
Kernel-Based Meshless Methods

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Andrew Corrigan
Bachelor of Science

Stevens Institute of Technology, 2005

Co-Director: Dr. John Wallin, Professor
Department of Computational and Data Sciences
Co-Director: Dr. Thomas Wanner, Professor

Department of Mathematical Sciences

Spring Semester 2009
George Mason University

Fairfax, VA

Copyright c� 2009 by Andrew Corrigan
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my family and friends for their love and support.

iii

Acknowledgments

I would like to thank the following people. My advisors Dr. John Wallin and Thomas
Wanner, my committee members Dr. Daniel Anderson, Dr. Juan Cebral, and Dr. David
Singman, as well as Dr. Rainald Löhner, for their wisdom, support, encouragement, and
guidance on my dissertation research. Dr. H. Quynh Dinh for introducing me to radial
basis functions, graphics hardware, and research in general, as an undergraduate at Stevens
Institute of Technology. The work on Fourier volume rendering was initiated under her
advisement. Dr. Greg Slabaugh for his supervision during my internships at Siemens
Corporate Research, and his advice during my transition to graduate school. Sumit Gupta
and NVIDIA Corporation for providing hardware for development and testing.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . ix

Abstract . x

1 Introduction . 1

1.1 Meshless Methods . 1

1.2 Kernel-Based Interpolation . 3

1.3 Error Estimates in Sobolev Space . 7

1.4 Native spaces . 11

1.5 Data-Dependent and Irregular Memory Access Patterns 12

1.6 Graphics Hardware . 15

1.7 Open Issues . 16

1.7.1 Well-Posed Interpolation Using Adaptively-Scaled Kernels 17

1.7.2 A Sampling Inequality for Fractional Order Sobolev Semi-Norms Us-

ing Arbitrary Order Data . 17

1.7.3 Visualization Using Fourier Volume Rendering 18

1.7.4 Running Unstructured Grid CFD Solvers on Modern Graphics Hard-

ware . 19

2 Well-Posed Interpolation Using Adaptively-Scaled Kernels 20

2.1 Introduction . 20

2.2 Formulation and Well-Posedness . 24

2.3 Error Estimates and Stability . 25

2.3.1 Error Estimates for Interpolation Using Nonadaptively-Scaled Translation-

Invariant Kernels . 25

2.3.2 Error Estimates for Interpolation Using Adaptive Kernels 27

2.3.3 Stability of Interpolation Using Adaptive Kernels 29

2.4 Computational Examples . 29

2.5 Conclusions . 36

v

3 A Sampling Inequality for Fractional Order Sobolev Semi-Norms Using Arbitrary

Order Data . 37

3.1 Introduction . 37

3.1.1 Notation . 38

3.2 Extension of the Sobolev Bound . 40

3.2.1 Fractional Order Sobolev Spaces . 40

3.2.2 An Auxiliary Result . 46

3.2.3 Sobolev Bounds . 47

3.3 Application: Unsymmetric Meshless Methods for Operator Equations . . . 51

3.3.1 Convergence Results for the Poisson Problem 55

3.4 Conclusions . 59

4 Visualization Using Fourier Volume Rendering 61

4.1 Introduction . 61

4.2 Related work . 61

4.3 Direct Adaptation of FVR to Meshless Data 63

4.3.1 The Fourier Transform of Meshless Data 63

4.3.2 Approximation of the Inverse Fourier Transform 64

4.4 Particular Meshless Methods . 66

4.4.1 Kansa’s Method . 67

4.4.2 Meshless Symmetric Collocation . 68

4.4.3 Smoothed Particle Hydrodynamics 69

4.5 Implementation . 70

4.5.1 Implementation on Graphics Hardware 71

4.6 Applications . 71

4.7 Future work . 72

4.8 Conclusions . 75

5 Running Unstructured Grid Based CFD Solvers on Modern Graphics Hardware 76

5.1 Introduction . 76

5.2 Euler Solver . 78

5.3 Implementation on Graphics Hardware . 79

5.3.1 Overview . 79

5.3.2 Redundant Computation . 79

5.3.3 Numbering Scheme . 80

5.3.4 Data-Dependent Memory Access and Shared Memory 81

5.4 Results . 81

5.5 Conclusions . 83

vi

6 Conclusions . 91

Appendix A Code Listing: Meshless Data Fourier Transform Sampling in CUDA . 93

Appendix B Code Listing: Flux Computation in CUDA 96

Bibliography . 101

vii

List of Tables

Table Page

3.1 Orders of convergence . 59

4.1 Fourier transforms . 67

4.2 Performance measurements . 72

viii

List of Figures

Figure Page

1.1 Finite-element trial space . 3

1.2 Kernel-based trials space . 4

1.3 Fixed memory access pattern . 13

1.4 Data-dependent memory accesss pattern . 13

1.5 OpenMP and CUDA comparison . 16

2.1 Ill-posed adaptive scaling . 21

2.2 Translation-invariant interpolation . 22

2.3 Quadratic adaptive scaling . 23

2.4 Piecewise adaptive scaling . 30

2.5 Quadratic adaptive scaling . 31

2.6 Translation invariant interpolation . 32

2.7 Adaptive scaling in two dimensions . 33

2.8 Two-dimensional point distributions . 34

4.1 Quality-performance trade-off . 65

4.2 Astrophysical data sets . 73

4.3 Fluid dynamics data sets . 74

5.1 NACA0012 surface mesh . 83

5.2 NACA0012 surface pressure . 84

5.3 NACA0012 single-precision performance . 85

5.4 NACA0012 double-precision performance 86

5.5 Missile surface pressure . 87

5.6 Missile surface Mach number . 88

5.7 Missile single-precision performance . 89

5.8 Missile double-precision performance . 90

ix

Abstract

KERNEL-BASED MESHLESS METHODS

Andrew Corrigan, PhD

George Mason University, 2009

Dissertation Co-Directors: Dr. John Wallin, Dr. Thomas Wanner

In order to improve their applicability as a tool for solving partial differential equations

in computational science, we equip kernel-based meshless methods with a number

of new capabilities. First, we provide kernel-based meshless methods with the first

wellposed, general technique which allows for adaptively-scaled trial functions. This is

done by constructing an adaptively-scaled kernel which maintains positive definiteness.

We extend sampling inequalities to optimally bound fractional order Sobolev norms in

terms of possibly higher order data. This sampling inequality is then applied to obtain

more optimal error bounds in a reformulation of Schaback’s framework for unsymmetric

meshless methods. We provide kernel-based meshless methods with a direct

visualization technique, by adapting Fourier volume rendering to deal directly with

meshless data, which was previously only used directly for grid-based data. Modern

graphics hardware has emerged as a powerful architecture for scientific computing. We

implement an unstructured grid-based inviscid, compressible flow solver on modern

graphics hardware, and obtain an order of magnitude speed-up in comparison to an

equivalent code running on a quad-core CPU.

Chapter 1: Introduction

1.1 Meshless Methods

The most widely used methods in computational science for solving large-scale problems

with complex domain geometries are finite-element and other mesh-based methods. The

generation of a mesh for these methods is a bottleneck for many applications in computa-

tional science. Not only is mesh generation computationally expensive, it is not robust, and

sometimes requires manual user intervention. Meshless methods [5,24,62,75] avoid the need

for a mesh, and only require a finite set of points in order to discretize a domain. In contrast

with mesh generation, point generation has been shown to be an order of magnitude more

efficient than mesh generation and significantly more robust [43]. If meshless methods are

otherwise as capable as finite-element methods, meshless methods have the potential to

succeed finite-element methods as the main tool for solving partial differential equations in

computational science. In this dissertation, we will attempt to provide meshless methods

with capabilities that they currently lack in comparison to finite-element methods, which

would greatly improve their applicability to computational science.

The field of meshless methods is surveyed in [62, Section 12]. There are a number of

different meshless methods, which can roughly be categorized based on the underlying ap-

proximation used. Meshless methods based on moving least squares approximation [62, Sec-

tion 7.9], denoted MLS, are particularly popular in the engineering community [5]. Moving

least squares approximation, in the mathematical community, dates back to the work of

Lancaster and Salkauskas [40]. The earliest variant of these methods is smoothed particle

hydrodynamics of Monaghan [49], which employ a convolution-type kernel-based approx-

imation [62, Section 7.2] (a degenerate case of MLS which does not enforce polynomial

1

reproduction). The value of a moving least squares approximation at a given point is im-

plicitly defined by a local, weighted least squares problem [62, Definition 7.15], generally

using polynomials. A notable feature of moving least squares approximation is the require-

ment that at each evaluation point a small linear system of equations must be constructed

and solved. Because of the expense and complexity of sampling such an implicitly defined

approximation, particularly when performing quadrature [4] and visualization [16], these

methods are not considered here.

We instead turn to meshless methods based on kernel-based interpolation [62, Section

7.5]. These methods form explicit basis or trial functions by centering a kernel over a finite

subset of a domain. Kernel-based interpolation originated in the 1970s with the multi-

quadrics of Hardy [33], and thin-plate splines of Duchon [19]. Multiquadrics and thin-plate

splines were popularized due to a favorable comparison with other multivariate interpola-

tion techniques by Franke [27] in 1982, who also conjectured their well-posedness. Both of

these methods turn out to share the property of employing conditionally positive definite

radial basis functions [75, Chapter 8], which was used by Micchelli [48] in 1986 to establish

their well-posedness. Conditional positive definiteness is a generalization of the notion of

positive definiteness stated in Definition 1.2 which allows for well-posed interpolation by

augmenting the interpolation matrix with additional rows and columns and assuming cer-

tain conditions on the point distribution. We only mention this generalization for historical

purposes, and do not discuss it further since we are only interested in compactly-supported

kernels, for which conditional positive definiteness implies positive definiteness [75, Theo-

rem 9.1]. Both multiquadrics and thin-plate splines are globally-supported, which results

in dense interpolation matrices. During the 1990s Schaback [60] and Wendland [74] con-

structed compactly-supported radial basis functions, which lead to sparse interpolation

matrices. These compactly-supported radial basis functions are also positive definite and

can be used for well-posed kernel-based interpolation. The field has since greatly matured

with a number of textbooks providing a complete overview: Buhmann [11], Wendland [75],

and Fasshauer [24]. While these methods have shown to be very promising, a number of

2

Figure 1.1: A finite-element trial space over the domain (−4, 4). Finite element trial spaces
inherently allow for an adaptive scaling of the trial functions which can account for local
variations in the density of the point distribution.

important issues remain open in both their mathematical theory and the status of their

practical capabilities. Before discussing theses issues, we first give a formulation of well-

posed interpolation using kernels, as well as a discussion of the fundamental issue of error

estimates in Sobolev spaces.

1.2 Kernel-Based Interpolation

Let Ω be a domain, i.e., an open and bounded subset, in R
n. Given data values u1 . . . uN ∈ R

at a finite set of points X = {x1 . . . xN} ⊂ Ω, we consider the problem of finding an

interpolant uV,X ∈ V such that

uV,X (xi) = ui for i = 1 . . . N. (1.1)

3

Figure 1.2: A kernel-based trial space over the domain (−4, 4). Kernel-based trial spaces
currently are only well-posed in general using a uniform scaling of the trial functions, even
if the underlying point distribution has local variations in density.

4

where V is a finite dimensional trial space. The first step to solving this problem for arbitrary

data u is to specify the trial space V by choosing basis functions v1 . . . vN : Ω → R, which

are also known as trial functions. This allows for the interpolant to be uniquely specified

in terms of coefficients α1 . . . αN ,

uV,X =
N�

k=1

αkvk. (1.2)

Combining (1.1) and (1.2) results in a linear system of equations, associated with the

interpolation matrix

AV,X := (vj (xi))1≤i,j≤N . (1.3)

For example, finite element interpolation uses piecewise polynomials defined over a mesh

as trial functions. This is illustrated in one dimension using piecewise linear polynomials

in Figure 1.1. Here we are concerned with the case that the basis functions are defined by

centering a kernel, i.e. a bivariate mapping K : Ω× Ω→ R with Ω ⊆ R
n, at a finite set of

points X = {x1 . . . xN} in space.

vk := K (·, xk) for k = 1 . . . N (1.4)

An example of such a kernel-based trial space is illustrated in Figure 1.2. Since the choice of

kernel and point distribution determines the trial space, we will sometimes write the inter-

polant as uK,X . Currently, the most widely used kernels are undoubtedly the translation-

invariant kernels.

Definition 1.1. A kernel K : Ω×Ω→ R is translation-invariant if and only if there exists

a function Φ : Ω− Ω→ R such that

K (x, y) := Φ (x− y) for all x, y ∈ Ω.

5

In this case, the interpolant can be written in the form

uΦ,X =
N�

k=1

αkΦ (· − xk) , (1.5)

and its interpolation matrix can be denoted AΦ,X . A particular class of functions can be

used to construct translation-invariant kernels with invertible interpolation matrices (1.3).

Definition 1.2. [75, Definition 6.1] A continuous function Φ : R
n → R is positive definite

if for all N ∈ N and all sets of pairwise distinct centers X = {x1, . . . , xN} ⊆ R
n, the

interpolation matrix AΦ,X is positive definite.

Remark 1.1. We follow the naming scheme introduced by Wendland [75], in which “pos-

itive definite functions” are required to have positive definite interpolation matrices. His-

torically, “positive definite functions” were only required to have positive semi-definite in-

terpolation matrices.

Since positive definite matrices are invertible, this definition makes it clear that inter-

polation using positive definite functions is well-posed, but provides no practical means

for the characterization of such functions. Within the class of integrable functions, which

are denoted by L1 (Rn), an alternative characterization is available which provides such a

means.

Theorem 1.1. [75, Theorem 6.11] A continuous and integrable function Φ is positive

definite if and only if Φ is bounded and its Fourier transform is nonnegative and not zero

everywhere.

It should be noted that this characterization is a consequence of Bochner’s famous

characterization of positive semi-definite functions [75, Theorem 6.6]. A related result

provides a means for constructing positive definite functions.

Theorem 1.2. [75, Corollary 6.9] If f is continuous, integrable, nonnegative, and not zero

everywhere then its Fourier transform is positive definite.

6

Most commonly, Φ is a radial function, i.e., Φ is defined in terms of a univariate function

φ : R
+ → R such that Φ := φ (�·�2). This special case of kernel-based interpolation coincides

with the relatively popular technique known as radial basis function interpolation.

1.3 Error Estimates in Sobolev Space

Computational scientists must always make a tradeoff between the accuracy of a simulation

and the amount of computational effort required to perform the simulation. For a physical

simulation to be meaningful, the governing equations must be solved with sufficient accu-

racy, but such accuracy requires more of limited computational resources. Therefore, error

estimates, which provide a means for quantifying the relationship between accuracy and

effort, are an essential tool for computational scientists.

This quantification is typically done for functions in Sobolev spaces in terms of Sobolev

norms. In order to introduce Sobolev spaces we first introduce Lebesgue spaces. Let f be a

measurable function. For p ∈ [1,∞), �f�pLp(Ω) :=
�
Ω |f |

p, while �f�L∞(Ω) := ess supx∈Ω |f |.

A function is contained in a Lebesgue space if and only if the corresponding Lebesgue norm

is finite. Let L1
loc (Ω) denote the set of all functions which are integrable over any compact

subset of Ω. Let u, v ∈ L1
loc (Ω) and α ∈ N

n
0 be a multi-index, in other words, an n-tuple of

nonnegative integers. The order of the multi-index is denoted |α| and is the sum of each of

its components. Suppose that v satisfies

�

Ω
u∂αφ = (−1)|α|

�

Ω
vφ

for all test functions φ over Ω, i.e., those functions which are infinitely smooth in Ω with

support contained in a compact subset of Ω. Under this assumption v is called the weak

partial derivative of order α of u, which is denoted by ∂αu. Let r ∈ N and p ∈ [1,∞], the

integer order Sobolev space W r,p (Ω) consists of all functions f ∈ Lp (Ω) whose weak partial

derivatives for all multi-indexes α such that |α| ≤ exist and are contained in Lp (Ω). In the

7

case that p ∈ [1,∞), it is equipped with the semi-norm

|f |pW r,p(Ω) :=
�

|α|=r

|∂αf |pLp(Ω) , (1.6)

and norm

�f�pW r,p(Ω) :=
�

|α|≤r

|∂αf |pLp(Ω) , (1.7)

while in the case that p =∞

|f |W r,∞(Ω) := max
|α|=r

|∂αf |L∞(Ω) (1.8)

and

�f�W r,∞(Ω) := max
|α|≤r

|∂αf |L∞(Ω) . (1.9)

If r is a positive real number such that r /∈ N then the fractional order Sobolev space

W r,p (Ω) consists of all functions f ∈W �r�,p (Ω) for which the semi-norm |f |W r,p(Ω) is finite.

Here �r� denotes the largest integer k such that k ≤ r, while �r� denotes the smallest integer

k such that k ≥ r. In the case that p ∈ [1,∞) this semi-norm is defined by

|f |pW r,p(Ω) :=

�

Ω

�

Ω

|f (x)− f (y)|p

|x− y|n+(r−�r�)p
dxdy, (1.10)

while in the case that p =∞ it is defined by

|f |W r,∞(Ω) := ess sup
x,y∈Ω,x �=y

|f (x)− f (y)|

|x− y|r−�r�
. (1.11)

8

For p ∈ [1,∞), the fractional order Sobolev space is equipped with the norm defined by

�f�pW r,p(Ω) := �f�
p

W �r�,p(Ω)
+ |f |pW r,p(Ω) , (1.12)

while in the case p =∞ it is equipped with the norm defined by

�f�W r,∞(Ω) := max
�
�f�W �r�,∞(Ω) , |f |W r,∞(Ω)

�
. (1.13)

We employ the abbreviations |f |r,p,Ω := |f |W r,p(Ω) and �f�r,p,Ω := �f�W r,p(Ω). Of particular

importance are Sobolev spaces with p = 2, which are denoted by Hr (Ω). It is possible to

equip Hr (Rn) with a norm which is equivalent to either (1.7) if r ∈ N, or (1.12) if r /∈ N,

�f�Hr(Rn) :=

�
�
�
�Fnf (·)

�
1 + �·�22

�r/2
�
�
�
�
L2(Rn)

(1.14)

where Fnf denotes the Fourier transform of f

Fnf (ξ) :=

�

Rn

f (x) e−ix
T ξdx. (1.15)

Throughout this work we will usually assume that Ω has a Lipschitz-continuous bound-

ary. A Lipschitz continuous boundary is one that can locally be represented as the graph of

a Lipschitz continuous function. This assumption will allow for the application of Sobolev

embedding and extension theorems. A weaker version of a Sobolev embedding theorem

stated by Arcangéli et al. [2] is stated as follows.

Theorem 1.3. [2, Proposition 2.1] Let Ω be a bounded domain in R
n with a Lipschitz-

continuous boundary. Then, for any p ∈ [1,∞], nonnegative integer µ, and real number

r > n/p,

W r,p (Ω) �→ Cµ
�
Ω

�
.

9

The following is a restatement of the existence of an extension operator, based on that

of Arcangéli et al. [2].

Theorem 1.4. [2, Eq. 2.3] Let Ω be a bounded domain in R
n with a Lipschitz-continuous

boundary. Then, for any p ∈ [1,∞) and r ≥ 0, there exists a linear continuous operator

E : W r,p (Ω) → W r,p (Rn) such that, for any v ∈ W r,p (Ω), Ev|Ω = v. Moreover, such an

operator E also exists if p =∞ and r ∈ N.

The solutions of the partial differential equations of computational science are typically

contained in a Sobolev space Hr (Ω) where r ≥ 0. Let 0 ≤ l ≤ r, then a Sobolev error

estimate is of the form

�u− uh�Hl(Ω) ≤ � (h) �u�Hr(Ω) for all u ∈ H
r (Ω) , (1.16)

where the optimal form of the error factor is

� (h) = Chr−l. (1.17)

The error is the distance of a function u ∈ U to its approximation uh measured in the

norm �·�Hl(Ω). The order l is the maximum order of derivatives controlled by the error

estimate. For example, if l = 1, then the error estimate will control up to first order

derivatives of the solution. As can be seen from (1.17), there is a tradeoff between the order

of convergence and the order of the Sobolev norm in which the convergence takes places.

The error is then bounded by � (h), the error factor, scaled by the size of the function

u measured in the norm �·�Hr(Ω). The error factor � (h) depends on the discretization

parameter h which typically measures how dense the domain discretization is in the domain,

and is directly related to the computational effort. In the context of meshless methods the

10

discretization parameter is the fill distance

h (X,Ω) := sup
y∈Ω

min
x∈X

�x− y� , (1.18)

which measures the radius of the largest open ball in the domain which does not contain

a discretization point. Since the error estimate in (1.16) includes the unknown solution in

the estimate, it cannot explicitly quantify the error. It is still of practical value since it

can instead be used to describe how quickly one should expect the error to decrease, which

is mathematically described by the notion of the rate of convergence. For example, the

optimal error factor (1.17), which behaves asymptotically like hr−l, is said to converge with

order r− l. Such a property implies useful statements such as, “if twice the computational

effort is exerted, then it follows that the accuracy in the lth order derivatives will improve

by a factor of 2r−l”.

1.4 Native spaces

For their application in Chapter 2, we introduce relevant facts regarding the native spaces

associated with a class of translation-invariant kernels. A full development of the theory

of native spaces is provided by Wendland [75, Chapter 10]. Suppose that K is translation-

invariant, and thus defined in terms of a function, denoted Φ : R
n → R, which is positive

definite on R
n and whose Fourier transform satisfies,

C−1
2

�
1 + �ω�22

�r
≤ FnΦ (ω)

−1 ≤ C−1
1

�
1 + �ω�22

�r
for all ω ∈ R

n, (1.19)

where the constants C1, C2 are independent of ω and satisfy 0 < C1 ≤ C2. The native space

NΦ (Ω) of the kernel K = Φ(· − ·) is a Hilbert space of functions defined as the completion

of the space

FΦ (Ω) := span {Φ (· − y) : y ∈ Ω} .

11

It is important to note that the space FΦ (Ω) contains all possible interpolants, and also

that the kernel is the reproducing kernel, c.f., Aronszajn [3], of its native space. The native

space of this translation-invariant kernel is equipped with the norm

�f�2NΦ(Rn) =

�

Rn

|Fnf (ω)|
2

FnΦ (ω)
dω for all f ∈ NΦ (R

n)

Since there is the alternative characterization of Sobolev space,

Hr (Rn) =

�

f ∈ L2 (Rn) : Ff (·)
�
1 + �·�22

�r/2
∈ L2 (Rn)

�

,

it follows from (1.19) that NΦ (R
n) and Hr (Rn) consist of the same functions and have

equivalent norms:

C
−1/2
2 �f�Hr(Rn) ≤ �f�NΦ(Rn) ≤ C

−1/2
1 �f�Hr(Rn) for all f ∈ H

r (Rn) .

Since K is a positive definite kernel we have from [75, Corollary 10.25] that the following

bound holds in the kernel’s native space,

�uΦ,X − u�NΦ(Rn) ≤ �u�NΦ(Rn) for all u ∈ NΦ (R
n) . (1.20)

1.5 Data-Dependent and Irregular Memory Access Patterns

In high-performance computing a crucial issue that arises is the pattern in which memory is

accessed. Traditional CPU-based architectures heavily rely on caches, which are extremely

efficient to access compared to the main system memory since they are located on-chip.

When software accesses data stored in the main system memory, rather than just transfer-

ring the individual piece of data which was requested, the CPU may also decide to read in

data stored in other nearby locations in main system memory. Thus, if successive memory

12

Figure 1.3: An example of the fixed memory access pattern of structured grid based solvers.
Within a loop over the elements, data stored at four neighboring elements are read, and
the array indexes of this data are known in advance and follow a fixed pattern.

Figure 1.4: An example of the data-dependent memory access pattern of unstructured grid
based solvers. Within a loop over the elements, data stored at neighboring elements are
read, but the array indexes of neighbors must first be read from a connectivity array, and
obey no specific pattern.

13

accesses are to these nearby locations, then the main system memory will not need to be

read from again. This is usually called a cache hit. However, if successive memory accesses

are to distant locations in memory, which have not already been read into the on-chip

cache, then an entirely new chunk of memory will be read in from main system memory.

This is known as a cache miss. A memory access pattern which leads primarily to cache

hits, will achieve a relatively high level of performance, or at least any lack of performance

will be due to other factors. When a memory access pattern is used which leads primarily

to cache misses, a large degradation of performance can be expected, since reading from

system memory is much slower, sometimes even an order of magnitude or more.

For structured grid based solvers, obtaining a good memory access pattern is trivial.

When a loop is performed over the elements of a structured grid, each element will access its

neighbors using indexes which are known a priori and in a fixed pattern. This is illustrated

in Figure 1.3. For unstructured grid based solvers, the neighbors are not accessed based on

such a fixed pattern. Before accessing neighbors, the indexes of the neighbors must first be

read from a connectivity array. This is called indirect or data-dependent memory access.

The flux calculation code given in Appendix B illustrates this. Furthermore, once the data

is read, the indexes may not exhibit any particular pattern. It is therefore up to numbering

schemes to ensure that the element indexes are in such an order that nearby elements are

as close as possible in memory. On CPU-based architectures this will help ensure that

a relatively high ratio of cache hits to misses, and thus relatively high performance. A

particular example of this is illustrated in Figure 1.4.

In kernel-based meshless methods, the neighbors of a given trial function center are

defined as points which fall within its support. Each row of the interpolation matrix cor-

responds to a given interpolation point, so that these neighbors correspond to the row’s

nonzero entries. The indexes of these neighbors can be stored in a connectivity array just

like the indexes of neighboring elements are stored in unstructured grid solvers. Although

different arithmetic performed, these neighbors are accessed in a data-dependent manner

when constructing the sparse interpolation matrix. Unlike structured grid based solvers

14

and like unstructured grid based solvers, for meshless methods, the indexes stored in the

connectivity array will not exhibit any particular pattern and therefore numbering schemes

again play an important role in achieving a memory access pattern which leads to high

performance.

1.6 Graphics Hardware

Modern graphics hardware has emerged as an extremely powerful architecture for scientific

computing. For example, the latest NVIDIA GeForce 200 series and NVIDIA Tesla 10

series GPUs now achieve roughly one teraflop of performance, which is an order of mag-

nitude higher performance than high-end CPUs [53, Sec. 1.2]. However, the architecture

is fundamentally different than existing architectures and requires new approaches to fully

exploit its available computational resources.

We first give a basic introduction of programming modern graphics hardware with

CUDA [53] by considering the example of performing element-wise addition of two ar-

rays and storing the result in a third array. The first part of Figure 1.5 shows this in

C++/OpenMP. Prior to the loop over each element of the arrays, there is an OpenMP com-

piler directive specifying that the loop should be parallelized and run in separate threads.

On a multicore CPU, these threads can be executed in parallel by each core. The second

part of Figure 1.5 shows the equivalent CUDA code. The CUDA kernel, distinguished by

the prefix global , is executed once for each thread in a grid of thread blocks. The grid

of thread blocks is specified when the kernel is invoked via the thread block configuration

���Dg,Db���, which in this example means that the CUDA kernel is executed over N threads.

The block structure organize the threads into groups, where the number of thread blocks is

specified by Dg, while the number of threads per block is specified by Db.

At the hardware level, multiple threads are executed in parallel. Each collection of

threads executed in parallel is known as a warp. A warp consists of 32 threads, and is

divided into half-warps of 16 threads. Memory access is performed in segments for the

threads of a half-warp, as opposed to being performed separately for each thread. In the

15

//OpenMP

void openmp add (int N, f loat ∗ a , f loat ∗ b , f loat ∗ c)

{

#pragma omp p a r a l l e l for

for (int i = 0 ; i < N; i++)

c [i] = a [i] + b [i] ;

}

openmp add (N, a , b , c) ;

// CUDA

g l o b a l void cuda add (f loat ∗ a , f loat ∗ b , f loat ∗ c)

{

int i = blockDim . x∗ blockIdx . x + threadIdx . x ;

c [i] = a [i] + b [i] ;

}

dim3 Dg(N/ b l o ck l eng th) , Db(b l o ck l eng th) ;

cuda add<<<Dg, Db>>>(a , b , c) ;

Figure 1.5: A comparson of adding two vectors together in parallel using OpenMP on a
multicore CPU with adding two vectors together in parallel in using CUDA on NVIDIA
graphics hardware.

case of adding two arrays together, for example, a[0...15] is read in one segment by the

first sixteen threads, while c[128...143] is written to in one segment by threads 128-143. If

threads within a half-warp read from disparate locations in memory then multiple segments

must be read and performance can degrade by nearly an order of magnitude. Furthermore,

graphics hardware has limited caching facilities, so that any unused data in the memory

segments will not be cached for possible later use in the execution of the CUDA kernel.

Unlike in the example given in Figure 1.5, in the finite-volume flux calculation in Chapter 5,

data is accessed in an unstructured, data-dependent manner based on a connectivity array.

The numbering of the elements in the connectivity array, which determines the degree of

coalescing, can therefore play a pivotal role in obtaining high performance.

1.7 Open Issues

In this dissertation I will consider four problems in meshless methods.

16

1.7.1 Well-Posed Interpolation Using Adaptively-Scaled Kernels

One of the main benefits of kernel-based interpolation is the ability to approximate data

at a scattered set of points, without any meshing requirements. However, for kernel-based

interpolation to be well-posed it is currently required that the trial functions are scaled

uniformly, despite any local variations in the density of the underlying point distributions

(see Figure 1.2). In contrast, finite-element interpolation, which can also interpolate data

at a scattered set of points as long as a mesh is provided, is formulated in such a way that

allows for adaptively-scaled trial functions (see Figure 1.1). The mathematical theory of

finite element methods then allows for adaptive error estimates and also more favorable

stability results [10, Chapter 9] in comparison to kernel-based interpolation [75, Chapter

6]. Counterexamples have been provided which preclude the well-posedness of an exist-

ing approach to constructing adaptively-scaled kernel-based trial spaces (see Figure 2.1)

which uniformly scales each trial function within its support. However, we will propose an

alternative approach which achieves adaptivity by transforming the underlying domain, re-

gardless of the placement of trial function centers, so that, for example, trial functions may

be scaled non-uniformly within their support (see Figure 2.4a). This alternative approach

is well-posed and an appropriate adaptivity transformation can be used to improve stability

for less uniform point distributions.

1.7.2 A Sampling Inequality for Fractional Order Sobolev Semi-Norms

Using Arbitrary Order Data

The application of kernel-based meshless trial spaces to the numerical solution of partial

differential equations traces back to the pioneering work of Kansa [39]. Kansa modified

the interpolation matrix (1.3) to enforce a partial differential equation pointwise. The

well-posedness of the resulting collocation matrix remained an open question until the

counterexample of Hon and Schaback [36]. To work around this problem, later work by

Schaback [63, 64] modified Kansa’s original formulation, and provides an abstract frame-

work which can be used to establish quantitative error estimates for kernel-based meshless

17

methods for partial differential equations. These estimates are currently suboptimal for

problems specified over Sobolev spaces, in particular inhomogeneous boundary value prob-

lems, due to a lack of sampling inequalities, c.f. (3.24), optimally bounding fractional-order

Sobolev norms. To ensure optimal bounds for those problems, we will further generalize ex-

isting sampling inequalities to optimally bound fractional-order Sobolev norms. Schaback’s

framework introduces the notion of a uniformly stable test discretization, without which the

order of convergence is diminished. We introduce a new sampling technique in an attempt

to obtain such a discretization, and study its effect on the convergence results obtained via

Schaback’s framework.

1.7.3 Visualization Using Fourier Volume Rendering

Volume rendering is an important visualization tool used by computational scientists to

extract information from three-dimensional simulation data. In the past, volume rendering

techniques primarily focused on data consisting of samples of a function over structured or

unstructured grids, or even just at a scattered set of points. This sample-based approach

to volume rendering techniques discards the specific form of kernel-based meshless data,

which is given by (1.2) and (1.4). There is a relatively limited body of work that deals

with meshless data directly, i.e., without first sampling the data over a grid, which also

accounts for the specific form of kernel-based meshless data (1.2). An indirect approach to

visualizing meshless data would be to first sample the meshless data over a grid, and to

then use a grid-based visualization technique. This approach treats kernel-based meshless

data, a function defined over R
3, as something it is not: samples at a finite subset of R

3. It

has been shown that this approach could lead to a loss of important detail at feasible grid

resolutions [14, 37, 55, 56]. Furthermore such an approach leaves meshless data inherently

less efficient to visualize than pre-sampled grid data. Instead, we adapt a volume rendering

technique to produce images directly from kernel-based meshless simulation data.

18

1.7.4 Running Unstructured Grid CFD Solvers on Modern Graphics

Hardware

As described in Section 1.6, modern graphics hardware is an extremely powerful architecture

for scientific computing. However, the architecture is fundamentally different than existing

architectures and requires new approaches to fully exploit its available computational re-

sources. We consider issues which arise in the implementation of an inviscid, compressible

flow solver on modern graphics hardware. Since an unstructured grid is used, which re-

sults in irregular and data-dependent memory access, the main issue addressed is memory

bandwidth. This issue will also be critical in efficient implementations of meshless methods,

which require similar irregular and data-dependent memory access.

19

Chapter 2: Well-Posed Interpolation Using

Adaptively-Scaled Kernels

2.1 Introduction

In the classical formulation of radial basis function interpolation, c.f. (1.5), the support sizes

of the trial functions are uniform. It is common using other types of multivariate interpo-

lation, such as finite element interpolation, to allow for trial functions with nonuniform

support sizes. This is of particular importance when the underlying point distribution has

a spatially-varying density. Figure 2.2 illustrates the dilemma of using a fixed kernel size

with such a point distribution: a kernel size must be chosen that is relatively large in one

region or relatively small in another. However, with an adaptive scaling it may be possible

to account for such local variations in the density of the point distribution. To apply the

idea of an adaptive scaling to radial basis function interpolation, one approach has been to

directly modify the support of each trial function: given kernel sizes r1, . . . , rN > 0 then

uΦ,X (1.5) becomes

uΦ,X,R =

N�

k=1

αkΦ

�
· − xk
rk

�

. (2.1)

An example of a trial space defined in this way is illustrated in Figure 2.1. The advantage

of this approach is that roughly the same number of points are contained in the support of

each trial function. Unfortunately, the positive definiteness of the associated interpolation

matrix
�
Φ

�
xi−xj

rj

��

1≤i,j≤N
does not follow immediately from the positive definiteness of Φ.

Thus, when using an adaptively-scaled interpolant (2.1) the invertibility of the interpolation

matrix is not guaranteed. In fact there are known cases of singular interpolation matrices,

20

Figure 2.1: An adaptive scaling where each trial function is possibly scaled differently,
as per (2.1). This approach is not well-posed in general. The condition number of the
associated interpolation matrix is 2.024.

given by both Buhmann [11, Page 154] and Fornberg and Zuev [25, Section 4.2]. Further-

more, Schaback [66] has demonstrated the possibility of singularity numerically, analogous

to previous work with Hon regarding the well-posedness of Kansa’s method [36]. Despite

this, numerical results, provided by Driscoll and Heryudono [17], Fornberg and Zuev [25],

and Wertz et al. [76], have shown that this approach can improve the stability and accuracy

of interpolation.

To achieve a well-posed scheme for radial basis function interpolation, using adaptively-

scaled trial functions, one may impose additional conditions. This has been done by Bozzini

et al. [7] for the particular case of one-dimensional approximate multiquadrics with certain

conditions on the scales which ensure the diagonal dominance of the interpolation matrix.

Rather than studying sufficient conditions to achieve the unique existence of the adaptively-

scaled interpolant (2.1) for particular radial basis functions, the purpose of this chapter is

to consider an alternative approach for achieving adaptivity, which works in a very general

21

(a) “Too small” of a kernel size has been chosen for trial functions centered in

Ω1 =
`
0, 1

2

´
. The condition number of the associated interpolation matrix is

2.021.

(b) “Too large” of a kernel size has been for trial functions centered in Ω2 =
`
1
2
, 1

´
. The separation distance is 1

20
. The condition number of the associated

interpolation matrix is 24.933.

Figure 2.2: Interpolation using a nonadaptively-scaled translation-invariant kernel (1.5). A
fixed kernel size must be chosen which is either “too small” (2.2a) or “too large” (2.2b).

22

Figure 2.3: An adaptive scaling where each trial function is possibly scaled differently,
as per (2.1). This approach is not well-posed in general. The condition number of the
associated interpolation matrix is 2.030.

23

situation. This alternative approach, which is formulated in Section 2.2, is well-posed since

an adaptive kernel is used which maintains continuity, symmetry, and positive definite-

ness. In Section 2.3, a basic error estimate is established which demonstrates convergence

when using a fixed kernel, i.e., the case of nonstationary refinement. Finally, in Section 2.4

preliminary computational results are provided to illustrate theory.

2.2 Formulation and Well-Posedness

Let Ω̂,Ω ⊂ R
n, T : Ω̂ → Ω be a bi-Lipschitz homeomorphism, and K̂ : Ω̂ × Ω̂ → R be a

continuous, symmetric, positive definite kernel, e.g., a radial basis function. By bi-Lipschitz

it is meant that both T and its inverse T−1 are Lipschitz mappings. It is assumed that Ω

is a Lipschitz domain, i.e., Ω is open, bounded, and has a Lipschitz continuous boundary.

Due to the conditions on T , it follows that Ω̂ is also a Lipschitz domain. It follows that the

domain Ω̂ satisfies the cone property [2, Page 185] with radius ρ̂ > 0 and angle θ̂ ∈ (0, π/2].

Recall that the kernel K̂ : Ω̂× Ω̂→ R is positive definite if and only if for an arbitrary finite

subset X̂ = {x̂1, . . . , x̂N} of Ω̂ the interpolation matrix

AK̂,X̂ :=
�
K̂ (x̂i, x̂j)

�

1≤i,j≤N

is positive definite, and thus invertible. We define an adaptively scaled kernel

K (x, y) := K̂
�
T−1x, T−1y

�
for all (x, y) ∈ Ω× Ω. (2.2)

Proposition 1. The adaptively-scaled kernel (2.2) is continuous, symmetric, and positive

definite under the above stated conditions. Furthermore the interpolants are related via

uK,X = ûK̂,X̂ ◦ T
−1. (2.3)

24

Proof. Continuity and symmetry follow immediately from the properties of K and T stated

above . Let X = {x1, . . . , xN} be an arbitrary finite subset X of Ω. Let X̂ := T−1X, a

finite subset of Ω̂, which also consists of N distinct points, ensured by the fact that T is

invertible. It follows immediately that AK,X and AK̂,X̂ coincide, and therefore both are

positive definite since K̂ is positive definite. The relation (2.3) holds since the coefficients

of each interpolant coincide, and the trial functions vk := K (·, xk) and v̂k := K̂ (·, x̂k) are

related via vk = v̂k ◦ T
−1.

The well-posedness of kernel-based interpolation, as formulated in Section 1.2, using an

adaptively-scaled kernel (2.2) is ensured by Proposition 1.

2.3 Error Estimates and Stability

In this section, we first review existing theory for error estimates of nonadaptively-scaled

translation-invariant kernels. The result provided in this case is then used to establish

a basic error estimate in the case of adaptively-scaled kernels. Finally, the effect of the

adaptivity transformation on the stability of interpolation is discussed.

2.3.1 Error Estimates for Interpolation Using Nonadaptively-Scaled Translation-

Invariant Kernels

We introduce the additional condition on K̂ that it is translation-invariant, and thus defined

in terms of a function, denoted Φ̂ : R
n → R, which is positive definite on R

n and whose

Fourier transform satisfies (1.19).

Recently, a powerful technique has emerged for establishing optimal error estimates

using so-called sampling inequalities which bound a norm in terms of another norm and

some samples of the function. The presentation given here of this technique is based on

that of Narcowich, et al. [50]. Let 0 ≤ l < r such that r− l ∈ N and r > n/2. The following

25

sampling inequality is Corollary 3 of Chapter 3 with µ = 0,

�û�Hl(Ω̂) ≤ C
�
ĥr−l �û�Hr(Ω̂) + ĥ

n/2−l
�
� û|X̂

�
�
�2

�
for all û ∈ Hr

�
Ω̂

�
, (2.4)

where X̂ is an arbitrary finite subset of the domain Ω̂ with corresponding discretization

parameter ĥ = h
�
X̂, Ω̂

�
, c.f. (1.18). The hypotheses of Corollary 3 imply that C is

dependent on Ω̂, n, r, and l, and require that ĥ ≤ d̂r, where d̂r is dependent on Ω̂, n, and r.

Given data û|X̂ , it follows from Section 1.2 that there exists a unique interpolant ûΦ̂,X̂ ∈

VΦ̂,X̂ satisfying

�
ûΦ̂,X̂ − û

��
�
�
X̂
= 0. (2.5)

Proposition 2. (Narcowich, et al. [50, Lemma 3.1]) We have that

�
�
�ûΦ̂,X̂ − û

�
�
�
Hr(Ω̂)

≤ (C2/C1)
1/2 �E� �û�Hr(Ω̂) , (2.6)

where E : Hr (Ω) → Hr (Rn) is a continuous, linear, extension operator (Theorem 1.4),

and the constants C1 and C2 depend on Φ̂.

Proof. From Theorem 1.4 it follows that there exists a continuous, linear, extension operator

E : Hr
�
Ω̂

�
→ Hr (Rn) satisfying Eû|Ω̂ = û, which implies that ûΦ̂,X̂ = (Eû)Φ̂,X̂

�
�
�
Ω̂
.

26

Combining this with (1.19) and (1.20),

�
�
�ûΦ̂,X̂ − û

�
�
�
Hr(Ω̂)

=
�
�
�(Eû)Φ̂,X̂ − Eû

�
�
�
Hr(Ω̂)

≤
�
�
�(Eû)Φ̂,X̂ − Eû

�
�
�
Hr(Rn)

≤ C
1/2
2

�
�
�(Eû)Φ̂,X̂ − Eû

�
�
�
NΦ̂(Rn)

≤ C
1/2
2 �Eû�NΦ̂(Rn)

≤ (C2/C1)
1/2 �Eû�Hr(Rn)

≤ (C2/C1)
1/2 �E� �û�Hr(Ω̂) .

An error estimate, with the expected order of convergence, then follows from (2.4), (2.5),

and (2.6),

�
�
�ûΦ̂,X̂ − û

�
�
�
Hl(Ω̂)

≤ Cĥr−l �û�Hr(Ω̂) . (2.7)

where the constant C inherits all of the dependencies stated above, and ĥ is required to be

sufficiently small to satisfy the requirement stated above.

2.3.2 Error Estimates for Interpolation Using Adaptive Kernels

An error estimate in the domain Ω using the adaptively-scaled kernel Φ, c.f. (2.2) follows

immediately if the following properties are satisfied:

u ∈ Hr (Ω) ⇐⇒ û ∈ Hr
�
Ω̂

�
(2.8)

27

and that for all u ∈ Hr (Ω),

�u�Hr(Ω) ≤ C1 (T) �û�Hr(Ω̂) ≤ C2 (T) �u�Hr(Ω) . (2.9)

These properties can be established based on a result given by Ciarlet [13, Theorem 4.3.2]

which relates the Sobolev semi-norms of functions which have been composed with a suffi-

ciently smooth mapping.

Theorem 3. In addition to the conditions stated in Sections 2.2 and 2.3.1, suppose that T

is a transformation satisfying (2.8) and (2.9), then if h (X,Ω) ≤ dr (T,Ω, n, r) we have that

�u− uΦ,X�Hl(Ω) ≤ C · h (X,Ω)
r−l �u�Hr(Ω) ,

where C is a constant which depends on Φ, T,Ω, n, r, and l.

Since the constant in the error estimate depends on the kernel and its adaptivity transfor-

mation, in order to achieve convergence, both must be kept independent of the fill distance.

Stationary refinement would be perhaps the simplest example of a fill distance dependent

adaptivity transformation, where the kernel would be taken to be

Φh (x, y) := Φ̂
�
h−1x, h−1y

�
for all (x, y) ∈ Ω× Ω. (2.10)

The main purpose of stationary refinement is that it allows for a fixed cost of computation

per discretization point, and furthermore typically results in a more stable interpolation

problem. In the context of kernel-based interpolation, this is a well-studied problem, c.f. [24,

Section 15.4], for which convergence results are limited to certain globally-supported kernels.

In the crucial case of compactly-supported kernels there are no known convergence results

for stationary refinement. Since adaptive error estimates for local stationary refinement

would imply convergence for global stationary refinement, such estimates seem unlikely,

and are not attempted here.

28

2.3.3 Stability of Interpolation Using Adaptive Kernels

Because the interpolation matrices coincide their stability properties do as well, and there-

fore we can study the stability of AΦ,X via AΦ̂,X̂ . As discussed by Wendland [75, Chapter

12], the condition number of the interpolation matrix is given by the ratio of its maximum

eigenvalue to its minimum eigenvalue. The maximum eigenvalue is well-behaved, growing

like h
�
X̂, Ω̂

�−n
, for a scale of point distributions X̂ with a uniformly bounded mesh ratio (as

the fill distance of X̂ decreases, the ratio between the fill and separation distances remains

bounded from above and below by certain positive constants). The minimum eigenvalue on

the other hand is bounded from below in terms of the separation distance,

q := q (X) :=
1

2
min

x,y∈X,x �=y
�x− y� .

In the case that Φ̂ is the compactly-supported (n, k)-Wendland function, it was shown that

λmin

�
AΦ̂,X̂

�
≥ C (n, k) q

�
X̂

�2k+1
. Thus, if q

�
X̂

�
≥ q (X) it follows that interpolation

using the adaptively-scaled kernel is more stable than using a nonadaptively-scaled kernel.

Examples of this are provided in Section 2.4.

2.4 Computational Examples

In the first example we consider the domain Ω = (0, 1), with Ω̂ =
�
0, 3

2

�
. These domains

are each partitioned into two subdomains. We take Ω1 =
�
0, 1

2

�
and Ω2 =

�
1
2 , 1

�
, while

Ω̂1 =
�
0, 1

2

�
and Ω̂2 =

�
1
2 ,

3
2

�
. Over Ω̂1 the adaptivity transformation is just the identity,

while for x ∈ Ω̂2 it is defined by

T : x �→
1

2

�

x+
1

2

�

(2.11)

29

(a) A trial space over the domain Ω = (0, 1) which is defined in terms of a kernel

which has been adaptively-scaled via the transformation (2.11). The dashed trial
function is scaled non-uniformly within its support. The size of its support in

Ω1 =
`
0, 1

2

´
is twice that of its support in Ω2 =

`
1
2
, 1

´
.

(b) The corresponding trial space over the domain Ω̂ =
`
0, 3

2

´
which is defined

in terms of a translation-invariant kernel. The separation distance is 1
8
, while

the condition number is 2.024.

Figure 2.4: Illustration of well-posed interpolation using adaptively-scaled kernels.

30

(a) A trial space over the domain Ω = (1, 100) which is defined in terms of a

kernel which has been adaptively-scaled via the transformation (2.12).

(b) The corresponding trial space over the domain Ω̂ = (1, 10) which is defined

in terms of a translation-invariant kernel. The separation distance is 1
2
, while

the condition number is 2.124.

Figure 2.5: Illustration of well-posed interpolation using adaptively-scaled kernels.

31

(a) “Too small” of a kernel size has been chosen for all but the leftmost trial
function. The condition number of the associated interpolation matrix is 1.032.

(b) “Too large” of a kernel size has been for all but the rightmost trial function.
The condition number of the associated interpolation matrix is 263.278.

Figure 2.6: Interpolation using a nonadaptively-scaled translation-invariant kernel (1.5). A
fixed kernel size must be chosen which is either “too small” (2.6a) or “too large” (2.6b).

32

Figure 2.7: Adaptively-scaled trial functions in two dimensions. The cell structure which is
visible is merely due to the overlap of the trial functions’ supports.

33

(a) An irregularly distributed set of points X in a two-
dimensional domain Ω.

(b) The corresponding regularly distributed set of points X̂ in the corresponding domain Ω̂.

Figure 2.8: An illustration of an adaptivity transformation in two dimensions.

34

Figure 2.4a illustrates X and Ω, along with examples of the trial functions. Trial func-

tions whose supports are contained completely within either Ω1 or Ω2 are just shifted and

uniformly-scaled Wendland functions [75, Section 9.4]. However, trial functions whose sup-

port intersects both sub-domains are scaled differently within each. This type of scaling

differs from the more traditional approach to adaptive scaling, described in Section 2.1 and

illustrated in Figure 2.1, where each trial function would be scaled uniformly throughout

its support. We also observe the improved stability using adaptively-scaled kernels by com-

paring the interpolation matrix condition numbers corresponding to Figures 2.4 and 2.2b.

In the second example we consider the domain Ω = (1, 100), with Ω̂ = (1, 10). The

adaptivity transformation is the mapping

T : x �→ x2 (2.12)

Figure 2.5a illustrates X and Ω, along with examples of the trial functions. We observe the

improved stability using adaptively-scaled kernels by comparing the interpolation matrix

condition numbers corresponding to Figures 2.5 and 2.6b.

In the third example we consider the domain Ω = Ω1∪Ω2, with Ω̂ = Ω̂1∪Ω̂2. Let Ω1, Ω̂1

be the triangle defined by vertices ((0, 0) , (1, 0) , (0, 1)), Ω2 be the triangle defined by vertices

((1, 0) , (1, 1) , (0, 1)), and Ω̂2 be the triangle defined by vertices ((1, 0) , (2, 1) , (0, 1)). The

adaptivity transformation T is the piecewise affine transformation such that T maps Ω̂i

to Ωi by an affine mapping for i = 1, 2. Its inverse is used computationally, and can be

implemented as follows. Given a point x ∈ Ωi, its barycentric coordinates are computed,

i.e., λ1, λ2, λ3, such that x =
�3
i=1 λivi where vi are the vertices of the triangle Ωi. The

corresponding point x̂ is then given by
�3
i=1 λiv̂i where v̂i are the vertices of the triangle Ω̂i.

A trial space defined using this adaptivity transformation is illustrated in Figure 2.7. A point

distribution for which for which this adaptivity transformation increases the separation

distance and thus improves conditioning is illustrated in Figure 2.8.

35

2.5 Conclusions

The technique suggested here is the first well-posed, general technique for kernel-based

interpolation with adaptively-scaled trial functions. Using an appropriately scaled kernel,

which counteracts local variations in the density of the underlying point distribution, can

increase the separation distance and thus improve stability.

We have provided examples in one and two dimensions which use a manually-defined

adaptivity transformation. Future research should provide techniques for constructing

arbitrary-order adaptivity transformations in higher dimensions automatically in terms of

a given meshless point distribution. This would preferably be done using common existing

spatial data structures such as quadtrees or octrees. Although it would probably employ a

mesh in some form, the meshing requirements would be minimal as the mesh would not need

to conform to the domain or be as refined as the underlying meshless point distribution.

In the context of moving least squares approximation, kernels are used as a weighting

function. In the past, these have usually been translation-invariant functions, which do

not lead to adaptivity. However, since moving least squares approximation is capable of

stationary refinement, future work will investigate adaptive error estimates for moving least

squares approximation. Furthermore, an important property of the adaptively-scaled kernel

introduced here is that it is symmetric, which is essential in obeying conservation laws for

mimetic numerical methods.

As in the case of global stationary refinement one might expect some increase in accuracy

using local stationary refinement prior to reaching saturation (in the sense of the Maz’ya

and Schmidt theory of approximate approximation [46], see also [24, Section 17.3]). The

special case of global stationary refinement appears to limit the possibility of establishing

adaptive error estimates for local stationary refinement.

36

Chapter 3: A Sampling Inequality for Fractional Order

Sobolev Semi-Norms Using Arbitrary Order Data

3.1 Introduction

Over the past few years, increasingly general bounds of Sobolev semi-norms, in terms of

discrete samples, have appeared. Such bounds are often called sampling inequalities. A

rather general sampling inequality was established by Arcangéli et al. [2], and is stated as

Theorem 3.1, with notation given in Section 3.1.1.

Theorem 3.1. [2, Theorem 4.1] Let Ω be a Lipschitz domain in R
n, so that the domain

Ω satisfies the cone property [2, Page 185] with radius ρ > 0 and angle θ ∈ (0, π/2].

Furthermore, let p, q,κ ∈ [1,∞] and let r be a real number such that r ≥ n, if p = 1, r > n/p

if 1 < p < ∞, or r ∈ N
∗, if p = ∞. Let l0 = r − n (1/p− 1/q)+ and γ = max {p, q,κ}.

Then, there exist two positive constants dr (dependent on θ, ρ, n and r) and C (dependent

on Ω, n, r, p, q and κ) satisfying the following property: for any set A ⊂ Ω (or A ⊂ Ω if

p = 1 and r = n) such that d = δ
�
A,Ω

�
≤ dr (c.f. (3.2)) for any u ∈ W

r,p (Ω) and for any

real number l satisfying l = 0, . . . , lmax, we have

|u|l,q,Ω ≤ C
�
dr−l−n(1/p−1/q)+ |u|r,p,Ω + d

n/γ−l �u|b�κ

�
. (3.1)

where lmax := �l0�−1, unless the following additional conditions hold, in which case lmax :=

l0: r ∈ N
∗ and either (i) p < q <∞ and l0 ∈ N, (ii) (p, q) = (1,∞), or (iii) p ≥ q.

This sampling inequality generalizes those of Madych [44] and Wendland and Rieger [73],

by greatly extending the range of parameters r, p, l, and κ. While Theorem 3.1 applies to

37

functions with finite smoothness, an analogous bound for functions with infinite smoothness

has been provided by Rieger and Zwicknagl [59] which achieves exponential factors.

Arcangéli, et al. [2] used Theorem 3.1 to derive error bounds for interpolating and

smoothing (m, s)-splines, an application which we do not consider. Instead we are in-

terested in another major application of these Sobolev estimates: Schaback’s framework

for unsymmetric meshless methods for operator equations [63], see also the earlier ver-

sion [64]. A sampling inequality is necessary for unsymmetric meshless methods, such as

Schaback’s modification of Kansa’s method [63, 64], which involve an overdetermined sys-

tem of equations in general. In an attempt to improve the order of convergence obtained

using Schaback’s framework, we extend the bound of Arcangéli, et al. in two ways.

Our first extension is to loosen the restriction l ∈ N to allow for fractional order Sobolev

norms on the left hand side of the sampling inequality. In the context of Schaback’s frame-

work, this will result in more optimal convergence results in terms of both the test and trial

discretization parameters. Otherwise, the test discretization would require a higher rate of

refinement.

Our second extension is to incorporate discrete samples of arbitrary order derivatives

into the bound. The reason for this is that (3.1) has a factor d−l in its second term which

is insufficient for achieving a uniformly stable test discretization for higher order Sobolev

norms in Schaback’s framework. With this modification to incorporate samples of higher

order derivatives we will be able to come closer to achieving such a test discretization,

resulting in higher order convergence results. This introduces a new parameter µ, for which

previous sampling inequalities coincide with the choice µ = 0.

3.1.1 Notation

We largely use the notation of Arcangéli, et al. [2, Section 2]. Here we restate a portion

of their notation. For all r ∈ [0,∞) and p ∈ [1,∞], the Sobolev norm is denoted by

�·�r,p,Ω, while the Sobolev semi-norm is denoted by |·|r,p,Ω. The set N
∗ = {1, 2, 3, . . .}, while

N = {0, 1, 2, . . .}. As in [2, Section 2], if N ∈ N
∗, κ ∈ [1,∞], b = (b1, . . . , bN) ∈ (R

n)N and

38

a function v has well-defined values on each point bj , then the discrete norm of v over b is

given by

�v|b�κ
=






��N
j=1 |v (bj)|

κ

�1/κ
, ifκ ∈ [1,∞)

max1≤j≤N |v (bj)| ifκ =∞

The floor of a real number r is denoted by �r� and is the largest integer k such that k ≤ r,

while its ceiling is denoted by �r� and is the smallest integer k such that k ≥ r. The space

of polynomials over R
n with degree less than or equal to k is denoted by Pk.

As in [2, Section 4], we assume throughout this chapter that Ω is a bounded domain in R
n

with a Lipschitz-continuous boundary, so that the domain Ω satisfies the cone property [2,

Page 185] with radius ρ > 0 and angle θ ∈ (0, π/2]. For a given finite subset A of Ω, the fill

distance is defined as

δ
�
A,Ω

�
= sup
x∈Ω

min
a∈A

|x− a| . (3.2)

In order to follow the notation of Arcangéli, et al. [2], in this chapter we will not use the

notation h (X,Ω).

We make the following additions to their notation. Let Hr (Ω) :=W r,2 (Ω) and

W̃ r,q (Ω) :=

�

v ∈W r,q (Ω) :

�

Ω
v = 0

�

.

Given a function v ∈W 1,q (Ω), the vector-valued function consisting of its partial derivatives

is denoted by Dv. The surface area of the n-dimensional ball is denoted by
�
�Sn−1

�
�. In

Section 3.2, a generic constant C appears in many proofs, whose particular value may

change, but with the parameters on which it depends either indicated in parentheses or

stated explicitly in the exposition. We will often substitute dependencies with others,

possibly taking the maximum or minimum value, as required by its application, of the

constant over a finite range of values. In Section 3.3, only the dependence of constants on

39

the discretization parameters r and s is explicitly stated since we regard the spaces and

mappings in that section as fixed.

3.2 Extension of the Sobolev Bound

3.2.1 Fractional Order Sobolev Spaces

This section concerns fractional order Sobolev norms and the results of this section will be

used to generalize [2, Proposition 3.4] to Proposition 5. Lemmas 2 and 3 each require an

extension operator which satisfies (3.4) for zero-average functions over a ball. This property

is not provided by standard extension operators since they involve a domain-dependent con-

stant and the full Sobolev norm in the bound, rather than a domain-independent constant

and the Sobolev semi-norm.

Lemma 1. If q ∈ [1,∞], r > 0, and x0 ∈ R
n then there exists a linear, continuous operator

E : W̃ 1,q (B (x0, r))→W 1,q (Rn)

such that for all v ∈ W̃ 1,q (B (x0, r))

Ev = v a.e. in B (x0, r) , (3.3)

and

|Ev|1,q,Rn ≤ C (n, q) |v|1,q,B(x0,r)
. (3.4)

If in addition v ∈ C1
�
B (x0, r)

�
then Ev ∈ C1 (Rn).

Proof. Let v ∈ W̃ 1,q (B (x0, r)) and v̂ := v ◦ F where F : x̂ → rx̂ + x0. From a change of

variables it follows that v̂ ∈W 1,q (B (0, 1)) with semi-norm

|v̂|1,q,B(0,1) = r
1−n/q |v|1,q,B(x0,r)

.

40

From [22, Section 5.4, Theorem 1], there exists a linear, continuous extension operator

Ê :W 1,q (B (0, 1))→W 1,q (Rn)

such that for each v ∈W 1,q (B (0, 1))

Êv̂ = v̂ a.e. in B (0, 1) ,

and
�
�
�Êv̂

�
�
�

1,q,Rn
≤ C (n, q) �v̂�1,q,B(0,1) ,

where the dependence on n is through B (0, 1). That

�v̂�1,q,B(0,1) ≤ C (n, q) |v̂|1,q,B(0,1) ,

follows from specializing a Poincaré inequality given in [22, Section 5.8, Theorem 2] to the

unit ball and that
�

B(0,1)
v̂ = r−n

�

B(x0,r)
v = 0, (3.5)

it follow Let

Ev :=
�
Êv̂

�
◦ F−1 (3.6)

so that the result (3.3) holds. From another change of variables, it follows that

|Ev|1,q,Rn = r
n/q−1

�
�
�Êv̂

�
�
�
1,q,Rn

.

The result (3.4) follows by combining the preceding relations. Finally, from the proof

of [22, Section 5.4, Theorem 1] it follows that if v̂ ∈ C1
�
B (0, 1)

�
, then Êv̂ ∈ C1 (Rn), so

41

that if v ∈ C1
�
B (x0, r)

�
then Ev ∈ C1 (Rn).

Based on this extension, we obtain Lemma 2, which is similar to a result used by

Bourgain et al. [6, Eq. 2], but uses a domain-independent constant and semi-norm in the

bound.

Lemma 2. If q ∈ [1,∞), h ∈ R
n, and v ∈ W̃ 1,q (B (x0, r)) then

��

B(x0,r)
|Ev (x+ h)− Ev (x)|q dx

�1/q

≤ C (n, q) |h| |v|1,q,B(x0,r)

Proof. First suppose that v is in the subset

C1
�
B (x0, r)

�
∩ W̃ 1,q (B (x0, r)) (3.7)

42

which is dense in W̃ 1,q (B (x0, r)). From Lemma 1 it follows that

�

B(x0,r)
|Ev (x+ h)− Ev (x)|q dx ≤

�

Rn

|Ev (x+ h)− Ev (x)|q dx

=

�

Rn

�
�
�
�

� 1

0

d

dt
Ev (x+ th) dt

�
�
�
�

q

dx

≤

�

Rn

� 1

0

�
�
�
�
d

dt
Ev (x+ th)

�
�
�
�

q

dtdx

=

�

Rn

� 1

0
|DEv (x+ th) · h|q dtdx

≤ |h|q
�

Rn

� 1

0
|DEv (x+ th)|q dtdx

= |h|q
� 1

0

�

Rn

|DEv (x+ th)|q dxdt

≤ |h|q
� 1

0
|Ev (·+ th)|q1,q,Rn dt

= |h|q |Ev|q1,q,Rn

≤ C (n, q) |h|q |v|q1,q,B(x0,r)

From this, the result follows for all functions in W̃ 1,q (B (x0, r)) via a standard density

argument.

Lemma 3. If x, x+ h ∈ B (x0, r), and v ∈ W̃
1,∞ (B (x0, r)) then

|v (x+ h)− v (x)| ≤ C (n) |h| |v|1,∞,B(x0,r)

Proof. In the proof of [22, Section 5.8.2, Theorem 4] it is shown that v is a Lipschitz function

with constant |Ev|1,∞,Rn , where the extension operator constructed in [22, Section 5.4,

Theorem 1] is used. However, the extension operator from Lemma 1 could be substituted

43

so that the result then follows by (3.4).

In the bound provided by Lemma 4 the factor r1−� will be the key to generalizing

sampling inequalities to optimally bound fractional order semi-norms.

Proposition 4. If q ∈ [1,∞], � ∈ (0, 1), and v ∈W 1,q (B (x0, r)) then

|v|�,q,B(x0,r)
≤ C (n, q) (1− �)−1/q r1−� |v|1,q,B(x0,r)

. (3.8)

Proof. Since the semi-norms that appear in (3.8) are invariant with respect to a shift in

value of v by a constant, it suffices to only consider v ∈ W̃ 1,q (B (x0, r)).

Case q ∈ [1,∞): Let y ∈ B (x0, r) and

B (x0, r)− y := {x− y : x ∈ B (x0, r)} ,

so that B (x0, r)− y ⊆ B (0, 2r) .

44

|v|q�,q,B(x0,r)
=

�

B(x0,r)

�

B(x0,r)

|v (x)− v (y)|q

|x− y|n+�q dxdy

=

�

B(x0,r)

�

B(x0,r)−y

|v (y + h)− v (y)|q

|h|n+�q dhdy

≤

�

B(x0,r)

�

B(0,2r)

|Ev (y + h)− Ev (y)|q

|h|n+�q dhdy

=

�

B(0,2r)

�
B(x0,r)

|Ev (y + h)− Ev (y)|q dy

|h|n+�q dh

≤ C (n, q)

��

B(0,2r)

|h|q

|h|n+�q dh

�

|v|q1,q,B(x0,r)

= C (n, q)
�
�Sn−1

�
�
�� 2r

0

ρq

ρn+�q
ρn−1dρ

�

|v|q1,q,B(x0,r)

≤
C (n, q)

(1− �) q

�
�Sn−1

�
� (2r)(1−�)q |v|q1,q,B(x0,r)

≤
C (n, q)

(1− �) q

�
�Sn−1

�
� 2qr(1−�)q |v|q1,q,B(x0,r)

.

Case q =∞:

|v|�,q,B(x0,r)
= ess sup

x,y∈B(x0,r),x �=y

|v (x)− v (y)|

|x− y|�

≤ C (n, q) (2r)1−� |v|1,q,B(x0,r)

≤ 2C (n, q) r1−� |v|1,q,B(x0,r)
.

Remark 3.1. The explicit constant (1− �)−1/q, which blows up as � increases towards one,

is a manifestation of the “defect” of intrinsic fractional order Sobolev semi-norms studied

45

by Bourgain et al. [6].

Corollary 1. If q ∈ [1,∞], l ∈ [0,∞], and v ∈W �l�,q (B (x0, r)) then

|v|l,q,B(x0,r)
≤ C (n, q, �l�)K (�l� − l, q) r�l�−l |v|�l�,q,B(x0,r)

, (3.9)

where

K (�l� − l, q) :=






1 for l ∈ N or q =∞

(�l� − l)−1/q for l /∈ N and q <∞
. (3.10)

3.2.2 An Auxiliary Result

The following result applies Corollary 1 to generalize [2, Proposition 3.4].

Proposition 5. Let p, q,κ ∈ [1,∞] such that p ≤ q. Let r be a real number such that

r > n/p, if p > 1, or r ≥ n, if p = 1. Finally, let k = �r� − 1, K = dimPk, and

l0 = r − n/p + n/q. Then, there exists a constant R > 1 (dependent on n and r) and, for

any M � ≥ 1, there exists two constants C (dependent on M �, n, r, p, q, and κ) and K ≥ 1

(explicitly dependent on �l� − l and q, cf. (3.10)), satisfying the following property: for any

d > 0 and any t ∈ R
n, the open ball B (t, Rd) contains K closed balls B1, . . .BK of radius d

such that, for any v ∈W r,p
�
B (t,M �Rd)

�
, for any b ∈ ΠK

i=1Bi and l ∈ [0, lmax],

|v|l,q,B(t,M �Rd) ≤ C ·K
�
dr−l−n/p+n/q |v|r,p,B(t,M �Rd) + d

n/q−l �v|b�κ

�
, (3.11)

where we have let lmax := �l0� − 1, or lmax := l0 if the following additional conditions hold:

r ∈ N
∗ and either (i) p < q <∞ and l0 ∈ N, (ii) (p, q) = (1,∞), or (iii) 1 ≤ p = q ≤ ∞.

Proof. The case that l ∈ N is established by [2, Proposition 3.4]. Suppose that l /∈ N.

The hypotheses imply that lmax ∈ N, so that �l� ≤ lmax, and thus the result follows by

combining (3.11) for l = �l� with Corollary 1, using the fact that (M �R)�l�−l ≤ M �R, and

46

substituting the dependence on �l� and R with n, r, p and q.

3.2.3 Sobolev Bounds

For p ≤ q, the following result generalizes [2, Theorem 4.1] to bound fractional order Sobolev

semi-norms. No generalization to bound fractional order Sobolev semi-norms is made for

p > q, since we have not obtained the relation [2, Eq. 2.1] for the case that l is fractional.

Theorem 3.2. Let p, q,κ ∈ [1,∞] and let r be a real number and µ a nonnegative integer

such that r − µ ≥ n, if p = 1, r − µ > n/p if 1 < p < ∞, or r − µ ∈ N
∗ if p = ∞.

Let l0 = r − µ − n (1/p− 1/q)+ and γ = max {p, q,κ}. Then, there exist three positive

constants dr (dependent on θ, ρ, n, r and µ), C (dependent on Ω, n, r, p, q, and κ), and

K ≥ 1 (explicitly dependent on �l� − l and q, cf. (3.10)), satisfying the following property:

for any set A ⊂ Ω (or A ⊂ Ω if p = 1 and r − µ = n) such that d = δ
�
A,Ω

�
≤ dr, for any

u ∈W r,p (Ω) and, if p ≤ q then for any real number l ∈ [0, lmax], otherwise if p > q then for

any integer l = 0, . . . , lmax,

|u|l,q,Ω ≤ C ·K



dr−l−n(1/p−1/q)+ |u|r,p,Ω + d
n/γ+µ−l

�
�
�
�
�
�

�

|α|=µ

∂αu|A

�
�
�
�
�
�

κ



 , (3.12)

where we have let lmax := �l0� − 1, or lmax := l0 if the following additional conditions hold:

r ∈ N
∗ and either (i) p < q <∞ and l0 ∈ N, (ii) (p, q) = (1,∞), or (iii) p ≥ q.

Proof. The case that µ = 0 and l ∈ N is [2, Theorem 4.1]. The proof of this theorem for

µ = 0 and l /∈ N can be obtained by reusing the proof of [2, Theorem 4.1], but applying

Proposition 5 instead of [2, Proposition 3.4], which allows for l to be of fractional order

for p ≤ q, and introduces the constant K. We now consider the case µ > 0. Let α be a

multi-index such that |α| = µ and therefore ∂αu ∈ W r−µ,p (Ω). It follows from the case

47

that µ = 0 that in the situation required by the present hypotheses

|∂αu|l−µ,q,Ω ≤ C ·K
�
dr−l−n(1/p−1/q)+ |∂αu|r−µ,p,Ω + d

n/γ+µ−l �∂αu|A�κ

�
.

We have for all α satisfying |α| = µ that

|∂αu|r−µ,p,Ω ≤ |u|r,p,Ω

and

�∂αu|A�κ
≤

�
�
�
�
�
�

�

|β|=µ

∂βu
�
�
�
A

�
�
�
�
�
�

κ

.

The result follows immediately for q =∞. Otherwise, if 1 ≤ q <∞, using that

|u|ql,q,Ω ≤
�

|α|=µ

|∂αu|ql−µ,q,Ω

the results follows with an additional factor (# {α : |α| = µ})1/q in the constant C, whose

dependence on µ can be substituted with n, r and p.

Corollary 2. Given the situation of Theorem 3.2 with a constant dr now dependent on

θ, ρ, n, r, p and q, and the additional assumption that r − l ∈ N, then we have

�u�l,q,Ω ≤ C ·K



dr−l−n/p+n/q �u�r,p,Ω + d
n/γ+µ−l

�
�
�
�
�
�

�

|α|≤µ

∂αu|A

�
�
�
�
�
�

κ



 .

Proof. From Theorem 3.2, there exists three positive constants dr (θ, ρ, n, r, p, q), C (Ω, n, r, p, q,κ),

48

and K (�l� − l, q) ≥ 1, cf. (3.10), such that for d ≤ dr and η = 0, . . . , �l�

|u|η,q,Ω ≤ C ·K
�
dr−l−n/p+n/q |u|r−l+η,p,Ω

+dn/γ+(η+µ−�l�)+−η

�
�
�
�
�
�

�

|α|=(η+µ−�l�)+

∂αu|A

�
�
�
�
�
�

κ





and for η = l that

|u|l,q,Ω ≤ C ·K



dr−l−n/p+n/q |u|r,p,Ω + d
n/γ+µ−l

�
�
�
�
�
�

�

|α|=µ

∂αu|A

�
�
�
�
�
�

κ



 .

We have taken the constants to be the minimum or maximum over η = 0, . . . , �l� , l as

required. Additionally we have restricted dr to be at most one. For η = 0, . . . , �l�, we have

applied Theorem 3.2 with r = r − l + η and µ = (η + µ− �l�)+, introducing a dependence

of dr on p and q through l, which along with n and r has substituted for the dependence

on µ. It also follows for all η = 0, . . . , �l� that

�
�
�
�
�
�

�

|α|=(η+µ−�l�)+

∂αu|A

�
�
�
�
�
�

κ

≤

�
�
�
�
�
�

�

|α|≤µ

∂αu|A

�
�
�
�
�
�

κ

, (3.13)

with a similar bound holding for
�
�
�
�

|α|=µ ∂
αu|A

�
�
�

κ

. It follows from

(η + µ− �l�)+ − η ≥ µ− �l� ≥ µ− l

and dr ≤ 1 that for all d ≤ dr,

dn/γ+(η+µ−�l�)+−η ≤ dn/γ+µ−l. (3.14)

49

It follow from r− l ∈ N that for each η = 0, . . . , �l� we have r− l+η ∈ N and 0 ≤ r− l+η ≤

r − l, which implies that

|u|r−l+η,p,Ω ≤ �u�r,p,Ω . (3.15)

Combining the preceding bounds we obtain for all d ≤ dr and η = 0, . . . , �l� , l that

|u|η,q,Ω ≤ C ·K



dr−l−n/p+n/q �u�r,p,Ω + d
n/γ+µ−l

�
�
�
�
�
�

�

|α|≤µ

∂αu|A

�
�
�
�
�
�

κ



 . (3.16)

If q =∞ then the result follows immediately. If 1 ≤ q <∞ it follows from (3.16) that

�u�l,q,Ω ≤ C ·K · (�l�+ 2)1/q
�
dr−l−n/p+n/q �u�r,p,Ω

+dn/γ+µ−l

�
�
�
�
�
�

�

|α|≤µ

∂αu|A

�
�
�
�
�
�

κ



 .

The result then follows by incorporating the constant (�l�+ 2)1/q into C, with the depen-

dence on �l� substituted with n, r, p and q.

Only the case that p = q = κ = 2 will be used in Section 3.3.

Corollary 3. Let r be a real number, µ be a nonnegative integer such that r − µ > n/2.

Then, there exist three positive constants dr (dependent on θ, ρ, n and r), C (dependent on

Ω, n and r), and K (explicitly dependent on �l� − l, cf. (3.10) with q = 2) satisfying the

following property: for any set A ⊂ Ω, such that d = δ
�
A,Ω

�
≤ dr, u ∈ W

r,2 (Ω) and real

number l ∈ [0, r − µ] such that r − l ∈ N,

�u�l,2,Ω ≤ C ·K



dr−l �u�r,2,Ω + d
n/2+µ−l

�
�
�
�
�
�

�

|α|≤µ

∂αu|A

�
�
�
�
�
�

2



 . (3.17)

50

3.3 Application: Unsymmetric Meshless Methods for Oper-

ator Equations

In this section, only the dependence of constants on the discretization parameters r and s

is explicitly stated since we regard the spaces and mappings involved as fixed.

We now apply the sampling inequality stated in Corollary 3 to Schaback’s framework

for unsymmetric meshless methods for operator equations [63]. Due to unaddressed errors

and inconsistencies contained in its original formulation, we provide a reformulation. On

a technical level, it differs substantially, e.g., certain spaces have been eliminated, the in-

equalities apply over possibly different spaces, the proof of the error bound has been slightly

modified, and the convergence results are different. Despite these changes, the underlying

ideas of this framework are the same and entirely due to Schaback [63].

The framework provides an error bound for meshless methods which approximately solve

a linear operator equation in the following setting. The first requirement is a continuous

and bijective linear operator L : U → F mapping from the solution space to the data

space. The spaces U and F are assumed to be complete in order to ensure the boundedness

of L−1 : F → U . It is also assumed that the exact solution u∗ ∈ Ũ where Ũ ⊂ U is

called the regularity subspace. We denote F̃ := LŨ . The framework requires a scale of

finite-dimensional trial subspaces Ur ⊂ Ũ equipped with a projector Πr : Ũ → Ur. The

framework requires a linear, continuous, and bijective test mapping Λ : F → T , where the

test space T is assumed to be complete in order to ensure the boundedness of Λ−1. We

denote T̃ := ΛF̃ . Test data from T is discretized into finite-dimensional test subspaces Ts

with a test discretization mapping

πs : T → Ts (3.18)

the operator norm of which must be bounded by a constant, which is independent of s. It

follows that the operator norm of

πsΛL : U → Ts

51

is bounded similarly since

�πsΛL�U→Ts
≤ �πs�T→Ts

�ΛL�U→T

In order to apply the error bound of Schaback’s framework a number of inequalities

must be supplied. The first of these is the trial space approximation property

�u−Πru�U ≤ � (r) �u�Ũ for all u ∈ Ũ . (3.19)

The second inequality is the test discretization’s stability condition

�ΛLur�T ≤ β (s) �πsΛLur�Ts
for all ur ∈ Ur. (3.20)

If the stability factor β (s) grows as the test discretization is refined, i.e., as s decreases

towards zero, then the order of convergence in the final error bound (3.23) will be less than

that provided by the trial space approximation property (3.19). When the stability factor

does not grow, the test discretization is called uniformly stable. The final inequality required

by Schaback’s framework involves a numerical method capable of providing an approximate

solution u∗r,s ∈ Ur which satisfies the numerical method approximation property

�
�πsΛ

�
Lu∗r,s − f

��
�
Ts
≤ C �πsΛL�U→Ts

� (r) �u∗�Ũ . (3.21)

In particular, if the numerical method computes u∗r,s ∈ Ur which minimizes the left hand

side of (3.21) then the constant is at most one, since

�
�πsΛ

�
Lu∗r,s − f

��
�
Ts

≤ �πsΛL (Πru
∗ − u∗)�Ts

≤ �πsΛL�U→Ts
�Πru

∗ − u∗�U

≤ �πsΛL�U→Ts
� (r) �u∗�Ũ . (3.22)

52

Theorem 3.3. [63, Theorem 1] Given the setting stated above, if the inequalities (3.19),

(3.20), and (3.21) are satisfied then the following error bound holds:

�
�u∗ − u∗r,s

�
�
U

≤
�
1 + β (s)

�
�
�(ΛL)

−1
�
�
�
T→U

�πsΛL�U→Ts
(1 + C)

�
� (r) �u∗�Ũ .

Proof. We have that

�
�u∗ − u∗r,s

�
�
U

≤ �u∗ −Πru
∗�U +

�
�Πru

∗ − u∗r,s
�
�
U

≤ � (r) �u∗�Ũ +
�
�Πru

∗ − u∗r,s
�
�
U

�
�Πru

∗ − u∗r,s
�
�
U

≤
�
�
�(ΛL)

−1
�
�
�
T→U

�
�ΛL

�
Πru

∗ − u∗r,s
��
�
T

≤ β (s)
�
�
�(ΛL)

−1
�
�
�
T→U

�
�πsΛL

�
Πru

∗ − u∗r,s
��
�
Ts

≤ β (s)
�
�
�(ΛL)

−1
�
�
�
T→U

�
�πsΛL (Πru

∗ − u∗)�Ts

+
�
�πsΛL

�
u∗ − u∗r,s

��
�
Ts

�

= β (s)
�
�
�(ΛL)

−1
�
�
�
T→U

�πsΛL�U→Ts
� (r) �u∗�Ũ (1 + C)

�
�u∗ − u∗r,s

�
�
U

≤ � (r) �u∗�Ũ

+β (s)
�
�
�(ΛL)

−1
�
�
�
T→U

�πsΛL�U→Ts
� (r) �u∗�Ũ (1 + C) .

53

The stability condition (3.20) can be established using an inverse estimate

�ur�Ũ ≤ γ (r) �ur�U for all ur ∈ Ur, (3.23)

a sampling inequality

�f�T ≤ C
�
α (s) �f�T̃ + β (s) �πsf�Ts

�
for all f ∈ T̃ , (3.24)

and ensuring that a fine enough test discretization is chosen such that

Cα (s) γ (r) �ΛL�Ũ→T̃

�
�
�(ΛL)

−1
�
�
�
T→U

≤
1

2
, (3.25)

where C is the constant appearing in (3.24). Typically, γ (r)→∞ as r → 0, while α (s)→ 0

as s→ 0.

Proposition 6. [63, Theorem 2] If (3.23), (3.24), and (3.25) hold then so does (3.20).

Proof. We have that

�ΛLur�T ≤ C
�
α (s) �ΛLur�T̃ + β (s) �πsΛLur�Ts

�

≤ C
�
α (s) �ΛL�Ũ→T̃ �ur�Ũ + β (s) �πsΛLur�Ts

�

≤ C
�
α (s) �ΛL�Ũ→T̃ γ (r) �ur�U + β (s) �πsΛLur�Ts

�

≤ C
�
α (s) �ΛL�Ũ→T̃ γ (r)

�
�
�(ΛL)

−1
�
�
�
T→U

�ΛLur�T

+β (s) �πsΛLur�Ts

�

≤
1

2
�ΛLur�T + Cβ (s) �πsΛLur�Ts

and the result follows by incorporating the constant 2C in β (s).

54

3.3.1 Convergence Results for the Poisson Problem

We consider the example from [63, Section 4.1], a Poisson problem with mixed, inhomo-

geneous boundary data: let Ω be a bounded domain in R
n with a Lipschitz-continuous

boundary. Suppose that ΓN and ΓD are connected, mutually disjoint subsets of ∂Ω such

that ΓN ∪ ΓD = ∂Ω. We denote Ω1 := Ω, Ω2 := Γ
D, and Ω3 = Γ

N so that the dimension of

each domain is given by n1 = n, and n2, n3 = n− 1. Let m, m̃ be nonnegative real numbers

such that m̃−m ∈ N, and

(m1,m2,m3) := (m,m+ 3/2,m+ 1/2)

U := Hm+2 (Ω)

F := F 1 × F 2 × F 3

:= Hm1 (Ω1)×H
m2 (Ω2)×H

m3 (Ω3)

Lu :=

�

−∆u, u|ΓD ,
∂u

∂n
|ΓN

�

, (3.26)

with analogous definitions made for (m̃1, m̃2, m̃3), Ũ , and F̃ . With the space F equipped

with the norm �·�2F := �·�
2
F 1+�·�

2
F 2+�·�

2
F 3 , it follows that the linear operator L, as defined

above, is continuously invertible either as L : U → F or L : Ũ → F̃ .

We assume that the solution comes from Ũ and that the trial space Ur is chosen such

that the trial space approximation property (3.19) holds with � (r) = O
�
rm̃−m

�
, a property

satisfied by kernel-based meshless trial spaces, c.f. Narcowich et al. [50, 51], and finite-

element trial spaces [10, Theorem 4.5.11]. We also assume that the inverse estimate (3.23)

holds with γ (r) = O
�
rm−m̃

�
, as is the case for finite-element trial spaces [10, Theorem

4.4.20]. Obtaining an inverse estimate with the expected factor γ (r) = O
�
rm−m̃

�
appears

to be an open problem for kernel-based meshless trial spaces. Narcowich et al. [51] provide

an inverse estimate with the expected factor for the case of Sobolev spaces over R
n. Both

55

Schaback and Wendland [61], and Duan [18] provide inverse estimates for Sobolev spaces

over a domain. Unfortunately, the factor involved in these inverse estimates are worse than

the finite-element case. Further progress on this problem is expected to be reported in the

thesis of Rieger [58].

We consider the case of strong testing here, which means that the test mapping Λ : F →

T is just the identity mapping and that each test space T k coincides with the corresponding

data space F k. Weak testing is also possible, in which case the test functionals integrate

functions in F k against test functions, resulting in the test data in each T k acquiring

additional smoothness. This is discussed in detail by Schaback [63, 65]. Each domain

is discretized onto finite subsets Y ks ⊂ Ωk, with the same fill distance s = δ
�
Y ks ,Ωk

�
.

Furthermore, they are assumed to satisfy the property that #Y ks is bounded by s−nk up

to a constant, as is the case for domain discretization with a uniformly bounded mesh

ratio [63]. We define discrete test spaces

T ks := R
#{α:|α|≤µk}·#Y

k
s

equipped with a norm

�·�Tk
s
:= snk/2 �·�2 (3.27)

and a test discretization πks : T
k → T ks

πksfk :=
�

|α|≤µk

∂αfk|Y k
s
for all fk ∈ T

k (3.28)

where µk is an integer such that mk − µk − nk/2 > 0, and furthermore this difference is

independent of k. The discrete test space Ts := T
1
s ×T

2
s ×T

3
s is defined and equipped with a

norm, analogously to F and T . The test space T is then equipped with a test discretization

56

πs : T → Ts defined by

πsf :=
�
π1
sf1, π

2
sf2, π

3
sf3

�
for all f = (f1, f2, f3) ∈ T, (3.29)

Proposition 7. If for each k, mk−µk−nk/2 > 0 then πs : T → Ts is well-defined and the

operator norm �πs�T→Ts
is bounded independently of s.

Proof. Suppose f = (f1, f2, f3) ∈ T . Since mk − µk > nk/2 we have from the Sobolev

embedding theorem, Theorem 1.3 that T k �→ Cµk
�
Ωk

�
and therefore the test discretization

is both well-defined and there exists some constant independent of f = (f1, f2, f3) such that

for each fk,

�fk�Cµk(Ωk) ≤ C �fk�Tk .

Since #Y ks is bounded by s−nk up to some constant which is independent of s, it follows

that

�πsf�
2
Ts

=

3�

k=1

�
�
�πksfk

�
�
�

2

Tk
s

=

3�

k=1

snk
�

x∈Y k
s

�

|α|≤µk

|∂αf (x)|2

≤
3�

k=1

snk �f�2
Cµk(Ωk)

{α : |α| ≤ µk} ·#Y
k
s

≤ C

3�

k=1

�f�2Tk = C �f�
2
T .

Proposition 8. There exists a constant s0 such that for all s ≤ s0 a sampling inequal-

ity (3.24) holds with a constant C for the test space T and test discretization πs : T → Ts

57

with α (s) := sm̃−m, and β (s) := sµ1−m1 = sµ2−1/2−m2 = sµ3−1/2−m3.

Proof. From Corollary 3 and (3.27), it follows that for each k there exist constants Ck and

sk such that for s ≤ s0 := min (1, s1, s2, s3),

�fk�Tk ≤ Ck

�

α (s) �fk�T̃k + s
µk−mk

�
�
�πksfk

�
�
�
Tk

s

�

≤ Ck

�

α (s) �fk�T̃k + s
µ1−m1

�
�
�πksfk

�
�
�
Tk

s

�

since µ1−m1 ≤ µ2−m2 = µ3−m3. The result then follows with a constant C by combining

the preceding inequalities.

We assume that the s is sufficiently small to satisfy the requirements of Proposition 8

and (3.25). Even in the fractional case, the sampling inequality introduced here provides

α (s) = sm̃−m which shrinks as rapidly as the expected inverse estimate factor γ (r) = rm−m̃

grows and thus s and r can be kept proportional. This is in contrast to previous sampling

inequalities which necessarily introduce a factor α (s) = sm̃−�m� when bounding fractional

order Sobolev norms, requiring the test discretization to be refined more rapidly than the

trial discretization and thus diminishing the order of convergence by �m�−m. If the function

u∗r,s ∈ Ur which minimizes the left hand side of (3.21) has been computed, then Schaback’s

framework provides the error bound (3.23) with constant C = 1. The order of convergence

established by this error bound, in terms of both the trial and test discretization, is then

given by β (h) � (h) and satisfies

β (h) � (h) = O
�
h(m̃−m)+(µ1−m1)

�
.

Table 3.1 states particular convergence results using various Sobolev norms and test

discretizations in two- and three-dimensions. These results show that, for convergence in

higher order norms, the highest order of convergence is obtained using a higher order test

58

Table 3.1: Order of convergence in various Sobolev norms established by a modified for-
mulation of Schaback’s framework, using trial spaces with optimal properties and strong
testing with various order test discretizations to solve two- or three-dimensional Poisson
problems.

U = Hm+2 (Ω) = H0 (Ω) H4 (Ω) H5 (Ω) H6 (Ω)

µ1 = 0 None m̃−m− 2 m̃−m− 3 m̃−m− 4

µ1 = 1 None None m̃−m− 2 m̃−m− 3

µ1 = 2 None None None m̃−m− 2

µ1 = 3 None None None None

discretization introduced here.

We note that to obtain a uniformly stable test discretization with β (s) = 1 would

require choosing the order µk of each test discretization to be equal to that of the order

mk of the test space. Unfortunately, this does not seem to be possible: in order for the

test discretizations operator norm to be bounded independently of s, the order of each test

space T k is required to be greater than that of the test discretization µk by at least nk/2.

It follows that the order of convergence, in terms of both the trial and test discretization,

provided by this modified formulation of Schaback’s framework is always less than that of

the trial space approximation property. Another consequence is that the order of U must

be at least 2 + n/2, and therefore convergence in the L2 norm can only be concluded from

convergence results in higher order Sobolev norms, using strong testing in this modified

formulation of Schaback’s framework.

3.4 Conclusions

We have further generalized the sampling inequalities of Arcangéli et al. [2], Madych [44],

and Wendland and Rieger [73], to optimally bound fractional order Sobolev semi-norms,

and to incorporate higher order data into the bound. When used in a modified formulation

of Schaback’s framework to prove convergence rates for unsymmetric meshless methods this

new sampling inequality has two benefits:

1. It results in more optimal estimates for problems involving fractional order Sobolev

59

spaces, particularly by providing a more optimal constant α (s).

2. For convergence in higher order Sobolev norms, higher order results are obtained using

a higher order test discretization in comparison to the zero order test discretization.

Previous work indicates that using unsymmetric collocation to solve the Poisson problem

has the same order of convergence as interpolation. It follows that the results presented here

may be suboptimal. Therefore, future work may investigate a framework for unsymmetric

collocation which exploits stronger assumptions than well-posedness.

60

Chapter 4: Visualization Using Fourier Volume Rendering

4.1 Introduction

Volume visualization is an important tool for understanding three-dimensional simulation

data. Fourier volume rendering (FVR) [20,41,45] is a particular volume visualization tech-

nique. Previous work on FVR has so far only adapted this technique to deal directly with

regular grid data or wavelet data [31], including an indirect adaptation to irregularly sam-

pled data [67]. By indirect it is meant that the data is first sampled onto a three-dimensional

grid before volume visualization is performed. As pointed out by others [14, 37, 55, 56], in

the context of meshless data this could result in the loss of important detail at feasible grid

resolutions, and furthermore would leave meshless data less efficient to visualize than grid

data. The purpose of this work is to avoid such issues and adapt FVR to deal directly

with a general class of meshless data in the form of a summation of N integrable functions

Φk : R
3 → R with coefficients αk ∈ R

s (x) =
N�

k=1

αkΦk (x) . (4.1)

4.2 Related work

Most related to this work are techniques which also deal directly with meshless data. One

such technique is direct slice-based volume visualization which was considered in the context

of meshless data in [38] with further improvements made in [72]. The technique presented

in those works for visualizing meshless data, in particular radial basis function interpolants,

involves sampling the meshless data over an array of two-dimensional sampling planes in a

61

view-dependent manner. They use a spatial data structure to only evaluate terms whose

support is relevant to regions of a given slice. While this is not required, a loss of performance

is to be expected otherwise. When visualizing static data, building this data structure can

be treated as a pre-processing step. However, this is not always possible, such as when the

meshless data is time-varying with moving data sites. In contrast, FVR requires no spatial

data structure since it deals with the data’s Fourier transform which tends to be centered

at the origin. A related technique for slice-based isosurface visualization of meshless data

is presented in [15].

Another such technique is splatting. This technique was considered in the context of

meshless data in [56]. When using an orthogonal projection, splatting attempts to compute

the same image as does FVR. The difference is that splatting computes the image by directly

approximating the integral in the spatial domain. This technique involves computing a

so-called footprint using numerical integration, which is accumulated at different points

in the image for each term in the meshless data. FVR and splatting can be considered

complementary since FVR performs most efficiently for data with low frequency content,

typically when each term has large spatial support, while splatting performs most efficiently

for data with small spatial support, typically resulting in high frequency content. Also, given

a fixed cutoff frequency, FVR becomes cheaper when zooming in, due to the associated

larger frequency step size decreasing the required amount of sampling. On the other hand,

splatting becomes cheaper when zooming out, due to less resolution being required of the

footprint. Relatively recent work on splatting meshless data includes multiresolution [47]

and hierarchical [37] techniques for handling enormous meshless data sets, and a technique

for splatting meshless data with elliptical basis functions [52].

The traditional computer graphics technique of ray-tracing for visualizing isosurfaces [35]

is general enough to deal directly with an arbitrary function, and therefore can deal directly

with meshless data. Another approach to isosurface visualization [14], uses local tetra-

hedrizations to compute an isosurface while avoiding globally sampling the meshless data

onto a grid. The SPH visualization code SPLASH [55] is also related to this work. This

62

code implements a number of visualization techniques which deal directly with meshless

data, such as volume visualization using splatting, cross section visualization, and surface

visualization based on optical depth.

4.3 Direct Adaptation of FVR to Meshless Data

Fourier volume rendering computes from a function s : R
3 → R a two-dimensional image

I : R2 → R defined as

I (u, v) =

�

R

s (twt + uwu + vwv) dt (4.2)

where {wt, wu, wv} is an orthonormal basis of R
3. In words, for each point on the image

plane spanned by {wu, wv}, FVR integrates the function s through the point along the

image plane’s normal wt. What distinguishes Fourier volume rendering from other volume

visualization techniques is that it computes the image via its Fourier transform [20,41,45]

F2I (u, v) = F3s (uwu + vwv) . (4.3)

Therefore, to perform Fourier volume rendering with meshless data its Fourier transform is

required. For grid-based Fourier volume rendering this is obtained by computing a three-

dimensional FFT. For meshless data such an expensive computation is not required, since

its Fourier transform can be obtained analytically. The inverse Fourier transform can then

be approximated using a two-dimensional inverse FFT.

4.3.1 The Fourier Transform of Meshless Data

To adapt FVR, the Fourier transform of the image (4.3) is obtained by applying properties

of the Fourier transform. By linearity, the Fourier transform of the meshless data is

F3s (f) =
N�

k=1

αkF3Φk (f) (4.4)

63

which reduces the problem to computing the Fourier transform of each function Φk. We

use the Fourier transform convention

F3Φ (f) =

�

R3

Φ (x) e−2πixT fdx (4.5)

which is defined when Φ is integrable: Φ ∈ L1 (Rn). Therefore if each Φk is integrable then

the Fourier transform of the meshless data is defined. An important special case is when

each Φk is defined in terms of a radial function Φ, in which case (4.5) specializes to

F3Φ (f) =
2

�f�

�

R+

tφ (t) sin (2π �f� t) dt (4.6)

where Φ (x) = φ (�x�) [75, Theorem 5.26].

In Section 4.4 the Fourier transform of Φk is obtained for different types of meshless

data. This allows for the direct evaluation of the Fourier transform of the meshless data,

and therefore by (4.3) the Fourier transform of the image.

4.3.2 Approximation of the Inverse Fourier Transform

Having obtained the Fourier transform of the image, the next step in FVR is to compute

the inverse Fourier transform of F2I to obtain the image I.

I (u, v) =

�

R

�

R

F2I (fu, fv) e
i2π(ufu+vfv)dfudfv (4.7)

For this, a discrete Fourier transform is used

I (u, v) ≈

Nfv�

kfv =−Nfv

Nfu�

kfu=−Nfu

F2I (fu, fv) e
i2π(ufu+vfv)∆fu∆fv (4.8)

64

(a) The bar galaxy data set (6400 particles) contains significant high frequency detail. Therefore there is
a loss of quality when the lowpass filter is made too small as in the left image. However, little ringing is
present in the center image, resulting in a nice tradeoff between quality and performance. Here we use an
integration step size of 0.065 and 512x512 samples in the spatial domain. From left to right the number
of samples and performance in frames per second on an NVIDIA Geforce 8600 GTS is respectively 64x32,
128x64, 192x96, and 63, 21, and 10.4.

(b) The water sloshing in a reservoir data set (11895 particles) contains little high frequency detail. Therefore
a lowpass filter can be applied without a noticeable loss of quality. Here we use an integration step size of
0.7 and 512x512 samples in the spatial domain. From left to right the number of samples and performance
in frames per second on an NVIDIA Geforce 8600 GTS is respectively 32x16, 64x32, and 128x64, and 92,
40, and 12.4.

Figure 4.1: The above images illustrate the trade-off in performance and quality using the
approximation (4.8).

65

where u = ku∆u, with analogous substitutions made for v, fu and fv. Also, ku and kv vary

over −Nu . . . Nu − 1 and −Nv . . . Nv − 1 respectively.

In the language of image processing, by only considering a finite number of samples,

an ideal lowpass filter is applied to the image [29, Page 167]. This filter provides a control

of performance at the expense of quality. By choosing a sufficiently large cutoff frequency,

the effects of the lowpass filter are not apparent. However, choosing a larger cutoff fre-

quency requires more frequency domain sampling, and therefore decreases performance.

An insufficiently large cutoff frequency will cause blurring and ringing. While blurring is an

acceptable trade-off for increased performance, ringing can be distracting. To decrease the

effects of ringing a standard approach is to use a different lowpass filter, such as a Butter-

worth filter [29, Page 173]. In cases where the image contains low frequency content, a low

cutoff frequency can be used without sacrificing image quality. In Figure 4.1 the effects of

ringing and blurring are shown for the bar galaxy data set, while for the sloshing data set

it is shown that for almost no loss of quality significant gains in performance can be made.

This demonstrates that FVR is well suited for data with low frequency content.

Another effect of this approximation is that the image becomes periodic, due to the use

of numerical integration with a finite step size in each dimension. This can lead to aliasing

if the period is not sufficiently large. However, one can choose the step size, so it can be

left up to the user how much aliasing if any at all can be tolerated. If the functions Φk

have global support, then there will always be some amount of aliasing. However, these

functions are required to be integrable and therefore decreasing towards zero, and so even

in this case where aliasing is theoretically unavoidable, its effect can be made negligible, by

sampling up to a sufficiently high frequency.

4.4 Particular Meshless Methods

In the preceding section the specific form of Φk was not considered, which is necessary for

determining its Fourier transform. In this section the form Φk takes for various types of

meshless data is considered, from which its Fourier transform is obtained. In each case

66

Table 4.1: A list of three-dimensional Fourier transforms of various integrable functions used
in meshless methods. With the exception of that of the Gaussian, the inverse multiquadric,
and the Sobolev spline [75, Theorems 6.10, 6.13, and Page 133], the Fourier transform of
each function was computed using (4.6).

Name Φ(x)=φ(�x�), r=�x� FΦ(f), r=π�f�,m=πr

Gaussian e−αr2 , α>0 (π
α)

3
2 e
−m2

α

Inverse Multiquadric (c2+r2)
−β

, c>0, β> 3
2

2π3/2

Γ(β) (m
c)β−3/2

K3/2−β(2cm)

Monaghan’sM4

(2−r)3−4(1−r)3, 0≤r<1

(2−r)3, 1≤r<2

0, r≥2

3π
m6 (cos 2m−1)(cos 2m+m sin 2m−1)

Sobolev 21−β

Γ(β)
rβ−3/2K3/2−β(r), β> 3

2 (2π)3/2(1+4m2)
−β

Wendland’sφ3,0 (1−r)2+
π

2m5 (m cos 2m− 3
2 sin 2m+2m)

Wendland’sφ3,1 (1−r)4+(4r+1) 15π
2m8 (92m sin 2m+(6−m2) cos 2m+4m2−6)

Wendland’sφ3,2 (1−r)6+(35r2+18r+3) 315π
2m11

0

B
B
B
B
B
@

(3152 −36m2) sin 2m

+(4m2−123)m cos 2m

+32m(m2−6)

1

C
C
C
C
C
A

Wendland’sφ3,3 (1−r)8+(32r3+25r2+8r+1) 10395π
4m14

0

B
B
B
B
B
@

(60m3− 2295
2 m) sin 2m

−(4m4+1440−375m2) cos 2m

+1440−960m2+64m4

1

C
C
C
C
C
A

an explicit form of the Fourier transform F3Φk is given. With this information the image

approximation (4.8) can be sampled directly.

4.4.1 Kansa’s Method

Kansa’s method [39,64] generalizes radial basis function interpolation [11,75] to solve partial

differential equations using collocation. The resulting meshless data is of the form of (4.1)

with

Φk = Φ(· − xk)

where Φ is some function, usually referred to as a radial basis function. Assuming Φ is

integrable, each Φk is as well. It follows by the shift property [75, Theorem 5.16] that

F3Φk (f) = e
−i2πxT

k fF3Φ (f) .

67

In fact, the Fourier transform of the meshless data can be simplified since F3Φ can be

factored outside of the summation

F3s (f) = F3Φ (f)

N�

k=1

αke
−i2πxT

k f . (4.9)

Examples of integrable radial basis functions are given in Table 4.1. Non-integrable radial

basis functions and polynomial terms are sometimes used, examples of which include the

multiquadric and the thin-plate spline. Our adaptation of FVR does not apply to data

using such radial basis functions. Splatting is also unable to deal with such radial basis

functions for the same reason of non-integrability. While slice-based volume visualization

can deal with such radial basis functions, it does so much slower compared to integrable

radial basis functions, due to it being required that every term is evaluated at every point,

instead of only a few local terms.

4.4.2 Meshless Symmetric Collocation

Meshless symmetric collocation is another method for solving partial differential equations,

which uses generalized interpolation [23, 26, 28, 75]. For concreteness the Poisson equation

with Dirichlet boundary conditions is considered. In this case the functions Φk are

Φk (x) =






∆Φ(x− xk) , 1 ≤ k ≤ NL

Φ (x− xk) , 1 ≤ k −NL ≤ NB

(4.10)

where x1 . . . xNL
are in the interior and xNL+1 . . . xNL+NB

are on the boundary of the

domain. Applying the shift and differentiation properties [75, Theorem 5.16] of the Fourier

68

transform shows that

F3Φk (f) =






− (2π �f�)2 e−i2πx
T
k fF3Φ (f) , 1 ≤ k ≤ NL

e−i2πx
T
k fF3Φ (f) , 1 ≤ k −NL ≤ NB

(4.11)

The factor F3Φ (f) can be factored outside of the summation.

F3s (f) = F3Φ (f)



− (2π �f�)2
NL�

k=1

αke
−i2πxT

k f +

NL+NB�

k=NL+1

αke
−i2πxT

k f



 (4.12)

For this problem, the function Φ should be in C4. For example, the Gaussian or the

Wendland function φ3,2 [75, Page 129] could be used. These functions and others appear

along with their Fourier transforms in Table 4.1.

4.4.3 Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) is a particle-based meshless method for simulating

fluid dynamics [49]. Underlying this method is a kernel approximation

As (x) =

N�

k=1

mk
Ak
ρk
W (x− xk, hk) (4.13)

where A is a function being approximated such as density, and Ak,mk, ρk, rk, hk are respec-

tively the function value, mass, density, position, and smoothing-length of each particle.

Letting αk = mk
Ak
ρk
and Φk (x) = W (x− xk, hk) shows that equation (4.13) is in a form

consistent with (4.1). A common choice for the kernel is

Φk (x) =
1

4πh3
k

M4

�
�x− xk�

hk

�

. (4.14)

69

which, by the shift and scaling properties [75, Theorem 5.16], has a Fourier transform of

F3Φk (f) =
1

4π
F3M4 (hk �f�) e

−i2πxT
k f (4.15)

The function M4 is listed in Table 4.1.

4.5 Implementation

This technique consists of two major computations: the first step is to sample the Fourier

transform, and the second step is to apply an inverse FFT to those samples. The Fourier

transform sampling is simple to implement since it merely involves sampling each term in a

small window around zero, without the use of any complicated data structures. The second

step merely involves applying an existing FFT code to the Fourier transform samples. Each

of these steps are overall straightforward to implement, but there are a few details of the

implementation worth mentioning.

The Fourier transforms of the compactly-supported polynomials are not defined at zero

as written and are difficult to sample accurately near zero due to round-off error. One solu-

tion to this problem is to compute the limit of these functions at zero using l’Hospital’s rule

and to then perform linear or quadratic interpolation between zero and points sufficiently

far from zero where the function can be sampled without significant round-off error. This

approximation is reasonable since the derivatives of these functions are typically quite small

near zero.

For many types of meshless data the Fourier transform of the radial basis function used

can be factored out of the summation as in (4.9) and (4.12), resulting in less computation

per term. For the graphics hardware implementation described in the next section, factoring

out the Fourier transform modestly increases the performance results by 15 to 45 percent.

Because the meshless data’s Fourier transform is conjugate symmetric it is only required

to sample it over a half plane since the rest of the samples can be obtained by complex

70

conjugation. This halves the amount of sampling required.

4.5.1 Implementation on Graphics Hardware

We have implemented this technique on NVIDIA graphics hardware1 using their CUDA

interface2. A brief description of this implementation is as follows. The first step, sampling

of the Fourier transform, is implemented as a CUDA kernel. This kernel is executed over a

grid of threads where each thread is responsible for computing a partial sum of one sample.

Within this grid, threads are organized into thread blocks, where each thread within a block

has access to fast shared memory. Since each thread accesses the same parameters from

memory, if a thread block is of length N , then each thread loads into shared memory the

parameters of one of N terms. Once all of the parameters are loaded into shared memory,

each thread accumulates the N terms before moving on to the next batch of terms. The

code implementing this step is listed in Appendix A. After sampling is performed the image

is computed from its Fourier transform samples using a complex-to-real FFT provided by

the CUDA FFT library.

Table 4.2 gives frame rates achieved for visualizing various data sets. These performance

measurements indicate that this technique is quite capable of interactively displaying mesh-

less data, and is scalable with respect to the data size, the number of Fourier transform

samples, and available hardware. Furthermore, these results indicate that the 512x512

complex-to-real FFT is not a bottleneck with respect to achieving interactive frame rates.

The code has been released as the open source library libMeshlessVis and is available

for download3.

4.6 Applications

We have applied this technique to meshless-based simulations in two application domains.

It was first used to visualize meshless data generated by MASS99 [1], a code which couples

1http://www.nvidia.com/page/geforce8.html
2http://developer.nvidia.com/cuda/
3http://code.google.com/p/libmeshlessvis

71

Table 4.2: Performance measured in frames per second when visualizing various data sets
interactively. In each case the M4 function is used with an image size of 512x512. The
number of partial sums was chosen such that the number of thread blocks was at least the
number of multiprocessors.

8600 GTS Number of Fourier transform samples

Data set # of terms 32x16 64x32 128x64 256x128 512x256

Ring galaxy 13107 89 36 11 2.8 0.8
Bar galaxy 6400 124 63 21 5.8 1.4
Sloshing 11895 92 40 12.4 3.6 1.2

Cellular Structure 161973 12.8 4 1.2 0.4 n/a

8800 GTS Number of Fourier transform samples

Data set # of terms 32x16 64x32 128x64 256x128 512x256

Ring galaxy 13107 170 86 29 8 2.4
Bar galaxy 6400 210 133 54 16 4.4
Sloshing 11895 178 92 32 9.2 2.4

Cellular Structure 161973 30 10 2.8 0.8 0.4

N-body gravity with SPH-based hydrodynamics. It was also used to visualize simulations

of fluid sloshing in a reservoir [71] and fluid flow through cellular structure subjected to

compressive loading [57, 70]. Further discussion is given by Corrigan et al. [16], where in

each case it is observed that Fourier volume rendering produces animations or images with

information useful for understanding the simulation.

4.7 Future work

We are currently investigating combining Fourier volume rendering and splatting together

as a single hybrid technique. This could be done by decomposing the meshless data based

on the frequency content of each basis function. In particular, splatting will deal with

basis functions with high frequency content (i.e. low spatial support), or that need to

be spatially filtered to avoid aliasing, while Fourier volume rendering will deal with low

frequency content. Although we have focused on meshless data sets, we are also investigating

the application of this approach to unstructured grid FEM data sets, which are also of the

form (4.1).

72

(a) A collisional ring galaxy.

(b) A bar galaxy.

Figure 4.2: Visualization of meshless astrophysical data sets.

73

(a) Water sloshing in a reservoir. (b) Fluid in a cellular structure.

Figure 4.3:]

Visualization of meshless fluid dynamics data sets.

74

Fourier volume rendering has been enhanced to include spatial depth cues and lighting

effects [21, 69], which could possibly be used with this adaptation of FVR. We have also

left as future work this technique’s application to data resulting from meshless methods

such as moving least squares [5] where the meshless data is defined at each point by a local

least squares fit with respect to a polynomial basis, since it is not clear what the Fourier

transform of this type of data is.

4.8 Conclusions

We have presented an adaptation of Fourier volume rendering which for the first time

enables it to deal directly with meshless data. Because the adaptation is direct, it avoids

the prohibitive computational and memory costs and quality loss of discretizing the meshless

data into a three-dimensional grid. Other advantages of this adaptation of Fourier volume

rendering of meshless data include a trade-off between image quality and performance via

lowpass filtering. While lowpass filtering will cause ringing in images with high frequency

content, it is otherwise a highly effective approximation. Due to the technique dealing

with the Fourier transform of the meshless data, no spatial data structures are needed.

Therefore, the technique is indifferent to whether or not the meshless data’s geometry is

static or dynamic. Because a general form of meshless data was considered this technique is

applicable to a number of types of meshless data. Finally, we demonstrated the technique’s

usefulness in visualizing different meshless-based simulations.

In general we believe that it is important that visualization techniques which deal di-

rectly with meshless data are available, so that meshless methods are not at a disadvantage

when being considered for use in scientific simulation. Therefore, we encourage further work

on adapting visualization techniques to deal directly with meshless data.

75

Chapter 5: Running Unstructured Grid Based CFD Solvers

on Modern Graphics Hardware

5.1 Introduction

Over the past few year graphics hardware (GPU) has seen a tremendous increase in per-

formance, with the latest GeForce 200 series and Tesla 10 series GPUs from NVIDIA now

achieving roughly one teraflop of performance, roughly an order of magnitude higher per-

formance than high-end CPUs [53, Sec. 1.2]. In addition to this high computational perfor-

mance the latest modern graphics hardware offers increasing memory capacity, as well as

support for 64-bit floating point arithmetic. Together with CUDA, which exposes the GPU

as a general-purpose, parallel multicore processor, the GPU offers tremendous potential for

applications in computational fluid dynamics.

In order to fully exploit the computational power of such hardware, considerable care

is required in the coding and implementation, particularly in the memory access pattern.

CUDA makes available general-purpose global memory, which is not automatically cached

and exhibits high latency in comparison with its instruction throughput. Furthermore,

with earlier CUDA-enabled GPUs, there were stringent requirements for achieving optimal

effective memory bandwidth, with a large loss of performance when these requirements

went unmet. With the data-dependent memory access of unstructured grid based solvers,

this loss of performance is almost assured. However, with due care, structured grid based

solvers can meet these requirements due to the regular memory access patterns of such

solvers, as described in the work of Brandvik and Pullan [8, 9], and Tölke [68]. So far,

the implementation of optimized unstructured grid based solvers for modern graphics hard-

ware has been relatively rare, perhaps due to these stringent requirements. An alternative

means of accessing GPU memory is via texture memory, which offers automatic caching

76

intended for memory access patterns which exhibit two-dimensional spatial locality, and

has been effectively used, for example, in the CUDA SDK [30]. However, this type of mem-

ory is inappropriate for the indirect memory access of three-dimensional unstructured grid

solvers. We note that implementing CFD solvers on graphics hardware predates CUDA. In

fact, just prior to its first release, Owens et al. [54] comprehensively surveyed the field of

general-purpose computation on graphics hardware (GPGPU), which included a number of

primarily structured grid based solvers, such as those of Harris [34], Scheidegger et al. [12],

and Hagen et al. [32]. However, the architecture has changed substantially and many of

the limitations of GPGPU via traditional graphics APIs such as OpenGL are no longer an

issue.

The most recent CUDA-enabled GPUs have looser requirements for achieving high ef-

fective memory bandwidth. Roughly speaking, memory no longer needs to be accessed in

a specific order by consecutive threads. Rather, high effective memory bandwidth can be

achieved as long as consecutive threads access nearby locations in memory, which is called

coalescing. Thus, if an appropriate memory access pattern is obtained, one can expect that

modern GPUs will be capable of achieving high effective memory bandwidth and in general

high performance for unstructured grid based CFD solvers. The purpose of this work is to

study techniques which achieve this.

The remainder of the chapter is organized as follows: Section 5.2 describes the solver

considered: a three-dimensional finite volume discretization of the Euler equations for invis-

cid, compressible flow over an unstructured grid. Section 5.3 considers the techniques used

to achieve high performance with modern GPUs for unstructured grid solvers. After giving

an overview of the code, techniques are described to achieve a reduction of total memory

access by overlapping redundant computation, obtain high effective memory bandwidth us-

ing an appropriate numbering scheme as well avoiding divergent branching. This is followed

by a discussion of the issue of employing shared memory with unstructured grid solvers.

Results are given in Section 5.4. These show the order of magnitude speed-up obtained with

modern GPUs in comparison with a parallelized shared-memory OpenMP code running on

77

a quad-core CPU.

5.2 Euler Solver

We consider the Euler equations for inviscid, compressible flow,

d

dt

�

Ω
udΩ+

�

Γ
F · ndΓ = 0 , (5.1)

where

u =






ρ

ρvx

ρvy

ρvz

ρe






, F =






ρvx ρvy ρvz

ρv2
x + p ρvxvy ρvxvz

ρvyvx ρv2
y + p ρvyvz

ρvzvx ρvzvy ρv2
z + p

vx (ρe+ p) vy (ρe+ p) vz (ρe+ p)






, (5.2)

and

p = (γ − 1) ρ

�

e−
1

2
�v�2

�

. (5.3)

Here ρ, vx, vy, vz, e, p and γ denote, respectively, the density, x,y,z velocities, total energy,

pressure and ratio of ratio of specific heats. The equations are discretized using a cell-

centered finite-volume scheme of the form:

voli
dui
dt

= Ri = −
�

faces

F · s (5.4)

where

F · s = �s� [fi + fj − β · λmax · (ui − uj)] , (5.5)

78

fi =
s

�s�
· F , λmax = �v�+ c, (5.6)

where voli denotes the volume of the ith element, s denotes the face normal, and β is a

parameter controlling the amount of artificial viscosity.

5.3 Implementation on Graphics Hardware

5.3.1 Overview

The performance-critical portion of the code is a loop which repeatedly computes the time

derivatives of the conserved variables, (5.4), and updates them using an explicit time-

stepping scheme. By far the most expensive computation performed is that of computing

the residual or right-hand-side Ri in (5.4), and consists of accumulating flux contributions

and artificial viscosity. Therefore, the performance of the CUDA kernel which implements

this computation is crucial in determining whether or not high performance is achieved,

and is the focus of this section. The code implementing this step is listed in Appendix B.

It will be necessary to reference a number of technical details regarding modern graphics

hardware, provided in the NVIDIA CUDA documentation [53].

5.3.2 Redundant Computation

The time derivative computation is parallelized on a per-element basis, with one thread per

element. First, each thread reads in its volume, along with its conserved variables from global

memory [53, Sec. 5.1.2.1], from which derived quantities such as the pressure, velocity, the

speed of sound and the flux contribution are computed. The kernel then loops over each

of the four faces of the tetrahedral element, in order to accumulate fluxes and artificial

viscosity. The face’s normal is read along with the index of the adjacent element, where

this index is then used to access the adjacent element’s conserved variables. The required

derived quantities are computed and then the flux and artificial viscosity are accumulated

79

into the element’s residual.

This approach requires redundant computation of flux contributions, and other quanti-

ties derived from the conserved variables. We could have instead chosen to precompute each

element’s flux contribution, so that each of its neighbors would not need to redundantly

compute these. However, this approach turned out to be slower for two reasons. The first

is that reading the flux contributions requires three times the amount of global memory

access than just reading the conserved variables. The second is that the redundant compu-

tation can be performed simultaneously with global memory access, as described in [53, Sec.

5.1.2.1].

5.3.3 Numbering Scheme

The global memory access required for reading the conserved variables of neighboring ele-

ments is at risk of being highly non-coalesced, which would result in lower memory band-

width [53, Sec. 3.1]. An implication of the coalescing requirements, for graphics hardware

with compute capability 1.2 or higher [53, Page 54], is that for i = 1, 2, 3, 4, the ith neighbor

of each consecutive element should be close as possible in memory. To achieve reasonably

coalesced access, the elements are first numbered using the bin numbering scheme described

by Löhner [42, Sec. 15.1.2.2]. This numbering works by overlaying a regular grid structure

(of bins). Each point in the mesh is assigned to a bin. The points are then renumbered by

assigning numbers while traversing the regular grid structure in a fixed fashion. In this pre-

liminary work, the focus is not on the technical details of the particular numbering scheme

used, but that the numbering scheme is using a reasonable heuristic in order to ensure that

elements which are nearby in space are also nearby in memory. Then, the indices of the

four neighbors of each tetrahedral element are sorted in increasing order to ensure that, for

example, the second neighbor of consecutive elements are close in memory.

Several special cases have to be considered in order to deal with faces that are on the

boundaries of the computational domain. In the present case, these are marked by storing

a negative index in the connectivity array that refers to the particular boundary condition

80

desired (e.g. wing boundary, far-field, etc.). This results in possible branching, which incurs

no significant penalty on modern graphics hardware, as long as all threads within a warp

take the same branch [53, Page 14]. To minimize this penalty, in addition to having ensured

that only the first face of each element can be a boundary face, we modify the bin-based

ordering to ensure that boundary elements are stored consecutively in memory, which means

that there can be at most two divergent warps.

5.3.4 Data-Dependent Memory Access and Shared Memory

Shared memory is an important feature of modern graphics hardware used to avoid redun-

dant global memory access amongst threads within a block [53, Sec. 5.1.2]. The hardware

does not automatically make use of shared memory, and it is therefore up to the software

to explicitly specify how shared memory should be used. Thus information must be made

available which specifies what global memory access can be shared by multiple threads

within a block. For structured grid based solvers, this information is known a priori due to

the fixed memory access pattern of such solvers. On the other hand, the memory access pat-

tern of unstructured grid based solvers is data-dependent. With a per-element/thread based

connectivity data structure, this information is not provided, and therefore shared memory

is not applicable. It may be possible for unstructured grid based methods with a higher

degree of connectivity to effectively use shared memory by collapsing a per-element/thread

connectivity data structure into a per-thread-block connectivity data structure, and perform

possibly redundant computation. However, for this to not be excessively wasteful would

require a much higher degree of connectivity than the low-order, tetrahedral, unstructured

grid based method considered here.

5.4 Results

The performance of the GPU code was measured on a prototype NVIDIA TeslaTM GPU,

supporting compute capability 1.3, with 24 multiprocessors. The performance of the equiv-

alent optimized OpenMP CPU code, compiled with the Intel C++ Compiler, version 10.1,

81

was measured with on an Intel Core 2 Quad CPU Q9450, running either one or four threads.

A NACA0012 wing in supersonic (M∞ = 1.2, α = 0o) flow was used as a test case. The

surface of the mesh, which has 1.6 million elements, is shown in Figure 5.1. The pressure

contours are plotted in Figure 5.2. Timing measurements when running in single-precision

are given in Figure 5.3 for a variety of meshes, showing an average performance scaling

factor of 11.18x in comparison to the OpenMP code running on four cores and 39.38x in

comparison to the OpenMP code on one core. Furthermore, the code running on graphics

hardware is faster by a factor 3.86x using redundant computation in comparison to pre-

computing flux contributions. Timing measurements when running in single-precision are

given in Figure 5.4 for a variety of meshes, showing an average performance scaling factor

of 1.87x in comparison to the OpenMP code running on four cores and 5.91x in comparison

to the OpenMP code on one core. Furthermore, the code running on graphics hardware is

faster by a factor 1.13x using redundant computation in comparison to pre-computing flux

contributions.

A missile in supersonic (M∞ = 1.2, α = 8o) flow was used as a test case. The pressure

contours are plotted in Figure 5.5. Timing measurements when running in single-precision

are given in Figure 5.7 for a variety of meshes, showing an average performance scaling

factor of 12.53x in comparison to the OpenMP code running on four cores and 44.62x in

comparison to the OpenMP code on one core. Furthermore, the code running on graphics

hardware is faster by a factor 3.41x using redundant computation in comparison to pre-

computing flux contributions. Timing measurements when running in single-precision are

given in Figure 5.8 for a variety of meshes, showing an average performance scaling factor

of 2.07x in comparison to the OpenMP code running on four cores and 6.63x in comparison

to the OpenMP code on one core. Furthermore, the code running on graphics hardware is

faster by a factor 1.13x using redundant computation in comparison to pre-computing flux

contributions.

82

Figure 5.1: Surface Mesh Used (1.6 million elements)

5.5 Conclusions

A substantial performance gain has been achieved by using effective techniques which take

advantage of the computational resources of modern graphics hardware. Based on these

results, it is expected that current and future GPUs will be well-suited and widely used

for unstructured grid based solvers. Such an order of magnitude speed-up can result in a

significant increase in the scale and complexity of the problems considered in computational

fluid dynamics.

While CUDA is proprietary, there has been a great push in industry for an open standard

which has resulted in OpenCL. This standard is based upon CUDA, and therefore many of

the techniques presented here will be of relevance moving forward.

83

Figure 5.2: Pressures Obtained at the Surface and Plane for the NACA00012 Wing

84

Figure 5.3: Running Time (s) Per Element Per Iteration for the NACA0012 Wing in Single-
Precision.

85

Figure 5.4: Running Time (s) Per Element Per Iteration for the NACA0012 Wing in Double-
Precision.

86

Figure 5.5: Pressures Obtained at the Surface for the Missile

87

Figure 5.6: Mach Number Obtained at the Surface for the Missile

88

Figure 5.7: Running Time (s) Per Element Per Iteration for the Missile in Single-Precision.

89

Figure 5.8: Running Time (s) Per Element Per Iteration for the Missile in Double-Precision.

90

Chapter 6: Conclusions

In this dissertation we have equipped kernel-based meshless methods with a number of new

tools and features.

Previously, the only known general technique for employing adaptively-scaled kernel-

based trial functions was shown to be not well-posed. We have presented an alternative,

general technique for interpolation using adaptively-scaled trial functions. This was done

by constructing an adaptively-scaled kernel. The key to obtaining well-posedness was main-

taining positive definiteness during the kernel’s construction. In this case, the adaptivity is

achieved by transforming the underlying domain, regardless of the placement of trial func-

tion centers, so that, for example, trial functions may be scaled non-uniformly within their

support. This allows for kernel-based interpolation to better deal with less uniform point

distributions by improving stability. The previously considered approach scales each trial

function uniformly within its support, but fails to be well-posed in general.

Previous error bounds obtained for unsymmetric kernel-based meshless methods us-

ing Schaback’s framework were suboptimal for problems involving fractional order Sobolev

spaces, such as inhomogeneous boundary value problems. This was due to a lack of optimal

sampling inequalities for bounding fractional order Sobolev norms. We have extended pre-

vious sampling inequalities to optimally bound such norms, thus improving the convergence

results obtained within Schaback’s framework. We have also generalized sampling inequali-

ties to incorporate higher-order samples. Within Schaback’s framework this appears to lead

to higher order convergence results, which however are still lower order than those obtained

using interpolation, and thus improvements are possible. The sampling inequality obtained

in this dissertation is a general statement regarding functions in a Sobolev spaces and may

have diverse applications.

We have provided kernel-based meshless methods with a direct visualization technique,

91

by adapting Fourier volume rendering to deal directly with meshless data, which was previ-

ously only used directly for grid-based data. Therefore, this technique does not require first

sampling the meshless data. Furthermore, it considers the true form of the data: a function

defined in three-dimensional space, not just a collection of samples at scattered points in

space, as many previous meshless visualization techniques do. Because this adaptation is

direct, it avoids the prohibitive computational and memory costs and quality loss of dis-

cretizing the meshless data into a three-dimensional grid. This technique is more well-suited

for data with mostly low frequency content. Conversely, splatting is better suited for data

with low spatial support, and thus the two can be seen as complementary. Therefore, a

hybrid technique is possible which combines both techniques.

Finally, we implemented an unstructured grid-based inviscid, compressible flow solver

on modern graphics hardware, an extremely powerful architecture for scientific computing.

This architecture, however, has fundamentally different requirements for high-performance

than those of more traditional CPU architectures. The main issue for this application was

obtaining high effective memory bandwidth. We presented techniques for achieving coa-

lesced memory access in the face of an unstructed, data-dependent memory access pattern,

and obtained an order of magnitude speed-up in comparison to an equivalent code running

on a quad-core CPU. Efficient implementations of kernel-based meshless methods, will also

exhibit similar irregular and data-dependent memory access.

92

Appendix A: Code Listing: Meshless Data Fourier

Transform Sampling in CUDA

in l ine d e v i c e f loat f o u r i e r t r an s f o rm sph (f loat r)

{

i f (r >= 0.06 f)

{

f loat m = CUDART PI F∗ r ;

f loat cos 2 m , s in 2 m ;

s i n c o s f (2 . 0 f ∗m, &sin 2 m , &cos 2 m) ;

return ((2 .3561944901923448 f)/ (m∗m∗m∗m∗m∗m))

∗(cos 2 m −1.0 f)∗ (cos 2 m+m∗ s in 2 m −1.0 f) ;

}

// a quad r a t i c i n t e r p o l a n t , note t h a t CUDART PI F i s t h e v a l u e a t z e ro

return CUDART PI F + r ∗(−0.007968913156311 f + r ∗(−18.293608272337678 f))) ;

}

template <int b lock l ength , bool i s f i r s t g r o u p , bool ha s r ad i i>

g l o b a l void s amp l e f o u r i e r t r an s f o rm ov e r g r i d (Group group , VisConf ig v i s c o n f i g)

{

// s e t up p o i n t e r s to shared memory

extern s h a r e d f loat shared [] ;

Constra int ∗ d s c on s t r a i n t s = (Constra int ∗) shared ;

f loat ∗ d s r a d i i ;

i f (h a s r a d i i) d s r a d i i = (f loat ∗) (d s c on s t r a i n t s + b lo ck l eng th) ;

int image s i z e = 2∗ v i s c o n f i g . c u t o f f f r e q u en c y . x∗ v i s c o n f i g . c u t o f f f r e q u en c y . y ;

int index = (b l o ck l eng th ∗blockIdx . x + threadIdx . x) ;

int x = index % (2∗ v i s c o n f i g . c u t o f f f r e q u en c y . x) ;

i f (x > v i s c o n f i g . c u t o f f f r e q u en c y . x) x = x−(2∗ v i s c o n f i g . c u t o f f f r e q u en c y . x) ;

int y = (index % image s i z e) / (2∗ v i s c o n f i g . c u t o f f f r e q u en c y . x) ;

int par t i a l sum index = index / image s i z e ;

int number o f t e rms per par t i a l sum = group . d number of terms

/ v i s c o n f i g . number o f par t i a l sums ;

int f i r s t t e rm = par t i a l sum index ∗ number o f t e rms per par t i a l sum ;

int l a s t t e rm = f i r s t t e rm + number o f t e rms per par t i a l sum ;

// compute t h e image space c o o r d i n a t e s

f loat fu = v i s c o n f i g . s t e p s i z e . x∗x , fv = v i s c o n f i g . s t e p s i z e . y∗y ;

// map from image space i n t o f r e quency space

f l o a t 3 f c oo rd = make f loat3 (fu∗ v i s c o n f i g . u ax i s . x + fv ∗ v i s c o n f i g . v ax i s . x ,

93

fu∗ v i s c o n f i g . u ax i s . y + fv ∗ v i s c o n f i g . v ax i s . y ,

fu∗ v i s c o n f i g . u ax i s . z + fv ∗ v i s c o n f i g . v ax i s . z) ;

f loat r = s q r t f ((f loat) (fu∗ fu + fv ∗ fv)) ;

// l oop over t h e terms in t h e p a r t i a l summation

f l o a t 2 sum = make f loat2 (0 . 0 f , 0 . 0 f) ;

f loat s in v , co s v ;

Constra int c on s t r a i n t ;

f loat r0 ;

int thread index = threadIdx . x ;

for (unsigned int k = f i r s t t e rm ; k < l a s t t e rm ; k += b lock l eng th)

{

// s t e p 1 : s t a g e g l o b a l memory i n t o shared memory . t h i s a c c e s s i s c o a l e s c e d

// and shou l d be minimal s i n c e t h e r e i s one 128− b i t read

// and one 32− b i t read

d s c on s t r a i n t s [thread index] = group . d c on s t r a i n t s [k + thread index] ;

i f (h a s r a d i i) d s r a d i i [thread index] = group . d r a d i i [k + thread index] ;

s ync th r ead s () ;

// s t e p 2 : f o r each po in t , accumula te t h e terms in shared memory

// t h e r e are no bank c o n f l i c t s s i n c e t h e same data i s b r oad ca s t

// to eve ry t h r ead

for (unsigned int j = 0 ; j != b l o ck l eng th ; j++)

{

c on s t r a i n t = d s c on s t r a i n t s [j] ;

f loat term ;

r0 = d s r a d i i [j] ;

term = fou r i e r t r an s f o rm sph (r∗ r0) ;

s i n c o s f (CUDART 2PI F∗dot (f coord , c on s t r a i n t . p o s i t i o n) , &s in v , &cos v) ;

sum . x += con s t r a i n t . weight∗term∗ cos v ;

sum . y += con s t r a i n t . weight∗term∗ s i n v ;

}

sync th r ead s () ;

}

i f (i s f i r s t g r o u p)

{

v i s c o n f i g . d f r eq image [index]

= make f loat2 (sum . x∗ v i s c o n f i g . s c a l e , −sum . y∗ v i s c o n f i g . s c a l e) ;

}

else

{

f l o a t 2 prev = v i s c o n f i g . d f r eq image [index] ;

v i s c o n f i g . d f r eq image [index]

94

= make f loat2 (prev . x + sum . x∗ v i s c o n f i g . s c a l e ,

prev . y − sum . y∗ v i s c o n f i g . s c a l e) ;

}

}

95

Appendix B: Code Listing: Flux Computation in CUDA

d e v i c e h o s t in l ine void compute f l ux cont r ibut i on (f loat& dens ity , f l o a t 3& momentum,

f loat& dens i ty energy , f loat& pressure , f l o a t 3& ve l o c i t y , f l o a t 3& fc momentum x ,

f l o a t 3& fc momentum y , f l o a t 3& fc momentum z , f l o a t 3& f c d en s i t y en e r g y)

{

fc momentum x . x = v e l o c i t y . x∗momentum . x + pre s su r e ;

fc momentum x . y = v e l o c i t y . x∗momentum . y ;

fc momentum x . z = v e l o c i t y . x∗momentum . z ;

fc momentum y . x = fc momentum x . y ;

fc momentum y . y = v e l o c i t y . y∗momentum . y + pre s su r e ;

fc momentum y . z = v e l o c i t y . y∗momentum . z ;

fc momentum z . x = fc momentum x . z ;

fc momentum z . y = fc momentum y . z ;

fc momentum z . z = v e l o c i t y . z∗momentum . z + pre s su r e ;

f loat de p = dens i ty ene rgy+pre s su r e ;

f c d en s i t y en e r g y . x = v e l o c i t y . x∗de p ;

f c d en s i t y en e r g y . y = v e l o c i t y . y∗de p ;

f c d en s i t y en e r g y . z = v e l o c i t y . z∗de p ;

}

d e v i c e in l ine void compute ve loc i ty (f loat& dens ity , f l o a t 3& momentum, f l o a t 3& v e l o c i t y)

{

v e l o c i t y . x = momentum . x / dens i ty ;

v e l o c i t y . y = momentum . y / dens i ty ;

v e l o c i t y . z = momentum . z / dens i ty ;

}

d e v i c e in l ine f loat compute speed sqd (f l o a t 3& v e l o c i t y)

{

return v e l o c i t y . x∗ v e l o c i t y . x + v e l o c i t y . y∗ v e l o c i t y . y + v e l o c i t y . z∗ v e l o c i t y . z ;

}

d e v i c e in l ine f loat compute pressure (f loat& dens ity , f loat& dens i ty energy , f loat& speed sqd)

{

return (f loat (GAMMA)− f loat (1 . 0 f))∗ (dens i ty ene rgy − f loat (0 . 5 f)∗ dens i ty ∗ speed sqd) ;

}

d e v i c e in l ine f loat compute speed of sound (f loat& dens ity , f loat& pre s su r e)

{

96

return s q r t f (f loat (GAMMA)∗ pre s su r e / dens i ty) ;

}

g l o b a l void cuda compute f lux (int ne l r , int∗ e l ements surround ing e l ements ,

f loat ∗ normals , f loat ∗ va r i ab l e s , f loat ∗ f l u x e s)

{

const f loat smoo th i n g c o e f f i c i e n t = f loat (0 . 2 f) ;

const int i = (blockDim . x∗blockIdx . x + threadIdx . x) ;

int j , nb ;

f l o a t 3 normal ; f loat normal len ;

f loat f c t ;

f loat d e n s i t y i = va r i a b l e s [i + VAR DENSITY∗ ne l r] ;

f l o a t 3 momentum i ;

momentum i . x = va r i a b l e s [i + (VARMOMENTUM+0)∗ ne l r] ;

momentum i . y = va r i a b l e s [i + (VARMOMENTUM+1)∗ ne l r] ;

momentum i . z = va r i a b l e s [i + (VARMOMENTUM+2)∗ ne l r] ;

f loat d en s i t y e n e r g y i = va r i a b l e s [i + VAR DENSITY ENERGY∗ ne l r] ;

f l o a t 3 v e l o c i t y i ; compute ve loc i ty (d en s i t y i , momentum i , v e l o c i t y i) ;

f loat s p e ed sqd i = compute speed sqd (v e l o c i t y i) ;

f loat s p e ed i = s q r t f (s p e ed sqd i) ;

f loat p r e s s u r e i = compute pressure (d en s i t y i , d en s i t y en e r gy i , s p e ed sqd i) ;

f loat s p e ed o f s ound i = compute speed of sound (d en s i t y i , p r e s s u r e i) ;

f l o a t 3 fc i momentum x ,

fc i momentum y ,

fc i momentum z ;

f l o a t 3 f c i d e n s i t y e n e r g y ;

compute f l ux cont r ibut i on (d en s i t y i , momentum i ,

d en s i t y en e r gy i , p r e s s u r e i , v e l o c i t y i ,

fc i momentum x , fc i momentum y ,

fc i momentum z , f c i d e n s i t y e n e r g y) ;

f loat f l u x i d e n s i t y = f loat (0 . 0 f) ;

f l o a t 3 flux i momentum ;

flux i momentum . x = f loat (0 . 0 f) ;

flux i momentum . y = f loat (0 . 0 f) ;

flux i momentum . z = f loat (0 . 0 f) ;

f loat f l u x i d e n s i t y e n e r g y = f loat (0 . 0 f) ;

f l o a t 3 v e l o c i t y nb ;

f loat dens ity nb , dens i ty ene rgy nb ;

f l o a t 3 momentum nb ;

97

f l o a t 3 fc nb momentum x ,

fc nb momentum y ,

fc nb momentum z ;

f l o a t 3 f c nb den s i t y en e r gy ;

f loat speed sqd nb , speed of sound nb , pre s sure nb ;

#pragma un r o l l

for (j = 0 ; j < NNB; j++)

{

nb = e lements sur round ing e l ements [i + j ∗ ne l r] ;

normal . x = normals [i + (j + 0∗NNB)∗ ne l r] ;

normal . y = normals [i + (j + 1∗NNB)∗ ne l r] ;

normal . z = normals [i + (j + 2∗NNB)∗ ne l r] ;

normal len = s q r t f (normal . x∗normal . x + normal . y∗normal . y + normal . z∗normal . z) ;

i f (nb >= 0) // a r e g u l a r ne i g h bo r

{

dens i ty nb = va r i a b l e s [nb + VAR DENSITY∗ ne l r] ;

momentum nb . x = va r i a b l e s [nb + (VARMOMENTUM+0)∗ ne l r] ;

momentum nb . y = va r i a b l e s [nb + (VARMOMENTUM+1)∗ ne l r] ;

momentum nb . z = va r i a b l e s [nb + (VARMOMENTUM+2)∗ ne l r] ;

dens i ty ene rgy nb = va r i a b l e s [nb + VAR DENSITY ENERGY∗ ne l r] ;

compute ve loc i ty (dens i ty nb , momentum nb , v e l o c i t y nb) ;

speed sqd nb = compute speed sqd (v e l o c i t y nb) ;

p re s sure nb = compute pressure (dens i ty nb , dens i ty energy nb , speed sqd nb) ;

speed o f sound nb = compute speed of sound (dens i ty nb , pre s sure nb) ;

compute f l ux cont r ibut i on (dens i ty nb , momentum nb , dens i ty energy nb ,

pressure nb , ve l o c i ty nb ,

fc nb momentum x , fc nb momentum y , fc nb momentum z ,

f c nb den s i t y en e r gy) ;

// a r t i f i c i a l v i s c o s i t y

f c t = −normal len ∗ smoo th i n g c o e f f i c i e n t ∗ f loat (0 . 5 f)

∗(s p e ed i + s q r t f (speed sqd nb) + spe ed o f s ound i + speed o f sound nb) ;

f l u x i d e n s i t y += f c t ∗(d en s i t y i−dens i ty nb) ;

f l u x i d e n s i t y e n e r g y += f c t ∗(d en s i t y en e r gy i−dens i ty ene rgy nb) ;

flux i momentum . x += f c t ∗(momentum i . x−momentum nb . x) ;

flux i momentum . y += f c t ∗(momentum i . y−momentum nb . y) ;

flux i momentum . z += f c t ∗(momentum i . z−momentum nb . z) ;

// accumulate c e l l −c en t e r e d f l u x e s

f c t = f loat (0 . 5 f)∗ normal . x ;

f l u x i d e n s i t y += f c t ∗(momentum nb . x+momentum i . x) ;

f l u x i d e n s i t y e n e r g y += f c t ∗(f c nb den s i t y en e r gy . x+f c i d e n s i t y e n e r g y . x) ;

flux i momentum . x += f c t ∗(fc nb momentum x . x+fc i momentum x . x) ;

98

flux i momentum . y += f c t ∗(fc nb momentum y . x+fc i momentum y . x) ;

flux i momentum . z += f c t ∗(fc nb momentum z . x+fc i momentum z . x) ;

f c t = f loat (0 . 5 f)∗ normal . y ;

f l u x i d e n s i t y += f c t ∗(momentum nb . y+momentum i . y) ;

f l u x i d e n s i t y e n e r g y += f c t ∗(f c nb den s i t y en e r gy . y+f c i d e n s i t y e n e r g y . y) ;

flux i momentum . x += f c t ∗(fc nb momentum x . y+fc i momentum x . y) ;

flux i momentum . y += f c t ∗(fc nb momentum y . y+fc i momentum y . y) ;

flux i momentum . z += f c t ∗(fc nb momentum z . y+fc i momentum z . y) ;

f c t = f loat (0 . 5 f)∗ normal . z ;

f l u x i d e n s i t y += f c t ∗(momentum nb . z+momentum i . z) ;

f l u x i d e n s i t y e n e r g y += f c t ∗(f c nb den s i t y en e r gy . z+f c i d e n s i t y e n e r g y . z) ;

flux i momentum . x += f c t ∗(fc nb momentum x . z+fc i momentum x . z) ;

flux i momentum . y += f c t ∗(fc nb momentum y . z+fc i momentum y . z) ;

flux i momentum . z += f c t ∗(fc nb momentum z . z+fc i momentum z . z) ;

}

else i f (nb == −1) // a wing boundary

{

flux i momentum . x += normal . x∗ p r e s s u r e i ;

flux i momentum . y += normal . y∗ p r e s s u r e i ;

flux i momentum . z += normal . z∗ p r e s s u r e i ;

}

else i f (nb == −2) // a f a r f i e l d boundary

{

f c t = f loat (0 . 5 f)∗ normal . x ;

f l u x i d e n s i t y += f c t ∗(f f v a r i a b l e [VARMOMENTUM+0]+momentum i . x) ;

f l u x i d e n s i t y e n e r g y += f c t ∗(f f f c d e n s i t y e n e r g y [0] . x+f c i d e n s i t y e n e r g y . x) ;

flux i momentum . x += f c t ∗(ff fc momentum x [0] . x + fc i momentum x . x) ;

flux i momentum . y += f c t ∗(ff fc momentum y [0] . x + fc i momentum y . x) ;

flux i momentum . z += f c t ∗(f f fc momentum z [0] . x + fc i momentum z . x) ;

f c t = f loat (0 . 5 f)∗ normal . y ;

f l u x i d e n s i t y += f c t ∗(f f v a r i a b l e [VARMOMENTUM+1]+momentum i . y) ;

f l u x i d e n s i t y e n e r g y += f c t ∗(f f f c d e n s i t y e n e r g y [0] . y+f c i d e n s i t y e n e r g y . y) ;

flux i momentum . x += f c t ∗(ff fc momentum x [0] . y + fc i momentum x . y) ;

flux i momentum . y += f c t ∗(ff fc momentum y [0] . y + fc i momentum y . y) ;

flux i momentum . z += f c t ∗(f f fc momentum z [0] . y + fc i momentum z . y) ;

f c t = f loat (0 . 5 f)∗ normal . z ;

f l u x i d e n s i t y += f c t ∗(f f v a r i a b l e [VARMOMENTUM+2]+momentum i . z) ;

f l u x i d e n s i t y e n e r g y += f c t ∗(f f f c d e n s i t y e n e r g y [0] . z+f c i d e n s i t y e n e r g y . z) ;

flux i momentum . x += f c t ∗(ff fc momentum x [0] . z + fc i momentum x . z) ;

flux i momentum . y += f c t ∗(ff fc momentum y [0] . z + fc i momentum y . z) ;

flux i momentum . z += f c t ∗(f f fc momentum z [0] . z + fc i momentum z . z) ;

99

}

}

f l u x e s [i + VAR DENSITY∗ ne l r] = f l u x i d e n s i t y ;

f l u x e s [i + (VARMOMENTUM+0)∗ ne l r] = flux i momentum . x ;

f l u x e s [i + (VARMOMENTUM+1)∗ ne l r] = flux i momentum . y ;

f l u x e s [i + (VARMOMENTUM+2)∗ ne l r] = flux i momentum . z ;

f l u x e s [i + VAR DENSITY ENERGY∗ ne l r] = f l u x i d e n s i t y e n e r g y ;

}

100

Bibliography

101

Bibliography

[1] A. Antunes and J. Wallin, Convergence on N-body plus SPH, Bulletin of the American
Astronomical Society, December 2001, pp. 1433–+.

[2] Rémi Arcangéli, Maŕıa Cruz López de Silanes, and Juan José Torrens, An extension of
a bound for functions in Sobolev spaces, with applications to (m,s)-spline interpolation
and smoothing, Numerische Mathematik 107 (2007), 181–211.

[3] Nachman Aronszajn, Theory of reproducing kernels, Transactions of the American
Mathematical Society 68 (1950), 337–404.

[4] Ivo Babuška, Uday Banerjee, John E. Osborn, and Qiaolun Li, Quadrature for meshless
methods, International Journal for Numerical Methods in Engineering 76 (2008), 1434–
1470.

[5] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, Meshless methods:
An overview and recent developments, Computer Methods in Applied Mechanics and
Engineering 139 (1996), 3–47.

[6] Jean Bourgain, Haim Brezis, and Petru Mironescu, Optimal control and partial differ-
ential equations, in honour of Professor Alain Bensoussan’s 60th birthday, ch. Another
Look at Sobolev Spaces, pp. 439–455, IOS Press, 2001.

[7] Mira Bozzini, Licia Lenarduzzi, and Robert Schaback, Adaptive interpolation by scaled
multiquadrics, Adv. in Comp. Math 16 (2002), 375–387.

[8] T. Brandvik and G. Pullan, Acceleration of a two-dimensional Euler flow solver using
commodity graphics hardware, J. Proc. of the Institution of Mechanical Engineers, Part
C: Journal of Mechanical Engineering Science 221 (2007), 1745–1748.

[9] , Acceleration of a 3D Euler solver using commodity graphics hardware, 46th
AIAA Aerospace Sciences Meeting and Exhibit, January 2008.

[10] Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element
methods, third ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008.

[11] Martin Buhmann, Radial basis functions: Theory and implementations, Cambridge
University Press, 2003.

[12] R. Cunha C. Scheidegger, J. Comba, Practical CFD simulations on the GPU using
SMAC., Computer Graphics Forum 24 (2005), 715–728.

102

[13] Philippe G. Ciarlet, The finite element method for elliptic problems, Classics in Applied
Mathematics, vol. 40, SIAM, Philadelphia, 2002.

[14] Christopher S. Co and Kenneth I. Joy, Isosurface generation for large-scale scattered
data visualization, Proceedings of VMV 2005 (Guenther Greiner, Joachim Hornegger,
Heinrich Niemann, and Marc Stamminger, eds.), 2005, pp. 233–240.

[15] A. Corrigan and H.Q. Dinh, Computing and rendering implicit surfaces composed of
radial basis functions on the GPU, Poster proceedings of the International Workshop
on Volume Graphics, June 2005.

[16] Andrew Corrigan, John Wallin, and Matej Vesenjak, Progress on meshless methods,
Computational Methods in Applied Sciences, vol. 11, ch. Visualization of meshless
simulations using Fourier volume rendering, pp. 291–305, Springer, 2008.

[17] Tobin A. Driscoll and Alfa R.H. Heryudono, Adaptive residual subsampling methods for
radial basis function interpolation and collocation problems, Computers & Mathematics
with Applications 53 (2007), no. 6, 927 – 939.

[18] Yong Duan, A note on the meshless method using radial basis functions, Computers &
Mathematics with Applications 55 (2008), 66–75.

[19] J. Duchon, Splines minimizing rotation-invariant semi-norms in sobolev spaces, pp. 85–
100, Springer, 1977.

[20] Shane Dunne, Sandy Napel, and Brian Rutt, Fast reprojection of volume data, Pro-
ceedings of the First Conference on Visualization in Biochemical Computing, 1990,
pp. 11–18.

[21] Alireza Entezari, Randy Scoggins, Torsten Möller, and Raghu Machiraju, Shading for
Fourier volume rendering, VVS ’02: Proceedings of the 2002 IEEE symposium On
Volume Visualization and Graphics, 2002, pp. 131–138.

[22] Lawrence Evans, Partial differential equations, AMS, 2002.

[23] G. Fasshauer, Solving partial differential equations by collocation with radial basis func-
tions, Surface Fitting and Multiresolution Methods, Vanderbilt University Press, 1997,
pp. 131–138.

[24] Gregory E. Fasshauer, Meshfree approximation methods with matlab, World Scientific,
2007.

[25] Bengt Fornberg and Julia Zuev, The runge phenomenon and spatially variable shape pa-
rameters in rbf interpolation, Computers & Mathematics with Applications 54 (2007),
no. 3, 379 – 398.

[26] C. Franke and R. Schaback, Solving partial differential equations by collocation using
radial basis functions, Applied Mathematics and Computation 93 (1998), no. 1, 73–82.

[27] R. Franke, Scattered data interpolation: tests of some methods, Math. Comp. 48 (1982),
181–200.

103

[28] Peter Giesl and Holger Wendland, Meshless collocation: Error estimates with appli-
cation to dynamical systems, Preprint Göttingen/München 2006, to appear in SIAM
Journal on Numerical Analysis, 2006.

[29] Rafael Gonzalez and Richard Woods, Digital image processing, second ed., Prentice-
Hall, 2002.

[30] Nolan Goodnight, CUDA/OpenGL fluid simulation, NVIDIA Corporation, 2007.

[31] M. H. Gross, L. Lippert, R. Dittrich, and S. Häring, Two methods for wavelet-based
volume rendering, Computers and Graphics 21 (1997), no. 2, 237–252.

[32] T.R. Hagen, K.-A. Lie, and J.R. Natvig, Solving the euler equations on graphics pro-
cessing units, vol. 3994, pp. 220–227, Springer, 2006.

[33] Rolland L. Hardy, Multiquadric equations of topography and other irregular surfaces,
Journal of Geophysical Research 76 (1971), 1905–1915.

[34] M.J. Harris, Fast fluid dynamics simulation on the GPU, pp. 637–665, Addison-Wesley,
2004.

[35] J. Hart, Ray tracing implicit surfaces, Siggraph 93 Course Notes: Design, Visualization
and Animation of Implicit Surfaces, 1993, pp. 1–16.

[36] Y. C. Hon and Robert Schaback, On unsymmetric collocation by radial basis functions,
Appl. Math. Comput. 119 (2001), no. 2-3, 177–186. MR MR1823674

[37] M. Hopf and T. Ertl, Hierarchical splatting of scattered data, Proc. IEEE Visualization,
2003, pp. 433–440.

[38] Y. Jang, M. Weiler, M. Hopf, J. Huang, D. Ebert, K. Gaither, and T. Ertl, Interactively
visualizing procedurally encoded scalar fields, Proceedings of EG/IEEE TCVG Sympo-
sium on Visualization VisSym ’04 (O. Deussen, C. Hansen, D. Keim, and D. Saupe,
eds.), 2004.

[39] E.J. Kansa, Multiquadrics - A scattered data approximation scheme with applications
to computational fluid dynamics, Comput. Math. App. 19 (1990), 147–161.

[40] P. Lancaster and K. Salkauskas, Surfaces generated by moving least squares methods,
Mathematics of Computation 37 (1981), no. 155, 141–158.

[41] Marc Levoy, Volume rendering using the Fourier projection-slice theorem, Proceed-
ings of the Conference on Graphics Interface ’92 (San Francisco, CA, USA), Morgan
Kaufmann Publishers Inc., 1992, pp. 61–69.

[42] Rainald Löhner, Applied CFD techniques: An introduction based on finite element
methods, second ed., Wiley, 2008.

[43] Rainald Löhner and Eugenio Oñate, An advancing front point generation technique,
Communications in Numerical Methods in Engineering 14 (1998), 1097–1108.

[44] W.R. Madych, An estimate for multivariate interpolation ii, Journal of approximation
theory 142 (2006), 116–128.

104

[45] Tom Malzbender, Fourier volume rendering, ACM Trans. Graph. 12 (1993), no. 3,
233–250.

[46] Vladimir Maz’ya and Gunther Schmidt, Approximate approximations, AMS, 2007.

[47] J. Meredith and Kwan-Liu Ma, Multiresolution view-dependent splat based volume ren-
dering of large irregular data, Proceedings of IEEE Symposium on Parallel and Large
Data Visualization and Graphics, 2001.

[48] C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally
positive definite functions, Constr. Approx. 2 (1986), 11–22.

[49] J J Monaghan, Smoothed particle hydrodynamics, Reports on Progress in Physics 68
(2005), no. 8, 1703–1759.

[50] Francis J. Narcowich, Joseph D. Ward, and Holger Wendland, Sobolev bounds on func-
tions with scattered zeros, with applications to radial basis function surface fitting,
Math. Comp. 74 (2005), no. 250, 743–763 (electronic).

[51] Francis J. Narcowich, Joseph D. Ward, and Holger Wendland, Sobolev error estimates
and a Bernstein inequality for scattered data interpolation via radial basis functions,
Constructive Approximation 24 (2006), 175–186.

[52] N. Neophytou, K. Mueller, K. T. McDonnell, W. Hong, X. Guan, H. Qin, and A. Kauf-
man, GPU-accelerated volume splatting with elliptical RBFs, Proceedings of the Joint
Eurographics - IEEE TCVG Symposium on Visualization 2006, May 2006.

[53] NVIDIA Corporation, NVIDIA CUDA 2.0 programming guide, 2008.

[54] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger, Aaron E.
Lefohn, and Timothy J. Purcell, A survey of general-purpose computation on graphics
hardware, Computer Graphics Forum 26 (2007), no. 1, 80–113.

[55] D.J. Price, SPLASH: An interactive visualisation tool for SPH data, Accepted to the
Publications of the Astronomical Society of Australia, 2007.

[56] R. Rau and W. Strasser, Direct volume rendering of irregular samples, Visualization
in Scientific Computing ’95, 1995, pp. 72–80.

[57] Z. Ren, M. Vesenjak, and A. Öchsner, Behaviour of cellular structures under impact
loading: A computational study, Materials Science Forum 566 (2008), 53–60.

[58] Christian Rieger, Sampling inequalities and applications, Ph.D. thesis, Göttingen, 2008.

[59] Christian Rieger and Barbara Zwicknagl, Sampling inequalities for infinitely smooth
functions, with applications to interpolation and machine learning, To appear in Ad-
vances in Computational Mathematics, 2008.

[60] R. Schaback, Creating surfaces from scattered data using radial basis functions, Math-
ematical methods for curves and surfaces (Ulvik, 1994), Vanderbilt Univ. Press,
Nashville, TN, 1995, pp. 477–496. MR MR1356989 (96g:65025)

105

[61] R. Schaback and H. Wendland, Inverse and saturation theorems for radial basis function
interpolation, Math. Comp. 71 (2002), no. 238, 669–681 (electronic). MR MR1885620
(2003a:41018)

[62] , Kernel techniques: from machine learning to meshless methods, Acta Numer.
15 (2006), 543–639.

[63] Robert Schaback, Unsymmetric meshless methods for operator equations, Preprint
Göttingen, 2006.

[64] , Convergence of unsymmetric kernel-based meshless collocation methods, SIAM
Journal on Numerical Analysis 45 (2007), no. 1, 333–351.

[65] , Recovery of functions from weak data using unsymmetric meshless kernel-based
methods, To appear in Applied Numerical Mathematics, 2007.

[66] , personal communication, April 2008.

[67] Paul Stark, Fourier volume rendering of irregular data sets, Master’s thesis, Simon
Fraser University, 2002.

[68] Jonas Tölke, Implementation of a Lattice Boltzmann kernel using the Compute Unified
Device Architecture developed by nVIDIA, Computing and Visualization in Science
(2008).

[69] Takashi Totsuka and Marc Levoy, Frequency domain volume rendering, SIGGRAPH
’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques, 1993, pp. 271–278.

[70] M. Vesenjak, A. Öchsner, M. Hriberŝek, and Z. Ren, Behaviour of cellular structures
with fluid fillers under impact loading, International Journal of Multiphysics 1 (2007),
101–122.

[71] M. Vesenjak, Z. Ren, H. Mulerschon, and S. Matthaei, Computational modelling of
fuel motion and its interaction with the reservoir structure, Journal of Mechanical
Engineering 52 (2006), 85–100.

[72] Manfred Weiler, Ralf Botchen, Simon Stegmaier, Thomas Ertl, Jingshu Huang, Yun
Jang, David S. Ebert, and Kelly P. Gaither, Hardware-assisted feature analysis and
visualization of procedurally encoded multifield volumetric data, IEEE Comput. Graph.
Appl. 25 (2005), no. 5, 72–81.

[73] H. Wendland and C. Rieger, Approximate interpolation with applications to selecting
smoothing parameters, Numerische Mathematik 101 (2005), 729–748.

[74] Holger Wendland, Ein beitrag zur interpolation mit radialen basisfunktionen, Ph.D.
thesis, Göttingen, 1995.

[75] , Scattered data approximation, Cambridge University Press, 2005.

106

[76] J. Wertz, E.J. Kansa, and L. Ling, The role of the multiquadric shape parameters in
solving elliptic partial differential equations, Computers & Mathematics with Applica-
tions 51 (2006), no. 8, 1335 – 1348, Radial Basis Functions and Related Multivariate
Meshfree Approximation Methods: Theory and Applications.

107

Curriculum Vitae

Andrew Corrigan was born in New York City, and grew up on Long Island in Merrick, New
York. He graduated from John F. Kennedy High School in Bellmore, New York in June
2002. In May 2005, he completed his undergraduate studies in Computational Science at
Stevens Institute of Technology in Hoboken, New Jersey, graduating as valedictorian. While
an undergraduate student, he performed research under the supervision of Prof. H. Quynh
Dinh in the implementation of the conjugate gradients method on graphics hardware and
interactive visualization of implicit surfaces defined by radial basis function interpolants.
In August 2006, he enrolled in a Master’s program, while still under the supervision of
Prof. Dinh, performing research on the adaptation of Fourier volume rendering to radial
basis function interpolants. He completed two internships at Siemens Corporate Research in
Princeton, New Jersey during the summers of 2005 and 2006, working on a project involving
the geometric modeling of hearing aids, under the supervision of Dr. Greg Slabaugh. He
enrolled in the Computational Sciences and Informatics Ph.D. program in the Department
of Computational and Data Sciences at George Mason University in August 2006. He began
research on kernel-based meshless methods under the supervision of Prof. John Wallin and
Prof. Thomas Wanner. In addition, he performed research under the supervision of Prof.
Wanner beginning in May 2007 in the application of computational homology to the study of
pattern formation. During the summer of 2008, he was a research assistant for Prof. Rainald
Löhner performing research in meshless methods and the implementation of unstructured
grid solvers on graphics hardware.

108

