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Abstract

DATA-DRIVEN BIOMEDICAL ANALYSIS, MODELLING AND VALIDATION

Qi Xing, PhD

George Mason University, 2019

Dissertation Director: Dr. Qi Wei

Modern medical imaging techniques including Computed Tomography (CT), Magnetic

Resonance Imaging (MRI), Ultrasound (US) and Microscope Imaging provide numerous

images containing sufficient information. However, the clinical information is sealed under

the pixels, textures and voxels and generally is not easy to be accessed. By integrating clin-

ical observations and experiment data, biomedical image analysis and modeling approach

can assist clinical application for disease diagnoses and treatment. The main objective of

this dissertation is to develop quantitative tools that can assist clinicians in the diagnosis

and treatment of patients. I investigate several computational approaches in addressing five

biomedical problems. I make five main contributions through these biomedical problems: 1)

Develop an automatic and objective method to segment extraocular muscles from magnetic

resonance images and measure extraocular muscles deformation from ultrasound images; 2)

Design quantitative method to reconstruct and evaluate 3D human eyeballs; 3) Implement

and validate novel method that combines different similarity measurements to optimally

register volumetric ultrasound image data containing significant and local anatomical dif-

ferences. I apply the method on 3D endovaginal ultrasound data acquired from patients

during the biopsy procedure of the levator ani muscle; 4) Propose automatic heartbeat



detection method to detect the heartbeat rate from body deformation in low resolution

and low frequency video. The method is applied to track the heartbeats of immobilized,

ventrally-positioned zebrafish larvae without direct larva heart observation; 5) Present a

real time haptic spine surgical simulator that will be used to simulate spine surgeries with

the advantages of being interactive, low-cost and representative.
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Chapter 1: Introduction

Image-based biomedical modeling and analysis is a multidisciplinary field, which builds on

top of knowledge in different areas such as biomedical engineering, computer science, and

biology. In the past decades, its techniques and applications have experienced dramati-

cally expansion for solving important clinical problems using medical imaging modalities

including Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound

(US) and Microscope Imaging. In this dissertation, I investigated several computational

approaches in addressing five biomedical applications involving medical imaging. The main

objective is to develop robust, accurate and quantitative tools that can assist clinicians in

the diagnosis and treatment of patients. In the following, I summarize the projects that

have been completed.

• The extraocular muscles (EOMs) implement eye movements. Through MRI, it has

been found that many forms of binocular alignment (strabismus) are associated with

anatomical abnormalities of EOMs [2]. In clinical practice, EOM enlargement is a key

quantity to examine in diagnosing several complex strabismus [3] including thyroid eye

disease [4, 5]. Therefore, how to reliably and efficiently outline the EOM boundaries

from clinical MRI becomes an important practical and research question. Medical

image segmentation is the process of semi-automatically or automatically outlining

the boundaries of structures of interests in two dimensional (2D) or three-dimensional

(3D) image. It is usually the first step in analyzing the anatomical structures from

medical images. I develop a method to automatically segment extraocular muscles

from MR images, which can help ophthamologists in examining abnormalities of the

eye muscles (Chapter 2).
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• Extraocular muscle controls the movement of the eye. Examining the extraocular

muscle mechanics can help us understand the functions of the extraocular muscles in

generating different kinds of eye movement. However, measuring human extraocular

muscle mechanics in vivo is challenging for obvious reasons. I propose to use ocular

ultrasound imaging to quantify extraocular muscle deformation. Ocular ultrasound

is the most common imaging modality used by ophthalmologists to examine ocular

anatomy and diseases. Its interactive and rapid imaging capabilities make it suit-

able to look at eye muscle dynamics. I describe the experimental setup in acquiring

high resolution ultrasound images and eye movement data. I also present the re-

sults on estimating the extraocular muscle motion. The long-term goal is to examine

whether there exists differential movement between the two layers in each rectus mus-

cle. Answer to such question can advance our understanding on the role of the ocular

mechanics in the coordination of eye movement (Chapter 2).

• Medical image reconstruction plays an important role in analyzing 3D anatomical

structures and building models for biomechanical simulation. I develop a method to

reconstruct 3D models of the eyeball from MR images. Several shape descriptors are

extracted from these models (Chapter 3). These shape descriptors could be used to

correlate with vision acuity of the patients and eye rotation.

• Heterogeneity of echo-texture and lack of sharply delineated tissue boundaries in di-

agnostic ultrasound images makes three-dimensional (3D) registration challenging,

especially when the volumes to be registered are considerably locally different. I im-

plement a novel method that combines different similarity measurements to optimally

register volumetric ultrasound image data containing significant and local anatomi-

cal differences. Multiple sub-volumes of interest can be selected as target alignment

regions with confident consistency. A multi-resolution rigid registration is then per-

formed on these sub-volumes associated with different weights in the cost function.

A single region registration is optimized first for a close initial alignment to avoid

convergence to a locally optimal solution. I apply the method on 3D endovaginal
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ultrasound data acquired from patients during the biopsy procedure of the levator

ani muscle. Systematic assessment of the proposed method through cross validation

demonstrated the accuracy and robustness of the method. The algorithm can also be

applied on medical imaging data of other modalities for which the traditional rigid

registration methods would fail (Chapter 4).

• Zebrafish (Danio rerio) is a powerful animal model used in many areas of genetics and

disease research. Despite its advantages for cardiac research, the heartbeat pattern

of zebrafish larvae under different stress conditions is not well documented quantita-

tively. Several effective automated heartbeat detection methods have been developed

to reduce the workload for larva heartbeat analysis. However, most require complex

experimental setups and necessitate direct observation of the larva heart. In this

chapter, I propose the Zebrafish Heart Rate Automatic Method (Z-HRAM), which

detects and tracks the heartbeats of immobilized, ventrally-positioned zebrafish larvae

without direct larva heart observation. Z-HRAM tracks localized larva body defor-

mation that is highly correlated with heart movement. Multi-resolution dense optical

flow-based motion tracking and principal component analysis are used to identify

heartbeats. Here I present results of Z-HRAM on estimating heart rate from video

recordings of seizure-induced larvae, which are of low resolution (1024 x 760) and low

frame rate (3 to 4 fps). Heartbeats detected from Z-HRAM are shown to correlate

reliably with those determined through corresponding electrocardiogram and manual

video inspection (Chapter 5).

• Spine surgeries are high risk operations which require the surgeons to have extensive

experiences. For young surgeons, effective and extensive training is critical. This

paper presents a real time haptic spine surgical simulator that will be used to train

residents, fellows and spine surgeons in a hospital training program. It provides a real-

istic environment for the trainees to practice spine surgeries and has the advantages of

being interactive, low-cost, representative, and repeatable over conventional training
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approaches. Haptic Phantom offers the users force feedback, differentiating the pro-

posed system from other screen-based training systems. Computational efficiency was

achieved by developing advanced graphical rendering methods. The volumetric data

was classified into surface voxel cloud and inner voxel cloud by the adjacency graph

which stored the relationship among voxels. To speed up the collision detection and

real time rendering between the virtual surgical tools and the lumbar model, Octree-

based algorithms and GPU technique were applied. To enhance the physical realism,

three dimensional lumbar vertebrae models were reconstructed from CT images and

associated with non-homogeneous bone density such that the rendered model best

represents the spine anatomy and mechanics (Chapter 6).
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Chapter 2: Extraocular Muscles Segmentation and

Deformation Measurement

The work presented in this chapter has been published in [6, 7].

2.1 Extraocular Muscles Segmentation

2.1.1 Introduction

The extraocular muscles (EOMs) or eye muscles control movement of eye. Through Mag-

netic Resonance Imaging (MRI) studies, it has been found that many vision deficits are

associated with anatomical abnormalities of EOMs [2]. In clinical practice, eye muscle en-

largement is a key quantity to examine in diagnosing several vision disorders [3] and thyroid

eye disease [4, 5]. Therefore, how to reliably and efficiently outline the EOM boundaries

from clinical medical images becomes an important research question. In clinical stud-

ies, ophthalmologists usually segment EOM boundaries manually [2,8,9], which were labor

expensive and may introduce user dependent artifacts.

Several computer-aided semi-automatic [10–12] and automatic segmentation [13, 14]

methods have been developed. They provided an more efficient quantitative analysis of

EOM anatomy. However, all of these methods used image pixels as the underlying rep-

resentation primitive. It is known that pixels are not the most natural representation of

visual scenes, since they do not take into account the local patterns among the neighboring

pixels and are subjected to noise. It would be more natural and more efficient to process the

image with perceptually meaningful patches that contains many pixels which share similar

features.
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I propose a fully automatic eye muscle segmentation method based on superpixel, re-

gion adjacency graph and Normalized Cut while integrating the prior information of shapes.

Rather than using the pixel-level image processing techniques, the approach builds upon

local feature of the extraocular muscles. I consider small image patches obtained from

superpixel over-segmentation [15–18] as the basic unit of any further image processing pro-

cedures, such as filtering, detection and segmentation. I show that by building region

adjacency graph of the superpixels, I can develop a robust method to outline the eye socket

boundary and the EOMs within. The performance of the proposed automatic segmentation

method was evaluated by comparing the proposed results to manual segmentation which

showed high accuracy.

2.1.2 Related Work

Firbank et al. [11] have shown that it is feasible to segment the EOMs using the active

contours. An energy function was minimized and updated for an outline at each iteration.

Computed boundary in one slice can be used to search the next image in spatial dimen-

sions. However, this approach is sensitive to the initial boundary, since it can be easily

trapped in the local minima [19]. The accuracy is influenced by the convergence criteria

— higher accuracy requires tighter convergence criteria and longer computation time [20].

Souza et al. proposed a mathematical morphology method to semi-automatically segment

EOMs [21, 22]. They performed an iterative grayscale closing operations to segment the

orbital wall which was then used as the region of interest. The EOMs were outlined in the

region of interest through Laplacian of Gaussian detector and opening operations. How-

ever, the size of flat disk used for the morphology operation was fixed and only worked

on pixel level. The number of iterations had to be carefully supervised. A more recent

semi-automatic approach deformed 3D geometric template models of the EOMs to the MR

images of individual patients [23]. Image features of the extraocular muscles were detected

and filtered to guide fitting of the generic anatomical template. However, the template

model has to be built by considering the prior knowledge of topology of the EOMs. In
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addition, a global registration between the image sequence and the template model had to

be performed at the beginning. To overcome the limitations of existing approaches on EOM

segmentation, I develop a novel method to automatically segment the muscle boundaries

through superpixel, region adjacency graph and Normalized Cut scheme. The proposed

method doesn’t require interactively initialize an outline.

2.1.3 Method

Superpixel Over-segmentation

The image segmentation algorithm Superpixel [16] groups pixels with coherent intensities

and spatial locations into patches of pixels. These superpixels provide a high level repre-

sentation of the original image which can be used for further processing. The geometric

shapes of superpixels are not restricted to rectangular. Such flexibility enables representa-

tion of features more naturally by maintaining the boundaries of the objects in the image.

Accurate segmentation can then be performed by merging the local superpixels which have

similar features.

I applied the k-means algorithm to group nearby pixels into superpixels in uniform

sizes [15]. Unlike other superpixellization methods [24, 25], the k-means method produces

a more regularized grid of superpixels, which is important for building the region adjacency

graph. Fig. 2.1(a) shows a T-1 weighted quasi-coronal MRI image perpendicular to the long

axis of the orbit with 256 micron pixels and 2 mm plane thickness. Fig. 2.1(b) illustrates

the result of the superpixel over-segmentation. The boundaries of the superpixels preserve

the true structure boundaries. More importantly, the shape and area characteristics of the

EOMs and the eye socket are relatively consistent [12]. As the algorithm restricts, the

number of pixels in each superpixel is nearly constant across the image.
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Figure 2.1: EOM anatomy in MR imaging and superpixel. (a) A representative coronal MRI
image of the eyeball and EOMs; (b) Labeled ocular structures to segment, including orbital
wall (red), superior rectus muscle (orange), lateral rectus muscle (sky blue), inferior rectus
muscle (bright yellow), medial rectus muscle (pink), optic nerve (purple); (c) Superpixel
over-segmentation; (d) Manually segmented structured overlaid on the superpixels.

Figure 2.2: Region adjacency graph build from superpixels.
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Region Adjacency Graph Construction

Human visual perception is good at recognizing individual objects even with varying inten-

sities or textures. As an algorithm with no priors, superpixel segmentation algorithms [15,

16, 26, 27] have the tendency to over-segment the image (Fig. 2.1(c)(d)). Region adjacency

graph (RAG) is a data structure common for many segmentation algorithms [28]. I used

RAG to specify spatial connection of neighboring superpixels. Each superpixel was defined

as a node in a graph (Fig. 2.2). Each superpixel was connected through the edges to all

its neighbors. The RAG was used to merge adjacent regions provided that these regions

have similar intensity distributions. Denote ni to be a node in RAG with mean inten-

sity Ii and nj to be one of its neighbors. The edge weight between ni and nj is defined

as wij = exp
(−‖Ii−Ij‖2

σ2

)
, where σ2 is overall image variance. wij measures the intensity

similarity between ni and nj .

Normalized Cuts Segmentation

Superpixel segmentation is a bottom-up approach as it merges individual pixels together.

Once I have the superpixels represented by the RAG, I applied the Normalized Cuts algo-

rithm (Ncut) [29], a top-down approach to partition the graph recursively until finding the

ocular structures. Applying the Normalized Cuts on superpixels other than pixels is more

robust to image noise. In addition, it has an obvious advantage of being computationally

efficient, as the size of the affinity matrix and the complexity of the RAG employed for

image representation are significantly reduced.

In each division, the Ncut algorithm optimally divides one region into two subregions

N1 and N2 by removing edges connecting them in RAG:

Ncut(N1, N2) =
cut(N1, N2)

assoc(N1, N)
+

cut(N1, N2)

assoc(N2, N)
. (2.1)

cut(N1, N2) =
∑

ni∈N1&nj∈N2
wij computes the degree of dissimilarity between N1 and
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N2 as summed weight of all the removed edges. assoc(N1, N) defines the total edge weight

from nodes in N1 to all nodes in the current region.

Figure 2.3: Normalized Cuts segmentation produced regions labeled in different gray scales.

Fig. 2.3 shows the segmentation results after applying Normalized Cuts. The final

nodes after Normalized Cuts contain many superpixels and are colored in grayscale. The

Normalized Cuts segmentation can successfully highlight some of the ocular structures such

as the superior rectus muscle, the oblique rectus muscle and the optic nerve. However,

the lateral and medial rectus muscles had incomplete boundaries and their boundaries are

connected with the orbital wall, making them difficult to segment. Further automatic

operations are needed to solve discontinuity issues and label each structure.

Orbital Wall and Extraocular Muscle Segmentation

Segmenting the orbital wall was studied previously. Souza et al. [12] applied an iterative

grayscale mathematical morphology operation to segment the orbits. But their method

required the user to specify a flat disk template and number of recursive iterations of

erosions. Firbank et al. [11] manually outlined the boundary around the eye socket. I

proposed an automatic method to extract the orbital wall with shape prior knowledge. The

Laplacian of the Gaussian [30] and connected components labeling methods are applied to

detect the connected boundaries of the orbital wall, rectus muscles and optic nerve from
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the segmented Normalized Cuts image shown in Fig. 2.4(a).

To extract the orbital wall, I considered the prior knowledge that the eye socket was

always located near the image center. The center of each region produced by Normalized

Cuts was calculated and shown in Fig. 2.4(b). The centers of the optic nerve and the orbital

wall were the two closest centers near the image center. Using the k-nearest algorithm, the

regions of the optic nerve and the orbital wall can be identified from the boundary map.

Any region outside the orbital wall were removed (Fig. 2.4(c)). Two of the closed boundaries

inside the orbital wall were identified as the superior and inferior rectus muscles (Fig. 2.4(c)).

To segment the lateral rectus muscle and medial rectus muscle with incomplete boundaries,

the convex hull around the orbital wall was calculated and shown as the red closed curve in

Fig. 2.4(d). The generated closed orbital wall completed the initial discontinuous boundaries

of the lateral and medial rectus muscles which are in contact with the orbital wall. The

convex hull served as the region of interests and reserves the natural boundary of the eye

socket in the original image (Fig. 2.4(e)) and the superpxiel image (Fig. 2.4(f)). Finally,

image region and hole filling algorithms were used to complete the EOM segmentation

(Fig. 2.5(a)). Fig. 2.5(b) shows the segmented boundaries overlaid with the MRI and

superpixel images.

2.1.4 Experiments and Results

Materials

The T1-weighted MRI images of both eyes were acquired from 5 health subjects and pro-

vided by Dr. Joseph Demer at UCLA. Eight coronal images at the slice thickness of 2mm

for each eye were segmented. All images were digitized with 256×256 pixels and 16 bits

gray-level of resolution at voxel size of 0.3mm×0.3mm ×2.0mm. I asked two operators

to independently and manually trace the ocular structure boundaries, which were used as

ground truth for accuracy assessment.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Region of interest extraction. (a) Initial boundaries after Ncuts based on
Fig. 2.3; (b) Center(*) of each boundary (c) Finding optical never and orbit regions using
k-mean cluster; (d) Orbit and EOMs boundaries identified using convex hull; (e) Region of
interest in the original image; (f) Region of interest in the superpixel image
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(a) (b)

Figure 2.5: EOM segmentation. (a) Segmented extraocular muscles and optic nerve; (b)
Superpixels mapped with the orbital wall and the segmented ocular structures.

Figure 2.6: The shape error between the manually segmented boundaries and the superpixel
over-segmented boundaries decreases as the number of superpixels n increases for orbit,
superior rectus(SR), inferior rectus(IR), medial rectus(MR), lateral rectus(LR) and all four
rectus(All) muscles
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Shape Error Analysis

One critical issue is to determine the number of superpixels n when applying the k-means al-

gorithm. If there are too few superpixels, I may miss out important structures. On the other

hand, if there are too many, I lose the superpixel’s advantage of being representative, robust

and efficient. In order to determine an appropriate n, parameter learning was performed by

analyzing the influence of n on the segmentation accuracy. I first manually segmented one

set of MRI images by tracing the boundaries of the ocular structures. I applied superpixel

over-segmentation on the same set of images while varying 200 < n < 2600. For each n, I

overlapped the manually traced boundaries to the superpixel image (Fig. 2.1(c)(d)). The

shape error between the manual and the superpixel segmentations was computed using the

boundary-based measurement [16] to quantify how close the superpixel boundaries are to

the manual segmentation (approximating ground truth). The shape error was calculated

as the mean absolute distance between the superpixel boundaries and the ground truth

boundaries. Fig. 2.6 plots the shape error as a function of n for different ocular structures.

Unsurprisingly, as the number of superpixels increases, the error drops monotonically to zero

when each pixel becomes one superpixel. According to “elbow selection criterion” [31, 32],

n = 1800 was chosen as the number of superpixels for the MRI dataset in subsequent

operations.

Performance Evaluation

Area-based metric [12] and volume-based metric [10, 11] are commonly used to evaluate

the accuracy of image segmentation. One drawback is that these two metrics do not con-

sider the overlap between ground truth and computer generated segmentation results. I

decided to use the region-based metrics to assess the proposed approach: Variation of In-

formation (VI) [33], Probabilistic Rand Index (RI) [34] and Segmentation Covering Criteria

(Covering) [35].
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Variation of Information The Variation of Information metric was introduced for the

purpose of clustering comparison [33]. It measures the distance between two segmentations

in terms of their average conditional entropy defined as

V I(S, S′) = H(S) +H(S)− 2I(S, S′), (2.2)

where H and I represent the entropies and mutual information between two clusters of

data S and S′.

Rand Index Rand Index [34] was first proposed for general clustering evaluation. It

operates by comparing the compatibility of assignments between pairs of elements in the

clusters. The Rand Index between the automatical segmentation and the manual segmenta-

tion X and G is given by summing the number of pairs of pixels that have the same label in

X
⋃
G and those with different labels in both segmentations, divided by the total number

of pairs of pixels.

Segmentation Covering I define the covering of segmentation S by segmentation S′ as

C(S′ → S) = 1/N ∗
∑
R∈S
|R| ∗maxR′∈S′O(R,R′), (2.3)

where N is the total number of pixels in the image and O(R,R′) = |R∩R′|
|R∪R′| is the overlap

between two regions R and R′ [35].

Table 2.1 summarized evaluation results using the region-based metrics. The IR, LR,

MR and SR muscles of both left and right eyes were analyzed. I computed two scores

for the Segmentation Covering for EOMs, which were segmentations at a optimal data set

scale(ODS) and a optimal image sacle(OIS). I also examined the Rand Index and Variation

of Information quantities compared to the manual segmentation. Lower value of Variation of

Information metric indicates greater similarity. The average Variation of Information value
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Table 2.1: Computational time (in seconds) of applying three col-
lision detection methods

VI RI Covering
ODS OIS ODS OIS ODS OIS

Left

IR 1.25 1.13 0.78 0.81 0.75 0.78
LR 1.47 1.25 0.81 0.84 0.78 0.82
MR 1.45 1.35 0.75 0.78 0.72 0.79
SR 1.86 1.65 0.82 0.83 0.81 0.85

Right

IR 1.75 1.67 0.81 0.84 0.71 0.81
LR 1.65 1.47 0.85 0.86 0.78 0.83
MR 1.87 1.58 0.84 0.87 0.73 0.78
SR 1.47 1.25 0.79 0.82 0.76 0.84

is 1.51 which outperforms other image segmentation outcomes [36]. Rand Index metric is

in the range [0 1]. Higher value indicates greater similarity between two segmentations. For

different EOMs, The average value for Rand Index metric is greater than 0.82 which shows

the excellent performance of the proposed algorithm. The standard deviation of Rand Index

is about 0.03 demonstrating that the proposed method can generate consistent results for

four different EOMs. With respect to Segmentation Covering, I compute the normalized

overlap score in range [0 1]. The larger the value, the more accurate the algorithm. The

average value for different EOMs is 0.78, which is consistent to Rand Index result. In

summary, as Table 2.1 shows, the proposed automatic segmentation algorithm was able to

segment boundaries fairly close to the manual segmented boundaries which illustrates the

accuracy and effectiveness of the proposed approach.

2.1.5 Conclusion and Future Work

Extraocular muscles segmentation from MRI is an important and challenging task for clini-

cal diagnosis. This study has demonstrated an automatic method using Superpixel, Region

Adjacency Graph and Normalized Cuts. The results were compared to manual segmen-

tations. Region-based segmentation evaluation metrics showed that the proposed method

was able to segment boundaries fairly accurately.
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Normalized Cuts is most time consuming process, I would like to improve the the effi-

ciency of segmentation on superpixels using Normalized Cuts by using GPU to accelerate the

Normalized Cuts. Alternatively, I could employ other more efficient graph cut algorithms

to segmentation the images. To improve the reliability for the optic nerve identification, I

could consider the shape prior of the optic nerve and locate it by using circle fitting method

on the segmented shapes. The method could be applied to automatically reconstruct 3D

patient-specific EOM models which will be used in clinical diagnosis and surgical planning.
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2.2 Extraocular Muscles Deformation Measurement

2.2.1 Introduction

Examining the extraocular muscle mechanics can help us understand the functions of the

extraocular muscles in generating different kinds of eye movement. However, measuring

human extraocular muscle mechanics in vivo is challenging for obvious reasons. Medical

imaging provides a non-invasive approach to study extraocular muscle kinematics during

eye movement. Previously tagged MRI was used to track motion of the horizontal rectus

muscles during smooth pursuit eye movement [37–39]. I propose to use ultrasound imaging

as an alternative modality to quantify extraocular muscle deformation. Ocular ultrasound

is the most common imaging modality used by ophthalmologists to examine ocular anatomy

and diseases. Its interactive and rapid imaging capabilities make it suitable to look at eye

muscle dynamics. I design and develop dynamic extraocular muscle analysis framework in

acquiring high resolution ultrasound images and eye movement data. I also present results

on estimating the extraocular muscle motion. The long term goal is to examine whether

there exists differential movement between the two layers in each rectus muscle [40]. Answer

to such question can advance our understanding on the role of the ocular mechanics in the

coordination of eye movement.

2.2.2 Material and Method

Ultrasound images of the eye during smooth pursuit eye movement were collected together

with eye movement data from an eye tracker. The data acquisition procedure was reviewed

and approved by the institutional review board (IRB) of George Mason University. Ultra-

sound images were then processed offline to calculate the extraocular muscle deformation.
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(a) (b)

(c) (d)

Figure 2.7: System setup and configuration. (a) Setup for a subject to perform head-fixed,
visually-guided smooth pursuit eye movement; (b) The ultrasound probe was clamped for
acquiring stable images; (c) The ultrasound imaging system used to collect data; (d) Double
cabled keyboard to synchronize the ultrasound system and the eye tracker

The subject was asked to sit up right on a chair with the head fixed by chinrest and

forehead support (Fig. 2.7(a)). The subject was then asked to use one eye to track a moving

target on a screen. A green circle stimulus with horizontal movement amplitude of 40 de-

grees in 2 seconds was presented on a black background to guide sinusoidal smooth pursuit

eye movement (Fig. 2.7(a)). Presentation system (Neurobehavioral Systems Inc.) was used

to display the stimulus on the monitor with resolution 1024 x 768 and frequency 75 Hz.

An eye tracking system (Arrington Research) was used to track the eye position at 220 Hz

(Fig. 2.7(b)). The other eye was closed with an ultrasound probe placed gently against the
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front of the eye. B-mode ultrasound images (Aixplorer, Supersonic Imagine) were acquired

during eye movement at 60 Hz (Fig. 2.7(c)). The eye tracking system and the ultrasound

imaging system were synchronized through a keyboard trigger setup (Fig. 2.7(d)). In this

pilot study, I examined the lateral rectus muscle deformation during a 10 second smooth

pursuit eye movement guided by the sinusoidal visual stimulus. In order to identify local

features and estimate muscle deformation, the SIFT algorithm was used to detect the corre-

spondent local features [41]. The SIFT descriptor detects points of interests with invariance

to scale, rotation and translation. The correspondences of paired features were determined

by comparing the distance between the two paired descriptors. Those features that can be

tracked continuously in most of the frames were identified manually for further analysis.

Automatic feature selection approaches are being researched.

2.2.3 Result

Fig. 2.8 shows the representative B-model ultrasound images (pixel resolution of 0.53 mm)

in different gazes. The EOM image (Fig. 2.8(d)) is extracted from whole image (Fig. 2.8(b))

as region of interest (ROI) for post-processing. Fig. 2.9 shows ultrasound images in ROI

at multiple different eye positions. Contraction and elongation of the lateral rectus muscle

were clearly seen. The SIFT features detected in yellow. One of the corresponding features

detected in the continous time frame was overdisplaid in green which showed local muscle

motion to the up right direction along the muscle long axis. A displacement vector can be

determined from the center locations of this feature in mutiple successive frames. Given the

frequency of the ultrasound image acquisition, muscle velocity at this local feature can be

computed. sinusoidal smooth pursuit eye movemen Fig. 2.10 demonstrated muscle velocity

(green) at detected feature (green in Fig. 2.9). The stimulus (red) did a sinusoidal smooth

pursuit movement in horizontal direction in period of 2s. The eyeball velocity (blue) is

tracked and calculated through eye tracking. The data showed that at this specific location

the muscle deformed at a lower velocity than the eyeball velocity, consistent with previous

studies using dynamic MRI which demonstrated the nonuniform contraction of skeletal
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muscles [42].

(a) (b) (c)

(d)

Figure 2.8: Ultrasound image of the eyeball and lateral rectus muscle different gazes. The
ROI of lateral rectus muscle (d) is extracted from whole image (b). Lateral rectus muscle
moves to control horizontal eyeball movement from left (a) to right (c)

2.2.4 Conclusion and Future Work

The analysis demonstrated the feasibility of using ultrasound imaging to study the extraoc-

ular muscle deformation in vivo. One lesson I learned is the sensitivity of the detectable

features to the imaging parameters and the imaging plane location which need to be system-

atically examined. To improve the accuracy and robust, I need to locate a optimal imaging

plane during the data collection, and thus the best feature could be easily identified and
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tracked. Moreover, I will develop mesh-based deformation tracking algorithm to quantify

muscle deformation at various locations. I would like to collect more data from normal

subjects in different eye motion pattern to analyze the two layers biomechanical functions

for each extraocular muscle.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Ultrasound image of the lateral rectus muscle in multiple frames. Left - raw
image; Right - motion tracking through SIFT feature, One of the corresponding features
detected in the continous time frame was overdisplaid in green which showed local muscle
motion to the up right direction along the muscle long axis
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(a) (b) (c)

(a)

(b)

(c)

Figure 2.10: Preliminary results on the estimated muscle velocity by tracking one feature
point. The red curve was the sinusoidal smooth pursuit stimulus. The blue dots were the
tracked eye velocities. The green dots were the estimated muscle velocity in every frame
and the green curve was the fitted polynomial curve. Within 2s period, the velocity lateral
rectus muscle initialized with 0 mm/s at gaze direction (a), reached maximum speed at
gaze position (b), then reduced to 0 mm/s at gaze position (c). The large discrepancy at
the beginning of the movement was because the first second of images were missing.
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Chapter 3: Human Eyeball Model Reconstruction and

Quantitative Analysis

The work presented in this chapter has been published in [43].

3.1 Introduction

Eyeball size and geometric features provide valuable information on certain type of vision

disorders. For instance, positive correlation between the axial length of the eyeball and the

degree of myopia has been found through quantitative analysis [44, 45]. Various eyeball

geometric characteristics have been represented by different methods in both two dimensions

(2D) [46–48] and more recently in three dimensions (3D) [49–51]. Previous analysis

required manual effort on image processing and model reconstruction, which were labor

expensive and may introduce user dependent artifacts. In addition, there are many other

clinically important questions regarding the eyeball surface features that have not been

investigated, such as the statistical variations of the eye shape of a large population and the

possible gaze-dependent eye shape changes of normal subjects. These questions demand

accurate, robust and efficient computational algorithms to build 3D models from medical

images.

To address the limitation of existing approaches that measure the geometric character-

istics of eyeball, I develop a new method to reconstruct detailed 3D models of the eyeballs

from T2-weighted MR images. The goal is that this automatic modeling framework can be

used on analyzing large datasets and generalized to data with different kinds of pathologies.

The generated models can help to understand scientific questions such as whether eyeball

deforms as a function of gaze and assist clinicians for diagnosis.

Parametric geometric representation is used, which has the advantage of continuity and
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smoothness. I propose to characterize eyeball shape by ten characteristic metrics. The

reconstruction approach and quantitative methods will be useful for eye disease diagnosis

benefiting by the accurate eyeball shape representation and comprehensive description by

the ten metrics.

3.2 Related Work

Previous studies have used MRI to quantify the size and shape of eyeball. Curvatures of

the retinal surfaces were analyzed, and 3D eyeball models were built [50, 51]. Firbank et

al. [11] showed the feasibility to segment EOMs using the active contours. However, this

approach is sensitive to the boundary initialization, since it can be easily trapped in local

minima [19]. In addition, the accuracy is influenced by the convergence criteria — higher

accuracy requires tighter convergence criteria and longer computation time [20]. Souza et al.

proposed a mathematical morphology method to semi-automatically segment EOMs [12,22].

They performed an iterative grayscale closing operations to segment the orbital wall which

was then used as the region of interest. The EOMs were outlined in the region of interest

through Laplacian or Gaussian detector and opening operations. However, the size of

flat disk used for the morphology operation was fixed and only worked on the pixel level.

The number of iterations had to be carefully supervised. A more recent semi-automatic

approach deformed 3D geometric template models of the EOMs to the MRI images of

individual patients [52]. Image features of the EOMs were detected and filtered to guide

fitting of the generic anatomical template. However, the template model has to be built

by considering anatomical characteristics of the EOMs. In addition, a global registration

between the image sequence and the template model had to be performed at the beginning.

3.3 Method

The template-based eyeball shape reconstruction approach is outlined in Algorithm 1, the

details of which are presented in the following.
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Algorithm 1 Template-based eyeball Reconstruction

1: Eyeball boundaries Bs segmentation from sagittal MR images
2: Eyeball boundaries Bc segmentation from coronal MR images
3: Boundary points 3D alignment using ICP algorithm
4: B-Spline eyeball surface fitting SBSpline using Bc ∩Bs
5: Surface subdivision Ssubdiv to generate to intensive vertices P from SBSpline

(a) (b) (c)

(d) (e) (f)

Figure 3.1: MRI image segmentation. (a)(c) Images resulted from application of Gaussian
filter; (b)(d) Canny edge detection was applied to all images to extract landmarks; (e)(f)
Eyeball boundaries were determined from Deformable Snake method

3.3.1 Image Segmentation

Compared to T1-weighted MRI, T2-weighted MRI provides excellent contrast between the

eyeball and its surrounding tissues and hence enables automated boundary segmentation.

The segmentation method is described in Fig. 3.1. The original images in the sagittal view
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(Fig. 3.1(a)) and coronal view (Fig. 3.1(d)) were first preprocessed by a Gaussian filter. The

Canny edge detection method [53] was then applied to extract the structure boundaries with

the specified Canny sensitivity thresholds [0.06 0.15] (Fig. 3.1(b) and Fig. 3.1(e)). As can

be seen from Fig. 3.1(b), edge detection outputted undesired landmarks inside the eyeball.

Therefore, I used Deformable Snake to determine the eyeball boundaries, the points on which

were denoted by Bs and Bc respectively, from coronal and sagittal MR images (Fig. 3.1(e)

and Fig. 3.1(f)).

Figure 3.2: Boundaries of the eyeball in two scans were registered to correct displacement
between scans

3.3.2 Boundary Registration

Registration between the two boundary sets, Bs and Bc, was performed to correct move-

ment of the subject between acquisition of the sagittal images and the coronal images. I

used a variant of the iterative closet point (ICP) [54] algorithm to find the best alignment

between Bs and Bc (Fig. 3.1(c) and Fig. 3.1(f)). Neither Bc nor Bs completely sampled

the whole eyeball geometry because of the difficulty in accurately segmenting images near

the poles of the eyeball. In addition, Bs and Bc are from a nearly spherical structure which
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may lead to ambiguous registration. To avoid such false correspondence, for each data

point on one boundary, I only searched for its closest point on the other boundary that

was within a predetermined distance. This was a fair constraint applied since movement

of the subject between scans was expected to be small. A rigid transformation was com-

puted which translated and rotated one set of boundary points to the other set. Fig. 3.2

shows registration results. ICP algorithm was applied to Bs (blue) and Bc (red). Subject

movement was optimally eliminated which transformed the coronal boundaries to the new

locations Bc (showed by the magenta points), providing a more accurate representation of

the eyeball shape.

3.3.3 Eyeball Reconstruction

A two-step surface fitting process was developed to realistically model the complete shape

of the eyeball from the extracted boundaries. First, a B-Spline surface [55] was fitted to

all the boundaries points using an approach previously developed [56]. The fitted B-Spline

surface closely modeled the overall geometry of the eyeball (Fig. 3.3(a)). However, since I

used a B-Spline surface with opening endings, artifacts occurred at two ends. Achieving

mesh uniformness on B-spline surfaces is important for shape analysis and is not straight-

forward. Therefore, I employed the Loops subdivision surface to refine the B-Spline surface.

Algorithm 2 describes the approach on fitting a subdivision surface Ssubdiv to the vertices

p on the B-Spline surface.

Algorithm 2 Surface Subdivision

1: for iteration do
2: for vertex pi in Ssubdiv do
3: find pi

′ projection pj on the plane formed by p1, p2 and p3

4: pi ← pj
5: end for
6: Ssubdiv surface smoothing
7: end for

Fig. 3.3(b) and Fig. 3.3(c) shows the reconstructed and refined eyeball geometry fitted
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(a) (b) (c)

Figure 3.3: B-Spline surface fitting. (b) A B-Spline surface was fitted to (a) the original
boundary points which were segmented from the MRI images in Fig. 3.1; (c) A subdivision
surface was fitted to (b) the B-Spline surface

to the boundary points in Fig. 3.3(a). The fitting error of this example, defined as the mean

distance from the boundary points to the resultant B-Spline surface, was 0.0007 mm. The

subdivision fitting error, defined as the mean distance from the vertices on the subdivision

surface to the B-Spline surface, was 0.05mm. Both fitting errors were reasonably small,

which demonstrates that the resultant subdivision surface closely represent the geometric

shape of the eyeball.

3.4 Eyeball Quantitative and Evaluation

Based on the reconstructed eyeball surfaces, for the first time, I apply Gaussian curva-

ture [57] as a new metric to analyze shape of the cornea surface. Using Gaussian curvature

and geometric relationship between the left and right eyeballs, the local coordinate system

(LCS) for each eyeball can be created as the standardized coordinate system to better de-

scribe the topology features of the eyeball. With subject-specific LCS established, eight

other metrics (surface area, volume, LCS axial length (Axial L), LCS horizontal length

(Horiz L), LCS vertical length (Vert L), ellipsoid axial length (Axial L), ellipsoid horizontal

length (Horiz L), and ellipsoid vertical length (Vert L) can be computed to parameterize

and quantify the geometric features of the eyeball in 3D. Some of these metrics have been
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used in previous work [50,51] and here I propose a more comprehensive set of features. The

tenth metric is the eyeball Sphere Distance Deviation (SDD), measuring the deviation of

the eyeball to the sphere that best approximate it. I will introduce how these metrics were

calculated from the 3D models.

3.4.1 Cornea Feature Analysis using Gaussian Curvature

In computational geometry, the Gaussian curvature of a point on the surface is the product

of the principal curvatures at that point [57]. The principal curvatures are the normal

curvatures, which measure the maximum and minimum blending of the surface at each

point. The tangent plane of a point with positive Gaussian curvature intersects the surface

at a single point, whereas the tangent plane of a point with negative Gaussian curvature cuts

through the surface [58]. Therefore, the Gaussian curvature determines whether a surface

is locally convex or locally concave. If the Gaussian curvature is positive (negative), then

the surface at that point is convex (concave). The actual curvature value other than the

sign quantitatively implies the degree of convexity (concavity) at any point on a surface.

Fig. 3.4(a) illustrates the Gaussian curvature on the two eyeball surface of one subject.

The Gaussian curvature is relatively high near the cornea (red) and low near the ciliary

body (blue). This metric can be used to show the shape characteristics of myopia and

highly myopia, since it has been suggested that myopia is associated with deformation of

the cornea [51]. Such deformation might stretch the cornea along the axial direction which

leads to more extrusive cornea shape accompanied by a more concave transition between

cornea and sclera.

3.4.2 Local Coordinate System (LCS)

As stated above, forming a local coordinate system is the key to better parameterize features

of the eyeball surface. In this section, I describe how the LCS can be established for

each eyeball. First, geometric center o of the eyeball surface (shown as the cyan ball in

Fig. 3.4(b)) was calculated, and the global coordinate system (o:X,Y,Z) was initialized at o.
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(a) (b)

Figure 3.4: Cornea Feature Analysis using Gaussian Curvature. (a) Gaussian Curvature;
(b) LCS of an eyeball.

The intersection point Zi (yellow ball) of the Z-axis (magenta axis) and the eyeball surface

was close to the center of the cornea because of how the MRI scan was oriented. Since

the calculated Gaussian curvature quantifies local geometric characteristics of the cornea

surface, I applied k-nearest search algorithm [59] at point Zi to find the region on cornea

surface that had the highest Gaussian curvature (see small blue dots on eyeball surface in

Fig. 3.4(b)). Then arithmetic mean of the region was computed to obtain a new center of

cornea Zi
′ (blue ball). By connecting o and Zi

′, a new Z ′ axis was generated (blue axis in

Fig. 3.4(b)).

Second, I followed Singh et al.s method [50] to create the initial X”-axis (magenta axis)

by forming a line that goes through the left and right eyeballs geometric center. Notice that

I could not guarantee that X” is perpendicular to Z ′, so further adjustment was needed.

Finally, the cross product between Z ′ and X” formed the new axis Y ′ (green axis). The

new X ′ axis (red axis) was calculated through the cross product of the Y ′ and Z ′. The

resultant LCS (o:X ′,Y ′,Z ′) was shown in Fig. 3.4(b).
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3.4.3 Sphere Fitting of the Eyeball

The geometric shape of an emmetropic eye is close to being spherical in 3D whereas an

abnormal eye such as myopia and highly myopia shows deformation or distortion from a

sphere [51]. Moriyama et al. introduced a new metric that classified the highly myopic

eyes into four basic types on the 3D reconstructed eyeball surface [51]. But this classifi-

cation procedure can only be performed based on the experienced professionals judgment

to manually analyze each eye and their agreement on the classification results. This time-

consuming process is subjected to human error. In addition, the topologic features of the

eye can hardly be measured using the approach in [51], making it difficult to describe the

topologic difference between the emmetropic and abnormal eyes. To overcome this problem,

I applied the RANSAC algorithm [60] to fit eyeball surface by a sphere and measure the

Sphere Distance Deviation (SSD) between the surface and the sphere. The main steps were

outlined in Algorithm 3.

Algorithm 3 Fitting Sphere to the eyeball subdivision surface

1: Sample the eyeball surface and output a point cloud
2: Apply RANSAC algorithm to fit a spherical surface to the point cloud
3: Compute the SSD between the eyeball surface to the sphere surface

Fig. 3.5(a) illustrates the sphere fitting result that closely approximated the eyeball.

I define the SSD ∆d, which measures distance between the eyeball and the sphere, as:

∆d(pi) = d(pi)− r, for i = 1, . . . , n where pi is a vertex on the eyeball surface, d(pi) is the

distance from pi to the fitted sphere center and r is the radius of the fitted sphere. ∆d(pi)

is positive if pi is outside the sphere, and ∆d(pi) is negative if pi is inside the sphere, which

means eyeball surface at point pi intersects with the sphere. When ∆d(pi) = 0, pi is on the

sphere surface. To better represent the SSD, the ∆d(pi) is normalized between 0 and 1.

Fig. 3.5(b) shows histogram of the normalized ∆d(pi), and Fig. 3.5(c) illustrates the colored

sphere that maps ∆d(pi) on the fitted sphere surface.
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(a) (b)

(c)

Figure 3.5: Analysis of the eyeballs deviation from a sphere. (a) Eyeball and fitted sphere;
(b) Histogram of computed SSD; (c) Color mapped SSD.

3.5 Result

Table 3.1 summarizes the quantitative results for twenty eyeballs reconstructed from MRI

of ten healthy subjects, who were identified only by their two-letter IDs. Anonymous MRI

data was provided by Dr. Joseph Demer at UCLA. According to the table, the mean Axial,

Horizontal (Horiz) and Vertical (Vert) Length (L) in the local coordinate system are almost

the same. The mean standard deviation of SSD is 0.005 (± 0.05) mm, showing that the

fitted sphere can closely approximate the eyeball surface and measure spherical deviation.
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Table 3.1: Eyeball quantitative results

Mean SD

Surface Area (mm2) 1673.6 151.52

Volume (mm3) 6395.31 877.62

LCS

Axial L (mm) 23.2 1.14

Horiz L (mm) 23.33 0.93

Vert L (mm) 23.85 1.24

Ellipsoid

Axial L (mm) 21.94 1.06

Horiz L (mm) 23.12 0.95

Vert L (mm) 23.56 1.28

SSD (mm) 0.005 0.05

3.6 Conclusion

I have developed a computational framework for building subject-specific eye model from

MRI, using parametric surface fitting. 3D eyeball geometric models from difference subjects

can be accurately and efficiently reconstructed. Analysis results are consistent with previous

studies [49–51]. Moreover, the proposed approach provided comprehensive quantitative

analysis of ocular anatomy and morphology by using the eight basic metrics. I proposed

two more metrics, the Gaussian curvature and the sphere distance deviation, that have

not been utilized previously but could improve the accuracy and efficiency of the diagnosis

of the vision disorders. I would like to apply the approach on more datasets and aim to

find the correlation between refractive error and shape feature, which can then be used for

clinical diagnosis.
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Chapter 4: M3VR–A Multi-step, Multi-resolution, and

Multi-volumes-of-interest Volume Registration Method

Applied to 3D Endovaginal Ultrasound

The work presented in this chapter has been published in [61,62].

4.1 Introduction

Image registration is the process of aligning two or more radiological images in two or

three dimensions [63]. It has been widely applied for radiotherapy treatment planning

[64], image segmentation [65], image guided surgery [66], and longitudinal monitoring [67]

among many other applications. Automated and semi-automated registration methods seek

to determine a transformation between two or more image datasets possibly of different

imaging modalities, different subjects, and/or at different times by solving an optimization

problem that maximizes the similarity between the transformed datasets. This has been an

active area of research [1, 63, 68–73]. Three-dimensional (3D) volume registration is more

challenging than 2D due to the increased number of degrees of freedom in the transformation

and the difficulty in quantifying volumetric discrepancy.

A common application of 3D image registration is longitudinal monitoring before and

after an interventional procedure. Ultrasound imaging is attractive for longitudinal mon-

itoring since it is inexpensive and safe. 3D volumetric registration of ultrasound images

is considered more challenging than other modalities such as Computed Tomography and

Magnetic Resonance Imaging (MRI) [74] because of the low signal-to-noise ratio, hetero-

geneity of echo textures, and low ultrasound image contrast due to artifacts and attenuation

[75]. In particular, ultrasound imaging of soft tissue can be subject to considerable signal to

noise ratio variation [75], frequency-dependent attenuation of the backscattered signals [76],
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and tissue deformation. In addition, interventional procedures, such as needle biopsy, often

induce tissue deformation and hematoma [77, 78]. As a result, datasets that were acquired

from the same patient before and after an intervention can be considerably different.

Existing registration approaches [1,79–85] are not suitable to produce precise alignment

under these challenging conditions. As such, there is a need to develop new automated

deformable and volumetric registration methods. Rigid registration will likely fail to find the

optimal alignment because the anatomical changes obviously violate the rigidity assumption.

Contrarily, non-rigid registration might strive to accommodate those changes but may result

in incorrect deformation in other regions due to the many degrees of freedom associated with

these methods. In this study, I developed and validated a novel 3D ultrasound registration

method that overcomes these challenges.

The proposed method is called M3VR, for Multi-step, Multi-resolution, Multi-volume of

interest Volumetric Registration. It is a novel weighted multiple volume-of-interest (VOI)

registration method that can be applied on volumetric data of any medical imaging modal-

ity where there are rigid non-deformable structures (such as bony landmarks) and also

deformable tissue. In the first step, a rigid registration is applied on a single VOI contain-

ing rigid structures for an initial alignment. In the second step, multiple VOIs that are

distributed across the whole volume and do not include the anatomically different regions

are selected to add influence of soft tissue structures. Then a weighted multiple VOI regis-

tration is performed to calculate the optimal alignment of all these VOIs in order to refine

the alignment obtained from the first step.

I evaluated the M3VR in a 3D Endovaginal Ultrasonography (3DEVUS) application for

assessing and monitoring pelvic floor disorders, which affect nearly 24% of US women [86,87].

Pelvic organ prolapse (POP) is a common type of pelvic floor disorder in which the pelvic

organs (bladder, uterus and rectum) descend downward due to loss of mechanical integrity

of the pelvic floor (Fig. 4.1 (a)), particularly that of the levator ani muscle and associated

connective tissues [88]. POP is associated with significant dysfunction and detrimental

impact on quality of life. Injury to the levator ani muscle during vaginal birth is a significant
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Figure 4.1: The anatomy of the women pelvic floor. (a) Axial view. Pelvic floor muscles
are the layer of muscles that support pelvic floor organs, assist in urinary and fecal conti-
nence and stabilize connecting joints. (b) Schematic drawing of 3D Endovaginal Ultrasound
Imaging with 360◦ rotational transducer using a BK Ultrasound System (Flex Focus 500)
[1]. (c) Pelvic floor muscle appears as a V-shaped structure in 3DEVUS (green boundary).
Pubic bone and probe can also be viewed interactively during acquisition and offline.

risk factor for developing POP [89]. The effects of these injuries can be additive with

subsequent births and can result in levator ani muscle atrophy and increased risk of POP

[89, 90]. Accurate and timely detection of injury to the levator ani muscle is critical to the

effective treatment of POP. Modern imaging techniques such as MRI and ultrasonography

are currently used clinically in the non-invasive examination of levator muscle injury [86,

89,91–95].

Compared to MRI, ultrasonography has the advantage of being fast, cost effective, and

easily available. 3DEVUS provides a comprehensive overview of the pelvic floor anatomy

by performing a 360◦ field-of-view scanning (Fig. 4.1 (b) and Fig. 4.1 (c)). Quantitative

analysis of the progression or repair of muscle injury requires longitudinal monitoring and

volumetric registration of the acquired 3DEVUS images [96].

In this chapter, I first review existing ultrasound image registration methods in Section

2. Section 3 describes the pelvic floor data used in this study and the M3VR method.

Validation metrics and procedure are also discussed. Section 4 presents the results on the

application of M3VR on 3D endovaginal ultrasound data, parameter determination, and

validation of the results. In Section 5, I discuss limitations and future directions for this

work.
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4.2 Related Work

3D volume registration methods can be generally classified into two types: rigid registration

using linear transformation and non-rigid registration using nonlinear transformation to

compensate for deformation of structures [97, 98]. For example, a rigid transformation

that includes translation and rotation can be used to align two volumetric data. When

significant differences are known to exist due to natural variations among subjects or changes

in physical structures over time due to tumor development or other factors, non-rigid image

registration should be applied to allow localized deformation and to optimally align different

datasets [99]. For this problem, I chose to solve for a rigid registration because of the

overall rigidity of the volume. Non-rigid transformation may introduce too many degrees of

freedom. This may potentially overfit the data to heterogeneous ultrasound echo textures

and result in undesired muscle deformation.

Existing 3D ultrasound registration methods are either feature-based [100–103], intensity-

based [83, 104–107], or integrated of the two [108, 109]. Feature-based methods rely on

identifiable features that are extracted from ultrasound image for registration optimization.

These features can be anatomical landmarks, structure boundaries, surfaces, or statistical

shape features. Many 3D feature-based methods have been developed. A few representative

ones include a surface-based, nonlinear registration method to align ultrasound images to

histological data in 3D [100], a temporal and spatial registration approach to align pre-

and post-stress ultrasound images [101], a novel method based on spatial Gabor texture

similarity represented by statistical kernel distributions [102] and registration between an

ultrasound volume and a statistical shape model using local phase bone features [103]. 3D

scale- and rotation-invariant key points have been used to identify features [79,84]. However,

definition and matching of these key points can be difficult.

Compared to the intensity-based methods, feature-based approaches are recognized to be

more robust to intensity variation and less susceptible to local minima [108], however require

additional steps on feature extraction. Intensity-based methods [83, 85, 104–107, 109, 110]
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use raw pixel intensity values to assess similarity between two datasets and do not need

additional features. One recently proposed intensity-based registration approach involves

block-matching and an outliner rejection method to determine an affine transformation

between ultrasound volumes [83]. Mutual information-based methods are commonly used

in registering ultrasound volumes [106, 107]. An intensity-based deformable registration

method was employed for 3D ultrasound registration through a variational framework [85].

Intensity-based approaches might be computationally extensive and converge to local min-

ima.

I experimented with both feature-based and intensity-based registration. I decided to

perform intensity-based registration because it produces good results and requires minimal

user input. Anatomical features in the data include the inner boundary of the pubic bone

and outer boundary of the levator ani muscle. However, these features were not be clearly

visible in all datasets. Even if they were, the features cannot be segmented reliably and

automatically. In addition, pixel intensities present more information than what sparse

anatomical features present and thus theoretically have the advantage of being robust to

noise. Nevertheless, I take advantage of the usefulness of anatomical features in explic-

itly measuring the correspondence of two datasets and use them to quantitatively validate

registration results.

4.3 Methods

4.3.1 Ultrasound Imaging of the Pelvic Floor

As part of a previous study, I collected 3DEVUS data from subjects who had different de-

grees of levator ani muscle injury and who underwent biopsy [111]. 3DEVUS was performed

on each patient once before, twice during, and once after the biopsy (Fig. 4.2). The four

datasets (94mm×94mm× 65mm; spatial resolution: 0.118mm/pixel) per patient include:

(1) a pre-biopsy ultrasound volume (D1 in Fig. 4.2 (a)) with muscle intact for pre-operative

examination, (2) an ultrasound volume with biopsy needle positioned on the left side (D2
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Figure 4.2: Four phrased 3DEVUS data collected from the same subject during biopsy
examination. (a) Pre-biopsy 3DEVUS volume. (b) 3DEVUS volume with biopsy needle on
the left. (c) Needle inserted on the left is more visible from a different view. (d) 3DEVUS
volume with the biopsy needle on the right. (e) Needle inserted on the right viewed from
the sagittal view. (f) Post-biopsy 3DEVUS volume. The development of hematoma can
clearly be seen as indicated by the arrow, which showed up as a dark region at the biopsy
site.

in Fig. 4.2 (b)), (3) an ultrasound volume with biopsy needle positioned on the right side

of the pelvis (D3 in Fig. 4.2 (d)), and (4) a post-biopsy ultrasound volume (D4 in Fig. 4.2

(f)). D2 and D3 were obtained during biopsy to guide placement of the J-hook needle in

the pelvic floor muscle region with suspected muscle defect. This technique was similar to

a previous study by Busacchi et al. [112].

Our long term goal is to apply quantitative ultrasound analysis to assess pelvic floor

muscle injury, which correlates muscle characteristics obtained from statistical ultrasound

texture analysis at the biopsy location to those obtained from histologic analysis from

the needled biopsy sample. The biopsied tissue was not visible in the ultrasound volume

obtained during biopsy because of the needle. However, it was completely visible and intact

in the pre-biopsy data. In order to establish an accurate correlation, the needle location

needs to be determined in the pre-biopsy data such that quantitative ultrasound analysis
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can be performed on the exact biopsied tissue. A precise spatial registration method that

optimally aligns the ultrasound volumes with needle inside (D2 and D3) to the volume

without needle (D1) is required to objectively estimate biopsied tissue location. Although

these volumetric data were acquired from the same subject, optimal alignment is not a trivial

problem. D1, D2 and D3 were taken at different time during the procedure with ultrasound

probe repositioned for each dataset. There would have been unavoidable displacement

of the probe by the clinician, which caused tissue deformation near the probe and variable

transformation of the imaged volume. These volumetric data were also subject to significant

tissue change due to insertion of the needle and development of post-biopsy hematoma.

4.3.2 M3VR Registration Framework

The M3VR framework is shown in Fig. 4.3. D3 is defined as the fixed ultrasound volume.

D1 and D2 are defined as the moving ultrasound volumes, which are to be aligned with

the fixed volume D3. In the first step, an intensity-based multi-resolution rigid registration

method was performed on the pubic bone sub-volume to provide an initial alignment of the

moving ultrasound volumes (D1 and D2) to the fixed ultrasound volume (D3).

As shown in Fig. 4.1 (c), the pubic bone is located only in the upper half of the volumetric

data. Registering the whole volume based on matching a much smaller sub-volume may be

subject to bias because of the heterogeneous characteristics of ultrasound imaging and offset

of the sub-volume from the center. The resultant error would have been the most severe

at places far from the sub-volume. A related issue is the bias of fit problem that has been

examined previously in the computer vision community [113]. However, such locally focused

registration can effectively bring the two datasets closer to each other, which facilitates

subsequent and more sophisticated registration.

In the second step, spatially weighted, intensity-based, multiple VOIs, and multiple

resolution registration was performed to optimize the alignment between transformed D1

and D2. The sub-volume ultrasound data at the biopsy site can be obtained from the

transformed needle location for further analysis. I performed extensive validation to ensure
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Algorithm : M3VR

1     Input: Fixed ultrasound volume, VF 
                    Moving ultrasound volume, VM

2    Output: Registered moving ultrasound volume, VM* 
Step 1: Multi-resolution pubic bone 
                   volumetric registration
3     Select pubic bone volume of interest, VFPB
4     Compute multi-resolution pyramid
5     for    =     ,          ,...,1, 0 // iterate multi-resolution levels
6             Solve for optimal rigid transformation between
                VFPB

 and VM at multi-resolution level 
7           Propagate        to level   -1
8     end 
Step 2: Multi-resolution and multi-regional 
                  volumetric registration 
9      Select pelvic �oor muscle volume of interest, 
             VFPM1

 and VFPM2
10    Compute multi-resolution pyramid
11   for   =     ,          ,..., 1, 0 // iterate multi-resolution levels
12         Solve for optimal rigid transformation between 
                 VFPB

+VFPM1
+VFPM2and VM  at multi-resolution level 

13         Progagate       to level   -1
14   end
15   Compute VM* using optimal transformation

Figure 4.3: Algorithm of M3VR. Two-step multi-resolution volume registration. Step 1:
pubic bone sub-volume registration. Step 2: spatially weighted multiple sub-volumes regis-
tration on pubic bone and pelvic floor muscles.

the robustness and accuracy of the proposed method. The whole registration pipeline was

implemented in C++ and ITK [114].

The M3VR method optimizes alignment by combining multiple volumes of interest that

accommodate different anatomical structures. The main idea is to select multiple sub-

volumes that do not contain changed anatomical structures. If these sub-volumes are dis-

persed over the volume, the bias of fitting is unlikely to occur. The pixel intensity values

of different anatomical structures may have different ranges. This needs to be considered

in the overall similarity measurement. For instance, bone appears brighter than muscle
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in ultrasound images and thus has higher intensity values. To adjust the contributions

of different structures in the combined cost function to enforce either fairness or prefer-

ence of alignment, weights are applied on the selected volumes of interest to influence their

significance. I will now describe the methodology in detail.

a

b

c

d

e

f

Figure 4.4: Intensity-based volumetric registration on pubic bone VOI. (a) A cubic VOI
enclosing the public bone was defined in the fixed image volume (green grid). The pubic
bone was rendered in cyan simply to highlight the bone dimensions. (b) One slice image
from fixed image volume with pubic bone and muscle boundaries. (c) Corresponding image
slice before registration in the moving image volume. (d) Corresponding image slice after
registration in the transformed moving image volume. (e) Pubic bone and muscle bound-
aries comparison before registration, the initial boundaries are not matched between fixed
and moving images. (f) Pubic bone and muscle boundaries comparison after registration.
The pubic bone boundaries are better aligned demonstrating the effectiveness of first step
registration.

4.3.3 Step 1: Multi-resolution Pubic Bone Volumetric Registration

In the first step, I apply the intensity-based volumetric registration method to find the

matching homologous regions across the fixed and moving ultrasound volumes demonstrated

in Fig. 4.4. Considering the pubic bone region as the most rigid and consistently textured
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structure in the imaged region, I first calculate the initial transformation based on a volume

of interest containing the pubic bone (Fig. 4.4 (a)). The VOI is first defined by a 3D

bounding box of the pubic bone in D3 and is considered fixed (Fig. 4.4 (a)). A 3D rigid

transformation Tθ was computed by optimizing the registration cost function (Eq. 4.1) so

that another dataset (D1 or D2) is optimally aligned with D3.

θ̂ = argmin
θ

φ(VF , Tθ(VM )) (4.1)

The object function φ in Eq. 4.1 measures the similarity between the fixed VOI VF and

the moving VOI VM . Multi-resolution registration is performed to enhance the registration

robustness against ultrasound image texture variation [80]. Three intensity-based similarity

metrics were examined to compare their effectiveness in aligning the 3DEVUS data.

Mean Square Error (MSE) computes the averaged pixel-wise intensity difference:

MSE(VF , VR) =

1

M ×N × T

M,N,T∑
i=1,j=1,k=1

(VF (i,j,k) − VR(i,j,k))
2

(4.2)

where VF (i,j,k) and VR(i,j,k) represent voxel intensities at position (i, j, k) in fixed volume VF

and registered volume VR respectively. M ×N ×T is the total number of voxels in the VOI.

MSE is based on the assumption that the pixel intensity of the same homologous point

remains constant. Smaller MSE indicates more precise registration.

Normalized Cross Correlation (NCC) computes pixel-wise cross correlation normalized
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by the square root of the autocorrelation of the two volumetric images:

NCC(VF , VR) =

∑M,N,T
i=1,j=1,k=1 VF (i,j,k) × VR(i,j,k)√∑M,N,T

i=1,j=1,k=1 VF (i,j,k)×
∑M,N,T

i=1,j=1,k=1 VR(i,j,k)

(4.3)

NCC is between 0 and 1. NCC equal to 1 indicates that the two volumes have identical

intensities and thus an optimal alignment. Misalignment leads to smaller NCC value.

Mutual Information (MI) measures how much information that a random variable cap-

tures about another random variable. MI is calculated based on the entropy of each random

variable. Mutual information between two random intensity variables of two volumetric im-

ages IF and IR is defined as:

MI(IF , IR) = H(IF ) +H(IR)−H(IF , IR) (4.4)

where H(IF ) and H(IR) are the entropies of random variables IF and IR espectively.

H(IF , IR) is the joint entropy of IF and IR. From experiments, NCC gave the best regis-

tration results and was used on all datasets. A quantitative comparison of the three metrics

is presented in Results.

Fig. 4.4 demonstrates the step 1 registration results of one dataset. To assist visual

comparison, the pubic bone and muscle boundaries were manually outlined at the corre-

sponding imaging plane. Fig. 4.4 (b) and Fig. 4.4 (c) show one image slice in fixed dataset

D3 and one in moving dataset D1, respectively, before registration. Misalignment of the two

pre-registration volumetric images was obvious because the corresponding bone or muscle

boundaries were apart from each other in Fig. 4.4 (e). Note that the manually segmented

pubic bone and muscle boundaries were only for the ease of visual comparison. The algo-

rithm itself does not use edge features. Fig. 4.4 (d) shows the resampled image slice in D1

after registration at the same imaging plane as Fig. 4.4 (b). Fig. 4.4 (f) shows that after

46



registration, alignment of the pubic bone was significantly improved. This was demon-

strated by the proximity of the pubic bone boundaries. However, the pelvic floor muscle

regions were still misaligned (Fig. 4.4 (f)). The dissimilarity can be explained by the biased

registration problem mentioned above. As a result, a rotational error occurred in regions

distant from the bone VOI, such as in the muscle band.

Figure 4.5: Multiple VOIs were defined near the pubic bone and pelvic floor muscle regions.
Anatomical structures are colored only to highlight their inclusion in the VOIs.

Even with remaining misalignment, the registration based on the pubic bone region did

manage to provide an initial alignment of two datasets to account for the different probe

placements. This is necessary for subsequent multi-regional registration.

4.3.4 Step 2: Multi-resolution and Multi-regional Volumetric Registra-

tion

I developed a weighted multi-regional registration scheme to refine alignment of the whole

volume in the second step to compensate for the registration bias due to the single and local

VOI considered. Multiple VOIs that include the pubic bone (VFPB
) and the pelvic floor

muscle (VFPM1
and VFPM2

) in the transferred moving volume D1 (Fig. 4.5) were selected as
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the target VOIs. Because these regions are distributed in the volumetric data, they restrain

each other from causing overfitting. Transformed D2 is defined as the moving volume and

is transformed via registration to optimally align all target VOIs to those in the transferred

D1. The weighted multi-regional registration is calculated by optimizing the cost function in

Eq. 4.5, which minimizes the weighted sum similarity φ between multiple VOIs (VFPB
,VFPM1

and VFPM2
) in the fixed volume VF and the registered moving volume Tθ(VM ):

θ̂ = argmin
θ

(w1φ(VFPB
, Tθ(VM ))+

w2φ(VFPM1
, Tθ(VM )) + w3φ(VFPM2

, Tθ(VM )))

(4.5)

w1, w2 and w3 are the weights applied on different VOIs which sum to one. These weights

are introduced for two reasons: (1) Ultrasound image pixel intensities of different anatomical

structures such as bone and muscle are different, which influences the similarity measure-

ment between two volumes. (2) The calculated similarity is also sensitive to VOI size, which

is variable among selected VOIs. In order to manage impact of these factors, weight scalars

are multiplied to the corresponding similarity measurements so that their contributions to

the overall similarity can be adjusted. Values of the weights and sizes of the VOIs can be de-

termined systematically through trial and error. The values leading to the best registration

result are used.

When solving Eq. 4.5, I adopted a multi-resolution implementation in order to overcome

the lower ultrasound signal-to-noise ratio, heterogeneous ultrasound echotexture, and local

optimum problems [115]. Multi-resolution approach is commonly used in image processing

to improve an algorithms robustness against noise. The fixed image data is first resampled

at different resolutions and the moving image is resampled at the coarsest level. Starting

from the coarsest level, the transformation is optimized for the pair of datasets at this

level and applied on the moving image. The resulting transformed moving image is then

resampled at the second coarsest level that is used in optimizing registration at this finer

level. The procedure is repeated until reaching the original resolution.

48



4.3.5 Registration Validation

I did cross validation to assess accuracy of M3VR. M3VR is intensity-based rather than

feature based. I used identifiable features such as the anatomical structure boundary to

cross-validate the results. Because these features were not used explicitly in the algorithm,

which utilizes pixel intensity only, I hope such an assessment can be more objective and

more powerful to expose any weakness of the proposed method.

transformed D2 boundaries comparison 
transformed D1 & D2

a b

d e

transformed D1

transformed D1 registered D2

c

f

boundaries comparison
transformed D1 & registered D2

Figure 4.6: Pubic bone and muscle volumetric registration and validation after each step.
Before step 2 registration, pubic bone and levator ani muscle boundaries are manually
outlined in transformed D1 (a) and transformed D2 (b). The pubic bone boundaries show
satisfying spatial proximity but the muscles misaligned (c). After step 2 (d) and (e), bone
and muscles boundaries were effectively aligned (f).

Pubic bone and pelvic floor muscle boundaries before and after applying M3VR were

manually segmented and compared both visually and quantitatively. Fig. 4.6 demonstrates

how the validation was perform, with more results summarized in Results. Fig. 4.6 (a) and

Fig. 4.6 (b) show image slices at the same spatial location from transformed D1 and D2 after
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the first step registration. Overlaid bone boundaries (Fig. 4.6 (c)) show satisfying spatial

proximity but the muscles do not. This indicates overfitting of the bone region. Fig. 4.6

(d) and Fig. 4.6 (e) show image slices from D1 and D2 at the same spatial location after

applying the second step registration, which was effective in aligning both bone and muscle

regions (Fig. 4.6 (f)). The mean distance between the two sets of curves error is 0.65 mm.

4.4 Results

I applied M3VR on Endovaginal ultrasound data of nine subjects. Registration accuracy

evaluation was performed on each subject.

To test sensitivity of registration accuracy to VOI size, I experimented with the following

volume sizes for the muscle VOIs: 10×10×10mm3, 20×20×20mm3,20×30×20mm3,20×30×30mm3,

20×30×40mm3,20×30×50mm3,20×30×60mm3, and 20×30×70mm3.The best values of the

muscle VOI was 20mm×30mm×30mm. The pubic bone VOI was finalized to be 25mm×37mm×12mm

being a bounding box of the pubic bone. The optimal weight values were determined to be

w1 = 0.3, w2 = w3 = 0.35. These were obtained through systematically altering the weights

between 0 and 1 with the constraint w1 + w2 + w3 = 1.

In terms of optimization, the adaptive stochastic gradient descent optimizer was used

which converged faster for the data compared to other algorithms such as the Levenberg

Marquardt optimizer. The optimization was performed for 2000 iterations on each level.

Different numbers of multi-resolution levels were tested and three levels was chosen. In-

creasing the number of levels over three did not significantly improve the performance.

I used checkerboard validation, levator ani muscle boundary proximity measurement,

as well as volume intensity similarity to quantitatively evaluate accuracy of the proposed

method.

4.4.1 Qualitative Validation

Fig. 4.7 illustrates registration results on one patient using the superimposed checkerboard

images, which were used to for visual comparison of two registered images [116–119]. Fig. 4.7
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Figure 4.7: Checkerboard validation. (a) A sequence of fixed images in coronal view. (b)
Moving images at the same imaging planes after 3D registration. (c) Checkerboard images of
the two images on the corresponding rows, which show structure continuity and demonstrate
effectiveness of M3VR.

(a) shows a sequence of image slices in the coronal view of the fixed image data. This in-

cludes the pubic bone and pelvic floor muscles at consecutive anatomical locations. Fig. 4.7

(b) shows the post-registration moving image at the same corresponding imaging planes.

Comparing Fig. 4.7 (a) to Fig. 4.7 (b), I conclude that registration was able to transform

the moving image to closely align with the fixed image. Fig. 4.7 (c) shows the checker-

board images generated from the corresponding fixed image slice and moving image slice in

the same row. The smoothness of the checkerboard images further demonstrates the effec-

tive registration that results in good correspondence of anatomical structures in these two

volumetric data. Boundaries of bone and muscle were continuous with minimal intensity
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difference. For instance, the pubic bone in the synthetized images in Fig. 4.7 (c) appears

to be spatially continuous. Checkerboard validation was performed on all datasets. These

all show satisfying visual alignment.

4.4.2 Cross Validation of M3VR Accuracy

ba

Figure 4.8: Comparison of pubic bone and levator ani muscles boundaries (a) before and (b)
after applying M3VR. Green: boundaries from fixed ultrasound volume; red: boundaries
from moving ultrasound volume.

I manually outlined boundaries of the pubic bone and levator ani muscle from the fixed

and registered images (BF and BR) to quantitatively evaluate the registration accuracy.

Close proximity of the two sets of boundaries indicates effective registration. I use the Mean

Distance Error (MDE) to evaluate the boundary proximity. After manual segmentation of

the boundaries, 3D boundary points were calculated based on the spatial resolution of

the volumetric data (Fig. 4.8). For each boundary point belonging to the fixed image

piF ∈ BF ,i = 1, 2, ,m, I computed its shortest distance to the registered boundary BR. The

proximity between the two sets of boundaries was then calculated as the mean shortest

distance error averaged over all the m boundary points from the fixed image. A zero MDE

means the two sets of boundaries overlap exactly and a large MDE indicates misalignment

either translationally, rotationally, or both.

I validated the proposed method on the 3D endovaginal ultrasound data from 6 pa-

tients that showed traceable levator ani muscle boundaries. Every ultrasound volume was
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Figure 4.9: Comparison of the reconstructed pubic bone and levator ani muscle surfaces
(a) before and (c) after applying M3VR. Red: surfaces reconstructed from fixed ultrasound
volume; green: surfaces reconstructed from moving ultrasound volume. Visualization of
one-sided error distances from the reconstructed moving surface (green) to reconstructed
fixed surface (red) before (b) and after (d) applying M3VR. Error distances are visualized
using a blue-green-red colormap with blue corresponding to smaller error and red to larger
error.

converted into a sequence of 2D coronal images. Structural boundaries were outlined in

ImageJ [120] and then remapped to 3D. Fig. 4.8 shows a visual comparison of one dataset.

It can be seen that misalignment of both pubic bone and muscle boundaries (Fig. 4.8 (a))

were significantly corrected after registration. Whereas the muscle boundaries were nearly

perfectly aligned, a small amount of misalignment of the bone boundary was observed in

Fig. 4.8 (b). Such error resulted from the variable local deformation of the pelvic floor soft

tissue in individual datasets caused by replacement of the probe. I chose to associate higher

values with the muscle VOI weights because accurate alignment of the muscle region is more

critical for subsequent study on examining levator ani muscle echo texture in correlation
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with biopsy analysis.

Table 4.1: Cross validation results on the registration accuracy. MDE-Mean Distance Error

Sub.
MDE of levator
ani muscle (mm)

MDE of
pubic bone (mm)

Before After Before After

1 14.07 11.27 0.78 0.36 39.06 2.58 0.30 0.23

2 23.75 10.81 0.61 0.39 16.04 4.10 0.44 0.29

3 53.91 8.10 0.71 0.42 34.16 4.02 0.43 0.29

4 3.87 2.31 0.69 0.35 2.90 2.06 0.99 0.33

5 14.53 9.49 0.76 0.38 10.90 2.90 0.76 0.39

6 28.31 10.13 0.83 0.37 24.43 3.94 0.50 0.34

Table 4.1 summarizes the quantitative cross validation results on data from 6 patients.

The Mean Distance Errors of the public bone and levator ani muscle are presented. The

Mean Distance Errors of the pubic bone and levator ani muscles all decreased dramatically

after applying M3VR. The results demonstrated the necessity of registration to accurately

locate the biopsied tissue, as well as the effectiveness of the proposed approach. The max-

imum boundary distance error is less than 1 mm, showing the tight upper bound of the

registration accuracy.

I used the shortest distance map [121] which quantitatively measures the surface prox-

imity to evaluate the spatial distribution of misalignment. Surfaces of the pubic bone and

the levator ani muscle were first reconstructed from the 3D positions of the boundary points

(Fig. 4.9). I defined the one-sided error distance between a point pM on the moving surface

SM (Fig. 4.9 - green) to the fixed surface SF (Fig. 4.9 - red) as d(pM , SF ):

d(pM , SF ) = min
pF∈SF

E(pM , pF ), pM ∈ SM (4.6)

where pF is the point on SF that is closest to pM . E(pM , pF ) is the Euclidean distance
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Figure 4.10: Comparing histograms of error distance of (a) left and (b) right pubic bones
and (a) left and (b) right levator ani muscles surface distances before (green) and after (red)
applying M3VR.

between points pM and pF . The shortest distance map of a surface encodes the one-sided

errors of all points on it. A shortest distance map associated with small values indicates the

closeness of two surfaces whereas a shortest distance map with large values reflects greater

misalignment. Fig. 4.9 compares the shortest distance maps of one dataset before and after

registration. Both pubic bone and levator ani muscle were misaligned before registration

(Fig. 4.9 (a)), shown by the blue-green-red colormap (Fig. 4.9 (b)). The pubic bone had

larger error compared to the levator ani muscle before registration. After applying M3VR,

the two surfaces were much closer to each other (Fig. 4.9 (c)) as shown by the bluer shortest

distance map (Fig. 4.9 (d)). I also compared the histograms of the one-sided error distance

before and after registration to further analyze the corrected misalignment (Fig. 4.10).

The error distances of the pubic bone and levator ani muscle significantly decreased after

applying M3VR.

Table 4.2 shows the mean error of each anatomical structure. Levator ani muscles have
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smaller mean error distance compared to the pubic bones. This indicates that M3VR was

able to effectively improve the alignment in the levator ani muscle regions as well as reduce

the overall misalignment at different spatial regions.

Table 4.2: Comparison of mean SDM on the registration accuracy

Region Before After

Pubic bone (mm)
Left 4.47 4.14 1.58 0.88

Right 5.96 3.69 2.16 0.74

Levator ani muscle (mm)
Left 3.28 1.49 0.61 0.62

Right 4.07 1.61 0.78 0.75

4.4.3 Assessment of Similarity Metrics

Different volume intensity similarity metrics including mean squares error, normalized Cross

Correlation, and mutual informastion have been applied in different medical image analysis

tasks. As mentioned earlier, I chose normalized cross correlation to measure similarity of the

fixed image and the moving image. The decision was made after systematically examining

the influence of different metrics on the registration results. Table 4.3 summarizes the

analyses. These will be potentially informative for future studies on volumetric ultrasound

registration. Similarity between the fixed image and the moving image measured by each of

the metric before and after registration was calculated from all datasets. Consistent with

the cross validation results on boundary proximity, registration using any of these similarity

metrics in the objective function was able to effectively improve alignment of two volumetric

data sets.

Fig. 4.11 compares mean and standard deviation of the registration accuracy in Table

4.3. Mean square error score deceased from 22.10 ± 11.62 to 6.69 ± 5.33 (p < .001) after

registration. Normalized cross correlation score increased from 0.77 ± 0.07 to 0.96 ± 0.01

(p < .0001) and mutual information score increases from 0.89 ± 0.37 to 2.27 ± 0.05 (p <
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Table 4.3: Quantitative analysis of the registration results using volume intensity similarity.
Mean Square Error (MSE), Normalized Cross Correlation (NCC), and Mututal Information
(MI).

Sub.
MSE NCC MI

Before After Before After Before After

1 2.52 0.69 0.85 0.98 1.38 2.28

2 14.35 4.99 0.80 0.96 0.96 2.31

3 26.96 8.62 0.81 0.96 1.26 2.21

4 12.41 1.85 0.71 0.95 0.83 2.21

5 28.93 2.22 0.63 0.95 0.72 2.32

6 37.69 16.35 0.70 0.94 0.34 2.24

7 18.28 6.06 0.83 0.95 1.31 2.22

8 36.72 13.53 0.81 0.96 0.63 2.30

9 20.93 5.95 0.77 0.95 0.56 2.30

0.0001). All three scores show statistically significant improvement.

4.4.4 Computational Time Analysis

The computational time of M3VR is mainly affected by sizes of the VOIs and quality of

the initial registration. The closer the two volumes are after the initial registration, the

less time it takes to converge to the minimum in the second step. The overall registration

time of M3VR on the night datasets included in the study took between 234.20 to 1243.73

seconds of CPU time on a Dell T7600 workstation (Fig. 4.12).

4.5 Discussion and Conclusion

In this study, I developed and validated M3VR, a volumetric image registration approach to

optimally align multiple ultrasound data sets containing anatomical differences. The main

contribution is that the method is able to optimally align volumetric datasets that are sub-

ject to significant variation at multiple locations. The results on 3D endovaginal ultrasound
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Figure 4.11: Comparison of intensity similarity measurement of the three metrics before
and after registration. (a) MSE. (b) NCC. (c) MI.
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Figure 4.12: Computational time of M3VR.

data from women undergoing surgical biopsy demonstrated the feasibility and effectiveness

of the proposed method. With minor modification on the similarity measurement, M3VR

can be applied on registering 3D or 2D data of other medical imaging modalities, such as

MRI and CT. 3D to 3D, 2D to 2D, 2D to 3D or 3D to 2D registrations can all be formu-

lated in the proposed framework. Furthermore, M3VR can perform inter-imaging modality

registration and inter-subject registration.

M3VR does not require any image intensity threshold to be specified but relies on the raw

intensity values to find the optimal alignment. The only user inputs are size and location of

each VOI. From the literature and the experiment, these parameters play an important role
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in the registration performance. Therefore, similar to many other registration approaches,

parameter tuning is a necessary step to ensure the best results. What I found was that

the optimal parameter values were fairly consistent across different datasets. Therefore,

there is no need to fine-tune VOI parameters for every dataset but only for one or a few

representatives. Furthermore, the process can be automated by systematically varying the

parameter values within a reasonable range in the computer program while saving the

registration accuracy for each case for offline analysis. The program can be set to test all

feasible parameter sets in one run. Then the optimal parameter values associated with the

smallest error can be identified and used for all other datasets.

M3VR was designed as an intensity-based registration method that uses image intensity

directly. The main reason of using image intensities and not features was that it was difficult

to robustly and automatically extract features from ultrasound data of the pelvic floor. The

advantage is that potential error or parameters involved in feature extraction are avoided.

The limitation is that many intensity-based similarity metrics such as mean square error

and the adopted normalized cross correlation, implicitly assume pixel-to-pixel intensity

value correspondence. This may not hold even in the optimal alignment of medical image

data [122]. Although the proposed study showed that non-pixel-wise similarity metrics

such as mutual information did not lead to better results, future studies may consider other

similarity metrics suitable to compare texture characteristics in the proposed framework.

For instance, histograms of the pixel intensity values emphasize the high level structural

property of the VOI rather than low level individual pixel intensity values and can be used

in the objective function to describe underlying structures [123].

As mentioned earlier, the pelvic floor volume being scanned was completely rigid mainly

due to removal and reposition of the ultrasound probe. However, the proposed method

did assume rigid relationships among the multiple VOIs, which unavoidably introduced

error in similarity measurement. Future work may consider a hybrid approach that allows

affine transformation between any two VOIs while assuming rigidity of each VOI. Spatial

relationships of the VOIs can be used as priors to initialize and constrain their relative
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transformation to avoid overfitting if all VOIs are registered independently.

Implemented in C++, M3VR took up to 21 minutes to register two high resolution

volumetric datasets (800×800×650). Although it is not as fast as some of the existing

volumetric registration algorithms that are able to complete in seconds or a few minutes

[79, 83, 110], it is still practical for many offline analysis applications. Future work on

improving the computational efficiency of M3VR will be focused on reducing irrelevant

volume for processing and utilizing the paralleling computing advantage of GPU [72, 83]

and more powerful computer workstations. This will significantly reduce the computational

time to determine model parameters and produce optimal alignment for each dataset and

maintain the same accuracy, even if the computations are not in real time. With further

improvement, M3VR can potentially become a useful advanced registration algorithm for

many biomedical applications.
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Chapter 5: Zebrafish Larvae Heartbeat Detection from Body

Deformation in Low Resolution and Low Frequency Video

The work presented in this chapter has been published in [124].

5.1 Introduction

Over the past two decades, the zebrafish has emerged as a crucial vertebrate model for

research in many fields such as genetics, developmental neurobiology, cardiovascular disease,

and epilepsy. Advantages of using zebrafish in research include high fecundity rate, fully

sequenced genome, 70% homology with human genes, and optical transparency of the larva’s

body [125–127]. These advantages, along with the low cost of larvae maintenance and

rearing, make zebrafish an excellent model for high-throughput screening and imaging [125,

128,129].

Because of its many advantages, zebrafish is recognized for modeling human diseases,

including cardiac diseases [130]. The heart of a zebrafish larva is located posterior and

inferior to the head and consists of two main components, an atrium and a ventricle [131].

Although there are anatomical differences to the human heart, zebrafish presents many par-

allels regarding heart function and genetically-driven cellular patterns [130–132]. Cardiac

disease studies have investigated heart development in several zebrafish genetic mutants

[130–132]. However, previous studies have not thoroughly investigated the heartbeat pat-

tern of zebrafish larvae under stress conditions. This is in part due to the inefficiency

of applying existing heartbeat detection methods in zebrafish larvae including performing

electrocardiograms on the larvae, laser doppler microscope technique, and manual count-

ing by experts via slow-motion replay of video recordings [129, 133]. These methods are

labor-intensive, time-consuming, and often require special training. In order to reduce the
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workload and preparation required for cardiac investigation, as well as reducing investi-

gator bias and increasing repeatability, studies have developed automated image analysis

software to track and analyze larva heartbeats. These programs are able to determine larva

heart rate and other cardiac parameters such as beat-to-beat intervals, heart rhythmicity,

and heartbeat regularity [129,134,135]. Heartbeat detection is typically performed by ap-

plying pixel intensity analysis over a region of interest using segmentation operations and

morphological transformations [127,129,130].

To track the subtle motions of the larva heart, several different experimental setups and

imaging techniques have been used in previous studies to improve image resolution, contrast

and quality. De Luca et al. employed a confocal resonant scanner to acquire high-resolution

images [129]. They also simplified motion tracking through implementation of fluorescent

tags in the zebrafish larvae to express green fluorescent protein (GFP) around cardiac

chamber walls and red fluorescent protein (DsRED) in red blood cells [129]. Pylatiuk et

al. acquired high-resolution images of the larva’s front quarter through the use of a 20

x inverted microscope in conjunction with a digital camera with high recording resolution

(1392 x 1040 pixels) [135]. In their study, in order to eliminate intensity influence in acquired

images, images were converted from the RGB color space to the CIE 1976 color space [135].

Chan et al. imaged blood circulation in the larva caudal vein using a stereo-microscope at

48 x magnification in conjunction with a color CCD camera [134]. While the existing

methods were shown to produce satisfying results, experimental setups are often complex,

requiring powerful microscopes and high-end cameras or fluorescent tags. In addition,

they require observation of the larva from the lateral or ventral view to directly detect

the heart’s contraction, relaxation, and blood flow in order to perform cardiac analysis.

However, from the dorsal view (looking down on the larva positioned ventrally, Fig. 5.2)

the larva’s heart components are entirely obscured, preventing direct observation of the

heart. This presents a challenge for automated heartbeat detection in studies utilizing

electrophysiological recordings, in which the larva is positioned upright due to the electrode

being positioned in the midbrain tectum opticum.
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In computer vision research, Balakrishnan et al. used a featured-based method for

human heartbeat detection from videos [136]. The heartbeat frequency and beat lengths

were extracted by measuring movement of the head in the video frames. Motivated by this

study, I propose a robust multi-resolution motion tracking approach for automated detection

of heartbeat movement of a single immobilized zebrafish larva in the ventral position using

low resolution and low frame rate camera configuration. This setup is much cheaper and

affordable to most research labs. The proposed method Z-HRAM was tested on larvae

during electrophysiological recordings and simultaneous video acquisition with frame rates

between 3 and 4 fps. Accuracy was evaluated through comparison to the electrocardiogram

(EKG) signals corresponding to recorded videos and to manual heartbeat tracking results.

5.2 Method

5.2.1 Animals and Maintenance

All the animal procedures were authorized by the Ethics Committee on the Use of Animals

(CEUA # 4660-1 and #4785-1) of UNICAMP, Campinas, SP, Brazil. Zebrafish tanks were

kept in a temperature-controlled room at 23 C, with an automated photoperiod, being 14

hours of light cycle and 10 hours of dark cycle. The animals were raised in glass aquarium

with density of 2 to 3 fish/liter under controlled water conditions [137]. TetraMin flocked

feed was given three times a day with automatic dispensing and supplemented with artemia

and dried Mysis shrimp (First Bite Aquarium Foods, Lincolnshire, UK) once per day.

Fertilized eggs were collected, placed in Petri dishes and kept in an incubator with the same

light cycle and temperature settings as for adults. Larvae were fed with paramecium once

per day. The developmental stage was determined and recorded as a function of days post

fertilization (dpf) [138].

Because zebrafish is a valuable translational model for epilepsy research, I decided to

use the pentylenetetrazole (PTZ) induced-seizure model. All chemicals were acquired from

Sigma Aldrich. Electrophysiological recording of larvae was carried out in developmental
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ages between 5 and 16 dpf using stainless steel electrodes with 125 µm diameter. In order

to allow manipulation, all animals were anesthetized in 0.002% tricaine and 10 µM d-

tubocurarine, then immobilized on 1.2% concentration low-melting agarose and positioned

ventrally in a Petri dish, so that the dorsal side of the animal is facing upward. The electrode

positioning was performed with the aid of a binocular loupe and a triaxial micro-manipulator

setup, always installing the electrode in the tectum opticum of the larvae.

Pentylenetetrazole (PTZ) was applied at 30 mM concentration to the bath and each

animal was kept up to 30 minutes exposed to this convulsing agent. I obtained data (video

and electrophysiology) from a total of 20 larvae.

5.2.2 Electrophysiology and Videotaping

The electrical signal was pre-amplified (C3313/RHD2216, Intan Technologies LLC) and

filtered from 1 to 1000 Hz; the data were then amplified by a commercially available

C3100/RHD2000 Evaluation System (Intan Technologies LLC), to a final gain of 1000.

Recordings were performed in one channel with samplerate set at 10k samples per second.

Video was acquired simultaneously with the electrophysiological recordings by an Opti-

cam attached to the microscope (see Fig. 5.1 for picture of the setup and schematic). Video

resolution was 1024 x 768 and frame rate was around 3.7 frames per second. The frame

rate varied between 3 and 4 frames per second, which was determined through hardware

and could not be controlled by the software.

Electrophysiological recordings were analyzed using Matlab (Mathworks, Natick, MA)

by subsampling raw data to 1 kHz (down from 10 kHz), filtering from 1 to 50 Hz, and

visualizing signals over time. Synchronization with the video was performed manually by

recording the last second of the file for the video and the electrophysiological signals. The

Intan recording software includes timestamps on the electrophysiological recordings that

were taken from the computer’s operating system. The video files were also recorded by

the same computer, and thus provided timestamps which were within 0.5 sec of the Intan

file timestamps. I therefore report here signals (video and electrophysiology) that were
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Figure 5.1: Experiment setup. (a) Setup for electrophysiology and image acquisition. (b)
Flowchart of the data recording setup.

synchronized to be within 0.5 sec.

The average heart rate for a control zebrafish larva is 2 to 3 beats per second [127],

whereas the average heart rate of an animal treated with drugs may increase or decrease

depending on the drug used [129]. In the proposed experiments, the mean heart rate for

the treated zebrafish embryos was about 1.2 beats per second, as validated by electrocardio-

graphic data. According to the Nyquist sampling theorem, the signal must be sampled at

least twice the highest frequency contained within the signal to avoid aliasing. In our case,

the minimal video capture frequency must be at least 2.4 Hz. The video frequency met this

requirement and was sufficient for capturing the expansion and contraction motion of the

heartbeat. One advantage of collecting video at a relatively low temporal frame rate is that

redundant frames are avoided and processing time is reduced because only key frames of

body deformation correlated with heart expansion and contraction were recorded.

5.2.3 Z-HRAM Algorithm and ROI Selection

The flowchart of the proposed low-cost heart rate detection method is presented in Fig. 5.2.

The Z-HRAM algorithm mainly consists of four steps: 1) Given input zebrafish image

sequence, region of interest is identified around the larva’s body in the input image sequence.

2) For two continuous image frames (previous and current frames), a multi-resolution dense
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optical flow method is applied to estimate the dense motions. 3) The estimated motions are

then mapped to zebrafish body expansion and contraction movements, which are correlated

with heartbeats. 4) The principle deformation and heartbeats are determined through

principal component analysis. To validate the proposed method, I compared its results with

EKG measurements. I also compare its accuracy and performance with manual tracking

and one published method on automatic detection of zebrafish heartbeat [135].

Input zebra�sh 
image sequence

Heartbeat comparison with 
manual tracking and 

published method

Region of interest 
Selection

Heartbeat validation with 
EKG

Zebra�sh body expansion and 
contracion estimation in two 

continuous frames 

Multi-resolution dense 
motion estimationin in two 

continuous frames 

Deformation analysis 
using PCA

Figure 5.2: Flowchart of the Z-HRAM algorithm.

There are two major steps (Algorithm 1). One is the tracking of the local deformation

determined by comparing two consecutive frames by the Farneback method [139]. This step

estimates dense optical flow with high accuracy. The second step is on applying principal

component analysis to identify the main deformation direction.

The challenges of heartbeat detection from tracking zebrafish larvae body motion include

small motion magnitude and low signal-to-noise ratio (see Fig. 5.3). Electrophysiological

recordings are often performed on the larvae in studies using the seizure-induced model

[125, 128, 140]. As mentioned previously, during these recordings, the larvae can only be

positioned upright due to the electrophysiological recording requirements. Because direct
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Algorithm 1: Zebra�sh heart rate automatic method (Z-HRAM)

1     Select region of interest (ROI)
2     Compute and visualize local deformation on ROI using multi-resolution
3     dense optical �ow
4     for t = 1 to N - 1 // iterate all video frames
5           Compute multi-resolution images using Gaussian pyramid
6           for l = L, L-1, ... , 1, 0 // iterate multi-resolution levels
7                 Compute motion vector dt

l between image lt
l and I l

t+Δt at
8                  multi-resolution level l
9                  Propagate the dt

l to level l - 1
10         end
11  end
12  Detect  heart rate using principal component analysis (PCA)

observation of heart movement cannot be performed when the larva is positioned ventrally,

I propose that indirect heartbeat observation can be performed through detection of the

larva’s body deformation.

Based on observation of the collected larva recordings and analysis of zebrafish anatomy,

I identified a region consistently displaying periodic movement of the larva’s body. The

deformation is located near the edge of the swim bladder, a region with a vascular network

that includes the posterior aorta [141, 142]. By comparison of the visual deformation

with corresponding electrophysiology data, I conclude that epithelium deformation is a

consequence of the larva heartbeat and can be used as a robust biomarker to infer heartbeat.

The motion of the region of interest was determined semi-automatically. I first identified the

swim bladder region which resembles an ellipse from the dorsal view. Ellipse fitting [143]

was applied to identify the initial elliptical region (red curve in Fig. 5.3). The bounding box

around the ellipse was then calculated (yellow in Fig. 5.3). Based on zebrafish anatomy and

observation, the consistently periodic movement mainly happens around the lower boundary

of the swim bladder. The final regions of interest were as two rectangles subdivided from

the bounding box (purple and cyan regions in Fig. 5.3) inside the swim bladder. For the few

recordings from larvae whose swim bladders did not closely resemble an ellipse, I defined
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the region of interest manually.

12

swim bladder

electrode

Figure 5.3: In the first frame of the video, the regions of interest that encode motion were
determined near the swim bladder. The electrode was positioned on the top right. Larva
was ventrally positioned for electrophysiological recording. Yellow rectangle indicates the
bounding box. Red ellipse outlined the swim bladder. Cyan and pink rectangles are the
automatically selected regions of interests.

5.2.4 Body Deformation Detection and Visualization

The contraction and expansion movements of the larva heart were tracked by measuring

the deformation in the zebrafish body by applying the dense optical flow method [139].

Dense optical flow is a technique that can estimate motion of an object from two image

frames recorded at consecutive timestamps. It has been widely used in motion detection,

object tracking and depth estimation. The dense optical flow method first approximates the

intensity of each pixel by its neighborhood Ω with a quadratic function and computes its

coefficients between frames. The size of the pixel neighborhood Ω determines smoothness of
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the image. Large Ω yields smoother motion. Let ft(µ) be an intensity of pixel at coordinate

µ = (µx, µy) at frame t. Then ft(µ) is approximated by solving a weighted least-squares fit

to a quadratic function of the neighbor pixel intensities:

ft(µ) = µTAtµ+ bTt µ+ ct (5.1)

where At is a symmetric matrix, bt is a vector, and ct is a scalar. These coefficients are

estimated from the weighted least squares fit to the pixel value in the neighborhood. Let

d be a motion vector between frame t and t+ ∆t. Then the relationship between intensity

ft(µ) and intensity ft+∆t(µ) can be expressed as:

ft(µ) = ft+∆t(µ+ d)

= (µ+ d)TAt+∆t(µ+ d) + bTt+∆t(µ+ d) + ct+∆t

= µTAt+∆tµ+ (bt+∆t + 2At+∆td)Tµ+ dTAt+∆td+ bTt+∆td+ ct+∆t

(5.2)

The coefficients of the quadratic functions in Equations 5.1 and 5.2 are equated:

At = At+∆t (5.3)

bt = bt+∆t + 2At+∆td (5.4)

ct = dTAt+∆td+ bTt+∆td+ ct+∆t (5.5)

The motion vector can be expressed as a function of the coefficients by rearranging terms

in Equation 5.4:

d = −1

2
A−1
t (bt+∆t − bt) (5.6)
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Since the locally approximated intensities in the neighborhood are not the exactly the

same between frames t and t+ ∆t due to local deformation, Equation 5.3 does not always

hold in practice. The average of At and At+∆t, Ât can be used to approximate the mean

intensity of these two image frames:

Ât =
At +At+∆t

2
(5.7)

Then Equation 5.7 can be rewritten as:

Âtd = ∆bt (5.8)

where ∆bt = −1
2(bt+∆t − bt).

In theory, I can apply Equation 5.8 to estimate the motion vector d for each pixel, but

the motion vectors were shown to be too small and noisy due to inconsistent correspondence

found for each pixel. Therefore, I take advantage of the fact that the motion vectors vary

gradually and smoothly across the small neighborhood Ω of each pixel and integrate local

motion vectors over the neighborhood region Ω for each pixel. Specifically, I would like to

estimate a motion vector d which is smooth over Ω for each pixel through minimizing the

following energy function:

E(d) =
∑

∆µ∈Ω

w∆µ||Ât(µ+ ∆µ)d−∆b(µ+ ∆µ)||2 (5.9)

where w∆µ is a weight function of pixel µ in the neighborhood. Fig. 5.4 demonstrates

the influence of the neighborhood size Ω = 1, 2, 4, 8, 16 on the estimated motion vector d.

Within pixelwise motion vector estimation Ω = 1 (Fig. 5.4 (a) left), the motion vector

turns to be too small and noisy (Fig. 5.4 (a) right). The motion vectors get smoother when

Ω increases (Fig. 5.4 (b)-(e)), demonstrating the advantage of introducing the additional

energy function.
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Figure 5.4: Motion vectors estimation with different neighborhood size Ω. (a) Ω = 1, (b)
Ω = 2, (c) Ω = 4, (d) Ω = 8, (e) Ω = 16. The motion vectors tend to be small and noisy
when Ω is small and become smoother as Ω increases.71



To increase the accuracy and robustness of motion estimation, multiscale analysis tech-

nique has been widely applied in problems dealing with image processing [144]. Here I

applied the pyramidal optical flow method [145], which uses dense optimal flow in a multi-

resolution scheme. In each step, the image was down sampled by half in resolution, which

also reduced each pixel displacement by half. In order to overcome the artificial edges dur-

ing image down sampling, Gaussian kernel was applied and a Gaussian pyramid was built

for each image frame It at timestamp t (Fig. 5.5). The number of levels of resolution can

be specified for the desired motion magnitude. In our study, two levels of resolution were

sufficient for dense optical flow tracking. Further down sampling would be redundant as

the image resolution at the top level would be very low. The original image data served as

the lowest level in the pyramid and was denoted as I0
t . The image in each level l was the

sub-sampled image of the adjacent lower level image l − 1 :

I lt(µx, µy) =
1

4
I l−1
t (2µx, 2µy) +

1

8
(I l−1
t (2µx − 1, 2µy) + I l−1

t (2µx + 1, 2µy)+

I l−1
t (2µx, 2µy − 1) + I l−1

t (2µx, 2µy + 1)) +
1

16
(I l−1
t (2µx − 1, 2µy − 1)+

I l−1
t (2µx + 1, 2µy + 1) + I l−1

t (2µx − 1, 2µy − 1) + I l−1
t (2µx + 1, 2µy + 1))

(5.10)

A top-down dense optical flow motion tracking was performed on the image pyramid.

For each pyramid level l = 1, ..., L, define the corresponding position µl for a point µ0 in the

pyramidal image I lt . µ
0 is point in image I0

t . Based on the pyramid representation, vector

µl on level l is computed as follows:

µl = µ0/2l (5.11)

Motion tracking started from the highest level L. A motion vector dL can be computed

from ILt and ILt+∆t using dense optical flow. dL was then projected onto the finer image IL−1
t
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Figure 5.5: Multi-resolution dense motion estimation using Gaussian pyramid. Each level
in the pyramid is a sub-sampled image of the lower level. The dense optical flow between

the top level images ILt and ILt+1 is computed. Then, the coarse-level dense optical flow is
projected onto the lower finer pyramidal level image and continue this at each level until
the original image level (level 0) is reached.

as an initial pixel displacement in the lower level L − 1. Dense optimal flow was applied

between pyramidal images IL−1
t and IL−1

t+∆t on level L− 1 to refine motion vectors dL−1 on

this level. dL−1 was then propagated to image level L − 2 and so on, until the original

image I0
t was reached. To visualize contraction and expansion deformation in the body

region, I computed the dense motion vectors for all pixels in the region of interest using

the approach described above. The motion vectors were then mapped to the RGB color

space (Fig. 5.6 and Fig. 5.7). Motion image in Fig. 5.6 (d) demonstrated body expansion

between two continuous frames in Fig. 5.6 (a) and (b). The motion vectors that have

similar motion direction and magnitude in Fig. 5.6 (c) were associated with similar colors

in the motion image in Fig. 5.6 (d), implying pixels of similar color underwent similar

deformation. Similarly, Fig. 5.6 (g) and (h) illustrated the body contraction motion vectors

and color image between two continuous frames in Fig. 5.6 (e) and (f). Having the same

spatial resolution as the images in the video recordings, the motion images were able to

clearly visualize expansion and contraction of the body. After computing pixel-wise motion

images of all images in the video recording, zebrafish body deformation frequency can be
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Figure 5.6: Illustration of dense optical field. (a), (b) zebrafish body expansion in two
continuous frames. (e), (f) zebrafish body contraction. (c), (g) and (d), (h) are two different
ways to visualize the dense optical flow fields. In (c) and (g) expansion and contraction
motion fields are visualized as motion vectors on the dense grid. For deformation with large
magnitude it is hard to visualize. In (d) and (h), expansion and contraction deformation is
visualized via the color-coding method as in Fig. 5.7.

associated with the heartbeat.

5.2.5 Heart Rate Detection using Principal Component Analysis

As described previously, the localized deformation of the zebrafish body is a consequence

of the heartbeat. The heart motion calculated from dense optical flow has many local

variations in different orientations and magnitudes (Fig. 5.6 (d) (h)). Possible reasons for

these local variations include low image resolution, low imaging frequency and the lack of

texture features. In order to properly assess the deformation in relation to heartbeat, the

main direction of tissue deformation inside the region of interest needs to be determined.

To achieve this goal, I first converted motion vectors from the Cartesian coordinate system

into the polar coordinate system (Fig. 5.8 (a)) so that the motion vectors can be directly

characterized by their orientations and magnitudes. The orientation and magnitude compo-

nents represent distinct information of deformation, which implies expansion (Fig. 5.6 (d)

and Fig. 5.8 (a)) and contraction (Fig. 5.6 (h) and Fig. 5.8 (b)) of the zebrafish body. Next,
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Figure 5.7: Color scheme used to represent the optical flows. The orientation of each motion
vector is mapped to hue and the magnitude is mapped to saturation. It is the standard
scheme in dense optical flow visualization that enables visualization of the local deformation
for all pixels in the image.

I apply principal component analysis (PCA) to find the major deformation direction while

ignoring local deformation caused by suboptimal image quality (Fig. 5.8 (b)). PCA is a

commonly used method for dimensionality reduction. It applies orthogonal transformation

to map the original data onto principle components, which are linearly uncorrelated to each

other. The first principal component with the maximum eigenvalue captures the majority

of the variation.

Formmotion vectors di, i = 1, ...,m converted in the polar coordinate system pi (Fig. 5.8

(a)), the covariance matrix is formulated as:

Σ =
1

m

m∑
i=1

(pi − p̄)(pi − p̄)T (5.12)

where p̄ is the mean motion polar coordinate. Two eigenvalues (λ1, λ2) and the cor-

responding eigenvector (v1, v2) were calculated using Singular Value Decomposition. The

main deformation direction was identified by finding the eigenvector with the larger eigen-

value. Fig. 5.8 (b) demonstrates eigenvectors during body expansion and contraction. The

main deformation direction was the one with the long axis. If the two eigenvectors have

opposite main deformation directions (angle between the two directions larger than 90◦ ),
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Figure 5.8: Deformation analysis in continous frames. (a) Expansion (as in Fig. 5.6 (d)) and
contraction (as in Fig. 5.6 (h)) deformation fields are represented in the polar coordinate
system for two continuous frames. (b) Main deformation fields (blue and black axes) were
detected for the expansion and contraction deformation fields respectively using PCA.

this indicates one heartbeat (a pair of expansion and contraction). Otherwise if the de-

formation continues along one general direction (angle between the two directions smaller

than 90◦ ), this indicates a continuation of one expansion or contraction movement. Given

the main deformation direction for each frame, the heart rate was calculated by counting

the number of eigenvector pairs with opposite main deformation direction in the continuous

frames. Fig. 5.9 demonstrates continuous expansion and contraction deformation in the

region of interest over 2 seconds.

The proposed Z-HRAM can identify the larva body as ROI and track localized larva

body deformation. This deformation is highly correlated with heart movement. Multi-

resolution dense optical flow-based motion tracking guarantees a smooth motion vector

estimation over small region. Principal component analysis identifies expansion and con-

traction pattern that is used to determine heartbeats. Z-HRAM can detect and track the

heartbeats of immobilized, ventrally-positioned zebrafish larvae without direct larva heart

observation. Another advantage of Z-HRAM is well suited for the analysis of low resolution

and low frequency image data.
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Figure 5.9: Continuous expansion and contraction deformation in the regions of interest
over continuous frames.

5.3 Results and Validation

In order to validate the proposed heartbeat tracking method, I compared results from

Z-HRAM to a previously published automatic zebrafish heartbeat detection method by

Pylatiuk et al. [135] and two manual tracking results in a number of video segments. A

custom Matlab program with Graphic User Interface (GUI) was implemented to allow for

manual tracking, frame-by-frame, of the deformation. Two unbiased researchers tracked

the deformation using the Matlab program, and their results were then compared to the

automated detection results.

By correlating the electrocardiographic (EKG) signal to the manual tracking results, I

confirmed that the examined motion corresponds to the contraction and relaxation of the

heart and that swim bladder tracking is a feasible method to infer heartbeats from the

dorsal view. It should be noted that this method (visualization of periodic movement of the

swim bladder) is also traditionally used in laboratory settings during experimental sessions

to ascertain that the animal is alive.

In Fig. 5.10, I show an example of the heartbeat detected by EKG and Z-HRAM over

10 seconds. Six heartbeats were detected from both the EKG signal and Z-HRAM applied

to the video signal acquired simultaneously with the EKG. Fig. 5.10 also shows that the

heartbeats were detected by both methods at similar time instances, with a maximum error
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Figure 5.10: Comparison of the timing in heartbeat over 10 seconds using EKG (red) and
Z-HRAM (green).

of 0.28 seconds. It should be noted that the amplitudes shown by the green and red bars do

not mean any physical quantity (they are arbitrary units). Here I are concerned mainly with

the time stamps for each heartbeat, and not with the size of the beat, as this is unrealistic

to expect only from the swim bladder vascular movement. Table 5.1 presents heartbeats

detected from EKG and Z-HRAM on three different trials of different durations (20, 10,

and 8 seconds respectively). In each trial, the number of heart beats estimated by Z-HRAM

was consistent with the EKG data, demonstrating accuracy of Z-HRAM.

Table 5.1: Comparison of number of heartbeats measured from EKG and Z-HRAM

Trial EKG Z-HRAM

1 10 10

2 6 6

3 5 5

The heartbeat counts from 20 video trials were analyzed. Fig. 5.11 shows comparison of
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results from researchers (Manual 1 and Manual 2), method by Pylatiuk et al. [135], and Z-

HRAM. Results from Z-HRAM were mostly consistent to the manual tracking results. The

mean error between Z-HRAM and manual tracking is 1.3 heartbeats in 20 trials over 545

seconds in total. The mean error between the results from method by Pylatiuk et al. [135]

and the manual tracking is 7.78 heartbeats in 20 trials. The detection rate of Z-HRAM

is 99% over 545 seconds. Pearson’s correlation coefficient between manual and Z-HRAM

results, and between manual and Pylatiuk et al. results were 0.99 and 0.79 respectively.

A linear regression was performed between the results from the two automatic methods

and two manual tracking results. As shown in Fig. 5.12 and Table 5.2, a high linear

correlation between Z-HRAM and two manual results are obtained (R2
Z−HRAMManual

=

R2
Z−HRAMManual2

= 0.99). The correlation between the results from the method by Pylatiuk

et al. and two manual results are much lower (R2
PIVMManual

= 0.66, R2
PIVMManua2

= 0.63).

In summary, Z-HRAM outperforms the other automatic heartbeat detection method by

Pylatiuk et al. in terms of heartbeat detection accuracy. The main reason is that method

developed by Pylatiuk et al. counts the heartbeat by calculating the local intensity variation

of the heart region in lateral view, which allows for visualization of the heart movement

directly. The images (from that paper and with that method) show significant intensity

variation during heart expansion and contraction. However, from the dorsal view (Fig. 5.2),

the larva’s heart components are entirely obscured, preventing direct observation of the

heart, and local intensity variation is the smaller than that in direct heart observation.

Moreover, the method by Pylatiuk et al. leverages local maxima detection method on the

periodic heartbeat curve to the count the number of heartbeats. The recorded video for

such method therefore needs to be acquired in high frequency (30 frames per second). Given

the low sample rate (i.e. lower than 5 frames per second), I expect many of the previously

published methods [129, 134, 135] for heartrate detection to either not be applicable or to

underperform when tested under the dorsal view constraints.

I compared the computational time of Z-HRAM to manual tracking and to the previously
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Figure 5.11: Comparison of correlations of the two heartbeat detection methods, Z-HRAM
and the method by Pylatiuk et al., to the two manual tracking results.

Table 5.2: Comparison of linear correlation between algorithm and manual results

Algorithm vs. Manual
Linear

coefficient
R2 score

Pylatiuk et al. 2014
vs. Manual1

y = 0.69x+ 1.96 0.66

Z-HRAM vs. Manual1 y = 1.01x− 0.44 0.99

Pylatiuk et al. 2014
vs. Manual2

y = 0.69x+ 1.93 0.63

Z-HRAM vs. Manual2 y = 1.04x− 1.12 0.99
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Figure 5.12: Heartbeat count comparison among manual tracking, Z-HRAM, and the
method by Pylatiuk et al. X axis represents number of heartbeats counted using man-
ual tracking through 20 video trials. Y axis represents number of heartbeats measured
through proposed method Z-HRAM and method by Pylatiuk et al. for the corresponding
trial.
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Figure 5.13: Computation time of manual heartbeat tracking, Z-HRAM and the automatic
tracking method by Pylatiuk et al. Z-HRAM is 80 times faster than the first researcher
(manual 1) and 60 times faster than the second researcher (manual 2) and previous work
by Pylatiuk et al.

published method [135], as I consider these the state-of-the-art for heartbeat detection in

zebrafish. As Fig. 5.13 shows, Z-HRAM is at least 60 times faster than manual tracking

and the method by [135], which demonstrates Z-HRAM’s advantage in significantly reducing

processing time on similar video data.

5.4 Discussion

Given the high correlation for the three methods of heartbeat detection (EKG, manual

heartbeat tracking, and Z-HRAM), I have demonstrated a robust method to automatic ze-

brafish heartbeat detection in ventrally-positioned larvae without performing direct obser-

vation of the larva heart. The multi-resolution dense optical flow motion tracking approach

is able to adequately capture even minimal local expansion and contraction of a zebrafish

body deformation when applied on low resolution and low frame rate (3-4 fps) video data.
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Thus, Z-HRAM is capable of supplementing experiments that utilize low-cost camera con-

figurations, making it an accessible tool for most labs. In regards to efficiency, Z-HRAM

is many times faster than manual video analysis and then the method described in [135].

Z-HRAM requires minimal input from the user for cases when automatic region of interest

identification is not feasible.

The most prominent limitation of Z-HRAM is the need for visible deformation. This

limitation is common in video analysis: if there is a video with no deformation visible,

then no heartrate will be detected (even manually by researchers). In periods where no

deformation is visible, no algorithm will be able to detect any heart movement or heartrate.

The larvae used in this study were between 5 and 16 days post fertilization. I believe this age

range is reasonable for any research involving individual larvae. I are aware, however, of the

need for experiments with younger animals. In the future I intend to adapt Z-HRAM to such

larvae, in which the swim bladder is not fully developed and the blood vessel deformation

may be different. The accuracy of the proposed algorithm in determining the beat-to-beat

intervals depends directly on the frame rate. In the 3 to 4 fps videos that were tested,

the max beat-to-beat interval error was 0.27 seconds, as expected. Lastly, the proposed

algorithm is currently limited to detecting heart rate and beat-to-beat intervals. While

other methods require the lateral or ventral view, they are able to perform more exhaustive

analyses of larva cardiac function since they can directly observe the deformation of the

heart chambers.

The motion region of interest located on the larva’s body. Considering the priori

anatomy knowledge of the larva’s body, I outlined the ROI semi-automatically. To improve

efficiency, an automatic method for ROI extraction could be integrated through image seg-

mentation. The spectral method constrained by Bayesian inference was widely used for noisy

medical image segmentation. This method could outline boundary over image with noisy

and incomplete information among different modalities and tissues [146–148]. Bayesian in-

ference could be introduced to estimate initial edge map of swim bladder [146–148]. The

real boundary would be smoothed and refined through spectral method using probability
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estimation. Finally, the current Gaussian pyramid based multiscale optical flow motion

tracking method can successfully detect local motion vectors over swim bladder region,

and this motion pattern is highly correlated with heartbeats. Through Gaussian pyramid

and Equation 5.9, the estimated motion vectors vary gradually and smoothly across the

small neighborhood of each pixel. To further understand various heartbeat behavior and

movement characteristic when applying different drugs on zebrafish, I will integrate the

multiscale wavelet decomposition method [146, 147] in future work, which would help us

better understand how the heartbeat responding to different drugs.

5.5 Conclusion

As Z-HRAM produces a whole range of results such as indirect detection of the heart

contraction and expansion, I anticipate its applicability to cardiac function and heartbeat

pattern research in animal models where the heart chambers are not easily visible (through a

stereoscope) or that cannot be recorded easily via any two-dimensional or three-dimensional

imaging techniques.

I have combined two imaging algorithms and have demonstrated that the results can be

readily validated on a subset of the signals acquired. For manual tracking of heartbeats, a

researcher would need to invest roughly 137 seconds for each 30 seconds of video analyzed.

It would not be feasible to fully analyze video recordings from 20 experiments (30 minutes

each) without automation. Z-HRAM allows for unassisted detection of region of interest

in video signals, tracking of even subtle motion direction (contraction/expansion), and

automated counting of heartbeats, thus enabling analysis of heartbeat dynamics over longer

experiments.
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Chapter 6: A Real Time Haptic Simulator of Spine Surgery

The work presented in this chapter has been published in [149,150].

6.1 Introduction

Spinal surgeries are volume complex and high-risk procedures [151]. The success rate of

spine surgeries mainly depends on the skill of the surgeon. Computer-assisted systems used

in operating rooms such as the surgical navigation system using 2D fluoroscopy [152] have

been developed. However, the accuracy is very sensitive to various system errors and does

not fundamentally improve skills of surgeons. Traditional spinal surgical training involves

gaining knowledge through didactic sessions [153] and cadaveric dissection and practice.

However, the high cost and shortage of cadavers prevent their frequent usage.

I present a real time haptic spine surgical simulator that will be used to train residents,

fellows and spine surgeons in a hospital training program. It provides a realistic environment

for the trainees to practice spine surgeries and has the advantages of being interactive, low-

cost, representative, and repeatable over conventional training approaches. Haptic Phantom

offers the users force feedback, differentiating the proposed system from other screenbased

training systems. Computational efficiency was achieved by developing advanced graphical

rendering methods. The volumetric data was classified into surface voxel cloud and inner

voxel cloud by the adjacency graph which stored the relationship among voxels. To speed

up the collision detection and real time rendering between the virtual surgical tools and the

lumbar model, Octree-based algorithms and GPU technique were applied. To enhance the

physical realism, three dimensional lumbar vertebrae models were reconstructed from CT

images and associated with non-homogeneous bone density such that the rendered model

best represents the spine anatomy and mechanics. I demonstrate system performance by
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conducting pedicle screw insertion.

6.2 Related Work

Surgical training using virtual reality (VR) or augmented reality (AR) systems becomes

commonly used to reinforce traditional training. For instance, studies showed that VR-

based laparoscopic surgical training can improve the operative the performance of surgical

trainees compared to no supplementary training and box-trainer training and reduce the

actual operation time by 17-50% after training [154]. Training on a realistic VR-based

arthroscopic knee surgical system resulted in a higher skill level in the operation room

compared with the standard training [155]. Moreover, integrating a haptic device with

a virtual simulator was successfully applied in training surgeons to conduct arthroscopic

surgery [156] and neurosurgery [157] which were both shown to be effective and economical.

Trainees learn and advance specific surgical skills through repeated interaction with the

virtual anatomy and physically realistic biomechanical environment; training is no longer

limited by cadaver resource.

Despite the development of many AR or VR-based surgical training systems, I were

not able to find a suitable simulator for the proposed spine surgical training program. VR-

based pedicle screw insertion simulators [158] provided visual feedback only so the users had

no tactile feedback. Other haptic enhanced system is the ImmersiveTough system which

does not incorporate bone mechanics and is lack of system validation [159, 160]. Here I

present an interactive physically-based spine surgical simulator collaboratively developed

by researchers, engineers and orthopedic surgeons. It provides a realistic virtual surgi-

cal environment augmented by instantaneous sense of touch of tool manipulation through

haptics. The contributions of this paper are as follows:

• 3D anatomical model of the lumbar spine was automatically reconstructed from CT

images. Local bone material density was derived from CT images to realistically model

the inhomogeneity of lumbar vertebra mechanics and calculate haptic force feedback.
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• Rather than a surface model, voxel-based model was applied to represent the lum-

bar vertebrae, which is physically more accurate for modeling heterogeneous lumbar

properties and simulating surgical tool and tissue interaction.

• To achieve real-time simulation, I implemented surface reconstruction after collision

detection on GPU.

• A data-driven nonlinear bone drilling force model was proposed, which more sensibly

simulates the interaction between the surgical tool and the lumbar vertebrae.

• Patient-specific spine model reconstruction and surgery simulation can be achieved.

I demonstrate the performance of the proposed simulator through pedicle screw inser-

tion shown in Fig. 6.1, which is a common spine surgery procedure associated with highly

unpredicted perforation rate and malplacement rate [161]. The results show that the system

is interactive, realistic and scalable. With more modules being developed, I envision the

simulator not only to be used for training in the medical center in a few months but also

for surgical planning and preoperative simulation, making an impact in improving spine

surgical outcomes.

6.3 Method

6.3.1 Image Preprocessing and 3D Model Reconstruction

The 3D surface models of the lumbar vertebrae were first reconstructed from CT images

(image size of 512 x 512 and pixel resolution of 1mm) in the Visible Female dataset [162].

The lumbar vertebrae were automatically segmented using thresholding and region growing

algorithms (see Fig. 6.2(a)). A 3D model was built from the segmented regions. Due to

imperfect image segmentation, structures other than the lumbar vertebra were present in

the 3D model. The noisy points were removed by performing a statistical analysis on each

points distance to its neighbors. Assuming a Gaussian distribution on the mean distances,

points with distance greater or less than the global mean distance plus 0.5 times the standard
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Figure 6.1: Through manipulating the Phantom, a user performs pedicle screw insertion
and gets real time feedback.

deviation were identified as outliers and removed. Finally, a 3D polygonal surface model of

each lumbar vertebra was reconstructed from the filtered lumbar point cloud using Marching

Cube method (Fig. 6.2(b)).

6.3.2 Voxelization and Hybrid Data Structure

The bottleneck of an interactive surgical simulator is the computationally intensive physically-

based simulation of tissue-tool interaction. Therefore, how to represent anatomical struc-

tures efficiently and how to simulate the physics behind virtual surgical procedures become

the two primary technical challenges. I built a hybrid data structure that combines sur-

face model shown as the grey outer surface and volumetric model shown as the blue cubes

(Fig. 6.3(a)). The surface model shown in Fig. 6.2(b) was voxelized by applying the vox-

elization algorithm [163] (Fig. 6.3(b)). This structure guarantees the realism of continuous

haptic interaction on the volumetric data (Fig. 6.3(a)) while maintaining the efficiency
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(a) (b)

Figure 6.2: (a) A lumbar vertebra shown in red segmented from CT images. (b) 3D surface
model reconstructed from point cloud data.

and quality of surface rendering [164]. In order to provide accurate force feedback, the het-

erogeneity of bone mechanics in the lumbar vertebra was modeled in the simulator. Since

significant correlation was found between CT image intensity and bone mineral density

[165], I associated each voxel with the bone stiffness obtained from the corresponding image

pixel, which clearly showed heterogeneity (Fig. 6.3(c)). Such geometric biomechanical mod-

eling permits the generation of nonlinear mechanical force feedback as the haptic interacts

with the model which was physically more realistic.

6.3.3 Adjacency Graph for Volumetric Data

Adjacency graph describes the relationship among voxels to ensure the efficiency and cor-

rectness in segmenting the volumetric data. I applied 26-adjacency graph which gives the

highest accuracy (Fig. 6.4(a)). Voxel centers defined the surface point cloud and the inner

point cloud shown in blue and red respectively in Fig. 6.4(b). These two sets of point clouds

were used in surface reconstruction in each simulation step.
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(a) (b) (c)

Figure 6.3: (a) Hybrid data structure consisting of volumetric data and surface mesh; (b)
voxelied lumbar vertebra model; (c) nonhomogeneous bone mineral density.

6.3.4 Collision Detection

To detect collision between the surgical tool and the lumbar model, a computationally

efficient octree-based algorithm was employed. The model was partitioned and organized

into a 3D voxel space through recursive subdivision. Octree-based collision detection is

widely used in simulation, because of its efficiency for voxel localization and neighbor search.

Fig. 6.5(a) shows a lumbar vertebra embedded in an octree grid. The multi-resolution

and hierarchical grid can be clearly seen. Depending on the contact location between the

surgical tool and the lumbar, the leaf voxels were removed from the volumetric data shown

in Fig. 6.5(b). The adjacency graphs of all the voxels that were neighbors of the contact

voxels were updated for surface reconstruction.

6.3.5 Real Time Surface Reconstruction and Updating

To provide smooth visual feedback of drilling effect, the lumbar vertebra surface model

needs to be reconstructed and updated in real-time from the post-collision voxel data.

Directly applying Marching Cubes reconstruction from surface point cloud (blue points

in Fig. 6.4(b)) generated a significantly large number of triangles. In addition, it led to

surfaces with overlapped triangles and multiple layers because of the redundant surface
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(a) (b)

Figure 6.4: (a) Adjacency graph of a pixel in blue; (b) surface point cloud in blue and inner
point cloud in red.

voxels defined by the adjacency graph (see Fig. 6.6(a)).

In a 2D illustration in Fig. 6.6(b), Marching Cubes generated two layers, one connecting

point from v1 to v8 and one connecting v9 to v17. To overcome this problem, I used an

algorithm presented in [166] to extract a single surface from the duplicate triangle surfaces

(see Fig. 6.6(c)). Fig. 6.7 shows the reconstructed surface after tool drilling shown in Fig.

6.5(b). The surface updating algorithm was implemented on GPU to take advantage of its

parallel processing capacity.

6.3.6 Force Feedback Computation

To calculate the tool force, I extended the voxel grid based haptic force feedback approach

in [164]. A voxel grid was defined based on the geometry of the surgical tool. At each

simulation step, the simulator checked collision between the voxel grid of the tool with the

lumbar vertebras volumetric model stored in the octree structure. Each grid voxel inside

the tool contributed a unit force vector to the overall haptic force vector that tends to push

this voxel towards the tool center, shown by the black arrows plotted on the red voxels in

Fig. 6.8(a). In addition, I added forces produced by the contact voxels shown in green in

Fig. 6.8(a). These voxels were also penetrated by the tool and generated forces towards the
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(a) (b)

Figure 6.5: The octree-based algorithm was used to represent and detect collision between
the surgical tool (illustrated by the grey sphere) and the lumbar vertebra in real time.

drill center. Moreover, the area of the contact surface between the bone and the lumbar

vertebra shown as the yellow curve in Fig. 6.8(a) was also taken into account. The contact

area is computed as the accumulation of area from the contact voxels. In summary, in

each simulation step such as Fig. 6.8(b), the overall penetration depth was calculated based

on the number of inside voxels, contact voxels and the area of contact surface. The force

feedback ~FT provided to the haptic tool was calculated according to Eq. 6.1. ~Fvin is the

force contributed by each inside voxel. ~Fvs is the force produced by each surface voxel. As

is the contact area ratio of the surgical tool. It is calculated as the ratio of the contact

area and the whole surface area of the surgical tool. The ~Fvin and ~Fvs for each voxel was

calculated from Eq. 6.2, where k = 2.5 is the friction coefficient between the lumbar vertebra

and the drill. D is the bone density of the voxel. ~V is the unit vector from the collided

voxel to the drill center. θ is the angle between ~V and the drill axis.

~FT =
n∑
1

~Fvin +
m∑
1

~Fvs ∗ (1 +As) (6.1)
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(a) (b) (c)

Figure 6.6: (a) Multiple level surface; (b) 2D adjacency graph; the proposed simulator
produced smooth and realistic surface model shown in (c).

Figure 6.7: The reconstructed surface shows the dent after simulated bone drilling.

~Fvin(~Fvs) = k ∗D ∗ ~V ∗ cos(θ) (6.2)

6.4 Results

The implementation was conducted on the following platform: Windows 7 operation system

with 64-bit Intel Core 2 Duo 3.0 GHz and NVIDIA GTX470 graphics card; The PHAN-

TOM desktop 6DOF haptic device is used as the force feedback device. To run the real

time visual and haptic spine surgery simulator, a multi-thread computation environment is
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(a) (b)

Figure 6.8: The penetrated and contact voxels applied forces opposite to the force applied
by the tool to the lumbar vertebra.

implemented. This gives us the capability to maintain update rates of 1000Hz for haptic

rendering and 45 Hz for graphic rendering. Fig. 6.9(a) and 6.9(b) show the simulated pedi-

cle screw insertion which interactively provided realistic visual rendering as well as force

feedback through haptics to the user. I systematically analyzed the computational expense

of the simulator. The number of voxels along each dimension is 256 x 256 x 256 in the finest

octree level. Table 6.1 compares the computational cost of collision detection using two

iterative octree traversal methods and the leaf node traversal method in simulating bone

drilling surgical procedure.

It shows that the iterative depth first collision detection is the most efficient algorithm

for the simulation. In each simulation step, collision detection which is the most compu-

tationally expensive operation only took 0.001 second. I experimented with various voxel

resolutions, which led to nearly constant computational cost, showing the scalability of the

proposed simulator. In the experiment, the voxel resolution was chosen to be 1.02 mm.

The depth first traversal method is more efficient than the other two. The proposed sim-

ulation time analysis shows that interactivity can be achieved by the optimized simulator

and suggests that more complex spine surgical procedures can be developed in the future.
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(a) (b)

Figure 6.9: The user performed a virtual pedicle screw insertion operation.

Table 6.1: Computational time (in seconds) of applying three collision detection methods.

Computational time (s) with
different voxel resolution (mm)

Method 0.0051 0.0026 0.0017 0.00102

Depth first 0.0009 0.001 0.001 0.001

Breadth first 0.003 0.003 0.003 0.003

Leaf iterator 0.002 0.002 0.002 0.002

Fig. 6.10 shows nonlinear force feedback during surgery simulation. It computes force

as function of number of voxels removed during intersection between surgical tool and bone

voxels. The proposed simulator was able to simulate force increment smoothly. Integrating

accurate mechanical properties of the lumbar vertebra is important to provide a realistic and

meaningful training environment such that the experience gained from using the simulator

can be more easily translated to the actual operations.

6.5 Conclusion

I described a spine surgical simulator which provided interactive 3D visualization and haptic

force feedback. The results show that the simulator provides a real time and realistic haptic

interaction system to perform virtual pedicle screw insertions. Spine surgeries are clinically
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Figure 6.10: Calculated nonlinear force during pedicle screw insertion.

challenging and typically require a steep learning curve. Using a realistic 3D virtual spine

surgical simulator such as the proposed system has the potential to effectively train spine

surgeons and residents to enhance their surgical skills. It also has the advantage of being

safe, repeatable and low-cost, making it suitable to be included in training curriculum in

medical school.

I would like to improve the force feedback model. I could measure reaction force from

cadaver spines during the drilling [167–169]. The validation of reaction force will be quan-

titatively analyzed and compared to published results [170]. The proposal force feedback

computation model can generate force feedback in opposite direction towards to surgical

tools handle, perpendicular to the bone surface. The torque acting on the surgical tool con-

sidered during drilling and screwing simulation. To generate more realistic environment,

the drilling speed will also be considered in the computation of feedback force.
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Chapter 7: Conclusion & Future Work

In this dissertation, I investigated the computational approaches to address medical image

analysis problems. I presented five representative topics of analyzing extraocular muscle

shape and deformation, eyeball shape, pelvic floor muscle injury, zebrafish heartbeat, and

spine surgery simulation. The images used in this dissertation are acquired from different

modalities (MRI, Ultrasound, Microscope Imaging and CT).

In the extraocular muscle analysis, I have developed automatic method to segment

extraocular muscles and orbital structures from MR images by using super-pixel and nor-

malized cuts method. This method could produce accurate and reproducible eye muscle

segmentation and assist the evaluation of extraocular muscle enlargement. I also devel-

oped automatic methods to segment and reconstruct accurate human eyeballs from MR

images. The 3D eyeball shape is quantified and evaluated through the proposed metrics.

This method serves as an important diagnosis tool for people afflicted with eyeball diseases

like myopia. In the extraocular muscles deformation measurement, to better understand

the functions for the extraocular muscles in generating different kinds of eye movement. I

designed and developed non-invasive approach to collect and study extraocular muscle kine-

matics during eye movement in vivo. In the pelvic floor muscle injury analysis, I have shown

that spatially weighted multiple volume of interests 3D registration method can optimally

register volumetric ultrasound image data containing significant and local anatomical dif-

ferences. In the zebrafish heartbeat detection, an automatic method based on dense optical

flow motion tracking and principle component analysis is introduced to detect and track the

heartbeats of zebrafish larvae. The method could be applied to estimate heart rate from

low resolution and low frame zebrafish video recordings. This method is computationally

efficient, and easily applicable tool for studying larva cardiac function in general laboratory

conditions. In spine surgery simulation, I presented a real time interactive haptic spine
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surgical simulator that can be used to train residents, fellows and spine surgeons in a hos-

pital training program. I demonstrated system performance by conducting pedicle screw

insertion.

There are several ways to extend the proposed approaches in this dissertation. For

extraocular muscle deformation analysis, my current work analyzes local deformation of

the medial rectus muscle during eye movement. It would be valuable to explore dynamic

features of six extraocular muscles during eye movement at different patterns and speed,

since understanding the mechanisms of eye movement is difficult without a realistic dynamic

analysis of the extraocular muscles. New feature-based motion tracking algorithms could be

designed for tracking the local deformations on each extraocular muscle. The extraocular

muscle strain could be analyzed during different types (smooth pursue and saccadic) eye

movements. These results will help the clinician to examine whether there exists differential

movement between the two layers in each rectus muscle. Answer to such question can

advance our understanding on the role of the ocular mechanics in the coordination of eye

movement.

For the pelvic floor muscle injury analyze, although the proposed two-step multiple

VOIs 3D registration could help to identify the needle tip position in the muscle intact 3D

ultrasound volume, how to accurately segment the soft tissues such as levator ani muscle

from 3D ultrasound volume is still an unsolved problem due to the fact that ultrasound

imaging has lower SNR. Most clinical applications are achieved by applying CNNs on MRI

and CT image segmentation. Such segmentation is obtained by only considering similarity

of local intensity. Therefore, it fails in other modalities such as ultrasound, where image

SNR is lower and intrinsic noise is associated with image. Prior knowledge about 3D shape

of the tissue can provide additional features for guidance, and can improve the accuracy of

ultrasound image segmentation.
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