imity matrix at time step t whose elements are real numbers. Finally,
t

0A∞ and
t

1A∞ refer

to the infinite dimensional matrices at times step t of zeros and ones respectively. Hence,

the symbol on top of the matrix variable indicates the time step and the symbol on the

upper left side of the matrix variable is reserved for the type of the matrix. Possible types

are “binary”, “weighted”, “zero”, “one”. The dimension of the matrix is placed in the lower

right side of the matrix variable, while the power (exponent) or transpose of a matrix is

placed in the upper right side.

Now, let
0

0A∞ be the square infinite zero matrix at time 0.
0

0A∞ is the network of infi-

nite vertices – all disconnected.

Let

{
i

bA∞

}t

i=1

be the sequence of binary adjacency one-mode matrices of clique inter-

actions. Table (2.1) portrays an example of the contribution of each matrix element in the

proximity weighted matrix
t

wA∞ at time t, the derivation is presented below.

t
wA∞=

0
0A∞ +

t∑
i=1

i
bA∞=

t∑
i=1

i
bA∞=

t−1∑
i=1

i
bA∞ +

t
bA∞=

t−1
wA∞ +

t
bA∞ . (2.1)

Assuming each vertex is allowed only to make at most one clique interaction at each time
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Table 2.1: The Derivation of the Weighted Proximity Matrix From Binary Matrices.
1

bA∞

1 2 3 4 · · · ∞
1 1 1 1 0 · · · 0
2 1 1 1 0 · · · 0
3 1 1 1 0 · · · 0
4 0 0 0 0 · · · 0
...

...
...

...
...

. . .
...

∞ 0 0 0 0 · · · 0

+

2
bA∞

1 2 3 4 · · · ∞
1 1 1 0 1 · · · 0
2 1 1 0 1 · · · 0
3 0 0 0 0 · · · 0
4 1 1 0 1 · · · 0
...

...
...

...
...

. . .
...

∞ 0 0 0 0 · · · 0

=

2
wA∞

1 2 3 4 · · · ∞
1 2 2 1 1 · · · 0
2 2 2 1 1 · · · 0
3 1 1 1 0 · · · 0
4 1 1 0 1 · · · 0
...

...
...

...
...

. . .
...

∞ 0 0 0 0 · · · 0

step, the sequence of complete subgraphs (cliques)

{
i

bA∞

}t

i=t0

composes the global proxim-

ity matrix through additions of binary matrices. Therefore,
t

wA∞ resembles the evolution of

the network over time. The infinite matrix clarifies any ambiguity resulted from introducing

new vertices at each time step; in the sense that the number of vertices is fixed although

that quantity is unbounded. The infinite matrix approach and the construction of the prox-

imity matrix scheme offer a mechanism to track down structural formation pertaining to the

network. It is of great importance to identify cohesive subnetworks within the network and

how they are formed. The method is consistent in terms of building the weighted matrix

from primitive blocks such as dyads–triads–tetrads–pentads–hexads–heptads–octads– and

higher level. The statistical distribution of the primitive blocks can be used to identify co-

hesive subgroups (cliques). For example, in the author-coauthor social network application,

it may not be that simple to distinguish the laboratory style from the entrepreneurial style

of coauthorship if the matrix is in weighted format. Statistical inference for the clique-size

is a way to separate the two styles through hypothesis testing. This is done by computing

the probability of observing a given extreme clique-size in such networks assuming a certain

style exists to determine wether or not the claim of that style is present.
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Table 2.2: The Two-Mode Infinite Matrix.
t1 t2 · · · tm tm+1 · · · t∞

a1 at11 at12 · · · at1m 0 · · · 0
a2 at21 at22 · · · at2m 0 · · · 0
...

...
...

...
...

...
. . .

...
an atn1 atn2 · · · atnm 0 · · · 0
an+1 0 0 0 · · · 0 · · · 0
...

...
...

...
...

...
. . .

...
a∞ 0 0 0 · · · 0 · · · 0

=

t1 t2 t3 · · · t∞
a1 1 1 0 · · · 0
a2 1 1 0 · · · 0
a3 1 0 0 · · · 0
a4 0 1 0 · · · 0
a5 0 0 0 · · · 0
...

...
...

...
. . .

...
a∞ 0 0 0 · · · 0

Now, suppose that |V | = n is the order of the graph at time t. The finite version of 2.1 is

t
wAn×n=

t∑
i=1

i
bAn×n=

t−1∑
i=1

i
bAn×n +

t
bAn×n=

t−1
wAn×n +

t
bAn×n . (2.2)

Furthermore, suppose at time t + 1 another clique is generated and a new vertex/vertices

are introduced. Let m be the number of the new unique vertices, then equation 2.1 becomes

t+1
wA(n+m)×(n+m)=

t
wA(n+m)×(n+m) +

t+1
bA(n+m)×(n+m) . (2.3)

If no new vertices are introduced, then 2.1 simplifies into

t+1
wAn×n=

t
wAn×n +

t+1
bAn×n . (2.4)

For infinite two-mode networks, the procedure of formulating the bi-partite infinite matrix

and the corresponding one-mode infinite matrix is very similar and presented below.

Consider the two-mode binary infinite matrix bAT∞, where the types A and T represent

rows and columns respectively.

If ti; i ∈ N represents a time-series or sequential network feature, then the two-mode matrix
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is the evolutionary matrix corresponding to entities of type A; thus, bAT∞ is a representa-

tion of the evolutionary network. The sequential one-mode binary matrices

{
i

bA∞

}t

i=1

are

computed in the following manner. Let ti be the column vector of time-step i, then

i
bA∞= ti · tTi , 1 ≤ i ≤ t, (2.5)

and the weighted wA∞ matrix can be obtained from
i

bA∞ as previously described.

On the other hand, if bAT∞ does not symbolize sequential network feature, a direct calcu-

lation of the infinite one-mode proximity matrix wA∞ is obtained as follows

wA∞ =b AT∞ ·b AT T
∞ =b AT∞ ·b TA∞. (2.6)

The infinite matrix in 2.2 is square and very sparse; all elements are zeros except for a fixed

number of rows n and a fixed number of columns m. As a result, matrix multiplication

can be performed by setting up a square sub-matrix of size k = max(m,n) and perform the

product on the square matrix of size k as we would normally do. Theoretically, computation

in 2.6 can be done with no problem because bAT∞ is very sparse and atij = 0, ∀ i > n, j >

m. The infinite product is presented in Equation 2.7.

wA∞ =
∞∑
i=1

∞∑
j=1

atij · atji =
k∑

i=1

k∑
j=1

atij · atji. (2.7)

Corollary 3. If
t1
bA∞ and

t2
bA∞ are infinite binary matrices corresponding to infinite graphs
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G1 and G2 respectively. Then

t1
bA∞ +

t2
bA∞ is equivalent to G1 ∪G2.

This can be thought of as the convoluted network, and
t1
bA∞ and

t2
bA∞ may represent bipar-

tite graphs.

Corollary 4. Suppose
t1
bA∞ and

t2
bA∞ are infinite binary matrices corresponding to the

infinite graphs G1 and G2 respectively for time steps t1 and t2. Then
t2
bA∞ −

t1
bA∞ is a

matrix representation of the network of all new ties at time step t2.

Definition 2.11. For matrices A and B of the same size, the Hadamard product also

known as entrywise or Schur product is defined by

A •B = aij · bij , aij ∈ A and bij ∈ B.

Note: The Hadamard product is commutative.

Corollary 5. Let bA be a square one-mode adjacency matrix. The Hadamard product

bA • bAT gives the symmetric relations of bA; a nonzero element indicates a symmetric

relation. If bA • bAT =bA then bA is said to be symmetric; i.e. bA=bAT .

Corollary 6. If
1

bA∞ and
2

bA∞ are infinite binary matrices corresponding to infinite graphs
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G1 and G2 respectively. Then

1
bA∞ •

2
bA∞ is equivalent to

1
bA∞ and

2
bA∞,

which is analogous to the intersection G1 ∩ G2.
1

bA∞ and
2

bA∞ may represent bipartite

graphs.

This can be thought of as the network of solely maintained ties (strongest perfect interac-

tions).

2.3 Block-Diagonal Matrix Representation

Next, I present a way to represent the one-mode matrix as a collection of blocks positioned

along the main diagonal of a larger matrix. Given a sequence of discrete binary interactions

in time

{
i

bAn

}t

i=1

. Define the block diagonal matrix bB∞, as follows.

bii =
i

bAni ,

where the diagonal elements of bB∞ are the finite matrices, and bij = 0 for i 6= j. The

block diagonal matrix representation of cliques in Table 2.3 has many advantages. First of

all, it suggests a way to keep track of continuously changing networks, so that the order and

size of interactions are easily determined. Moreover, it allows identifying unique cliques and

their sizes; the size ni of each block varies according to the clique size. The global matrix

is built up from small primitive blocks or cohesive subnetworks; where the contribution

of each block or element on the local level is added to form the global network and each

block indicates and interaction at time step ti, i ∈ N. Finally, because the matrix is block
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Table 2.3: Block Diagonal Matrix Representation of Cliques.

bB∞=

1
a1 · · · 1

an1

2
a1 · · · 2

an2

3
a1 · · · 3

an3 · · ·
1
a1 1 · · · 1
...

...
. . .

...
1
an1 1 · · · 1
2
a1 1 · · · 1
...

...
. . .

...
2
an2 1 · · · 1
3
a1 1 · · · 1
...

...
. . .

...
3
an3 1 · · · 1
...

. . .

Table 2.4: The Square of The Block Diagonal Matrix of Cliques.

wB2
∞=

1
a1 · · · 1

an1

2
a1 · · · 2

an2

3
a1 · · · 3

an3 · · ·
1
a1 n1 · · · n1
...

...
. . .

...
1
an1 n1 · · · n1
2
a1 n2 · · · n2
...

...
. . .

...
2
an2 n2 · · · n2
3
a1 n3 · · · n3
...

...
. . .

...
3
an3 n3 · · · n3
...

. . .
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diagonal matrix operations are implemented and performed on the micro-level. For example,

squaring bB∞ is performed by simply squaring the diagonal elements, namely,

b2ii =
i

bA2
ni
, and

i
bA2

ni
= ni·

i
bAni .

wB2
∞ will be a weighted matrix, the square of bB∞ is shown in Table 2.4.

Furthermore, wAn, the weighted matrix is found by integrating the contribution of each

block bii into the global matrix
t

wAn.

Likewise, there are some drawbacks associated with this representation. For instance, there

might be inconsistency associated with identities; labels may be duplicated. Moreover, the

matrix as a whole is very sparse and the matrix dimension may grow up rapidly.

2.4 One-Mode Matrices From Two-Mode Weighted Matrices

The product of a matrix and its transpose method presented earlier to obtain the weighted

one-mode proximity matrix from binary two-mode adjacency matrices fails to give mean-

ingful implication if the bi-partite proximity matrix has weighted values; in this regard

the values are magnified greatly yielding a matrix with the sum of squares along the main

diagonal and sum of growing products off the main diagonal. In this section, I provide a

modified version of this technique to tackle this problem.

Definition 2.12. For a bipartite graph G(V a, V b, E) with sets of vertices

V a =
{
va
1 , v

a
2 , · · · , va

i , · · · va
|V a|

}
of type A; |V a| = n, V b =

{
vb
1, v

b
2, · · · , vb

j , · · · vb
|V b|

}
of type

B; |V b| = m, and a set of edges E =
{
e1, e2, · · · , e|E|

}
connecting types A and B vertices,
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The weighted adjacency matrix wABn×m, also known as Edmonds matrix, is defined by

wABn×m=


wabij ,

(
va
i , v

b
j

)
∈ E

0, (va
i , v

b
j) /∈ E.

1 ≤ i ≤ n, 1 ≤ j ≤ m, and the indeterminate wabij ∈ R.

Definition 2.13. A complete bipartite graph or biclique is a bipartite graph where every

vertex of the first set is connected to every vertex of the second set. G(V a, V b, E) is a

bipartite graph such that for any two vertices va
i ∈ V a and vb

j ∈ V b, we have
(
va
i , v

b
j

)
is an

edge in G. The complete bipartite graph with partitions of size |V a| = m,
∣∣V b
∣∣ = n and

|E| = m · n is denoted Km,n.

Definition 2.14. The multiplicity of an edge, denoted m
(
E(va

i , v
b
j)
)

= wabij , is the num-

ber of multiple edges sharing the same end-vertices; i.e. the edge weight.

Definition 2.15. The multiplicity of a graph is the maximum multiplicity of its edges; the

maximum of all weights.

Let wAB∞ be the two-mode weighted proximity matrix of vertices of types A and B and

let bAB∞ be the binary version of wAB∞. Assume n = |type A active vertices|, so that

babij = 0 ∀ i, j > n. Let m = |type B active vertices|. Then, we have

wAB∞ · bABT
∞=wAB∞ · bBA∞=wAA∞, (2.8)
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The elements off the main diagonal are

waaij =
∞∑

k=1

wabik ·b abjk =
m∑

k=1

wabik ·b abjk,

and along the main diagonal when i = j we have,

aaii =
∞∑

k=1

wabik ·b abik =
m∑

k=1

wabik ·b abik =
m∑

k=1

wabik = vertex i count of interactions,

Note that

babik =

 1, vi ↔ vk.

0, vi = vk.

The element aaii along the main diagonal is the total frequency of interactions for vertex

i of type A, and the elements aaii, 1 ≤ i ≤ m, are the marginal distribution of total in-

teractions for vertices of type A. The off-diagonal elements aaij , i 6= j of wAA∞ represent

the sum of edge weights for a determining (influential) vertex i. Vertex i influences the

overall relationship; in other words, vertex i determines aij . Note that wAA∞ is diagonally

dominant; i.e. for a given i,w aaij ≤w aaii.

In 2.8, if we set waaij = max(waaij ,
w aaji) for i 6= j, then the off-diagonal elements waaij

represent the sum of edge unions (max weights) excluding zero weight edge interactions be-

tween a pair of vertices related through the vertex type B. It is the sum of all determining

active edges and represents the overall relationship between vertices i and j. Alternatively,
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Table 2.5: Ordered Two-Mode Matrix.

wAB∞=

b1 b2 · · · bj bj+1 · · ·
a1 ab11 ab12 · · · ab1j 0 · · ·
a2 ab21 ab22 · · · ab2j 0 · · ·
...

...
...

...
...

...
...

ai abi1 abi2 · · · abij 0 · · ·
ai+1 0 0 · · · 0 0 · · ·
...

...
...

...
...

...
. . .

we can obtain waaij as follows

waaij =
∞∑

k=1

max(wabik,
w abjk) =

m∑
k=1

max(wabik,
w abjk). (2.9)

If abik ∨ abjk = 0 in 2.9, then max(abik, abjk) = 0.

Special Case: Suppose the columns of wAB∞ are all in descending order, see Table 2.5.

ab(i−1)j ≤ abij ≤ ab(i+1)j , abij = 0 is excluded from the inequality; zero entries are allowed.

Then, the lower triangle of wAA∞ in 2.8 contains all minima count (sum of all intersec-

tions), while the upper triangle contains all maxima count not including edges with zero

weights for a dominating vertex vi.

waaij =
∞∑

k=1

min(wabik,
w abjk) =

m∑
k=1

min(wabik,
w abjk), for i > j. (2.10)

waaij =
∞∑

k=1

max(wabik,
w abjk) =

m∑
k=1

max(wabik,
w abjk), for i < j. (2.11)

Again, if wabik ∨w abjk = 0 in 2.11, then max(wabik,
w abjk) = 0.
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In the same manner, I proceed to obtain the one-mode matrix for vertices of type B

wABT
∞ · bAB∞=wBA∞ · bAB∞=wBB∞ . (2.12)

2.12 can also be derived as follows.

Define,

wbbii =
∞∑
i=1

wabij =
n∑

i=1

wabij ,
wabij ∈wAB∞ (2.13)

wbbij =
∞∑

k=1

min(wabki,
w abkj) =

n∑
k=1

min(wabki,
w abkj), wab ∈wAB∞ (2.14)

The mechanism of converting a two-mode matrix to one-mode is similar to the effect of pro-

jecting from 2-D to 1-D; in the sense that one detailed feature about the network is being

lost and the one-mode setup provides only one dimensionality encompassing the one-type

marginal relationship. Besides, this process is irreversible; once the one-mode network is

obtained it is impossible to retrieve the original two-mode network layout.

2.4.1 Multi-Layering Binary Decomposition

In the remainder of this section, I present a tool to express weighted matrices two-mode or

one-mode as a linear combination of optimal binary matrices. These matrices represent the

primitive subnetworks generating the global network. It is a process of degenerating the

weighted graph into a maximally connected binary subgraphs.

Given the weighted proximity matrix
1

wAn×m at time step 1. Let
1

bAn×m be the binary
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version of
1

wAn×m. Let,

R =
{

1
waij

}
= {ri} .

Define r to be the number of unique nonzero elements of
1

wAn×m.

r =
∣∣∣{w 1

aij

}∣∣∣ , w 1
aij 6= 0, 1 ≤ r ≤ |E| ≤ n ·m.

Theorem 2.1.
1

wAn×m can be written as a linear combination of at most r distinct binary

matrices
i

bAn×m, 1 ≤ i ≤ r with
1

bAn×m A
2

bAn×m A · · · A
r

bAn×m. The notation A means

that the binary matrix
1

bAn×m has more ones and less zeros than
2

bAn×m. It also means that

ones in
2

bAn×m are located at the same position of ones in
1

bAn×m.

This is equivalent to saying a weighted graph can be expressed in terms of finitely stacked

subgraphs of equally weighted (binary) edges.

The method is presented below.

Consider the set A =
{

1
waij :

1
waij∈

1
wA

}
= {a1, a2, · · · , ar}.

Let α1, α2, · · · , αr ∈ R.

Define, α1 = a1 = min
(

1
waij∈

1
wA:

1
waij 6= 0

)
.

r∑
i=1

αi = max
(

1
wAn×m

)
=
∥∥∥∥ 1

wA

∥∥∥∥
∞
.
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Set
2

wA=
1

wA −α1·
1

bA.

Define, α2 = a2 − a1 = min

(
2

baij∈
2

wA:
2

waij 6= 0

)
.

Set
3

wA=
2

wA −α2·
2

bA.

...

Define, αr = ar − ar−1 = min
( r

baij∈
r

wA:
r

waij 6= 0
)

.

Set
r+1
wA=

r
wA −αr·

r
bA.

Proof. Need to show that
r+1
wA=

0
0A; the zero matrix.

Suppose r = 1. This implies that
1

wA and
1

bA both have only one non-zero element or

n ·m− 1 zero elements. Let α1 = min
(

1
wA

)
. Then,

1
wA −α1

1
bA=

2
wA=

r+1
wA,

has no non-zero elements or n ·m zero elements. This means that all elements of
r+1
wA are

zeros. Thus,
r+1
wA=

0
0A.

Now, suppose r = |E| = n · m. This means that
1

wA has no zero elements, and
1

bA; the

matrix of ones in this case, represents a complete graph. If the network is bipartite then

by complete graph I mean every vertex of the first type is connected to every vertex of the

second type.
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Let α1 = min
(

1
wA:

1
waij 6= 0

)
. Then,

2
wA=

1
wA −α1

1
bA

has one zero element or n ·m− 1 non-zero elements.

Let α2 = min

(
1

wA −α1

1
bA

)
= min

(
2

wA:
2

waij 6= 0
)

. Then,

3
wA=

1
wA −α1

1
bA −α2

2
bA

has two zero elements or n ·m− 2 non-zero elements.

Similarly, let α3 = min

(
1

wA −α1

1
bA −α2

2
bA

)
= min

(
2

wA −α2

2
bA

)
= min

(
3

wA:
3

waij 6= 0
)

.

Then,

4
wA=

1
wA −α1

1
bA −α2

2
bA −α3

3
bA

has three zero elements or n ·m− 3 non-zero elements.

Finally, let αr = min

(
1

wA −α1

1
bA −α2

2
bA − · · · − αr−1

r−1
bA

)
= min

(
r−1
wA −αr−1

r−1
bA

)
=

min
(

r
wA:

r
waij 6= 0

)
. Then,

r+1
wA=

1
wA −α1

1
bA −α2

2
bA −α3

3
bA − · · · − αr

r
bA

53



has r zero elements or n ·m− r = r − r = 0 non-zero elements.

This implies that the elements of
r+1
wA are all zeros. Thus,

r+1
wAn×m=

0
0An×m.

Next, consider the weighted matrix
1

wAB corresponding to a bipartite graph. Let α1, α2, · · · , αr

be scalars and
1

bAB,
2

bAB, · · · ,
r

bAB be given such that

1
wAB= α1·

1
bAB +α2·

2
bAB + · · ·+ αr·

r
bAB,

then

α1·
1

bAB ·
1

bABT +α2·
2

bAB ·
2

bABT + · · ·+ αr·
r

bAB
r

bABT =wAA (2.15)

is the one-mode matrix of vertices of type A related through vertices of type B correspond-

ing to the weighted two-mode graph
1

wAB.

The diagonal element aaii once again is the count of interactions for vertex i of type A.

The elements aaii, 1 ≤ i ≤ m, are the marginal distribution for vertices of type A. While,

the off-diagonal elements aij , i 6= j of
1

wAA∞ represent the sum of edge intersections (edge

overlaps) between a pair of vertices related through the vertex of type B; aij resembles the

overall common relationship between vertex i and j. This is a generalization of the product

of bAB by its transpose.

Alternatively, the elements of wAA in 2.15 can also be computed as follows.
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Define,

aii =
∞∑

j=1

abij =
m∑

j=1

abij , abij ∈wAB∞ (2.16)

aij =
∞∑

k=1

min (abik, abjk) =
m∑

k=1

min(abik, abjk), ab ∈wAB∞, 1 ≤ i, j ≤ n.

This is essentially the sum of the common interactions between vertices i and j of type A.

2.5 Three-Mode Matrices

Continuing with the same analogy; a third network feature may be introduced to add an-

other dimensionality to the problem resulting in a 3-D cuboid (rectangular parallelepiped)

matrix, in which 3-mode matrix manipulations can be explored. The cuboid matrix resem-

bles a tripartite network. A cuboid matrix is in fact a tensor of rank 3; however, for the

purposes of this research I will use the term cuboid instead. An example of a three-mode

network might be author-by-papers-by-universities. Throughout this section, I make the

assumption that the graph is finite to understand how the mathematics work for three-mode

matrices, which implies that the matrices have finite dimensions. Finally, the graphs are

assumed to represent dichotomous relations, i.e. the multiplicity of an edge is one.

Definition 2.16. Let V a =
{
va
1 , v

a
2 , · · · , va

i , · · · , va
|V a|

}
be the set of vertices of type a, V b ={

vb
1, v

b
2, · · · , vb

j , · · · , vb
|V b|

}
be the set of vertices of type b, and V c =

{
vc
1, v

c
2, · · · , vc

k, · · · , vc
|V c|

}
be the set of vertices of type c. Furthermore, let E =

{
e1, e2, · · · , e|E|

}
be the set of edges

connecting types a, b, c vertices; in this sense, ei is a hyperedge. Assume |V a| = n, |V b| = m,

and |V c| = p. The binary adjacency matrix bABCn×m×p corresponding to the finite graph
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G(V a, V b, V c, E) is defined by

babcijk =

1,
(
va
i , v

b
j , v

c
k

)
∈ E

0, otherwise.
(2.17)

1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p.

I start by computing the two-mode weighted matrix wAB, the method is presented below

wabij =
p∑

k=1

abcijk, 1 ≤ k ≤ p.

This is equivalent to projecting from 3D cuboid matrix onto the 2D planar matrix giving

the marginal bipartite distribution for types A and B.

Because the cuboid is a three-dimensional object, there are several matrix arithmetic op-

erations to perform on the cuboid matrix, some of which result in a rectangular matrix,

while others result in a cuboid matrix. Here, I explore few meaningful operators related to

networks, but before I explain how these operations are performed, I would like to discuss

how a cuboid is being transposed in 3D. Unlike the 2D rectangular matrix, which only has

two faces, the 3D cuboid has six faces leading to six different ways to view the block in

terms of size, namely, n×m× p, n× p×m, m×n× p, m× p×n, p×n×m, and p×m×n.

As a result, the transpose can be done in six different ways.

Suppose bABCn×m×p a dichotomous tripartite matrix. Then,

1.

bABCTcba
n×m×p =b CBAp×m×n, with bcbaijk =b abckji.
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2.

bABCTbac
n×m×p =b BACm×n×p, with bbacijk =b abcjik.

The following cuboid matrix multiplication definition is the traditional 3D matrix product

and results in another 3D matrix.

Definition 2.17. Given the matrix bABCn×m×p. The weighted 3D matrix

wAACn×n×p=bABCn×m×p · bABCTbac
n×m×p=bABCn×m×p · bBACm×n×p,

so that the product of the sub-matrices ABn×m · BAm×n is well-defined, is computed as

follows

waack =bABCk · bBACk, 1 ≤ k ≤ p.

wAACn×n×p is a two-mode graph (network) represented with a 3D matrix.

Definition 2.18. Given the matrix wAACn×n×p. The weighted 3D matrix

wAAAn×n×n=wAACn×n×p · wAACTcaa
n×n×p=wAACn×n×p · bCAAp×n×n,

so that the product of the sub-matrices ACn×p · CAp×n is well-defined, is computed as

follows

waaai =wAACi · bCAAi .

wAAAn×n×n is the one-mode 3D matrix of triadic vertices (triplets) of type A related

through vertices of types B and C. In graph terminology, a nonzero entry in wAAAn×n×n

indicates that the hyperedge is connecting three vertices altogether as opposed to two ver-

tices in the traditional graph context. wAAAn×n×n represents triadic relations, a nonzero

value waaaijk indicates that all three vertices are connected through a hyperedge.
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The one-mode 2D matrix wAAn×n of pairwise vertices of type A related through vertices

of types B and C is found by summing up over one of the dimensions. In this regard, the

3D matrix is assumed to be symmetric.

waaij =
n∑

k=1

waaaijk.

Definition 2.19. Given a 3D binary cuboid matrix bABC of size n × m × p of relation

types A, B and C respectively. The hyper product, denoted A ◦B, is define by

bABCn×m×p ◦ bABCTcba
n×m×p = bABCn×m×p ◦b CBAp×m×n = wABBAn×m×m×n, (2.18)

where wABBAn×m×m×n is the hyper-cuboid two-mode proximity matrix of pair of vertices

(vi, vj) of types A and B related through the set of vertices vk of type C. Let the product

of the sub-matrices BCm×p · CBp×m be define. Then, the elements of wABBAn×m×m×n

are found as follows

wabbakl =b ABCkl ·b CBAkl, 1 ≤ k, l ≤ p.

The 4D hyper-matrix can be represented using 3D matrix by stacking n cuboid matrices

each of size m×m×n, which results in a 3D matrix of size m×m×n2. The 4D hyper-matrix

is a tensor of rank 4.

The following 3D matrix multiplication definition results in a one-mode 2D matrix.
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Definition 2.20. Given the matrix bABCn×m×p. The weighted one-mode 2D matrix

wCCp×p=bABCn×m×p � bABCTbac
n×m×p=bABCn×m×p � bBACm×n×p,

so that the product of the sub-matrices ABCn×m ·BACm×n is well-defined, is computed as

follows

wccij=
n∑

q=1

n∑
r=1

bABC(n×m)i
· bBAC(m×n)j

=
n∑

q=1

n∑
r=1

wAA(qr)ij
, 1 ≤ i, j ≤ p.

wCCp×p is the one-mode 2D matrix of pairwise vertices of type C related through vertices

of types A and B. wCCp×p represents diadic relations, a nonzero value wccij indicates that

the two vertices are connected through an edge.

2.6 Generalized N−Mode Matrices

As the network modes increase, more network features are revealed. Suppose a network

has N possible features, then the N−hyper cuboid matrix (tensor of rank N) and hyper

graph are used to analyze the N−mode network. All lower mode relations may be retrieved

from the multi-mode network in the same fashion we convert the three-mode to two-mode

and the two-mode to one-mode. In this part, I extend the rules of one, two, three-mode

networks to work for a multi-mode matrix and assume the network is finite and represents

dichotomous relations, so that matrix operations are easily explored. The N−mode graph

is equivalent to clique relations of size N , in which cliques resemble hyperedges.

Definition 2.21. Let V 1 =
{
v1
1, v

1
2, · · · , v1

i1
, · · · , v1

|V 1|

}
, V 2 =

{
v2
1, v

2
2, · · · , v2

i2
, · · · , v2

|V 2|

}
,
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V 3 =
{
v3
1, v

3
2, · · · , v3

i3
, · · · , v3

|V 3|

}
, · · · , V N =

{
vN
1 , v

N
2 , · · · , vN

iN
, · · · , vN

|V N |

}
be the sets of

vertices of type 1, 2, 3, · · · , N respectively. Furthermore, let E =
{
e1, e2, · · · , e|E|

}
be the

set of edges connecting types 1, 2, 3, · · · , N vertices. Once again, ei is a hyperedge. Assume

|V i| = ni, ∀ 1 ≤ i ≤ N . The binary adjacency matrix bAn1×n2×···×nN for the finite graph

G(V 1, V 2, · · · , V N , E) is defined by

bai1i2···iN =

1,
(
v1
i1
, v2

i2
, · · · , vN

iN

)
∈ E

0, otherwise.
(2.19)

1 ≤ ij ≤ nj , for 1 ≤ j ≤ N .

The two-mode weighted matrix wAni×nj corresponding to modes 1 ≤ i, j ≤ N , i 6= j, is

calculated below

waij =
nk1∑

k1=1

· · ·
nkN−2∑

kN−2=1

ai1i2···iN , 1 ≤ kl ≤ nl.

This is equivalent to projecting from N−dimensional hyper-cuboid matrix onto the 2D pla-

nar matrix giving the marginal N−mode distribution for types i and j.

Arithmetic operations on a multi-dimensional matrix result in several meaningful network

features related to the original network, ranging from N−mode network of relationships to

one-mode relationships.

The transpose of an N−mode matrix is done in the same manner. Suppose bAn1×n2×···×nN

is a dichotomous N−partite matrix. Then,

bA
Tm1×m2×···×mN
n1×n2×···×nN

= bAm1×m2×···×mN ,
bai1i2···iN = baj1j2···jN ,
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where j1j2 · · · jN is a permutation of i1i2 · · · iN , which is based on the transpose operator.

The followingN−cuboid hyper matrix multiplication definition results in anotherN−cuboid

hyper matrix.

Let bAn1×n2×···×nN be a dichotomous N−mode matrix. Assume m1 = ni, the weighted

(N − 1)−mode matrix for a mode i is calculated as follows

wAm1×m1×m3×···×mN =bAm1×m2×···×mN ·
bA

Tm2m1m3···mN
m1×m2×···×mN

=bAm1×m2×m3×···×mN ·
bAm2×m1×m3×···×mN ,

where the product of the sub-matrices Am1×m2 ·Am2×m1 , is well-defined.

Continuing in the same manner with m2 being eliminated, the one-mode weighted ma-

trix wAm1×m1×···×m1 for a mode i is obtained in N−1 matrix multiplications and transpose.

wAni×ni×···×ni=
wAm1×m1×···×m1 is the one-mode N−dimensional matrix of N−cliques of

type i related through all other types. A nonzero entry in wAm1×m1×···×m1 indicates that

the hyperedge is connecting N−vertices.

The one-mode 2D matrix wAni×ni of pairwise vertices of type i related through vertices

of all other types may be found by summing up over (N − 1) dimensions.

waqr =
n1∑

k=1

· · ·
nN−1∑
k=1

wai1i2···iN .
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2.7 Edge Count and Graph Density

Let bAB∞ be the two-mode infinite matrix in binary format representing dichotomous re-

lations; furthermore, let x = (1 1 1 · · · )1×∞ be the infinite vector of ones.

The edge count (graph size) for a graph G(V a, V b, E) having matrix bAB∞, is defined

by

edge count = s(G) = |E| = x· bAB∞ ·xT . (2.20)

The finite version of 2.20 is

edge count = s(G) = x1×n· bAn×m ·xT
1×m = [|E|]1×1, (2.21)

where n = number of rows and m = number of columns.

Assume bA is one-mode excluding self-ties aii = 0, and let m = n. Then x = (1 1 1 · · · 1)1×n

and

edge count = s(G) =
1
2
· x· bA ·xT = [|E|]1×1. (2.22)

Definition 2.22. Graph density is defined as the ratio of number of edges in the graph to

the total possible number of edges in a graph.

Given the complete graph Kn, let 1An be the matrix of ones, and In be the identity matrix.

Consider,

x ·
(
1An − In

)
· xT = x · 1An · xT − x · In · xT = n2 − n = n(n− 1).

Then,

graph density =
x · bAn · xT

n(n− 1)
. (2.23)
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Remark 2.1. 0 ≤ graph density ≤ 1.

Definition 2.23. For matrices A and B, the Frobenius inner product is defined by

A : B =
∑

i

∑
j

aijbij = trace
(
ATB

)
= trace

(
ABT

)
.

In particular,

trace(AT ·A) = trace
(
A ·AT

)
.

Given the Edmonds matrix wAB of a bipartite graph, then the edge count of wAB including

multiplicities is

edge count = trace
(

wAB ·b ABT
)

= trace
(

wABT ·b AB
)
.

This essentially means that the number of edges of the relations A − A graph equals the

number of edges of the relations B − B graph; for example, the number of edges of the

one-mode author-by-author network is the same as the number of edges of the one-mode

paper-by-paper network.

Given the weighted proximity matrix wAA of a one-mode graph, then the edge count of

wAA is

edge count =
1
2
· trace

(
bAB ·b ABT

)
=

1
2

trace (wAA) =
n∑

i=1

waaii =
1
4
x ·w AAn · xT .

For a bipartite graph G(V a, V b, E), suppose bAB is the two-mode binary matrix, then

edge count =
n∑
i

m∑
j

babij .
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2.8 Network Diameter and Degree

Network diameter and distance between vertices are important in network theory. Dis-

tance is related to farness and closeness. The following algorithm gives Shimbel’s geodesic

distance matrix D for a graph G(V,E). Assume |V | = n, |E| = m. Start with the inci-

dence matrix
1

bV En×m. Note that the incidence matrix may be treated as two-mode matrix.

First, compute the first order vertex-vertex relation matrix from the incidence matrix,

1
wV Vn=

1
bV En×m ·

1
bV ET

n×m .

Define V V 1
n =

1
bV Vn −In.

Then, compute the second order vertex-vertex matrix

2
wV Vn=

1
bV Vn ·

1
wV Vn .

Define V V 2
n =

2
bV Vn −In.

Similarity, compute the third order vertex-vertex matrix

3
wV Vn=

2
bV Vn ·

1
wV Vn .

Define V V 3
n =

3
bV Vn −In.

...

In the same manner, compute the d−th order vertex-vertex matrix

d
wV Vn=

d−1
bV Vn ·

1
wV Vn .
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Define V V d
n =

d
bV Vn −In, where d is the minimum integer so that V V d is a complete graph.

The process is repeated until V V d
n =1 An.

Note that,

1 ≤ d ≤ n− 1, provided n ≥ 2.

Dn = d · V V d − V V d−1 − · · · − V V 3 − V V 2 − V V 1.

Dn is the matrix of geodesic paths for a graph G(V,E).

d is the exponent (number of steps) needed to transform G(V,E) to a complete graph

(clique) of size n.

Definition 2.24. The diameter of a graph G(V,E) is diam(G) = max (dij : dij ∈ Dn) = d;

the largest shortest path or longest geodesic between any two vertices. The radius of a

graph G(V,E) denoted by rad(G) = shortest geodesic.

If the above routine fails to transforms the G(V,E) into Kn in d = n steps, then G contains

components. A zero row or column vector in the distance matrix D indicates that the

vertex is not reachable. In such a cases, diam(G) = ∞ and rad(G) = ∞. However, the

method applies separately to find the largest geodesic in each component by repeating the

same steps to each component. The largest shortest path of component j is the number dj

needed to make component j a complete subgraph.

The following are some special graphs and their diameter:

Let G(V,E) is Kn; the complete graph then diam(Kn) = 1.

Definition 2.25. A path graph Pn of size n−vertices is a graph that contains vertices of
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degree two and one. All vertices have degree 2 except the end vertices, which have degree

1. A path graph is a broken cycle graph.

If G(V,E) = Pn, then diam(Pn) = n− 1.

The sum of shortest paths (geodesics) for each vertex is the row sum or column sum of

D.

Definition 2.26. Peripheral vertices are vertices having the largest geodesic, while vertices

forming the center are vertices having the shortest geodesic.

Definition 2.27. Let G(V,E) be a graph. The accessibility of vi ∈ V is defined by

A(vi) =
n∑

i=1

dij =
n∑

j=1

dij , dij ∈ Dn.

If G(V,E) is directed graph, Dn may not be symmetric; i.e. d(vi, vj) does not necessarily

equal d(vj , vi). Yet, if Dn is symmetric, the following holds true.

The vertex with the lowest summation value is considered the most accessible,

min(A(vi)) = min

(
n∑

i=1

dij

)
= min

 n∑
j=1

dij

 ,

However, the vertex the highest summation value is considered the least accessible,

max(A(vi)) = max

(
n∑

i=1

dij

)
= max

 n∑
j=1

dij

 .
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If G(V,E) is a directed graph and vi → vj does not imply vj → vi, then Dn still holds

shortest paths between vertices i and j.

Definition 2.28. The degree of vertex vi is defined by deg(vi) =
1

wvvii∈
1

wV Vn, while the

degree vector is defined by

diag

(
1

wV Vn

)
= diag

(
1

bV En×m ·
1

bV ET
n×m

)
= diag

(
1

bV Vn ·
1

bV Vn

)

1
wV Vn is weak diagonally dominant matrix because wvvii =

∑
i vvij for i 6= j.

Definition 2.29. The maximum degree of a graph G(V,E) is max(wvvii) =
∥∥∥∥ 1

wV V

∥∥∥∥
∞

,

where wvvii is the degree of vertex i.

Definition 2.30. A pendant vertex vi is a vertex satisfying the criterion d(vi) = 1.

Removing pendant vertices from a network reduces the graph diameter, as a result, vertices

with high degree centrality dominate. When pendant vertices become isolates the core of

the network and cohesive subgroups stand out.

2.9 Line Graphs

Definition 2.31. The line graph of G(V,E) also known the edge graph, denoted Gl, is a

graph satisfying the following criteria:

1. Each vertex of Gl
(
V l, El

)
represents an edge of G(V,E).
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2. Two vertices vl
i and vl

j of Gl
(
V l, El

)
are adjacent; i.e.

(
vl
i, v

l
j

)
∈ El if and only if

their corresponding edges are adjacent in G(V,E).

The line graph is intersection graph of the edges of G(V,E), it represents the adjacencies

between edges of G(V,E).

van Rooij and Wilf (1965) showed that ifG is connected the sequenceG,Gl,
(
Gl
)l
,
((
Gl
)l)l

, · · ·

of line graphs have four possible behaviors:

1. If G is a cycle graph Cn then Gl and each subsequent line graph is isomorphic to G

itself. Cyclic graphs are the only connected graphs for which Gl ∼= G.

2. If G is a claw K1,3, then Gl and all subsequent line graphs are C3.

3. If G is a path graph Pn, then each subsequent line graph is a shorter path Pn−1 until

eventually P0 terminates with an empty graph.

4. In all remaining cases, the sizes of the line graphs increase without bound.

Suppose G(V,E) = Kn; the complete graph with |V | = n and |E| = (n−1)n
2 , n ≥ 4. let

Gl
(
V l, El

)
= K l

n be the line graph or edge graph of G with

∣∣∣V l
∣∣∣ = |E| = (n− 1)n

2
and

∣∣∣El
∣∣∣ =

(n−1)n
2∑

i=1

n− 2 =
(n− 2)(n− 1)n

2
,

then diam(Kn) = 1 and diam(K l
n) = 2.

Assume G(V,E) = Pn; the path graph with |V | = n and |E| = n − 1. let Gl
(
V l, El

)
=
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P l
n = Pn−1 be the line graph of G with

∣∣∣V l
∣∣∣ = n− 1 and

∣∣∣El
∣∣∣ = n− 2,

then diam(Pn) = n− 1 and diam
(
P l

n

)
= n− 2.

Corollary 7. If G(V,E) = Pn, then

P ln−1

n =

(n−1)−times︷ ︸︸ ︷
l ◦ l ◦ · · · ◦ l(Pn)=

(n−1)−times︷ ︸︸ ︷(
· · ·
(
P l

n

)l
· · ·
)l

= P2.

Assume G(V,E) = Cn; the cycle graph with |V | = |E| = n, n ≥ 3. let Gl
(
V l, El

)
= C l

n =

Cn be the line graph corresponding to Cn with

∣∣∣V l
∣∣∣ =

∣∣∣El
∣∣∣ = n,

then diam(Cn) = diam
(
C l

n

)
= n

2 if n−even and diam(Cn) = diam
(
C l

n

)
= n−1

2 if n−odd.

Cn is the self line-graph.

Assume G(V,E) = Sn; the star graph with |V | = n and |E| = n−1. let Gl
(
V l, El

)
= Sl

n =

Kn−1 be the line graph corresponding to Sn with

∣∣∣V l
∣∣∣ = |E| = n− 1 and

∣∣∣El
∣∣∣ =

(n− 2)(n− 1)
2

,

then diam(Sn) = 2 and diam
(
Sl

n

)
= diam (Kn−1) = 1.
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Definition 2.32. A wheel graph Wn is a graph with |V | = n vertices, formed by connecting

a single vertex to all vertices of an (n− 1)−cycle. The smallest wheel graph is W4 = K4.

Assume G(V,E) = Wn; the wheel graph with |V | = n and |E| = 2(n − 1), n ≥ 4. let

Gl
(
V l, El

)
= W l

n be the line graph corresponding to Wn with

∣∣∣V l
∣∣∣ = |E| = 2(n− 1) and

∣∣∣El
∣∣∣ =

(n− 1)(n+ 4)
2

,

then

diam(Wn) = 2, and diam
(
W l

n

)
=


n−1

2 , n− odd

n
2 , n− even.

Remark 2.2. Let G(V,E) be a graph. d(vi, vj) = 2 ⇔ eik and ekj are connected in GL;

the line graph of G, where d(vi, vk) = d(vj , vk) = 1. In a sense, all vertices having distance

d = 2 in G become adjacent (will have distance d = 1) in Gl.

2.10 Summary

To sum up what I did in this chapter, I suggested a tool to store and manipulate constantly

growing large scale evolutionary networks using smaller subnetworks called cliques. The

great benefit of this matrix representation resides in the efficiency in performing matrix

operations. I then invented a mechanism to expand on vertices by introducing the notion

of infinitely dimensional network and matrix to tackle the problem of having vertices con-

tinuously introduced to the network, it can also be used to monitor the development of the

network as a time series. Furthermore, I have developed an algorithm to obtain one-mode

networks from weighted (valued) two-mode networks, then I have generalized this method
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to work multi-mode networks, in which I have defined new matrix multiplications of high

dimensional matrices. Finally, I have presented several mathematical tools that efficiently

compute graph and network measures such as edge count, graph density, network diameter,

degree centrality of vertices and degree and distance matrices. Finally, I have studied the du-

ality between edges and vertices, in which edges become vertices and vertices become edges.

In the next chapter, I discuss methods to predict missing edges and vertices in a net-

work based on information about vertices and edges. The method concerns vector product

to derive a similarity measure between pair of edges or vertices. The method will then be

extended to computed the similarity of hyperedges, in which the similarity is obtained for

groups of vertices or edges rather than pairs.
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Chapter 3: Estimating Missing Edges And Vertices

Because edges determine connectivity between vertices, they are crucial to the structure of

networks and knowing whether or not there is a missing edge in an incompletely observed

network is of great importance. In many sampled networks, edges are imperfectly observed

because of under-coverage or because actors are intentionally suppressing their roles and

linkages to serve different purposes.

In this chapter, I present a mathematical model to predict unobserved edges and vertices

in a network based on covariate information on vertices and edges. The covariates are the

exogenous attributes of entities. There are two types of attributes a set of vertices or edges

can have, quantitative attributes, which are numerical summaries associated with entities

and qualitative attributes, which are categorical summaries associated with entities. The

model consists of two similarity measures calculated simultaneously using both the quanti-

tative and the qualitative attributes derived externally as opposed to endogenous approach.

In the process of computing the similarity measure between vertices using the quantitative

information I use the inner (dot) product technique to obtain an estimate. On the other

hand, I use contingency tables and the χ2−test to obtain another estimate to compute the

similarity using qualitative information. The probability of having an edge between two

given vertices is then a weighted sum of the two estimates. If two pairwise vertices wind

up having a high similarity measure then there is a high probability the vertices have edge

connecting them or there is a high potential for forming an edge.

Vertices and edges do not necessarily have the same set of attributes. Depending on the

network setup and properties of the entities, different networks may have completely differ-

ent set of vertex attributes. Therefore, before applying the method of estimating missing
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edges, covariate information need to be carefully defined. For example, in the author-

coauthor social networks, possible attributes defined on authors and coauthors include age,

education, gender, spoken languages, discipline, number of publications. However, possible

attributes related to papers include field, topic, keywords, year of publication, publisher,

single/multiple author(s) are the main attributes. In the alcohol-consumer settings, age,

ethnicity, smoker, drug-user, alcoholic, income, job-class are possible consumers attributes,

whereas zip-code, location, hours-of-day, days-of-week are some attributes associated with

ABC stores.

When estimating missing edges (dyads), I assume that the network is stationary, i.e. given

a time slice, the order of the graph |V | is fixed.

3.1 The Inner Product Method For Estimating Missing Edges

Using Quantitative Covariates

Given a vertex vi. Let Aq be the set of all quantitative attributes associated with vi,

Aq =
{
Aq

1, A
q
2, · · · , A

q
k, · · · , A

q
|Aq |

}
.

For instance, the quantitative set may be

Aq = {age, income}.

Each of the variables Aq
k, 1 ≤ k ≤ |Aq|, takes on numerical values aq

k in R. Aq
k in this sense

is not necessarily a discrete variable, and the quantities aq
k need to be normalized.

Let V =
{
v1, v2, · · · , vi, · · · , v|V |

}
be the set of vertices in a network setting.
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Define, the vector of quantitative attributes associated with each vertex vi, 1 ≤ i ≤ |V | as

follows

~Vvi(A
q) =

(
aq

vi1
, aq

vi2
, · · · , aq

vik
, · · · , aq

vi|Aq |

)
, or

~Vvi(A
q) = aq

vi1
e1 + aq

vi2
e2 + · · ·+ aq

vik
ei + · · ·+ aq

vi|Aq |
e|Aq |.

Assume vi and vj are two vertices with corresponding vectors of quantitative attributes

~Vvi(A
q), ~Vvj (Aq) respectively. Then the inner product of the two vectors is

~Vvi(A
q) · ~Vvj (Aq) =

∣∣∣~Vvi(A
q)
∣∣∣ · ∣∣∣~Vvj (Aq)

∣∣∣ · cos(θij),

where θ is the angle between ~Vvi(A
q) and ~Vvj (Aq).

Therefore,

Sq(vi, vj) = cos(θij) =
~Vvi(A

q) · ~Vvj (Aq)∣∣∣~Vvi(Aq)
∣∣∣ · ∣∣∣~Vvj (Aq)

∣∣∣
is defined to be the quantitative similarity measure between ~Vvi(A

q) and ~Vvj (Aq). Because

the numerical values all fall in the first quadrant, the angle 0◦ ≤ θ ≤ 90◦.

The only situation the similarity Sq = 1 is when ~Vvj is a constant multiple of ~Vvi ; i.e.

~Vvj = α · ~Vvi for some real number α. To avoid having similarity measure Sq = 1 whenever

α 6= 1, I introduce another quantitative attribute unique to each vertex. This can be done

by setting that value to be the normalized vertex identity; i.e. i
n , where n = |V |. The

quantity can also be set by generating uniform non-repeating random numbers between 0

and 0.01, in which each vertex has another unique covariate. Thus, ~Vvj can never be a

constant multiple of ~Vvi .
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θ can be used to measure the level of similarity between a pair of vertices (actors) in

social networks. If θ → 0◦ the two vectors are close to parallel which implies that the two

vertices are very similar with a high probability of having/forming an edge. On the other

hand, if θ → 90◦ the two vectors are close to perpendicular which implies that the two

vertices are very dissimilar with a high probability of not having/forming an edge.

Let Pq(E(vi, vj)) be the estimate of the probability of an edge between vertex vi and

vertex vj based on quantitative exogenous covariates, then

Pq (E(vi, vj)) = Sq(vi, vj) = cos(θij) =
~Vvi(A

q) · ~Vvj (Aq)∣∣∣~Vvi(Aq)
∣∣∣ · ∣∣∣~Vvj (Aq)

∣∣∣
The basic idea of similarity is to have a quantitative measure of those attributes that

intersect, actors having close attribute values are more likely to be similar. Thus, an edge

with high probability implies the two actors are very similar and that the link do in fact

exist, and if otherwise not, this is an indication of a missing potential edge between vertices

i and j. This could also mean that there is a high potential to form an edge in the future,

which in both scenarios is useful information. Such information helps to predict potential

edges in an imperfectly observed network and assists analysts to elucidate disambiguate

relations among actors.

3.2 Contingency Tables For Qualitative Attributes

Consider a vertex vi. Let Ac be the set of all categorical attributes associated with vi,

Ac =
{
Ac

1, A
c
2, · · · , Ac

k, · · · , Ac
|Ac|

}
,
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where 1 ≤ k ≤ |Ac|. Ac
k in this sense is a qualitative variable.

As an illustration, the qualitative set may be

Ac = {job− class, eduction− level, spoken− language}.

If Ac
k is a nominal variable such as gender, then Ac

k is coded 0, if vertex vi is female, and 1

if vertex vi is male. In this regard, the indicator function of vi given an attribute set Ac
k is

used to code the variable gender.

Ivi(Ac
k) =

 ac
k = 1, if vi has attribute Ac

k.

ac
k = 0, if vi does not have attribute Ac

k.

Let V =
{
v1, v2, · · · , vi, · · · , v|V |

}
be the set of vertices in a network setting.

However, if Ac
k is ordinal, it is treated as if Ac

k is quantitative.

Define the list of categorical attributes associated with vertex vi as follows

Lvi(A
c) =

(
ac

vi1
, ac

vi2
, · · · , ac

vik
, · · · , ac

vi|Ac|

)
.
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Construct the contingency table for each set of pairs of vertices in the following manner

Nodes Attributes

Ac
1 Ac

2 · · · Ac
k · · · Ac

|A|

vi(Ac) ac
vi1

ac
vi2

· · · ac
vik

· · · ac
vi|Ac|

vj(Ac) ac
vj1

ac
vj2

· · · ac
vjk

· · · ac
vj|Ac|

Let Pc(E(vi, vj)) be the estimate of the probability of an edge between vertex vi and vertex

vj , then

Pc (E(vi, vj)) = p− value,

where p−value is the probability value obtained from the χ2−test. In general, 0 ≤ p −

value ≤ 1. If p−value → 0 indicates a low similarity level between vi and vj , however, if

p−value → 1 indicates a high similarity level between vi and vj .

The combined similarity measure between vertices vi and vj is computed as a weighted

sum of the two measures Pq and Pc as follows:

P(E(vi, vj)) = ωq · Pq(E(vi, vj)) + ωc · Pc(E(vi, vj)),

where

ωq =
|Aq|

|Aq|+ |Ac|
and ωc =

|Ac|
|Aq|+ |Ac|

.

Note that ωq + ωc = 1.
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3.3 Predicting Vertices

In the previous sections, I presented a mechanism to predict missing dyads and triads in an

incompletely observed networks. Vertices are not less important than edges. In fact, actors

are the main element of a network; without actors a network is meaningless. Actors play a

significant role in determining the dynamics of a network. In this section, I will introduce

a technique to estimate missing vertices (nodes) in a network. The method is again based

on covariate information for vertices (actors) rather than edges, and utilizes the line space

of edges which becomes the space of vertices as discussed in section (2.9).

In optimization theory, maximizing a problem in the dual space is equivalent to; and some-

times tends to be more feasible than, minimizing it in the original space.

In the line space of graphs, vertices become edges and edges become vertices. Consequently,

to estimate a missing vertex in the space of graphs, it suffices to estimate the missing edge

corresponding to that vertex in the line space of graphs. In this regards, I use a mapping

to transform from the space of graphs to the line space. Because graphs and matrices are

isomorphic (one-to-one and onto), there is a function (transformation) that takes the graph

and transforms it from the original space onto the line space and vice versa using matrices.

In this sense, the matrix is the operator.

Before I present the mapping, I would like to point out that first any one-mode graph

can be expressed in terms of a two-mode graph using the incidence matrix as opposed to

the adjacency matrix where the set of edges represent the second type set of vertices. In this

context, a new edge is introduced connecting the new vertex (former edge) with the original

set of vertices. Additionally, it is crucial to use the covariates of edges in the original space

which are now the covariates of vertices in the line space when performing the estimation.

Let V =
{
v1, v2, · · · , vi, · · · , v|V |

}
be a set of vertices. Furthermore, let
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E =
{
e1, e2, · · · , e|E|

}
be the set of edges associated with V .

Given a graph G(V,E). Let f : G(V,E)→ Gl(V l = E,El) be a mapping from the space of

graphs onto the line space of graphs.

f = V ET · V E = EV · V E = EE,

where V E is the vertex-edge incidence matrix corresponding to G(V,E).

Note that
∣∣V l
∣∣ = |E| ≤

∣∣El
∣∣ ≤ 1

2 |V |(|V | − 1). Moreover, in the line space every vertex

(node) has at least degree = 2.

Example 2. To demonstrate this, consider the following graph G(V,E), with

V = {v1, v2, v3, v4, v5, v6} and E = {e1, e2, e3, e4, e5, e6, e7}. |V | = 6 and |E| = 7.

79



First, obtain the incidence matrix V E:

V E =

e1 e2 e3 e4 e5 e6 e7

v1 1 0 0 0 0 0 0

v2 1 1 1 0 0 0 0

v3 0 1 0 0 1 0 0

v4 0 0 0 1 1 1 0

v5 0 0 1 1 0 0 1

v6 0 0 0 0 0 1 1

The square matrix EE is the edge-edge representation of G(V,E) in the line space, i.e.

Gl
(
E,El

)
.

EE =

e1 e2 e3 e4 e5 e6 e7

e1 0 1 1 0 0 0 0

e2 1 0 1 0 1 0 0

e3 1 1 0 1 0 0 1

e4 0 0 1 0 1 1 1

e5 0 1 0 1 0 1 0

e6 0 0 0 1 1 0 1

e7 0 0 1 1 0 1 0

To map back to the original space of graphs we use the inverse transformation f−1, where

f−1 = V E · V ET = V E · EV = V V.
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V V =

v1 v2 v3 v4 v5 v6

v1 0 1 0 0 0 0

v2 1 0 1 0 1 0

v3 0 1 0 1 0 0

v4 0 0 1 0 1 1

v5 0 1 0 1 0 1

v6 0 0 0 1 1 0

V V is the vertex-vertex representation of G(V,E).

3.4 Estimating Edges Of A Triad

Triadic relations are the basic foundation of edge dependency; the decision to form an edge

may be dependent upon or related to the formation or absence of another edge(s) within a

network. Because triads are the minimal representation of a cohesive subgroup in a network

setting that involves more than one edge, they reveal how edges are affected by the external

structure of the network. In this regard, I use exogenous covariate information on three

entities to study the four possible scenarios of having edges in a triad, which are depicted

in Figure 3.1. The first scenario is to have mutual agreement among all three actors; this

is very interesting because this triad is a clique or a hyperedge of three vertices. It means

that the three entities are very close where all ties are supposed to be strong. The second

situation is to have a brokerage role. This is present in a path network or star network with

three vertices. One vertex is maintaining connectivity with two disconnected vertices. In

this sense, the brokerage communicates with both actors making sure the two actors are not

interacting. Then, the third possibility is to have two mutually agreeing actors and a third

isolated one. Finally, it is possible that all three actors have mutual disagreement and thus

resulting in three isolated vertices. This indicates that all three actors are distant from each

other and do not share any common interests or properties. Although, the term edge or
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(a) Mutual agreement. (b) Brokerage. (c) Isolated dyad. (d) Mutual disagreement.

Figure 3.1: Possible Ties of a Triad.

diadic dependence may sound stochastic, which is modeled by exponential random graphs

(P ∗ model), logistic model or Markov Chain Monte Carlo [24, 50, 57, 60], the approach I

suggest is geometric and vector related.

Covariate information on three vertices define three unit vectors associated with each entity

in the first quadrant forming a tetrahedron, thus the minimum space need to analyze such

object is R3, see Figure 3.2. The geometric shape of the tetrahedron is the basis of connec-

tivity in the triad, see Figure 3.4. The tetrahedron height represented by a vector always

points in the direction of the centroid of the base triangle. Therefore, the distance between

each vertex of the base triangle and the centroid determines edges among three vertices,

see Figure 3.4. The more attributes the three vertices share among themselves the more

close distance wise the three vectors are. The four situations described above are due to the

fact that if the three vertices are within a epsilon distance from the base triangle centroid

then they are more likely to be all connected, thus generating clique; see Figure 3.4(a). The

extreme case of this situation is to have all three vectors coincide meaning the vertices are

very similar; then d(vA, vB) = d(vA, vC) = d(vB, vC) = 0 and the angle between the vectors

to 0◦. Yet, if only two vertices are below the threshold then the two vertices are more likely

to be connected leaving the third vertex isolated; the two vertices are close to the centroid

of the base triangle while the the third is distant; see Figure 3.4(b). The extreme case of

this situation is to have two coincidental lines with the third being perpendicular. It is also

possible for vertex to be smaller than the critical point while the other two vertices pass
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(a) Tetrahedron formed by three vectors.

(b) Tetrahedron base triangle.

Figure 3.2: Tetrahedron and its base triangle.
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(a) Three almost parallel vectors results in a cohesive group.

(b) Two perpendicular vectors and a third lying half-way results in a structural hole.

(c) Two perpendicular vectors and parallel third results in an isolated dyad.

(d) Three perpendicular vectors results in isolated vertices.

Figure 3.3: Scenarios of three vectors in space.
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(a) All three vectors are within ε distance from
the base triangle centroid.

(b) One vector is close to the base triangle centroid, the other two are distant.

(c) Two vectors are below the threshold while the third exceeds it.

(d) All three vectors are far from the base triangle centroid.

Figure 3.4: Distance of unit vectors from the base triangle centroid.

85



the critical value; this leads to one vertex being connected to two disconnected vertices in

which their vectors are distant from the centroid of the base triangle, see Figure 3.4(c).

The extreme case of this situation is to have two perpendicular vectors and a third vector

lying on the plane joining the two vertices with a 45◦ from both vectors. All three vectors

lie on a plane. Finally, if the distance between the three vertices and the centroid of the

base triangle is more than epsilon then the three vertices are dissimilar and thus they are

disconnected, see Figure 3.4(d). The extreme case of this situation is to have three perpen-

dicular vectors; very dissimilar. The distance between any two vertices is then
√

2 and the

perimeter of the base triangle is 3
√

2.

In Figure 3.2(b), the centroid of the base triangle ~C is found by averaging the coordinates

of the vectors ~a, ~b, and ~c respectively using the following formula

~C =
1
3

(
~a+~b+ ~c

)
.

The length of each side is

∣∣∣~a−~b∣∣∣ =
√
~a2 +~b2 − 2|~a| · |~b| · cos

(
θ
~a~b

)
=
√

2
(
1− cos

(
θ
~a~b

))
,

|~a− ~c| =
√
~a2 + ~c2 − 2|~a| · |~c| · cos (θ~a~c) =

√
2 (1− cos (θ~a~c)),

∣∣∣~b− ~c∣∣∣ =
√
~b2 + ~c2 − 2|~b| · |~c| · cos

(
θ~b~c
)

=
√

2
(
1− cos

(
θ~b~c
))
.

~a, ~b, and ~c are all unit vectors.
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The triangle has a perimeter of

p =
√

2
(√

1− cos
(
θ
~a~b

)
+
√

1− cos (θ~a~c) +
√

1− cos
(
θ~b~c
))

.

This means that the maximum possible perimeter 3
√

2; it is obtained when all three vec-

tors are perpendicular to each other. Thus, they are all disconnected (no edges) as in

Figure 3.1(d). A perimeter of zero indicates that all three vertices are parallel. Thus,

they are all connected (hyperedge connecting three vertices) as in Figure 3.1(a). Therefore,

0 ≤ p ≤ 3
√

2. Generally, if 2
√

2 ≤ p < 3
√

2 then two vertices are connected while the

third is isolated (one edge) as in Figure 3.1(c). However, and if 3
√

2 − 2 ≤ p < 2
√

2 then

one vertex is connected to two disconnected vertices (two edges) as in Figure 3.1(b); this is

often known as a star or path graph of size 3.

The volume of the tetrahedron and the area of its base triangle are also useful, the for-

mulas are derived below. Without loss of generality, suppose ~ca = ~a − ~c and ~cb = ~b − ~c.

Then the area of the base triangle is given by,

A =
1
2

∣∣∣ ~ca× ~cb
∣∣∣ =

1
2

√
3 + 4 cos (θ~a~c) · cos

(
θ~b~c
)
− 2 cos (θ~a~c)− 4 cos

(
θ~b~c
)
− cos2 (θ~a~c).

The volume of the tetrahedron is given by,

V =
1
6

∣∣∣~a · (~b× ~c)∣∣∣

V =
1
6

√
1 + 2 cos

(
θ
~a~b

)
· cos (θ~a~c) · cos

(
θ~b~c
)
− cos2

(
θ
~a~b

)
− cos2 (θ~a~c)− cos2

(
θ~b~c
)
.

The four extreme scenarios described above are discussed more in detail below
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• Scenario 1: θ
~a~b

= θ~a~c = θ~b~c = 90◦; the three vectors are perpendicular, which implies

that the three vertices are all disconnected, see Figures 3.1(d) and 3.3(d). In such a

case,

p = 3
√

2, A =
√

3
2
, V =

1
6
.

• Scenario 2: θ
~a~b

= θ~a~c = 90◦ and θ~b~c = 0◦; two of the vectors are within zeros distance

while the third is perpendicular to both, which means that two vertices are connected

and the third is disconnected, see Figures 3.1(c) and 3.3(c). In such a case,

p = 2
√

2, A = 0, V = 0.

• Scenario 3: θ
~a~b

= 90◦ and θ~a~c = θ~b~c = 45◦; two of the vectors are perpendicular while

the third is halfway between the two, which means that a vertex is connected to two

disconnected vertices, see Figures 3.1(b) and 3.3(b). In such a case,

p = 3
√

2− 2, A =
1
2

√
3− 2

√
2, V = 0.

• Scenario 4: θ
~a~b

= θ~a~c = θ~b~c = 0◦; the three vectors are parallel, which implies that the

three vertices are all connected, see Figures 3.1(a) and 3.3(a). In such a case,

p = 0, A = 0, V = 0.

The problem with this method of identifying triads is that the fact that it does not reveal

which vertices are connected/disconnect. But, terribly enough it is possible to misclassify

triads if the tetrahedron is a regular tetrahedron; for example, if each side of the base tri-

angle has length
∣∣∣~a−~b∣∣∣ = |~a− ~c| =

∣∣∣~b− ~c∣∣∣ = 0.8, then p = 2.4 > 3
√

2− 2. Meanwhile, the
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three vectors are equidistance from each other meaning they should be either all connected

or all disconnect; yet, they are classified as the triad having two edges. The above method

is good in predicting the triads in Figures 3.1(a) and 3.1(d), but not practical in predicting

the triads in Figures 3.1(b) and 3.1(c). Consequently, the method is inconsistent in terms of

predicting the correct triad and requires improvement. One solution to tackle this problem

is to avoid having regular tetrahedron which may be achieved by adding a small random or

unique perturbation to each vector.

However, the centroid of the tetrahedron base triangle can be utilized to address the is-

sue of inconsistency through measuring the distance of each of the three vectors from from

the centroid vector. The centroid acts like the average distance or center of mass of the

three vectors. The question to ask then is how far each entity is away from that center

of mass. If a vertex is at a distance from the centroid below a certain threshold then the

vertex is more likely to be connected to at least one other vertex.

Predicting an edge between only two vertices is straightforward because the two vertices lie

at an equidistance from the centroid and thus are both below the critical point; i.e. con-

nected, or above it; i.e. disconnected. But, when a third vector is present that judgement

may not be obvious. The new vector may be close to one vector and distant from the other;

in such a case, two vertices of the base triangle are near the centroid while the third is far

from it; thus, the triad contains only one edge. Or, the new vector is positioned halfway

between the other two vectors; in such a case two vertices of the base triangle are far from

the centroid while the third is close to it; thus, the triad contains two edges. Ultimately, if

all three vertices of the base triangle are near the centroid the triad contains three edges

(clique) and if all three vertices of the base triangle are distant from the centroid the triad

contains no edges. This takes care of the problem of having vertices with the same distance

from the centroid.
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Having said that, the issue now is how to predict edges among three vertices mathematically

besides visually. The solution is by using fuzzy logic. Assume the distance from the centroid

is identified as close or far. Furthermore, define a boolean variable associated with vertices

that has the value y if it is close to the centroid and n if it is far from the centroid. The

tag y for “yes” means the vertex is available/willing to make an interaction, while the tag

n for “no” is an indicator that the vertex is not available/willing to make an interaction.

Then, I define the fuzzy operator ⊕ on three vertices (vectors) with two choices y and n as

follows: y ⊕ y = 1, n⊕ n = 0, and

y ⊕ n = n⊕ y =

 1, if two vectors have tags n and n.

0, if two vectors have tags y and y.

All four possible combinations of the boolean variable defined using fuzzy logic on three

vertices are presented in Table 3.1 and resemble the triads in Figure 3.1. Essentially, if the

first two vertices have tags n and the third has tag y then y ⊕ n = 1. The third vertex

must make interaction with at least one other vertex and because the other two have tags

n, it is forced to connect to both of them allowing the brokerage triad with two edges to be

present. Using the same logic, it also means that y⊕n = 0, given the fact that the first two

vertices have tags y and the third has tag n. The third vertex must make no interaction

with at least one other vertex and because the other two have tags y, it is forced to connect

to none because the other two vertices agree to form an edge leaving the third out; it allows

for the triad with one edge to be present. Finally, if all vertices have tags y then they all

mutually agree on communicating setting y ⊕ y = 1, which allows the clique triad to be

present. And, if all vertices have tags n then they all mutually disagree on communicating

setting n⊕ n = 0, which allows for the triad with no edges to be present.

Remains to discuss is the choosing of critical distance from the centroid at which the tags y
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Table 3.1: Two-level fuzzy operator defined on three vertices.

⊕ y y y

y ? 1 1
y 1 ? 1
y 1 1 ?

⊕ y n n

y ? 1 1
n 1 ? 0
n 1 0 ?

⊕ y y n

y ? 1 0
y 1 ? 0
n 0 0 ?

⊕ n n n

n ? 0 0
n 0 ? 0
n 0 0 ?

and n are set. For this purpose, I take the mean distance of all distances from the centroid

for the four extreme scenarios. If all vectors are parallel then the distance from the centroid

is 0 for each vertex. If two vectors are perpendicular and the third is at equidistance from

both then the distance from the perpendicular vectors to the centroid is
√

6−
√

2
3 and from

the third to the centroid is
√

6−4
√

2
3 . If two vectors are parallel and the third is perpen-

dicular to both then the distance from the centroid to the parallel vectors is
√

2
3 and from

the centroid to the perpendicular vector is 2
√

2
3 . Finally, if the three vectors are all per-

pendicular then the distance from the centroid is
√

2
3 . Hence, the average distance is 0.4965.

The boolean tags y and n may be extended to include a third option m for “maybe”

for vertices that are not too close or too far from the centroid of the base triangle; yielding

in six combinations; namely, y ⊕ y, y ⊕ m, y ⊕ n, m ⊕ m, m ⊕ n, and n ⊕ n. There are

four clear cases and two fuzzy ones. The obvious cases are y ⊕ y = 1, y ⊕m = m⊕ y = 1,

m⊕ n = n⊕m = 0, and n⊕ n = 0. Yet, the fuzzy situations are

y ⊕ n = n⊕ y =

 1, if two vectors have tags (n and n) or (n and m).

0, if two vectors have tags (y and y) or (y and m).

m⊕m =

 1, if the third vector has tag n or m.

0, if the third vector has tag y .
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The ten combinations of the three levels of closeness from the centroid defined by the fuzzy

operator are depicted in Table 3.2 and resemble the triads in Figure 3.1. If two of the

vertices have tags n and n or tags m and m and the third has tag y then y ⊕ n = 1 and

m⊕m = 0. The vertex with the tag y must make interaction with at least one other vertex

and because the other two capture the values n⊕n = 0 or y⊕m = 0, it is forced to connect

to both vertices allowing for the brokerage triad with two edges to be present. Concurrently,

if two vertices have tags y and y or tags m and m and the third has tag n then y ⊕ n = 0

and m⊕m = 1. The vertex with the tag n must make no interaction with at least one other

vertex and because the other two capture the values y⊕ y = 1 or m⊕ n = 0, it is forced to

connect to none because the other two vertices have an edge in common which leaves the

third vertex isolated; this in turn allows for the triad with one edge to be present. Finally,

if all vertices have tags y, y and y, or tags y, y and m or tags m, m and m, then they all

mutually agree and thus y⊕ y = 1, y⊕m = 1 and m⊕m = 1, which allows the clique triad

to be present. And, if all vertices have tags n, n and n or tags n, n and m, then they all

mutually disagree and thus n⊕ n = 0, n⊕m = 0, which allows for the triad with no edges

to be present.

I have demonstrated a method to estimate triadic edges using a two-level fuzzy operator and

a three-level fuzzy operator irrespective of edge dependency which is the core of the Markov

Chain Monte Carlo model to predict edges in general. The method can be generalized

to any clique size using the same analogy. The two-level fuzzy operator generated one

mutually connected vertices (triadic edge), one isolated vertex (dyadic edge), one brokerage

vertex (star or path graph), and one mutually disconnect vertices (isolates). However,

the three-level fuzzy operator produced three mutually connected vertices (triadic edge),

three isolated vertex (dyadic edge), two brokerage vertex (star or path graph), and two

mutually disconnect vertices (isolates). Thus, the three-level fuzzy operator does not equally

distribute edges.
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Table 3.2: Three-level fuzzy operator defined on three vertices.

⊕ y y y

y ? 1 1
y 1 ? 1
y 1 1 ?

⊕ y y m

y ? 1 1
y 1 ? 1
m 1 1 ?

⊕ m m m

m ? 1 1
m 1 ? 1
m 1 1 ?

⊕ y n n

y ? 1 1
n 1 ? 0
n 1 0 ?

⊕ y m m

y ? 1 1
m 1 ? 0
m 1 0 ?

⊕ y y n

y ? 1 0
y 1 ? 0
n 0 0 ?

⊕ y m n

y ? 1 0
m 1 ? 0
n 0 0 ?

⊕ m m n

m ? 1 0
m 1 ? 0
n 0 0 ?

⊕ n n n

n ? 0 0
n 0 ? 0
n 0 0 ?

⊕ m n n

m ? 0 0
n 0 ? 0
n 0 0 ?

3.5 Summary

The main theme of this chapter is the study of edges and vertices and how they can be

predicted (if they are missing in a network) using covariates associated with vertices and

edges respectively. In Chapter 2 I addressed the interchangeability and duality between

vertices and edges in a graph, which was the foundation to estimating the probability of

vertices in an unobserved network. I applied the inner product method on the vector

of covariates to estimate the probability of dyadic edges. Moreover, I have extended the

method to predict triadic edges using covariate information as well; however, the method

is based on geometry and fuzzy logic rather than the inner product of two vectors. To this

end, I made the assumption that if two actors share many common values and attributes

then they are considered close to each other which means that these actors are similar and

thus the probability of interaction increases.
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Chapter 4: Evolutionary Networks And Preferential

Attachment

In this chapter, I develop a theory on evolutionary networks using concepts from calculus

such as the difference and the average rate of change. The method helps detecting emerging

“elite” actors within a network. Actors with high interacting rates are considered important

actors. I then utilize tools and methods presented in Chapters 2, 3 to build a model of

preferential attachment in which dyadic edges are generated based on the similarity measure

computed on the vectors of covariates.

4.1 Evolving Networks And Emerging “Elite” Groups

Having data on a social network over time provides an insight on the formation and evolu-

tion of the network, which includes vertex-vertex interaction in the form of introducing and

strengthening edges as well as introducing vertices. For each time slice, there is a network

of actors and ties and a graph. Graphs may be dependent upon each other in which the

formation of edges and vertices at time t is related to the status of edges and vertices at

time t− 1. They may also be treated independently, but are not assumed to be disjoint.

Time series analysis on evolving networks is useful in detecting emerging subgroups or

subnetworks within the mother network. For example, the emergence of scientific subfields

in author-coauthor networks, the emergence of alcoholic communities in an alcohol society,

the emergence of elevated crime areas in an alcohol ecological system, and the emergence

of a disease in a community.

Below I suggest a mathematical algorithm to identify emerging cliques in a network from
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a series of matrices. Assume actors are allowed to make only one interaction with at least

one other actor in the network at each time step, that is to say edges’ weight is increased

by one at each time and cliques may be present as well.

Definition 4.1. Let
0

wM,
1

wM,
2

wM, · · · ,
t

wM be the weighted adjacency matrices of an

evolving one-mode individual-by-individual social network of vertices over the time period

T = {0, 1, 2, · · · , t} or a sequence of t matrices, then

t
wD=

t
wM −

0
wM

is the time t difference (change) adjacency matrix.

t
wD can be thought of as the weighted change in the ties strengths since time t0 = 0. A zero

entry in the
t

wD matrix, i.e.
t

wdij= 0, where
t

wdij∈
t

wD, indicates no change or interaction

between actors i and j. If
t

wmij=
t

wdij , where
t

wmij∈
t

wM , then actor i and actor j have

formed new edge with magnitude
t

wdij since time t0 = 0.

Now consider,

t
wC=

1
t
·

t
wD,

t
wC represents the subnetwork(s) of emerging group(s) within the original network, where

t
wcij is a measure for the rate at which actors i and j are strengthening their ties at time t.

Because edge weights are incremented by one and thus the maximum difference at time t

gives edge weight difference of t,
t

wC generates numbers that are between 0 and 1.
t

wC may

be used as the edge probability matrix.
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A column or row vector
ti

wR of
t

wD, where

ti
wr=

tij
wD

represents all the actors that actor i interacted with, including clique interactions.

Example 3. Assume
0

wM,
1

wM,
2

wM,
3

wM are the one-mode weighted adjacency matrix of a

network over four time periods with

0
wM=

v1 v2 v3 v4 v5

v1 0 1 3 0 0

v2 1 0 2 4 0

v3 3 2 0 1 0

v4 0 4 1 0 0

v5 0 0 0 0 0

,
1

wM=

v1 v2 v3 v4 v5

v1 0 1 3 0 0

v2 1 0 2 4 0

v3 3 2 0 2 0

v4 0 4 2 0 0

v5 0 0 0 0 0

2
wM=

v1 v2 v3 v4 v5

v1 0 2 3 0 0

v2 1 0 3 4 0

v3 3 3 0 3 1

v4 0 4 3 0 0

v5 0 0 1 0 0

,
3

wM=

v1 v2 v3 v4 v5

v1 0 2 4 0 0

v2 2 0 3 4 0

v3 4 3 0 4 2

v4 0 4 4 0 0

v5 0 0 2 0 0
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The time 3 difference matrix is then

3
wD=

3
wM −

0
wM=

v1 v2 v3 v4 v5

v1 0 1 1 0 0

v2 1 0 1 0 0

v3 1 1 0 3 2

v4 0 0 3 0 0

v5 0 0 2 0 0

,
3

wC=
1
3
·

3
wD=

v1 v2 v3 v4 v5

v1 0 1
3

1
3 0 0

v2
1
3 0 1

3 0 0

v3
1
3

1
3 0 1 2

3

v4 0 0 1 0 0

v5 0 0 2
3 0 0

The matrices
3

wD and
3

wC reveal features about the formation of the network represented

by the matrix M3 that is otherwise hard to detect. For instance, the clique v1 − v2 − v3 is

an emerging subgroup as well as the star subnetwork. As a matter of fact, the central figure

v3 is making interaction with every other actor in the network. Not only v3 and v4 are

maintaining high interaction, but also they capture the highest possible time 3 difference

rate and thus making them important figures.
3

wC suggests that v3 − v4 and v3 − v5 are

more likely to continue strengthening their ties.

4.2 Preferential Attachment Using Covariate Information

In this section, I propose a mathematical model that utilizes similarity measures calculated

on actors using covariate information. The measures are used to predict the behavior of

evolving networks. The model is based on the transition probabilities in a finite state

stochastic process in discrete time, in which the network status at the current state relies

on the previous network status according to a Markov chain process. The sequence of states

is time dependent and recursive. Thus, the transition adjacency matrix at time t + 1 can
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be expressed as a function of the previous transition adjacency matrix at time t:

t+1
wA∞= f1

(
t+1
wB∞

)
,

where
t+1
wB∞= f2

(
t

wB∞

)
. This implies that

t+1
wA∞= f3

(
t

wB∞

)
.

But
t

wA∞= f2

(
t

wB∞

)
.

Hence,

t+1
wA∞= f1

(
t

wA∞

)
= · · · = ft

(
0

bA∞

)
.

I decompose the adjacency matrix at time t+ 1 and express it as the sum of two matrices,

one representing the observed matrix at time t, while the other matrix corresponds to the

new change in the edges or the transition probabilities.

Let
t

wA∞ be the infinite square weighted adjacency matrix corresponding to an observed

network (social or nonsocial) at time t. At time t+ 1, the network undergoes one of three

possible types of change,

1. inactive actors become active by forming new edges,

2. already existing connected actors (active ones) strengthen their ties/form new ties, or

3. 1 and 2 simultaneously.
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For large time intervals, the evolution of the network can be examined through the
t

wDn

time t difference adjacency matrix. For small t, the change may not be noticeable. How-

ever, covariate information on actors may be helpful in estimating the change in the status

among actors between states. Therefore, the covariate similarity matrix is used to estimate

the observed matrix at time t+ 1.

Let
t+1
bT∞ be the weighted adjacency covariate matrix of actors at time t + 1.

t+1
bT∞ is

obtained in the following manner:

1. t′ij = S(vi, vj) = P (E(vi, vj)).

2. If t′ij ≥ 0.7, then tij = 1 is an edge with multiplicity one.

The actual adjacency matrix, which resembles the status of the network at time t+ 1, can

be approximated by

t+1
wA∞∼

t+1
wÂ∞=

t
wÂ∞ +

t+1
bT∞ .

Or,

t+1
wA∞=

t+1
wÂ∞ +

t+1
be∞=

t
wÂ∞ +

t+1
bT∞ +

t+1
be∞,

Now we can write the predictor matrix
t+1
wÂ∞ in terms of the predictor matrix

t
wÂ∞ and the

covariates similarity matrix
t+1
bT∞ as follows

t+1
wÂ∞=

0
bA∞ +

1
bT∞ +

2
bT∞ + · · ·+

t
bT∞ +

t+1
bT∞,

where
0

bA∞ is the initial observed network at time t = 0.
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The similarity matrix S is updated at every time step before the covariate matrix
t+1
bT∞

is computed for the next step; thus,
t+1
bT∞ varies over time. However, if I make the assump-

tion that
t+1
bT∞ undergos a constant change at the micro-level time, then similarities among

actors are held constant on the short run and as a result we have,

t+1
wÂ∞=

0
bA∞ +(t+ 1)·

t+1
bT∞ .

This indicates that edge evolution between actors grows linearly, i.e. actors strengthen their

ties following a linear function.

Suppose a new actor vi has been introduced to the network. Then, based on the covariate

similarity measure S (vi, vj), actor vi prefers to attach to actor vj if the similarity is very

high, namely, S (vi, vj) ≥ 0.7.

4.3 Summary

I have suggested models for evolutionary networks and preferential attachment that are

based on the theory I have put together in Chapters 2, 3. Vertex connectivity (dyadic

edge) is a common property of many large-scale networks. As far as evolutionary networks,

the model takes into account that the number of vertices is continuously growing, edges

are constantly being introduced, or edges weights increase in value. As far as preferential

attachment, the more connected a vertex is, the more likely it is to acquire new edges.
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Chapter 5: Applications To Networks

There are many applications to this discipline. In this chapter, I case study the author-

coauthor social networks and suggest a model of preferential attachment in emerging scien-

tific fields. Researchers and faculty members benefit from publishing in terms of financial

compensation and prestige. Distinguished scholars have developed, over time, certain styles

of coauthorship depending on their career and field of study. The purpose of analyzing

coauthorship networks is to be able to answer questions such as “who-wrote-with-whom”,

how often coauthors publish, who maintains strong relations leading to four basic styles of

coauthorships.

Then, I explore the network of road fatal crashes across the United States and analyze

relationship and similarities between states and crash factors as well. This network is an

example of a non-social static two-mode network in which the number of states and crash

factors are fixed.

Additionally, I present the network of news documents. For this non-social network, I

construct the two-mode term-document network and bigram-document network. I then

derive the one-mode document-document network with respect to terms and bigrams using

the methods discussed in Chapter 2.

I close this chapter with two examples of simulated social networks; one demonstrating

a coauthorship social network, while the other demonstrating an online music friendship

network.
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5.1 Edward Wegman Coauthorship Social Network

To begin, I would like to provide the reader some background on Dr. Wegman. Edward

J. Wegman is a prominent professor of Statistics at George Mason University, Fairfax VA,

USA. He received his Ph.D. degree in Mathematical Statistics from University of Iowa in

1968. Immediately after his Ph.D., he went to the Statistics Department at the University

of North Carolina, Chapel Hill, which was one of the leading statistics departments in the

world. His early career focused on the development of aspects of the theory of mathematical

statistics. In 1978, he went to the Office of Naval Research (ONR) where he was the Head

of the Mathematical Sciences Division. He has been in the research and academia field for

some time and has published an array of work, which includes over 200 prestigious refereed

journal, articles, books, and technical reports, authored individually and with a number of

colleagues and Ph.D. students.

In this example, I examine the structure of the autho-coauthor social network and model

its behavior on multiple levels. For this purpose, I perform a comprehensive social network

analysis on the first-level and second-level network.

Data were collected from his personal website and his updated curriculum vitae. Initially, I

built the one-mode adjacency/proximity matrix manually in MS-Excel, but at later stage I

was able to obtain the one-mode matrix from the two-mode matrix through matrix multipli-

cation. The first-level coauthorship network is of size 102× 102. This matrix is symmetric

because relationships among actors are reflexive; if author A published with author B then

this also implies B published with A. It is worth mentioning though that co-authorship

networks are not generally symmetric.
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5.1.1 Network Visualization

I explore the network first then I present a detailed analysis of the network; Figure 5.1 shows

the first-level layout of the network. The general structure of the network is a weighted

digraph consisting of vertices (coauthors) and weighted edges (ties) representing frequency

of coauthorship. The graph is an example of “ego” style network; in which all vertices are

connected to one focal vertex, see Figure 2.1. In graph theory terms, this is referred to as

a star graph with a network diameter of 2 and density of 0.0986.

The star-like network is a governing feature of any first-level coauthorship network due to

Figure 5.1: Wegman’s author-coauthor social network.

the fact that all coauthors are explicitly connected to that one main author. Some coauthors

share edges not only with Wegman, but also with other coauthors; more than one name

may appear on a paper. There are two visible “clouds” (clump networks) fully connected –

complete subgraphs, formally known as cliques.

Figure 5.2 shows the matrix representation of the network, each black square indicates a

coauthorship relation. In the figure, block number 1 represent the principal author Wegman.

The block diagonal structure indicates strong clusters (cliques), and the black horizontal
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and vertical lines suggest that the principal author maintains interactions with all other

co-authors.

Figure 5.2: Adjacency matrix of Wegman’s network.

Figure 5.3 portrays an optimized blockmodel partition with three clusters based on struc-

tural equivalence.

5.1.2 Centrality Measures

In social network concepts, centrality metrics are quantitative tools used to measure cen-

tral figures or organizations in the network. Centrality provides information on position of

actors on the individual level. Conceptually, centrality is about identifying actors residing

in the center (core) of the network, such actors have access to information.
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Figure 5.3: Random partition with three clusters.

I ran the centrality metrics vertex degree – a local measure, and closeness on Wegman’s

first-level coauthorship network; Figure 5.4 shows the results. Aside from Wegman, who

is the most central person connected to all other actors in the network because he wrote

with every member of the network; thus he captured the highest vertex degree, Solka with

normalized vertex degree of 25.743 comes in second place. The third place is shared by

Marchette and Priebe with normalized vertex degree of 15.842.

Using closeness centrality measure, Wegman captured the first place. Solka has the second

highest closeness with a normalized value of 57.386, he is considered important because he

is relatively close to all other actors. Marchette and Priebe have a closeness normalized

value of 54.301, capturing the third place. W. Martinez with a normalized closeness value

of 53.723 comes in fourth place. Notice that no other coauthor has a normalized closeness

value less than 50.249. The reason is that the first-degree coauthorship network resembles

a star network where most coauthors are close to the principal author. While the first-level

network has limited structure, the second-level coauthorship network is expected to reveal
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Figure 5.4: Normalized vertices degree and closeness for all actors.

more features.

Figure 5.5, is a modified version of Figure 5.1, emphasizing nodes degree and tie strength.

Nodes color and size are set by the attribute vertex degree, while edges color and thickness

are set by tie strength – frequency of communication. Color palettes of nodes degree and

ties strength are shown in Figure 5.5. Solka has the second largest vertex degree, and Priebe

and Marchette have the same vertex color and size. Additionally, W. Martinez and Luo

have relatively large nodes with the same vertex color. As far as considering ties strength

instead degree centrality; Solka has the highest frequency of coauthorship then W. Mar-

tinez. Concurrently, another interesting hidden feature is revealed by the graph, Solka and

W. Martinez have the strongest tie among all coauthors, they coauthored 17 times more

than any other two coauthors did with the exception of the principal author. The edges

(Solka, Priebe) and (Solka, Marchette) have the same color and thickness, which suggests

that Priebe and Marchette coauthored with Solka the same number of times, in fact, they
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coauthored four times.

Figure 5.5: Wegman’s coauthorship network. Color palettes. Left: nodes degree, right: tie
strength.

To discover secondary structures and investigate connectivity I exclude the star vertex

“Wegman”, see Figure 5.6. The graph is partially disconnected with several isolated nodes;

in this case, Wegman is considered a cutpoint and the edges {(Carr, Luo), (Carr, Shen)} are

considered local bridges. Global bridges are less frequent in such networks. Both of Carr

and Luo are cut-points; by removing either the subnetwork becomes disconnected. The

figure also shows that several coauthors are still connected forming cohesive subnetworks

such as the actors {Lent, Leaver, Dorfman}.

5.1.3 Cohesive Subgroups

Network cohesion can reveal highly connected subgroups – active networks acting in con-

junction with the mother network, captured through cliques. In Wegman’s network there

are 36 cliques, Figure 5.7 shows all 36 clique sets. For example, clique number 11 contains

the nodes (Wegman, Solka, Bryant), clique number 9 contains the actors (Wegman, Solka,
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Figure 5.6: Wegman’s network without Wegman.

W. Martinez, Reid), clique number 2 contains the actors (Wegman, Solka, W. Martinez,

Marchette, Priebe). Actors of cohesive groups can be members of one or more cliques si-

multaneously such as Solka.

Cliques in a graph may overlap – the same vertex or set of nodes may belong to more than

one clique (some cliques contain more than one member in common). It possible though

that some nodes may not belong to any clique. However, no clique can be entirely contained

within another clique, because if it were the smaller clique then it would not be maximal.

Figure 5.8 shows the clique overlap. There is a considerable overlap among the cliques in

the coauthorship relation, more than one coauthor belongs to one or more cliques.

Even more interesting, suppose that actors in one network form two non-overlapping cliques;

and that the actors in another network also form two cliques, but that the memberships
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Figure 5.7: The 36 clique sets in Wegman’s network.

Figure 5.8: The clique overlap in Wegman’s network.
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overlap (some people are members of both cliques). Where the groups overlap, conflict

between them is less likely than when the groups do not overlap [28]; Wegman, Solka, W.

Martinez and Marchette demonstrates this feature. Where the groups overlap, mobiliza-

tion and diffusion may spread rapidly across the entire network; where the groups do not

overlap, traits may occur in one group and not diffuse to the other.

5.1.4 Block-Modeling

The method of partitioning actors into subsets so that actors within each subset are closer

to being equivalent than are actors in different subsets is known in the network literature

as blockmodel. Figure 5.9 shows the cluster diagram of Wegman’s network. Actors at each

level of the dendrogram are structurally equivalent. The highest level of the dendrogram

indicates all actors are the same, however, the lowest level of the dendrogram indicates all

actors are different. What is between theses levels is more informative in terms of structural

equivalence.

A partition of a network is a classification or clustering of the vertices in the network so

that each vertex is assigned to exactly one class or cluster [55]. Partitions divide the nodes

of a network into a number of mutually exclusive (disjoint) subsets. Figure 5.10 shows these

two clumps clustered in the upper left corner of the adjacency matrix, there is a total of

four clusters in the graph. Actors of these clusters are structurally equivalent. The graph is

based on random start block-modeling applied on the network using structural equivalence

with four clusters.

5.1.5 Discarding Weak Ties

Some coauthors published only few times and maintained low interaction with the princi-

pal author. They may be graduated students or colleagues who are no longer maintaining

strong ties with the principal author. Weak ties – edges with coauthorship frequency of 1
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Figure 5.9: Dendrogram of Wegman’s network.
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Figure 5.10: Random blockmodel using structural equivalence with four clusters.

have minimal impact on the structure of the network and as a result they are discarded.

Coauthors with tie strength equal to one are assumed to not have coauthored with the

principal author and hence are treated as isolated nodes. Figure 5.11 shows all edges with

frequency ≥ 1 together with their corresponding edge weight. As before, nodes’ color and

size are set by the attribute “vertex degree” while edges’ color and thickness are set by the

attribute “tie strength”. It is worth mentioning that weak ties in some types of networks

are crucial to the structure of the network; however, in coauthorship networks they are not

critical to the structure of the network.

Figure 5.12 presents the cliques of the network with weak ties being removed, the number

of cliques is 14.

Figure 5.13 presents the network without Wegman, it is disconnected with fewer com-

ponents. There are three subgroups that are still relatively strong, these subgroups are

self-sustainable; they form a separate subnetwork independent of the principal author. In

the absence of the principal author, these coauthors can still get together and publish. This

type of networks is called support network, which has a flat structure with few holes and
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Figure 5.11: The network with coauthors having tie frequency=1 isolated.

Figure 5.12: The clique set with coauthors having tie frequency=1 isolated.
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high redundancy with an increased cost of coordination.

Figure 5.13: The network without Wegman.

5.1.6 Discarding Irrelevant Nodes

At this level of analysis, I remove two of the clump subnetworks (cliques). The first set

of names to be deleted is {Y. Park, D. Socolinsky, D. Karakos, K. Church, R. Guglielmi,

R. Coifman, D. Lin, D. Healey, M. Jacob, A. Tsao}. After discussing it with the principal

author, it turned out that there was a project on Automated Serendipity, in which the main

author of the paper decided to put these individuals, who contributed minimally, on the

paper. The second set of names to be removed contains the names {R. Wall, Y. Zhu, J.

Vandersluis, A. Dzubay, F. Camelli}; these individuals attended a course on Virtual Reality

taught by principal author who decided to credit everyone on the publication even though

they did not write anything in the paper. Figure 5.14 shows the network with the afore-

mentioned set of nodes being removed.

Structural holes have low redundancy and cause stress because there are too many nodes
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Figure 5.14: Wegman’s network without the two clumps.

connected to the brokerage. The basic form of structural holes is a triad with one edge

missing, in which two actors communicate with the same person, but do not communicate

with each other. Wegman’s first-level coauthorship network portrays this feature.

Figure 5.15 shows the adjacency matrix after removing the two sets of nodes. Figure 5.16

shows the network emphasizing vertex degree and tie strength. Figure 5.17 shows the cliques

sets. Figure 5.18 shows the proximity (weighted adjacency) matrix in grey scale; the darker

the color the higher the frequency of coauthorship.

[htbp]

The blockmodel for this modified network is presented in Figure 5.19, which shows four clus-

ters of structurally equivalent coauthors. Wegman (the brokerage of the network) defines

the first cluster because he coauthored every paper, coauthors (Miller, King, Carr, Solka,

W. Martinez, Wallin) define the second cluster, coauthors (Luo, Symanzik, Fu, Khumb
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Figure 5.15: The adjacency matrix. Each black square indicates a coauthor relation.

Figure 5.16: Wegman’s network without the two clumps emphasizing vertex degree and tie
strength.
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Figure 5.17: The 35 clique-sets.

Figure 5.18: The proximity matrix in grey scale; the darker the color the higher the fre-
quency.
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Moustafa) define the third cluster and all other coauthors define the fourth cluster. Mem-

bers of each cluster are structurally equivalent. The first cluster contains only one author;

the principal author, this is of no surprise because the network resembles a first-level star-

like coauthorship relations.

Figure 5.19: Random start blockmodel with four clusters using structural equivalence.

I finish this section by commenting on Wegman’s first-degree coauthorship social network.

The set of nodes (Wegman, Solka, W. Martinez, Marchette, and Priebe) are candidates for

a potential “elite” group of coauthors; members of this group are high in degree, closeness

and tie strength, removing these vertices results in a disconnected network and structural

holes are also evident.

The analysis of the first-degree coauthorship network suggests that the principal author

operates a “mentor” with most of the coauthors being younger than him. Most of these

individuals worked with him to establish their future academic or industrial career and then

left. The exception is the elite group, they were already established in the field and have

maintained coauthorship relations.
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Investigating the second-level coauthorship network by expanding on the elite group is

the next part of this analysis, the goal is to get a clear picture of who-wrote-with-whom and

which coauthors are critical to the network’s structure. Furthermore, hidden features not

captured by the first-level analysis are presumed to surface out and the network is expected

to expand and fold into itself.

5.2 Second-Level Wegman’s Coauthorship Network

5.2.1 Exploring the Network

The second-degree socio-network is expanded based on members of the potential elite group

including Solka, W. Martinez, Marchette, Priebe, Chen, Carr, Symanzik. Figure 5.20 de-

picts the general structure of the second-degree network at the macro level. The network

is growing with more structural holes as more coauthors are now on the periphery. There

are 464 unique coauthors in total with density of 0.0121. The potential elite group is at the

core of the network.

Figure 5.21 shows a bar graph of the top 15 coauthors in terms of vertex degree centrality.

Figure 5.22 shows the network in principal component layout. Figure 5.23 is a graphical

representation of the adjacency proximity matrix, black squares indicate a coauthorship

relation. There are several groups of highly connected coauthors (cliques) with strong ties.

I ran a measure of structural holes using the effective network size metric, a bar graph of

the top 15 coauthors in terms of effective network size is shown in Figure 5.24.

Burt’s effective network size measure gives the number of non-redundant ties in an ego-

network, a measure of structural holes. Basically, how many actors is Ego connected to

that are not connected to each other? Lack of ties among alters benefit the ego in terms of
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Figure 5.20: The second-level coauthorship social network.

Figure 5.21: The top 15 actors in terms of vertex degree centrality.
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Figure 5.22: The network in principal component layout.

autonomy (independence, self-governing), control flow and information nexus. More struc-

tural holes mean power - information - freedom - low redundancy. Structural holes are

fragile and require aggressive maintenance. In a structural hole situation, side nodes (the

periphery) are marginalized. Structural holes are present mainly in ego-networks.

The top 15 coauthors of the second-level coauthorship network in terms of effective network

size play the brokerage role (the core of the network). Carr captured the highest effective

size value of 100.350. Wegman with an EffSize of 82.724 comes in second place. Priebe

comes in third place with a value of 74.925. The metric indicates that these coauthors are

connected to many other coauthors, but the opposite is not necessarily true. Structural

holes also cause stress because there are too many nodes connected to the brokerage.

Figure 5.25 shows the 201 clique sets; few actors are members of many cliques, while most

coauthors are members only of few cliques. Figure 5.26 is a bar graph of the top 15 coau-

thors in terms of clique count.
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Figure 5.23: Structure matrix of Wegman’s second-degree network.

Figure 5.24: The top 15 actors in terms of effective network size.
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Figure 5.25: The 201 clique sets. A square indicates a clique set, while a circle indicates a
coauthor.

Figure 5.26: The top 15 actors in terms of clique counts.

Finally, I ran a metric of structural equivalence on the network. Because Pajek can’t handle

more than 256 nodes for blockmodeling, weak ties (ties with frequency=1) were removed.

Figure 5.27 presents 3 clusters of blockmodeling based on structural equivalence, it suggests

a distinct structural roles within the core; members of each cluster are structurally equiva-

lent, i.e. these actors have the same ties to all other actors they are perfectly substitutable

or exchangeable. In this example, structural equivalence generated three positions in the

network.
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Figure 5.27: A metric of structural equivalence with 3 clusters.

5.2.2 Multi-Dimensional Scaling Clustering

The purpose of equivalence analysis is to identify “classes” or clusters based on similarity.

I implicitly assume that distances among actors reflect as a two dimensional; although, it

is possible that the data are multi-dimensional. MDS is used (metric for data that are

inherently valued) to cluster actors based on distance.

MDS represents the patterns of similarity or dissimilarity in the tie profiles among ac-

tors (when applied to adjacency or distances) as a “map” in multi-dimensional space. The

map lets us see how “close” actors are, whether they “cluster” in multi-dimensional space,
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and how much variation there is along each dimension. The goal of MDS is to minimize

stress – distance between nodes. “Stress” is a measure of badness of fit; 0 ≤ stress ≤ 1.

The range of solutions with more dimensions is sought, so that the analyst can assess

the extent to which the distances are uni-dimensional. The meaning of the dimensions can

sometimes be assessed by comparing agents that are at the extreme poles of each dimension.

Now, I attempt to cluster actors of the second-level coauthorship network using the MDS.

Figure 5.28 shows the result of applying MDS-metric clustering on CONCOR (CONverging

CORrelations) 1st correlation data to the adjacency matrix of the coauthorship network,

and selecting a two-dimensional solution. Nodes are plotted according to their coordinates.

Close tight clusters of points identify actors that are highly similar on both dimensions. It

appears, though, that some clusters are emerging, the closer the nodes the more similar

they are. Coauthors residing on opposite poles (distant actors) are dissimilar. Notice, the

transition among various disciplines from left to right. For example, clusters in the left-

most side contain mainly coauthors from the computer science field, whereas clusters in the

rightmost side are mainly coauthors from the statistics field.

Figure 5.28: A 2-D MDS-metric clustering.
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Stress for a two-dimensional solution is 0.371 and for a three-dimensional solution is 0.271.

5.2.3 Investigating the Elite Group

Coauthors who maintain strong ties are considered important and thus are member of the

elite group; a coauthor is in an elite group(s) if the frequency of coauthorship exceeds a

certain threshold. The process of determining elite groups is systematic. Figure 5.29 shows

the second-level network excluding ties with frequency ≤ 2. Structural holes are present,

the network is more centric with Wegman being at the core of the network.

Figure 5.29: Edges with tie strength ≤ 2 are removed.

Figure 5.30 shows the network excluding ties with frequency ≤ 6, i.e. all the ties with

strength = 7 or more. The network is disconnected with 3 immanent components. Again,

notice the transition in positions; for example, actors on the rightmost side are statisticians

while actors on the leftmost side are computer scientists.
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Figure 5.30: Edges with tie strength ≤ 6 are removed.

Figure 5.31 shows the coauthors with tie strength = 10 or more. Coauthors who published

that many times with other coauthor(s) must be special and hold strong relations. Cliques

are also present; for example, the set {Rogers, Marchette, Priebe, Solka } forms the strongest

clique in the entire network. In addition, the sets {Cook, Symanzik, Majure}, {Wegman,

W. Martinez, Solka}, {Wegman, Marchette, Solka} form another strong clique sets in the

network. Each actor in this representation favors one or two coauthors in which he/she

writes with the most. Style of coauthorship is discussed more in detail in the next section.

I finish the analysis of the second-level coauthorship network with some comments. First

of all, this network has some interesting features on the macro and micro levels. On the

macro level, the emergence of an “elite” group of coauthors high in vertex degree, tie

strength, closeness, clique sets, and effective network size such as Wegman, Carr, Priebe,

Solka, W. Martinez, Rogers, Symanzik, J. Chen, Wechsler. It seems like scholars favor few

fellows to publish with more than anyone else in the entire network. Furthermore, MDS

produced clusters of similar actors. Finally, the network revealed another exciting property
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Figure 5.31: Edges with tie strength ≤ 9 are removed.

encompassing the transition in positions among different disciplines and coauthors clustered

according to their relative scientific fields.

5.3 A Model of Preferential Attachment for Emerging Sci-

entific Subfields

In this section, I focus on demonstrating scale-free author-coauthor social networks. A com-

mon property of many large networks is that the vertex connectivities follow a scale-free

power-law distribution. This feature was found to be a consequence of two generic mech-

anisms: (i) networks expand continuously by the addition of new vertices (growth), and

(ii) new vertices attach preferentially to sites that are already well connected (preferential

attachment). A model based on these two ingredients reproduces the observed stationary

scale-free distributions, which indicates that the development of large networks is governed

by robust self-organizing phenomena that go beyond the particulars of the individual sys-

tems. Growth means that the number of vertices (actors) increases with time. Preferential

attachment means that the more connected a vertex is, the more likely it is to acquire new

edges. Intuitively, preferential attachment can be understood if we think in terms of social

networks connecting people. Here an edge from actor A to actor B means that actor A
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“knows” or “is acquainted with” actor B. Vertices with many edges represent well-known

people with lots of relations. When a new actor enters the community, he or she is more

likely to become acquainted with one of those more visible actors rather than with a relative

unknown. Models that satisfy these two principles are known as Barabsi-Albert models [2].

In this section, I seek to demonstrate that author-coauthor networks in the statistical litera-

ture satisfy these two criteria. I first present the model that is based on the theory presented

in Chapter 4 and then compare a randomly generated network with a real network. The pro-

cess of one actor attaching to another actor (author) and strengthening the tie over time is

a stochastic random process based on the distributions of tie-strength and clique size among

actors, which are obtained from empirical data. I then utilize the model to predict emerging

scientific subfields of the evolutionary coauthorship network. Followed by a discussion on

style of coauthorship among prominent scholars that is using the distribution of tie-strength.

There has been work on author-coauthor networks and the emergence of global brain

in [6], preferential attachment in [51] and implications for peer review in [55]. Coauthor-

ship relationships can be treated as a 2-mode networks in which there are two types of

nodes; the authors nodes and the papers nodes, and one relationship type; “person A au-

thored/coauthored paper P”.

Data on statisticians and statistics subfields were collected from the online Current Index

to Statistics (CIS) database [12]. The CIS database is jointly published by the American

Statistical Association (ASA) and the Institute of Mathematical Statistics (IMS). There

are many analogous databases, for example, in Computer Science [13] and in Medicine [48].

I focused on the CIS database in this dissertation. The procedure used to harvest data

involved two stages using names of well-established statisticians affiliated with prominent

US universities. These data were used to build a social network of coauthors and to derive

the distribution of tie-strength “frequency of coauthorship” among coauthors. A different

dataset was used to derive the distribution of clique size. In the second stage, I used the
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biopharmaceutical as keywords to query the database, the dataset was used to discover

the emergence of scientific subfields by exploring the evolution of the coauthorship socio-

networks over time as a time series.

5.3.1 Distribution of Tie Strength

In weighted coauthorship socio-networks, strength of a tie indicates the frequency of coau-

thored papers between two actors; in other words, it is a measure of how close two actors are

and how much they trust each other. Therefore, studying tie-strength is a subject of interest

in coauthorship social networks. We developed a MATLAB program to build the 1-mode

proximity matrix of the data collected from the CIS database on contributing scientists in

the field of statistics. This adjacency weighted matrix was later manipulated to construct

the distribution of tie-strength. The statisticians dataset contained 1767 published papers

that had 874 unique author(s)/coauthor(s), the 1-mode network of coauthors is shown in

Figure 5.32, while the adjacency proximity matrix is shown in Figure 5.33, a black square

indicates a coauthor relation..

Figure 5.34 shows the adjacency matrix of biopharmaceutical statisticians, a black square

indicates a coauthor relations. The figure suggests that different independent isolated clus-

ters (groups) of scholars working in the field. Note that the structure of this network is

somewhat different from the statisticians network. Clusters and blocks are present along

the main diagonal, cliques are more evident in the biopharmaceutical socio-network. There

are no vertical/horizontal bars present as opposed to the statisticians socio-network because

the subfield was the keyword used to query the database rather than names of authors. The

distribution of tie-strength is shown in Figure 5.35(a)

Figure 5.35(a) suggests a power law distribution [11]. To investigate this, I first plotted the

distribution in log-log scale, this is shown in Figure 5.35(b). Because the density curve is

close to linear in log-log space, it is reasonable to conjecture that the distribution is power

130



Figure 5.32: Coauthorship social network of prominent statisticians.
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Figure 5.33: The adjacency proximity matrix of well-established statisticians.
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Figure 5.34: The adjacency matrix of Biopharmaceutical statisticians.
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law. The next step would be computing the exponent α of the power law. This can be done

by either finding the slope of the least-squares regression line in log-log space or by using

the following aggregation method for calculating the exponent α.

α = 1 + n

[
n∑

i=1

ln
xi

xmin

]−1

,

where xi is the observed tie-strength,

xmin is the minimum observed tie-strength; one in our problem,

n is the size of the vector.

(a) Distribution of tie-strength. (b) Distribution of tie-
strength in log-log space.

(c) Linear regression on tie-
strength in log-log space.

Figure 5.35: Examining the attribute tie-strength.

An implementation of the aggregation method in MATLAB produced an α-value of 2.1716,

the least squares regression model confirmed this result with an α-value of 2.13 and r2 =

0.915. Therefore, I can observe that the distribution of tie-strength is power law with ex-

ponent value of approximately 2.1716.

Looking into the low-level processes that produced the many-some-few power law pattern,

I conjecture that this behavior is generated in view of the following reasons. Firstly, there
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are higher chances to find two coauthors who simply published together few times or per-

haps once. Many of these statistician are professors who may have a number of graduates

working on projects or papers at a given time period. Upon graduation, many of these

students prefer a career in the industry, therefore, they lose contact with their professors

leaving behind one or two published papers with that professor. On the other hand, some

scientists find themselves in the research area, as a result, the likelihood that two already

coauthored individuals publish again rises. If you coauthored a good quality paper with

someone and you liked him/her, chances are you are going to publish with him/her again if

there is mutual agreement increase. And finally, there are those authors who favor only very

few coauthors; a colleague or a fellow student who maintains good contacts and relations

with that author, to publish with the most.

I further investigated the distribution of tie-strength of individual authors. Figure 5.36

shows the distribution of tie-strength of four different authors. Surprisingly, the distribu-

tion is again power-law with exponent α ranging 1.5− 1.85. Because α < 2 both the mean

and the variance of the distribution of the power-law are not defined and hence the power-

law is said to be not well-behaved. In order for the mean and variance of a power-law to

be well-behaved α has to be greater than 3, if 2 < α < 3 only the mean is finite. The

distribution of tie-strength is a self-similar power-law distribution for coauthorship social

networks.

5.3.2 Distribution of Clique Size

An important factor in preferential attachment is the clique size; the number of people

coauthored a single paper. Note that a paper with sole author or two coauthors is techni-

cally not considered a clique. A clique in a graph must have at least three fully connected

nodes “complete graph” [61]. I used the dataset of prominent statisticians to construct

the distribution of clique size to obtain a better understanding of how coauthors interact.
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(a) E. Wegman (b) C. Priebe

(c) S. Zeger (d) D. Marchette

Figure 5.36: Distribution of Tie-Strength Among Authors.
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Figure 5.37 shows the distribution of clique size. The distribution of clique size is approxi-

mately lognormal with mean µ = 1.954 and standard deviation σ = 1.6.

(a) Clique size. (b) Clique size in loglog scale.

Figure 5.37: Distribution of clique size.

5.3.3 The Emergence of Scientific Subfields

The biopharmaceutical subfield joins the fields biology and pharmacy. In this part, I explore

the biopharmaceutical statisticians socio-network over time to inspect the emergence of this

discipline. The data include papers published between the years 1977 and 2003. There are

157 published papers with 260 unique coauthor(s). Figure 5.38 shows the evolution of the

network over time. In 2000, very few statisticians started writing about biopharmaceutical

statistics, the graph in figure 5.38(a) shows isolated authors with two cliques of size three and

dyadic relations. In figure 5.38(b), we start seeing more cliques, more groups are publishing

in the biopharmaceutical subfield. In figure 5.38(c), the network is growing tremendously

with more individuals publishing, it seems like H. James and W. Jane are leading coauthors

in the new field. Finally, in 2003, the subfield is well-established with several independent

and mutually exclusive groups working simultaneously, the leading figures are still H. James

and W. Jane.
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Two main factors controlled the evolution of this new field. Firstly, small groups and

isolated scientists started researching the field, and then over time more scholars and larger

groups are becoming more involved and interested in the subject. The second factor, resides

with the fact that certain coauthors became the key figures in the field, this is evident from

the high number of publications they coauthored in the subfield, see figure 5.39.

5.3.4 Random Graph Model

The model is based on stochastic “random” processes, in which vertices are generated

randomly at each time step. At each time step, a new paper gets published and one of

three things could happen.

1. New actor(s) try to attach to existing actor(s).

2. Already existing non-attached actor(s) attempt to make an attachment(s).

3. Already attached actor(s) strengthen their ties.

And each vertex has the attributes: name – age – weight – preference – status – field –

active flag. These attributes uniquely identify actors, some of which change rapidly/slowly

over time while other attributes remain the same over time. For example, the attributes

“name” and “field” do not change. The evolution of “weight” and “status” attributes can

be viewed as a time series because they change faster than any other attributes. “Age”

changes linearly over time. Meanwhile, the “active” flag operates as a switch initially set

to “on”, but later could change to “off”, once it is changed to “off” it remains in that state

forever. Certain actors might change the attribute “preference”.

The model was implemented in MatLab and consists of approximately 350 lines of code, it

exploits the distributions of tie-strength and clique-size to build the coauthorship network.

Figure 5.40(a) is a 2-mode author-by-paper simulated network. Note that a new publica-

tion surfaces at each time step. Figure 5.40(b) shows the 1-mode coauthorship network

corresponding to the matrix in Figure 5.40(a). Figure 5.41 shows author’s 1 attributes
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(a) The network in 2000. (b) The network in 2001. (c) The network in 2002.

(d) The network in 2003.

Figure 5.38: The Evolution of the Biopharmaceutical Statistical Coauthorship Social Net-
work.
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Figure 5.39: 1-mode biopharmaceutical coauthorship social network.
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after 10 iterations. Figure 5.42 shows another simulated coauthorship social network, the

program ran for 100 iterations. The simulated network is similar to the network obtained

from empirical data, see section 5.3.3.

(a) 2-mode author-by-paper socio-network. (b) 1-mode author-by-author socio-network.

Figure 5.40: A simulated coauthorship social network.

Figure 5.41: Node attributes.

5.3.5 The Network of Well-Established Scholars

Figures 5.32, 5.33 present the social network of prominent statisticians affiliated with US

universities. I will use the method of deleting weak ties and and pendants vertices (vertices

with degree = 1) to expose the important coauthors in the network. In coauthor social

networks, weak edges and hanging vertices do not impose great impact on the status of the

network, however, in other types of networks weak ties could be crucial to the status and

performance of the network. What is worth knowing in social networks is who maintains

strong ties with who and who is connected to the most actors, such authors resemble the

heart of the network and their strong ties is the blood that keeps it alive and active.
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Figure 5.42: A simulated coauthorship network.

Brokerage roles are evident in this network. For example, the vertex “Lange N” in Fig-

ure 5.32 can be in the cut-point set, this author is connected to four key player scholars,

namely, “Gelfand A”, “Carlin B”, “Wand M” and “Zeger S”). While maintaining good

relations with prominent authors in the field of statistics, this author also connects struc-

turally different parts of the network and styles of coauthorship. In addition, “Louis T”

can also be considered in the cut-point author set, he is in contact with two mutually ex-

clusive subgroups of authors in which none of the members of each subgroup publishes with

member(s) of the other subgroup. “Hall P”, “Diggle P” and “Gijbels I” are not cut-point

authors but yet connected to key figures in the network, they are publishing with authors

most of which are affiliated with different universities and geographically located in different

continents. Further investigation reveals that some of these authors although they are not

geographically in the same place, but they went to the same school, majored in the same

field and spoke the same language and thus maintained good relations.

Continuing with the same spirit, I proceed by removing ties with weight = 1, Figure 5.43

depicts the altered network. Thick edges indicate higher weight value, the thicker the link

is the higher the number of publications. Big nodes indicate higher degree, the bigger the

vertex is the higher the number of coauthors that particular author has. The network is
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not centric, in fact, it is more like a chain-network with network diameter = 12. It contains

three separate components. In this layout, “Donoho” and “Gelfand” are far away from

each other. However, “Zeger” and “Breslow” form two independent subnetworks. Finally,

the authors “Marron”, “Hall”, “Fan”, “Gijbels”, “Wand” and “Jones” are very close and

similar authors, they form inbred subnetwork.

Figure 5.43: Social network of statisticians without nodes with degree and frequency = 1.

Figure 5.44 shows the network of authors with tie strength of seven or higher. Clearly, there

are components of the original network consist of authors with high coauthored papers.

Members of each component form an elite group of well-trusted authors and coauthors.

To sum up, this section addressed two issues, the first concerned empirical data to in-
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Figure 5.44: Social network of statisticians showing authors having tie strength 7 or higher.

vestigate the distributions of tie-strength and clique-size in coauthorship social networks.

The distribution of tie-strength among authors is a well-behaved power law; however, the

distribution of clique size is lognormal. While the second concerned the development of a

program to generate random coauthorship network, the model takes into account the fact

that authors’ status and attributes change over time. The resulting artificial network looked

similar to a real coauthorship social network of statisticians in the Biopharmaceutical sub-

field.

I close by showing the distribution of authors and papers over time for the prominent

statisticians. Figure 5.45 suggests that there is a period in the early and late nineties cap-

tured the highest number of publications. This indicates that during that time slot the

prominent statisticians were working with higher number of students and colleagues com-

pared with other years, which is supported by the number of new unique authors during

that period, see Figure 5.46. Surprisingly enough, frequency of coauthorship since 2005 is

comparable with the mid eighties time period as far as number of papers, but higher with

respect to new unique authors in recent years. It means that scholars were producing more

literature back in the eighties. It appears, though, as if the interest in research is declining
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since the year 2000.

Figure 5.45: Distribution of papers.

Figure 5.46: Distribution of authors.

5.4 Road Fatal Crashes In The United States

The road crashes network is an interesting example to study because accidents outcome

may be devastating. It is the thought that many fatal crashes are due to over speed, high

blood alcohol content level (BAC), high drug dosage, and/or bad weather conditions. In

this section, I analyze road fatalities across the United States in 2006 both statistically
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and from social networks perspectives. There are several significant factors and variables

to examine among which are State, Age, BAC level, Travel Speed, Gender, Road Function

Class (rural vs urban), Time of Day, Day of Week, Month of Year, Registered Vehicle, and

Driver Related Factors.

It is the hope that the results presented in this example will provide an insight to policy

makers and law enforcement authorities to take appropriate actions that may reduce road

fatal crashes in states with high fatality rates.

Data on road fatalities were collected from the online Fatality Analysis Reporting Sys-

tem’s (FARS) website [21], an affiliation of the National Center for Statistics and Analysis

(NHTSA) on traffic safety facts. I queried the database on the variables listed above and

obtained both univariate tabulation and cross tab datasets on the aforementioned variables.

Figure 5.47 shows the scatterplot matrix of seven factors related to road fatalities. There is

association between age and time of day. For example, most crashes occurred late at night

involve young adults. Older people are involved in the afternoon crashes; it may be because

older people get off work late in the afternoon, which increases the odds of involving in a

crash. Furthermore, outliers are present in the speed versus BAC level scatterplot, they

correspond to speed in the range 40-60 mph and BAC level over 0.8%. Lastly, there is an

outlier present in the BAC level and Day of Week scatterplot, it corresponds to Friday and

BAC level over 0.9%. One reason related to this extreme value is the fact that people party

and drink more on weekends as opposed to week days.

The cross tab of “state” and “alcohol” can be viewed as a two-mode network. Consider

the bipartite “state-by-alcohol” network wSA, then the one-mode network of states related

through the variable “alcohol” is

wSA · bSAT =wSA · bAS=wSS .
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Figure 5.47: Scatterplot Matrix of Seven Road Fatal Crash Factors
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The off-diagonal elements of wSS represent the sum of dominant interactions for a given

“state” i and another “state” j related through the variable “alcohol”. The diagonal ele-

ments are the marginal distribution of fatalities of “state”.

Similarly,

bSAT · wSA=bAS · wSA=wAA,

is the one-mode network of BAC levels related through the variable “states”. The off-

diagonal elements of wAA represent the sum of dominant interactions for a given “BAC

level” i and another “BAC level” j related through the variable “state”. The diagonal

elements are the marginal distribution of fatalities of “BAC level”.

While the bi-partite matrix wSA has its own implication, the 1-mode matrices wSS and

wAA both have their unique properties.

Next, I apply the inner product technique on the vector of values between two states to

obtain a similarity measure. This can be thought of as the Euclidean distance or `2−norm,

correlates are special case of the cosine similarity measure. Because the number of fatalities

≥ 0, the vectors associated with the vertices (states) are in the first quadrant and thus

0◦ ≤ θ ≤ 90◦. The cosine similarity is a quantitative measure of attributes that intersect;

therefore, “states” with more shared values are considered very similar.

I start the analysis by exploring the driver related factors. The following is a list of the top

six driver related factors for causing a fatal crash:

1. Under the influence of alcohol, drugs or medication;

2. Inattentive (talking, eating, etc);

3. Failure to keep in proper lane;
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4. Failure to yield right of way;

5. Failure to obey actual traffic sign, traffic control devices or traffic officers; Failure to

obey safety zone traffic laws;

6. Driving too fast for conditions or in excess of posted maximum.

The horizontal bar plot shown in Figure 5.48 presents the driver related factors that cap-

tured the highest crash rates. The 18 factors explain 90% of all crashes across the US.

Failure to keep in proper lane is the first dominant factor, followed by Driving too fast; the

third is the Influence of alcohol, drug or medication.

The top 6 Driver Factors Related to Fatal Crashes are:

1. Failure to Keep in Proper Lane.

2. Driving too Fast for Conditions or in Excess of Posted Maximum.

3. Under the Influence of Alcohol, Drugs Or Medication.

4. Failure to Yield Right of Way.

5. Inattentive (Talking, Eating).

6. Failure to Obey Actual Traffic Sign,Traffic Control Devices or Traffic Officers;Failure

to Obey Safety Zone Traffic Laws.

The computed similarity matrix of the driver related factor is presented in Figure 5.49.

There are several blocks along the main diagonal of highly similar states with respect to

this measure.
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Figure 5.48: Horizontal Bar-plot of the Top 18 Main Driver Related Factors.

Figure 5.49: Similar States Based on Driver Factors Related Crashes.
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5.4.1 Alcohol Factor

The next factor to study related to road fatalities is the Blood Alcohol Content (BAC) level,

because alcohol abuse is more common among people than drug addiction or medication

the latter will be out of focus at this stage. Figure 5.50 shows the distribution of alcohol

related road fatalities. Fatalities with BAC level below 0.08%; the legal limit in all states

to be alcohol-impaired, are excluded.

Figure 5.50: Distribution of Alcohol Related Road Fatalities.

Most fatal crashes are associated with BAC levels 0.01% through 0.23%. The concept that

drivers having high levels of BAC are more prone to devastating accidents as opposed to

low levels is counterintuitive, it is more likely to have someone with low BAC level than

high BAC level and thus increasing the chances of a crash.

Let us visualize the two-mode state-by-alcohol network in all 51 states, the graph in MDS

layout is shown in Figure 5.51. There is an obvious cluster of relatively low BAC level

(0.08%− 0.33%) associated with nearly all states residing at the core of the network.

Figure 5.52 shows the state-by-alcohol matrix and Figure 5.53 depicts the network with
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Figure 5.51: The Graph of The State-by-Alcohol Social Network.
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an emphasis on edges with rates (weights) ≥ 0.1 per 10,000 registered drivers. Filtering

out weak ties and focusing only on strong ties has the advantage of making the graph more

readable. This is done by hiding or removing low frequency edges. In some networks, it may

be more important to keep weak ties, so that edges surpassing the threshold are deleted.

Identifying states with high rates is of interest in the road fatality network. Figure 5.53

suggests an elite group of states with high alcohol related road mortality rates consisting of

(Wyoming, Montana, South Dakota, and Mississippi). Mississippi forms an isolate compo-

nent with 0.16% & 0.18% BAC levels. Wyoming is associated with 7 different BAC levels

one of which is the highest rate (0.1536 → 0.22% BAC).

Figure 5.52: State-by-Alcohol Matrix.

The 1-mode states similarity matrix due to alcohol related fatal crashes is shown in Fig-

ure 5.54. The values are sorted based on the total similarity for each state to make it easy to

distinguish the highly similar states (value→1) from the highly dissimilar states (value→0).

Texas – California – Florida – Illinois and Ohio stand out as highly similar states, whereas

Alaska – Washington DC and Massachusetts stand out as highly dissimilar states among
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Figure 5.53: State-by-Alcohol.

themselves and somewhat dissimilar with all other states. Hawaii, Maine and Rhode Island

is a group of relatively similar states.

Then I investigate how pair of states are related to each other through all the BAC levels,

the results are shown in Figure 5.55. Using count (an abstract measure), the top 3 states are

(California, Texas, Florida), they also form highly pairwise related states. Using rates, the

top 4 states are (Montana, Mississippi, South Dakota, Wyoming) with Wyoming capturing

the highest rank. These results are consistent with previous conclusions from the two-mode

analysis of state-by-alcohol network both using counts and ratios.

In Figure 5.56(a) I am showing the highly unrelated pairwise states on a map, and in Fig-

ure 5.56(b) I am showing the highly related pairwise states on a map. Note that among the

highly related states; Figure 5.56(b), the clique (MS-MT-WY-SD) is noticeable.

Figures 5.57 and 5.58 show the 1-mode network of pairwise BAC levels related through all

states. The clique of heavily pairwise connected BAC levels is visible and a difference is
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Figure 5.54: State-State Similarity Based on BAC Level.

Figure 5.55: State-State Relationship Through BAC Levels.
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(a) Low Ranking States (Weight ≤ 0.1). (b) High Ranking States (Weight ≥ 0.7).

Figure 5.56: State-State Relations Through BAC (Showing Strong and Weak Ties).

clear between using counts and ratios. Note that line crossings may be an issue sometimes.

5.4.2 Age Factor

In this part, I analyze states and age factor related to road fatalities. The question of inter-

est is: which ages are more likely to have crashes and in which states? Figure 5.59 shows

how age and states are related, the graph shows that teenagers are the main contributor for

crashes across all states. The distribution of age of fatalities is heavily skewed right in all

states because of the outliers present in some states. Additionally, states with red or dark

orange squares resemble high fatality rate per 10000 registered drivers in the state. States

such as Wyoming and Mississippi have the highest rates of 0.359 (age = 30) and 0.305 (age

= 21) respectively.

Referring to Figure 5.60, there seem to be relatively large fatality rates associated with

ages 15 through 62, and in some states counts reach older citizens such as 87 years old in

California and Florida. As for Texas, there are more crashes involving children, California

has a similar situation. In contrast, there are some states with low crash numbers for all
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Figure 5.57: Alcohol-Alcohol Relationship Through States.

Figure 5.58: Alcohol-Alcohol Relationship Through States (Top BAC Levels).
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ages such as Alaska, District of Columbia, Delaware, North Dakota and Vermont. It may

relate to people’s driving habit, the strictness of police and/or speed limit. Various reasons

contribute to the crash, as various reasons lead to safer driving condition.

Figure 5.59: State-by-Age Bipartitie Social Matrix.

Figure 5.61 shows the ratio of males to females involved in fatal crashes using linked mi-

cromap, the original R code was provided by Dan Carr. This explains why insurance rates

are much higher for teenagers and for males more than any other category. Males ratio is

always about two times larger than of females’.

From the graph we conclude that older people have safer driving habits, which is also con-

firmed by the scatterplot in Figure 5.62. There appears to be a linear downward trend for

the distribution of age, a simple linear regression model gave a coefficient of determination

of R2 = 0.74.

Figure 5.63 depicts the state-by-age two-mode network in MDS layout. Although there

are two main clusters for age and another two for states, the graph is too busy and edges

crossings are problematic. Consequently, I filter out the network by discarding weak ties to
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Figure 5.60: State-by-Age Two-Mode Social Matrix For Ages 15-65.

focus only on high rates, the graph with rates more than 0.1 is shown in Figure 5.64. The

graph in Figure 5.65 depicts the state-by-age network in spring layout. In the graph, I am

showing edges with frequency (rate per 10000 drivers) ≥ 0.2. Wyoming is connected to 21

different ages with a high degree centrality.

The similarity matrix of states based on age factor related crashes is shown in Figure 5.66.

The majority of states are highly similar when it comes to age except for Washington DC

with a similarity measure in the range (0.5-0.7).

Finally, I construct the one-mode network of states related through ages and the network

of ages related through states, the results are presented in Figures 5.67 and 5.69. Using

counts, California – Texas – Florida are the top three states. However, ratios put the states

Mississippi and Wyoming up high in the list. Ages 16-27 are relatively high in rates, MDS
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Figure 5.61: Gender State Micromap.

Figure 5.62: Marginal Distribution of Age.
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Figure 5.63: State-by-Age Two-Mode Graph For Ages 15-65 in MDS Layout.

Figure 5.64: State-by-Age Graph For Ages 15-65 With Edge Weight ≥ 0.1.
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Figure 5.65: State-by-Age Two-Mode Social Graph For Ages 15-65.

Figure 5.66: Sorted Similarity Matrix Based on Age Factor.
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layout in Figure 5.64 suggested the same range. The diagonal values are the marginal dis-

tribution for age in all states, and the off-diagonal values represent the relationship between

a dominant age i and another age j. And finally, an emphasis on weak ties and strong ties

is shown in Figure 5.68.

Figure 5.67: State-State Relationship Through Ages.

Figure 5.68: State-State Relationship Through Ages.
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Figure 5.69: Age-Age Relationship Through States.

5.4.3 Travel Speed Factor

Travel speed factor is yet another important variable to examine, a scatterplot of the travel

speed is presented in Figure 5.70. Most crashes happen at 45 mph and 55 mph, different

from what people usually think that high speeds lead to more crashes. It may relate to a

neighborhood where drivers drive much faster than the posted low speed limit.

Continuing with the same analogy, I start by exploring the state-by-speed matrix of fatal-

ities, two plots are provided in Figure 5.71; one using counts and one using ratios. As far

as counts, the top three states are (CA, FL, NC). However, ratios have totally different

distribution; some high ranking states include (DE, LA, NC, OK, SC, WY). Figure 5.72

shows a graph version of the network. A big portion of highway 95 which goes from New

York all the way to Florida crosses DE–VA–NC–SC–GA. A possible explanation as to why

there are high road fatality rates due to speed in NC and SC is that by the time drivers

enter these states they are tired and exhausted from the long drive, they want to arrive to

Florida quickly and as a result a crash happens. As presented in Figure 5.79, there are two
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Figure 5.70: Marginal Distribution of Travel Speed.

edges with high weights connecting Florida and the vehicle is registered in New York and

vice versa. The registered vehicle factor is discussed in the next section.

Once again, I discard weak ties to identify elite groups of states with high road fatali-

ties related to travel speeds. The graph in Figure 5.73 depicts the filtered out network;

ties thickness is set by rate per 10000 drivers. Wyoming has a strong tie associated with

speed 65 mph (ratio = 1.101 per 10000 registered drivers in WY). This extreme value is a

concern because Wyoming has also the highest alcohol related road fatality rate. Delaware

has also a strong tie associated with speed 50 mph (ratio = 1.0002). And finally, Louisiana

and North Carolina both have strong ties associated with speed 55 mph (ratio = 0.8027).

Figure 5.74 represents the sorted similarity matrix of states based on the travel speed fac-

tor. The plot shows pattern of similarity among states, there are groups of highly similar

states among themselves, but at the same time highly dissimilar with other states. Blocks

of similar states are also present along the main diagonal, these blocks resemble cliques.

Interestingly enough, the states of Maine and Iowa are nearly dissimilar with almost all

other states.
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Figure 5.71: State-by-Speed Matrix.
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Figure 5.72: State-by-Speed Network.

The results of the matrix multiplication technique on the state-speed matrix show that

(WY, OK, SC, NC, LA, AL) are the top states related through road fatalities due to high

speeds, see Figure 5.75.

Figure 5.76 shows the top 20 states related through speed on the left and on the right the

top 17.

Figure 5.77 is the speed-speed matrix resulted from multiplying the the speed-state matrix

by the binary version of its transpose. The speeds 45–50–55–65 are highly related, they are

the dominant speeds in all states. The plot on the right is showing the top five speeds.
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Figure 5.73: State-by-Speed Network.
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Figure 5.74: Similar States Based on Travel Speed.

Figure 5.75: 1-Mode State-State Relationship Through Travel Speed.
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Figure 5.76: State-State Relationship Through Travel Speed.

Figure 5.77: Speed-Speed Relationship Through States.
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5.4.4 Registered Vehicle Factor

In this section, I examine the relationship between the state where accidents happened

and the registered plate of the vehicle involved in the crash. The two-mode network is

portrayed in Figure 5.78. The size of the nodes is set by degree centrality; in this case

it is the number of other states/countries that state is connected to, while the thickness

of edges is set by weight (number of fatal crashes). Arrows are pointing in the direction

of the target state. Surprisingly enough, weak ties (edges) are connecting states such as

(MA, NC, UT, AZ, OR) to Hawaii although there is no bridge between these states and

the Caribbean island. What might be the reason is that there are military bases in Hawaii

where military personnel can maintain their home-state license even if they are physically

do not live in their home-state. Additionally, there are weak edges connecting the countries

Canada and Mexico to Florida. The graph on the right emphasizes edges having weights

≥ 20 fatalities. Interestingly enough, are the strong edges between Mexico and Arizona

and the two edges between Florida and New York. Florida and New York appear to have

high interaction; Florida is a decent place for people to vacation or retire in. But even a

more interesting conclusion is the high connectivity along the way between NY and FL and

between FL – TX – CA – WA; it forms sort of a long chain starting in NY and ending in WA.

Finally, I computed the similarity matrix of the states and registered vehicles network,

the result is presented in Figure 5.79. What can be concluded is that most states are highly

dissimilar and only few states that are somewhat similar.

5.4.5 Road Function Class Factor

Road function class is yet another factor to explore, it is mainly categorized as urban and

rural. The plot in Figure 5.80 shows the difference in the number of road fatalities between

urban roads and rural roads, the difference is taken as (urban count - rural count). A

pattern among states with low difference and states with high difference is visible. States

171



Figure 5.78: Bi-partite Network of States Related With Registered Vehicles.

Figure 5.79: Similar States Based on Registered Vehicle Factor.
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having above median differences are located on the east coast, west coast besides the states

(Illinois, Florida, Louisiana, Georgia) with the exception of the states Oregon and Maine.

Figure 5.80: Road Function Class State Micromap.

The state-state similarity measure based on road function class data is the last computation

to perform on this network, the results are shown in Figure 5.81. Patterns and cliques of

highly similar states are clear, Washington DC has the lowest similarity measure with all

other states (with the exception of MA) simply because DC is a city and not a state.

5.4.6 Conclusion

Using network theory techniques I identified states with high road fatality rates per 10,000

registered drivers that are due to alcohol, travel speed and age related. For example, the
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Figure 5.81: Sorted Similar States Based on Road Function Class Factor.

top four states with respect to alcohol related fatality rates are Montana, Mississippi, South

Dakota and Wyoming. The top four states with respect to age related fatality rates are

Wyoming, Mississippi, New Mexico and Arizona. The top four states with respect to travel

speed related fatality rates are Delaware, Louisiana, North Carolina and Wyoming. The

most noticeable observation is Wyoming, which stands out in all three factors.

Furthermore, I identified high ranking fatalities associated with alcohol, age and speed

factors. For instance, the top BAC levels are between 0.08% and 0.33%. The top ages are

between 16 and 27 years old. And the top travel speeds are 45–50–55–60–65 mph.

Additionally, I found out that in Florida there is a high number of fatal road crashes

of vehicles holding New York registration and in Arizona of vehicles registered in Mexico.

Road crashes are generally not fatal but in some occasions when they happen they are

catastrophic and therefore further attention is required from the statutory law-enforcement

authority. I hope that this analysis provides an insight to authorities and policy makers to

impose appropriate rules and laws in states with high road fatality rates that may reduce
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chance of road fatalities.

5.5 Term-Document, Bigram-Document Networks

The following case study concerns news documents network. I start with a brief description

of this example then I apply the techniques I developed in this dissertation to visualize and

analyze the network. News text data were collected by the Linguistic Data Consortium in

1997 and were originally used in Martinez (2002). The data consisted of 15,863 news reports

collected from Reuters and CNN from July 1, 1994 to June 30, 1995. The full lexicon for

the text database included 68,354 distinct words. In all 313 stopper words are removed

and after denoising and stemming, there remain 45,021 words in the lexicon. Dr. Martinez

provided the MatLab code to stem and denoise text within a document. In my dissertation I

only used 503 news documents. The documents were constantly being updated and in many

cases the new document was a copy of the old one with some additions. The objective of this

study is to categorize documents based on similarity and compute correlations between doc-

uments with respect to terms and with respect to bigrams. In this regard, I associate terms,

bigrams and documents. Classically, the analysis of text data can be done through the use

of text mining techniques; however, I use the network theory approach to serve this purpose.

Consider the two-mode term-document network and bigram-document network whose ma-

trices are wTD and wBD respectively. Figures 5.82, 5.83 show the distribution of terms in

the 503 documents and the top 51 terms respectively.

The distribution of terms is a skewed distribution and demonstrates the many-some-few

pattern, many terms have relatively low frequency and few terms have relatively high fre-

quency. The terms “sai” and “said” both correspond the root “say” when stemming the

term. Among the highly ranked terms are the terms “peopl” - “on” - “north” - “go” -

“here” - “two” - “out” - “just” - “cnn” and others.
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Figure 5.82: Distribution of terms in the 503 documents.

Figure 5.83: Top 51 terms.
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There are in total 7143 unique stemmed and denoised terms associated with the 503 doc-

uments; therefore, the weighted term-document matrix is bTD7143×503. Figure 5.84 shows

how the terms relate to documents, a black square indicates that the given term belongs

to the given document. As new documents are processed new terms are being add to the

corpus at a high rate. Horizontal bars indicate that some terms show in multiple docu-

ments, those are the high frequency terms. Terms up in the list (the core of the network)

are connected to more documents compared with terms down the list (the periphery of the

network).

Figure 5.84: Term-Document binary matrix.

Figure 5.85 shows the binary co-occurrence matrix of the first 500 terms only. Figure 5.86
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depicts the first 255 terms of the term-document bipartite network. The graph shows a clus-

ter of highly ranked terms linked to many documents at the core of the network, whereas

low ranking terms reside at the periphery of the network. The graph in Figure 5.87 focuses

only edges having weight eight and up of the first 255 terms (the core). Low frequency

terms at the periphery are now isolated.

Figure 5.85: Term-Document binary matrix of top 500 unsorted terms.

The binary adjacency matrix of the text document application does not show the whole

picture; it suggests whether a certain document contains a certain term. Nevertheless, be-

cause terms may be present more than once in a document, it is worthy to have record of

term frequencies as well, which makes the matrix a weighted two-mode matrix. Figure 5.88
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Figure 5.86: Term-Document network of top 255 terms.

Figure 5.87: Showing strong ties of term-document network of the first 255 terms.
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shows the top 300 highly ranked sorted terms of the bipartite weighted matrix wTD300×503.

We observe both vertical and horizontal patterns, but more of horizontal. Vertical patterns

indicate that certain documents contain several highly ranked terms. Conversely, horizon-

tal patterns reveal that certain popular terms show in multiple sequential documents. The

patterns are made more visible by taking the natural logarithm of tie-strength.

Figure 5.88: Term-Document weighted matrix of log frequency of top 300 sorted terms.

Continuing with the same spirit, I now look into how terms relate to other terms through

documents and how documents related to other documents through terms. The graph in

Figure 5.89 displays the one-mode term-by-term co-occurrence matrix wTT7143×7143. The

binary matrix bTT7143×7143 in Figure 5.89(a) shows a cluster (block) of highly correlated

terms, while the weighted matrix in Figure 5.89(b) exhibits a scatter of highly correlated

terms located at the top left of the graph. Horizontal and vertical patterns suggest that the

terms are connected to several other terms in the corpus.
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Handling matrices with huge size is computationally problematic, any operation requires

both storage and memory. Therefore, I reduced the number of terms to 2086 instead of

7143 after having them sorted in descending order. The first 2086 sorted terms have total

row count greater than 10 appearances in a single document or multiple documents. The

matrix in Figure 5.90 shows the log of the term-by-term weighted proximity matrix of terms

having frequency ≥ 10, so that weak ties are discarded; and it is derived from the weighted

two-mode term-document adjacency matrix wTD2086×503.

(a) Binary ties. (b) Log weighted ties.

Figure 5.89: Term-Term structure matrix.

Figure 5.91 presents the one-mode document-by-document co-relationship matrix wDD503×503

of documents related through the top 2086 sorted terms of the two-mode term-by-document

weighted matrix. The top 2086 sorted terms are terms with total tie strength of ten or more.

The plots show clusters of highly correlated documents through terms; the relation is based

on the sum of the number of common terms a document and co-document share. Once
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Figure 5.90: Terms related through documents weighted matrix.

again, horizontal and vertical patterns are present. In Figure 5.91(b), bluish patterns in-

dicate that the document(s) are not highly co-related with other documents and yellowish

patterns show the averagely related documents. Dark red squares point to the highly re-

lated documents.

If two or more documents have many terms in common then these documents are highly sim-

ilar. The plot in Figure 5.92 portrays the document-document similarity matrix wDD503×503

of the top 2086 sorted terms with tie strength of ten or more. Several blocks of averagely

similar documents are visible along the main diagonal. The documents are listed in chrono-

logical order, this means that whenever there is a block there is a cluster of similar documents

based on the vectors of terms associated with the documents. These clusters of documents

more or less address the same issue. Another interesting observation concerns the block

on the top left corner of the graph, this cluster of documents demonstrates patterns of

similarity with other sets of documents in the corpus.
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(a) Weighted ties. (b) Log weighted ties.

Figure 5.91: Documents related through the top 2086 sorted terms.

Figure 5.92: Document-Document similarity matrix with respect to the top 2086 sorted
terms.
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In an attempt to compare the document-document matrix resulted from the inner product

similarity computations with the matrix resulted from the weighted matrix multiplication

method I constructed the residual matrix corresponding to both matrices, the result is

shown in Figure 5.93. The residual matrix excluded self-ties; i.e. entries of documents along

the main diagonal, and gave a sum squares difference of 2849.1. The document-document

co-relation matrix was normalized, so that the values be in the range [0, 1] to match the

values of the similarity matrix. The pattern that appears here is the same pattern obtained

by both the inner product similarity and the matrix multiplication methods; however, the

errors are higher along the main diagonal and among the clusters than the off-diagonal

document-document association.

Figure 5.93: Document-Document residual matrix with respect to terms.
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In the next stage, I incorporate an improved methodology for analyzing text within doc-

uments. The method integrates bigrams in the process as opposed to terms. A bigram

contains two successive terms as one entity, which is a stricter criterion for forming mul-

tiple edges within documents or among documents. It is more likely for a term to appear

in multiple documents than a bigram; therefore, documents related through bigrams and

documents similarity with respect to bigrams are robust, but computationally expensive.

The bipartite relationship is called the bigram-document network, it is shown in Figure 5.94.

There are 91709 unique bigrams contained in the 503 documents; thus, the two-mode

bigram-by-document matrix is wBD91709×503. Figure 5.95 shows the bar-plot for the top

60 bigrams, these are the bigrams with total bigram-document frequency of 15 or above.

Among the top appearing bigrams in documents are “white-hous”, “north-korea”, “kim-il”,

“il-sung”, “north-korean”, “kim-jong”, “jong-il”, “shoemak-levi”, “lo-angel”, “mile-brien”,

“unit-state”, “space-telescop”, “hubbl-space”, “comet-fragment”.

Figure 5.94: Bigram-Document binary structure matrix.
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Figure 5.95: Top 60 bigrams.

Because the bigrams related through documents matrix wBB91709×91709 requires both large

storage and memory to process, it was computational unfeasible to obtain and visualize in

MatLab. Consequently, I decided to consider only 50 documents instead, which produced

about 9000 bigrams. The plot in Figure 5.96 is the bigram-bigram network of the first 50

documents. The graph shows a giant block of highly co-related bigrams and several smaller

blocks of co-related bigrams along the main diagonal. Interestingly enough, the bigram-

bigram relation is not symmetric meaning bigram A is connected to bigram B does not

necessarily imply bigram B is connected to bigram A.
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Figure 5.96: Bigram-Bigram matrix for 50 documents.

Alternatively, to tackle the issue of having a huge matrix size, I undertook a process of sort-

ing the bigram-document matrix in a descending order with respect to row total and then

discarding weak ties or bigrams having row total less than one. To break up the matrix even

further, I took the first 252 bigrams of the bigram-document matrix for the 503 documents,

the result is displayed in Figure 5.97; isolated bigrams with total tie strength < 5 and

documents associated with those bigrams are deleted. The graph shows two main clusters

of documents and bigrams. Figure 5.98 is the one-mode representation of bigrams related

through documents. Once again, we observe two main subgroups of bigrams, which are

shown separately after sorting all bigrams with respect to total tie strength in Figures 5.99

and 5.100.
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Figure 5.97: Bigram-Document two-mode network of top 252 bigrams.
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Figure 5.98: Bigram-Bigram network of top 252 bigrams having frequency ≥ 6.
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Figure 5.99: Bigram-Bigram subnetwork of astronomical bigrams.

Figures 5.101 and 5.102 display the bigram-bigram subnetwork of bigrams 253 through 503

and having total tie strength four and five only. Besides several blocks along the main

diagonal, a pattern of related bigrams off the main diagonal is clear.

The plots in Figure 5.103 depict the structure matrices wBB1950×1950 of the one-mode

bigram-bigram related through documents network; Figure 5.103(a) shows binary ties, while

Figure 5.103(b) presents the natural logarithm of tie strength plus one. Bigrams located at

the top left corner are highly correlated, these bigrams show up in multiple documents and

thus are connected. There is also a clear pattern of related bigrams off the main diagonal.

Figure 5.104 display the first 300 bigram-bigram sub-matrix of the 1950 bigram-bigram

structure matrix.

The top 1950 bigram-bigram similarity matrix is presented in Figure 5.105, to some extent

it provides the same structural pattern as the top 1950 bigram-bigram co-related matrix;
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Figure 5.100: Bigram-Bigram subnetwork of political bigrams.

Figure 5.101: Bigram-Bigram matrix of bigrams 253 through 503.
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Figure 5.102: Bigram-Bigram network of bigrams 253 through 503.

(a) Binary ties. (b) Log weighted ties.

Figure 5.103: Sorted Bigrams related through documents.
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(a) Binary ties. (b) Log weighted ties.

Figure 5.104: Sorted Bigrams related through documents for top 300 bigrams.

however, weights are slightly different specially clusters along the main diagonal. The two

plots in Figure 5.103 and Figure 5.105 suggest two main clusters and several minor clusters

of highly similar highly co-related bigrams. The two big clusters are the same clusters pre-

sented in Figures 5.99 and 5.100.

Continuing with the same ardor, I now turn to the document-document related through

bigrams and document-document bigram similarity matrices and networks. I start by ex-

ploring the documents related through bigrams network, the graph is shown in Figure 5.106,

which corresponds to the one-mode matrix wDD503×503. There appears to be clusters of

highly co-related documents.

After extensive computation in MatLab the bigram-document matrix wBD91709×503 pro-

duced the documents related through bigrams proximity matrix wDD503×503, the result is

portrayed in Figure 5.107. To make the matrix structure more visible I applied a natural

logarithm transformation. The documents related through bigrams graph density is 0.487.
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Figure 5.105: Sorted Bigrams related through documents similarity matrix.
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Figure 5.106: Documents related through bigrams network.

(a) Binary ties. (b) Log weighted ties.

Figure 5.107: Documents related through bigrams matrix.
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The document-document similarity matrix wDD503×503 with respect to bigrams is shown in

Figure 5.108. To some extent the similarity matrix depicts the documents related through

bigrams structure matrix, which is confirmed by the document-document residual matrix

with respect to bigrams presented in Figure 5.109.

(a) Binary ties. (b) Log weighted ties.

Figure 5.108: Documents similarity matrix with respect to bigrams.

In an attempt to compare documents related through terms matrix with documents related

through bigrams matrix and documents similarity matrix with respect to terms with doc-

uments similarity matrix with respect to bigrams I constructed the document-document

residual matrices for terms and bigrams respectively, the results are shown in Figure 5.110.

The documents related through terms and bigrams difference matrix has relatively small

residuals except for a very few set of documents with high residuals. The documents simi-

larity difference matrix has also relatively small residuals except for some blocks along the

main diagonal with higher residuals.
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Figure 5.109: Document-Document residual matrix with respect to bigrams.

(a) Documents similarity difference matrix with re-
spect to terms and bigrams.

(b) Documents related through terms-bigrams dif-
ference matrix

Figure 5.110: Term-Bigram comparison for document-document matrix.
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5.6 Online Music Friendship Network

The following is a preferential attachment simulated network representing online friendship

based on music tastes. The sample space consists of 8 music genres. An integer vector of

music tastes of size 8 is randomly generated at each time step and assigned to each agent.

The following rules are set to generate the network. Actors are allowed to choose at most

3 different music tastes out of the 8 available tastes (in some trials I set this to 2 music

tastes). I used the MatLab built in function “And” to obtain a similarity measure between

actors. If two actors share more than one music taste they have a chance of being friends

(in some experiments I restricted this to two music tastes, which made it harder on agents

to attach, see Figure 5.111). In addition, new actors are allowed to be friends – attach –

with only one similar agent, (in some trials the restriction was relaxed to at most 2, 3, 4 or

5 friends). This relaxation of the number of friends an agent can be of generated different

interesting network structures.

Figure 5.111: Generated music friendship network based on 2 tastes, 3 attachments, 2
matches.

When the criterion to make friendship is set to “attach only to one similar friend” the
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generated network is a “star-like” network with few highly central agents in the middle

representing the “core” of the network, see Figure 5.112. This structure converged after

100 iterations, it resembles a “scale-free” (self-similar) network; the network maintains shape

and properties regardless to the number of actors and independent of the network size. The

topology of the net after 1000 iterations is similar to 100 iterations. These types of networks

cause stress on the “Ego” vertex resulted from the high cognitive load. With so many friends

attached to “Ego” - the core, “Ego” struggles to keep and maintain friendships. On the

other hand, there is less stress and maintenance required from actors on the periphery.

Figure 5.112: Simulated music friendship network based on 3 tastes, 1 attachment, 1 match.

Figure 5.113 shows the distribution of degree centrality, it is somewhat a perfect power-

law with almost no noise reflecting the “Many-Some-Few” pattern. Actors generated at

the early stage (first few iterations) attain the highest degree centrality at the core, while

actors introduced at later steps form the periphery.

When the criterion of making friendship is relaxed to two or more friends at a time, the

network unfolds unto itself after 1000 iterations generating a “hair-ball” very dense network

with a possibility of having multiple cores (central agents) at the center with high degree

199



(a) Histogram. (b) Loglog scale.

Figure 5.113: Distribution of degree based on 3 tastes, 1 attachments, 1 match.

centrality. The degree distribution, however, is still power-law but has noise at the tail

because the number of friends new actors can have is drawn from a uniform distribution

with at most 3 friends in one experiment see Figure 5.115, and 4 friends in another.

(a) Dense network. (b) Zooming in the network.

Figure 5.114: Simulated network based on 3 tastes, up to 3 attachments, 1 match.

Multiple components are also present due to the fact that the criterion to attach and be

friend to someone is strict; thus, some actors formed separate groups (multi-group network)

that carry the same properties of the single-component highly centralized network, see

Figures 5.116 and 5.117.
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(a) Histogram. (b) Loglog scale.

Figure 5.115: Distribution of degree based on 3 tastes, up to 3 attachments, 1 match.

Figure 5.116: Music friendship network with two components based on 3 tastes, 1 attach-
ments, 1 match.
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(a) Component 1. (b) Component 2.

Figure 5.117: Two components based on 3 tastes, 1 attachments, 1 match.

To conclude, relaxing the criterion of attachment and the number of music tastes and the

number of similar tastes an actor results in more attachments (ties), which generates dense

network. In contrast restricting the rules of attachment makes it harder on agents to find

mutual friends. It is possible though that if the rules are very strict, some actors may not

find friends to attach to at and hence being isolated.
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Chapter 6: Conclusions, Contributions and Future Work

6.1 Conclusions

In this dissertation, I presented a methodology to analyze networks – social and other types.

To begin with, I have developed the mathematics underpinning networks, which involved

the integration of several branches of mathematics such as matrix theory, graph theory, esti-

mation, geometry and fuzzy logic. The approach addressed two types of networks, namely,

stationary networks and evolutionary networks. The study focused on how these fields of

mathematics can be utilized to address network issues. Then I have implemented the the-

ory on real networks of different levels of interactivity. Finally, I have simulated two social

networks based on the preferential attachment model.

One of the major research questions I addressed in this study is the fact that in evolving dy-

namic networks vertices and edges may be introduced at any time and thus the network size

and order constantly change. To tackle this problem, I have invented a methodology that

expands networks into infinite networks and matrices into infinitely dimensional matrices

in which vertices and edges may be introduced at any given time without having to worry

about the network and matrix dimensionality. I then addressed the issue of manipulating

multi-mode networks to gain information and knowledge about networks on the different

levels and modes. Followed by a considerable work that relates to the interchangeability

and duality between vertices and edges in a graph in which vertices convert to edges and

edges convert to vertices to estimate the probability of missing dyadic edges or to estimate

the probability missing vertices using covariate information associated with vertices and

edges.
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I have examined and studied several network applications such as coauthorship social net-

works, road fatalities networks and news documents networks. In coauthorship social net-

works, I identified special groups of coauthors that are high in degree and tie strength in

which I called elite group. The road fatalities network demonstrated how states are related

through crash factors and how they are similar with respect to crash factors. And finally, in

the news documents example I performed an assessment of the documents network derived

from the term-document and bigram-document networks.

I believe this dissertation offers a valuable tool for analysts and credible literature for re-

searchers. The theory and implementation serve as a solid foundation for further exploration

and expansion of network theory.

6.2 Contributions

To briefly summarize my contribution in this dissertation, I worked out a mechanism to

store and explore finite and infinite networks using primitive network blocks represented

with sub-matrices stored in a global matrix. To this end, the tool expands on vertices by

introducing a matrix of infinite dimension corresponding to an infinite network in which

vertices are categorized as active or inactive. The infinite matrix offers a mechanism of

observing the development of a network over time. The advantage of this matrix represen-

tation is the fact that performing matrix operations on such matrices is computationally

cheap because the matrix is block-diagonal and the elements are sub-matrices whose entries

are ones.

A substantial portion of the dissertation covered mathematical techniques that efficiently

compute graph and network measures such as edge count, network diameter, graph density,

degree centrality matrix, distance matrix. I provided detailed study to some special graphs

and their properties and importance in network theory.
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I undertook estimation of an edge and vertex in a graph using exogenous structure per-

taining to the network, it is based on quantitative and qualitative covariate information

and the inner product method and chi-square significance test. This part relates to the

interchangeability and duality between vertices and edges in a graph. I have suggested a

method that uses covariate information associated with vertices to estimate the probability

of missing edges and covariate information associated with edges to estimate the probabil-

ity of missing vertices. In order to predict missing vertices, I have utilized the line graph

transformation to convert edges to vertices and vertices to edges and the problem now is to

compute the probability of an edge in the line graph. I applied the inner product method

on the vectors of covariates to estimate the probability of a dyadic edge. I have extended

the methodology of predicting edges (dyadic ties) to predict edges in a triad (triadic edges).

The method incorporates covariate information as well; however, the basis for this method

is largely geometrical and through the use fuzzy logic rather than the inner product of two

vectors.

Perhaps the most remarkable contribution of work in the field of network theory is the gen-

eralization of the N−mode networks and their implications and the manipulation of higher

dimensional relational networks to extract information and gain knowledge about networks

on the different lower dimensions and modes. To this end, I have developed an advanced

approach to derive one-mode networks from weighted (valued) two-mode networks, then I

extended the two-mode method to work for multi-mode networks. The algorithm expresses

the weighted network as a combination of dichotomous (binary) networks that are used to

obtain the one-mode weighted network.

I have ended the dissertation with two simulations of two evolutionary social networks

demonstrating preferential attachment; the first model simulates the evolution of a coau-

thorship social network, while the second simulates the evolution of a online music friendship

social network.
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6.3 Future Work

Network theory is fairly a new topic although the early publication in the field dates back

to the 1930s. Having articulated several components in the field of network theory, I believe

there is more need to be done and consider this study a work in progress. I intend to extend

this work in different directions. I plan on applying the theory of the generalized N−mode

networks on real data. I plan to implement the theory presented on estimating missing

vertices using both quantitative and categorical information pertaining to vertices on real

social networks. Furthermore, I plan to deeply investigate the relationship between cliques

and hypergraphs and develop mathematical models related to these special components of

network theory. I also plan to work on better ways to visualize large scale networks. I need

to improve the methods of analyzing evolutionary networks and try to incorporate advanced

mathematical ideas for approaching such networks. I plan on researching networks both on

macro and micro levels as dynamical systems. I plan to study the possibility of predicting

the entire network’s structure and linkages based on information associated with vertices

with respect to a vector of global preference.
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Appendix A: Degree and Closeness Centrality Measures

Illustration

To illustrate the degree measure, consider the graph (network) in Figure 1.1. Table A.1

shows the results.

Table A.1: Degree Centrality Example.

Adjacency Ego A B C D E F G
Ego 0 1 1 1 1 1 1 1
A 1 0 0 1 0 0 0 0
B 1 0 0 0 0 0 0 0
C 1 1 0 0 0 0 0 0
D 1 0 0 0 0 0 0 0
E 1 0 0 0 0 0 0 0
F 1 0 0 0 0 0 0 0
G 1 0 0 0 0 0 0 0

Degree
7
2
1
2
1
1
1
1

The network in Figure 1.1 has the following closeness measures:

As an illustration, in Figure 1.1, the nodes {Ego, A, C} form a clique.

Table A.2: Closeness Centrality Example.

Distance Ego A B C D E F G
Ego 0 1 1 1 1 1 1 1
A 1 0 2 1 2 2 2 2
B 1 2 0 2 2 2 2 2
C 1 1 2 0 2 2 2 2
D 1 2 2 2 0 2 2 2
E 1 2 2 2 2 0 2 2
F 1 2 2 2 2 2 0 2
G 1 2 2 2 2 2 2 0

Sum Closeness Normalized
7 0.143 1.000
12 0.083 0.583
13 0.077 0.538
12 0.083 0.583
13 0.077 0.538
13 0.077 0.538
13 0.077 0.538
13 0.077 0.538
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