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Abstract

ENERGY PROFILING & CONTROL FOR ANDROID DEVICES

Rahul Murmuria

George Mason University, 2010

Thesis Director: Dr. Angelos Stavrou

Nowadays, smart-phone devices provide increased accessibility and they are equipped

with a wealth of standard capabilities including but not limited to touchscreen display, WiFi

communications, bluetooth, audio, and GPS. These increased capabilities enable users to

perform activities that go beyond mere phone calls: Internet browsing, email, games, pic-

tures, audiobooks are just a few of the growing list of functionality that is currently sup-

ported by modern phones. Unfortunately, this increased functionality has high resource

consumption requirements that incurs a direct impact on the battery life of all hand-held

devices. Google’s build-in battery display employs a simple, linear model to calculate the

energy requirements of the active devices. Moreover, Android does not provide any mecha-

nisms to control or even meter the resource utilization for individual processes and devices.

The existing model appears to be inadequate in providing proper component based analysis

for battery consumption such that it is possible to profile and control applications based on

their device usage pattern.



In this thesis research, we will attempt to provide a more precise model of measuring

and policing the power consumption in Android-equipped hand-held devices. To that end,

we plan to design and implement a kernel subsystem to calculate and assign live adaptive

weights to each hardware device component within the Linux kernel. Our approach will

use moving averages to identify the relative impact of each device usage on the battery

consumption curve. This will be done taking into consideration other factors including

but not limited to change in temperature and heat over time. In addition, we will further

provide mechanisms to estimate the battery consumption of each application and/or each

type of task in the Dalvik VM and in the Kernel. Our goal is to enable the user to maximize

the availability of critical functions like, for instance, making calls and minimize the use

of battery consuming tasks like, for instance, continuous GPS location updates on Google

Maps.
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Chapter 1: Introduction

Recent advancements in hardware have increased the computing power, memory, storage,

and wireless connectivity of handheld mobile devices. Smart phone devices are used for

everyday activities that range from Maps and Geo-location tagging to banking. Indeed,

these new hand-held devices are capable of carrying significant amount of both personal and

professional data including documents thus extending the operations that we can perform

from desktop to small-factor devices. Unfortunately, this reliance on hand-held devices have

made them an attractive target for applications and new mobile application markets have

spawn for the different types of devices. At the same time, these new devices have become

the target of malicious attackers that have shifted their attention from desktop systems to

malware and malicious software for hand-held mobile devices.

Most mobile phone devices today are equipped with a phone, web browser, music player,

camera, and a horde of other applications and services. Google Android, NeoFreeRunner,

Nokia Maemo, iPhone OS and Windows Phone OS are some noteworthy hand-held device

platforms capable of performing most of the functions previously found only in full-fledged

desktop operating systems. Usability of such devices is further enhanced by the availabil-

ity of third-party applications that can be purchased or freely downloaded by users from

online application stores or developer websites. This possibility for greater functionality

and convenience, however, it also exposes the user to a greater risk from malicious software

programs. While mobile applications that can be downloaded from untrusted third-party

sites are commonly regarded as the main source of such malicious software, security risks

can also come from vendor-certified app stores, as it is difficult for the vendors to thor-

oughly test thousands of applications whose behavior could potentially be made time and

location dependent. Further, even the built-in applications that come with such wireless

mobile devices may contain security holes that need to be addressed.
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Hand-held wireless devices are different than conventional computing platforms, such

as desktop computers, in several aspects. Firstly, such devices have very limited resources

in terms of computing power, batteries, memory, to name a few. A faulty or malicious

program targeting these weaknesses, for example, can easily abuse the unregulated access

to the battery through excessive use of CPU or radio communication. Secondly, hardware

parts are tightly integrated, which makes it difficult to identify the source of an abnormal

condition. For instance, if a program is able to increase the GPS intervals of communication,

it is not easy for the end-user to identify the cause of power consumption and take action.

Thirdly, due to mobile nature of such devices, and lack of built-in protection against ma-

licious software through the underlying operating system or through third-party anti-virus

programs, malicious programs can spread faster.

In this thesis, we introduce a kernel-based approach to meter, profile, and police the

power consumption of applications that run in Android devices. Our goal is to provide

increased fault tolerance security by quantifying the power consumption that is related

with a specific process or a set of processes including operations of this process that involve

kernel subsystems and devices. We do so by making each process accountable for the use of

all resources in the hand-held device including CPU, communications, GPS, USB, storage,

display, touchscreen among others. In this thesis, we have competed the accountability and

profiling components but we have not fully implemented a policy enforcement module to

prevent misuse of battery. Therefore, although we can detect energy changes and attribute

them to processes, we cannot prevent those processes from consuming more energy. In this

regard, we focus on two aspects of the energy control system at the same time: resource

management and process control through Kernel and user-space modifications.

We focus on resource usage accounting, application profiling, and resource provisioning

for processes or process groups. In particular, we concentrate on battery management.

The reasons are that the battery is among the most important resources for handheld

devices and that there is little OS-level support for battery profiling and provisioning, in

contrast to other types of resources such as CPU, memory, etc. Our ultimate goal is to
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provide efficient and effective security mechanisms that support a wide variety of security

policies to create a secure execution environment for mobile devices. We choose Google’s

Android platform [1] to implement our solutions. This is primarily due to the open source

nature of the Android platform and the expected increase in the market share of Android

based mobile devices.

Summary of contributions:

• Design & Implement an accurate model for accounting and policing energy consump-

tion. We do so using a novel kernel subsystem to estimate energy and meter energy

consumption of each process.

• Meter the per-process CPU & Device utilization over time. To that end, we identify

the relative impact of each device component on energy consumption.
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Chapter 2: Background and Related Work

In this chapter we first go over popular mobile platforms, such as iPhone, Palm, and Google

Android, from the perspective of security enforcement for software applications. Then we

go over common attack models on mobile devices. Afterwards, we discuss related literature

on battery accounting and control. Finally, we go over existing virtualization solutions

for conventional computing platforms, highlighting advantages and disadvantages, and the

suitability of different virtualization solutions for mobile platforms.

2.1 Survey of Mobile Platforms

In this survey, we discuss three common mobile platforms: iPhone, Palm, and Android.

The iPhone mobile platform released by Apple uses an application model where software

programs are restricted through “application sandboxes”. Application sandboxes are used

to limit an application’s access to files, preferences, and other hardware resources. The

sandbox helps to reduce the damage caused compromised non-malicious software programs.

A malicious application, however, can still stage attacks on the phone.

The Palm platform uses Linux kernel with proprietary extensions. A discussion of the

vulnerabilities of the platform is discussed in [2]. Due to the propriety nature of the iPhone

and Palm platforms, in this work we focus on the open source Google Android project,

which uses a slightly modified Linux kernel as its operating system core.

Google Android platform built on a modified Linux kernel, and provides libraries for

C, audio, video, database, and network communications. Android uses Dalvik VM for

executing and containing programs written in Java. The VM expects a bytecode different

from Sun’s official bytecode. The library is based on a subset of Apache’s Harmony toolkit.

Application control is achieved through the policy enforcement mechanism of the Dalvik
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Table 2.1: A Comparison of Mobile Platforms.

⇓ Feature \ Platform ⇒ Android iPhone Palm

Development platform Android SDK iPhone SDK Palm WebOS

Open source? Yes No No

Supported languages Java Objective-C Javascript/HTML

Virtualization Dalvik VM No No

IDE Eclipse Xcode Eclipse

Emulation Android Dev. Tools iPhone SDK Palm SDK

VM monitoring support Mainly for debugging N/A N/A

VM. Applications written in Java that runs inside Dalvik can only use the set of function-

alities provided by the Java API. However, the need for application control and the need

for providing broad system level services are often contradictory. A malicious program can

always ask for more permission that it needs, and users cannot be expect to make correct

decisions all the time. Further, the Android platform allows the use of native C/C++

libraries that come with Java applications. This opens more opportunities for malicious

applications to attack the system.

Table 2.1 gives a comparison of features of different platforms.

2.1.1 Attacks on Mobile Devices

Generally, attacks against mobile devices can be categorized to two types: disruptive and

non-disruptive. Disruptive attacks are attacks that make the device to a non-usable state.

For example, DoS attack against the battery, blanking the screen to prevent the user’s

operation, or even overclock the CPU causing hardware damages. Non-disruptive attacks

mainly focus on stealthily information capturing and transmitting user data to external

adversaries. Such attacks do not affect user experiences on the devices but will leak sensitive

or confidential information, such as user contacts, user location through GPS, keyboard

input, screen captures, audio/video recording, etc.

In terms of attack channels, we can group attacks on mobile devices as follows:

• Vulnerabilities in built-in applications, such as buffer overflow vulnerabilities [3], etc.
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• Downloaded malicious software.

• Attacks through input channels, including USB connections, wireless communication,

etc.

The motivations for attacks could be due to financial, military, or personal reasons.

Attack types could also be different, such as traffic re-routing, spying through microphone

and camera, stealing data, modifying system messages, altering audio and graphics output,

attacks on resources such as battery drain, packet drops, high CPU usage, or even explicit

attacks, such as playing sound or video.

To aid our studies, and to show proof of concept demonstration of possible attacks, we

have developed programs that perform most of the types of attacks that we have described

above, such as blanking out device display, recording sound and video, sending files to

remote locations, etc. We also have initial success in attacking certain hand-held devices

through USB connections. The lack of deployed USB defenses or detection mechanisms

empowers the attacks to remain stealthy. The only instance of USB-borne threats is flash

drive viruses spreading from USB files. However, the new smart-phones are capable of

accomplishing a much more powerful and widespread propagation of malware.

2.2 Energy Accountability in Modern Operating Systems

As we discussed earlier in the introduction, one of the main difference between mobile

devices and conventional computing platforms is resource availability. The most pronounced

among them is battery. Defective applications or defective updates to previously functional

applications can cause the hardware devices on the phone to overtax the battery. Deliberate

or accidental, these applications hijack the WiFi, Bluetooth or display of the device and

eventually cause a denial of service attack [4]. Another possible attack vector for battery

exhaustion is to taint the mobile device’s ability to sense network signals, thereby causing

it to go into signal searching mode too often, and resulting battery exhaustion.

There is existing literature on design proposals for an intrusion detection system based
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on per-process battery consumption information [5]. Their results are purely mathematical,

and the proposed model is based on artificial neural networks.

There is also a tool for power-profiling, named pTop [6], which uses in-kernel code to

collect per-process CPU, Network and Disk usage statistics. Their power consumption cal-

culation is based on an energy-model that uses specification provided by hardware vendors

and generates statistics over a sampling time window. This design employs the use of

extensive data collection and analysis which is costly on system resources.

In another research initiative, the goal was to dynamically tune a wifi receiver’s energy-

saving strategy depending on the application behavior and key network parameters [7].

Here, the researchers modified the process scheduling algorithm in accordance with the

hardware utilization from each process in order to achieve power saving for the entire system.

While their work demonstrates that it is possible to restructure process scheduler’s wait

queue in accordance with each process’s hardware usage, the goal here was overall system

energy optimization, and not per-process energy profiling, hardware access rate control and

anomaly detection.

It is also possible to determine battery-consumption information during compile time

[8, 9] by application designers during their quality assurance and testing phase but these

estimates are purely under lab conditions and are measured offline through code analysis,

rather than a live runtime calculation that might adapt to heat and hardware lifetime.

The use of linear regression model with static weights for hardware components’ relative

rate of battery consumption as described in [10], is further questionable. Battery discharge

is never ideal, and the process scheduler has to take the non-linearities into account, in

order to guarantee good battery usage estimations [11]. It is inaccurate to make a direct

correlation between currently running processes and the instantaneous fall in battery levels

recorded by the operating system.

In order to defend against these denial of service attacks, in our work we group relevant

processes into kernel-space process containers which isolate and then enforce resource limits

on each of these groups, depending upon configuration. The kernel has CGroups or Control
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Groups [12] which is a module that helps create these process groups. We implement a

subsystem of control groups which uses per-process battery consumption information and

provide an interface to set limits to the battery consumed by a container. The advantage

of basing our battery process groups on this subsystem infrastructure is that there is a

consistency in managing the Linux kernel with respect to resource counting.
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Chapter 3: Challenges

Why don’t we have accurate energy attribution system for Unix processes? To answer this

question, we need to look carefully at what is required to build an energy accounting system

and identify the potential pitfalls that can lead to miscalculations or lack of attribution.

The main obstacle for accurate metering of energy resources is the current lack of at-

tribution of usage of the device subsystems including but not limited to GPRS, WiFi,

bluetooth, display, packet network operations, GPS. Indeed, processes that utilized these

devices do not get “charged” for the energy that these subsystems consume to provide their

services to processes. For instance, the energy usage of the WiFi subsystem to transmit

and receive packets has to be attributed to the corresponding processes that benefit from

this communication.

Unfortunately, the problem is not as simple. What happens in the case of shared

resources and kernel subsystems? Of course, almost all of the kernel subsystems are shared

which means that we have to identify a mechanism to “share” the utilization of each of the

device’s subsystems to the corresponding processes. This immediately opens up the issue of

what type of sharing we will perform. We do not want to penalize processes that have light

usage of a subsystem by dividing the energy equally among processes. We need to identify

a more fine-grained mechanism to attribute usage of subsystems and their corresponding

energy consumption for accurate accounting.

Another issue is that devices do not drain power equally over all time intervals and

the actual consumption depends on many different factors including the intensity of the

usage for the different device subsystems. As an example, the WiFi driver requires more

power in environments with poor signal strength and can quickly drain the battery of the

device. This change in “intensity” of the energy consumption for device subsystems has to

be accounted for and attributed to the processes that use that device.
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Finally, it is clear that there is a need for a more dynamic calculation of power consump-

tion. Therefore, the more frequent we meter the resources the more accurate consumption

attribution we can expect. At the same time, the more frequent we meter the more power

have to consume for the metering application itself. This creates a relation between ac-

curacy and metering consumption akin to the Heisenberg uncertainty principle in particle

physics which states that certain pairs of physical properties, such as position and mo-

mentum, cannot be simultaneously known to arbitrarily high precision. In our case too,

accuracy cannot be known in arbitrarily high precision. The more the required precision,

the more power we have to consume in terms of measurements.
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Chapter 4: System Goals and Architecture

In this section, we outline system goals and architecture for mobile device platforms. Since

we focus on Google’s Android platform in our study, as we mentioned earlier, we first go

over the security design of the Android platform.

Under Android’s security architecture, processes are isolated in Google’s custom JVM,

Dalvik, and application programs or services written in Java can only get system services

through a set of Java API exposed by the JVM. Applications are installed with default per-

mission set, and can request for more permissions at the installation stage. Each application

is assigned a user ID under which it will be executed, and resource access is enforced through

the underlying Linux kernel based on user and group ID information. Java applications can

be augmented through C/C++ libraries using JNI, but the same set of permissions are

enforced for resource access.

Different permissions are given for system resources based on their security significance.

For example, applications can request access for the camera or the audio recording device

and if these permissions are granted at install phase, application can access camera and

microphone readings through Java APIs.

4.1 Security Goals

Our eventual goal is to provide flexible security mechanisms to support a wide range of

security policies. An example set of security policies may include “No app can access

display framebuffer when it is not active”, or “Only the ‘Phone’ app is allowed to run if the

battery level is below 5%”, etc.

As we discussed earlier, the main source of security problems is the conflict between the

user’s desire for more functionalities and the resulting exposure to more security risks. It
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is infeasible, or at least undesirable, to limit users’ ability to extend functionalities through

installing more applications.

An example is the aforementioned prohibition of framebuffer access for third-party ap-

plications under Android. While there is a clear security risk in allowing applications to get

access to the framebuffer, there could be valid applications that need to be able to read the

display framebuffer to get a screen capture, or to start a VNC session to be viewed from

outside.

As we can see, there is a direct conflict between functionality and security here. To

address this, we propose the use of process control and resource management. By

providing a contained execution environment, we address such conflicts by granting appli-

cation what they need, without compromising system security. For example, a request for

the display device can be granted to an application by assigning a virtual display device that

the application can manipulate however it wants without being able to access or modify

other applications’ displays. In this regard, we view our approach as an extension to the

security mechanisms currently in place under Android platform.

4.2 Resource Control

Both virtualization/isolation solutions that we have investigated, OpenVZ and Linux Con-

trol Group (CGroups), have their own resource control mechanisms for CPU, memory,

network, etc. Due to the fact the CGroups are readily available in current Linux kernels,

and that there no official patches of OpenVZ for recent Linux kernels, we mainly focus on

Linux Control groups in our discussion of resource control mechanisms.

4.2.1 Linux Control Groups

Control Groups [12] provide a mechanism for aggregating/partitioning sets of tasks, and all

their future children, into hierarchical groups with specialized behavior. These groups have

very low overhead as compared to traditional virtualization or jailing techniques. Groups

management is available through simplified user-space file operations to control access to
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the CPU, memory, network, input/output character devices and filesystem. The processes

that appear to be malicious or resource exhausting, can be placed into a frozen or suspended

state. These suspended group of processes can be ported to a different computing device

and can be re-played in a protected environment for performing analysis.

Since this system was originally implemented in Linux for traditional computing plat-

forms, they do not have support for battery management, an important resource for hand-

held mobile devices. In our research, we extend CGroups to support battery usage account-

ing through a battery management subsystem.

4.2.2 Implementation of Wakelocks for Power Management in Android

Platform

The Android platform needed a single framework for micromanaging the power suspend

for each hardware component. Google Android team has implemented an aggressive power

management policy on top of the Linux power management, in which “wakelocks” are used

by system processes, in order to keep each hardware component from going back to low-

power states, idle and suspend. For instance, it is possible to hold the wakelock for the

wifi driver, and hence let the display, gps and bluetooth go into idle mode, while keeping

the wifi module awake. We extended this wakelocks system to determine which process has

been using which device driver and for how long.

Under Android platform, the wake lock internal function from the wakelocks driver

is called every time this lock is accessed. To account for we record this call in our thread

groups statistics (tgid stats) driver that we will describe shortly.

4.2.3 Energy Resource Container Design

In our Energy Resource Container we implemented the following components:

1. Hobbits driver: Calculates a relative weight for impact on battery consumption for

each wakelock.
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Virtual Filesystem Module

proc fs module cgroups fs module

tgid_stat hobbit_stat charge rate next_balance

CGroups
batt_quota
subsystem

Misc Drivers

hobbits
driver

tgid_stats
driver

wakelocks
driver

kernel
sockets

process
scheduler

tcp_rcv; tcp_snd;total_cputime;

locks_list

(hobbit_ns)tgid,w

dynamic
hobbits

(hobbit_ns)tgid

USER SPACE

KERNEL SPACE

Existing module New module Future work

Figure 4.1: System components.
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2. tgid stats driver: Maintains lists for each kernel thread group with names of wake-

locks and the amount of time the thread group was estimated to have held the lock.

3. (hobbit ns) calculator: This is a pseudonymous battery consumption value for every

thread group that can be used as ratios.

4. proc filesystem exports: All of the hobbit driver and tgid stats driver generated in-

formation is exported to the proc filesystem for users and applications to parse.

5. energy quota: A CGroups subsystem to control a group of processes based on their

hobbit ns value.

These components are shown in Figure 4.1 and has been described in detail as below.

4.3 Virtualization

To achieve the aforementioned system goals, we considered different virtualization solutions

as well. Our design is explained using the following conceptual system architecture as shown

in Figure 4.2.

For commonly used application in mobile hand-held devices users expect responsive be-

havior from the system from application start up to user interaction. In an effort to isolate

separate instances of program execution in separate containers, a virtualization solution

inevitably introduces execution overhead compared to native program execution. As a re-

sult, the main challenge in interactive application support is that the virtualization solution

should be light-weight, while providing full virtualization of graphics, audio, and other sys-

tem resources. Further, it should also support fast and seamless switching of applications

running in different containers.

For controlled execution of software applications, we consider the following three differ-

ent aspects that need to be addressed:

• File system level isolation
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Figure 4.2: Overall System Architecture.

• System resource control

• Virtualized device support

Together, these three mechanisms provide execution isolation and control in terms of

file system, processes, and IO operations.

For FS level isolation, we use of chroot mechanism to contain application execution

under a sub-directory of the host file system. This prevents a malicious application from

damaging system files and from unauthorized access to other applications’ data, such as

preferences, contacts, etc.

Linux control groups (cgroups) are used a mechanism to control a group of processes for

specialized behavior. One advantage of CGroups compared to OpenVZ is that CGroups

exist as part of the Linux kernel, and, unlike OpenVZ, are readily available to use.

Under CGroups mechanism, a cgroup associates a set of tasks with a set of parameters

for one or more subsystems. A subsystem is a module that makes use of the task grouping

16



facilities provided by cgroups to treat groups of tasks in particular ways. A subsystem is

typically a “resource controller” that schedules a resource or applies per-cgroup limits, but it

may be anything that wants to act on a group of processes, e.g. a virtualization subsystem.

Currently available cgroup subsystems including CPU, memory, network, device access, etc.

For our purpose, we also add a new battery subsystem to control process groups based on

battery usage.
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4.4 System Implementation

4.4.1 Our Approach

In order to provide proper protection against our threat model discussed above, we im-

plemented a model for accounting and policing energy consumption. We followed a two-

pronged approach:

• Meter the per-process CPU and Device utilization over time

• Identify the relative impact of each device component on energy consumption

Metering per-process device utilization

Google’s Wakelocks are discussed under Background earlier in this paper. These wakelocks

are meant to keep the hardware device from going to power save mode. Everytime a process

needs access to a device, it asks the OS to get a lock (its a shared lock, not an exclusive

lock).

Our module watches these calls and logs which process is calling which lock, and which

lock got which processes at a given time. From this log, the ‘uptime’ is calculated.

We still need ‘intensity’ of operation for each device. For example, a process could run

the CPU at lower frequency. Or, two processes could use the network, and use it at different

rates. Therefore, we get CPU and Network intensity information into our driver by pulling

this information from the CPU Scheduler and the Kernel Sockets.

Relative impact of devices on energy

Devices effect the energy at varying rates, in comparison to each other. Further, the impact

on energy changes for a given device depending upon lots of factors. For example, the

cellular signal varies a lot from place to place, and depending upon the user’s location,

the device could regularly consume more energy than for other users. Same can be said

about GPS, where it could be from Satellite or from Network and teh initial seeking time
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consumes more power due to its bursty nature, than the regular Location updates to the

OS thereafter.

These weights also change from device to device. For example, for Motorola Droid 2,

the wifi driver might be more costly on energy than its counterpart in Dell Streak.

To solve this problem, we created a concept of relative energy impact weights, called

‘hobbets’.

4.4.2 Kernel subsystem driver design

hobbets Driver

This module maintains a linked list with the name of wakelocks as an index. It uses the

following structure:

The rest of the driver comprises of services and setters to manage this structure. Some

functions are provided as an API for other kernel modules to access via a header file for

this driver. These functions include:

Thread Group Statistics (tgid stats) Driver

This module maintains lists in order to account for the amount of time a thread group

holds a lock, and calculate its corresponding hobbet ns score, as a relative value indicating

battery consumption. The driver uses the following structures:

4.4.3 Energy model

Each wakelock for a given thread group has a corresponding hobbet value set in the

wakelock type structure, that suggests the impact that this lock has on the battery us-

age every time the lock is held by any process. The tgid stat driver records, in the

wakelock type structure, the amount of time a wakelock was active. Next, the hobbet ns

value is calculated as:

(hobbet ns)tgid,W += △(uptime)tgid,W ∗ △(intensity)tgid,W ∗ (hobbet)W
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W = device driver locks; tgid = thread group (user space processes)

In the above formula, the hobbet value for each wakelock is expected to change peri-

odically. In our current prototype however, this value is absolute and further research is

needed to make this attribute adaptive over time to the non-linear battery consumption

curve. More details on this are provided in the future work section.

This hobbet ns value is for a given thread group and a given wakelock. To find the

corresponding total for a thread group or for a wakelock, we take a sum over all necessary

hobbet ns values. This way, we can find the total energy consumed by a given process or

a given device driver.

(hobbet ns)tgid =
∑

W

(hobbet ns)tgid,W

(hobbet ns)W =
∑

tgid

(hobbet ns)tgid,W

W = wakelock; tgid = thread group

Converting these hobbet ns values into milliampere-hour (mAh) is possible in the fol-

lowing way:

1. Starting values are recorded for

• mAh value from the battery driver

• hobbet ns value of the thread group or wakelock in question

• sum of all hobbet ns values for all the thread groups in the tgid stat list

2. Test is run for any time window as needed. During this time, the kernel will update

these structures with new values based on the usage.

3. At the end, the same 3 values are recorded again and the deltas (change in values)

are calculated.
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Once the above steps are complete, for the given time window, the following simple ratio

formula can be used:

△Btgid = (△Htgid/
∑

tgid

△Htgid) ∗ △B

△BW = (△HW /
∑

tgid

△Htgid) ∗ △B

B = battery inmAh; H = hobbet ns; W = wakelock; tgid = thread group

4.4.4 Proc filesystem exports

All of the hobbet driver and tgid stats driver generated information is exported to the proc

filesystem for users and applications to parse, as illustrated in figure 4.3.

/proc

hobbit_stat tgid_stat

<wakelock_name>

hobbits tgid

<tgid>

locks_list hobbit_ns tcp_snd tcp_rcv cputime

<wakelock_name>

hobbit_ns touch_time hold_time

Figure 4.3: Proc Filesystem Exports

4.4.5 Userspace solution using application design

We used SysWatcher application. Design or our logs explained bellow.
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Chapter 5: Experimental Results

We were able to produce accurate real-time estimations. In addition, we stored and ex-

ported this information to log files and were able to provide real-time analysis over the data

generated using an Android log analysis application.

• Per-process CPU utilization

• Per-process Network utilization

• Overall battery usage

• Localize that information (GPS coordinates list)

5.1 Real-time Application Monitoring and Profiling

Our application generates real-time graphs for per-process CPU utilization and overall bat-

tery exhaustion as shown in Figure 5.1 and Figure 5.2.

In Figure 5.2 we depict a charging cycle. Notice that by comparing Figure 5.3 and

Figure 5.1, we can see that these two different processes were profiled in the same time frame.

Each utilized a different amount of CPU ticks. “SysWatcher” is our logger application,

and therefore, the CPU ticks in Figure 5.3 illustrates the CPU consumed by the logging

application itself.

One other derivation that can be made from the CPU logs is the system power save

time for each process. Note in Figure 5.4 that the curve is monotonically decreasing. This

indicate that the process is in power-save because system server process is attached to

the usage of the device and it only goes to sleep when the device is in power-save mode.

However, in most other cases, the only way we can identify if a process is powered down or if
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Figure 5.1: Per-process CPU Utilization graph.

Figure 5.2: Overall battery Utilization graph.
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Figure 5.3: Metering process CPU utilization graph.

the entire system went into power save mode, is by looking at the battery exhaustion curve

in parallel. Unfortunately, if you are making this analysis in user-space, you cannot detect

if you are in power charging mode during which time the battery curve won’t be available,

and we will not be able to make a clear differentiation between the two phenomena.

Another interesting set of observations that can be made are based on rate of change

of battery along with which processes became active and which ones died. We did not

implement this view on our SysWatcher application yet, however the same can be generated

using the log files as a post-analysis, by exporting the log files to a standard server / laptop.

Sample log files entries:

CPULog:

2010.December.106 : 48 : 00AMEST, pid90, systemserver, ticks417924,

cpu0.16999999999999998%,mem58440KB

BatteryLog:

2010.December.106 : 48 : 58AMEST, bat100, volt4.6, temp273, Full
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Figure 5.4: Kernel process CPU utilization graph.

GPSLog:

2010.December.0811 : 19 : 31PMEST,LAT38.84008169174194, LON−77.31281340122223,

ALT99.0, ACY 8.0
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Chapter 6: Future Work

In this chapter, we describe our plans for future work.

6.1 Energy Policy Enforcement

This is more of an immediate goal. Use CGroups containers to create process groups. Create

a new energy control subsystem in cgroups, in order to enforce energy quotas on the process

groups.

The cgroup framework needs to be initialized from user-space after every reboot. File

operation commands like mkdir and echo are used to create cgroups and add processes to

it. Also, mount is used to attach subsystems to a cgroup.

Here, two subsystems, cpuset and batt quota have been added to the cgroup taskset1.

Since they have both been assigned the same hierarchy, the properties that will be defined

for both subsystems will apply to all process IDs in the cgroup/taskset1/tasks file.

There are tools and libraries in user-space that help manage creating these cgroups based

on preset rules. Also, if the current set of groups need to be maintained across reboots,

care has to be taken to save this information in user-space.

On a Linux desktop with standard POSIX libraries, there is libcgroup API which

can be accessed pragmatically. Further, the cgred daemon can be used to allocate child

processes to control groups based on some rules set in configuration files. These user-space

tools need to be adapted to be usable on a Google Android platform. These user-space

functions will need to be implemented as a Dalvik service, or as a Android OS’s system

component. However, they are not required, in order to test the working of our resource

containers and hence this task has been left out of the scope of this study.
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Therefore, we aim to create a policy system to control and manage energy provisioning.

System administration with energy consumption parameters. To be able to define rules for

different classes of applications and functions, the smart-phones can be policed.

6.2 Efficient User & Device Profiling

Overall, our approach can be extended as follows:

• Dynamic hobbet weights: There is a plethora of smart phone devices and more are

planned to be released in the near future. The generated power profiles for each appli-

cation and user have to be adjusted to account for the changes in battery capacity and

consumption across devices. To that end, we plan to collect sample energy consump-

tion data and extrapolate the usage for new device using statistics on the variation of

hobbet values across different smart-phone devices.

• Associate application energy patterns with users and devices: We plan on associating

application energy patterns to specific users and devices by collecting application

usage data from a range of different users and devices. This profiling is crucial if we

want to be able robustly profile a user. Having a energy profile which is user-centric

can be employed for anomaly detection. For instance, we can ferret-out malicious

activities and suspicious program behavior, or maybe even predict phone theft due to

change in usage patterns.

• Dynamic hobbets for the hobbet driver of the battery subsystem: As we discussed in

this thesis, to further increase accuracy, the hobbet value for each wakelock needs to

be modified over time. This can be done by averaging the battery consumption curve,

with respect to the number of wakelocks active in any time period when the Android

mobile device is not in charging mode. The sample data illustration in table 6.1 should

explain the concept in more detail.

In table 6.1, we can observe that when gps was active, the battery charge fell more

sharply. If we started with wifi, display and gps wakelocks having the same hobbet value
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Table 6.1: Sample data illustration for input to dynamic hobbets

timestamp (sec) active wakelocks charge level (mAh)

1500 [] 1300
2000 [wifi, display] 1250
2500 [wifi, display, gps] 1175

at 2000 seconds, we should have an algorithm to increase the hobbet value of gps at 2500

seconds. It must also be considered that the fall in battery charge may not be consistent

over multiple test cases and may vary with other factors like temperature.
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Chapter 7: Conclusions

In this thesis, we propose a system for accounting of energy consumption for individual

Unix process for Android mobile devices. To achieve that, we used a kernel-level subsystem

that is two pronged: on one hand it measures the CPU and device usage for each process.

On the other hand, it estimates the energy consumption that each of the device subsystems

including CPU, display, communications and network sockets, touchscreen, among others.

We use the Android wakelocks and device-specific usage to attribute to each process their

share of consumed energy from the utilization of the device subsystems.

Our approach departs from the current state-of-the-art because we perform real-time

calculations of energy consumption. Previously, engineers relied on the power consumption

rating provided by the hardware manufacturers and nearly no real-time calculations were

done on actual energy consumption of a device driver. We have implemented our system for

Android Linux kernels and we have evaluated its performance using a user-land Android-

based application.
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Appendix A: CGroups based subsystem for battery quota

Control Groups is used to denote and delineate a set of tasks in the Linux kernel that

has been grouped together to better manage their interaction with system hardware. This

grouping can be performed based on policies that are decided by either the user, an admin-

istrator, or the system based on the parent-child relations. On Android we can set quotas

for individual applications by grouping together tasks based on their user id. The policies

that are to be used for grouping has been left out of the scope of this work. Our goal here is

to demonstrate control groups as a solution in our security model for the Android platform.

The way to interact with cgroups to create, destroy and assign tasks is by using the file

system interface. The control groups system allows for process grouping. The underlying

mechanism consists of three elements: the control groups, subsystems, and hierarchies. Our

battery quota subsystem can be enforced upon this process set in the cgroup, and has an

interface that allows for assigning of hobbet ns usage limits over the process set in the

cgroup associated. The file system has the following elements:

battery.quota.charge. This is used to set the absolute battery charge limit to battery

consumption. If all the thread groups in a control group container together end up using

the given amount of hobbet ns, the tasks are never brought back to the ready queue until

the battery is placed into charging mode, or until the cgroup is modified or deleted.

battery.quota.rate. This is used to set the percentage rate limit to battery consump-

tion. This interface can also be used to slow down a particular set of tasks. The tasks in the

cgroup is not allowed to exhaust the battery unless there are others in the system having

an equal piece of it. This is achieved by limiting the hobbet ns of a container relative to

the total hobbet ns score of the system.

battery.next balance. This interface determines the overall system hobbet ns value

after which the current task is ready to be scheduled again.
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A.1 Linux CGroups

Linux control groups (cgroups) are used a mechanism to control a group of processes for

specialized behavior. One advantage of CGroups compared to OpenVZ is that CGroups

exist as part of the Linux kernel, and, unlike OpenVZ, are readily available to use.

Under CGroups mechanism, a cgroup associates a set of tasks with a set of parameters

for one or more subsystems. A subsystem is a module that makes use of the task grouping

facilities provided by cgroups to treat groups of tasks in particular ways. A subsystem is

typically a “resource controller” that schedules a resource or applies per-cgroup limits, but it

may be anything that wants to act on a group of processes, e.g. a virtualization subsystem.

Currently available cgroup subsystems including CPU, memory, network, device access, etc.

For our purpose, we also add a new battery subsystem to control process groups based on

battery usage.

The resource control mechanisms provided by OpenVZ or CGroups can be augmented

by Linux operating system’s mainstream built-in tools, such as iptables or tc (traffic

control) commands.
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