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ABSTRACT 

THE IMPLICATIONS OF INVESTORS CONSIDERING THEIR SOCIAL 
NETWORK. 

Matthew Oldham MAIS 
 
George Mason University, 2016 
 
Thesis Director: Dr. Rob Axtell 

 

The behavior of financial markets has, and continues, to frustrate investors and 

academics. With the advent of new approaches, including a complex systems framework, 

the search for an explanation as to how and why markets behavior as they do has greatly 

expanded. The use of agent-based models (ABMs) and the inclusion of network science 

has played an important role in increasing the relevance of the complex systems. Through 

the use of an artificial stock market utilizing an Ising model based agent-based model, 

this thesis has been able to provide significant insight into the mechanisms that drive the 

returns in financial markets, including periods of elevated prices and excess volatility. In 

particular, the thesis demonstrates the following: the network topology that investors 

form; along with the dividend payout ratio of a stock significantly impact the behavior of 

the market. The model also investigates the impact of introducing multiple risky assets, 

something that has been absent in any previous attempts. By successfully addressing 

these issues this thesis has helped refine and shape a variety of further research tasks. 
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1 INTRODUCTION 

1.1 Background and Motivation 
 
A common feature of financial markets since their advent has been periods where price 

movements and trading volumes have been much higher than what is commonly 

experienced, that is, the markets become more volatile. In particular, the semi regular 

appearance of bubbles1 and their subsequent collapse has left academia and the general 

public searching for answers. The repercussions of these boom and bust cycles are 

severe, with over-investment and excessive trading occurring in the boom times, while 

the busts have on occasions led to devastating financial crises and depressed real 

economies. One of the most recent occurrences of such an event saw the Dow Jones 

Industrial Average close at a record level on October 9, 2007 yet one year later the Dow 

dropped 21% in the first nine days of October 2008 and the world plunged into the 

Global Financial Crisis (GFC), which according to the International Monetary Fund 

(IMF) cost the global economy $USD11.9 trillion (Conway, 2009). 

 There has been much debate about whether it is possible to predict the future 

movements of the financial markets and whether a bubble can even be detected in 

advance (Gupta, Hauser, & Johnson, 2005). The ‘mainstream’ doctrine and practices 

                                                
1 A bubble can be defined as a period during which the market value of assets vastly exceed reasonable 
assessments of their fundamental value. Alternatively, Kindleberger & Aliber (2011) state more generally 
that a bubble occurs when there is “an upward price movement over an extended range that then implodes.” 
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have tended to follow Fama’s (1970) Efficient Market Hypothesis (EMH) which states 

that market prices fully reflect all available information.  The implication being that as 

news arrives in a random unpredictable fashion, prices follow a similar pattern, which is 

one of a random walk. An implication of the EMH is that asset bubbles and subsequent 

crashes will not and cannot occur. The view that asset prices do follow a random walk, a 

view popularized by Malkiel (1999), has found some empirical support. However, the 

reality of continued episodes of boom and bust, and mounting statistical evidence, 

provides stronger evidence that markets do not function in accordance with the EMH2.  

1.2 Overview of Approach 
 
An alternate approach to the EMH is to consider financial markets as a complex system. 

Considering financial markets as a complex system is to accept that outcomes in financial 

markets are the result of an emergent process, based on the self-organized behavior of 

independently acting, self-motivated individuals (Farmer et al., 2012). A process is 

defined as emergent when larger entities, patterns, and regularities arise through 

interactions among smaller or simpler entities that themselves do not exhibit such 

properties (Wikipedia, 2014). The main attraction of utilizing a complex system 

framework to analyze financial markets is that they are able to generate extreme events 

and asset returns in line with what has been experienced in the real world. The complex 

system approach is consistent with the thoughts of Sornette (2014), who concluded that 

after 20 years of research, the key concepts required to understand stock market returns 

                                                
2 Bollerslev, Engle, and Nelson (1994) and Mandelbrot (1963) are classic papers that highlight that 
financial returns may not follow the statistical distribution as prescribed by the EMH. 
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are; imitation, herding, self-organized co-operativity and positive feedbacks. These 

factors, along with a viable explanation for the extreme returns experienced in real asset 

markets are lacking from the EMH. 

Another advantage of utilizing a complex systems framework is that it allows 

researchers to introduce networks within their analytical framework. The importance of 

networks is highlighted by Newman (2010), who suggested that networks are a “powerful 

means of representing patterns of connections or interactions between the parts of a 

system”. The rationale for utilizing a network is that the behavior of a system can vary 

greatly depending on which network structure (the topology) is formed within a system3. 

The relevance of networks to financial markets is their ability to explain investor trading 

decisions and portfolio performance (Ozsoylev & Walden, 2011). 

Given the characteristics of a complex system, traditional analytical approaches 

are rendered ineffective, and researchers have been forced to turn to computer simulation 

to understand the dynamics of them. In particular, agent based models (ABMs) are 

extensively utilized in the study of complex systems. ABMs allow for the interaction 

between individual agents, investors in the case of financial markets, who act and 

undertake actions based on the context of their environment using basic rules. 

Importantly, the agents’ behavior is not fixed and can evolve in response to the behavior 

of others and their environment. Therefore ABMs are not constrained to equilibrium 

conditions (Sornette, 2014). Axtell (2000) provides a comprehensive review supporting 

these arguments and the benefits of ABMs in analyzing complex systems.  
                                                
3 For classic papers demonstrating the implications of different network structures see; Albert, Jeong, & 
Barabási (2000), Santos and Pacheco (2005) and Callaway, Newman, Strogatz, & Watts (2000). 
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1.3 Research Question 
 
The purpose of the research topic is to implement an ABM that is capable of 

understanding the impact that particular network structures have on the performance of 

financial markets. And in particular to understand whether certain network structures lead 

to greater volatility and the dynamics behind whether or not the population forms large 

common groups (“herds”) in terms of their investment strategies.  The relevance being 

that understanding the dynamics of herd formation should provide insights into how 

bubbles can form and then collapse in financial markets. In turn, these insights can 

potentially inform market participants and be used to reduce the risk of another crash. 

While there is a large volume of work of utilizing ABMs to simulate financial 

market returns (LeBaron (2006) and Sorrnette (2014) provide extensive reviews of the 

application of ABMs to financial markets), the utilization of a network structure within 

the various frameworks has been limited. While attempts to implement a network 

structure have commenced, there is a rich field of research questions to consider with 

multiple avenues of investigation. Panchenko, Gerasymchuk and Pavlov (2013) were able 

to show that network structures are capable of influencing the stability of, and the 

fluctuations of an asset’s price, while Harras and Sornette (2011) demonstrated how 

bubbles may emerge as a result of agents considering different information sources, 

including the expected actions of their neighbors.  

The literature relating to ABMs and artificial stock markets, including a 

simulation of the NASDAQ exchange (Darley & Outkin, 2007),  utilize a single risky 

asset, therefore reducing the problem to one of asset allocation rather than choosing 
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amongst risky assets. In what is believed to be a first for an artificial stock market, the 

author introduces the ability for agents to consider multiple risky assets and analyzes the 

actions of the agents through the formation of a dynamic quasi-efficient frontier. The 

rationale for this inclusion is to see if, and under what circumstances, agents with basic 

rules are able to produce an outcome prescribed by traditional financial literature. 

To achieve the aforementioned goals, the model used by Harras and Sornette 

(2011) formed the foundation for the implemented model. This framework enabled the 

key questions of: how investors undertake their decision-making process; to what extent 

they utilize their network in that process; what, if any, network structure are the agents 

linked by; is the network static or dynamic, and if it is dynamic in what regard is it 

dynamic; to be assessed. The results of these simulations provide an insight into how 

financial markets operate and in particular, identify the factors around the formation of 

large “herds” and whether particular network structures lead to excess volatility.  

1.4 Purpose of Thesis 
 
By investigating the role of how a network’s structure and dynamics contribute to the 

performance of financial markets, it provides important insights into the mechanism that 

generate inefficient behavior. Once a mechanism can be identified, the research effort can 

be linked to identifying real world investor networks and analyzing which network 

structure they take and how they change through time.  

Current examples of this aim, include judging the impact of social networks -  

using Twitter as a proxy - on financial markets. Bollen, Mao and Zeng (2011) and Jaffe 

(2015) report on the advent of investment vehicles based on investor sentiment as 
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expressed via Twitter. Ozsoylev and Walden (2011) were able to find empirical support 

for their theoretical model that, among other things, predicted that investors with higher 

connectedness earn higher profits from trading more aggressively, and that price 

volatility is higher in markets with intermediate connectedness.  

The continued monitoring of investor networks may provide a vital early warning 

to the formation of an asset bubble – something that the EMH fails to deliver and 

something only very few investors are able to lay claim to. 

1.5 Thesis Outline 
 
To effectively answer the research question, this thesis has been divided into distinction 

sections. Greater detail with regards to the EMH and the case for and against it are 

provided in Section 2.2. The background and rationale for an alternative approach 

utilizing a complex system approach is described in Section 2.3 before Section 2.4 details 

the rise of ABMs as a viable framework to assess how and why financial markets operate 

in a manner inconsistent with that proposed by the EMH. The justification for the use of 

the base model and its various extensions, that were mentioned in Section 1.3, along with 

the specifications of the model are detailed in Section 3. The results of the various 

experiments, which were designed to meet the research question and ultimately provide 

significant insight into the dynamics of financial markets, are provided in Section 4. 
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2 LITERATURE REVIEW 

2.1 Background and Introduction 
 
Since their advent, financial markets have experienced episodes of extreme volatility 

interspersed with periods of relative calm4.  One of the first attempts to document and 

explain the volatile nature of financial markets was Mackay in Extraordinary Popular 

Delusions and the Madness of Crowds (1841), who pointed to the behavioral traits of 

investors in creating this volatility. The argument that markets were driven by ‘animal 

spirits’ and hence difficult to understand and prone to periods of ‘excitement’ was 

proposed by Keynes (2007, pp. 161–162). This view has since gained further support 

from the likes of Shiller (2015) and Thaler (2015) and coupled with the principle of 

Simon’s (1955) bounded rationality, can be seen as the genesis of behavioral 

economics/finance, a field that has become increasingly relevant in describing the 

behavior of financial markets. 

However, the more accepted approach to modern finance has not followed these 

works. Rather it was the advanced mathematics of Bachelier (1995) that became the 

genesis of how financial markets were analyzed and forecasts developed. This approach 

ultimately culminated with the Efficient Market Hypothesis (EMH) - Fama (1970), 

becoming the center piece of modern finance. This point is reaffirmed by Summers 

                                                
4 Relative calm is defined as, price movements that are not dramatic. 
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(1986) who claimed that the assumption of market efficiency “forms the basis for most 

research in financial economics”.  Further, the zealot like faith in the EMH is 

demonstrated by Jensen (1978), when he stated his belief that “there is no other 

proposition in economics which has more solid empirical evidence supporting it than the 

Efficient Market Hypothesis”. Subsequently, other predominate financial models such as 

Black Scholes option model - Black and Scholes (1973), and the Capital Asset Pricing 

Model (CAPM) – Sharpe (1964), have been underwritten by the EMH and another key 

theory - rational expectations, as proposed by Friedman (1953).   

However, there have been numerous examples – the October 1987 stock market 

crash, the Japanese Bubble of the 1990s, the demise of Long Term Capital Management, 

the dot-com bubble and the 2008 collapse (De Bondt, Muradoglu, Shefrin, & Staikouras, 

2008), where the EMH - and the models which have utilized it – have proven inadequate 

in explaining how and why the markets functioned as they had. These episodes have led 

to the search for alternative theories with behavioral finance and the study of financial 

markets as a complex system as two leading examples. However, the path to dislodging 

the incumbent models remains difficult, as witnessed by Fama and French (2004) who 

state that despite its empirical shortcomings, the CAPM remains a “theoretical tour de 

Force”.5  This point is further discussed by Thaler (2015), who makes the point that 

despite the shortcomings of the various models underwritten by the EMH, the true 

believers refuse to discard it and simply propose updated models that are more capable of 

                                                
5 Note it is not possible to empirically test the EMH and it must be done in combination 
with an equilibrium model (Sorropago, 2014). 
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predicting previously unexplained market movements. 

2.2 The Efficient Market Hypothesis 

2.2.1 In	Greater	Detail	
 

The EMH reached its dominance in the 1970s (Shiller, 2003) but could not have 

done so without the advent of “positive economics”, by Friedman (1953). By successfully 

arguing that economics should be the study of “what is” rather than “what ought to be”, 

Friedman shifted the focus of economics (and finance as a subset) from basing models on 

realistic assumptions and observation to producing models that had superior predictive 

ability.  Under this banner, a theory becomes better insofar as it made less plausible 

assumptions (Buchanan, 2014).  

Friedman (1953) also presented the theory that a market would only contain 

rational investors. Rational investors being those who employ a decision-making process 

that is based on picking the option that results in the most optimal level of benefit or 

utility for the individual. By assuming that all investors were rational meant that the 

population would have homogeneous expectations and beliefs. This approach did not 

deny that investors may at times make mistakes but there would be a few smart people 

who would trade against them and correct prices quickly. A further implication of 

Friedman’s world is that irrational investors would be forced from the market due to 

losing their money at the hands of the rational investors. The acceptance of positive 

economics and the concept of the rational investor led to the development of the rational 

expectations model by Muth (1961), which in turn became the key plank for Fama’s 

EMH (Shiller 2003).  
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A major implication of rationality and agents having homogenous beliefs is that 

economists are able to create a sole representative agent who embodies the collective 

preferences of the population (Sornette, 2014). It is the creation of this agent that allows 

closed form mathematical solutions for various financial models underwritten by the 

EMH to be derived. Under this approach, agents employ deductive top-down reasoning, 

which is where conclusions are reached by reductively applying general rules that hold 

over the entirety of a closed system. 

In essence, the EMH states that market prices fully reflect all available 

information and, as a consequence, asset prices are unpredictable. Two key implications 

coming from the EMH, are: 

• The ‘price is right’; and  

• There is no ‘free lunch’ for investors. 

The ‘price is right’ refers to the fact that prices should remain close to their 

fundamental value6 (Buchanan, 2014). It is this assumption that precludes the existence 

of a bubble – a price greatly exceeding its fundamental value. Interestingly, as Thaler 

(2015) points out, this part of the EMH is extremely difficult, if not impossible to test, as 

it cannot be tested in isolation but rather in unison with an asset pricing model that has 

utilized the assumptions of the EMH; a point discussed later. 

‘No free lunch’ implies that investors should not be able to outperform the market 

because all publicly available information is already factored into an asset price. 

Therefore investors have no additional information that can help them reliably predict 
                                                
6 Fundamental value as per Buchanan (2014) is a realistic value based on an analysis of a 
company’s current and future profit prospects. 
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future prices. New news or information will arrive in a random fashion, meaning 

investors having no ability to accurately forecast it, prices will be updated 

instantaneously and follow the same random path as the news. In addition, no patterns in 

past price movements exist that investors can exploit (Johnson, Jefferies, & Hui, 2003). 

In the event that an opportunity did exist, the EMH predicts it would vanish quickly. 

There are three accepted versions of the EMH, which relates to the information 

available to investors. As outlined by Jensen (1978) these are the: 

• Weak Form - where the information available to investors is solely the 

past price history; 

• Semi Strong Form – In addition, to the Weak Form, investors have access 

to all publicly available information; and 

• Strong Form – This form includes all possible information. 

As Jensen (1978) suggests, the most widely accepted form is the Semi Strong 

Form, with the implication being that by trading solely on publicly available information, 

including the past price history, it is impossible to make an economic profit. Efficiency 

therefore refers to the fact that all information is rapidly reflected in the price and there is 

no information capable of moving the share price that is not already incorporated in the 

price. For this to occur, it is assumed that investors are capable of collecting all relevant 

information and have the computational power to correctly form probabilistic 

assessments and calculate their expected utility.  

Simon (1955) questioned whether human’s possessed these capabilities, before 

offering the alternative of human’s acting with bounded rationality. Further, in making 
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these calculations, it is assumed that there is no cost associated with collecting or 

analyzing the information. Grossman and Stiglitz (1980) challenged this point by arguing 

that perfectly informationally efficient markets are not possible because if markets were 

perfectly efficient the returns from gathering information are non existent. The 

implication being, investors have no incentive to trade or collect the information.  

An interesting implication of the EMH, if it is held to its upmost, is that no trading 

would occur. This results from the fact that a rational investor wishing to sell an asset 

would be unable to find a rational buyer willing to acquire the same asset because both 

would have the same value for the asset. As Thaler (2015) mentions, while no one 

expects this to hold, proponents of the EMH have been forced to concede that trading 

volumes are generally in excess of what the theory would predict. 

A return series that follows a random walk, the returns implied by the EMH, is 

illustrated in Figure 1. The series has a Gaussian distribution, implying that returns fall 

within a well-defined probability distribution function (PDF), with 99.7% of all returns 

falling within three standard deviations of the mean. Under this function, the probability 

of an extreme event - a ‘Black Swan’ event, such as the 1987 crash, is extremely small (1 

in 50 billion (Mandelbrot & Hudson, 2006). 
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Figure 1: Returns for a random walk series over time 
 

Kirou, Ruszczycki, Walser, & Johnson (2008) make the point that a Gaussian 

model provides a rough approximation of financial market returns, but fails to explain 

outlying events. It is the search for an understanding of what drives these outlying events 

that has driven a vast quantity of intellectual power, including this thesis. 

An example of a real world asset market is seen in Figure 2 (data sourced from 

Yahoo Finance via a user defined query in R (2015)), which plots the log daily returns of 

the S&P500 index between 1985 and 2016. It illustrates that while returns for the S&P 

500 have at times followed the prescribed distribution, there have been a number of 

periods where returns have deviated greatly, including the arrival of the ‘Black Swan’ in 
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1987 and 2008. Given the cost associated with the periods of extreme volatility, to this 

author a theory consistent with ‘close enough is good enough’ may not suffice.  

Despite its apparent shortcomings, the EMH is not without empirical support in 

terms of the ‘no free lunch’ hypothesis. Malkiel (1999) has popularized the fact that 

investors have over the long term been unable to outperform the market. This argument is 

supported by further studies that have shown that money managers on average have 

failed to outperform the market (Rubinstein, 2001), a point that even the most stringent 

critics of the EMH have been forced to concede, see for example Thaler (2015). With 

regards to the ‘price is right’, the evidence is not as supportive; a point discussed later. 

 

 
Figure 2: Daily returns for the S&P500 (1985-2016) 
 

It should be noted that the EMH does not entirely preclude investors from 
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‘beating the market’. However, to achieve this, investors must be willing to accept greater 

risk than the market, the implication being that investors can not outperform the market 

on a risk adjusted basis. Therefore, any analysis of excess returns is required to determine 

if the excess returns were generated by mispricing (inconsistent with the EMH) or due to 

risk (consistent with the EMH), Thaler (2015).  

To assess this point, the EMH must be used in combination with financial models 

that makes use of its assumptions. The Capital Asset Pricing model (CAPM) – Sharpe 

(1964), which predicts that investors would only be compensated for the time value of 

money and the level of non-diversifiable risk (or systematic risk), is one such model. 

After initial promise and wide acceptance, the CAPM has subsequently been shown to be 

deficient (Fama & French, 2004). However, proponents of the EMH only see this 

outcome as reflecting poorly on the CAPM and not the EMH.  

With regards to the existence of bubbles within the rational expectations approach 

(and therefore the EMH), an explanation was put forward by Blanchard (1979), who 

channeled the ideas of Keynes (2007). Investors can be seen to be acting rationally if they 

recognize a bubble and adjust their objective to “beating the gun” or in simpler terms, 

trying to sell out before a collapse. Under this assumption, speculative bubbles become 

consistent with rational investing.  To counter this, following their study on financial 

returns, Diba and Grossman (1988) concluded that “stock prices do not contain explosive 

rational bubbles” as prices being no more explosive than dividends. Regardless of who is 

right, the process of detecting the presence of a bubble or rejecting their presence ex-ante 

remains difficult and as Kirman (1991) suggests, the debate remains open as to whether 
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bubbles can or have been detected. 

Another defense of the EMH comes from Rubunstein (2001), who in response to 

the criticism that markets show greater volatility than anticipated, points out that rational 

does not mean certain, and therefore returns can remain uncertain yet investors remain 

rational.  

2.2.2 The	Efficient	Frontier	
 

Markowitz (1952) first proposed the idea that agents would select a portfolio of 

risky assets on a frontier, the efficient one, where a portfolio would have the minimum 

risk for a given return or alternatively have the maximum return for a given risk. Figure 3 

provides a demonstration of the efficient frontier as generated from the code provided in 

Andrecut (2013) which in turn sourced its data from Yahoo Finance. 

 

 
Figure 3: An example of the efficient frontier (Source: Andrecut (2013)) 
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Figure 3 plots 10 stocks, as detailed in the legend, along with the minimum 

variance portfolio (MVP1) and the tangency portfolio (TGP) in the risk (x axis) and 

return (y axis) space. In addition, the code solves for the efficient frontier, which is 

illustrated by the blue line. From the chart it can be seen that individually the stocks sit 

below the frontier. However, investors can form portfolios of the stocks such that the risk 

and return of the portfolio is on the efficient frontier. 

While the efficient frontier was released prior to the EMH, it utilizes many of the 

same principals, including, the existence of a representation rational investor. This 

investor, who seeks to maximize their utility given their budget constraint, will choose 

either on purpose or inadvertently, a portfolio that generates the largest possible return 

with the least amount of risk. Given this theory was developed utilizing a static 

equilibrium approach, the challenge now exists to see if an ABM, utilizing out of 

equilibrium dynamics, is capable of replicating the results. By achieving this, certain 

questions, as detailed by Arthur (2006), can be addressed, including how agents’ actions, 

expectations and strategies change, and what impact this has on the system as a whole. 

An attempt at such a process was provided by Steinbach et al. (2010), who 

successfully utilized a discrete time and state model with interacting agents connected via 

a network to demonstrate that agents were capable of selecting efficient portfolios 

without the optimization equation as set out by Markowitz (1952). However, the returns 

were exogenously provided to the agents, which contrasts to the proposed model, where 

asset and therefore portfolio returns are generated endogenously. The inclusion of 
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endogenous returns provides a richer data source and allows the questions posed by 

Arthur (2006) to be explored in greater detail. 

2.2.3 Evidence	Against	the	Efficient	Market	Hypothesis	
 
Evidence against the EMH remains somewhat of a mixed bag. While there is no 

disputing the fact that some investors have done very well at times, there are very few 

that have maintained this record over the longer term, hence the ‘no free lunch’ doctrine 

has remained difficult to dislodge. With regards to the ‘price is right’, the evidence is 

more damming. For example, Shiller (1980) was able to demonstrate that stock prices 

over an extended period did indeed deviate from their inferred intrinsic value.  

Further evidence against the EMH is provided by the set of stylized facts financial 

markets have exhibited, which are inconsistent with those proposed by the EMH. As 

outlined by Cont (2005) and further supported by Johnson, Jefferies, & Hui (2003), 

market returns have demonstrated: 

• Excess volatility – the existence of large movements which is not supported by 

the arrival of new news; 

• Heavy Tails – returns exhibit “heavy tails” indicating returns deviate more than 

anticipated and do not follow a Gaussian distribution; 

• Volatility Clustering – large changes are followed by further large changes; and 

• Volume/volatility clustering – trading volumes and volatility show the same type 

of long memory. 

Further to this, Mandelbrot (1963) first provided evidence that returns followed a 

very unique distribution – a  power law distribution. Lux (2006) provides a detailed 
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review of the empirical evidence supporting the existence of power laws in financial 

markets. A summary of the research into why power law distribution for stock market 

returns exist is provided by Sornette (2014), with the possibilities including: 

• The interplay between the power law distribution of the sizes of large financial 

institutions and the trading in these firms; 

• The close link with Pareto wealth distribution and market efficiency; and  

• Sudden drops in liquidity rather than outsized orders. 

For investors, the main implication of returns following a power law is that the 

risk of large losses is much higher than suggested by the EMH suggests, and markets are 

more volatile. While the original works of Mandelbrot (1963) fell out of favor 

(MacKenzie, 2008), the reality of continued episodes of boom and bust, and mounting 

statistical evidence, provides strong evidence that in fact markets do not function in 

accordance with the EMH. The existence of power law returns suggests the presence of a 

complex system, thus providing a clue into a mechanism that is capable of generating 

such returns. 

2.3 Alternate Approaches  

2.3.1 Introduction	
 
The evidence against the EMH coupled with the questioning of its underlying 

assumptions has supported the rise of behavioral finance, which according to De Bondt et 

al. (2008) “studies investor decision processes, which in turn shed light on anomalies i.e. 

departures from neoclassical finance theory”. Further, Sornette (2009) states that the 

intention of behavioral finance “is to join the objective approach with the interpretative 
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approach, with the intention of understanding how markets reflect the actions of people 

acting with thoughts and emotion as opposed to the idealized investor” (an idealized 

investor as defined by EMH). Within the realm of behavioral economics/finance there are 

two important considerations relevant to the development of this thesis – bounded 

rationality and herding. 

These two points challenge one of the key underlying assumptions of the EMH, 

and the one that raises the most questions is that investors are homogenous and share the 

same rational expectations regarding asset prices (Arthur, Holland, LeBaron, Palmer, & 

Tayler, 1997). These assumptions were made under the umbrella of “positive economics” 

and were required to produce the eloquent closed form mathematical solutions that cover 

the finance landscape. It is the development of modern simulation techniques (including 

ABMs) that allows these assumptions to be removed and alternative approaches taken. 

2.3.2 Bounded	Rationality	
 
Simon (1955) raised the prospect that humans do not have the computational power to 

make the calculations required of them to act as fully rational agents. Instead, agents are 

forced to act as if they have bounded rationality, forcing them to search for solutions by 

trying solutions that seem appropriate – i.e. heuristics. This approach is consistent with 

the thoughts of Keynes (1937) - who indicated that when individuals are making a 

decision, their basic decision making framework should include the following rules: 

• The present is more relevant than the past; 

• They have to accept the current price until something new comes along; and 

• Understand that individual judgments are worthless so it is best to fall back on the 
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view of the rest of the world.  

The link between the theory of bounded rationality, complex systems and ABMs 

was made by Arthur (1994) when he solved his El Farol Bar problem7. Within his 

solution, Arthur posed and the answered the question of what occurs if humans cannot 

rely on other humans to act in a rational manner? The answer was that humans needed to 

employ inductive (bottom-up) reasoning, as opposed to the deductive top-down approach 

of the EMH and normative economics. The bottom up process involves agents forming a 

number of hypothesis/belief models, acting on the most credible, and then updating or 

discarding those that do not work. A vital aspect of this approach was that while a system 

is able to reach a solution close to an efficient outcome, it never settles into an exact 

equilibrium - a characteristic of today’s financial markets.  

The El Farol problem and its relevance to financial markets has been 

demonstrated through the Minority Game (Challet, Marsili, & Zhang, 2013) and the $ 

Game (Andersen & Sornette, 2003). Despite these successes, a shortcoming, according to 

Johnson et al. (2003) is that the model can not explain everything, as crowds form 

unintentionally, rather than by a defined process. Despite this, the principle of bounded 

rationality remains a core theme within the literature of behavioral economics and ABMs.  

2.3.3 Herding	
 
The aforementioned shortcoming of the El Farol model is addressed by the analysis of 

how and why herds form. Sornette (2009) defines herding as “many people taking the 

                                                
7 A problem in which if everyone reached the same conclusion via a deductive approach 
they will ultimately all be wrong. 
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same option because they are mimicking the action of others”.  This raises the key 

questions of why people wish to mimic another and is it relevant to financial markets?  

One explanation is that if agents have bounded rationality or lack vital 

information, it may indeed be optimal for them to mimic, rather than to solve the problem 

for themselves. Evidence of herding behavior has been found in financial markets (Cont 

& Bouchaud, 2000) and includes investors switching their investment strategies together 

– changing from buying to selling simultaneously, resulting in a crash or the continued 

buying of an asset that is already priced in excess of its fundamental value. The latter is 

seen as being responsible for the formation of bubbles.  

If investors mimic others, then their information network becomes an important 

consideration (Ozsoylev & Walden, 2011). Within this network, the social network of 

investors is a key consideration because within social networks it is often found that 

people copy or imitate what others do, or think in that network (Ormerod, 2012).  

Keynes’s (1937) beauty contest analogy presents another insight into why herding 

can occur. In it he proposes that professional investors become more interested in 

understanding what the market thinks the value of a particular asset (the perceived value) 

is, rather than understanding what the fundamental value of the asset is. The implication 

being that prices move not by changes in the fundamental value of stocks, but by changes 

in the perceived value of stocks. Importantly, under this process price movements can 

generate momentum due to a positive feedback process – something that is not 

considered in a rational expectation model.  

Scharfstein and Stein (1990) provide further support for this argument by 
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suggesting that herding can arise as a rational response of investment managers trying to 

enhance their reputation as they try and match the performance of their peer group. In 

addition, they suggest managers may herd in an attempt to protect their reputation by 

avoiding the blame from an investment decision outside of the herd. Importantly, as 

Banerjee (1992) points out, any equilibrium found under these conditions is inefficient. 

Another possible source of herding is word-of mouth. Among others, studies from Hong, 

Kubik, & Stein (2005) and Shiller and Pound (1989) support its presence amongst both 

professional and amateur investors. This point provides support to the theory that 

opinions of investors flow across a network. 

In support of herding as a driver of asset prices, Cont and Bouchaud (2000) and 

Kirman (1991) pioneered the use of models that utilized a herding framework. Their 

models produced results that were quantitatively comparable to the existing empirical 

findings in relation to the distribution of stock market returns.  

2.3.4 Networks	
 
The relevance of networks in understanding how herding may occur amongst investors 

comes from trying to understand how an idea or opinion can spread between investors. 

The principle of contagion or the cascading of an idea across different network structures 

was demonstrated by Watts (2002) and extended by others including Santos and Pacheco 

(2005). In addition, the general importance of networks, and the analysis of them, is 

outlined by Newman (2010) who suggests that they are “powerful means of representing 

patterns of connections or interactions between the parts of a system”. In support of this 

research project, Schweitzer et al. (2009), make a compelling argument that the analysis 
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of economic networks is essential for extending existing economic theory. The genesis of 

the argument being that the 2007 financial crisis highlighted that existing theories, and 

the policies associated with them, were inadequate in understanding and analyzing the 

growing interdependencies that had formed across global trade, supply chains and 

investments networks. 

 There is a growing body of literature from the likes of Ozsoylev (2005), Colla and 

Melle (2010), Ozsoylev and Walden (2011), Han and Young (2013), Ozsoylev, Walden, 

Yavuz, & Bildik (2014) and Walden (2014) that have taken the ideas from the likes of  

Hong, Kubik, & Stein (2005) and Shiller and Pound (1989), that networks may exist 

between investors and formalized them into closed form models utilizing network 

structures. The work has produced key insights, including some supported with empirical 

proof, including the following: 

• The information of a socially influential agent, the agent whom many learn from, 

has a higher impact on the risky asset price compared to information of those with 

less influence (Ozsoylev 2005); 

• The topology of a social of network impacts information efficiency; with one 

implication being price volatility decreases with the average number of 

information sources agents have. Therefore greater social communication 

improves efficiency (Ozsoylev and Walden 2011); 

• Agents who are close in the network have positively correlated trades, while 

distant agents have negatively correlated trades (Colla and Melle 2010). 

Interestingly, these authors make the point that the delay in forming a closed form 
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model was due to the complexity of combining networks, rational agents and 

endogenous price formation; and 

• Centrality is directly related to acting early on information (Ozsoylev, Walden, 

Yavuz, & Bildi 2014) and more specifical it is the eignvalue centrality measure 

which is important (Walden, 2014). 

Within network science literature there are four general types of network; 

regular/lattice, random, small world, and scale free networks. In high levels terms, the 

differences relate to how each agent is assigned their neighbors and the number of 

neighbors they have. These small differences are capable of generating non-trivial 

differences in the outcome of the system and for the agents within the network – hence 

their inclusion in the proposed ABM (see sections 3.3.3 and 4.2.2). 

Figure 4 illustrates a traditional lattice (left) and small world (right) network. A 

lattice network has an agent joined to a given number of agents that immediately 

surround them. While lattice networks are not common in the real world they may be 

relevant to in financial markets given the location of trading desks and the like.   
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Figure 4: Lattice (left) and small world (right) networks      
 

Small world networks were first proposed by Watts and Strogatz (1998) as a 

network structure that was consistent with social networks of people. The model is 

premised on the fact that geographical proximity plays an important role in the formation 

of social networks. A well-known feature of observed social networks is that they show a 

high degree of clustering, yet a relatively small diameter. The ramifications being that 

small-world networks tend to be more robust to perturbations than other network 

architectures, but are vulnerable to targeted attack. 

A random network – one consisting of N nodes, where each node pair is 

connected with probability p,  was first proposed by Erdös & Rényi (1960), is illustrated 

on the left of Figure 5.  Given its abstract nature, it generally serves as a theoretical base 

line only. Using this baseline, Barabási & Albert (1999) were able to create a special 

form of a random network - the scale free network. This results in the degree distribution 
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of the network following a power-law, with the consequence being that in contrast to a 

small world network, a scale free network tends to be more vulnerable to perturbations 

but is robust to targeted attack. A popular mechanism for generating a scale-free network 

is through preferential attachment - a process where an agent chooses their neighbors 

based on how many neighbors the potential neighbor already has. This process delivers a 

‘the rich get richer’ outcome and is illustrated on the right of Figure 5.  

 

 

Figure 5: Erdos Renyi (left) and scale free (right) networks 
  

In direct support of this research topic, Panchenko, Gerasymchuk and Pavlov 

(2013) have demonstrated the relevance of networks by implementing network 

frameworks within an ABM based artificial stock market. The model showed that the 

network structure did indeed influence the price dynamics of their artificial stock market. 

Their model utilized a variation of the Brock and Hommes (1998) evolutionary algorithm 
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framework but the possibility of utilizing other market frameworks exist.  The authors 

also left open numerous research questions including the effects of dynamic network 

formation and network structures other than small world networks. In another example, 

Alfarano and Milaković (2009) extended Kirman’s (1993) model, which was based on 

the processes of social interaction among agents who displayed a tendency to follow the 

crowd, by overlaying a network structure on it. While the model was deemed to be quite 

robust with respect to behavioral heterogeneity, it showed that “the network structure 

describing the very feasibility of agent interaction turns out to have a crucial and non-

trivial impact on the macroscopic properties of the model”. 

Harras and Sornette (2011) utilized an Ising model based ABM that saw investors 

consider the expected actions of their neighbors as one of three information sources used 

to determine their action. This model is discussed in greater detail in Section 3 as it 

formed the foundation of the model used in this thesis. 

2.3.5 Complex	Systems	
 
A defining characteristic of a complex system is its ability to self-generate large 

endogenous changes (Jefferies, Lamper, & Johnson, 2003). Therefore, if one considers 

market bubbles and crashes as such a change, then utilizing a complex system framework 

is an appropriate research method for trying to understand the behavior of financial 

markets. Further support for this approach is provided by Simon (1982) who indicated 

that there is a need to understand why certain regularities (booms and crashes) occur 

despite no top down planning. It was proposed that this regularity comes from the local 

interaction of autonomous heterogeneous agents - a trademark of a complex system. 
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Johnson et al. (2003), see complex systems containing some if not all of the following 

characteristics: 

• Feedback – the nature of and magnitude of this may change over time; 

• Non-stationarity – the dynamics or properties of a system may not continue as is; 

• Many interacting agents – the system contains heterogeneous agents that interact;  

• Adaptation – an agent can adapt to the environment; 

• Evolution – the population evolves as a result of interacting and adapting;  

• Single realization – at any particular time the system is a single realization among 

many possible ones; and 

• Open system – there are both endogenous and endogenous impacts. 

Empirical support for employing a complex system framework, including ABMs 

(see LeBaron, 2006), has come from their ability to generate the extreme events and asset 

returns that are consistent with the stylized facts outlined earlier, as opposed to the 

theoretical solution put forward under the EMH framework. 

2.4 Agent Based Models (ABMs) 
 
Given the characteristics of a complex system, more traditional analytical approaches are 

rendered ineffective, and researchers have turned to computer simulation to understand 

their dynamics. In particular, ABMs are extensively utilized in the study of complex 

systems. ABMs allow for the interaction between individual agents (investors in this 

case), who act and undertake actions based on the context of their environment and basic 

rules. Important considerations of these models are that they are capable of addressing 

issues such as; heterogeneous expectations and investment approaches amongst agents, 
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out of equilibrium dynamics, the impact of a changing external environment (including 

shocks) and the ability for the population to adapt and evolve. ABMs are able to achieve 

this because they dispense with optimization and hence are not constrained to equilibrium 

conditions (Sornette, 2014).  

2.4.1 Artificial	Stock	Markets		
 
The utilization of ABMs to create artificial stock markets, which was first mentioned in 

Section 1.3, can be traced back to the Santa Fe Institute in the late 90’s, where Arthur, 

Holland, LeBaron, Palmer, & Tayler (1997) attempted to comprehend under what 

conditions agents would or would not behave in accordance with a rational expectations 

model. The previously discussed Minority Game (see Section 2.3.2) also appeared around 

this time. Sornette (2014), LeBaron (2000) and (2006) provide detailed surveys of the 

various analytical frameworks that have subsequently utilized ABMs in developing 

artificial stocks markets.  

According to LeBaron (2006) the rationale for continuing to utilize ABMs to 

create artificial stock markets are: 

• The question of whether markets are rational remains unanswered and many other 

questions regarding the behavior of markets remain unanswered and therefore 

alternate approaches are warranted; and 

• Given the large amount of data in financial markets the output of ABMs can be 

validated.  

To this point, Darley and Outkin (2007) utilized an ABM to successfully answer 

questions regarding the NASDAQ Stock Market's decimalization which in occurred 2001 
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and Cui, Wang, Ye and Yan (2012) produced an ABM that matched the macro 

characteristics of the Chinese market. In another approach, Duffy and Ünver (2006) were 

able to replicate the actual experimental results of the Smith, Suchanek and Williams 

(1988) paper, which demonstrated that asset bubbles can develop despite investors being 

fully informed, via an ABM.  

The various approaches have the common theme of utilizing heterogeneous 

agents in terms of both expectations and investment strategies with the intention of; 

studying how agents act, how prices are set, reproducing the stylized facts of the markets 

and the understanding influence of the market’s microstructure. The differentiating 

factors for each framework is how they handle agent preferences, the price setting 

mechanism, whether evolution is allowed, and how strategies were stored. Cont (2007) 

classified the various frameworks into four categories: 

• Heterogeneous arrival of information; 

• Evolutionary models; 

• Behavioral switching; and 

• Investor inertia. 

One of the downsides of the early models, were that they tended to be complex, 

making it difficult to determine the influence of each of the inputs and what the key 

determining factors were (LeBaron, 2000). Sornette (2014) further suggests that the 

predictive power of a given model is constrained and it is unclear how to generalize a 

given result.  
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An important consideration in designing an ABM based artificial stock market is 

the mechanism under which the price in determined. Options include, establishing order 

books and fulfilling those orders through an auction process or making use of a market 

maker, who co-ordinates the market. The early models tended to favor the market marker 

approach while the later models have turned to a formal auction market. In what some 

may consider ‘hand waving’, the market marker is able to clear the market by providing 

liquidity and also standing on the other side of all trades at each tick. This means that 

investors are guaranteed to have their trades executed and allows for price determination 

to occur at each step. Therefore, the market will not become frozen due to a lack of 

liquidity or an inability to match orders, something that is a real world consideration. In 

addition, returns are not impacted by large gaps in a discrete order book. The downside to 

this approach is that the model losses the ability to assess what the investors were willing 

to buy and sell the asset for. 

One shortcoming not explicitly mentioned in the review of the ABM based 

artificial stock markets is the fact that agents do not create a portfolio of stocks but rather 

just decide to allocate their funds between a risk free asset, such as cash, and a risky 

asset, which is seen as a proxy to investing in an index. I feel that this approach may 

gloss over important aspects of investing such as stock selection and the benefits that 

result from diversifying risk across risky assets. It is for this reason the quasi-efficient 

frontier framework and multiple assets were introduced into the research topic.  

2.5 Section Summary 
 
The justification for the utilization of ABMs in analyzing financial market was made in 
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this section of the thesis. The argument for the need to explore alternative approached 

was made in Section 2.2, where the shortcomings of the EMH were presented. Section 

2.3 then presented the emergence of one alternative approach, treating financial markets 

as a complex adaptive system (CAS). Finally, Section 2.4 provided the background of, 

and the justification of utilizing ABMs to model a CAS. More specifically it provided 

evidence and high-level considerations of how artificial stocks markets can be created 

through an ABM. 

 Section 3 provides justification for the model implemented in this thesis. The 

model is one that proved capable of having investors consider: the actions of their 

neighbors, multi assets and for those investors to adapt and evolve. The exact details of 

the various agent classes and how the model considers the various research questions is 

provided in Section 3.3 through 3.8. 
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3 APPROACH AND MODEL DESIGN 

3.1 Introduction 
 
This chapter provides a detailed description of the model that was implemented to 

address the research question as presented in Section 1.3. The justification for the 

selection of the implemented model is provided in Section 3.2, with Section 3.3 detailing 

the agent classes implemented in the model and their relevance to research question. 

Sections 3.4 through 3.8 provides a walk through of the actual implementation of the 

model, as well as providing initial insights into the expected behavior of the model. All 

extensions to the original model are detailed throughout this section. The final two 

sections of the chapter detail the verification steps undertaken to ensure the model 

performed as intended and the outputs the model created. 

3.2 Model Background 
 
The model utilized for the research topic utilized and extended the Ising based ABM of 

Harras and Sornette (2011) (H&S hereafter).  Ising models had their genesis in 

mathematics before being adapted by physics, where they are seen as the “simplest 

representation of interacting elements with a finite number of possible tasks” Sornette 

(2014). They have subsequently been adapted to the fields of finance and economics 

because, as per McCoy and Wu (1973), they allow competition between the ordering 

forces of imitation or contagion and the disordering impact of varying news sources that 
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result in heterogeneous decisions.  The effects of imitation and contagion are also 

commonly analyzed with the aid of networks. 

The basic premise of the H&S model is that boundedly rational investors8 (for 

completeness, an investor(s) is defined as an agent who invests in the model) have access 

to three sources of information; the expected actions of their neighbors (𝐸!" 𝑎!" 𝑡 ), 

public information (𝑝𝑖! 𝑡 ) and private information 𝜖!"(𝑡). The investors utilize these 

sources of information to determine their propensity to invest (𝜔!").  Equation 1 details 

the exact calculation that the investors perform at each time step (defined as a tick), while 

Sections 3.5, 3.5 and 3.6 provide greater details on each coefficient, their relevance and 

the processes involved in updating them. The model then allows the investors to transact, 

with the new price endogenously determined for the asset(s) along with a variety of 

accompanying asset and portfolio statistics. 

From  Equation 1 it can be seen that the level of influence of each information 

source is weighted by two variables9, with one of these being fixed and the other variable. 

The fixed values are given by c1ij, c2ij and c3ij, while the variable coefficients are network 

trust (𝑛𝑡!") and public trust (𝑝𝑡!). By altering the c1ij, c2ij and c3ij coefficients, different 

dynamics are generated in the H&S model. In particular, when the upper limit for c1ij is 

set at 4, bubbles in the risky asset’s price appear. Given this, all parameter sweeps for the 

original and revised model will include values of c1ij ranging from 1 to 4. 

 

                                                
8 In this instance they are only considering past information.  
9 The exception is private information, which has a single variable. 
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 Equation 1: The decision equation 
 

𝝎𝒊𝒋 = 𝒄𝟏𝒊𝒋  𝒏𝒕𝒋𝒌

𝑲

𝒌!𝟏

𝒕− 𝟏 𝑬𝒊𝒋 𝒂𝒊𝒌 𝒕 +  𝒄𝟐𝒊𝒋𝒑𝒕𝒊 𝒕− 𝟏 𝒑𝒊𝒊 𝒕 + 𝒄𝟑𝒊𝒋𝝐𝒊𝒋 𝒕  

 
Or in simpler terms; 
 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 = 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑠𝑐𝑜𝑟𝑒 + 𝑃𝑢𝑏𝑙𝑖𝑐 𝑠𝑐𝑜𝑟𝑒 + 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑠𝑐𝑜𝑟𝑒 
 

The model considers the processes of adaption and evolution through investors 

continually reassessing and adjusting the trust in each of their information sources (Step 9 

and 10 of Figure 6) based on the ability of each source to predict the appropriate action. 

An appropriate action is when the information tells the investor to buy and the price 

subsequently increases (and vice versa for a sell signal). 

 The key findings of the H&S model, which form the justification for utilizing the 

model as a foundation for this thesis, were: 

• Price movements were impacted by how strongly the agents are influenced by 

their neighbors; 

• The asset returns, which were fat tailed, did not match the Gaussian distribution 

of the public and private information, thus indicating the model’s ability to 

generate the stylized facts of financial markets: and 

• The model is able to identify the conditions under which a bubble forms. 

Prior to making the necessary extensions to the model to meet the specific 

research questions of this thesis, I attempted and satisfactorily succeeded in replicating 

the output of the original H&S model. This process formed a key part of the verification 
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process for the model, a subject that is expanded upon in Section 3.9. The key metrics 

that were replicated were: 

• Asset returns and their volatility (as measured by Equation 10) were consistent 

with Figure 1 and Figure 2 of H&S (see Appendix 1 for comparative charts); and 

• The range of, and variability in the level of network and public trust. 

Changes to the model included; introducing multiple risky assets, an alternate 

source of public information, as outlined in Section 3.5.2 and varying network structures, 

as outlined in Section 3.3.3. The justification for adding multiple risky assets is, as 

previously mentioned (see Section 2.4.1), one of the shortcomings of the previous 

artificial stock markets in that investors are faced effectively with an asset allocation 

problem – invest in a risk free asset or a risky asset, and not how to choose between risky 

assets. By way of definition, a risk free asset is assumed to have a guaranteed return with 

no deviation (in the H&S model it is assumed to be zero), while a risky asset has a 

variable return, with no guarantee that it is positive. The higher the variability in the 

return of an asset, as given by its standard deviation, the riskier it is.  

In reality investors are faced with the decision of how to allocate their wealth 

across and within asset classes. For example, a typical investor will invest in domestic 

and international bonds, domestic, international and emerging market equities and 

various alternative assets. Within these classes they will form a portfolio, whether it be 

through direct investment or through multiple mutual funds. By investing in this manner 

an investor is attempting to diversify the risk of their investment portfolio. Complicating 

this process is the fact that some assets/asset class returns are correlated while others are 
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not, yet all of these assets will tend to become correlated in times of financial distress. As 

previously stated in Section 2.2.2, the Markowitz’s (1952) efficient frontier was one of 

the original mathematical based frameworks offering investors a solution as to how to 

diverify their risk. Hence, its inclusion within this research topic. 

The author’s model was implemented in NetLogo 5.3 (Wilensky, 1999). The 

NetLogo network extension was utilized to generate the Erdos Renyi network and the 

associate network statistics for all the network structures. The agents were initialized as 

per the NetLogo default of a random asynchronous order. The assumed time period per 

tick is a calendar quarter.  Figure 6 provides an overview of how the model flows, with 

each step described in greater detail in the following section. 

 
Figure 6: Overview of the model’s implementation 
 

•  Initial Steps 
•  Step 1: Assets initialised (Section 3.2.1)	
•  Step 2: Network formed (Section 3.2.3) 
•  Step 3: Network populated with investors (Section 3.2.2) 

• Repeated Steps 
•  Step 4: Asset information updated (Section 3.4.2) 
•  Step 5: Agents assess information sources (Section 3.4)  
•  Step 6: Agents make investment decision (Section 3.5) 
•  Step 7: Order book formed (Section 3.6) 
•  Step 8: Market cleared and asset returns calculated (Section 3.6) 
•  Step 9: Agents reassess the value of public information (Section 3.7.1) 
•  Step 10: Agents reassess the value of their neighbors (Section 3.7.1) 
•  Step 11: Agent portfolios updated (Section 3.7.2) 
•  Step 12: Portfolio valuation performed 
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3.3 Agent Classes  

3.3.1 Assets	
 
To address multiple assets, the implemented model has the capability to have between 1 

and 10 risky assets (denoted as I assets with i being the ith asset). With the introduction of 

multiple assets, assets effectively become agents and have the ability to be assigned, 

maintain and evolve heterogeneous characteristics. Table 1 details the key attributes of 

the asset class and the role they play in the model. 

In a key difference from the H&S model, the extended model sees the asset(s) 

maintain an earnings per share (EPS) value for each period. EPS reflects the income 

generating ability of the asset and is a key component in determining the fundamental 

value of an asset. The model also makes use of the past values EPS values to generate a 

future earnings forecast for investors. The importance of including an earnings forecast is 

articulated by Sornette (2014) when he suggests “in a given financial bubble, it is 

expectation of future earnings rather than present economic reality that the average 

investor”.  

In a further difference to the H&S model, by combining the EPS of the asset with 

its payout ratio, each asset returns a dividend per share (DPS), as shown in Equation 2. 

The justification of introducing dividends comes from the fact that dividends are a key 

component in the total returns for most assets. For example for the S&P 500, dividends 

are responsible for 42% of total returns (Ro, 2013). Each investor’s dividend is held in 

their dividend bank and investors do not have access to those funds for the purpose of 

further investing. 
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Equation 2: Dividend per share (DPS) per period 
 

𝑑! 𝑡 =  𝑒𝑝𝑠! 𝑡 ∗  𝑝𝑎𝑦_𝑜𝑢𝑡_𝑟𝑎𝑡𝑖𝑜! 

 

Table 1: Asset characteristics 
 
Characteristic 
(model variable) 

Function and Description 

Price in $’s 
(price) 

The price of each asset is initiated at $1 as per the H&S approach 
and is updated endogenously at each tick as per the process 
outlined in Section 3.7. In turn, a return series is determined given 
the changing prices. 

EPS in cents 
(EPS) 

To allow for an alternate process by which investors asses public 
information, each asset has an earnings per share (EPS) value. 
With the initial price per asset being $1, an acceptable P/E ratio for 
an equity being 15 and the model simulating quarterly updates, the 
initial EPS value (in cents) is given as (1/4)/15 * 100.  
The initial EPS is also the mean parameter for the probability 
distribution function (PDF) required for Step 4 of Figure 6 (nb. 
only for the extended model). The role that an asset’s earnings 
have on the behavior of each investor is outlined in Section 3.5.2.  

Asset Returns 
(ave_return and 
stddev_a_rt) 

Through the market clearing process an asset’s returns are 
generated. These returns are stored in a list and this allows the 
average and standard deviation of those returns to be calculated. 
The values of those calculations are stored in these variables. 

Correlation  
(corr_r) 

To allow for the varying effects of multiple assets, the public 
information of the assets are correlated to the first asset (Asset 0) 
by this variable. Greater detail of its use is provided in Section 
3.5.2. The value is set by the corr_r  parameter and is constant 
for all risky assets and ranges between 0 and 1. 

Pay_out_ratio The payout ratio determines the percentage of earnings that are 
returned to the investors. In reality, a low growth stock will 
generally have a higher payout ratio and a high growth stock a 
lower one. Given the H&S model did not include a dividend (or 
EPS), any benchmarking sets this value at 0. The variable will be 
utilized to assess the impact of an asset’s payout ratio on price 
volatility utilizing the extended model. 

EPS_dev 
H&S_dev 

Regardless of which model is implemented, Step 4 of Figure 6 
requires a standard deviation for the PDF. For the H&S model the 
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first asset has a standard deviation (H&S_dev) of 1 and a mean of 
0.  For each subsequent asset added the standard deviation 
increases by 0.1. For the revised model, the EPS’s standard 
deviation (EPS_dev) for the first asset is set by the std_eps 
parameter, which is a fraction (between 0 and 1) of the mean EPS 
value. It then increases by .1 for each incremental asset. 

Consensus EPS 
 

The extended model also requires each asset to maintain a 
consensus EPS forecast (EPSF). The forecast is homogenous for 
the population and its use is detailed in Section 3.5.2. The forecast 
is formed as the ensemble average of past EPS result as per the 
following: 
 

𝑒𝑝𝑠𝑓! 𝑡 =  𝛼 ∗ 𝑒𝑝𝑠𝑓! 𝑡 − 1 + 1− 𝛼 ∗ 𝑒𝑝𝑠! 𝑡 − 1  
 
𝛼 relates to the memory_weight parameter which is detailed in 
Section 3.8. Given the EPS results are drawn from a normal 
distribution, the consensus forecast should mean revert over time 
but the use of the above equation does allow for the development 
of trends. 

Consensus_Accuracy The revised model replaces the public information process of the 
H&S model with investors assessing the accuracy of the consensus 
forecast. This attribute captures the outcome of the processes 
described in greater detail in Section 3.5.2. 

	
 

3.3.2 Investors	
 

The population size of investors is variable and is set by the user. However, to 

remain consistent with H&S, 2,500 investors (denoted by J with j referring to the jth 

investor) are used in all experiments. At all times they hold a combination of the risk free 

asset (a proxy for cash) - which can be redeemed to purchase the risky asset(s), and the 

risky asset(s). The objective of the investors is to improve/increase their wealth by buying 

the risky asset(s) when they think the value will increase and selling it(them) if they think 

the value will decrease. At initiation the investors are provided one unit of the risk free 
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asset and one unit of each of the risky assets. Table 2 summarizes the key variables that 

the investors own and how they are utilized in the model. 

 

Table 2: Investor variables 
Symbol Name Purpose 

𝒄𝟏𝒊𝒋 Network 
influence  

Each investor is initiated with a fixed value (float) that is 
drawn randomly from a uniform distribution between 0 
and a value up to 5 that the user decides. The variable is 
used to weight the information the investor generates 
from their network. As investors have a different value 
for 𝒄𝟏𝒊𝒋 this introduces a level of heterogeneity within the 
population. While beyond the scope of this paper it is a 
worthier consideration that if the value of 𝒄𝟏𝒊𝒋 were 
allowed to be less than 0, it would introduce contrarian 
investors. 
Analyzing the impact of different levels for this variable 
and 𝒄𝟐𝒊𝒋 forms a key component of this thesis and the 
H&S paper.  
An acceptable interpretation of these variables is that a 
higher value (such as 4), indicates a higher initial bias to 
that information source.  

𝒄𝟐𝒊𝒋 Public 
information 
influence 

Similar to the above with the exception of weighting the 
public information by a value between 0 and the value of 
the public_influence parameter. 

𝒄𝟑𝒊𝒋 Private 
information 
influence 

Similar to the above, with the exception of weighting the 
private information being set by the user defined 
private_influence parameter. Note that the 
private information has no adaption variable. 

𝒏𝒕𝒋𝒌 Network 
information trust 

While this variable is initiated at 0, investors update the 
value at each tick (see Section 3.8.1) to reflect an 
increasing or decreasing level of trust in the information 
coming from each of the investors in their neighborhood. 
𝒄𝟏𝒊𝒋 is then used to compound the information from the 
investor’s network. It should be noted that an investor 
places trust in a neighbor’s overall ability to make the 
right selection (their average ability) and they do not 
keep track of a neighbor’s ability to pick individual 
assets. 
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𝒑𝒕𝒊 Public 
information trust 

Similar to the above with the exception of being the trust 
an agent has in public information for each specific asset 
(asseti). As detailed by Section 3.8.1, the level of public 
trust is homogenous across the population as all investors 
receive and assess the public information in the same 
manner. However, in contrast to the trust an investor has 
in their neighbors, an investor maintains public trust at an 
asset level.  
The alternative approach - taking the average from the 
assets - was assessed but it was felt that by aggregating 
the trust a level of freedom was lost in model. It is not 
unrealistic to expect investors to have varying levels of 
faith in a stock’s ability to surprise based on past results.  

𝝎𝒋 Transaction 
threshold 

Each investor is initiated with a fixed value (float) that is 
drawn randomly from a uniform distribution between 0 
and the value of the threshold parameter.  The default 
level for the model is 2. 
The variable is used as the value by which an investor 
decides to either buy, hold or sell (see Table 4 and 
Section 3.6 for a detailed description). As investors have 
different values for 𝝎 𝒋, another level of heterogeneity 
exists within the population. H&S attribute this value to 
the risk aversion of the investor. Indeed an investor with 
a high 𝝎𝒋 requires significant evidence before they 
commit to a transaction, while a low value will see the 
agent act on the slightest change in information. 

tr Transaction ratio The value is set by the transaction_ratio 
parameter and represents the fixed fraction that an agent 
is willing to trade. The default value is 0.02. While the 
transaction ratio is fixed, future research may look to 
have this variable vary based on how confident an 
investor is. 

 

3.3.3 Networks	
 

Prior to the initiation of the investors, their network topology is generated (Step 2 

in Figure 6). The use of alternative network structures is a variation on the H&S model, 

which only utilized a lattice in assigning neighbors. The authors did comment that their 

results held for both random and complete graphs but they made no mention of the other 



 
 

44 

network structures outlined in Section 2.3.4. Once the network is initialized, the model 

then populates the nodes with the investors. 

The network structures utilized in the model are those illustrated in and Figure 4 

Figure 5 in Section 2.3.4, with the exact characteristics used for the formation of each 

network being detailed in Table 3.  

 

Table 3: Network characteristics 
Network  Key Characteristics 
Lattice Number of links per investor = four 

The Ring_M parameter is set to 2  
Small world Number of initial links per investor = four 

The probability of rewiring (prob_of_rewire parameter) = .10  
Random network Probability of connection (prob_of_link parameter) = .0016 
Scale Free Number of hubs (set by the Ring_M parameter) = 10 

Probability of connection (prob_of_link parameter) = .20 
 

In terms of generating the networks, with the exception of the Erdos Renyi 

network, where the network extension of NetLogo was utilized, the following user 

determined algorithms were used.  

For the lattice network the first step in generating the network is for the user to set 

the number of neighbors they want each investor to have via the Ring_M parameter. 

Given undirected links are being formed by the investors, the parameter is set as half the 

number of required neighbors because an investor becomes a neighbor with another 

investor regardless of whether they create the link or the neighbor creates the link with 

them. Next the investors are placed into a list, which is sorted by the investor’s numerical 
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identification number. Each investor is then asked to form an undirected link with the 

next highest investor in the list. The process is repeated for the investor by value of the 

Ring_M parameter, with the following link being formed with the next highest neighbor.  

The small world procedure firstly implements the lattice network procedure using 

the same Ring_M parameter. Next, each investor forms a list of their links, which they 

cycle through asking each link to rewire, with the probability provided by the 

prob_of_rewire parameter, to another investor within the population that they are 

not connected with. Rewiring involves creating an undirected link to the new investor and 

then removing the link to the existing neighbor. 

To create a heavily skewed degree distribution with approximately 5,000 links for 

the scale free network, the user needs to decide on the number of hubs (set by the 

Ring_M parameter) they require and the probability (prob_of_link parameter) of an 

investor connecting to each of those hubs. The procedure operates by each investor 

identifying the hubs by finding and then forming a list of the investors with the most 

number of neighbors. The number of investors in the list is determined by the Ring_M 

parameter. Next, each investor with a probability determined by the prob_of_link 

parameter, links with each of the investors in the list. This process is sufficient to create a 

scale free network via a preferential attachment process.  

The above approaches were taken to ensure that the number of edges (5,000) and 

the average number of neighbors (4) would be consistent across the different network 

structures. This approach ensures that any difference in the outcome is not influenced by 

the number of edges, but solely by the degree distribution of the networks.  
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In the H&S model the number of neighbors was consistent at 4 for all investors. 

However, with the introduction of the different network structures, the number of 

neighbors is no longer consistent across all investors. The ramification being that if an 

investor has only one neighbor they will have an initial bias towards public and private 

information, as they collect less opinions and if they have a lot of neighbors there will be 

an initial bias to the information coming from their network as they collect more 

opinions. Consideration was given to normalizing the network score but this would 

minimize the impact of the different network structures. In addition, as investors 

continually reassess their trust in each information source, it does not preclude a single 

neighbor becoming very persuasive. Conversely, an investor with a large number of 

neighbors may end up attributing very little trust in them. 

The links between neighbors are undirected and not specifically weighted nor are 

the links dynamic. However, given investors vary the level of trust they have in each 

neighbor, the network does become quasi dynamic i.e. as the trust in a neighbor 

increases, the weight of a directed link between the two effectively increases. Future 

iterations of this model could look to have investors jettison untrustworthy neighbors and 

search for investors that have superior performance. Also, directed links may be a 

worthwhile investigation - just because you listen to a neighbor there is no guarantee they 

listen to you. 

One of the key differences in the network structures is their centrality. The 

concept of centrality captures the implications of knowing not only who your direct 

neighbors are is important, but also who your neighbors’ neighbors are, who your 
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neighbors’ neighbors’ neighbors are, etc. (Walden, 2014). The implication for financial 

markets is that investors who are centrally placed tend to receive information signals 

earlier than peripheral agents, and therefore tend to perform better (Walden, 2014). 

One centrality measure is betweenness centrality, which was introduced by 

Freeman (1978), with the intent of capturing the idea that an agent (node) can be more or 

less important based on the number of chains that pass through it (Caldarelli & 

Catanzaro, 2012). The process involves finding the frequency with which a node lies 

along the shortest path between two other nodes. The agent with the highest betweenness 

is the one with the most ‘best paths’10. Its relevance as a measure is that it is seen as an 

index of potential gate keeping and indicates the power and access to the diversity of 

what information is flowing through the network.  

Another relevant measure is closeness centrality, which aims to find the agent that 

is closest to all other agents. It is calculated as the sum of distances11 of an agent to all 

other nodes and is seen as an inverse measure of centrality. Its relevance is that it is seen 

as the index of the expected time until arrival, for a given node, of whatever is flowing 

across the network. Therefore, an agent with high closeness is seen as a key player 

because they hear things first. 

Walden (2014) showed that having an information advantage (i.e., the advantage 

an investor has because of his position in the network) allows an investor to earn excess 

returns. This advantage was closely related to their eigenvector centrality, but less so the 

                                                
10 The shortest path is defined as the route with the least number of edges between two 
agents. 
11 Distance is defined as the length of the shortest path between two agents. 
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other centrality measures. The eigenvector score for an agent assesses how connected the 

neighbors for an agent are. The investor with the highest eigenvector will be the one with 

the best overall connection and is seen as the leader of leaders.  Its popularity comes from 

providing a good balance between connections at all distances compared with other 

measures (Walden, 2014).  

3.4 Market 
 

Section 2.4.1 outlined the two alternatives for the market clearing process: the 

existence of a market marker or a formal auction market. To remain consistent with the 

H&S model, a market marker model is employed for this thesis. In addition, the market 

remains closed with regards to the number of investors and their ability to access 

additional cash or raise debt to acquire risky assets, which is again consistent with the 

H&S model.  According to H&S, this enables a greater amplification of the bubble. The 

author concedes that this is a possible weakness to the model because as Xiong (2013) 

points out, among other things, assets bubbles see new investors enter the market plus 

markets become vulnerable to increases in asset supplies. 

In addition, to the market being closed, the dividends (𝑑!(𝑡)) which are declared at 

each step, are not available to be re-invested into the market. This dampens the absolute 

movement of the price and should see the price mean revert to 1 in the absence of any 

other dynamics within the model. While dividends are not available for re-investment, 

their value is tracked because the value is needed for the portfolio statistics for the 

investors. 
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3.5 Decision/Opinion Sources 

3.5.1 Private	Information	
 
At each time step investors update their private information/opinion with regard to each 

asset. Each opinion (𝜖!"(𝑡)) is drawn randomly from a normally distributed population 

(N(0,1)) as part of Step 5 in Figure 6. This process should ensure that the information is 

uncorrelated across and between assets and investors. The justification for the inclusion 

of the private information variable is that it allows for investors to form independent 

decisions on how an asset will perform, and covers the possibility that investors may 

have access to private information sources, something, as discussed in Section 2.2.1, that 

is precluded by the generally accepted Semi Strong Form of the EMH.  

Investor trust in their private information remains constant at the initiated value of 

𝑐!!". While this approach follows the H&S model, the field of behavioral finance can 

further justify the position, as DeBondt and Thaler (1985) comment “perhaps the most 

robust finding in the psychology of judgment is that people are overconfident". This 

overconfidence is manifested in both overconfidence and self-attribution bias. Daniel, 

Hirshleifer and Subrahamanyam (1998) define an overconfident investor “as one who 

over estimates the precision of his private information signal, but not of information 

signals publicly received by all”. Self attribution refers to how agents will attribute a 

correct prediction to their skill while dismissing an incorrect prediction to noise (Daniel 

et al., 1998). 
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3.5.2 Public	Information	
 
Regardless of which model is used, the updating of the public information occurs at Step 

6 in Figure 6. To allow for the implications resulting from multiple assets, certain 

changes to the H&S model were required. In the H&S model, public information is 

determined in a similar manner to the private information, i.e. a Gaussian white noise 

process with a mean of 0 and variance of 1 (N(0,1))12. With multiple assets, a key 

question is how correlated are those assets to each other? Therefore, the model needed to 

allow for the possibility that the public information of the assets is fully, partially, or not 

at all correlated. The impact of varying the correlation will be discussed in Section 4.2.4, 

but early findings suggest that having no correlation between the assets hampered the 

ability of the investors to generate any sufficient trust in their information sources. 

 The process for updating the public information for each asset is given by  

Equation 3. The process works by the news for the first asset (asset 0) being randomly 

chosen from the Gaussian distribution and if there are multiple assets, the process is 

repeated for each of the assets. The final value is then determined by weighting the values 

by 𝛽 or 1 - 𝛽. While the equation only addresses the correlation between the first asset 

and each asset, it can be seen that if 𝛽 = 1 then the process is the equivalent to the 

original H&S model because all risky assets will have the same public information. 

  Equation 3: Public information update 
 

𝒑𝒊𝒊 𝒕 =  𝛽 ∗ 𝐴𝑠𝑠𝑒𝑡𝑁𝑒𝑤𝑠_0(𝑡)+ 1− 𝛽 𝐴𝑠𝑠𝑒𝑡𝑁𝑒𝑤𝑠!(𝑡) 
 

 

                                                
12 The exception is in the multiple situation where the standard deviation increments by .1 
per asset. 
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As discussion in Section 3.3.1, the introduction of EPS in the extended model required further changes. In effect, 
required further changes. In effect, 𝑒𝑝𝑠!(𝑡) for the asset replaces ‘news’ in Equation 3 as the earnings for the 
the earnings for the asset for each period are determined in a similar manner to the original model, with the 
original model, with the exception that the earnings are drawn from a PDF based on the parameters as outlined 
parameters as outlined in Table 1, that is, one with a non zero mean. This factor also sees the consensus forecast 
the consensus forecast always being strictly greater than 0. However, in an important difference under the 
difference under the extended implementation, investors assess the actual EPS (𝑒𝑝𝑠!(𝑡)) delivered at each step 
delivered at each step against the consensus forecast, as per Equation 4. In terms of the consensus forecast 
(𝑒𝑝𝑠𝑓!(𝑡)), each agent holds the same forecast, which is determined as the ensemble average of past EPS results 
as provided by  

Equation 5.  

Equation 4: Public information 
 

𝑝𝑖!" =  
𝑒𝑝𝑠!(𝑡)−  𝑒𝑝𝑠𝑓!(𝑡)

𝑒𝑝𝑠𝑓!(𝑡)
 

 
Equation 5: Consensus forecast 
 

𝑒𝑝𝑠𝑓! 𝑡 =  𝛼 ∗ 𝑒𝑝𝑠𝑓! 𝑡 − 1 + 1− 𝛼 ∗ 𝑒𝑝𝑠! 𝑡 − 1  
 

If the actual earnings for an asset exceed the consensus estimate, this is 

considered an earnings surprise and this would be reflected positively with a score greater 

than zero. Alternatively, if earnings miss to the downside this is a negative and agents 

will read it as a signal to sell down their holding in the asset. If earnings meet 

expectations then the information adds no value in the decision-making process because 

the investor assumes the information is already reflected in the price (they are assuming 

that the EMH actually holds true!) and they will hold their current position. As investors 
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have the same public information the level of trust they have in it for each asset is the 

same. 

The primary support for the above deviation comes from the existing volume of 

work that has analyzed the impact of earnings announcements (see Kothari (2001) for a  

extensive review of the literature). In summary, the findings show that stock prices react 

positively to positive earnings news, yet it takes time for this information to be fully 

reflected in the price of the asset (Kothari, Lewellen, & Warner, 2006).  Further support 

comes from Barberis, Shleifer and Vishny (1998), who produced a model of investor 

sentiment that was successful in explaining and replicating an asset’s price movement 

following an earning surprise.   

3.5.3 Network	Information	
 
To capture the information from their network, each investor polls their neighbors in 

terms of their intentions (buy, hold or sell) for each asset in Step 5 of Figure 6. The 

justification for this variable is that if an investor utilizes a bounded rationality 

framework, it becomes more efficient for them to imitate their neighbors (see section 

2.3.2). It is also known that investors consider their peers (see section 2.3.3) in their 

investment process.  

The results of the process are captured by the 𝐸!" 𝑎!" 𝑡  term in Equation 1, with 

the 𝑎!" 𝑡  reflecting the action of the neighbor, as per Table 4. The investor will then 

weigh the action by the amount of trust they have in the particular neighbor 𝑛𝑡!"(𝒕− 𝟏). 

The investor then sums the results from each neighbor before finally multiplying the 

value by their fixed 𝑐!!" term. Given the updating process of the model, an investor may 
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poll some neighbors before those neighbors have processed their new private and 

network information. This is not considered a problem because agent initiation in the 

model is consistent with the process described by H&S, thereby accepting the 

justification of varying reaction times between investors.   

3.6 Investment Decision 
 
After investors assess their new information and before they update their level of trust, 

they must make a decision at each time step (Step 6 in Figure 6). As detailed in Section 

3.3, investors are provided with a threshold value 𝝎!, and it is this value that they 

compare with their score (𝝎!" 𝑡 ) when deciding their actions (𝑎!" 𝑡 ) for each asset at 

time t. Table 4 details the conditions by which they make their decisions. 

 

Table 4: Agent decision thresholds 
Scenario Action Variable Trading Volume 

𝝎𝒊𝒋 𝒕 >  𝝎𝒋 Buy 𝑎!" 𝑡 = +1 
𝑣!" 𝑡 =  𝑡𝑟 ∗  

𝑟𝑓!(𝑡)
𝑝!(𝑡 − 1)

 

𝝎𝒊𝒋 𝒕 <  𝝎𝒋 ∗  −𝟏 Sell 𝑎!" 𝑡 = −1 𝑣!" 𝑡 =  𝑡𝑟 ∗ ℎ𝑜𝑙𝑑𝑖𝑛𝑔!"(𝑡) 
Otherwise Hold 𝑎!" 𝑡 =  0  

 

Having decided to buy, hold or sell, the investors must decide how much they are 

willing to buy or sell (Step 6 in Figure 6). Table 4 again provides the formula by which 

they determine the transaction value (𝑣!" 𝑡 ). In determining the value of each 

transaction, the agents apply the coefficient tr. H&S indicate that as long as this 

coefficient does not approach 1 the general findings of the model are not significantly 
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affected13. With regard to the calculation, investors face the following constraints within 

the model: 

• No leverage - Agents must have a positive holding of the risk free asset 

(𝑟𝑓! 𝑡 ) to enable them to trade; and 

• No short selling – Agents must have a positive holding of the asset 

(ℎ𝑜𝑙𝑑𝑖𝑛𝑔!"(𝑡)) they wish to sell.  

These constraints raise the possibility that an investor may wish to undertake an 

action but are unable to. It is for this reason that it is the intention of an investor’s 

neighbor (given by 𝑎!" 𝑡 ) that is polled rather than the transaction value. 

It should be noted that when deciding how much to invest (𝑣!" 𝑡 > 0), investors 

do not attempt to forecast what the price will be at the completion of the trade (p(t)), 

rather they use the existing price, which is provided by p(t-1). H&S again suggest that the 

alternative approach does not impact the results.  

3.7 Market Clearing Process 
 
Following the accumulation of the investors’ orders for each asset, the market is cleared 

and the returns for the asset(s) are determined via Equation 6 (see Steps 7 and 8 in Figure 

6). The first term of Equation 6 remains consistent with the H&S model, where the 𝜆 

term is used to weight the investor’s actions by the market depth. A detailed analysis and 

justification for the use of this term and the general market pricing mechanism is 

provided by Farmer (2002).  

                                                
13 This was tested with regards the author’s model and a similar conclusion was reached. 
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The 𝑎!"
!!
!!! 𝑡 ∗  𝑣!" 𝑡  term, which is the accumulation of the investor’s 

individual orders, provides the surplus/deficit demand for the asset at each step. If there is 

net buying (a surplus in buy orders) then the return for the period will be positive and the 

price will increase, the opposite occurring if there is a net selling (deficit in demand). 

Excess prices movements for any period will be generated by large surplus/deficits and 

indicates that the population has become a herd. A bubble and crash will occur if the 

population remains in that herd for an extended period, that is, there are multiple periods 

of net buying or selling. 

Equation 6: Return determinant for asset i 
 

𝑟! 𝑡 =  !
!∗!

 𝑎!"
!!
!!! 𝑡 ∗  𝑣!" 𝑡 + log ((𝑑! 𝑡 + 𝑝!(𝑡) )/ 𝑝!(𝑡)) 

 
 

In a deviation from the approach of H&S, an asset’s dividend (𝑑!(𝑡)) is included 

when an asset’s return is determined as per the last component of Equation 6. Section 

3.5.2 detailed the process by which the dividend is determined for each asset at each step. 

 The value of 𝑟! 𝑡  is placed into a list so that the average and standard deviation 

of the asset’s returns can be tracked and used to plot the quasi-efficient frontier. 

However, before this occurs, the inverse log is taken to ensure the values are in the same 

scale as the investor’s returns as determined in Section 3.8.2. 

Within step 8 the price of each asset is updated as per Equation 7 and then the 

model takes the inverse of the log 𝑝! 𝑡  term to finalize all book keeping for the 

investors (Section 3.8.2). Technically, an asset’s price should fall by its dividend value 
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once the dividend is paid. However, in the interest of preserving the intention of Equation 

7, the price is not impacted by the dividend of the stock. 

Equation 7: Log price update 

log 𝑝! 𝑡 = log[𝑝!(𝑡 − 1)]+
1
𝜆 ∗ 𝐽  𝑎!"

!!

!!!

𝑡 ∗  𝑣!" 𝑡  

3.8 Agent Updating 
 

3.8.1 Trust	Updating	
 
After the investors become aware of their returns, they reassess the level of trust they 

have in the information provided by their network and public sources, as used in 

Equation 1, and update (𝑛𝑡!") and (𝑝𝑡!) respectively (Step 9 and 10 in Figure 6). The 

rationale for these variables, which are initiated with a value of 0, is that the investor will 

place greater trust in a source if it provides the correct advice. That is, if the agent 

receives a buy (sell) signal from the information source, and the price subsequently 

increases (decreases), then the weight (trust) increases. The weight decreases if the signal 

is erroneous.  As H&S detail, the investors are “looking for persistent sources of 

information, which impact on returns”. There is an important difference in updating the 

two trust variables. For public trust, the population maintains trust at an individual asset 

level to preserve the heterogeneous nature of the asset’s performance. In contrast, for an 

investor’s trust in their neighbor, they will assess the individual recommendations of their 

neighbors before updating the trust based on the average performance of the 

recommendations.  
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Investors follow the process as illustrated in Figure 7 when assessing the 

usefulness of the public information (𝑝𝑖! 𝑡 − 1 ) or network information 

( 𝐸!" 𝑎!" 𝑡!
!!! ). 

 

 

Figure 7: The simplistic flow of agents assessing the usefulness of information 
 

The key implication of the process, as detailed by H&S is “that for any 

information source to have any predictive power it must have some persistence”. For this 

statement to hold, investors process their information sources and make their decision in 

t-1. The market will subsequently move in t-1 (see Figure 7) based on the combined 

decisions of the investors in t-1. However, it is not until period t that investors assess the 

value of the information that they processed in t-1 and update their trusts levels according 

to the standard autoregressive update as detailed in Equation 8 and Equation 9. 

Equation 8: Public trust update 

𝑝𝑡! 𝑡 =  𝛼𝑝𝑡! 𝑡 − 1 + 1− 𝛼 𝑝𝑖!  𝑡 − 1 ∗  
𝑟!(𝑡)
𝜎!"(𝑡)

 

 
Equation 9: Network trust update 

𝑛𝑡!" 𝑡 =  
𝛼𝑛𝑡!" 𝑡 + 1− 𝛼 𝐸!" 𝑎!" 𝑡 ∗ 𝑟!(𝑡)𝜎!"(𝑡)

!
!!!

𝐼  

Process news 
source 

 

Make decision 
𝜔!"  

Market returns 
r(t) 

Assess value of 
news source 

t t -1  
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The first part of the above equations discounts the previous trust value variable by 

the variable (𝛼), which is set by the memory_weight parameter. The significance of 

the 𝛼 variable, which is also used in the consensus forecasting process, is that it sets the 

time scale over which past performance impacts a variable’s value. The time scale as per 

H&S is given as !
!" !

. The second part of the equation adds the assessment of the 

immediately preceding information, which has been discounted by (1- 𝛼) after it is 

multiplied by the !!(!)
!!"(!)

 term. The !!(!)
!!"(!)

 term is used to normalize the past return of an asset 

by the standard deviation of its past returns. The rationale, as articulated by H&S, is that 

a larger return scaled by its volatility (𝜎!"(!)) will enhance the trust to a greater degree. 

This process provides the potential mechanism for the development of a bubble or crash, 

as investors place more and more trust in an information source when it provides greater 

profits (or saves losses), hence the potential to create a positive feedback loop.  

Equation 10 details how 𝜎!"(𝑡)! is computed as a moving standard deviation with 

an exponentially decreasing kernel. The 𝑟! 𝑡  𝑎𝑛𝑑 𝑟! 𝑡 − 1  terms represent the 

ensemble average of the return series, where the ensemble average is defined as the 

expected object of the stochastic process. 

Equation 10: The variance and ensemble average for an asset’s return 
 

𝜎!"(𝑡)! =  𝛼 ∗ 𝜎!" 𝑡 − 1 ! + 1− 𝛼 ∗ (𝑟! 𝑡 −  𝑟! 𝑡 )! 
 
Where 𝑟! 𝑡  is given by: 
 

𝑟! 𝑡 =  𝛼 ∗ 𝑟! 𝑡 − 1 + 1− 𝛼 ∗ 𝑟! 𝑡  
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3.8.2 Portfolio	Updating	
 
The final step of the process is to update the investors’ portfolio and calculate their 

portfolio statistics (Steps 11 and 12 in Figure 6). It should be noted that the dividend 

payments are not added to 𝑟𝑓! 𝑡 , the balance of the risk free asset, as the investors 

cannot reinvest dividends. The implication being that the model remains a closed system 

and therefore does not deviate too far from the original H&S model. The alternate 

approach would introduce a wealth effect, adding a layer of complexity, thus making it 

harder to interpret the implications of introducing the other new factors to the market. 

 Equation 11 provides the book keeping formulas used to update the portfolio. The 

investor’s risk free asset (𝑟𝑓!) is updated by the proceeds of any sales and the cost of any 

purchases, noting that the proceeds are impacted by the price realized in the period. In a 

similar manner, the holding for each of the investor’s risky assets are updated. 

Equation 11: Portfolio updates 

𝑟𝑓! 𝑡 =   𝑟𝑓! 𝑡 − 1 −  𝑠!"

!

!!!

𝑡 ∗  𝑣!"  𝑡 ∗ 𝑝!(𝑡) 

 
ℎ𝑜𝑙𝑑𝑖𝑛𝑔!" 𝑡 =  ℎ𝑜𝑙𝑑𝑖𝑛𝑔!" 𝑡 − 1 +  𝑠!" 𝑡 ∗ 𝑣!"𝑡 

 
 Given the model’s design, each investor’s average portfolio return and its 

standard deviation are calculated at each tick. The results of these calculations allow for 

the construction of the quasi-efficient frontier, as illustrated in Figure 8, where the ‘+’ 

symbols represent the average return and standard deviation of the investors, and the ⊗ 

symbol represents the risky asset. The quasi-efficient frontier plots the average return for 

each investor’s portfolio against its standard deviation, which is the proxy for risk. 

Equation 12 provides the formula for the value of an investor’s portfolio value. The 
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inclusion of the dividend bank should be noted as it does form part of the investor’s 

returns. 

Equation 12: Portfolio value  
 

𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑉𝑎𝑙𝑢𝑒!" 𝑡 =  𝑟𝑓! 𝑡 +  ℎ𝑜𝑙𝑑𝑖𝑛𝑔!" 𝑡
!

!!!

+ 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑏𝑎𝑛𝑘!" 

 
While further discussion will be undertaken in the results section, the reader should 

note that the top of Figure 8 represents a scenario where a bubble is growing and the 

bottom represents the situation as the bubble implodes. The implication being that while 

the market is going up, investors move towards the risky asset but cannot catch the asset. 

In this situation, investors with a lower threshold move first. In an exploding market, 

investors move away from the risky asset and the investors in the top left corner may well 

have timed the market perfectly and sold at the top as they have outperformed the market 

with considerably less risk than the risky asset. 
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Figure 8: Examples of the quasi-efficient frontier pre and post bubble 
 

3.9 Verification 
 
An important consideration in the ABM building process is to verify that the model 

performs as it is was designed. While the actual results cannot (and should not) be 

assessed ex ante, certain steps can be taken. For the implementation of this model the 

following verification steps were successfully undertaken: 

• Matching the baseline output of the H&S model; 

• The implementation of a journal to allow manual calculations to be undertaken to 

ensure calculations within the model were correct; 

• Visual inspection of various charts plotting the behavior of the variables;  
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• A code walk through was undertaken to firstly ensure no coding errors were 

made and secondly, to produce flow charts to ensure the code implemented the 

intended model as outlined in Sections 3.2 through 3.8; and 

• Parameter sweeps of the extreme values. 

3.10 Model Outputs 
 
An inherent value of ABMs is being able to collect data at both the agent and system 

level (the data from this model extensively analyzed in Section 4). At the system level the 

model generates a new price at each step of the model as described in Section 3.7. 

Associated with this new price are the returns of the asset plus the mean and the standard 

deviation of those returns. The model also collects the average network and public trust 

of the investors and the cumulative actions of the investors, which in turn allows for the 

analysis of the order book at each step.  

In terms of the data collection at the agent level, the focus of this thesis was to 

collect the average return and the standard deviation of the returns of the investors. This 

was necessary to create the quasi-efficient frontier. Given the infrastructure of the model 

the potential exists to extract far more information at the agent level. Obvious candidates 

include the centrality of the individual agents and their investment thresholds. The 

extraction of these variables will be helpful to uncover the determinant of what makes an 

investor successful or not.  

The Netlogo network extension package is also utilized to calculate betweenness 

and closeness centrality measures for whichever network topology is implemented. The 
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results are maintained at the agent level, which again allows for agent and system 

analysis to be undertaken. 

3.11 Section Summary 
 
The detail of the implemented model, which has made multiple extensions to the H&S 

model, was provided in this section. The extensions all relate to providing greater clarity 

to how financial markets operate. At a high level the extensions were; the introduction of 

different network topologies, an alternate source of public information and the 

introduction of a dividend and multiple assets. Sections 4.2.2 through 4.2.4 provide the 

results of various experiments that test the implications of these extensions. While 

Section 4.2.1 details the creation and collapse of bubble in greater detail and finally 

Section 4.2.5 outlines the quasi-frontier. 
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4 RESULTS AND FINDINGS 

4.1 Introduction 
 

The successful replication of the H&S model and the implementation of the 

various extensions provided the opportunity to experiment with a vast array of scenarios. 

However, the scope of the experiments for this thesis have been restricted to those 

outlined in Table 5. The key components and findings of the various experiments are also 

provided, with greater detail provided in the appropriate subsections.  In addition to these 

experiments insights were gained with regards to the trading behavior of the investors 

and the dynamics of the quasi-efficient frontier. 

 

Table 5: Summary of results 
Model Design Key Components Summary of Findings 
H&S with different 
networks (see 
Section 4.2.2) 

All four networks topology 
were tested with the level of 
c1 varied from 1 to 4 in 
increments of 1. 

The scale free network has very 
different characteristics to the other 
three networks. When c1 is increased 
to 4, all network experience much 
higher volatility. 

Revised model with 
a single asset (see 
Section 4.2.3) 

Utilized a lattice network 
with the revised source of 
public information and the 
dividend payout ratio varied 
between: 0, 0.33, 0.66 and 1. 

The revised public information 
process generates similar outcomes 
when the payout ratio is 0. Increasing 
the payout ratio sees asset prices 
remain elevated. 

H&S with multi 
assets (see Section 
4.2.4) 
 

Utilized a lattice network 
with 3 risky assets and the 
H&S model for the source of 
public information. 

When the correlation in public 
information increases, price peaks 
appear but they are not as high or as 
consistent as under the H&S model.  
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To ensure consistency across the experiments, the parameter sweeps for the 

various scenarios were performed with the following characteristics, which were the 

default settings for the H&S model: 

 
• 2,500 steps per run;  

• 30 runs per setting; 

• The number of investors (J) was 2,500; 

• The upper bound for the conviction threshold was set at 2; 

• The market depth (𝜆) was set at .25; 

• The transaction ratio (tr) was set at .02; and 

• Memory length (𝛼) was set at 0.95. 

 
All charts and statistical tests presented in this section were generated in R (2015), 

unless stated otherwise. The presentation of the results is also consistent with each 

experiment containing the following items; fan plots14 illustrating the combined runs of a 

particular setting, boxplots of the mean and standard deviation of the prices for each of 

the combinations and where necessary boxplots of other variables of interest. With 

regards to the fan plots, the reader should note that the x-axis in these charts is time as 

determined by tick/step number of the experiment.  The combination of these plots and 

appropriate statistical tests provides sufficient information to support meaningful 

inferences about the behavior of the market.  

The most relevant finding from the H&S paper was the existence of a phase 

transition when the level of the 𝑐!!" variable (the fixed coefficient with regards to an 
                                                
14 The fan plots are generated via the fanplot library (Abel, 2015). 
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investors trust in their neighbors, or in other terms, their initial bias to that source) was set 

at 315. The authors suggest that at this setting a positive feedback loop with regards to 

investors adapting the actions of their neighbors becomes material, that is, the investors 

will ‘herd’. Further, at values greater than 3, the system becomes “excitable” and the 

existence of a large bubble occurs, with the authors classifying these events as outliers. 

Based on these findings and in the interest of time and space, this author designed the 

various experiments around contrasting the behavior of the system when 𝑐!!" is set at 1 

versus when it is set at 4.  

4.2 Detailed Results 

4.2.1 Trading	Behavior	in	a	Bubble	
 
The H&S paper provides a detailed explanation of how and why bubbles are created in 

their model. However, one issue they do not directly address is what the intended actions 

of investors are during the formation and deflation of a bubble. This is an important 

consideration because the question of what pops a bubble remains open. H&S mention 

that the rise in the asset price slows because investors do not have the infinite resources to 

drive the price higher. Closer inspection of Figure 9, which is a representation of the 

system when a bubble forms, provides evidence that the there may be more to it than 

investors not having infinite funds. The series titled ‘buying’, which measures the number 

of investors with an intention to buy (𝑎!" 𝑡  = 1), reaches its peak before the top of the 

cycle and remains high for a considerable period. It should be noted that both the 

                                                
15 With 𝑐!!" and 𝑐!!" set at 1 and the remaining variables set at their default settings as per 
the base experiments for this thesis. 



 
 

67 

‘buying’ and ‘selling’ series can be used to judge the size of a herd as they measure the 

cumulative actions of the population. An interesting point is that at no time are all 

investors buying, that is the number of buyers does not reach J, the number of investors, 

as some super cautious investors sit on their cash.  

 The question of what is driving the buying behavior appears to be given by the 

factor variable series. The factor series is the !!(!)
!!"(!)

 term utilized in Section 3.8.1 through 

Equation 8 and Equation 9. The term and relates to by what magnitude investors update 

their trusts values. The peak in the factor value is aligned with the peak in the agents 

buying behavior. The factor variable starts to decline as the returns starts to slow, which 

as H&S indicate is due to a lack of funds by the investors. At the same time, the influence 

of the stronger past returns start to diminish. It is once that the factor variable turns 

negative that the buying behavior ceases abruptly and the price starts to fall. Of particular 

interest is the fact that while selling does jump, the population does not immediately form 

a single herd and all head for the exit. That is there is a significant period where investors 

hold and do not make any trades because while the trust in the neighbors has been lost 

their information score is not sufficient to have them sell. Eventually, as the trust 

increases after the extended downward period the entire population wants to sell.  
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Figure 9: Trading within a bubble over time 
 

The implication of the factor variable declining is that investors do not adjust the 

trust in their information sources with the same power and the trust levels start to decline, 

something that is illustrated in Figure 10. The peak in the factor variable is aligned with 

the peak in the investor’s trust in the network information and it is the decline in this trust 

level that can be seen as being responsible for the bubble collapsing. It should also be 

noted that the trust in the public information is extremely volatile during the bubble 

period, adding further noise.  

A very important implication of the above description is that some investors have 

jumped early and would have generated significant outperformance. Their exact return 

will be depend on when they bought in and whether or not they jump on and off during 

the inflation of the bubble. Also some investor will have jumped late and sustained heavy 
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losses. The determining factor for the performance of the investors is likely to be a mix of 

their position in the network and their threshold leave. Intuition suggests that investors 

with a low threshold may well join the herd early and leave early while higher threshold 

will join and leave late. As discussed in Section 5.3, the confirmation of this will have to 

wait for another day. 

 

 

Figure 10: Trust levels through a bubble over time 
 

The influence and power of the investor’s trust in their network on the price 

behavior will become more evident throughout the analysis of the various models in the 

remainder of the thesis. 
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4.2.2 The	H&S	Model	With	Different	Networks	
 
As detailed in Section 3.3.3, the implemented model has the ability to create different 

network structures (topologies). The aim and objectives of this section are: 

• To test whether the underlying network topology impacts the behavior of the 

system; and  

• Test whether the claims of Ozsoylev and Walden (2011) with regards to the 

impact of centrality are confirmed by the model.   

The topology of the network is potentially important because the manner in which 

the investors are linked varies. These diffences are capture by various metrics which 

measure and define the key characteristics of each topology. Table 6 provides a summary 

of the representative statistics relating to each of the networks.  

 

 Table 6: Network metrics16 
 Topology Neighbors Closeness Clustering17 Betweenness 

M
ax

. 

Lattice 4 (c) 0.0032 N/A 389,688 
Small world 7 0.1272 N/A 126,773 
Scale free 562 (b) 0.5268 N/A  (b) 441,143 
Erdos-Renyi 13 0.2124 N/A (c) 38,291 

A
ve

ra
ge

 Lattice (a) 4 0.0032  (e) 0.500 389,688 
Small world  (a) 4 0.0976 0.380 11,646 
Scale Free  (a) 4.0208 (d) 0.3361  (e) 0.141 (d) 1,694 
Erdos-Renyi  (a) 4.0446 0.1723 (e) 0.002 5,631 

St
d.

 D
ev

. Lattice N/A N/A N/A N/A 
Small world 0.6204 0.0083 N/A 12,130 
Scale Free 31.774 0.1199 N/A 24,965 
Erdos-Renyi 2.01 0.0292 N/A 5,422 

 

                                                
16 Metrics calculated using the Netlogo network extension. 
17 This metric is the clustering coefficient and was calculated in Gelphi. 
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There are a number of key points and possible explanations for the varying 

behavior provided by Table 6. The first being that while the average number of neighbors 

for each of the networks is 4 (refer to (a) in Table 6), the distribution is varied, with the 

lattice having no variance, while the scale free network has the largest variation. This fact 

relates to the degree distribution of networks as discussed in Section 2.3.4. Therefore the 

average degree for each of the networks is 4 but again the distribution is very different. 

At one end of the spectrum the lattice has a uniform degree distribution, while the scale 

free network has a power law like degree distribution. 

In terms of the centrality measures, the scale free network has the highest absolute 

betweenness and closeness centrality measure (refer to (b) in Table 6), while the lattice 

and Erdos Renyi networks share the lowest absolute measures (refer to (c) in Table 6). In 

addition, the scale free network has the lowest average betweenness and yet the highest 

average closeness centrality measure (refer to (d) in Table 6). The lattice network records 

the lowest average closeness and the highest average betweenness measures. The scale 

free network’s clustering coefficient is in the middle of the sample, while lattice and 

Erdos Renyi network are at either end of the spectrum (refer to (e) in Table 6). Therefore, 

we would expect the scale free network to be the most volatile and the others to be less 

volatile if the results of Ozsoylev and Walden (2011) hold. With the Erdos Renyi and 

scale free networks being incomplete graphs, the Eigen vector values cannot be 

determined. Therefore the claims made by Walden (2014) can not be tested.  
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Figure 11 through Figure 1418 provide a graphical representation of the networks. 

Figure 11 illustrates the lattice network, which shows that each investor (node) is linked 

to exactly four neighbors. 

 
Figure 11: Representative investor network – lattice 
 

 A small world network is illustrated in Figure 12. The network was generated by 

first having each investor initially linked to their 4 nearest neighbors (as per a lattice 

network). Then with a probability of 10%, an investor will cut a link with their closest 

                                                
18 The figures were produced in Gelphi using data generated by Netlogo. 
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neighbor and rewire with another investor further away. The rationale behind this process 

is detailed in Watts (1999). In contrast to the lattice network, the creation of clusters, 

nodes with greater than four neighbors, is evident in the diagram.  

 

 
Figure 12: Representative investor network – small world 
 

Figure 13 provides an illustration of a scale free network. The significant features 

are: the existence of isolates (nodes with no links) and the appearance of nodes that are 
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heavily connected. The heavily connected nodes are known as hubs and contrast to the 

nodes with very few connections, which are known as spokes. 

 

 
Figure 13: Representative investor network – scale free 
 

The final network is the Erdos Renyi network, which is shown in Figure 14. 

While the network also has isolates, like the scale free network, there are not any 

distinguishable hubs and the number of connections per node shows no visible pattern – 

an implication of the nodes being connected in a random normally distributed fashion. 
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Figure 14: Representative investor network - Erdos Renyi  
 

The impact on the price of the asset from varying levels of 𝑐!!" (detailed in the 

heading by the c1 value19) across the varying network structures is seen in Figure 15 

through Figure 18. The plots have the median price for the sample marked with the line 

marked with 50%. The differences (and indifferences) for the various levels of c1 and 

networks are detailed in Table 7 and Table 8. The reader should also note that the axes 

for c1 = 1 to 3 are same before increasing for c1 to 4 (the one exception being the scale 

free network). 

                                                
19 For convenience the term c1 and c2 will be used to describe the upper limit of the 𝑐!!" 
and 𝑐!!" terms. 
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Starting with the lattice network, the graph is consistent with the H&S model as it 

is not until the level of c1 is greater than 2 that the system starts to deviate in any 

meaningful manner from a price level of 1. The existence of bubbles and crashes, 

demonstrated by the price approaching 8 and 0, is seen when c1 is equal to 4. While the 

appearance of, or the exact timing of a bubble is not guaranteed, there are multiple 

occurrences within the sample and the price shows greater volatility when c1 is increased.  

 

 
Figure 15: Lattice network with varying c1 over time 
 

 Figure 16 illustrates the outcome from using the small world topology with the 

probability of rewiring set at 10%. Visually there appears to be minor differences with 

lattice network, including, some bubble like periods when c1 = 3. One interesting 
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difference is the median price when c1 = 4, which is more volatile and spends some time 

below 1 following the implosion of the bubble.  

 

 

 
Figure 16: Small world network with varying c1 over time 
 

 The graphical representation of the scale free network is provided in Figure 17. 

Various settings in the formation of the scale free network were tested with similar results 

achieved. It is clearly evident that the behavior of this network is materially different 

from the previous two networks. The most notable feature is that there are dramatic price 

movements regardless of the starting level of c1. However, the level of c1 does appear to 

impact the peak of the initial bubble. There also appears to be a trend where the price 

oscillates before finally settling down to a median price, which is around 1. Another point 
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is that despite all the movement, once the initial bubble implodes, the median price dips 

below 1 before gradually increasing throughout the remainder of the run.  

Returning to Table 6, it is seen that the scale free network had the highest average 

closeness and lowest average betweenness and its clustering was in the middle of the 

sample. Therefore the findings appear in line with the model of Ozsoylev and Walden 

(2011), who suggested that centrality plays and important part in determining the 

volatility of a financial market. 

 

 
Figure 17: Scale free network with varying c1 over time 
 

 The fan plots for the Erdos Renyi network are illustrated in Figure 18. The initial 

impression is that the results show some similarity with the lattice network, which was to 
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be expected. Possible exceptions are that the prevalence of bubbles and crashes is higher 

with the random network, yet the peak price is not as high when c1 is equal to 4.  

 

 
Figure 18: Erdos Renyi network with varying c1 over time 
 

A more conclusive view of how the prices (and therefore returns) vary for the 

various networks is provided by the boxplots in Figure 19 (the mean price per series) and 

Figure 20 (the standard deviation of each series). The data for the plots comes from 

finding the mean price and the standard deviation from the 30 runs of 2,500 ticks for each 

of the particular settings in the parameter sweep. For example one box is for the 30 runs 

of a lattice network with a c1 value of 4.  
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Figure 19: Boxplots showing the mean prices 
 

From Figure 19 it can be seen that the median price is close to 1 for a majority of 

the scenarios. The one exception appears to be when c1 = 4 for the small world network. 

Given the previous fan plots, this result is neither surprising, nor that interesting, given 

the H&S model has a strong reversion characteristic built in. The more interesting result 

comes from the spread of the prices. Generally it can be seen that as c1 increases, the 

volatility in all the networks starts to increase. This is consistent with the H&S model. 

However, the level of volatility does not appear consistent across the networks, and it is 

this that produces the second finding of significance. 

The difference in the volatility of the networks is seen more clearly in Figure 20, 

which displays boxplots of the standard deviation of the prices within the different 

scenarios. The rationale for using the standard deviation of a price series is that it is 
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generally accepted as the best measure of volatility. Therefore the terms are 

interchangeable and have been used as such in describing the results. 

 

 
Figure 20: Boxplots showing the standard deviation in prices 
 

 From the above, it appears that increasing c1 impacts the volatility of the system, 

regardless of the network topology. The one special case is the scale free network 

because it has higher volatility at the initial level of c1 = 1, yet the levels do not increase 

materially across the spectrum of c1. The volatility of the small world and Erdos Renyi 

networks are impacted once c1 = 3, as seen by the appearance of outliers, which contrasts 

with the lattice that is not overly affected until c1 = 4. Another point of note is that the 

distributions are heavily skewed for the lattice and small world networks when c1 = 4.  
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 To test the inferences put forward previously, a Kruskal Wallis rank sums test20 

was performed instead of a one-way ANOVA. The rationale being that the returns of the 

mean and standard deviations were not normally distributed, thus violating the 

assumptions of the one-way ANOVA. The two hypothesis tests that were carried out 

were: 

• For a given level of c1, there are no differences in the mean and/or the standard 

deviation of the price for the various network types. The p-values for these tests 

are provided in the columns of Tables 7 and 8; and 

• For a given network, there are no differences in the mean and/or the standard 

deviation of the price for various levels of c1. The p-values for these tests are 

provided in Tables 7 and 8. 

Table 7 provides the mean prices for the various combinations of c1 and the 

network type, along with the overall average and statistical significance of any 

differences. The results from the null hypothesises, that there is no difference within the 

networks and across the networks at a significance level of 5% are: 

• The null is rejected as the mean price of the various networks are statistically 

different (see (a) in Table 7) but varying the level of c1 does not statistically alter 

the mean price when all networks are considered (see (b) in Table 7); 

• The null is rejected when c1 is set at 1, 2 or 4 as the mean price for the individual 

networks are statistically different (see (c) in Table 7); and 

                                                
20 The Kruskal-Wallis is a rank-based nonparametric test that is utilized to determine if 
there are statistically significant differences between two or more groups and is 
considered the nonparametric alternative to the one-way ANOVA (Laerd statistics, 2016) 
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• For the different network types, it is only the lattice network that has a statistically 

different mean price after varying the level of c1 (see (d) in Table 7). 

 

Table 7: Mean prices under the various regimes  
 Network Influence 𝑐!!" Average p-value 
Network 1 2 3 4   
Lattice 1.004 0.992 0.996 1.165 1.039 (d) 0.003 
Small World 0.993 1.000 0.982 0.943 0.980 0.159 
Scale Free 1.010 1.023 1.042 1.055 1.032 0.507 
Erdos Renyi 1.000 1.000 0.976 1.003 0.995 0.592 
Average 1.002 1.004 0.999 1.041 1.012  (b) 0.808 
p-value (c) 0.035 (c) 0.025 0.095 (c) 0.007 (a) 0.0082  
 

Table 8 provides the average standard deviation of the prices for the various 

combinations of c1 and network type, along with the overall average and statistical 

significance of any differences. The results from the null hypothesises that there is no 

difference within the networks, and across the networks, at a significance level of 5% are: 

• The standard deviations of the prices across the various networks are statistically 

different (see (a) in Table 8). Additionally, the standard deviation of the prices 

within the networks are statically different (see (b) in Table 8); 

• When c1 is set at 1, 2 or 3 the standard deviation for the various networks are 

statistically different (see (c) in Table 8). However, once c1 is set at 4 the level of 

volatility within the system are not statistically different (see (d) in Table 8); and 

• For the different network types, all have statistically different standard deviations 

with varying levels of c1 (see (e) in Table 8). 
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Table 8: Standard deiviation under the various regimes 
 Network Influence 𝑐!!" Average p-value 
Network 1 2 3 4   
Lattice 0.033 0.029 0.056 0.805 0.2308 (e)<0.01 
Small World 0.031 0.033 0.104 0.604 0.1930 (e)<0.01 
Scale Free 0.489 0.718 0.761 0.789 0.6893 (e)<0.01 
Erdos Renyi 0.028 0.033 0.146 0.812 0.2548 (e)<0.01 
Average 0.1453 0.2031 0.2666 0.7524 0.3419 (b)<0.01 
p-value (c)<0.01 (c)<0.01 (c)<0.01 (d)0.347 (a) <0.01  
 

 Having established that there are significant differences within and across the 

various network types, the question turns to what is driving the difference. The answer is 

provided by Figure 21, which provides a boxplot of the mean level of trust that the 

investors have in the information provided by their neighbors/network. It should be 

remembered that the level of trust increases when the information from the particular 

source accurately predicts the correct investment decision. We have already seen from 

Figure 43 in the appendix that the creation of a bubble is triggered when the level of 

network trust increases, thus creating the positive feedback loop in buying behavior as the 

investors herd 21. Alternatively, a collapse occurs when the investors switch camps/herds, 

almost instantaneously, and begin to sell. However, under the base H&S model it 

required the initial level of c1 to be at least 3 for the herding activity to become evident.  

	
 

                                                
21 The formation of a herd is defined by periods where the average network trust is 
significantly greater or less than 0 and investors share the same intentions. 
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Figure 21: Differences in network trust when varying c1 
 

 What can be seen from Figure 21 is that the different network structures have very 

different behavior in terms of the level of network trust that they generate. Consistent 

with the results that the scale free network is the outlying structure, is the fact the median 

of network trust for the scale free network is both higher and requires a lower c1 for it to 

move away from 0. It can also be seen that when c1 is set at 4, the median of the network 

trust is greater than 0 for all the network types, which is consistent with the presence of 

bubbles under all network types once c1 is increased to 4. 
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Figure 22: The relationship between risk and network centrality 
 

 Presented in Figure 22 is the relationship between the level of volatility, as given 

by the standard deviation, the centrality measures, the level of c1 (given by the numbers 

within the plot) and the various network structures. Noting from Table 8 that the level of 

volatility between the networks is statistically different, the key points are: 

• When c1 = 1, the network with the lowest average betweenness measure (the 

scale free network) is the most volatile, while the other three are 

indistinguishable. However, when c1 is increased to 4, it is the Erdos Renyi 

network that becomes the most volatile. The Erdos Renyi network also has the 

greatest range in the volatility; and 
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• Given the relationship between closeness and betweenness it is to be expected that 

the previous observations are mirrored (and not replicated) when looking at 

closeness.  

The first result is consistent with the finding of Ozsoylev and Walden (2011), who 

suggested that price volatility would be highest in markets with an intermediate level of 

connectedness yet lower in markets with higher or lower connectedness (the 

connectedness figures were provided in Table 6). The mechanism that drives the level of 

volatility higher yet closer for all network types is unclear. However, it appears that by 

increasing the initial level of trust in the information coming from the network (the c1 

variable) it diminishes the impact of the network structure. This manifested itself with a 

bubble forming under each regime. Therefore, if investors are highly susceptible to 

listening to their network rather than other information sources, markets are likely to 

become more volatile regardless of the network structure.  

The impact of investors being more susceptible to following their neighbor is 

illustrated by Thaler (2015) when he highlights the observation of Keynes (1937), who 

had suggested that markets had tended to be more efficient when professional investors 

using fundamental analysis controlled them. It had been the result of “uneducated” 

investors, who tended to follow the crowd, entering the market that created the greater 

volatility. This issue is further compounded when an asset bubble begins to inflate 

because, as Xiong (2013) points out, more and more less educated investors are attracted 

to the market.  
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4.2.3 Alternate	Public	Information	
 
As detailed in Section 3.5.2, the revised model implements an alternate process where the 

investors compare the consensus forecast with the actual EPS result in assessing the value 

of the public information and the asset is capable of providing a dividend. The following 

section has the following aim and objectives: 

• Assess the impact of changing the source of public information by comparing the 

revised model to the H&S model using only a lattice network. The rationale for 

the restricted testing is that it gives the best base to compare the results; 

• Introduce a dividend payment by varying the payout ratio; and 

• As part of introducing the new public trust functionality, adjusting the initial level 

of public information (𝑐!!"  or c2 for short). The rationale for this change is to test 

the scenario that investors have greater initial faith in the value of public 

information and whether this can prevent the positive feedback loop with regards 

to adapting your neighbor’s behavior. It is this feedback loop that is responsible 

for the creation of the bubble. 

 The top left corner of Figure 23 and Figure 24 provides the fan plots that show the 

results of the revised model with comparable settings to those in the previous section. 

The revisions do not materially change the model as it can be seen that with a setting of 

c1 = c2 = 1 and no dividend, no bubble forms and the price series is confined to a narrow 

bound around 1. While the band is narrower than the H&S model, test confirmed that the 

distribution of returns did not fit a Gaussian distribution. When the settings are changed 

to c1 = 4 and c2 =1 and no dividend, bubbles and crashes in comparable size to the 
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original model appear, albeit they appear with greater regularity, something that may 

simply be the result of the random samples. 

 

  
Figure 23: Revised model with varying pay-out ratios (c1 = 1 and c2 = 1) over time 
 

 From the figures it can be seen that the introduction of the dividend does impact 

the price series in numerous ways. Firstly, looking at Figure 23, it can be seen that as the 

payout ratio is increased from 0 to 1, the median and the volatility of the price series 

increases. At this point it is worth remembering that a dividend is only paid when the 

EPS for a period is greater than 0 and the investors cannot reinvest the proceeds. Also a 

sell signal is generated when the EPS result for the asset is less than the consensus 

forecast for the asset. In the instance that EPS < 0 and the result is below the consensus 
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forecast,22 the sell signal will not be diluted by the payment of the dividend. However, if 

the EPS result is positive, a dividend is paid and this will boosts the returns, thus reducing 

the power of the sell signal, which in turn will limit the growth in trust for the public 

information. The likely impact being that the trust that investors generate in their network 

is likely to go unchecked, resulting in the formation of more herds and therefore more 

volatile behavior in the market. 

The introduction of a dividend above demonstrates a mild impact but the results 

in Figure 24 are far more explosive. The figures are prepared setting c1 to 4, a setting that 

is responsible for the creation of a bubble in the H&S model. Once the dividend is 

introduced the behavior post the inflation of the bubble is very different, to the point 

where the bubble does not deflate once the payout ratio is greater than 33%.  

Even with a payout ratio of 33%, the median price remains in bubble territory, but 

the investors experience a wild ride. However, it is not enough to move the median price. 

When the payout ratio is 66% or greater, the median does not move once the bubble is 

formed. The significance of this being, that if there is a high initial bias to listening to 

your neighbors, the introduction of a dividend and the additional returns they provide 

sees investors form a buying herd and they can not be persuaded to join the selling herd 

regardless of what their other information sources are telling them. This is despite the fact 

that the EPS of the asset will miss consensus on average 50% of the time, thus creating a 

negative score for public information and providing a sell signal. 

                                                
22 It should be noted that the consensus forecast is very unlikely to be less than 0 given 
the distribution on the EPS and the forecasting mechanism. See Section 3.5.2 for more 
detail. 
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Figure 24: Revised model with varying pay-out ratios (c1 = 4 and c2 = 1) over time 
 

Having seen the introduction of new dynamics resulting from the introduction of a 

dividend, the question moves to investigating if and how the bubble can be popped, and 

whether the market returns to the fundamental value of the asset (1 in this case). To try 

and achieve this, c2 was increased to 2, with results seen in Figure 25 and Figure 26. 
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Figure 25: Revised model with varying pay-out ratios (c1 = 1 and c2 = 2) over time 
 

  The initial impression from setting c2 to 2 is that while the movement of the 

median price away from 1 still occurs, it is more gradual and does not reach the same 

level achieved by c1 = c2 = 1. One possible explanation, that is explored latter, is that an 

initial bias to public information slows the growth in the trust among neighbors and 

diminishes the probability of a herd forming. Under this regime investors will still be 

including a fundamental component in their decision making process. 

In terms of the settings of c1 = 4 and c2 = 2, as per Figure 26, the main result is 

that when the payout ratio is 33%, the bubble sees a level deflation as the median price 

moves away from the upper limits. This contrasts with the higher payout ratios, where 
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this behavior is not evident. In these instances the higher initial bias to public information 

is insufficient to prevent the herding of the investors. 

 

 
 
Figure 26: Revised model with varying pay-out ratios (c1 = 4 and c2 = 2) over time 
 

A clearer contrast of the behavior of the various price series is provided in Figure 

27, a boxplot of the mean prices with the various combinations of c1, c2 and the payout 

ratio. From the bottom chart, which illustrates the outcome when c1 is set to 4, the 

previously point of a higher initial bias to public influence having some influence when 

the payout ratio is 33% is seen. Not only is the median lower, but there is also a greater 
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deviation in the mean. The influence that the higher c2 level has is seen in the top chart 

where median prices are lower. The ramification being that by increasing c2, the system 

has the ability to disrupt the herding behavior of the investors. This is an important 

insight into a mechanism that can prevent the inflation of a bubble, namely that if there is 

also a stronger initial consideration given to public information, the fundamental 

information provided by the public information is sufficient to dampen the herding 

instinct. The price series then becomes dependent on which source of information can 

gain the upper hand, assuming they are not correlated.  

 

 
Figure 27: Boxplot with mean price variations 
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 An interesting outcome, which is inferred in Figure 27, is illustrated in Figure 28, 

and shows the standard deviation of the price series. From the top chart, which is where 

c1 = 1, the price series where c2 = 1 show more range in terms of volatility yet the 

overall level of volatility is lower than the bottom chart where c1 = 4. This is no doubt a 

consequence of the bubble remaining inflated under the c1 = 4 regime. One exception is 

where there is no dividend and the volatility is higher under the c1 = 4 regime, a result 

that is in line with Section 4.2.2. 

 

 
Figure 28: Boxplot with the standard deviation in price  
 

 Table 9 presents the mean price under the various combinations and the p-values 

for testing whether they are statistical significant. A Kruskal-Wallis rank sum test was 
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used to generate the p-values because the distributions of the prices again violated the 

assumptions for a one-way ANOVA test.  

 

Table 9: Mean prices under the various regimes 
  Payout Ratio   
c1 c2 0 0.33 0.66 1 Ave. P-value 
1 1 1.000 1.133 1.474 1.785 1.348 (a) <.01 
 2 0.999 1.024 1.155 1.360 1.134 (a) <.01 
 Ave. 0.999 1.078 1.315 1.573 1.241  
 P-value 0.0.060 (b)<.01 1(b)<.01 (b)<.01 1.241  
4 1 1.350 8.111 8.937 8.979 6.844 (a) <.01 
 2 1.393 7.287 8.892 8.953 6.631 (a) <.01 
 Ave. 1.371 7.699 8.915 8.966 6.738  
 P-value 0.204 (b)0.013 (b)0.012 (b)0.035   
 

The null hypothesis that dividends have no impact on price can be rejected for all 

combinations of initial public (c2) and network trust (c1) – see (a) in Table 9. The 

inference from this result is that increasing the payout ratio can have a positive impact on 

the price for an asset despite them having a similar earnings profile. To determine the 

exact relationship and to test its significance, more data points would need to be 

generated. The table also provides statistical support that in most cases if the initial bias 

to public information is increased, then the mean price is lower for a given payout ratio – 

see (b) in Table 9.   

An explanation of the varying volatility is offered in Figure 29, boxplots of the 

average level for the network trust coefficient. From the bottom chart, where c1 was set 

to 4, the level of network trust is always very high. It is known that at this level investors 

join and stay in the herd. However, in the top chart when c1 = c2 = 1 the level of trust in 



 
 

97 

the information coming from neighbors, despite being higher, is more variable, with the 

ramification being that the investors do not favor any particular information source and 

are therefore making use of all the information rather than just trusting their neighbors. 

Therefore, one can conclude that the variability in the network trust is driving the 

volatility in the price when c1 = c2 = 1.  

 

 
Figure 29: Boxplot of the mean network trust 
 

 To explore the previous conclusion further, an analysis of the state of the order 

book was conducted. The results can be seen in Figure 30, where the average of the net 

order books are displayed. The net order book is the number of bid (buying) orders minus 

the number of ask (selling) orders. This approach is preferable to the net value of the 
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order book because it allows the reader to see the intention of the investors and is not 

impacted by the investors running out of funds. This is important because, given the 

closed system of this model; it is the lack of new funds that places a ceiling on the price.  

 

 
Figure 30: Boxplot for the net order book 
 

 An analysis of the net order book produces several important points. The first is 

that the bubble price is maintained under the c1 = 4 regime (the bottom chart) because 

investors still intend to buy, despite having no funds, as illustrated by the net order book 

having a median level of buyers over 2,000 once the payout ratio is at least 33%. Next, 

the variability in network trust flows through to order book when the payout ratio is 33%. 

Finally, when c1 = 1 (the top chart), it is seen the buying intentions of the investors do 
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not match the bullishness of investors under the c1 = 4 regime, hence the lower median 

price. Consistent with the earlier analysis, is the fact that as the payout ratio increases, the 

buying intention of the investors increases. It is also seen that for the higher payout ratios, 

when c1 = c2 = 1, there is more volatility in the order book. 

The conclusion that can be drawn from this section is that dividends play an 

important part in supporting a bullish sentiment amongst investors as they underwrite 

returns. This result contrasts with the capital structure irrelevance principle of Miller and 

Modigliani (1961).  This theorem states that the market value of an asset is a combination 

of the earnings power and the underlying risk of a firm’s assets, leaving the dividend 

policy as irrelevant. Unsurprisingly, this theorem was underwritten by the EMH. 

4.2.4 The	H&S	Model	With	Multi	Assets	
 
As detailed in Section 3.3.1, the revised model provides the opportunity for the investors 

to consider multiple risky assets. To explore this space, the following section has the 

following experiments and output: 

• The implemented model utilized the H&S framework; a lattice network, no 

dividend and white noise public information for three risky assets; 

• Results were generated for varying the correlation for the public information of 

assets between 0, 0.33, 0.66 and 1 along with levels of c1 (initial network 

information bias) of 1 and 4 and c2 (initial public information bias) of 1 and 2. A 

decision based on keeping a consistent framework with the previous section; and 

• Fan plots are used to illustrate the variation in prices for the three assets for the 

extreme settings correlation settings (0 and 1). Boxplots for the mean and 
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standard deviation of the multiple price series, network trust and the public trust 

for each asset are provided. 

At this point it is timely to remember that the investors maintain only an overall 

trust level for each neighbor rather than a trust level for each neighbor for each asset. In 

contrast they do maintain a level of public trust for each specific asset. The significance 

being that for a neighbor to generate a high level of trust they, must consistently provide 

the correct action for all assets, as opposed to being a specialist in a particular asset. 

However, an investor may grow to trust the public information of one asset more than 

another. 

The first price series as shown in Figure 31, provides the results of having 0 

correlation between the asset’s public information and a level of c1 = 4. These conditions 

within the single asset model were sufficient to see an asset bubble created. However, it 

is clear that no such event occurs for any of the assets under the multiple asset model. 
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Figure 31: Price for 3 assets with c1 = 4, c2 = 1 and correlation = 0 over time 
 

 Having established the fact that the introduction of multiple assets with zero 

correlation delivers a more stable market, Figure 32 illustrates what occurs when the 

correlation in public information is increased to 1. The result is the appearance of some 

periods of elevated prices. However, neither the peaks nor the consistency of the 

appearance of them, matches the single asset case. Another point of note is that while the 

public information is the same for the three assets, the prices do not move in lock step as 

one might expect from a correlated series. This infers that the private information and 

network information must be providing contrary information to the investors. Another 

possible mechanism is that the trust investors have in public and/or network information 
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may become negative, which will force them into taking a contrarian action to what the 

information suggests.  

 

 
Figure 32: Price for 3 assets with c1 = 4, c2 = 1 and correlation = 1 over time 
 

 Under the revised model in the previous experiment, increasing the initial bias to 

public information (c2) was able to alter the behavior of the model, and this was 

attempted again. Figure 33 illustrates the results of zero correlation with c2 = 2 and c1 = 

4. Again there is no bubble across any of the series, but any definitive comment regarding 

the difference is left to later in the section. 
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Figure 33: Price for 3 assets with c1 = 4, c2 = 2 and correlation = 0 over time 
 

The final fan plot, as seen in Figure 34, illustrates the outcome of increasing the 

correlation between the assets. Again, there are periods of elevated prices and 

interestingly the price series of asset 0 and asset 2 appear to move in unison, while asset 1 

appears to have more independence, suggesting that private and network information has 

greater influence than the public information for that asset. 
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Figure 34: Price for 3 assets with c1 = 4, c2 = 2 and correlation = 1 over time 
 

 A clearer picture of the dynamics of the pricing is delivered via the boxplots of 

the mean and standard deviations of the prices for the assets in Figure 35 and Figure 36. 

In contrast to the single asset model, where the median price was generally above 1, is the 

fact that the median price for each of the assets is generally below 1 across the various 

scenarios. A price below 1 results from there being more selling than buying across the 

run. Given the information is generated in the same normally distributed manner, this 

would have resulted from investors having periods of negative trust in their information 

sources.  
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Figure 35: Boxplots for the mean prices for the 3 assets 
 

 Other results of note are; the volatility appears to increase when the level of c2 is 

increased to 2 when c1 = 1 ceteris paribus. Alternatively, when c1 is set to 4, the 

relationship is not as clear. However, as previously seen, overall the price series becomes 

more volatile when c1 is increased to 4.  The level of volatility also increases as the level 

of correlation in the public information increases under the c1 = 4 scenario. This is 

unsurprising, given the previously noted periods of elevated asset prices, which are 

reminiscent of the single asset model. However, when comparing the level of volatility as 

seen in Figure 20, the introduction of multiple assets clearly suppresses the volatility.  
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Figure 36: Boxplots for the standard deviation in price for the three assets 
 

 Having established the differences between the single and multiple asset model, 

and also within the multiple asset model (depending on the level of c1), the question turns 

to why these differences occur. From previous analysis, it is known that the level of trust 

for the various information sources will be an important source of variation. Boxplots of 

the average trust and standard deviations in trust for both network and public information 

are shown in Figure 37 through Figure 39. 

Consistent with the other models, it can be seen that the level and the variability 

of network trust increases when c1 is increased to 4. Again it is this increased network 

trust that results in the formation of herds, which drives prices above and below what 

would be deemed the fundamental price of the asset. 
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Figure 37: Mean and standard deviations for network trust levels 
 

 It was previously seen that the price series for the three assets were not 

comparable despite them having the same public information when the correlation is set 

to 1.  Therefore, it is worth investigating how much trust the investors had in that source 

for each of the assets. From Figure 38 and Figure 39 it can be seen that indeed the level 

of public trust varies across the assets. The level of public trust is highest for asset 1 

(careful attention should be given to the axis values) while the median public trust levels 

for asset 0 and 2 are around 0, indicating little overall trust. This outcome is capable of 

explaining why asset 1 performed differently to the other assets. That is the investors 

trusted the public information of Asset 1 to a greater degree and used that information to 

a greater degree in their decision making process. 
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Figure 38: Mean public trust levels for the three assets (c1 = 1) 
 

 A curious outcome is how the median of the public trust for asset 1 decreases 

when the correlation with asset 0 is increased before increasing again when the 

correlation is set to 1. The mechanism that produces this result is worth further 

consideration but it is beyond the scope of this thesis. 
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Figure 39: Mean public trust levels for the three assets (c1 = 4) 
 

 Comparing Figure 39 with Figure 38 suggests that increasing c1 to 4 has little 

impact on the level of public trust as both the magnitudes and patterns appear the same. 

Therefore, the increased price volatility that was seen when c1 was increased has been 

driven by the increased network trust. However, to confirm this, more work will be 

required, including generating data for a greater number of combinations. 

4.2.5 The	Quasi-Efficient	Frontier	
 
The final output for this thesis is to investigate the performance of the investors and 

assets in a risk return space. The intention of this is to establish whether the investors are 

capable of forming portfolios that are efficient, that is, there is no combination of assets 

that will deliver the same return with less risk. Before viewing the outcome, some 

background as to how the assets performed is illustrated by Figure 40. The series was 
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generated with 5 assets with a correlation of 0.5, a seed of 100 and 1,500 investors. There 

are sufficient variations in the prices of the assets to create some interest but the prices 

generally revert to 1, which is a common consequence of the H&S model. 

 

 
Figure 40: The price series for the 5 assets over time 
 

The evolution of the quasi-efficient frontier can be seen in Figure 41, which plots 

the investors’ (given by the + symbols) and assets’ (given by the⊗ symbols) positions 

at four time intervals in the return/risk space. To develop these charts the cash holding of 

the investors was removed, a step that is inconsistent with Figure 8, but was taken to 

condense the scale. The time intervals were specifically chosen and relate to volatile 

behavior in the times series plotted above. Given the axes are the same for each of the 
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four plots, an evolutionary process can be identified. Initially the assets and the investors 

are spread ou,t but over time a thin band forms. This band could be construed as a 

frontier. 

 

 
Figure 41: The evolution of the efficient frontier over time 
 

 Other observations of note are: 

• There is a large group of investors who do not trade and they are grouped at the 

left hand end of the band. Given the returns for the assets are around zero, these 

investors have given up little in portfolio performance but have greatly reduced 
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their risk. However, this result is quite abstract given the nature of the model and 

more realistic asset returns are required to test the utility of this finding; and 

• In the final plot (bottom right), there does appear to be a trend that suggests that 

for agents to generate higher returns they had to be willing to tolerate higher 

risk23. This finding is consistent with finance theory, which dictates that for 

investors to tolerate higher risk they need to be compensated with higher returns. 

In summary, the development of the quasi- efficient frontier is a pleasing result 

and validates the model. However, its presentation in this thesis was for the purpose of 

opening another field of examination rather than claiming any major breakthrough. 

4.3 Section Summary 
 
The research questions, that were first introduced in Section 1.3 and further expanded 

upon throughout this thesis, asked whether an ABM based artificial stock market could 

provide useful insight into the impact of different investor network topologies, dividend 

payout ratios and the introduction of multiple risky assets. Section 4.2.2 provided 

evidence that the different network topologies did indeed produce very different results in 

the situation that there was no initial bias to the information coming from your neighbors. 

Once there was a material initial bias to network information it was seen that the network 

structure became less relevant as bubbles appeared in all the regimes. The introduction of 

an alternative source of public information, as seen is Section 4.2.3, that also included a 

dividend, produced the insight that by varying the payout ratio very different returns were 

                                                
23 A basic OLS equation estimates a statistical significant relationship as return = 
0.0047*risk - 1E-05. 
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generated. This is despite the assets having a similar earnings profile. The introduction of 

multiple assets, as seen in Section 4.2.4, and a first for an ABM based artificial stock 

market, saw the volatility of the market greatly reduced. However, increased correlation 

between the public information of the assets did see the volatility increase and outlying 

event still occurred. Finally, interesting insights with regards to the behavior of the 

investors were reported in Sections 4.2.1, trading behavior in a bubble, and 4.2.5, the 

quasi-efficient. 

While the outcomes of this thesis are pleasing they are of little use unless further 

extensions can be generated and these extensions relate to actual financial markets. The 

case for both these arguments is made in Section 5. 
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5 DISCUSSION AND CONCLUSION 

5.1 Introduction 
 
This thesis has produced much to think about with regards to the possible mechanisms 

driving financial markets. This, in turn, forms the justification for multiple extensions. 

These extensions can be used to better inform regulators and investors alike in an attempt 

to avoid the inefficient behavior that has been experienced throughout the history of 

financial markets.  

From the various experiments it is clear that the network investors form is 

important along with the dividend that an asset pays. However, it is also apparent that the 

outcome of an artificial stock market is very different once investors have to consider 

multiple assets. The implications of these findings are discussed in Section 5.2, while the 

further extensions are outlined in Section 5.3. 

5.2 Implications of the Findings 
 
The implications of the various experiments, which were first introduced in their relevant 

sections (Section 4.2.2 – 4.2.4), were varied and far-reaching. With regards to the 

different network topologies (see Section 4.2.2), it was clear that the different networks 

had very different characteristics when the c1 variable was set at 1. The first question to 

come from this is, what is the network structure that the actual market takes? This is not 

an easy question to answer, given there are over 10 million investors in the US stock 
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markets (Ozsoylev & Walden, 2011). In addition, will this network remain static or does 

it change over time? Again this is a very difficult question to answer. However, from the 

results of the model used in this thesis, all is not lost. The model provided evidence that a 

bubble, which can be classified as the most inefficient market scenario, will form when 

investors have formed a scale free network, regardless of any initial bias to any of the 

information sources. This outcome is important because researchers can focus on 

understanding the hubs that exist in financial markets. Examples of hubs include: rating 

agencies, brokers, large pension funds and renowned stock pickers such as Warren 

Buffet. The case can easily be made that if these hubs became correlated then the rest of 

the investing universe would have little choice but to follow. For those who may doubt 

such a scenario, the sub prime meltdown in 2008 provides anecdotal evidence of such an 

outcome. 

With regards to the implications of investors having a higher initial bias towards 

the actions of their neighbors, Harras and Sornettee (2011) cover this extensively. 

However, this thesis made the finding that the network topology becomes a redundant 

issue at a certain point. The implication stemming from this is the importance of the 

mindset of investors entering the market. While the implemented model assumed a fixed 

number of investors, it is not a large leap to see that if new investors are attracted to the 

market because of a period of abnormally higher returns, they will look to join the herd 

rather than taking the time to undertake fundamental analysis. From a quick reading of 

The First Crash: Lessons from the South Sea Bubble (Dale, 2004), one can see that this 

behavior is not beyond investors.  



 
 

116 

The findings with the regards to the impact of the payout ratio, see Section 4.2.3, 

presents various implications. Firstly, from the model it can be seen that a company has 

the ability to increase its share price by simply increasing its payout ratio, regardless of 

the underlying earnings. However, in reality this may be a short-term view because 

increasing the payout ratio comes at a cost, namely a lack of investment in further 

growth. Therefore, the earnings profile of the company will quite possibly be 

unsustainable. This point will be further discussed in Section 5.3. 

Section 4.2.3 also presented the scenario where an asset bubble can be sustained 

indefinitely24. While this was interesting point, and provides some support to the 

argument of Blanchard (1979), in terms of the existence of bubbles within a rational 

expectations framework, the more important implication is the warning the model 

provides in the instance that a payout ratio cannot be sustained. Again while this was not 

tested, it is evident that a change in the payout ratio or a decline in the dividend payment 

would trigger a collapse of the bubble. This fact provides a clear warning sign, that if the 

market is being supported by abnormally high dividends the chance of a major correction 

appears to be higher. Parallels to current market conditions, where due to bond rates 

being at historically low forcing investors to seek yield elsewhere, can clearly be drawn.  

In terms of the multi asset model, see Section 4.2.4, the implications are not quite 

as clear. The first implication is that for the general ABM community the bar should be 

moved from producing single risky asset markets to multi asset models. The rationale 

being that it provides a closer fit to the real world decisions facing investors and the 

                                                
24 Again this assumes that the earnings profile is sustainable regardless of the payout ratio  
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impact of multi assets is sufficient to alter the dynamics of the market. The second 

implication is that by adjusting, by a certain degree, the correlation between the assets, 

the behavior is again different. Therefore, further work can investigate how and why the 

correlation between assets may move.  

5.3 Further Extensions 
 
From the discussion in Section 5.2, the avenues for further extensions are plentiful but 

fall under two broad brackets. The first is to undertake calibration of the model so it 

better fits real world data. This step in the ABM building process is known as validation 

and obtaining a close fit to real world data is considered the Holy Grail and will go along 

way to removing the abstract nature of the model. In addition, understanding the network 

structure and dynamics of actual financial markets is an important task.  

The second bracket is to make further extensions to the existing model. As raised 

in Section 4.2.2, there is the potential to expand the network dynamics. In particular, 

investors may look to disconnect with existing neighbors that they lose trust in, before 

looking for better performing investors in the population. Intuition suggests that this 

process has the potential to see any network structure transform into a scale fee network, 

as investors gravitate towards the better performing investor, with a herd and bubble 

resulting. However, will an investor be able to sustain a prolonged periods of 

outperformance, such that the population wants to replicate their decisions? The question 

also arises as to how the investors will search for the outperforming investors, is the 

search only within the neighbors of their neighbors or across the entire population? 
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The other obvious network related extension is to consider the implication of 

directed links. The current model sees information flow in both directions between 

neighbors. However, in the real world the flow of information may only flow in one 

direction for a number of reasons, including the nature of the relationship between 

neighbors and the fact that you do not always listen to someone who listens to you. 

The possibility of extending the dynamics of both the investors and the assets 

exists. For the assets, the variables such as the payout ratio and the distribution of 

earnings are fixed rather than adjusting to environment. The key extension is developing 

an environment where the consequence of maintaining a high payout ratio is reflected in 

the earnings potential of the asset. Additionally, a non-stationary earnings series should 

be included to better reflect the reality that companies grow and decline, with investors 

attempting to understand which way the earnings are moving. 

In terms of the investors, both their transaction ratio and investing threshold are 

obvious examples to add a dynamic element to. This extension would account for much 

of what behavioral finance has but forward with regards to how investors behave as their 

confidence and returns increase and decrease.   

While the potential exists in the current model, further work in regards to 

understand the heterogeneity of investor performance across the population is an 

important step. As mentioned in Section 2.3.4, there are numerous theories with regards 

to the impact of an investor’s position in a network and their investment performance. 

Future analysis should either confirm the existing work or provide insight as to why it 

does not hold. The other factor to consider is the decision-making threshold, or as Harras 
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and Sornette (2011) refer to it, risk aversion. The intent will be to understand whether 

constant trading outperforms a buy and hold strategy. The other factor to consider, as 

mentioned in Section 4.2.1, is whether having a low decision threshold allows an investor 

to get in early when a bubble forms and then jump early, thus maximizing the investor’s 

returns or whether these investors will be in and out and lose their early returns. Such 

analysis may have been of benefit to Isaac Newton, who after losing his initial gains 

when he reentered the market during the South Sea bubble, was forced to concede that “I 

can calculate the motion of heavenly bodies, but not the madness of people” (O’Hara, 

2008).  

 

5.4 Final Word (For Now) 
 
It has become clear that the networks that investors form, and how they use information 

from that network, and information in general, are significant factors in unraveling the 

mysteries of financial markets. It is also apparent, that since their arrival, over 20 years 

ago, ABMs of artificial stock markets are ideally suited to helping unravel these 

mysteries. This thesis has made a small but important contribution in the development of 

these models, but more importantly, has provided a road map for any willing researcher 

to pickup and follow. 
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APPENDIX 1 

 

Figure 42: Typical runs from the H&S model (default settings c1 = c2 = c3 = 1) 
 
 

The above chart is taken from the H&S paper, and provides the output for a ‘typical’ run. 

These charts were used to ensure the correct calibration of the author’s model. 
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Figure 43: Typical run with default settings 
 
 

The above figures provide an illustration of a typical run generated from the 

author’s model. The results can be reproduced using a seed of 100. While not an exact 

match with the H&S model, it does provide support that the model was able to produce 

results comparable to the H&S model. 
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Figure 44: Examples of typical runs from H&S  
 

This chart, from H&S, was provided to demonstrate the resulting dynamics from 

changing the c1 level. It can be seen that when c1 = 4 a bubble is generated. 
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Figure 45: Replicated runs with different c1 values over time 
 

The above figures provide an illustration of a typical run generated with the 

author’s model when c1 is varied. Again the charts are sufficiently similar for the author 

to be satisfied that the implemented model performed as expected. 
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