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ABSTRACT 

ULTRASOUND BASED MEASURES OF MUSCLE FATIGUE AND RECOVERY 

AFTER ELECTRICAL MUSCLE STIMULATION 

Joseph Amir Majdi, PhD 

George Mason University, 2022 

Dissertation Director: Dr. Siddhartha Sikdar 

 

Electrical muscle stimulation (EMS) can restore or increase function in skeletal muscle 

by stimulating motor neurons through adhesive skin electrodes, which can greatly 

increase the quality of life for those suffering from paralysis. However, the unnatural 

muscle fiber recruitment pattern from EMS causes muscles to fatigue and lose force 

rapidly, which limits the utility. Although technologies such as external exoskeletons 

exist to supplement muscle function, there is an open need for muscle fatigue feedback to 

gauge muscle strength in freely moving humans for EMS applications, as the current gold 

standard for measuring muscle fatigue, surface electromyography (sEMG), is generally 

incompatible. I believe that Doppler ultrasound will provide a better solution with fast 

(millisecond) time resolution, depth resolved measurements, and compatibility with 

EMS. Further, Doppler ultrasound provides information that is both independent of and 

complementary to sEMG and has utility outside of EMS applications in the fields of 

biomechanics, sports science, rehabilitation, and beyond. 



 

 

In this work, I explored signs of muscle fatigue and recovery induced by EMS using 

tissue Doppler imaging (TDI) with a bulky commercial ultrasound machine to establish 

the feasibility of this method. With this setup, I found that recovery in muscle twitch 

toque can be predicted from features of the average tissue velocity waveform, and that 

this model is subject specific. Next, for a portable solution, I performed experiments 

using a low power continuous wave (CW) ultrasound probe. The CW probe is portable, 

low power, and has much lower computational and memory requirements than the 

commercial TDI machine. For these experiments, I observed that the duration of audio 

signal at the onset of muscle contraction correlates with the peak join torque (a proxy for 

muscle force), and that audio signals are generated at both the onset and the release of 

muscle contraction in both EMS and voluntary movements. Finally, I conclude this study 

with multi-scale muscle modeling using a modified Hill-type model to help understand 

and explain our observations and predict muscle behavior. 

 



1 

CHAPTER ONE:  BACKGROUND AND MOTIVATION 

Project Narrative 

There is a dearth of methods to study muscle function in detail, particularly when 

paired with electrical muscle stimulation (EMS). As we will see, this is a severely 

limiting problem for those who would benefit from EMS therapies like those suffering 

from spinal cord injury or stroke. In this introductory chapter, I will establish the need for 

new techniques to monitor muscle activation and fatigue and make the case for using 

medical ultrasound imaging for this task. The subsequent chapters will be devoted to 

establishing feasibility for using Doppler ultrasound (tissue Doppler imaging, TDI) as a 

technique for monitoring muscle fatigue, extending those lessons into a portable 

(continuous wave, CW) system, and to using muscle modeling to help explain and 

interpret our results. I then conclude with a summary of the main findings of this project 

and future directions to take advantage of these insights. 

The Scope of the Problem and Target Population 

Problem Scope and Target Population 

Skeletal muscle function is critical for everyday life activities, functioning as 

actuators that not only control movement, but form critical infrastructure for other body 

systems including standing (skeletal), balance (vestibular), breathing (respiratory), and 

eye movements (vision) among others. Muscle function is also critical for healthy 

exercise, burning calories and improving cardiovascular health. All of which is 
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jeopardized by paralysis, which can severely reduce a person’s quality of life and have 

negative health effects including muscle atrophy, cardiovascular disfunction, metabolic 

disfunction, and secondary health effects like diabetes caused by lack of regular muscle 

use [1]. 

Further, SCI is associated with high economic impact, not just from the loss of 

productivity, but also the high medical costs associated with treatment ranging from 

$370,000 to $1.13 million in the first year alone, and $40,000-190,000 per year thereafter 

[1]. It is estimated that the prevalence of long term spinal cord injuries in the US is over 

2.6 million cases, and over 27 million worldwide as of 2016 [2]. Recovery of motor 

function, if any, is varies by patient and depends on the extent of the injury [3]. 

Obviously, the greater the extent of injury (with the least level of motor control), the 

worse expected recovery outcome. This does not even consider those suffering from 

strokes, who form a much larger population. Individuals with severe motor deficits may 

benefit from technological solutions that can enable functional task performance [1]. 

Motivation for Electrical Muscle Stimulation 

These problems arise largely from losing voluntary control of muscle, and the 

reduced indpependence this can lead to. One way to counteract this is to use electrical 

muscle stimulation (EMS). The strength of EMS is its ability to initiate muscle 

contraction independently from the brain. On the surface, the case for using EMS on 

paralyzed muscle is obvious: otherwise paralyzed muscles can regain functionality. 

Electrical muscle stimulation (EMS) techniques-either in the form of functional 

electrical stimulation (FES, when used during a functional task) and neuromuscular 
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electrical stimulation (NMES, when used non-functional task and typically in isometric 

conditions)-and assistive devices (such as orthotics and exoskeletons) are promising 

technologies to restore function in SCI patients. EMS injects electrical current to activate 

muscles by exciting their motor neurons (or more rarely, muscles directly [4] in case of a 

peripheral nerve lesion). EMS can be performed with surgically implanted electrodes, or 

with surface electrodes applied to the skin. EMS is a subfield of the electrical stimulation 

techniques, specifically designed elicit and/or aid skeletal muscle activation. Other 

electrical stimulation techniques can be used to influence other electrophysiological 

tissues like heart (pacemakers), brain (deep brain stimulation), or be used for sensory 

feedback [5]. Recent work has also indicated that, in the right circumstances, applying 

electrical stimulation to injured spinal cords directly could restore enough nerve 

excitability to allow voluntary muscle control in otherwise completely paralyzed 

individuals [6], [7]. 

Regaining function in otherwise paralyzed muscles could prevent or even 

reversing muscle atrophy [8] and lead to acute health benefits like increased 

cardiovascular health, reduced muscle spasticity, and reducing inflammatory markers 

associated with diabetes [1]. Regardless, using the patient’s own muscles could 

dramatically increase their quality of life by directly increasing their functional 

capabilities or by making assistive devices more practical. By using their own muscle 

contractions, it could also help reduce the power consumption and battery weight for 

assistive devices, making them last longer between charges and weigh less. 
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EMS Drawbacks 

EMS is not ideal, however, because it induces an unnatural muscle fiber 

recruitment pattern that causes rapid loss of muscle force [9] which hereafter is referred 

to as muscle fatigue. This is not to be confused with central fatigue, which is caused the 

brain’s inability to maintain constant motor command due to exhaustion or losing focus. 

Because EMS stimulates motor neurons directly, it makes it easier to directly identify 

peripheral fatigue, or fatigue originating in either the muscles or motor neurons. 

Muscle fatigue is not a simple problem to overcome. Increasing current to 

counteract the loss of force soon leads to even greater fatigue and we will address some 

of the possible reasons for this in the subsequent section. Methods to minimize fatigue 

induced by electrical stimulation is an active area of research. Custom stimulation 

patterns like using doublets [10] (starting an otherwise constant frequency pulse train 

with two rapid pulses) or desynchronizing stimulation across multiple sites [11]–[13] 

have shown promising results to reduce fatigue by spreading activation across different 

muscle tissue. Nevertheless, rapid muscle fatigue remains a major concern for 

implementing EMS. Developing new techniques to reduce EMS fatigue will require a 

thorough understanding of muscle and the molecular basis for fatigue. 

Overview of Skeletal Muscle Physiology 

Normal Skeletal Muscle Activation 

To understand the motivation and methods behind this project, it is necessary to 

understand how muscles work. From there, we can both form relevant hypotheses of how 

the muscles will perform under in our experiments and interpret the data generated. 
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Movements are controlled by the activation and contraction skeletal muscle, 

providing stability to the internal bone structure, torquing joints to move limbs, eyes, 

draw breaths, and apply forces to external bodies. Muscles generally use tendons (except 

certain muscles like in the gluteus) to attach to and pull on bone. Each muscle evolved for 

their given task by developing custom shapes, pennation/not pennation, fiber makeup, 

specializations for sensitive movements (motor neuron to muscle fiber ratio)/speed or 

brute strength/or endurance. 

Many chemical and physical factors interact to form skeletal muscle function. On 

the chemical and biomolecular level, muscle generates force by a process called the 

sliding filament theory. Under this model, muscle contraction is generated by two 

contractile proteins: actin and myosin (modulated by tropomyosin and troponin 

complex/Ca2+ ATP-ADP and Pi and Mg2+), though a third contractile protein-titin-has 

been discovered. Titin’s role in muscle structure, signaling, and mechanical function is 

only partially understood, as there is evidence for several theorized functions that have 

not yet reached broad scientific consensus [14]. When an action potential reaches the 

sarcoplasmic reticulum, calcium is released, which sets off a chain reaction where 

calcium is released. This calcium then exposes the active sites on the actin molecules and 

allows myosin heads to bind. These heads bind, bend, and pull these fibers together along 

the direction of the sarcolemma. The myosin head binding and release cycle consumes 

ATP in the process and continues until calcium levels are insufficient to hold the actin 

binding sites open. Alternatively, a depletion of ATP will leave the myosin heads bound 

to the actin. This is believed to be the cause of rigor mortis shortly after death. 
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Above the molecular scale, muscles are composed of small contractile units called 

muscle fibers. These fibers come in two broad classes: slow twitch (also referred to as red 

or type I fibers) and fast twitch (also referred to as white or type II fibers). These fibers 

both use the same sliding filament mechanism to produce force, but differ in their cross-

sectional area, metabolism, blood perfusion, force characteristics, fatigue rates, Ca2+ 

dynamics, and their respective innervating motor neurons. Slow twitch fibers are thinner, 

primarily run on aerobic metabolism and contain more mitochondria, are subsequently 

more highly vascularized (hence ‘red’ fibers), slower and weaker compared to fast twitch 

fibers, fatigue relatively slowly, have slower Ca2+ dynamics, consume ATP more slowly, 

and are innervated by thinner motor neurons compared to those of fast twitch fibers. Fast 

twitch fibers generally have the opposite characteristics, being thicker, running primarily 

on anerobic metabolism with fewer mitochondria, are less highly vascularized (hence 

‘white’ fibers), contract more quickly and with more force, fatigue relatively quickly, 

have faster Ca2+ dynamics, consume ATP more quickly, and are innervated by thicker 

motor neurons. Further, fast twitch fibers are broken down into several subgroups with 

varying levels of each characteristic (IIa fast fatigue resistant, IIx fast intermediate, and 

IIb fast fatiguing), but it is common in the literature to only refer to these as fast twitch 

fibers, without distinction as to which subtype or relative quantities thereof. The 

differences between slow and fast twitch (all subtypes) play a major role in the 

development of macro-scale muscle force and fatigue as that we will examine subsequent 

chapters. 
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Each muscle’s macroscale structure and distribution of fiber types are related to 

their functional tasks (fine manipulation, weight bearing, etc.). Further, the orientation of 

fibers with respect to the muscle is another variable that affects its performance. There 

are two broad categories of fiber orientation, being either aligned with the muscle’s line 

of action or at an angle (pennate muscle). Pennate muscles can be classified as 

unipennate, bipennate (containing two sets of fibers oriented oppositely), or multipennate 

containing a multitude of pennate orientations. Beyond that, the labels for more complex 

parallel-structures vary between sources. Some of these labels include parallel, fusiform, 

convergent/triangular, sphincter/circular types amongst others. Fiber orientation is 

important because it determines how the fibers convert contraction on the fiber into 

macro-scale muscle dynamics. Parallel muscle fibers run and contract along the length of 

the muscle, allowing longer sarcomeres and hence faster muscle movement and greater 

displacement [15]. Pennate muscle fibers on the other hand are oriented at an angle (𝜑, 

the pennation angle) with respect to the muscle’s line of action. As such the muscle 

moves slower [15] and converts only a portion (Equation 1) of the muscle fibers’ 

contraction force (𝐹𝐹𝑖𝑏𝑒𝑟) to the overall muscle force (𝐹𝑀𝑢𝑠𝑐𝑙𝑒). The tradeoff is that, even 

though only a fraction of the fiber force is translated into muscle force, pennation allows 

more fibers to fit into the same volume compared to parallel fibers for the same space, 

which allows the muscle to produce more force overall. 

Equation 1. Pennate muscle force 

𝐹𝑀𝑢𝑠𝑐𝑙𝑒  =  𝐹𝐹𝑖𝑏𝑒𝑟 ∗ 𝑐𝑜𝑠(𝜑) 
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Figure 1-1. Top: Several macroscale fiber orientation variants from [16]. Bottom: Schematic of a 

bipennate muscle acting on an aponeurosis on the top and bottom of the muscle fibers. 

One motor neuron innervates several muscle fibers, the ratio of which affects the 

precision of the muscle’s movement. The higher the number of fibers to a single motor 

neuron, the less the precision of movement. 

Understanding muscle activation at the biomolecular level as discussed previously 

is key to understand performance and the breakdown of muscle function (muscle fatigue), 
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which impairs the muscle’s ability to generate force. We will focus on this in the next 

section. 

Muscle Fatigue Overview 

It is important to establish the meaning of ‘fatigue’ and how it relates to electrical 

stimulation. Unless otherwise noted, I refer to peripheral fatigue, or fatigue resulting from 

a breakdown in either the ability for peripheral motor neurons to excite muscles or in 

muscles themselves. This is not to be confused with central fatigue, which is more a 

measure of the brain’s ability to generate the underlying motor commands resulting from 

mental exhaustion, distraction, etc. Peripheral fatigue is the breakdown between motor 

commands from the central nervous system or external stimulation such as EMS and the 

contractile force the muscle generates. Both of these effects are relevant with voluntary 

movements, which makes it difficult to determine their relative contributions. However, 

EMS induced peripheral muscle fatigue is driven directly by the overactivation of the 

muscles and motor nerves. It is believed that stimulating peripheral motor neurons at very 

high frequency (>100Hz) can drive them beyond their ability to form and release 

acetylcholine [17]. Otherwise, peripheral fatigue is breakdown of excitation-contraction 

coupling (ECC) within the muscle itself [18], where the muscle receives the proper motor 

commands but fails to contract at the desired level of force and consequently less joint 

torque. 

Muscle fatigue occurs in multiple stages. During early ‘high frequency’ muscle 

fatigue, calcium release is actually higher than in the unfatigued state, but the muscle is 

less sensitive to it[19]. Later, calcium levels drop dramatically which becomes the 
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dominating factor. Further, a series of problems are also introduced by the accumulation 

of inorganic phosphate (Pi) generated from using ATP, including Pi (at high 

concentrations) and Ca2+ binding and dropping out of solution all together[19]. These 

mechanisms taken together form ‘high frequency’ muscle fatigue, which forms and 

recovers in the range of minutes. Prolonged activation can lead to ‘low frequency’ muscle 

fatigue, where the reduced force/torque can last hours or even days, and is believed to be 

related to the damage/breakdown and recovery of the proteins involved in generating 

contraction[20]. Our investigation in Chapter 4 will focus primarily on the calcium 

mechanisms in fast frequency fatigue. 

Generally, fatigue is viewed in a negative light as a flaw in muscle. Interestingly, 

a 2018 review [19] points out that the breakdown of calcium dynamics that hamper 

muscle contraction may not be a failure of the muscle at all, but a feature to prevent the 

depletion of ATP during energetically demanding levels of muscle contraction. If ATP 

was significantly depleted in the muscle, a series of catastrophic failures would occur 

[19]: actin/myosin cross bridging would cease to cycle and remain locked in rigor, Ca2+ 

pumping would cease and lead to an uncontrolled release in cytolic Ca2+ levels, and 

likewise Na+/K+ gradient pumps would fail leading to a breakdown of action potential 

propagation down the sarcolemma and the inability to excite muscle fibers entirely. This 

should inform the strategy of EMS stimulation, not to minimize the disruption Ca2+ 

dynamics while maintaining the same amount of muscle activation (and ATP 

consumption), but to attempt to minimize the metabolic cost of activation all together. 

Successfully activating muscles continuously without this negative feedback could 
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indeed lead to this breakdown of the muscle electrophysiology and contraction dynamics 

all together due to the depletion of ATP. The optimal strategy if possible, minimizing 

metabolic cost, would ideally avoid disrupting Ca2+ dynamics by making the mechanism 

unnecessary rather than disabling this feedback and powering through contractions 

without it. 

Natural Muscle Recruitment vs EMS 

The recruitment pattern (order, frequency, and timing) are very different between 

natural activation and EMS induced activation. During voluntary muscle contraction, 

motor units are activated asynchronously [21], providing intermittent resting periods for 

muscle fibers, with a discharge rate proportional to the desired level of contraction [22]. 

However, EMS elicits unnatural activation, recruiting many fibers simultaneously [11] 

proportional to the stimulus (based on pulse width and/or stimulus current) [23], without 

providing rest periods as with natural muscle recruitment. 

In natural muscle recruitment, thinner slow twitch (and slower fatiguing) fibers 

are recruited first, before fast twitch (and fast fatiguing) fibers are recruited [24]. By 

relying on more slowly fatiguing fibers first, fatigue is minimized for normal activities. 

EMS stimulation, however, preferentially targets the thicker motor neurons which 

innervate fast twitch fibers, reversing the recruitment order and relying on the faster 

fatiguing fibers first [24]. Because the faster fatiguing fibers are recruited comparatively 

more, and the slower fatiguing fibers less, the overall fatiguing characteristics of the 

muscle favor faster muscle fatigue when compared to the natural recruitment pattern. 



12 

In natural recruitment, prolonged sub-maximal contractions can fatigue a subset 

of fibers, which can be compensated with the recruitment of additional fibers [25], [26]. 

To an extent, it is theoretically possible to do the same with EMS. However, the higher 

the stimulus, the faster the rate fatigue is produced, which limits the utility of recruiting 

additional fibers. 

Further, there are gender-based differences in muscle fatigue and fatigue recovery 

with males fatiguing more and taking longer to recover [27]. This could be due to higher 

intramuscular pressure during contraction leading to less perfusion in males [27], and it 

has been shown that testing females in ischemic conditions eliminates the gender 

discrepancy in fatigue rates [27]. 

Current Technology for Estimating Muscle Activation and Fatigue 

Surface Electromyography 

Surface electromyography (sEMG) is the current gold standard in measuring 

muscle activation and detecting muscle fatigue. sEMG works by recording electrical 

signals created by muscle via skin mounted electrodes. From there, a series of electronics, 

filters, and digital signal processing techniques convert these electrical signals into a form 

that can be interpreted by a medical professional or a machine, such as a prosthetic 

device. This process works because muscles create electrical signal when they activate 

(recall, there is a prolonged calcium release that drives the actin/myosin cross bridge 

cycling). 

Detecting and quantifying muscle force/fatigue through indirect, noninvasive 

means has been a topic of study since at the 1950’s [26]. Surface electromyography 
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(sEMG) is currently the gold standard for noninvasively measuring electrical activity 

from muscle, which is used across a wide variety of applications from controlling 

powered prosthetics to biomechanics and motor control research. sEMG electrodes 

placed on the skin can record the electrical activity generated by contracting muscles 

beneath. However, sEMG lacks depth resolution and suffers from poor SNR [28]. 

Despite its limitations, sEMG can be used in certain situations to detect muscle fatigue 

from voluntary contraction. For instance, submaximal voluntary contraction generates 

progressively greater electrical activity as the muscle fatigues, which is likely from 

increased fiber recruitment to compensate for partial fatigue [25], [26], [29]. This can be 

somewhat limited for detecting fatigue because the subject is only activating a subset of 

motor neurons and can therefore compensate for fatigue by generating additional efferent 

muscle commands to recruit additional, unfatigued fibers to assist. Although higher 

sEMG signal amplitude can be a sign of fatigue, this is because sEMG becomes 

increasingly decoupled with muscle activation. Unlike submaximal contraction, a 

maximum voluntary contraction recruits as many fibers as possible and cannot recruit 

additional fibers to compensate for fatigue. Specifically, at maximum voluntary isometric 

contraction (MVIC), measured force will drop with time but the high amplitude sEMG 

signal will remain essentially constant [30]. One implication of this is that sEMG 

amplitude alone would have trouble differentiating between a fatigued muscle 

maintaining a lower force by recruiting additional fibers and an unfatigued muscle 

maintaining greater force. For these reasons, detecting muscle fatigue with sEMG 

generally requires frequency analysis, which can be hampered by its intrinsically low 
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SNR and/or any external electrical interference. For this reason, sEMG frequency 

analysis is severely compromised when paired with EMS, as EMS can severely corrupt 

the sEMG signal with artifacts and may completely saturate the recording entirely. For 

comparison, EMS can be hundreds of volts [31] whereas the passive biological signal is 

less than 100 millivolts. It may be possible to use a non-causal filtering scheme to decode 

swamped sEMG signal between stimulation periods, but this is not truly real-time, and it 

is not possible at all if the signal saturated. Overall, sEMG is poorly suited for detecting 

muscle fatigue concurrently with EMS and another approach is necessary. 

Human-machine interfaces designed to make physiological measurements span a 

huge range of invasiveness ranging from indirect contact (e.g. optical, electromagnetic) to 

requiring surgical implantation. Generally speaking, the more invasive, the more detailed 

or localized information the communication. Invasive, surgically implanted peripheral 

nerve electrodes can provide highly localized recordings or stimulation [5] and require 

significantly less current [32] compared to transdermal stimulation electrodes. However, 

implantable electrodes come at a cost, not only requiring surgery, but also the risk of 

infection, often lose quality and or fail completely over time [33], as well as lower 

stimulation thresholds for causing damage by exceeding the water window [32]. The 

implanted nature of these devices also runs the risk of becoming obsolete and creating a 

barrier for implanting newer technology should it become available and patients can be 

left with nonfunctional devices if the manufacturer goes out of business or abandons the 

product line as is the case with the Argus II epiretinal implants [34]. Because of the 

infection risks, immune rejection/electrode failures, surgical requirements, invasiveness, 
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and difficulty to change/remove if something goes wrong or if the manufacturer stops 

supporting the device or a newer better device comes along, not to mention the 

significantly high barrier to perform experiments required to develop the technology, it is 

difficult to justify an implanted device if there is a noninvasive, easily 

removable/replaceable alternative. Thus, I focused on noninvasive methods of both 

stimulating muscle and estimating muscle fatigue. 

Alternative Methods for Monitoring Muscle Activation and Fatigue 

It is important to note that direct measurements of muscle contraction strength in 

the literature come as either force (tension) or torque, and these are not necessarily 

interchangeable. It is generally not feasible to directly measure muscle force in humans 

because it requires isolating the muscle and tendons from the rest of the body. This is 

why direct muscle force measurements come almost exclusively from animal studies 

where muscles can be surgically isolated and measured. This is not to be confused with 

ground reaction forces or other measured applied forces such as when measured from a 

force plate/strain gauge. These are the net reactionary forces acting upon an outside body 

that can result from combinations of muscles, joint angles, gravity, etc. and are not direct 

measurements of the tension a muscle is producing. Human data is often reported as joint 

torque because high end commercial human dynamometers like the Biodex System 4 

(Biodex Medical Systems, Upton, NY) or Humac Norm (CSMi Solutions, Stoughton, 

MA) are designed to directly measure rotational torque around isolated movement 

patterns. In isometric cases, where the length of muscle-tendon complex and joint angle 



16 

is fixed, force can be directly inferred from torque measurements if the muscle 

contracting is isolated. 

Mechanomyography (MMG) is an umbrella term for a class of mechanical 

alternatives to sEMG, which record muscle mechanical activity like acceleration, 

velocity, displacement. Several variants exist from measuring muscle radial displacement 

(tensiomyography, TMG) [35], measuring movements with accelerometers [36], to 

passively recording soundwaves generated by muscle contractions (acoustic myography, 

AMG, also called phonomyography, PMG) [30], though some argue that AMG is distinct 

from MMG [37]. Because these techniques measure mechanical signals (as opposed to 

electrical signals), they provide a meaningful measure of active muscle contractions that 

is not dependent on ECC [30]. MMG should be significantly less susceptible electrical 

artifacts induced by EMS, and there have been recent advancements in the lab setting 

toward creating wearable, noninvasive muscle monitoring using MMG [38] and AMG 

[37]. These methods are promising, but they provide limited spatial resolution and like 

sEMG, lack depth resolution. 

The Case Medical Ultrasound for Monitoring Muscle Fatigue 

We believe that ultrasound imaging could have great utility in noninvasive fatigue 

monitoring and may address the issues and shortcomings of the other methods mentioned 

in the previous section. In this section, I will describe our motivation for using ultrasound 

to study muscle architecture and movements related to EMS induced muscle contractions, 

fatigue, and recovery. 
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What is Medical Ultrasound? 

To understand the rational for using medical ultrasound in this dissertation, we 

must first discuss what ultrasound is and how is it used presently. 

Brief Medical Ultrasound and Physics Overview 

Ultrasound has long been used for noninvasive medical imaging in clinical 

practice. It gets its name from the fact that high frequency acoustic waves are inaudible, 

hence it is above hearing (ultra-sound). Acoustic waves are longitudinal compression 

waves (who vibrate along their direction of travel) that require a medium to propagate, 

unlike electromagnetic wave like light. Medical ultrasound specifically refers to 

measuring biological tissue rather than sensing an open space in the air or nondestructive 

testing like other forms of ultrasound. 
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Figure 1-2. Schematic of an ultrasound transducer performing a simple pulse echo procedure. 

In the simplest form of conventional brightness mode (B-mode) pulse-echo 

ultrasound imaging (Figure 1-2), an acoustic pulse of center frequency 𝑓𝑐 and wavelength 

λ (Equation 2) is transmitted by a transducer, which then switches to a listening mode to 

record any reflected echoes. λ is also the resolution of the system, meaning no object 

smaller than λ can be resolved independently. If the speed of sound (𝑐) in a medium is 

known, then we can tie the delay between the transmission and receive signals (𝜏) 

directly to the depth of the reflector (sometimes referred to as the ‘range’ in other 

modalities) by Equation 3. Note the divide by two to account for the wave having to 

travel both to and from the transducer. From there, additional beams are transmitted, 

received, and processed as scan lines to form an image. The image can be used as a 

medical diagnostic or analyzed for information. 
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Equation 2. Wavelength Equation for Given Speed of Sound and Center Frequency 

𝜆 =
𝑐

𝑓𝑐
 

Equation 3. Imaging Depth by Transmission and Reception Delay 

𝑑𝑒𝑝𝑡ℎ =  
𝜏 ∗ 𝑐

2
 

Medical Ultrasound and its Utility for Studying Muscle 

Recently, medical ultrasound imaging has gathered more attention in research for 

numerous applications to quantify both nerve muscle architecture and activity. These 

have included estimating muscle force and fatigue using muscle architecture like fiber 

pennation angle, cross sectional area, and tissue motion tracking [39]–[44], detecting 

passive and active muscle activation using fast M-mode or TDI approaches [45]–[47], 

and for controlling prosthetics [48]–[50], remotely modulating [51] and recording neural 

activity, either directly from scattering [52] or indirectly by increased blood flow [53], 

[54]. among others. Muscle activation also affects the acoustics of ultrasound propagation 

including speed of sound [55], [56] and echogenicity [57], [58], which have been used to 

estimate joint torque [59]–[62]. Muscle radius identified by ultrasound imaging has also 

been used as indicators of muscle force [41], [44] and fatigue [25]. Radial muscle 

velocity and velocity derivative metrics like strain and strain rate have shown promise in 

studying both muscle fatigue [42], [43] and muscle force [63]. Black box convolutional 

neural network techniques to predict joint torque from ultrasound images are also under 

development [64]. Ultimately US could provide a measure of muscle mechanics localized 

in three dimensions to subsections of individual muscles unlike MMG and like 

techniques or sEMG, with high SNR. Moreover, US could be used to compliment the 

electrical sensitivity of sEMG to measure excitation and activation separately. 
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Bringing it All Together 

At present, there is still an open need for a wearable, reliable, real time muscle 

fatigue monitor that is compatible with EMS. We believe ultrasound could provide the 

solution. In this work, we test the hypothesis that Doppler ultrasound is sensitive to 

mechanical signs of muscle fatigue which will serve as the foundation for a wearable 

fatigue monitoring system. 

This chapter has centered around the big picture problems we wish to address, 

EMS and its drawbacks, brief overviews on muscle physiology, current technology for 

studying muscle fatigue, and the case for using medical ultrasound as a muscle force and 

fatigue monitor. The subsequent chapters will focus on our hypotheses and the 

experiments we performed to help understand and interpret the observed muscle 

performance (Chapters 2 and 3) and how this can inform muscle dynamic system 

modeling (Chapter 3) to help us better predict muscle function for real world us such as 

closed loop electrical muscle stimulation applications like closed loop EMS exercise or 

shared robotics controls. Finally, it concludes with an interpretation of the main findings 

if this study and potential investigational paths for future work. 
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ABSTRACT 

Introduction/Aims: 

Electrical muscle stimulation (EMS) is widely used in rehabilitation and athletic 

training applications to generate involuntary muscle contractions. However, this 

stimulation leads to rapid muscle fatigue, which limits the amount of force a muscle can 

produce over prolonged use. Stimulation protocols would benefit from methods that 

monitor localized muscle fatigue and recovery, but most approaches to assess muscle 

fatigue are either incompatible with electrical stimulation (e.g., surface 

electromyography, sEMG) or cannot be used on freely moving subjects. Ultrasound is an 

alternative modality that has previously shown potential for monitoring fatigue. The 
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purpose of this study was to examine whether Doppler ultrasound imaging can assess 

changes in stimulated muscle twitches that are related to muscle fatigue from electrical 

stimulation. 

Methods: 

We stimulated isometric muscle twitches in the medial and lateral gastrocnemius 

using isolated, biphasic pulses in healthy subjects. Tissue Doppler imaging (TDI) of 

medial gastrocnemius muscle recorded tissue velocities before and after a 60-second 

EMS protocol designed to elicit fatigue. We extracted features of the average muscle 

tissue velocity waveforms during muscle twitch and compared them to the isometric 

ankle torque before the stimulation and during recovery. 

Results: 

Features of the average tissue velocity waveforms changed following the 

fatiguing stimulation protocol (peak velocity: decreased by 38%, p = 0.022; time-to-zero 

velocity: increased by 8%, p = 0.050) in 13 subjects. We observed that the tissue velocity 

features showed a return towards baseline during the rest period for five stimulated 

muscle twitches following induced fatigue. The normalized peak velocity significantly 

increased from the first muscle twitch to the fifth (+23%, p = 0.022, d = 1.413) muscle 

twitches. The normalized peak tissue strain rate significantly increased from the first 

muscle twitch to the fifth muscle twitch (+14%, p = 0.011, d = 1.118). This pattern was 

similar to that of the normalized ankle torque, which significantly increased from the first 

to the fifth (+42%, p < 0.001, d = 3.434) muscle twitch. We also found that features of 
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the average tissue velocity waveform could significantly predict the ankle torque for each 

participant (R2 = 0.255–0.849, p < 0.001). 

Discussion: 

Doppler ultrasound imaging can detect changes in muscle tissue during isometric 

muscle twitch that are related to muscle fatigue, fatigue recovery, and the generated joint 

torque. 

Conclusion: 

This work helps establish feasibility for using Doppler ultrasound to monitor 

muscle fatigue during EMS, and could be utilized for design of future wearable 

ultrasound feedback devices for fatigue monitoring. 

 

Keywords: 

Feedback devices; Performance characterization; Exoskeletons; Human-robot 

interaction 
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INTRODUCTION 

Electrical muscle stimulation (EMS) is an increasingly popular approach to train, 

rehabilitate, and evaluate muscle contraction using electrical impulses. EMS (which 

encompasses both functional electrical stimulation and neuromuscular electrical 

stimulation) is widely used in a variety of applications, such as a strength training tool to 

improve athletic performance [66], [67], as a rehabilitative tool to improve motor 

function for individuals with motor deficits [4]–[7], [68], [69], and as a research tool to 

investigate muscular function in vivo [70], [71]. A typical EMS system generates patterns 

of electrical impulses and delivers them to muscle fibers via electrodes, which are 

commonly adhered to skin over the targeted muscle motor points. The target muscles 

involuntarily contract in response to the stimulation pattern, thus providing a user 

extensive control over the timing and amplitude of the generated induced muscle forces. 

However, most EMS systems use open-loop control of their stimulation patterns and fail 

to account for real-time changes in muscle performance, such as muscle fatigue. 

Muscle fatigue, the decreased capacity of a muscle to generate force after exercise 

[72], is a primary consideration for EMS because stimulated muscles tend to fatigue very 

rapidly [9], [73], [74]. During voluntary muscle contraction, motor units are activated 

asynchronously [21] with a discharge rate proportional to the desired level of contraction 

[22]. However, EMS elicits unnatural activation and discharge of the motor units, causing 

stimulated muscles to fatigue faster [75]. This remains a major limitation for many 

applications of EMS, such as during strength training [76] or physical rehabilitation [9]. 

Further, without adequate rest to recover from fatigue, overworked muscles are at risk for 
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injury and lead to muscle soreness and pain [77]. Attempts to mitigate EMS-induced 

muscle fatigue often involve spatially distributing the stimulation [73], [78], [79] and 

modifying the stimulation parameters (e.g., timing and waveforms) [80], [81]. However, 

these open-loop approaches do not attempt to evaluate or characterize the induced muscle 

fatigue throughout the stimulation protocol. EMS protocols would greatly benefit from 

methods to monitor muscle fatigue and recovery within individual muscles. 

Due to the ease of implementation and abundance of signal features, surface 

electromyography (sEMG) has emerged as the primary method to assess localized muscle 

activity and fatigue [25], [26], [29], [82], [83]. However, sEMG is poorly suited for 

monitoring muscle fatigue during EMS because in addition to interference and crosstalk 

from adjacent muscles, sEMG is extremely sensitive to electrical interference [84]. 

sEMG records electrical activity during muscle contraction via electrodes placed on the 

skin, which are by necessity near the electrodes used in EMS. EMS impulses can severely 

corrupt the sEMG signal with artifacts [85]. For example, EMS can deliver impulses on 

the order of 100 V while sEMG attempts to record muscle signals that are on the order of 

<100 mV with an inherently low SNR. Although advanced signal processing methods to 

remove stimulation artifacts from sEMG signals are emerging [86]–[88], working with 

sEMG signals during EMS has remained challenging. Thus, muscle fatigue monitoring 

during EMS would greatly benefit from a robust alternative to sEMG. 

Various non-invasive techniques have attempted to quantify localized muscle 

fatigue using methods that are not as susceptible to electrical interference [29], such as 

mechanomyography [89], near-infrared spectroscopy [90], and sonomyography [58]. 
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Mechanomyography can be considered the mechanical equivalent of sEMG by recording 

low-frequency (i.e., 2-200 Hz) surface vibrations produced by muscle fibers during 

contraction [91], but it has limited utility due to its sensitivity to acoustic/vibrational 

interference during movement [92]. Near-infrared spectroscopy can provide a measure of 

oxygenation in a fatiguing muscle but is also very sensitive to movement and is therefore 

mainly used as additional information to complement sEMG [29], [93]. Sonomyography 

uses ultrasound imaging to describe localized morphological changes in muscle and 

remains an active area of research [28], [29], [48], [94], [95]. Ultrasound imaging is a 

common, non-invasive clinical tool compatible with EMS and has shown utility for 

quantifying muscle architecture [46], [50], [96], mechanical activation [28], [40], [48]–

[50], force [41], [56], [60], [61], and fatigue [25], [42], [43], [97]. Ultrasound imaging 

can also distinguish between deep and superficial muscles, whereas sEMG signals 

contain the summation of any electrical muscle activity beneath the electrode. Previous 

technical limitations (e.g. large form factor of hand-held ultrasound probes with tethered 

cables, need for custom holders to stabilize probes during ambulatory tasks, real time 

data processing and transmission, etc.) have inhibited its use in freely moving subjects, 

but recent developments have shown remarkable potential for wearable devices capable 

of sonomyography [48], [63], [98]. Thus, monitoring real-time changes in localized 

muscle fatigue during EMS might be possible using sonomyographic data. 

Although sonomyography has typically been used to track muscle motion using 

B-mode (2 dimensional image sequences) and M-mode images (one scan line over time), 

tissue Doppler imaging (TDI) is another ultrasound mode for quantifying tissue motion 
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[95]. This approach extracts tissue velocities and associated metrics such as strain rate by 

measuring the phase shift of the ultrasonic reflections in rapid (kHz) succession. Unlike 

computationally intensive post-processing motion analyses like speckle tracking using B-

mode images, RF data, analytical signals etc. [42], [96], TDI can quantify local tissue 

velocities in real time with sub-mm detail with conventional Doppler processing 

methods. TDI has proven to be very sensitive to the motion of myocardial structures, and 

thus this approach is commonly used clinically to assess myocardial dysfunction [99]. 

However, only a few studies have explored using TDI to assess the dynamic functions of 

skeletal muscle [100], [101]. For example, TDI can reliably detect the mechanical onset 

of muscle activity [45]. TDI can also distinguish muscle contraction from passive muscle 

motion [47]. However, the use of TDI to quantify changes to skeletal muscle 

experiencing fatigue due to EMS remains unexplored. 

Our ultimate goal is to develop a wearable, real-time monitor of EMS-induced 

muscle fatigue to characterize time-varying EMS/muscle performance. Our overarching 

hypothesis is that TDI is sensitive to the mechanical signs of muscle fatigue during EMS 

and has potential to monitor muscle fatigue and recovery in real time. As a first step, the 

purpose of this study was to examine whether TDI can assess changes in stimulated 

muscle twitches that are related to muscle fatigue from electrical stimulation. We used 

TDI to extract gastrocnemius muscle tissue velocities during isometric muscle twitches 

before and after a fatiguing EMS protocol. We first hypothesized that muscle tissue 

velocities during stimulated muscle twitches would decrease after the fatiguing EMS 

protocol, and then gradually increase during fatigue recovery. Our second hypothesis was 
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that changes to the muscle tissue velocities would be related to increases in isometric 

muscle torque during fatigue recovery. 

METHODS 

Participants 

We recruited healthy adults to participate in the study. The self-reported inclusion 

criteria were: 1) 18–60 years old, 2) able to consent and participate in this study, 3) able 

to walk independently, and 4) did not use a pacemaker or any other implanted electronic 

device. We excluded participants with any previous history of stroke, cerebral palsy, 

multiple sclerosis, or any other neuromuscular disorder. We also excluded participants 

with a history of cardiovascular disease, lower extremity surgery or injury, diagnosis of 

an unstable spine, unhealed limb of pelvic fractures, recurrent fractures, or osteoporosis. 

Any participants who currently had active pressure sores, open wounds, or an infection 

were also excluded. The experimental protocol was approved by the George Mason 

University Institutional Review Board, and each research subject provided written 

informed consent before participating in the study. 

Experimental Setup 

We performed our assessments of muscle fatigue on subjects instrumented with a 

Biodex II dynamometer (Biodex Medical Systems, Upton, NY) retrofitted with a Humac 

interface (CSMi Solutions, Stoughton, MA). Subjects were placed in either a prone or 

seated position with either their right or left leg fit into the Biodex, chosen at random by 

coin flip. The Biodex was configured such that subjects could perform isometric plantar 

flexion with the chosen leg. To prevent lateral ankle movement, the ankle was secured at 



29 

90˚ using a foot plate. For subjects in the prone position, we recorded the ankle torque 

from the Biodex using LabView (National Instruments, Austin, TX). For subjects in the 

seated position, we recorded ankle torque from a load cell (Futek Inc., Irvine, CA) affixed 

to the platform under the applied center of pressure. 

Subjects were instrumented with a 38 mm wide L 14-5 MHz ultrasound probe 

with a center frequency of 6.66 MHz, attached to a SonixOne ultrasound system (BK 

Analogic, Richmond, BC) with a sample rate of 40 MHz, beamformed across 32 

channels. The probe was placed as close as possible to the center of the muscle belly 

from the distal side of the medial gastrocnemius muscle belly (Figure 2-1). The probe 

was oriented over the muscle to allow for an optimal image of medial gastrocnemius fiber 

orientation. A custom 3D-printed mount held the probe perpendicular to the muscle, 

using a neoprene cuff secured around the calf. Ultrasound data was collected in the pulse-

wave TDI mode. The upper and lower boundaries of the Doppler gate, which define the 

depths of interest along the TDI scan line (see Figure 2-1C), were set to cover the entire 

thickness of the medial gastrocnemius along the scan line at both rest and during 

voluntary flexion. We set the pulse repetition frequency to 10 kHz, but if the gate depth 

was small enough to permit the buffer to use a higher pulse repletion frequency (PRF), 

we increased the frequency to 12.5 kHz. Due to memory limits on the ultrasound 

machine, we chose not to image regions of the soleus. We also did not account for soleus 

activation or movement because the gastrocnemius has distinct innervation zones from 

the soleus and thus could be activated independently during stimulation [102]. 
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Figure 2-1. We used tissue Doppler imaging to examine gastrocnemius muscle tissue velocities during 

stimulated isometric muscle twitches before and after electrical muscle stimulation. Our 

experimental setup for (A) participants in a prone position and for (B) participants in a seated 

position. (C) An example longitudinal view B-mode ultrasound image of the medial gastrocnemius 

used during placement and orientation of the ultrasound probe. We adjusted the probe to create an 

optimal image of gastrocnemius muscle fibers. The thin dotted line in the middle of the B-mode 

image represents the scan line (where the beam is directed during the rapid TDI pulsing). The two 

horizontal yellow lines define the gating depth (i.e., the zone measured) and were set to cover the 

gastrocnemius muscle tissue. The major tick marks to the right of the image represent 1 cm, with 

minor tick marks at the 0.5 cm midpoints. The total image is just over 4 cm deep and 3.8 cm wide. 
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We placed two electrodes for an EMS system (Rehastim2, Hasomed GmbH, 

Magdeburg, GE) over the heads of the gastrocnemius in accordance with the 

manufacturer’s guidelines (Figure 2-1). The first electrode was placed over the medial 

gastrocnemius proximal to the ultrasound probe (at approximately the middle of the 

muscle belly). The second electrode was placed over the distal end of the lateral 

gastrocnemius. We stimulated both heads of the gastrocnemius to minimize unnatural 

lateral shifting of the muscle belly. We controlled the EMS system using a custom 

Matlab/Simulink interface (MathWorks Inc., Natick, MA). 

Experimental Protocol 

We established a normalized stimulation intensity (I20) for each subject. First, we 

instructed subjects to generate a maximum voluntary isometric contraction (MVIC) 

during plantar flexion. We then electrically stimulated the gastrocnemius with pulse 

trains of increasing current (starting from 5mA) until we determined the current 

necessary to stimulate the gastrocnemius to produce an isometric ankle torque at 20% of 

the MVIC torque (I20). All EMS used biphasic, constant current pulses with 100 µs pulse 

width per phase and 100 µs delay between phases. Fatiguing stimulation used 50 Hz 

pulse trains (20 ms main pulse interval) whereas muscle twitch stimulation used 

individual pulses. 

We then recorded ankle torque and TDI muscle velocity during electrically 

stimulated muscle twitches before and after a fatiguing EMS protocol (Figure 2-2). We 

first established baseline (i.e., pre-fatigue) muscle twitch behavior by stimulating the 
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gastrocnemius at least five times with single pulses at the stimulation intensity I20. 

Subjects then received a time varying stimulation train intended to emulate cyclic 

stepping and induce muscle fatigue, lasting a total of 60 seconds per fatiguing period. The 

stimulation train included 60 cycles (i.e., 60 steps). For each stimulation cycle, current 

was ramped up from zero to I20 over 0.12 s, held at I20 for 0.5 s, and then ramped down to 

zero for 0.12 s, followed by 0.26 s rest, for a total period of 1 s. After the fatiguing 

stimulation train, we assessed muscle twitch as the muscle recovered by electrically 

stimulating the medial gastrocnemius with single pulses at stimulation intensity I20 

approximately once every 20 s over two minutes of rest. Due to memory limits of the 

ultrasound machine, we could only record for approximately 3 to 5 s at a time depending 

on the size of the Doppler gate (which depended on the thickness of the muscle 

measured) and pulse repetition frequency, plus approximately 10 s to save. 
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Figure 2-2. We examined tissue Doppler images before and after a fatiguing stimulation protocol 

pictured. The gastrocnemius is intermittently twitched to establish a baseline, intentionally fatigued 

with a one minute electrical muscle stimulation protocol, and intermittently twitched during a period 

of at least two minutes to evaluate fatigue recovery. Ankle torque is normalized to the average of the 

pre-fatigue twitch values and times are scaled for easier viewing. 

 

After we started collecting data using the fatiguing EMS protocol, we decided to 

examine how the TDI muscle velocities might change after multiple rounds of the 

fatiguing EMS protocol. For the subjects recruited after this decision was made, we 

included four additional rounds of the fatiguing EMS protocol separated by two-minute 

periods for rest. 

Data Analysis 

For each TDI imaging period, we generated the average TDI velocity waveform 

over the thickness of medial gastrocnemius tissue (i.e., across the Doppler gate) using an 

autocorrelation method [103]. Briefly, TDI is collected as a beamformed scanline 
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acquired in rapid succession (kHz range). Scanlines are converted to their complex in-

phase and quadrature components via a Hilbert transform, and an estimate of velocity is 

determined by comparing the relative change in phase angle between pulses via conjugate 

multiplication for every sample along the imaging depth defined by the Doppler gate. 

Using the change in phase angle vector (∅), the velocity (𝑣) for a given time (𝑡), pixel 

depth (𝑑), and period between pulses (𝑇) can be calculated with the following equation: 

Equation 4 TDI Velocity 

𝑣(𝑡, 𝑑, 𝑇) =  ∆𝜃(𝑡, 𝑑, 𝑇) ∗
𝑐

𝟒π𝑓𝑐𝑇
 

 

where 𝑐 is the speed of sound and 𝑓𝑐 is the center frequency of the transducer. Note that 𝑇 

can either be the pulse repetition period (the inverse of the pulse repetition frequency), or 

an integer multiple thereof in the case of adding a delay to emphasize lower frequencies. 

The resulting velocity field image is similar to an M-mode image, except each data point 

reflects the estimated velocity at a given depth and time point, rather than echo intensity. 

The data were downsampled to 1 kHz to emphasize low tissue velocities, and then 

averaged across depth to create a 1D velocity waveform for further analysis. 
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Figure 2-3. We quantified tissue Doppler imaging during a stimulated muscle twitch by extracting 

key features of the average muscle tissue velocity waveforms. Time point 1 is the onset of muscle 

twitch, time point 2 is the zero-crossing of tissue velocity waveform, and time point 3 is the end of 

muscle twitch. Several waveform features were used in this analysis. Time-To-Zero velocity is 

defined as time point 2 minus time point 1. We interpret this as the period of net expansion along the 

cross section of the muscle during a muscle twitch. Total twitch duration is defined as time point 3 

minus time point 2. Peak Velocity is the maximum absolute velocity during the initial expansion 

phase (from time point 1 to time point 2). The Peak Velocity-Time Integral (Peak VTI) is the integral 

of the average tissue velocity waveform, whose peak occurs at time point 2 (Peak VTI is not shown on 

the figure). Data plotted as the mean ± standard deviation of the recorded tissue velocities of a 

representative twitch response (pre-fatigue). 
 

Average velocity waveforms were manually divided into three time points: 1) the 

onset of muscle twitch, 2) the zero-crossing of tissue velocity (i.e., from positive to 
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negative velocity or vice versa), and 3) the end of muscle twitch (i.e., when the velocity 

returns to zero). For the end point (point 3), spectral entropy [104] with a 164 sample 

window and cutoff of -0.7 was used to help guide the manual segmentation. During the 

first time interval, the velocity profile represents a net velocity measured through the 

muscle thickness which we interpret as the time during which the muscle undergoes net 

cross sectional expansion. Conversely, we interpret the second time interval as the time 

during which the net expansion stops and the musculotendon unit passively contracts to 

baseline which necessarily is of opposite sign as the expansion period. Several features 

were then extracted from the average tissue velocity waveforms (Figure 2-3). The peak 

velocity was calculated as the maximum absolute velocity during the net (active) cross 

sectional expansion (i.e., between the first and second time points). The time-to-zero 

velocity was calculated as the difference between the first and second time points. The 

total twitch duration was calculated as the difference between the first and third time 

points. The peak velocity-time integral (VTI) was calculated as the maximum value of the 

integral of the average velocity waveform, which occurs at the second time point, and 

represents the accumulation of net cross section velocity as the muscle expands and 

releases. Unlike peak velocity, which depends on the fibers firing in synchrony, we 

believe the peak VTI to record the cumulative effects of fibers firing and more robust to 

any variations in electromechanical delay in the fibers. We also approximated the peak 

tissue strain rate by first smoothing the pixel-by-pixel velocities using a 1.925 mm (100-

sample) moving average and then calculating the average spatial gradient over the depth 

of the gating window (which varied by subject). In nonisometric conditions, the muscle 
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body could possibly shift towards or away from the probe as the lever arm changes. We 

believe that peak tissue strain rate would in theory be more robust than peak velocity in 

these conditions and should perform similarly in isometric conditions because the lever 

arm is fixed. 

Statistical Analysis 

To test our first hypothesis, we compared the features of the tissue velocity 

waveforms before and after the first fatiguing EMS protocol. We collected data for five 

stimulated muscle twitches before and after the fatiguing protocol. We then normalized 

the data to their average pre-fatigue value (i.e., baseline). To assess any initial changes 

after the fatiguing protocol, we first compared the pooled pre-fatigue features with the 

features extracted during the first stimulated muscle twitch using paired t-tests. To assess 

subsequent changes to these waveform features, we then used a repeated measures 

analysis of variance (rmANOVA) to compare the features extracted over the five muscle 

twitches following the protocol. We confirmed assumptions of normality using a 

Shapiro–Wilk test. When we found significant differences, we focused post-hoc 

comparisons on changes from the first muscle twitch using paired t-tests with a Holm-

Bonferroni correction. Because changes to the waveform features over time might present 

a subtle pattern of recovery that is not readily captured by an rmANOVA, we also 

attempted to fit a monotonically increasing trend to the waveform features over time. We 

chose to use a power regression model, ln(𝑦) = ln(𝑏0) + 𝑏1 ln(𝑥), to depict a trend 

because this model exhibited the best fit to our data (e.g., highest R2 values) when 

compared to the other curve fitting models we considered (e.g., linear, logarithmic, 
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exponential, etc.). For the subset of participants who completed the four additional 

rounds of the fatiguing protocol, we also examined any patterns of recovery after each 

round by attempting to fit a trend to the resulting waveform features over time. 

To assess if and how the waveform features might change over multiple rounds of 

the fatiguing protocol, we averaged the normalized feature values following each round 

(five twitches per round) for the subset of participants who completed the four additional 

rounds. An rmANOVA tested for differences in these pooled features over the five total 

rounds. We confirmed assumptions of normality using a Shapiro–Wilk test. When we 

found significant differences, we focused post-hoc comparisons on changes from the first 

round using paired t-tests with a Holm-Bonferroni correction. 

To test our second hypothesis, we examined the relationship between the torques 

generated during stimulated muscle twitches and the features of the tissue velocity 

waveforms. We computed a stepwise multiple linear regression model with the recorded 

ankle torque as the dependent variable, and the features of the tissue velocity waveforms 

as covariates. Starting with a constant model, the waveform features were added 

(p < 0.05) and removed (p > 0.10). Stepwise linear regression iteratively updates a 

regression model to combine and remove variables systematically to eliminate highly 

correlated variables and statistically insignificant variables to ensure the data only 

contains variables with only useful, unique information. To account for any between-

subjects variability in the data, we did not normalize the extracted waveform feature 

values and chose to calculate a separate stepwise regression for each participant. For the 

participants who completed the four additional rounds of the fatiguing EMS protocol, we 
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included features values from muscle twitches over the five total rounds in their 

regression analysis. 

We performed the statistical analyses using JASP Version 0.16 (JASP Team, 

Amsterdam, NL) and SPSS Version 27.0 (IBM Corp., Armonk, NY), and defined 

significance a priori as p < 0.05. 

RESULTS 

We recruited thirteen participants (9 male, 4 female), and data from nine of these 

adults included four additional rounds of the fatiguing EMS protocol. We collected data 

from a total of 479 muscle twitches. 

We confirmed the onset of fatigue following the first application of the EMS 

protocol (N = 13 participants), in which the normalized ankle torque was significantly 

reduced during the first stimulated muscle twitch (-38%, p < 0.001, Cohen’s d = 2.367) 

and then recovered over subsequent muscle twitches (Fig. 4). The normalized ankle 

torque significantly changed over the five muscle twitches (F = 28.845, p < 0.001, 

𝜂𝑝
2 = 0.828). Normalized ankle torque significantly increased from the first muscle twitch 

during the second (+19%, p = 0.002, d = 1.561), third (+31%, p < 0.001, d = 2.575), 

fourth (+41%, p < 0.001, d = 3.354), and fifth (+42%, p < 0.001, d = 3.434) muscle 

twitches. Throughout the five muscle twitches during the recovery period, the normalized 

ankle torque exhibited a monotonically increasing trend that fit a power regression model 

(b0 = 0.614, b1 = 0.236; F = 14.504, R2 = 0.305, p = 0.001). 
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Figure 2-4. The ankle twitch torque and extracted features of the average muscle tissue velocity 

waveforms after repeated rounds of the fatiguing stimulation protocol, all normalized to their 

average pre-fatigue value. Data plotted as mean ± standard error. Data for 13 subjects are included 

in the plotted values for pre-fatigue and round 1; data for 9 subjects are included in the plotted 

values for rounds 2 through 5. Note that round 1 refers to the initial application of the fatiguing 

stimulation protocol, and not the first repetition of the fatiguing stimulation protocol. VTI: Velocity-

Time Integral. 



41 

We found evidence that normalized features of the tissue velocity waveforms also 

changed following the fatiguing EMS protocol for the 13 participants (Figure 2-4). The 

average feature values generally appeared to follow a similar pattern to the changes in 

ankle torque, in which the feature values gradually increased from the first stimulated 

muscle twitch during subsequent muscle twitches. The normalized peak velocity was 

significantly reduced from baseline during the first stimulated muscle twitch (-24%, 

p = 0.022, d = 1.156), and the rmANOVA revealed significant changes over the five 

muscle twitches (F = 4.787, p = 0.007, 𝜂𝑝
2 = 0.489). The normalized peak velocity 

significantly increased from the first muscle twitch to the fourth (+23%, p = 0.022, 

d = 1.435) and fifth (+23%, p = 0.022, d = 1.413) muscle twitches, but the values for the 

second (p = 0.843) and third (p = 0.060) muscles twitches were not significantly 

different. Similar to the normalized ankle torque, the normalized peak velocity exhibited a 

monotonically increasing trend that fit a power regression model. (b0  =  0.741, 

b1  =  0.132; F  =  4.328, R2 = 0.119, p = 0.046). The normalized time-to-zero velocity 

was significantly increased from baseline during the first stimulated muscle twitch (+8%, 

p = 0.050, d = 0.671), but the rmANOVA did not reveal any significant changes over the 

five muscle twitches (F = 2.022, p = 0.115), nor did the data exhibit a significant 

monotonically increasing trend (F = 1.128, R2 = 0.022, p = 0.293). The normalized total 

twitch duration was not significantly different than baseline during the first stimulated 

muscle twitch (+14%, p = 0.064), the rmANOVA did not reveal any significant changes 

over the five muscle twitches (F = 1.136, p = 0.355), and the data did not exhibit a 

significant monotonically increasing trend (F = 1.109, R2 = 0.019, p = 0.297). The 
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normalized peak VTI was also not significantly different than baseline during the first 

stimulated muscle twitch (+32%, p = 0.202), the rmANOVA did not reveal any 

significant changes over the five muscle twitches (F = 0.061, p = 0.993), and the data did 

not exhibit a significant monotonically increasing trend (F = 0.211, R2 = 0.004, 

p = 0.648). The normalized peak tissue strain rate was not significantly different than 

baseline during the first stimulated muscle twitch (-3%, p = 0.734), but the rmANOVA 

did reveal significant changes over the five muscle twitches (F = 3.954, p = 0.009, 

𝜂𝑝
2 = 0.305). The normalized peak tissue strain rate significantly increased from the first 

muscle twitch to the fifth muscle twitch (+14%, p = 0.011, d = 1.118), but the values for 

the second (p = 0.999), third (p = 0.316), and fourth (p = 0.257) were not significantly 

different. However, the data for the peak tissue strain rate did not exhibit a significant 

monotonically increasing trend (F = 1.467, R2 = 0.026, p = 0.231). 

For the subset of participants who completed five total rounds of the fatiguing 

EMS protocol (N = 9 subjects), the average waveform features exhibited a similar pattern 

of recovery after subsequent rounds (Figure 2-4). The normalized ankle torque during the 

recovery periods following each round all exhibited a monotonically increasing trend that 

fit a power regression model (R2 = 0.216–0.507, p < 0.010). The normalized peak 

velocity also exhibited this monotonically increasing trend during the recovery periods 

after the first, third, and fourth round (R2 = 0.118–0.143, p < 0.046), but not the second or 

fifth round (R2 = 0.040–0.087, p = 0.068–0.266). The normalized time-to-zero velocity 

only exhibited a monotonically increasing trend that fit a power regression model during 

the recovery periods following the third and fourth rounds (R2 = 0.144–0.172, p < 0.019), 
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but not after the first, second, or fifth rounds (R2 = 0.007–0.092, p = 0.085–0.600). 

During the recovery periods after all five rounds, the data for the normalized total twitch 

duration (R2 = 0.001–0.052, p = 0.119–0.925), peak VTI (R2 = 0.004–0.089, p = 0.069–

0.648), and peak tissue strain rate (R2 = 0.007–0.092, p = 0.085–0.600) did not exhibit 

any significant monotonically increasing trends. 

We did not observe strong evidence that waveform features would substantially 

change after multiple rounds of the fatiguing protocol (Figure 2-4). For example, the 

rmANOVA did not detect significant changes in the average normalized ankle torque 

over the five rounds (F = 1.506, p = 0.238, 𝜂𝑝
2 = 0.231). However, an rmANOVA did 

reveal that the average normalized time-to-zero velocity significantly changed across the 

five rounds (F = 17.461, p < 0.001, 𝜂𝑝
2 = 0.744). Post-hoc comparisons found that the 

average values from the second (p = 0.012, d = 1.310), third (p < 0.001, d = 2.080), 

fourth (p < 0.001, d = 2.402), and fifth rounds (p < 0.001, d = 2.846) were all 

significantly lower than the first round. Similarly, an rmANOVA revealed that the 

average normalized peak VTI significantly changed across the five rounds (F = 3.065, 

p = 0.036, 𝜂𝑝
2 = 0.338), but post-hoc comparison only found that the average values from 

the fifth round were significantly lower than the first round (p = 0.039, d = 1.205). The 

rmANOVA did not detect any significant changes across the five rounds for the average 

normalized peak velocity (F = 0.296, p = 0.877, 𝜂𝑝
2 = 0.056), the average normalized total 

twitch duration (F = 1.202, p = 0.332, 𝜂𝑝
2 = 0.147), or the average normalized peak tissue 

strain rate (F = 1.363, p = 0.272, 𝜂𝑝
2 = 0.163). 
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Table 1. Stepwise linear regression to predict ankle torque. Although we found that features of the velocity 

tissue waveforms could significantly predict the recorded ankle torque, the significant waveform features 

identified by stepwise regression were not consistent across subjects. (VTI: Velocity-Time Integral) 
            

 Subject 1 (R2 = 0.752)  Subject 2 (R2 = 0.849)  Subject 3 (R2 = 0.784) 

Model Terms 
Estimate 

Std 

Error p  Estimate 

Std 

Error p  Estimate 

Std 

Error p 

Intercept 2.807 2.169 0.212  13.331 1.171 < .001  −6.400 3.119 0.052 

Peak Velocity            

Time-to-Zero Velocity 61.29 8.307 < .001         

Total Twitch Duration         6.774 3.205 0.046 

Peak VTI     52.114 4.159 < .001     

Peak Tissue Strain Rate         10.32 1.173 < .001 

            

 Subject 4 (R2 = 0.577)  Subject 5 (R2 = 0.477)  Subject 6 (R2 = 0.749) 

 Estimate 
Std 

Error 
p  Estimate 

Std 

Error 
p  Estimate 

Std 

Error 
p 

Intercept 0.857 0.299 0.008  −35.046 10.616 0.002  −7.097 1.154 < .001 

Peak Velocity     1.351 0.312 < .001     

Time-to-Zero Velocity     356.045 63.822 < .001  76.875 9.506 < .001 

Total Twitch Duration     −13.134 3.739 0.001     

Peak VTI 1.912 0.315 < .001         

Peak Tissue Strain Rate     −8.026 3.427 0.024  2.596 0.266 < .001 

            

 Subject 7 (R2 = 0.666)  Subject 8 (R2 = 0.613)  Subject 9 (R2 = 0.255) 

 
Estimate 

Std 

Error p  Estimate 

Std 

Error p  Estimate 

Std 

Error p 

Intercept 6.193 1.192 < .001  1.232 1.897 0.519  5.08 1.454 < .001 

Peak Velocity         3.654 0.828 < .001 

Time-to-Zero Velocity     30.514 11.823 0.013     

Total Twitch Duration 6.168 0.809 < .001         

Peak VTI     −10.621 2.949 < .001     

Peak Tissue Strain Rate 2.805 0.618 < .001  10.944 1.168 < .001     

 

The stepwise linear regression analysis revealed that features of the velocity tissue 

waveforms could significantly predict the recorded ankle torque for each individual 

subject (Table 1). The fit of the regression models varied between subjects (N = 9 

participants), ranging from R2 = 0.255 to R2 = 0.849 with a mean of R2 = 0.635. We 

observed that the significant waveform features identified by the stepwise regression 

were not consistent across the nine participants. The peak tissue strain rate emerged as a 

significant predictor in five of the participant models, the time-to-zero velocity emerged 

in four of the participant models, the peak VTI and total twitch duration emerged in three 

participant models, and the peak velocity emerged in two participant models. 
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DISCUSSION 

In this study, we examined whether TDI could assess changes in stimulated 

isometric muscle twitches that are related to muscle fatigue following EMS. We extracted 

features from the average medial gastrocnemius tissue velocities and found that the peak 

velocity and time-to-zero velocity during the first stimulated muscle twitch after a 

fatiguing EMS protocol had changed significantly from their pre-fatigue values. We also 

observed that the peak velocity, time-to-zero velocity, and peak tissue strain rate for five 

stimulated muscle twitches after the protocol followed the pattern of fatigue recovery 

exhibited by the isometric ankle torque. We also found that features of the average tissue 

velocity waveforms could significantly predict the ankle torque for each participant using 

stepwise linear regression (Table 1). We interpret these results to suggest that TDI can 

detect changes in muscle tissue during isometric muscle twitch that are related to muscle 

fatigue, fatigue recovery, and the generated joint torque. Thus, Doppler ultrasound 

approaches may have utility for monitoring changes to muscle fatigue during applications 

of EMS and could be considered in the design of future wearable ultrasound feedback 

devices. 

Tissue Velocity Waveform Features Change After Fatiguing Protocol 

In support of our first hypothesis, we found that features of the average tissue 

velocity waveforms during stimulated muscle twitches had significantly changed after the 

fatiguing EMS protocol. We used TDI ultrasound to measure features of the muscle 

tissue velocities, which can indicate muscle activation and release. We anticipated that 

velocity features would change after fatiguing the muscle because prior studies have 
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found that changes in muscle deformation detected via ultrasound are correlated to 

isometric output torques [105], [106]. This is understandable due to the varying number 

of fibers being activated, the nonlinear elastic stretching properties of the tendons in 

series with the contractile muscle elements [40], and the interaction of complex muscle 

geometries [15], [39], [107]. However, we only observed that the normalized peak 

velocity and normalized time-to-zero velocity exhibited any significant change from their 

pre-fatigue value. It may have been that a single round of our fatiguing EMS protocol 

was not sufficient to evoke detectable changes in the other waveform features, but they 

could be detected after experiencing an increased level of muscle fatigue. This may 

explain why subsequent rounds of the protocol exhibited waveform feature values 

drifting farther away from their pre-fatigue values (e.g., the peak tissue strain rate). We 

also observed that the peak velocity, time-to-zero velocity, and the peak tissue strain rate 

over the five stimulated muscle twitches exhibited a pattern of fatigue recovery similar to 

the ankle torque. Although not significant, we noticed that the other waveform features 

exhibited a generally similar pattern of gradual increase following a round of stimulation 

(Figure 2-4). Again, this pattern of fatigue recovery might be more prominent for the 

other waveform features after the muscle reaches a sufficient level of fatigue. For 

example, a pattern of fatigue recovery in the normalized peak VTI might not be fully 

revealed until after four rounds of the fatiguing EMS protocol. Considering that these 

velocity waveform changes manifested across subjects and throughout repeated rounds of 

the EMS protocol, we interpret our findings as compelling evidence that TDI has 

potential to quantify localized changes in muscle fatigue and recovery during EMS 
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applications. 

We observed that the average time-to-zero velocity and peak VTI significantly 

decreased over five rounds of the fatiguing EMS protocol, but we did not detect a similar 

decrease in the average isometric ankle torque. We did expect subsequent applications of 

the fatiguing EMS protocol to elicit a gradual increase in overall muscle fatigue, but this 

was not reflected in the measured ankle torque. This suggests that TDI might have the 

sensitivity to detect quantifiable changes in muscle tissue related to localized muscle 

fatigue that are not as easily detected using a biomechanical assessment of joint torque, 

which provides only a gross measure of neuromuscular system output and contributes 

little insight into fatigue within an individual muscle [108]. Although the average peak 

tissue strain rate appeared to decrease over five rounds of the protocol, this overall 

decrease was not statistically significant. This might be due to fiber heterogeneity or 

boundary conditions affecting the approximated strain [43]. We also observed an 

increased variability in the normalized velocity waveform features compared to their pre-

fatigued values, particularly for the peak VTI and total twitch duration (Figure 2-4). This 

might be due to individual subject differences in response to the EMS protocol. For 

example, some participants may have been more susceptible to muscle potentiation, in 

which a muscle becomes more sensitive to stimulation after a brief, intense activation 

[109], [110]. As potentiation and fatigue are both influenced by prior muscle activity but 

have opposing effects on muscle force production, it can be difficult to quantify either 

process independently and are thus thought to coexist after initiation of contractile 

activity [111], [112]. 
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Tissue Velocity Waveform Features Predict Twitch Torque During Fatigue 

Recovery 

In support of our second hypothesis, we found that features of the average muscle 

tissue velocity waveforms during twitch could predict changes in the isometric ankle 

torque. We were surprised to find that the tissue velocity waveform features identified as 

significant predictors in the regression were not consistent between subjects. We had 

anticipated that the peak tissue strain rate and the peak VTI would emerge as consistent 

predictors, because they result from net cross-sectional expansion (peak tissue strain rate 

being an indicator of the rate of change of muscle thickness robust to any muscle shifts 

due to lever arm movement and the peak VTI being dependent on the total change in 

muscle thickness which would be robust to the synchronicity of muscle fiber 

contractions). The observed between-subjects variability might have been due to 

anatomical and physiological variations such as in muscle fiber composition, activity 

level, resting foot progression angle, muscle thickness, length, stiffness, or motor points. 

We cannot exclude the possibility that our observed relationship between tissue velocities 

and ankle torque are dependent on the specific orientation and location of the transducer 

probe. The gastrocnemius is a pennate muscle and thus the tissue location we were 

measuring was inherently anisotropic. Complicating this further, the pennation angle of 

the muscle fibers changes during contraction (although it is possible that features related 

to the time-duration of muscle contraction may be more robust to variations in probe 

placement). Considering that muscle fiber length may vary with fatigue [113], we are 

encouraged that even our relatively simple measures of tissue velocities were sensitive to 
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the changes after EMS, and future studies should consider methods to overcome this 

between-subjects variability. The strength of this technique is that subject specific 

combinations of tissue velocity waveform features can still be used to accurately predict 

muscle twitch torque during fatigue recovery, despite the varying biological factors or 

experimental conditions such as probe placement. This is important because twitch torque 

has been found to mirror tetanic force fatigue levels during short durations (<5 minutes) 

of fatigue recovery [114], [115]. 

Practical Considerations and Potential Applications 

The primary motivating factor for investigating ultrasound in EMS applications is 

that EMS is generally incompatible with the current gold standard for studying voluntary 

muscle activation, sEMG. This, however, does not limit ultrasound to EMS applications 

only. In fact, velocity and anatomical information provided by ultrasound is independent 

of, and complementary to, the electrophysiology information provided by sEMG, which 

means ultrasound could be used either with or in place of sEMG. Unlike sEMG, 

ultrasound measurements are depth-resolved, and therefore the specific muscle and its 

depth are identifiable. A phased array ultrasound beam can be steered, so the source of 

movement along different directions or depth within the imaging field can be localized. A 

limitation is that measurements are performed within the probe’s field of view (generally 

a plane, or a single scan line), which can make it difficult when stimulating muscle 

groups that are spread farther apart than the field of view, and could possibly require 

multiple probes. Conversely, the data from an sEMG electrode are not depth-resolved, 

which means they cannot differentiate signals from multiple overlying muscles, making it 
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difficult to attribute components to their respective source(s). This is particularly a 

concern in EMS applications because the large stimulus artifacts produced by stimulation 

can severely corrupt the comparatively small signals generated by the muscle. Because 

ultrasound provides detailed physiological information without the same susceptibility to 

EMS artifacts, we believed that it would be an ideal candidate for EMS applications, such 

as hybrid EMS exoskeletons [58], [97], [116]. 

Our results support our overarching hypothesis that Doppler ultrasound imaging is 

sensitive to the mechanical signs of muscle fatigue during EMS. More specifically, our 

results suggest that TDI can detect changes in muscle tissue that are related to muscle 

fatigue, fatigue recovery, and the generated joint torque. The present study examined a 

single muscle undergoing isometric contraction due to EMS. Applications of EMS 

typically include limb movement involving multiple stimulated muscles, and future 

studies should consider the effect of these potential confounding factors on the recorded 

muscle tissue velocities. Future studies should also investigate the feasibility of using 

TDI to monitor changes in muscle fatigue during a fatiguing EMS protocol, instead of 

limiting the analysis to observed changes during recovery periods following an EMS 

protocol. 

The potential for TDI to monitor muscle fatigue during EMS brings about unique 

opportunities in biomechanics, rehabilitation, and sports performance. EMS parameters 

such as timing, duration, and intensity are commonly controlled without any feedback 

from the targeted muscle [105], [117]–[119], though finding real time feedback to close 

the loop for human-robot interaction is an active area of research [116], [120]. By 
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integrating muscle fatigue as feedback, EMS protocols can be better refined to optimize 

the desired stimulation outcomes. This might be particularly useful for stimulating 

muscles effectively over a prolonged period, such as when using a powered exoskeleton 

coupled with functional EMS [121]. By gauging the level of fatigue recovery between 

bouts of EMS, stimulation could be limited to periods when the muscle has recovered 

enough to generate the sufficient torque. Measures of local muscle fatigue might also 

inform modifications to stimulation parameters (i.e., timing and waveforms), which may 

increase their effectiveness at reducing EMS-induced fatigue [10], [80], [81]. 

Desynchronizing stimulation across multiple sites can be used to mitigate EMS-

induced muscle fatigue [11]–[13]; thus there is potential for TDI to inform stimulation 

strategies strategically applied to a set of muscles such that fatigued muscles have 

sufficient time to recover. There is also potential for TDI to optimize the application of 

EMS based on the spatial distribution of activated muscle fibers within a muscle. 

Electrode placement restricts which fibers are activated during EMS, and thus poor 

electrode placement can lead to accelerated fatigue in certain fibers while leaving other 

fibers underutilized [122]. Incorporating TDI to characterize EMS/muscle performance 

might help identify which muscle fibers are activated by certain electrodes to avoid 

redundant or underutilized placement that would over stimulate, over activate, and 

prematurely fatigue these fibers. Additionally, by using multiple stimulation sites across a 

muscle, stimulation protocols could be designed to minimize the demand on the local 

muscle fibers under each electrode while maintaining a net force from the muscle. 

Spatially distributed stimulation protocols might be also used to intermittently excite 
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subsets of fibers, which could mimic the natural rest and recruitment patterns of muscle 

fibers. 

We envision future wearable feedback devices can use ultrasound to monitor 

EMS-induced muscle fatigue in real time. Wearable ultrasound is still an emerging 

technology [48], [98], and we are optimistic that other ultrasound approaches besides TDI 

may have utility to quantify muscle fatigue [58]. Although TDI provides robust and 

detailed velocity information, current implementations of TDI typically have high power 

requirements, impractically large physical forms, extensive computational and memory 

demands, and are thus generally unsuited for wearable applications. Nonetheless, this 

study of TDI to quantify muscle fatigue provides a proof of concept that can inform the 

design of more accessible ultrasound approaches, like continuous wave Doppler imaging 

[123], which may better serve as the foundation for a real-time, wearable ultrasound 

system to monitor muscle fatigue. Continuous wave systems can provide velocity 

estimates from a predefined focal depth. Further, multiple transducers with distinct center 

frequencies can be used in an array with multiple focal depths to gather depth resolved 

velocity information, all significantly reduced memory requirements, power 

consumption, and sample rates. We are particularly encouraged by the development of 

frequency-modulated continuous wave (FMCW) ultrasound techniques based on FMCW 

Doppler radar that might provide low-power, depth-resolved velocity waveforms using a 

single transducer [124], [125]. 

Study Limitations and Future Directions 

The study has some limitations to consider. First, the stimulated muscle twitches 
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were assessed during a two-minute rest period at an interval of 20 seconds. While the 

data collected were sufficient to demonstrate the potential of assessing fatigue after EMS, 

further research is needed to assess how the TDI velocity features may change within 

shorter time windows (i.e., < 20 s) or during longer recovery periods (i.e., > 2 min). 

Second, the biomechanical measures of ankle torque in this study represent a measure of 

the net torque generated at the ankle joint. We stimulated the two heads of gastrocnemius 

to generate this torque, but only collected Doppler ultrasound images for the medial 

gastrocnemius. Further work is needed to decompose the individual muscle contributions 

to the net ankle torque when considering localized measures of muscle fatigue. Third, we 

did not analyze the effect of subject positioning (prone vs seated). However, our analysis 

methods did help to mitigate a potential effect of positioning. Whenever we compared 

values across subjects, we used normalized values so that any observed changes were 

relative to their pre-fatigue values. During the regression analyses, we did not pool the 

subject’s data together and instead calculated an individual regression for each subject, 

which kept any positioning effect consistent for that subject. Fourth, because muscle 

fatigue is a complex, multi-factorial process involving various central and peripheral 

mechanisms [77], there may be additional underlying factors contributing to our observed 

changes in ankle torque [112]. 

Further research should determine if the observed changes in ultrasound imaging 

is consistent across a variety of stimulation patterns and protocols. Another limitation is 

that the TDI method only measures the axial component of tissue velocity (center dotted 

line in Figure 2-1C) while the muscle shortening occurs along the fiber direction. The 
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true shortening velocity is related to the estimated axial velocity by the cosine of the 

angle between the ultrasound beam and the fiber direction. The pennation angle observed 

in ultrasound B-mode images of the medial gastrocnemius muscle at rest provides an 

initial estimate of the fiber direction, however, the pennation angle changes during the 

contraction. While the rate of change of the pennation angle may be small during an 

isometric contraction [126], the relationship between the estimated axial TDI velocity and 

the true shortening velocity is nevertheless complex. Thus, the peak velocity feature 

needs to be interpreted with caution since it is not directly proportional to peak shortening 

velocity. We also note that in our study, we did not find that the observed relationship 

between axial velocity and torque was dependent on the initial pennation angle at rest. 

CONCLUSION 

In conclusion, we found that tissue Doppler ultrasound imaging during stimulated 

isometric muscle twitches after EMS can detect changes in muscle fatigue, fatigue 

recovery, and the generated joint torque. Thus, TDI may have utility to monitor EMS-

induced muscle fatigue. These findings support the potential of using TDI approaches 

with wearable ultrasound to develop a real-time, wearable muscle fatigue monitor 

compatible with EMS. 
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CHAPTER THREE:  ESTIMATION OF JOINT TORQUE AND MUSCLE 

FATIGUE FOR ASSISTIVE TECHNOLOGY APPLICATIONS USING A 

WEARABLE ULTRASOUND SYSTEM 

Joseph A. Majdi1, Parag V. Chitnis1, Siddhartha Sikdar1 

1George Mason University 

Portions of this work were presented at the 2019 and 2020 meetings of the 

Acoustical Society of America, International Symposium on Ultrasound and Tissue 

Characterization, as well as in internal meetings at the NSF Cyberphysical Systems 

group, and the Center for Adaptive Systems of Brain-Body Interaction at George Mason 

University, and was published as a conference paper at RESNA 2020 [123]. 

INTRODUCTION 

A significant challenge in improving the design of assistive technologies for 

rehabilitation of individuals with neuromuscular deficits is the limited ability to robustly 

sense muscle activity and function. For the past 50 years, surface electromyography 

(sEMG) has been the dominant standard for detecting muscle activity for prosthetics 

[127] and is also widely used for rehabilitation and biomechanics research. However, 

sEMG lacks spatial specificity and suffers from poor SNR [28]. Despite these limitations, 

sEMG has been widely used for estimating voluntary muscle force and fatigue [88]. 

However, sEMG is generally incompatible with electrical muscle stimulation (EMS), 

which is often used either as a therapeutic intervention or in conjunction with assistive 
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technologies, as sEMG signals are typically saturated by current injection during 

electrical stimulation. 

Due to the well-documented limitations of sEMG, alternative biosignal sensing 

methods for studying muscle activation have been investigated. Mechanomyography 

(MMG) is a class of mechanical alternatives to sEMG, which record forces and physical 

energy transfer from muscle activation. Several variants exist from measuring muscle 

radial displacement (tensiomyography, TMG) [35] to passively recording soundwaves 

generated by muscle contractions (acoustic myography, AMG) [30], [37]. Because these 

techniques measure mechanical activity (as opposed to electrical activity), they provide a 

meaningful measure of active muscle contractions that is not dependent on ECC [30]. 

Further, they would be significantly less susceptible electrical aberrations induced by 

EMS current injection. While these methods have some advantages over sEMG, they 

suffer from their own limitations, including susceptibility to motion artifacts, and the 

limited sensitivity to deep-seated muscle motion [128]. 

Recently, the use of ultrasound imaging has gathered more attention in research 

for numerous applications to detect and quantify muscle activity. These have included 

estimating muscle force generation using muscle fiber pennation angle, cross sectional 

area, and tissue motion tracking [39]–[44], detecting passive and active muscle activation 

using fast M-mode or TDI approaches [45]–[47], and using ultrasound-derived signals for 

controlling prosthetics [48]–[50] or inform hybrid EMS exoskeleton controllers [58], 

[116], [129]. Our earlier work [65] detailed in Chapter 2 used a commercial ultrasound 

machine to perform tissue Doppler imaging (TDI) to identify signs of muscle fatigue and 
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muscle fatigue recovery. A major challenge with ultrasound systems have been the bulky 

form factor of the transducers and instrumentation, which is a significant limitation to 

deploying in a wearable system during free, unconstrained movement. In this paper, we 

investigated the use of dual-element continuous-wave (CW) Doppler ultrasound systems, 

which can be deployed in a small form factor for wearable use alongside assistive 

devices. A comparison between TDI and CW ultrasound methods can be found below in 

Table 2. A portable CW probe is orders of magnitude cheaper, is portable, requires as 

little as AAA batteries and has vastly reduced memory and hardware requirements. For 

instance, our CW data sampled at 100kHz acquired approximately 67 MB/minute of data 

and could be reduced about five-fold further for audio frequency measurements, 

compared to the TDI data that acquired approximately at 1.6 GB/minute. The latter figure 

does not include the fact that this is post-beamforming, meaning that 32 channels (or 

more for other machines) are acquired at the same rate simultaneously and then delay and 

sum beamformed, which means the analog to digital sampling rate and bus requirements 

are actually 32x higher (and can be even greater for other machines). Both the delay and 

sum beamforming and the higher number of samples overall likewise require more 

calculations to process them. The tradeoff however is that TDI provides a velocity 

estimate at every pixel depth where the CW is sensitive to velocities across a given focal 

depth, which provides localized information but with far less detail than in the TDI case. 

The hardware benefits are clear, but there remains the open question of the effectiveness 

of this technique given its reduced capacity to measure velocity at various depths. To 

demonstrate the value of this method, we investigated its utility in estimating muscle 
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force production and fatigue during electrical stimulation, a situation where conventional 

sEMG cannot be utilized. 

Table 2. TDI Ultrasound vs. CW Ultrasound Comparison 

Design Requirements 
Tissue Doppler Imaging 

(TDI) Ultrasound 

Continuous Wave (CW) 

Ultrasound 

Price $$$ -  $ - ✓ 

Portability No -  Yes - ✓ 

Power High power -  AAA batteries - ✓ 

Sample rate ~40 MHz -  44-100 kHz - ✓ 

Memory requirements ~1.6GB/min -  ~67MB/min or less - ✓ 

Computational 

requirements 
Intense -  Low - ✓ 

Depth sensitivity Detailed - ✓ Limited - ✓- 
Sensitive to muscle force 

and fatigue? 
Yes - ✓ <?> 

 

METHODS 

Experimental Setup 

EMS Plantar Flexion 

Six healthy male subjects were recruited for the experiments under a protocol 

approved by the George Mason University Institutional Review Board. Subjects were 

asked to lie in a prone position, and the isometric plantar flexion torque was measured 

(Figure 3-1) using a Biodex II dynamometer (Biodex Medical Systems, Upton NY) 

upgraded with a Humac interface (CSMi Solutions, Stoughton, MA) interfaced with 

LabView (National Instruments, Austin, TX). Subjects were instrumented with a 

modified 5Mhz BT-200 Hi-Dop vascular continuous wave Doppler ultrasound probe 
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(Bistos, Seongnam-si, SK), placed over the muscle body of the medial head of the 

gastrocnemius. Care was taken to place the probe away from blood vessels so that the 

movement detected by the probe was from muscle/tissue motion alone. The probe was 

also shielded in a grounded aluminum enclosure to minimize electromagnetic 

interference (not shown). Rehastim2 (Hasomed GmbH, Magdeburg, GE) EMS electrodes 

were placed on the proximal part of the medial head and distal part of the lateral head of 

the gastrocnemius in accordance with the Rehastim2 manual. EMS was controlled with a 

custom Matlab/Simulink (MathWorks Inc., Natick, MA) interface. The experimental 

setup and protocol for these experiments were virtually identical to those in Chapter 2, 

except done using a continuous wave probe (which was incapable of depth resolved 

imaging). 

 

 
Figure 3-1. A subject is fitted with a modified portable continuous wave (CW) ultrasound 

probe and stimulation electrodes on a modified commercial Biodex II dynamometer. 
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Knee Extension Tasks 

Because we are unable to test dynamic motion in the plantar flexion setting, we 

decided to test the robustness of the system on the vastus lateralis (Figure 3-2), which is 

commonly used in sEMG research of knee extension because it is relatively isolated and 

provides information about the quadriceps. 2 subjects were set up in the knee 

extension/knee flexion configuration for the Biodex dynamometer with their legs chosen 

at random. The CW probe (inside the shielding box, Figure 3-2) was affixed over the 

vastus lateralis using Velcro straps and a custom 3D printed probe holder. 

  
Figure 3-2. Dynamic knee extensions by passive and voluntary actuation. (a) Subjects are fitted with 

a shielded CW US probe and hooked into a modified Biodex II dynamometer in the knee 

flexion/extension configuration. The subject’s knee joint is then driven by the dynamometer between 

0° and 90° (curved red arrow) in the continuous passive motion (CPM, motor driven) mode, or asked 

to move their leg voluntarily in the same pattern in the isokinetic mode. Isokinetic mode requires the 

user to use their own voluntary muscle contractions to drive movement, but restricts the movement 

speed to a constant value. (b) Twelve seconds of the knee movement pattern used in experiments. 

Knee extension was driven in either fixed velocity CPM (passive, motor driven) or isokinetic 

(voluntary, muscle driven) modes. 

 

Experimental Protocol 

EMS Plantar Flexion 

First, subjects were asked to perform voluntary plantar flexion, and the maximum 

voluntary isometric contraction (MVIC) torque was recorded. We then applied 50 Hz, 

100 µs biphasic current at progressively higher amperage, and the current required to 
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produce approximately 20% of their MVIC was recorded as the stimulation current. A 

stimulation cycle of 1 second duration was designed as follows: The current during the on 

phase was ramped up from zero to maximum over 0.12 s, held at maximum current for 

0.5 s, and then ramped down to zero for 0.12 s, followed by 0.26 s rest, with a total 

stimulation period of 1s. We then stimulated the calf for 60 cycles over a period of 60 

seconds. The peak torque declined significantly to below 50% of the initial value for all 

subjects during this 60-second stimulation, indicating the onset of fatigue. The muscle 

was then allowed to rest for two minutes, and the 60-second stimulation cycles was 

repeated for a total of five trials. This experimental protocol is identical to that in chapter 

2, except audio output from the CW Doppler instrument was recorded continuously 

throughout the entire experiment, and not just during brief periods when twitching the 

muscle.  

Knee Extension Task 

To compare signals generated by voluntary muscle activation and those generated 

from passive deformation, subjects performed knee extensions and run in both machine 

driven continuous passive motion (CPM) mode (machine driven) and isokinetic (same 

force, subject driven). In each configuration, the knee was brought from 0 to 90 degrees 

back to 0 degrees over 4 seconds, three times and the position and audio signal were 

recorded continuously for this experiment. 
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Analysis 

EMS Plantar Flexion 

We used the CW Doppler audio jack signal to estimate the muscle contraction 

velocity normal to the muscle’s line of action (towards and away from the skin). We 

calculated the spectrogram (Figure 3-3) and spectral entropy [130] (not shown) of the 

CW Doppler signal to analyze signal duration at the onset of muscle contraction. As is 

common with CW Doppler machines, our instrument had a built in high-pass clutter filter 

(with a cutoff of approximately 500Hz) to suppress slow tissue motion. This inherently 

creates a nonlinearity, where audio signal represents only movements above a certain 

velocity, based on the Doppler shift frequency and filter cutoff. 

On occasion, multiple activation signals were present (presumably from the two 

heads of the gastrocnemius activating at different recruitment times, or from fibers 

having a variable delay caused by varying fatigue levels)1. In these cases, only the first 

part of the signal was used in the analysis. We first hypothesized that there would be a 

difference in signal duration with muscle fatigue. To test this, we compared the signal 

duration for the first (least fatigued) and 60th stimulation period (most fatigued) using a 

paired t-test. To further quantify the relationship between signal duration and EMS 

induced torque, we calculated the signal duration at the onset of movement and 

performed a simple linear regression between this signal duration and peak plantar 

flexion torque for stimulation cycles 1, 11, 21, 31, 41, 51, and 60 for each of the five 

EMS trials. 

 
1 The published conference paper attributed this to the gastrocnemius and soleus separately contracting. However, due to their 

distinct motor points, this was more likely the two heads of gastrocnemius diverging in their fatigue induced electromechanical delay. 
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We also performed post hoc analysis on existing data to identify any other 

potential signal metrics to measure muscle force and muscle fatigue. Additional metrics 

included image decorrelation, curve fitting to estimate fatiguing time constants, sub-band 

power analysis, and total low frequency (<2kHz) signal power (Figure 3-6). 

Knee extension task 

The raw position signal generated by the Biodex system was first converted to 

knee angle via the CMSi’s manual, and the audio signal synchronized to it. From there, 

the audio signal was analyzed manually. The audio signal was played over headphones 

and qualitatively described to distinguish between signals generated by the dynamometer 

axel striking the hard stops and actual doppler audio signal. The audio signals of both 

mechanical striking and Doppler audio signal were then visually compared with the knee 

angle position to attribute the timing of mechanical striking and times of Doppler signal 

indicating active muscle movement. 
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(a) 

 

(b) 

 

Figure 3-3. Example plantar flexion torque during electrical stimulation (black trace) for the 

first cycle (a) and the 60th cycle (b) overlaid on the corresponding CW Doppler 

spectrograms. It can be seen that for the 60th cycle of stimulation, the torque has decreased 

significantly, and the Doppler spectrogram shows a smaller duration signal. 

 

RESULTS 

EMS Plantar Flexion 

We found that CW Doppler signals at both the onset phase and release phase of 

force, were force/fatigue dependent (Figure 3-4). In general, as the muscles fatigued, the 
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audio signal durations continually shortened during the contraction phase, and tended to 

drop below detectable levels for the release phase indicating very slow movement. 

For the first stimulation period, the contraction signal was on average 

133.5ms ± 36.05ms SD. By the 60th stimulation period, the muscle had fatigued and the 

signal duration dropped to 52.16ms ± 20.24ms. This change was statistically significant 

(p = 0.012, paired 2-tailed t-test). This indicates that the signal duration is correlated with 

peak plantar flexion torque. 
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Figure 3-4. Top: The total power of the CW spectrum from 0 to 2kHz (dB) for one subject. Columns 

represent individual 1sec stimulation periods. Note that the contraction phase becomes thinner and 

the relaxation phase can drop to undetectable levels. Bottom: The normalized torque trace over the 

same time periods. 

We then performed a simple linear regression between signal duration and peak 

plantar flexion torque for each subject. We found that if all EMS trials were included, the 

average R2 value was 0.504 ± 0.159, meaning that 50.4% of the torque variability could 

be explained by the signal duration. It was clear, however, that the initial EMS trial did 
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not follow the same pattern as trials 2-5 (see Figure 3-5 as an example). If trials 2-5 were 

analyzed without trial 1, the average R2 increased to 0.661 ± 0.0957, indicating that 

66.1% of the torque variability could be explained by the signal duration. This could 

indicate that the muscle needed a warm-up period before they start producing more 

consistent results. 

  

Figure 3-5. Left: An example of signal duration vs peak torque for one subject. Note the difference in 

slope between the first ES (ES 1) and the subsequent stimulations (ES 2-5). Right: Doppler signal 

duration with respect to stimulation period for one subject.  

Of the post-hoc analyses we performed on the EMS plantar flexion CW audio 

signal, only signal power analysis revealed any worthwhile connection. Figure 3-6 shows 

the signal power analysis for two subjects. For the first subject (Figure 3-6a and Figure 

3-6b), signal power decreases with decreasing joint torque. However, in another subject 

(Figure 3-6c and Figure 3-6d) the later stimulations in Figure 3-6d, the power of the 

signal increases without a co-occurring increase in force. This is likely due to shifts in the 

muscle fiber orientation or the positioning in the probe. Unlike total signal power, timing 

metrics such as signal duration should in theory be independent of intensity artifacts. 

R2 = 0.776 

R2 = 0.793 
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Figure 3-6. Signal power does not always show a consistent trend with respect to joint torque. (a) and 

(c) show two examples of the measured CW signal power during the initial, force generating phase of 

FES stimulations (red box in (b) and (d)) and the torque generated by those stimulations as the 

muscle fatigues. (b) and (d) show the CW signal power throughout the stimulation period, 

corresponding to (a) and (c) respectively. Each column in (b) and (d) represents a one second 

simulation. Note that in the final stimulations in (d), the signal power increases (white bracket). 

Because peak torque did not increase in this period, the power to torque relationship is no longer 

monotonically increasing (c, red arrow region), and hence this metric alone is an unreliable measure 

for estimating joint torque. 

 

Knee extension task 

For the CPM (machine driven) motions, we observed stark audio signals near the 

ends of the range of motion (0 and 90 degrees). After listening to the audio signal, it was 

clear that this was not related to the Doppler signal associated with passive or active 

(a) (b) 

(c) (d) 

CW Signal Power (a.u.) 

CW Signal Power (a.u.) 



70 

muscle movement, but a telegraphed clanking when the axel of the machine hit its 

rotational hard stops. No observable Doppler signal was otherwise noted for the machine-

driven portion. 

 

  
Figure 3-7. CW Doppler ultrasound signal generated in knee flexion and extension. (a) An example of 

the CW signal recorded by passive (CPM) knee movements controlled by the dynamometer. The 

large bursts of signal (asterisks) are not from the muscle, but from the dynamometer hitting its hard 

stop limits and from the RF shielding enclosure contacting the dynamometer. (b) An example of the 

CW signal recorded from the same subject during voluntary isokinetic knee movement over the 

sawtooth pattern as in (a). Unlike (a), there are distinct CW signals at both the 0 degree and 90 

degree angle inflection points from when the user switches between knee extension and knee flexion. 

Muscle motion is detectable in (b) which can be used to distinguish manually controlled isokinetic (b) 

and continuous passive motion (a) knee flexion and extension. 

Unlike in the CPM mode, there are Doppler audio signals did occur in the 

isokinetic motions at the 0 degree and 90 degree transitions (Figure 3-7), where the 

muscle is motion switches from a knee extension to a knee (flexion). This coincides to 

the time periods where the quadriceps transitions from the active muscle group to the 

antagonist muscle and vice versa. This is consistent with the EMS plantar flexion case, 

where Doppler audio signal can be observed at both the onset of force and at the release. 

 

(a) (b) 

* * * 
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DISCUSSION 

Our results indicate that CW Doppler can be utilized in conjunction with electrical 

stimulation to infer the muscle force production as well as the onset of fatigue. This 

method can overcome a major limitation of sEMG, which cannot be utilized in 

conjunction with EMS. 

CW Doppler can be performed with a dual-element transducer with a small 

footprint, and miniaturized battery-operated electronics, making this technology well-

suited for a wearable application. CW Doppler can be sampled at relatively low sample 

rate (44-100kHz, audio range) and can be analyzed with fast Fourier transform 

algorithms, which makes real-time analysis possible. We found that the duration of the 

CW Doppler signal after a high-pass clutter filter, correlated with peak muscle force, 

throughout five trials of EMS stimulation, fatigue, and recovery. One interpretation of 

our data is that the muscle shortening velocity decreases as the muscle fatigues, and the 

measured signal duration that exceeds the clutter filter cutoff of 500Hz decreases with 

fatigue. 

The use of CW Doppler to measure muscle contraction velocities has a significant 

advantage over conventional ultrasound imaging methods that rely on measurement of 

muscle architecture features such as pennation angle and cross-sectional area. Image-

based measures are highly sensitive to transducer positioning, and out of plane movement 

that is common during muscle contraction. 

Further, if this modality is to be used as a feedback mechanism for a hybrid 

robotics controller, it is crucial that there be no significant signal generated by passively 
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moving muscles as the electric motor leads movement, or at least to have that signal well 

characterized to isolate it from signal from active muscle contractions. For that reason, 

we experimented with the vastus lateralis in both machine driven (CPM) and user driven 

(isokinetic) modes, and confirmed that we did not observe any Doppler signal outside of 

active muscle contraction. 

In this study, we utilized a commercial vascular CW probe to demonstrate the 

feasibility of this approach. The use of a commercial system has limitations. First, this 

system was designed to measure blood flow and hence has a clutter filter designed to 

block signal from low velocity tissue movement. However, the Doppler shift due to 

muscle contractions were sufficiently large to exceed the clutter filter settings. Doppler 

signals for lower velocities, such as those produced during the relaxation phases can 

sometimes fall below the clutter filter cutoff, especially after muscle fatigue. Likewise, 

passive tissue motion in the vastus lateralis was insufficient to create a Doppler signal. 

Additionally, because we are measuring the audio output alone, we lose the phase and 

thus directionality of the movement, and instead are left with only magnitude. In future 

work, we plan to bypass the internal signal processing circuitry and record the in phase 

and quadrature (I/Q) components to both preserve directionality and bypass the clutter 

filter to make slower tissue movements detectable. A second limitation is that CW 

Doppler provides limited information based on the focal depth. We are currently 

investigating the use of frequency-encoded (FMCW based) methods that can enable 

depth-specific velocities without significantly increasing the form factor of the transducer 

and associated instrumentation. Finally, we did experience electromagnetic interference 
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from the electrical stimulation at times, which is the rational for putting the CW probe 

inside a shielded aluminum box. However, electromagnetic interference is generally not 

an issue with properly shielded CW machines, though this particular device seems 

susceptible, possibly because it lacks shielding internally, which we verified by manually 

disassembling and reassembling the probe. 

CONCLUSION 

Continuous wave Doppler ultrasound is portable, low power, and provides real 

time information about muscle activation, fatigue, and recovery that is compatible with 

EMS. This could provide a useful wearable biosignal sensing method for use in 

conjunction with assistive technologies such as hybrid exoskeletons combining EMS and 

actuators, and therapeutic electrical stimulation. This method overcomes many of the 

limitations of other sensing modalities. 
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CHAPTER FOUR:  MULTISCALE MODELING OF MUSCLE ACTIVATION 

FOR ACCURATE ELECTRIC MUSCLE STIMULATION SIMULATION 

We have thus far concentrated on establishing the feasibility to apply two existing 

Doppler ultrasound techniques in novel ways to serve as a new human computer interface 

to estimate EMS induced muscle fatigue and recovery. The following section is dedicated 

to capitalizing on these muscle fatigue estimates to improve muscle modeling for end 

applications like closed loop EMS exercise or hybrid EMS exoskeleton controllers, 

whose performance degrades without accurate EMS muscle fatigue estimates[129] or 

become unstable [131]. 

INTRODUCTION 

Dynamic system models form the foundation of controllers, and therefore better 

muscle modeling will lead to better controller performance. In particular, accurately 

observing and predicting the efficacy of EMS muscle activation is critical to optimizing 

real-time interactions between electrical motors and muscle, such as for hybrid 

EMS/exoskeleton. For such shared controller schemes, the actions of stimulating muscle 

and running electrical motors must be coordinated so that the system generates the 

desired torque in time with the functional task’s cycle. If a system is relatively simple and 

governed by linear ordinary differential equations as is commonly found in engineering 

and robotics, it is possible to incorporate models and inputs (such as electric motors, 

pneumatic pressure, etc.) to control the system with state-space control theory. However, 
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biological systems are often too complicated simple controller schemes and require 

advanced nonlinear modeling to accurately predict their behavior, as it is with the 

performance of muscles undergoing EMS. 

Muscles are highly nonlinear in their input/output characteristics, with time 

varying properties such as mechanical delay [131], potentiation [110], and muscle fatigue 

[75]. We chose to start with the multiscale muscle activation model Carriou 2019 [132] 

for a number of reasons. First, the equations developed for this model are physiologically 

derived and not just curve fit, so that the information they provide can provide reasonable 

physiological insights when making predictions. Further, physiologically derived models 

are more easily modified with additional physiological insights. Because the known 

phenomena are the basis for model terms and interactions, adding or modifying 

interactions is straight forward. For a system whose terms are merely derived from data, 

with no labels for the inner variables, adding an interaction from a known physiological 

interaction becomes almost impossible. If the phenomena of the model are defined, you 

can also make inferences from data that was not necessarily collected, such as tuning the 

initial conditions to match observed data. A physiologically relevant model can help 

identify missing initial conditions or ones that are not easily measured such as the length 

tension curve of pennate fibers, which are difficult to measure experimentally. Second, 

this model utilizes nonlinear viscoelastic properties of muscle and tendon tissue that can 

be overlooked in simpler models. Third, this model takes into account many individual 

muscle fibers of varying fiber types (slow twitch, fast intermediate fibers, fast fatigue 

resistant fibers, and fast twitch fibers) the proportion of which can be adjusted as a 
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variable, which may help explain subject to subject variability. Not only is this more 

physiologically accurate, but it has been shown that Hill-type muscle models are 

improved by taking variable muscle fiber composition and recruitment patterns into 

account [133]. Fourth, this model takes calcium dynamics, which are critical for fast 

muscle fatigue, into account as the basis for generating force on a molecular level [19], 

[77], [112], [134]. For these reasons, we found this model to be a good starting point to 

help examine our data. However, despite the strengths of this model, two key features 

need to be added. This model does not consider fatigue dependent electromechanical 

delay nor muscle pennation angle and therefore we have tried to address these elements 

when applying it to our dataset. 

METHODS 

Model Design 

The models here were implemented in Matlab 2022a using Euler’s method of 

numerical integration (Equation 5) for simplicity. The chosen step size, 𝛥𝑡 = 1𝜇𝑠, is 

three orders of magnitude smaller than the fastest time constant of our calcium dynamics 

models, meaning we can expect reasonably close approximations of the model dynamics, 

at the cost of higher memory requirements and computation time. This fact is critical, 

because the simulation periods are on the order of minutes, or tens to hundreds of 

millions of iterations per fiber, which could lead to significant propagation of 

approximation error, where inaccurate estimates are fed into subsequent steps leading to 

greater error or even instability issues. 

Equation 5. Euler's Method for Estimating Differential Equations 

𝑦(((𝑛 + 1) ∗ Δ𝑡) + 𝑡0) ≅ 𝑦((𝑛 ∗ ∆𝑡) + 𝑡0)  +  𝑦̇((𝑛 ∗ ∆𝑡) + 𝑡0) ∗ ∆𝑡  
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As with any model, approximation error compounds the longer the simulation is 

run. However, because our active stimulation periods are intermittent and theoretically 

should return the muscle to ‘rest’ cyclically, which should serve as a stable/steady state 

baseline. the accumulation of feed forward approximation errors for the fast dynamic 

elements, like Ca2+ dynamics, is mitigated to periods of active stimulation and does not 

compound for long periods. However, this remains an issue for variables whose time 

scale persist beyond a few seconds such as fatigue state. Ultimately, the objective of the 

ultrasound-based fatigue estimation is to use it as a feedback mechanism to correct (or 

affirm) the model estimates if fatigue estimates become excessively inaccurate due to A) 

accumulation of approximation error, B) oversimplification or inaccuracy of the model 

design, or C) imperfect tuning of model parameters. 

Table 3. Calcium Dynamics Parameters 

Parameter (symbol) Value (unit) 

Time delay response (𝜏𝐷) 5 (ms) 

SMU resting Ca2+ concentration (Ur,S) 5 (μmol/L) 

FRMU resting Ca2+ concentration (Ur,FR) 5 (μmol/L) 

FIMU resting Ca2+ concentration (Ur,FI) 7 (μmol/L) 

FFMU resting Ca2+ concentration (Ur,FF) 8 (μmol/L) 

SMU rise slope (𝜏1,𝑆) 4 (ms) 

SMU descent slope (𝜏2,𝑆) 20 (ms) 

SMU amplitude Ca2+ dynamics (RS) 16 (unitless) 

FRMU rise slope (𝜏1,𝐹𝑅) 3 (ms) 

FRMU descent slope (𝜏2,𝐹𝑅) 17 (ms) 

FRMU amplitude Ca2+ dynamics (RFR) 16 (unitless) 

FIMU rise slope (𝜏1,𝐹𝐼) 1.3 (ms) 

FIMU descent slope (𝜏2,𝐹𝐼) 13 (ms) 

FIMU amplitude Ca2+ dynamics (RFI) 14.5 (unitless) 

FFMU rise slope (𝜏1,𝐹𝐹) 1 (ms) 

FFMU descent slope (𝜏2,𝐹𝐹) 8 (ms) 

FFMU amplitude Ca2+ dynamics (RFF) 20.0 (unitless) 
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Figure 4-1. Mechanical rheological model of the muscle. 

 

Table 4. Calcium Activation Thresholds 

Concentration activated threshold Value (unit) 

SMU Ca2+ (Uc,S) 10 (μmol/L) 

FRMU Ca2+ (Uc,FR) 11 (μmol/L) 

FIMU Ca2+ (Uc,FI) 14 (μmol/L) 

FFMU Ca2+ (Uc,FF) 15 (μmol/L) 

The rheological model of the muscle (Figure 4-1) was originally derived in El 

Makssoud et al., 2011 [23] and later modified by Carriou et al., 2019 [132] to account for 

individual motor units (MUs) with varying fiber types with their own calcium dynamics 

and mechanical properties. The rheological model (Equation 6 through Equation 15) 

constants (Table 5) were derived in or found in literature, see [132] for more details. 

Likewise, the physiological constants (Table 3 and Table 4) used in the calcium dynamics 

(Equation 8, Equation 9, Equation 16, Equation 17) and their derivations were also 

identified in [132]. More detailed explanations for many of these equations can also be 

found in [23], [135]. 
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Table 5. Muscle Parameters 

Parameter  Value (unit) 

Maximal Stimulation Intensity (imax)  3.15 (mA) 

Stimulation Intensity (i) 1.73 (mA) 

Elicited Recruitment Parameters (c1, c2, c3) 1.15, 8.12, 0.75 (unitless) 

Optimal Muscle Length for Greatest Contraction Force (Lc0) 0.0918 (m) 

Resting Muscle Length (𝐿𝑐
0) 0.0100 (m) 

Velocity Contribution Parameter (a) 1.0 (unitless) 

Force–Length Parameter (b) 0.54 (unitless) 
2Tendon Viscosity (Λ) 19.0 (kg*s-1) 

Muscle Mass (m) 0.5 (kg) 

Maximal (Whole Muscle) Force (Fmax) 300 (N) 

Maximal (Whole Muscle) Stiffness (kmax) 100,000 (N/m) 

Tendon Stiffness (ks1) 120,000 (N/m) 

 

Equation 6. Strain of the bulk contractile element 

𝜀𝑐̈ =  −
𝛬

𝑚
𝜀𝑐̇ −

𝑘𝑠1

𝑚
𝜀𝑐 +

𝑘𝑠1

𝑚
𝜀𝑐

0 −
2𝐹𝑐

𝑚𝐿𝑐0
 

Equation 7. Force of the elastic element 

𝐹̈𝑒 =  −
𝛬

𝑚
𝐹̇𝑒 −

𝑘𝑠1

𝑚
𝐹𝑒 +

𝛬

𝑚
𝐹̇𝑐 +

𝑘𝑠1

𝑚
𝐹𝑐 

Equation 8. Stiffness for individual motor units 

𝑘̇𝑐,𝑖 = −(𝑢𝑖(𝑡) + 𝑎|𝜀𝑐̇(𝑡)|)𝑘𝑐,𝑖(𝑡) + 𝛼𝑖(𝑡)𝑘𝑚𝑎𝑥,𝑖(𝑡)Π𝑐,𝑖(𝑡)𝑈𝑐,𝑖 

Equation 9. Force for individual motor units 

𝐹̇𝑐,𝑖(𝑡) = −(𝑢𝑖(𝑡) + 𝑎|𝜀𝑐̇(𝑡)|)𝐹𝑐,𝑖(𝑡) + 𝛼𝑖(𝑡)𝐹𝑚𝑎𝑥,𝑖(𝑡)Π𝑐,𝑖(𝑡)𝑈𝑐,𝑖

+ 𝜔(𝐹𝑐,𝑖(𝑡))𝑘𝑐(𝑡)𝐿𝑐0𝜀𝑐̇(𝑡) 

Equation 10. Force correction factor for individual motor units 

𝜔(𝐹𝑐) = {
   1, 𝑖𝑓 𝐹𝑐 > 10−4

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Equation 11. Force for bulk contractile element 

𝐹𝑐 = ∑ 𝐹𝑐,𝑖

𝑁

𝑖=0

 

 
The literature cited use lower case lambda (λ), but to avoid confusion with wavelength, I have changed this to capital lambda (Λ).2  



80 

Equation 12. Stiffness for bulk contractile element 

𝑘𝑐 = ∑ 𝑘𝑐,𝑖

𝑁

𝑖=0

 

Equation 13. Maximum force for individual motor units 

𝐹𝑚𝑎𝑥,𝑖(𝑡) = 𝐹𝑚𝑎𝑥,𝑖𝑓𝑙(𝜀𝑐) 

Equation 14. Maximum stiffness for individual motor units 

𝑘𝑚𝑎𝑥,𝑖(𝑡) = 𝑘𝑚𝑎𝑥,𝑖𝑓𝑙(𝜀𝑐) 

Equation 15. Length-tension factor for motor unit force and stiffness 

𝑓𝑙(𝜀𝑐) = 𝑒−
𝜀𝑐

2

𝑏  

Equation 16. Calcium dynamics for individual motor units 

𝑢𝑖(𝑡) =  {

𝑈𝑟,𝑖                                                                                   𝑖𝑓 𝑡 < 𝜏𝐷

  𝑅𝑖 ∗ (1 − 𝑒
−(𝑡−𝜏𝐷)

𝜏1,𝑖 )

5

∗ 𝑒
−(𝑡−𝜏𝐷)

𝜏2,𝑖 + 𝑈𝑟,𝑖                   𝑖𝑓 𝑡 > 𝜏𝐷   
 

Equation 17. Activation threshold for individual motor units 

𝛼𝑖(𝑡) = {
1     𝑖𝑓    𝑢𝑖(𝑡) ≥ 𝑈𝑐,𝑖

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
S 

Equation 18. Muscle Recruitment Equation for Stimulus Intensity 

𝛼(𝑖) =
𝑐1

1 + e
𝑐2∗(𝑐3−

𝑖
𝑖𝑚𝑎𝑥

)
 

Pennation angle was measured at the start of the experiments, but during Doppler 

measurements, only one scanline could be recorded at a time. Therefore, we added a 

pennation angle approximation from Scott and Winter 1991 [136] to the model (Equation 

19). Given the initial muscle length, 𝐿𝑐
0, optimal muscle length, Lc0, initial pennation 

angle, 𝜑0, the change in muscle length, ΔL(t), the pennation angle, 𝜑(t), can be estimated 

with the following: 

Equation 19. Pennation Angle Estimate 

𝜃(𝑡) =  tan−1
𝐿𝑐

0 sin 𝜑0

𝐿𝑐
0 cos 𝜑0 − 𝛥𝐿(𝑡)
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We estimated the radial muscle velocity by approximating the muscle as a 

cylinder of 2cm radius of 2cm, and length 𝐿, using the strain rate (𝜀̇) integrated from 

Equation 6 to estimate 𝐿̇ and subsequently the instantaneous change in radius. All 

velocity estimates assumed constant volume of the cylinder. All stimulus trains were 

50 Hz unless otherwise stated. To account for the action potential velocity, we added a 

time delay for every fiber assuming equal distribution throughout the diameter of the 

muscle assuming a nerve velocity of 56.5m/s. This delay was incorporated in every 

model unless otherwise stated. 

Variable Stimulation Delay 

Simplified Calcium Inhibition Fatigue Model 

Electromechanical delay is the delay between the electrical activity of a muscle 

and muscle contraction. This is closely related to the stimulation delay, can be viewed as 

the time between an electrical stimulus and muscle activity, which can be measured three 

ways: by the timing of the induced electrical activity (sEMG), by the timing of muscle 

movement (US, possibly MMG or AMG), or by the timing of the force/torque generated 

though these times phenomena do not occur simultaneously [46], [102]. For closed loop 

hybrid motor/EMS controllers, the most relevant of these three measures is the delay to 

force onset as they can become unstable if they do not take time varying EMD into 

account [131]. 

The model in [132] assumes constant electrical delay regardless of previous 

excitation effects (not accounting for either potentiation which would decrease 

stimulation delay or fatigue that would increase stimulation delay, or their mixed effects 
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if both coexist simultaneously[111], [112]). The model stimulation delay (𝜏𝐷) is defined 

by the time between stimulation and the initiation of calcium dynamics, which should 

most closely match with the start of sEMG signal because it reflects the electrical activity 

in the muscle. 

However, any variations in the calcium dynamics should automatically induce a 

fiber-specific stimulation delay in both the muscle force and movement without 

accounting for any other desynchronizing effects mentioned above. This model treats the 

actin/myosin cross bridge formation as a binary event where calcium levels are either 

sufficiently high to create new cross bridges or it is not. If fatigue or at least a component 

of fatigue is due to inhibited calcium release, should in theory automatically increase the 

delay between the neural drive and the generation of muscle force. This is because any 

decrease in ascending slope in the calcium transient will result in longer time to reach the 

fiber-specific critical calcium levels (Uc,i in Equation 17) to induce a contraction within 

the fiber if it reaches it at all. To show that even the most simplistic models of impaired 

calcium dynamics would cause increased EMD in muscle force and movement with all 

other factors remaining the same, we implemented a muscle twitch model with a varying 

the Ca2+ scaling factor (Ri value in Equation 16) with a linear ‘fatigue’ scaling from 0.6 

(reducing the active Ca2+ transient by 40%) to 1.0 (no reduction in Ca2+) in 0.05 (5%) 

increments for 50 scaled slow twitch and 50 scaled fast twitch fibers. 

Fixed and Ramped Intensity Stimulus Trains 

In EMS applications, it is not uncommon to apply stimulus trains with a gradual 

ramp up to maximum intensity to reduce the shock on the muscle. Our experiments in 
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Chapters 2 and 3 for instance used both an up and down slope at the beginning and 

ending of the stimulus train. For this simulation, we used the fiber recruitment model in 

Equation 18, and the standardized parameter fit from [132] for simplicity and proof of 

concept, attempting to activate 20% of the MU at peak, similar to what we used in our 

real-world experiments to examine how changing the recruitment pattern affected the 

muscle dynamics with respect to the fixed intensity stimulus train of equal duration. The 

model muscle was set to be predominantly fast twitch fibers (375 fast twitch/125 slow 

twitch) similar to the distribution found in the gastrocnemius [137]. 

Variable Muscle Composition 

Next, we decided to estimate the effect of muscle fiber composition, which we 

theorized to be behind some of the variability we observed in chapter 2. Here we 

simulated two 500 MU muscles undergoing intermittent, variable intensity stimulus trains 

as we used in our physical experiments. The first muscle was composed of 75% (375) 

fast twitch and 25% (125) slow twitch fibers, which is a typical gastrocnemius fiber 

composition [137]. To contrast this, we also simulated a muscle with an equal split of 

slow (250) and fast (250) twitch fibers. 

RESULTS 

Variable Stimulation Delay 

Simplified Calcium Inhibition Fatigue Model 

As expected, any decrease in calcium dynamics delayed the activation of the 

muscle unit (Figure 4-2). Because the fast twitch and slow twitch fibers had different 

slopes calcium thresholds, the stimulus delay varied by fiber type. We observed that slow 
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twitch fibers would be more susceptible to a depletion of calcium, because the relative 

difference between its resting and activated state is smaller compared to the fast twitch 

fiber. Because we do not observe this in nature, it implies that either the model is 

inaccurate in this regard, or that the fact that slow twitch fibers have a lower metabolic 

demand and thus do not typically experience as much disruption in their calcium 

dynamics for this to be observed in the real world. 

For a comparison with real world data, Figure 4-3 and Figure 4-4 compare the 

predicted values with continuous wave (CW) data from Chapter 3. In Figure 4-3, we can 

see that as fatigue increases in the real world, so too does the delay between stimulation 

and muscle movement. Likewise, in Figure 4-4, we see that we do in fact see shortening 

of muscle movement duration as well. However, this is not an apples-to-apples 

comparison in Figure 4-4 because the top portion compares muscle twitch movement 

duration and the bottom portion is during a stimulus train. Nevertheless, we do see the 

same phenomenon in both cases. Although Figure 4-3 also compares a muscle twitch to a 

stimulus train, it should result in a comparable twitch delay. 
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Figure 4-3. Simplified Calcium Fatigue Model and Mechanical Delay. Top: Simulated twitch velocity 

trace on slow twitch fiber with varying levels of fatigue. Upside down triangle indicates stimulus 

time. Note that the delay between stimulus onset and the start of movement. Bottom: Likewise, with 

increasing muscle fatigue, we observed a delay in the onset of movement in our CW experiments 

(black arrows). Note: Although the top is a twitch and the bottom is a stimulus train, the delay 

between movement onset and stimulus should be comparable. 
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Figure 4-4. Simplified Calcium Fatigue Model and Shorter Duration Movements. Top: Simulated twitch velocity 

trace on slow twitch fiber with varying levels of fatigue. Upside down triangle indicates stimulus time. Note that 

the duration of fast velocity movement gets shorter with more fatigue (black arrows). Bottom: Likewise, with 

increasing muscle fatigue, we observed a reduction in the movement duration in our CW experiments (black 

arrows). Note: this is not a direct comparison, as the top is muscle twitch and the bottom is a stimulus train. 
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Fixed and Ramped Intensity Stimulus Trains 

Ramping the edges of the pulse train creates a nonlinear recruitment pattern, 

especially towards the center of the stimulation intensity range. In Figure 4-5 (top left), 

low stimulus, even as high as 25% of the fully saturated current, only 1.95% MUs are 

recruited, whereas at 75% of the fully saturated current, 57.5% of MUs are activated by 

the stimulation. The nonlinear effect is most pronounced in the ramp up/ramp down 

regions at the start and stop of the pulse train for the middle current intensities, creating a 

beveled effect. This means that edge-case MUs are activated several more times 

compared to the adjoining fibers. 
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Figure 4-5. Motor Unit Activation by Stimulation Current. Motor unit recruitment is nonlinear, meaning the 

periods where current is being ramped up and down, the motor units show a more rounded recruitment pattern. 

In the fixed intensity pulse train, Figure 4-6 (top half), all fibers that will be 

recruited by given stimulus will fire and cease to fire completely in synchrony. 
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Figure 4-6. Fixed Pulse Train Intensity Vs. Varying Pulse Train Intensity. Top Left: The fixed intensity pulse 

train holds onto the desired force until the end of the stimulation period, and holds greater than 50% of it more 

than 200ms after the stimulation has stopped. Top Right: The fixed intensity pulse train velocity trace has a 

jagged area towards the end. Bottom Left: The ramped intensity pulse train releases force well before the fixed 

intensity pulse train. However, it releases more orderly than the fixed pulse train. Bottom Right: The velocity 

trace for the ramped intensity pulse train behaves more like the pulse velocity traces we observed in Chapters 2 

and 3. 

 

Variable Muscle Composition 

The 125 slow/375 fast twitch muscle demonstrated less fused tetanus, which 

resulted in lower overall force produced. 
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Figure 4-7. Mechanical Performance of Simulated Muscle Model with 250 Slow Twitch and 250 Fast Twitch 

Muscle Fibers. Top Left: 1 second simulation of radial velocity trace using muscle model stimulated with a 

shifted, ramped stimulation. Top Right: Simulated time-varying contractile element stiffness overlaid with the 

constant tendon stiffness for the same period. Bottom Left: Simulated force trace for half/half muscle model for 

1 second. Bottom Right: Simulated force trace for half/half muscle model in the subsequent second of 

stimulation. Note that the force lingers from the first stimulation despite the fact that stimulation ended entirely 

at 0.8s. 
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Figure 4-8. Minute changes in the structural characteristics in the 250 slow/250 fast twit fiber model. Left: The 

pennation angle barely changes due to the almost negligible change in contractile element (muscle) length.  

Right: The strain resulting from contraction is almost negligible. Note, however, this was enough to cause a 

radial velocity change in Figure 4-7. 

 

  

Figure 4-9. Mechanical Performance of Simulated Muscle Model with 125 Slow Twitch and 375 Fast Twitch 

Muscle Fibers. Left: 1 second simulation of radial velocity trace using muscle model stimulated with a shifted, 

ramped stimulation. Note that with fewer slow twitch fibers to fuse the twitches, the up and down, the simulated 

velocity whips back forth during stimulation. Right: Simulated force trace for 125 slow/375 fast twitch muscle 

model for 1 second. Note that the less fused tetanus of the fast twitch fibers results in lower overall force than 

compared to the mixed 250 slow/250 fast twitch muscle. 
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DISCUSSION 

General Comments on Muscle Model 

For simplicity, and the fact that we do not possess most of the real-world model 

parameters to properly tune our model, we used primarily parameters used previously in 

[132], which were a combination of real world and literature based measurements. A 

third possibility is to tune the parameters in the model post hoc to match real world data. 

Estimating parameters with these methods is not purely for minimizing the error between 

predicted and experimental values, but this can provide estimates of the actual muscle 

states and variables that are difficult, destructive, or otherwise unmeasurable in a real-

world setting such spring, mass, or viscosity constants of the muscle, resting ionic 

distributions, or relative fast and slow twitch muscle fiber composition. Essentially this is 

running the model in reverse to run a diagnostic estimate of muscle state. For a controller 

scheme, this is a required step, as most muscle state variables must be estimated as the 

controller progresses. Ideally, the estimator could make accurate predictions, but there 

would be a feedback mechanism to improve the system performance when accumulation 

of error or outside perturbation inevitably decrease the accuracy and validity of the model 

parameters. Starting a model with accurate parameters is better for the model, but it will 

end up out of sync with real world values eventually without a corrective feedback 

mechanism [129].  

The estimates of radial muscle velocity are based solely on the assumption of 

being a constant volume, purely elastic cylinder. Although this is a problem, the purely 

elastic assumption is mitigated somewhat by the fact that the muscle strain used to derive 
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the cylinder deformation is derived from more physiologically accurate viscoelastic 

deformation. Additionally, real world muscle more complicated in structure, and pennate 

muscle like the gastrocnemius exhibits a variable gearing ratio [15] which affects how the 

muscle cross-section behaves. Given the fact that we predicted our isometric contraction 

to have minimal strain and pennation angle changes, it is possible that this effect is 

minimal. 

Variable Delay Twitches 

Simplified Calcium Inhibition Fatigue Model 

We observed that slow twitch fibers would be more susceptible to a depletion of 

calcium than the fast twitch fibers, because the relative difference between its resting and 

activated state is smaller compared to the fast twitch fiber. Because we do not observe 

this in nature, it implies that either the model is inaccurate in this regard, or that the slow 

twitch fibers are more resistant to impaired calcium dynamics which is observed in 

muscle fatigue. Further, the alpha activation term defined in Equation 17 and its 

subsequent use in Equation 8 and Equation 9 create a noticeably jagged rise and fall for 

individual twitches due to the binary nature of the thresholding, particularly with respect 

to the simulated radial velocity (see Figure 4-2, bottom row). This is somewhat of an 

inconsistency with prior models who treated the term as a fractional value (considering 

the muscle as one whole unit). By introducing individual motor units, and the authors in 

[132] decided to create a binary threshold at the reported critical calcium values to initiate 

cross-bridge formation in literature. We believe it would be more accurate to model this 
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with a sigmoid or similar function whose transition period occurs around the threshold, 

rather than a binary threshold. 

Fixed and Ramped Stimulus Intensity Trains 

The difference in activation between these two models was striking, though 

perhaps this was more related to the nonlinear activation function than anything else. We 

observed far more activation with the fixed amplitude stimulation trains than we did with 

the variable stimulation trains, though this discrepancy may be reduced if we used a 

higher stimulus intensity. Further, we also saw discontinuity on the release, which we 

believe is related to the difference in slow and fast muscle fibers when released, as they 

all released in unity, unlike the variable amplitude trains. 

Variable Muscle Composition 

Muscle can produce more force the more individual twitches can fuse into a 

tetanic stimulation, so it is unsurprising to see that the unfused 125 slow/375 fast twitch 

muscle produces less force when it shows less tetanus and given that the model assumed 

equal strength between fast and slow twitch fibers. Incorporating more realistic forces for 

the fibers would likely increase the amount of force the muscle can produce. Further, it is 

a known phenomenon that with fatigue and recovery, twitch duration can shorten after 5 

minutes of recovery, making it more difficult to effectively stimulate the muscle to a 

tetanic response [115], so this behavior may have some realistic basis even if it is not in 

the unfatigued context. 
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CONCLUSION 

We have identified several areas of weakness in the original model from [132] 

and attempted to address them by adding a variable nerve conduction velocity delay, 

which ended up smoothing results induced by the model’s assumptions about calcium 

dynamics. We also evaluated the effects of a simplified calcium fatigue model and how 

this would automatically induce stimulation delay, and explored the accuracy of its 

representation of mixed fiber muscles, highlighting the characteristics generated by the 

model. We believe our modifications have increased the model accuracy with relevant 

biological phenomena, which could already predict some real-world situations we 

observed with our experiments in Chapters 2 and 3. 



97 

CHAPTER FIVE:  MAIN FINDINGS AND FUTURE DIRECTIONS 

Summary of Main Findings 

Tissue Doppler Imaging Twitch Recovery Monitor 

Tissue Doppler imaging (TDI) was able to accurately predict electrical muscle 

stimulation (EMS) induced muscle fatigue from EMS induced muscle twitches, but at 

significant cost and lacks portability. Further, stepwise linear regression revealed that 

results were subject specific, which likely means that the underlying tissue in the subjects 

studied varied and thus needs to be taken into account for muscle modeling and hybrid 

EMS controllers. 

Wearable Continuous Wave Force Monitor 

Continuous wave (CW) Doppler can provide a cheap, portable fatigue monitor 

which is primarily sensitive to muscle activity and not passive movements. The current 

CW design lacks directionality and is only sensitive to a limited range of depth. However, 

both of these can be addressed with hardware modifications such as implementing I/Q 

demodulation and making an array of transducers. 

Multiscale Muscle Modeling 

The model as published could provide reasonably accurate estimates of muscle 

activation, but lacked several key features that we tried to incorporate, such as a variable 

action potential propagation delay that we believe has improved the realism of the model. 
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Lessons Learned 

Feasibility Study 

This dissertation was conducted in three stages to create a wearable, noninvasive 

system for monitoring muscle fatigue induced by EMS. The first stage of the study was a 

feasibility study to conclude that there were physical signs of muscle fatigue and that 

Doppler ultrasound techniques could detect them, which we confirmed. In doing so, we 

found that there was a substantial inter-subject variability that we attributed to variations 

in the subjects’ anatomy and physiology. It is possible that this would be less pronounced 

in those suffering from an extended period of paralysis, as their muscle composition 

becomes more uniformly fast twitch fibers. 

As a feasibility study, it was critical to reduce the number of variables and obtain 

the clearest data to establish the fundamentals of the technique. This means that this stage 

was designed to collect the highest quality velocity data (TDI, full depth resolution at the 

sub-mm scale and velocity estimates at every depth with sub-millisecond resolution) and 

mechanical data (commercial dynamometer) in the most controlled environments 

(isometric configuration) and well controlled muscle activation (EMS). We used EMS 

because it activates the same tissue consistently, and because variability would have been 

introduced by inconsistent motor commands if subjects were allowed voluntary control 

their own muscles (mental fatigue, pain avoidance, etc.). Likewise, isometric conditions 

restricted the movement of muscles which helped isolate the effect on the muscle alone, 

removing the complications caused by varying joint angles. This of course may be a 
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critical factor to incorporate into a final design. In this study, the focus was to establish 

the fundamentals of the technique and therefore we restricted it to isometric conditions. 

Portability Study 

Our second study was to address the lack of portability in the feasibility study and 

expanded our experimental conditions into more realistic scenarios. We wanted to know 

if the fundamentals of the TDI technique translated into a portable system. We found that, 

as our CW technique lacked directionality as well as clear depth resolution, not all of the 

same variables could be measured, and therefore we needed a different approach. We 

were fortunate in that the memory and sampling requirements were so much lower for 

this technique that we were able to record for the entire experiment (written directly to 

the hard drive in real time) so we could record for the actual stimulation periods, not just 

intermittently during muscle twitches. This allowed us to develop a duration of 

movement metric that strongly correlated to EMS induced force during induced fatigue. 

Further, we examined what effects voluntary muscle control and free limb movement 

(isokinetic, same velocity regardless of force) had on the CW signal and compared that to 

both our isometric EMS stimulation as well as passive constant velocity movements 

driven by the dynamometer motors alone. In the former case, we observed that muscle 

movement at both the onset and release of contractions generated CW signal, similar to 

the isometric EMS case. In the latter case, we established that we saw minimal if any 

signal generated from passive movements of the dynamometer. This is a crucial finding, 

as a real-world hybrid controller would need to distinguish between passive movements 

generated by the electric motor and the active movements caused by simultaneous muscle 
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contraction. We did not, however, study these two movement mechanisms 

simultaneously, which will need to be addressed in a future study. 

Modeling Study 

Finally, we concluded with a muscle modeling study to compare to our real world 

data in an attempt to A)help explain variations observed in the feasibility study and 

B)improve muscle modeling. The latter is a critical issue, because a model of muscle 

activation is required as a sub-component of any hybrid controller scheme to predict the 

muscle contribution to the hybrid system movement. We observed that varying muscle 

composition would in fact affect the estimated force and velocity traces, which 

reenforced that these models need to be generated on a subject-specific basis, possibly by 

using a systems identification or adaptive filter-based approaches. We also observed that 

reducing calcium levels in the model, which occurs during muscle fatigue, both reduces 

the duration of a muscle twitch and automatically increases the delay between the 

stimulus and the onset of muscle motion. We then used our real-world data from our CW 

experiments which supported these predictions. We also added a more realistic spread in 

the delay between stimulus and individual fiber activations to account for the propagation 

speed of action potentials down motor neurons which we believe improved the model by 

smoothing the output velocity and force values, which were unnaturally un-tetanized in 

the model without this addition. 
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Future Directions 

Voluntary Muscle Control Applications 

Because the target population for this technique is those suffering paralysis, the 

fact that we tested these techniques in able bodied subjects (in isometric conditions) is 

viewed as a drawback of the study. This was done to evaluate the techniques in the most 

ideal conditions (young healthy able-bodied subjects, advanced human dynamometer, 

isometric conditions). However, these techniques have applications beyond the scope of 

paralysis and would be perfectly suited for rehabilitation, sports science, or as a human-

machine interface. 

Other Portable Ultrasound Implementations 

In this work, we reported evaluating two forms of Doppler ultrasound, tissue 

Doppler imaging and continuous wave Doppler ultrasound, though we experimented with 

more in other contexts. Tissue Doppler imaging was selected because of it is well 

established, commercially available, and provides rich depth resolved information, but 

has high computation, memory, cost, and form factor requirements. For these reasons, we 

also explored a simple vascular continuous wave Doppler ultrasound approach. Although 

it does not have the same level of time and spatial resolution, it is cheap, low power, easy 

to process, and portable. If we were to expand this direction further, we could attempt to 

rectify the limitations of CW ultrasound by using a depth resolved CW technique like 

frequency modified continuous wave (FMCW) techniques, like the one developed by 

Kunita et al., [124] previously or standard FMCW radar techniques that require rapid 
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successive chirps. Either way, this would require custom hardware design, unlike 

conventional TDI and CW which are readily available. 

Alternatively, we could develop a multi-depth CW US array using different center 

frequencies for every transducer pair, with IQ for directionality. After all, the TDI 

information we used in chapter 2 only requires three transducer pairs to get all the info 

necessary to perform the average velocity waveform calculations (average overall 

velocity, and the velocity at top and bottom at bottom to calculate strain). 

sEMG 

As mentioned in chapter 4, the stimulus delay between electrical, movement, and 

force can all be different, and are related to muscle fatigue, and that the most important of 

these for a robotic controller is force. Since the other two methods (electrical and 

movement) are compatible with one another, it may be possible to use these two 

techniques together to try to predict the muscle force delay. Unlike model with traditional 

feedback, the information would come before the desired event occurs, which may 

prevent error from occurring outright. Not only that, but we established that the CW 

method is more than enough to detect the onset of muscle activity and that it is 

completely compatible with sEMG. Given this fact, it may be possible to make 

preemptive updates before error has ever occurred. 

Acoustic Myography 

We briefly mentioned acoustic myography (AMG) in the text as an alternative 

method to measure muscle activity. Like ultrasound, it uses acoustic waves. Unlike 

ultrasound, however, the acoustic signal measured is generated by the muscle itself at 
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sub-audible frequencies [30], [37]. Both of these facts are important. Because the 

acoustic signal is intrinsically generated by the muscle itself, it doesn’t require a setup to 

emit acoustic waves thus saving energy power and requiring less electronics. Further, 

ultrasound emitted into the body travels twice as far as the target depth because it must 

penetrate, reflect, and then return, whereas AMG signals only travel one direction, 

reducing attenuation. I should note, however, that the amplitude of ultrasound waves is 

controlled by the user, and therefore can be much higher intensity than that of AMG 

signals. To the second point, the lower frequencies emitted by AMG will allow for 

simultaneous ultrasound/AMG measurements without interfering with one another, 

meaning both can be performed simultaneously to compliment one another, even at the 

same location. This may be useful when trying to differentiate passive movements visible 

to ultrasound from active muscle contractions visible to both ultrasound and AMG. 

Further, both of these signals are compatible with sEMG and all three could be performed 

simultaneously. 

Variations on Stimulation Parameters and Electrode Placement 

On multiple occasions, we mentioned desynchronized multi-site stimulation. This 

is because we believe this has the greatest utility to reduce EMS induced muscle fatigue. 

By allowing different fibers to share the load intermittently, the other fibers are 

guaranteed a small rest period, allowing them to recover and reduce the accumulation of 

phosphates that are related to muscle fatigue [19]. At present, this technique is performed 

blind, so results are likely suboptimal. Plane wave ultrasound imaging would be 

extremely valuable for electrode placement with this technique. Plane wave strain 
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imaging can identify which parts of the muscle are contracting based on which electrode 

is firing, and thus identify any redundant stimulation zones or underutilized tissue, and 

re-place the electrodes accordingly. Because the plain wave imaging only needs to be 

performed during electrode placement, it does not require portability. Further, it may be 

possible to use a less computationally intensive Doppler Ultrasound technique to achieve 

the same results. Likewise, the same techniques could be used to study how muscle 

contracts for custom stimulation waveforms, which could also lead to better fatiguing 

characteristics. 

Improved Modeling and Prediction: 

The simulations we performed in chapter 4 were computationally inefficient, and 

chosen for simplicity and the available data. However, there are more advanced 

techniques such as sigma point Kalman filters (SPKF) which can approximate nonlinear 

model states [23] up to a 2nd order Taylor series expansion, and converge very quickly. 

This does require, however, that the inputs and outputs are time synchronized. Because 

we had poor control of the start of our stimulator, we might benefit from tuning our 

parameters with repetitive simulations to minimize the mean squared error [137]. Both of 

these methods are potentially useful for not only predicting muscle function, but also for 

identifying unobservable system dynamics.  
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APPENDIX 

APPENDIX A: Tissue Doppler Imaging 

Clinical ultrasound (US) Doppler imaging is most commonly used to measure 

blood flow, which is considerably faster than tissue movements. For example, blood 

measurements can be many hundreds of cm/s for certain diseases and stenosis [138], 

whereas the peak twitch velocity-normal to the muscle’s line of action-in Figure 2-3, 

which is representative of our muscle twitch experiments, is only in the range of 3 mm/s. 

Blood Doppler ultrasound processing usually contains a low pass filter (hardware or 

digital) designed to suppress high intensity, slow tissue movements. Tissue Doppler 

imaging (TDI) on the other hand focuses on these relatively slow-moving tissues as the 

quantity being measured. 

In the TDI sections of this work, we used an autocorrelation pulse wave technique 

based on the method found in [103], and the derivation of its signal processing can be 

found in APPENDIX B: TDI Velocity Calculation Derivation. Our TDI measurements 

are performed by pulsing ultrasound waves into the tissue, receiving over an array of 

ultrasound elements, beamforming down to a one-dimensional signal, and comparing 

phase shifts between successive US pulses to estimate muscle velocity at every measured 

pixel depth. Whenever US waveform reaches an interface with a mismatch in acoustic 

impedance, part of the waveform reflects back to the transducer. This means that highly 
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reflective, slow moving tissue (muscle, fat, skin, connective tissue like tendons, etc.) as 

well as relatively less reflective, fast moving blood cells can all contribute to the receive 

signal (Rx(t)). If you wish to focus on muscle, you can adjust probe placement and the 

Doppler gate (the depths of interest) to only record from muscles of interest and to avoid 

blood flow and/or tissues we are not concerned with such as skin and fat layers. 

For our experiments, we assumed the signal came exclusively from muscle 

movement, but there are many complicating factors that could have led to variability in 

the measurements. This could include the accidental inclusion of blood flow, tissue 

moving in and out of the imaging plain, interreference with off axis reflections, 

measurement noise affecting the phase estimates, speckle interference, aliasing of very 

fast signals (which should be minimal given the fast pulse repetition frequency (PRF)), 

frequency/depth dependent attenuation, variable speed of sound throughout the tissue, 

nonlinear acoustical propagation effects, the suboptimal assumption of a narrow band 

transmit signal (Tx(t)), quantization error in the analog to digital sampling, or other 

effects. Each of these sources of variability would affect the received signal and velocity 

estimates. We generally neglected these effects, but is possible that these experiments 

could be improved by taking them into account when feasible. 

APPENDIX B: TDI Velocity Calculation Derivation 

First we consider our transmitted ultrasound pulse waveform signal, Tx(t), to be a 

sine wave with a center frequency, fc, and a real valued envelope, A(t) of the ultrasound 

signal pulse. The center frequency of the transducer used in this work was 6.66 Mhz. 

𝑇𝑥(𝑡)  =  𝐴(𝑡) ∗ 𝑐𝑜𝑠(2𝜋 ∗ 𝑓𝑐 ∗ 𝑡) 
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As the transmitted ultrasound waveform hits reflectors in the medium, time 

delayed versions bounce off and propagate back to the transducer array and are recorded 

digitally. These ‘receive signals’, Rx(t), are time delayed version of transmitted signal 

Tx(t), whose delay, τ, is dependent on the depth of the reflector, D, and the speed of 

sound, C. The calculations all the calculations performed here assume the speed of sound 

to be a constant, uniform 1540 m/s throughout the tissue. For simplicity’s sake, this 

derivation only considers one reflector. In reality, biological tissues contain many 

reflectors and the true reflected signal is in fact the summation of many delayed versions 

of the transmitted signal. 

𝑅𝑥(𝑡)  =  𝐴(𝑡 − 𝜏) ∗ 𝑐𝑜𝑠(2𝜋 ∗ 𝑓𝑐 ∗ (𝑡 −  𝜏)) 

𝜏 =  2 ∗ 𝐷/𝐶 

For the signal acquisition period, we pulse many of these waves in rapid (kHz) 

succession, the frequency of pulse being our pulse repetition frequency or PRF. Each 

return signal is now considered by their own respective timeframe (t) relative to the time 

that each was pulsed so that we can directly compare changes in the reflections as 

changes in the tissue itself. If delay between pulses sufficiently small such that the 

envelopes are essentially the same between two Rx(t) signals, 𝐴(𝑡 −  𝜏2) ~ 𝐴(𝑡 − 𝜏1), 

we can differentiate the position of the reflector on the change in phase instead ΔPhase, 

which we can convert into a change in distance ΔD: 

2𝜋 ∗ 𝑓𝑐 ∗ 𝛥𝜏 =  𝛥𝑃ℎ𝑎𝑠𝑒 

2𝜋 ∗ 𝑓𝑐 ∗  (
2 ∗ 𝛥𝐷

𝐶
)  =  𝛥𝑃ℎ𝑎𝑠𝑒 
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𝛥𝐷  =
𝛥𝑃ℎ𝑎𝑠𝑒 ∗ 𝐶

4𝜋 ∗ 𝑓𝑐
 

To determine the phase change (𝛥𝑃ℎ𝑎𝑠𝑒), use the Hilbert transform to break into 

in-phase (I) and quadrature (Q) components, multiply by the conjugate of the next pulse, 

and transform back into angle: 

𝐼𝑄𝑅𝑥(𝑡)  =  𝐻𝑖𝑙𝑏𝑒𝑟𝑡{𝑅𝑥(𝑡)} 

𝛥𝑃ℎ𝑎𝑠𝑒  =  tan−1(𝐼𝑄𝑅𝑥1(𝑡) ∗ 𝑐𝑜𝑛𝑗[𝐼𝑄𝑅𝑥2(𝑡)]) 

Plug in for 𝛥𝑃ℎ𝑎𝑠𝑒, 

𝛥𝐷  =
𝛥𝑃ℎ𝑎𝑠𝑒 ∗ 𝐶

4𝜋 ∗ 𝑓𝑐
 

As 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑖𝑚𝑒
, divide by the time between pulses to get velocity 

estimate: 

𝑉𝑆𝑎𝑚𝑝𝑙𝑒𝐷𝑒𝑝𝑡ℎ =
𝛥𝐷

𝛥𝑡𝑅𝑥
 or 𝑉𝑆𝑎𝑚𝑝𝑙𝑒𝐷𝑒𝑝𝑡ℎ  =  𝛥𝐷 ∗ 𝑃𝑅𝐹 

Because there is a lot of high frequency noise in this signal, you can add an 

integer multiple delay of 𝑃𝑅𝐹, 𝑛 ∗ 𝑃𝑅𝐹, to serve as a de facto low pass filter. In the case 

of using the PRF alone, set n = 1. With the distance traveled calculated from the change 

in phase and the time between pulses set by the PRF or any added integer multiple, we 

can calculate the velocity estimate at every pixel depth. 

 

𝑉𝑆𝑎𝑚𝑝𝑙𝑒𝐷𝑒𝑝𝑡ℎ  =  
𝛥𝑃ℎ𝑎𝑠𝑒∗𝐶

4𝜋∗𝑓𝑐∗ 𝛥𝑡𝑅𝑥
 or 

𝛥𝑃ℎ𝑎𝑠𝑒∗𝐶∗𝑛∗𝑃𝑅𝐹

4𝜋∗𝑓𝑐
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