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Revealing conceptual structure in data by
inductive inference

R. S. Michalski and R. Stepp

University of lllinois
Urbana, USA

ABSTRACT
In many applied sciences there is often a problem of revealing a structure under-
lying a given collection of objects (situations, measurements, observations, etc.).
A specific problem of this type is that of determining a hierarchy of meaningful
subcategories in such a collection. This problem has been studied intensively in
the area of cluster analysis. The methods developed there, however, formulate
subcategories (‘clusters’) solely on the basis of pairwise ‘similarity’ (or ‘proximity’)
of objects, and ignore the issue of the ‘meéaning’ of the clusters obtained. The
methods do not provide any description of the clusters obtained. This paper
presents a method which constructs a hierarchy of subcategories, such that an
appropriately generalized description of each subcategory is a single conjunctive
statement involving attributes of objects and has a simple conceptual interpre-
tation. The attributes may be many-valued nominal variables or relations on
numerical variables. The hierarchy is constructed in such a way that a flexibly
defined ‘cost’ of the collection of descriptions which branch from any node is
minimized.

Experiments with the implemented program, CLUSTER/paf, have shown
that for some quite simple problems the traditional methods are unable to
produce a structuring of objects most ‘natural’ for people, while the method
presented here was able to produce such a solution.

1. INTRODUCTION

Computer programs able to reveal an underlying conceptual structure in a set of
data can be useful components of Al systems. Knowledge about the structure
of the data can help, for example, in reducing the search space in problem solving,
in dividing knowledge acquisition tasks into useful subcases, or in organizing
large databases (or rule bases) and summarizing their contents. It is believed that
the problem of intelligent structuring of data by computer will become one of
the important tasks for Al research in the ’80s.
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ACQUISITION AND MATCHING OF PATTERNS

A simple form of data structuring is clusrering, which is a process of deter-
mining a hierarchy of subcategories within a given collection of objects. In the
traditional methods of clustering, the basis for forming the subcategories is a
‘degree of similarity’ between objects: the subcategories are collections of objects
whose intra-group similarity is high and inter-group similarity is low, The
process of determining the hierarchy of subcategories can be done either in a
‘bottom-up’ or a ‘top-down’ fashion. The bottom-up methods (called ‘hierarchical’
in the literature on cluster analysis) recursively merge single objects or collections
of objects into larger collections, ending with the original complete set of objects
at the top of the hierarchy (dendrogram). The top-down (‘non-hierarchical’)
methods recursively split the starting collections(s) of objects into subgroups,
ending when single objects are assigned to the leaves of the hierarchy.

The bottom-up methods are mostly used in numerical taxonomy. Depending
on the way in which object-to-group and group-to-group degrees of similarlity
are calculated, different versions of the technique are obtained, such as ‘single’
linkage, ‘complete’ linkage, or ‘average’ linkage [14].

The top-down methods generally operate by making a series of cluster
boundary perturbations while searching for the groupings which exhibit minimal
dispersion of objects around the.cluster means. Some top-down methods, e.g.,
ISODATA, have additional heuristics which help to select the optimal number of
clusters.

The allied process of clustering features rather than objects involves the
techniques of factor analysis and multi-dimensional scaling, Many clustering
methods are sensitive to the irrelevant variables present in the data. Factor
analysis and multidimensional scaling can be used to select the most ‘relevant’
variables before proceeding to cluster the objects. These methods, however, are
designed primarily for numerical variables. They cannot handle many-valued
nominal variables, which accur often in Al applications.

All the traditional techniques have one major disadvantage. Since the only
basis for forming clusters is the degree of similarity (between objects or groups
of objects), the resulting clusters do not necessarily have any simple conceptual
interpretation. The problem of ‘meaning’ of the obtained clusters is simply left
to the researcher. This disadvantage is a significant one because a researcher
typically wants not only clusters, but also wants an explanation of them in human
terms.

This paper describes a method of determining a hierarchical structure under-
lying a given collection of objects, in which each node represents a certain
generalized description of a corresponding subcategory of objects. The des-
criptions are conjunctive concepts involving attributes of objects. The attributes
can be nominal variables or relations on numerical variables. Such descriptions
have a very simple human interpretation. The presented method is an example
of what we call generally a conceptual clustering.

The label conceptual clustering can be applied to any method which deter-
mines a structure in a collection of objects, in which the nodes represent ‘concepts’
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characterizing the corresponding subcategories, and the links represent relation-
ships between the concepts. (By the term ‘concept’ we mean a human oriented
description, which involves properties of objects and relations among them.)
In the method described, the concepts are conjunctive descriptions of sub-
categories, and the links mterconnectmg the levels of the hierarchy represent the
‘next level of generality’ 'relation between the descriptions (i.e., the predecessor
description is a generalization of all successor descriptions).

Section 2, which follows, discusses the distinction between the conventional
similarlity measure and the ‘conceptual cohesion’ measure, which underlines the
presented method. Section 3 gives the basic terminology of the descriptive
language used (the variable-valued logic system VL,), and of the inductive
inference technique. Section 4 gives an overview of the conceptual clustering
algorithm and and its implementation in the program CLUSTER/paf. Finally,
section 5 presents an example illustrating the method and compares the
results obtained from conceptual clustering to those obtained from numerical

taxonomy.

2. THE SIMILARITY MEASURE VERSUS CONCEPTUAL
COHESIVENESS

The techniques of traditional cluster analysis are distinctly nonconceptual because
they do not attempt to discover the meaning of the clusters or endeavour to
arrange objects into those subcategories with the most succinct conceptual
interpretation. As mentioned before, this behaviour is attributed to the use of
standard distance or similarity measures as the only basis for clustering. In order
to be able to do ‘conceptual clustering,” one has to know more than the degree
of similarlity between any two objects or groups of objects. Specifically, the
notion of similarity should be replaced by a more general notion of ‘conceptual
cohesiveness’, which we will now describe.

The similarlity between any two objects in the population to be clustered
is characterized in the conventional data analysis methods by a single number —
the value of the similarity function applied to symbualic descriptions of objects
(‘data points’). These descriptions are typically vectors, whose components
represent scores on selected qualitative or quantitative variables used to describe
objects. Frequently a reciprocal of a distance measure is used as a similarity
function. The distance measure for such purposes, however, does not have to
satisfy all the postulates of a distance function (specifically, the triangle inequality).
A comprehensive review of various distance and similarity measures is provided
in Diday & Simon [2] and Anderberg [1].

As mentioned before, the conventional measures of similarity are ‘context-
free,’ i.e., the similarlity between any two data points A and B is a function of
these points only:

Similarity (A, B) = f(A, B) (1)
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Recently some authors [4] have been introducing ‘context-sensitive’ measures
of similarity:

Similarity (A,B) = f(A,B,E) (2)

where the similarity between A and B depends not only on A and B, but also on
other points (‘context points’) in the collection to be clustered E.

Both previous clustering approaches cluster data points only on the basis of
knowledge of the individual data points. Therefore such methods are funda-
mentally unable to capture the ‘Gestalt property’ of objects, i.¢.,a property which
is characteristic of certain configurations of points considered as a whole, but
not when considered as independent points. In order to detect such properties,
the system miust know not only the data points, but also certain ‘concepts’.
To illustrate this point, let us consider a problem of clustering data points in

Fig. 1.

A B
@ o @ &

Fig. 1 — An illustration of conceptual clustering.

A person considering the problem in Fig. 1 would typically describe it as
‘two circles’. Thus, the points A and B, although being very close, are placed in
separate clusters. Here, human solution involves partitioning the data points
into groups not on the basis of pairwise distance between points,but on the
basis of ‘concept membership’. That means that the points are placed in the
same cluster if together they represent the same concept. In our example,
the concepts are circles.

This idea is the basis of conceptual clustering. From the view of conceptual
clustering, the ‘similarity’ between two data points A and B, which we will call
the conceptual cohesiveness, is a function not only of these points and the
context points in E, but also of a set of concepts C which are available for
describing A and B together:

Similarity (A, B) = f(A,B,E,C) (3)

To illustrate a ‘conceptual cohesiveness’ measure, let us assume that C is
the set of concepts which are geometrical figures, such as circles, rectangles,
triangles, etc. A measure of conceptual cohesiveness can be defined, for example,
as

He(i) —1

S({A,B,E,C) = max . (4)
i area(i)
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where i indexes all geometrical figures which are specified in C and which
cover points A and B,

#e(?) is the total number of data points from E covered by figure i,

area(?) is the area of figure i.

(The constant “—1” in the numerator assures that the ‘conceptual
cohesiveness’ reduces to a conventional similarity measure, i.e., a
reciprocal of distance, when no context points in E are taken into

consideration and C is a straight line of unit thickness intersecting the
data points.)

This measure is mentioned solely to illustrate the difference between
traditional similarity and conceptual cohesiveness. It is not used to actually
implement the method of conceptual clustering described here.

The idea of conceptual clustering has been introduced by Michalski [12].
and evolved from earlier work by him and his collaborators on generating the
uniclass covers’ (i.e., disjunctive descriptions of a class of objects specified by
only positive examples of the class). A computer program and various experi-
mental results on determining uniclass covers are described by Stepp [15].

3. TERMINOLOGY AND DEFINITIONS

In this section, relevant formal concepts and definitions will be briefly summarized.
A complete presentation can be found in [12].

Value set (or domain) of a variable

Let x, x5, ..., x, denote discrete variables which are selected to describe objects
in the population to be clustered. For each variable a value ser or domain is
defined, which contains all possible values this variable can take for any object
in the population, We shall assume that the value sets of variablesx;, i =1, 2, ...,
n are finite, and therefore can be represented as:

Diz{Osls'”:'df_l}! leszr'-':n- (S)

In general, the value sets may differ not only with respect to their size, but also
with respect to the structure relating their elements (reflecting the scale of
measurement). In this paper we will distinguish only between nominal (qualitative)
and linear (quantitative) variables whose domains are unordered and linearly
ordered sets, respectively.

Event space
An event is defined as any sequence of values of variables x4, X, . .., X,
e=(r,r,...,.rn (6)

wheren €D, i=1,2,... n.
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The set of all possible events, 2, is called the event space:
L= {E’,‘}:’:I (?)

where d = dy°d,°. .. *d, (the size of the event space).

Syntactic distance

Given two events e;, e; in Z, the syntactic distance, 6 (e;,e,), between e; and &,
is defined as the number of variables which have different values in ¢; and e,.

Selectors
A relational statement

[x; #Ri] ' (8)

where R; is one or more elements from the domain of x;, and # stands for the
relational operator =or+# is called a VL, selector’ or, briefly, a selector.
The selector [x; = R;] ([x; #R,]) is interpreted as ‘value of x; € {R;} (‘value
of x; ¢ {R;T). In the case of linear variables, the operator “=" in [x; = R,]
can be replaced by relational operators =, >, <, < for an appropriate Ry, as

indicated below.
Here are a few examples of a selector, in which variables and their values are

represented by linguistic terms:

height = tall]
length = 2]
‘colour = blue, red] {colour is blue or red)
size ¥ medium] (size is not medium)
(weight = 2..5] (weight is between 2 and 5, inclusively)
Somplexes
A logical product of selectors is called a logical complex (I-complex):.
a [x,- #RI] . (9)
ierl

where 1C {1,2,...,n}, and R; C D;. An event e is said to satisy an lcomplex
if values of variables in e satisfy all the selectors in the complex. For example,
event e=1(2,7,0,1,5,4,6) satisfies the [lcomplex [x;=2,3] [x3<3]
[xs=3..8] (concatenation of selectors implies conjunction).

An lcomplex can be viewed as an exact symbolic representation of the
events which satisfy it. For example, the above l-complex is the symbolic
representation of all events for which x,; is 2 or 3, x5 is smaller than or equal to
3, and x, is between 3 and 8.

+ VL, stands for variable-valued logic system VL, which uses such selectors.
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Any set of events for which there exists an /-<complex satisfied by these
events and only by these events is called a set complex (s-complex). Henceforth,
if « is an s<omplex, then by @ we will denote the corresponding./i-complex.

Quantitative prapaerties of clusters

Let E be a set of events in Z, which are data points to be clustered. The events in
E are called data events (or observed events), and events in Z\F (i.e., eventsin I
which are not data events) are called empty events (or unobserved events). Let
o be a complex which covers some data events and some empty events. The
number of data events (points) in a is denoted by p(a). The number of empty
events in « is called the sparseness and denoted by s(a). The total number of
events in « is thus r(e) = p(a) + s(a).

If s-complex «a is represented by lcomplex & = /\[x, #R;], the number
H() can be computed as:

t@)=1II c(R) 11 4 (10)
iel il

where 7C {1,2,..., n}
c(R;) is the cardinality of R;,
d; is the cardinality of the value set of variable x;.

The Icomplex & can be viewed as a generalized description of the data
points in «. The sparseness, as defined above, can be used as a simple measure of
the degree to which the description & generalizes over the data points. If the
sparseness 1s zero, then the description covers only data points (‘zero generaliz-
ation’). As the sparseness for a given complex increases, so does the degree to
which the description a generalizes over the data points. A formal definition of
the ‘degree of generalization,” based on the information-theoretic uncertainty of
the location of data points in a, is given in [12].

Star

The star G(elF) of e against the event set F is the set of all maximal under
inclusion complexes covering the event e and not covering any event in F. (A
complex a is maximal under inclusion with respect to property P, if there does
not exist a complex a* with property P, such that o C a*).

Cover

Let Ey and £, be two disjoint event sets, £y N E, = ¢. A cover COV(&; |E,) of
E) against E,, is any set of complexes, {a;};« s, such that for each evente € E,
there is a complex gy, j € J, covering it, and none of the complexes a; cover any
gvent in £5,. Thus we have:

EC UaCo\E,. (11)
et
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A cover in which all complexes are pairwise disjoint sets is called a disjoint
cover. If set E;, is empty, then a cover COV(E| £;) = COV(E,|¢) is simply denoted
as COV(£)). A disjoint cover COV(E') which consists of k complexes is called a

k-partition of E,

4. THE METHOD AND IMPLEMENTATION

This section describes an algorithm for conjunctive conceptual clustering, which
consists of an outer layer and an inner layer, described in sections 4.1 and 4.2
below. Section 4.3 describes the procedure used to construct the k-partition
from stars which optimizes a certain criterion of clustering quality.

4.1 Inner layer

The inner portion of the algorithm called PAF was introduced in [12] as a ‘con-
strained’ conjunctive conceptual clustering technique. Given a set of data events,
E, to be clustered and an integer, k, PAF partitions the set £ into & clusters, each
of which has a conjunctive description in the form of a complex. (In the complete
algorithm, £ and k& are determined by the outer algorithm). The obtained
partition is optimal or suboptimal with regard to a user selected measure of
clustering quality.

The general structure of PAF is based on the dynamic clustering method
developed by Diday and his collaborators (Diday & Simon {1], Hanani [5]).
Underlying the notions of the dynamic clustering method are two functions:

g: the representation function, which, given a k-partition of E, produces a
set of k cluster representations which best describe the clusters,

[ the allocation function, which, given a set of & cluster representations,
produces a k-partition in which each cluster is composed of those objects.
which best fit the corresponding cluster representations.

The method works iteratively, starting with a set of % initial, randomly
chosen cluster representations. A single iteration consists of an application of
function f to the given representations, and then of function g to the obtained
partition. Each iteration ends with a new set of representations. The process
continues until the chosen criterion of clustering quality, W, ceases to improve.
(Criterion W measures the ‘fit’ between a partition and its representation.) [t has
been proved that this method always converges to a local optimum [2].

In PAF, the notions of dynamic clustering are not rigorously followed,
although the general approach is similar. PAF has a step which is analogous
to function g, which from a given set of clusters of objects, produces the best
representations of them (in the form of complexes). The process involves
selecting a representative event (seed) from each cluster and covering one seed
against the others to generate generalized descriptions of the events, This is done
by procedures STAR and NID described in section 4.3 below, The function f of
dynamic clustering is represented in PAF by a procedure which, for a given
complex, determines the set of covered data events.
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PAF will now be described by showing how it operates on the data given
in Fig. 2, with parameter K set to 2 (i.e., the algorithm will split the data
into two subcategories), and with minimizing total sparseness as the criterion of
clustering quality. There are ten objects, each described by the values of four
variables Xy, x5, X3, and x4, with three-valued domains, D; = {0.1,2},i=1,2,3.4.
Variables x; and x, are linear, and variables x5 and x4 are nominal.

Event X X, Xy X,

€, 0 0 0 1

€, 0 1 0 0

e, 0 2 1 2

8, 1 0 0 2

e, 1 2 1 1

€, 2 0 1 0

e, 2 1 0 1

g 2 1 1 2

€, 2 2 C 0

€10 2 2 2 2
Value set

type: L L N N

(L. — linearly ordered: N — nominal}

Fig. 2 — An exemplary data set describing ten objects using four variables.

Figure 3 presents the data set from Fig. 2 graphically, using a planar repre-
sentation of the event space spanned over variables x;, X,, X3, and x4.

|x4 = 0.21 [xq = 1.2]
Xy X2 Xy X2
D f.’l o " ] 0 €y | ; r
0 11/€2 o/1 €2
[ 4
2I £y N 2- . 3
0 eq [x2=0f[x3=0.1] 0 €3
11 1
2 es x4 =1,2] es |
i 1 1'
0 €s 0 €6
2 1 e e I 21 & ‘g
2 |l€g €10 2] €9 ‘10
10] L Y
o 1+ 2|0 1 2 2 |4 o 1t 2]o 1 2 12 o,
X3 0 1 2
0 |

Hlustration of Gtez le, ) Hlustration of G(Eﬂ&',,

Fig. 3 — A planar representation of the event space spanned over variables x;, X;, Xy, X,
showing the complexes of two stars.
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PAF will now be explained as’it operates on the data of the sample problem.
A flow diagram of PAF is presented in Fig. 4.

lteration 1.
Step 1 (Fig. 4, block 1):

Ep is a subset composed of k data events from E (seeds). The seeds can be
selected arbitrarily, or they can be chosen as events which are most syntacti-
cally distant from each other. In the latter case the algorithm will generally
converge faster. For selecting such events, program ESEL [11] can be used.
For the sample problem, let £y = {e;, e, }.

Step 2 (Fig. 4, block 2):
A star, G(glEo\g), where ¢ € Ey, is generated for each seed against the
remaining seeds. In our case, stars Gy = G(eyle,) and G, = G(e;le;) are
generated. The program produced the following stars by applying the STAR
generating procedure outlined in section 4.3. Each star consists of two
complexes:

Glele) = {[x; =0] [x;=0,1], [xs=1,2]}
Glezler) = {[x; =1,2], [x4=0,2]}

These stars are pictured in Fig. 3.
Step 3 (Fig. 4, block 3):

From each star a complex is selected, such that that resulting set of %
complexes

(a) is a disjoint cover of £, and .

(b) is an optimal or suboptimal cover among all possible such covers,
according to a selected quality of clustering criterion. In the sample
problem, the quality of clustering criterion is minimizing total
Sparseness. There are four combinations of complexes to con-

sider:
| . Sparseness
(a) complex 1: [x,=1,2] 47
complex 2: [x, =0][x; =0,1] 15
(b) complex 1: [x;=1,2] PR
complex 2: [x4=1,2] 62
() complex 1: [x3=0,2] (These covers are not
complex 2: [x,=0][x3=0,1] disjoint. NID (see section
(d) complex 1: [x;=0,1] 4.3) is applied to each;
complex 2: [x4=1,2] however in this instance,

the resulting sparsenesses
are not less than 62.)

Combination (a) is selected since it has minimum total sparseness.
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Given:

E — a set of data events
k — the desired nr of clusters
A — the evaluation functional

1

Choose k ‘seed’ events from £

.

2

Using procedure STAR determine the star
of each seed against the remaining seeds.
Select from each star one complex, so
that the obtained collection, P, of k
complexes will be the 'best’ disjoint cover
of £ (with help of NID procedure).

'

e \
5 the termination / Yes »| END

criterion applied
to P satisfied?

!

4
Is iteration
odd or even
Y
5 : 6
Choose & new seed Choose k new seed
events which are events which are
central in the extreme in the
complexes in P complexes in P

Fig. 4 — A flow diagram of the inner layer of algorithm PAF.

Step 4 (Fig. 4, block 4):
The termination criterion of the algorithm is applied to the obtained cover.
The termination criterion is a pair of parameters (b,p) where b (the base)
is a standard number of iterations the algortihm always performs, and p (the
probe) is the number of additional interactions beyond b performed after
each iteration which produces an improved cover. In our example, b = 2

and p = 1.
Step 5 (Fig. 4, blocks 5 and 6):

A new set of seeds is determined. If the iteration is odd, then the new seeds
are data events in the centres of complexes in the cover (according to the
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syntactic distance). If the iteration is even, then the new seeds are data
events maximally distant from the centres (according to the ‘adversity
pn’nciple’f). In the sample problem, syntactically central events are to be
found for the complex [x, = 1,2], covering {ez, €3, s, €7, €z, €9, €10}, and
complex [x;=0] [x3=0,1], covering {ey, €4, €s}. Central events are
the ones for which the sum of syntactic distances between them and all
other events in the same cluster is minimal. The following sum-of-distances
tables apply in this example.

Complex [x; = 1,2] Complex [x, = 0}[x3 = 0,1}
Sum of distances Sum of distances
Event to other events Event to other events

€a 18 €1 5

€3 16 €4 S

Es I8 €g 6

€+ 16

€g 15 Note:Selected events shown with
€9 15 underlined distances. Ties are
€10 16 broken in favour of events

not previously used as seeds.
The new seeds are £y = {e4, €5 }.

Iteration 2:
Step 2:
The stars Gy = G(esleg) and G, = G(egle,) are generated:
Glesleg) = {[x; = 0} [x3 = 0,1], [x; = 0,1] [x3=0,1], [x3 =0,2]}
Glegles) = {[x =2}, [%,=1,2], [x3=1,2]}
Step 3:
The combinations of complexes which are disjoint covers are:

Sparseness
(a) complex 1: [x; = 2] 22
complex 2: [x;=0,1][x3 =0,1] 31
| 53
(b) complex 1: [x,=1,2] 47
complex 2: {x3 =0]{x3=0,1] 15
62

Combination (a) is selected (it has the minimum total sparseness).

t This principle states that if the most outstanding event truly belongs to the given cluster,
then when serving as the cluster representation, the ‘fit’ between it and other events in the
same cluster should still be better than the ‘fit’ between it and events of any other cluster,
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Step 4:
This is step 4 of iteration 2. Since b = 2, this is the last of the base iterations.

Step 5:
Complex [x; = 2] covers {gg, €7, €z, €9, €10} and complex [x; =0,1][x3 =
0,1] covers {ey, e, €3, €4, €5}. Since this iteration is an even one, the new
seeds are those whose sum of syntactic distances to other events in the same
cluster is maximal. After ties are broken, these events are £, = {e,, 15}

Ttergtion 3:

Step 2:
The stars Gy = G(ez|e;0) and G, = G(ejple,) are generated:
G(esley) = {[x1=0,1][x3 =0,1], [x, = 0, 1] [x3 = 0, 1],
[x3=0,1][x4 =0,1]}
Glepler) = {[x1=1,2], [x2 = 2], [x4 = 1, 2}}

Step 3:
The only combination of complexes which is a disjoint cover is:
Sparseness
(a) complex 1: [x, = 2] 23
complex 2: {x, =0,1}{x3=0,1] 30
53
Step 4:

This iteration is the first (and in this example also the last) ‘probe’ iteration.
If the clustering quality on this iteration is better than the previous best
clustering, another p iterations are scheduled, else the algorithm stops after
completing p probing iterations. The best total sparseness of iteration 3,
namely 53 is not an improvement over the previous best sparseness, also 53.
Since p = 1 in this example, the termination criterion is satisfied at this
point. There are two alternative clusterings produced, each with a total

sparseness of 53:

alternative 1: alternative 2:
[x; =2] [x2 =2]
[xl=0!1][x3=031] [x'2=0:1][x3=0:1]

4.2 OQuter algorithm

The outer layer of the algorithm makes recursive applications of the inner layer
in order to create a hierarchical description (a concept tree) underlying the data.
The tree grows in a top-down fashion until the ‘continuation-of-growth’ criterion
fails, This criterion requires that the ‘fit’ (measured by sparseness) of the concepts
to the events they describe must be sufficiently better at each next (lower) level
of the hierarchy. When this criterion is not met, the latest obtained subcategories
become leaves of the tree.
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At each step, the group of objects associated with a particular node in the
hierarchy is. divided into subcategories, and their descriptions are assigned to
the offspring nodes. The degree of the parent node (the number of subcategories
or clusters) is specified by parameter k. Usually there is no a priori knowledge of
how many subcategories to form. Interesting solutions from the viewpoint of a
human user, however, should involve only a small number of subcategories (e.g.,
between 2 and 7) so that it is computationally feasible to determine the best
number of subcategories by constructing first the best 2-partition, then the
best 3-partition, and so on, while evaluating relative quality of the obtained
partitions.

The clustering quality measure used here must relate a quantitative measure
of complexes (e.g., the ‘total sparseness, ) to the number of clusters. As the
number of clusters k increases, the total sparseness will likely decrease (since
smaller complexes will better ‘fit’ the data). One possible global criterion of
clustering quality is to minimize S*(k + ), where 8 is chosen to properly
balance the effect of k on the solution.

It should be noted that selecting too small a value of & does not necessarily
distort the resulting conceptual hierarchy. It may simply cause the creation of
additional levels within the same structure. This is illustrated in Fig. 5.

(a) /\

x;=0,111... {x;=2,31[...

[x;=0][... [x;=1]1... [x;=2][... [x;=3]I...

(b)

x;=0}{... Ixi=1]l... [x;=211... (x;=3]1...

Fig. 5 — Two comparable structures with different degrees of root nodes.

4.3 Procedures STAR and NID, and the method for detarmining the best covar

The star G(e|F) has been defined as the set of maximal complexes covering
event e and no events in the set F. This section will explain how stars are con-
structed, and are subsequently used to conduct a best-first search to find an
optimal or suboptimal X-partition of an event set. Assume first that F = {e;},
e1¥ e. To generate the star G(ele,) one determines all variables in e which have
different values than in e,. Suppose, without losing generality, these variables are
X2, o, X, and ep = (1, 1y, o, By ., 1), Assuming that the variables are
nominal. the complexes of the star G(eley) are [x; # rl,i=1,2, ..., k(or
equivalently, [x; = D\r]), since these are the largest complexes which cover e



MICHALSKI AND STEPP

and do not cover e;. The number of complexes in a star G(elF), when F is a
single event, is at most n (the number of variables), and at least 1, since e, # e.

Assume now that F = {e, e;, ..., ¢}. A star G(e|lF) is constructed by
building first stars G(ele;),i='1,2,....,s,and then set-theoretically multiplying
these stars by each other, using absorption laws to eliminate redundancy. A detailed
description of this process, including the treatment of linear variables, is given
in {12].

The upper bound on the size of a star is n'”, where m is the number of
events in . Absorption laws will usually eliminate many redundant complexes,
but the size of a star may still becorne unmanageable. Therefore a bounded siar
is used which has a specified upper limit, MAXSTAR, on the number of com-
plexes it may contain. Whenever a star exceeds this number, the complexes are
ordered in ascending order according to sparseness (or in general, to any assumed
criterion) and only the first MAXSTAR complexes are retained. The position of
a complex in the sequence so ordered is the rank of the complex.

At each iteration of algorithm PAF (Fig. 4), k stars are produced, for
each seed event against the remaining k — 1 seed events. From each star one
complex is then selected in such a way that the resulting set will consist of k
disjoint complexes (a k-partition), and be optimal according to the assumed
criterion. If un-bounded stars were used, each could be composed of up to
n®*-1) complexes and therefore up to (n®*~1)* sets of complexes would have to
be inspected in order to determine the optimal k-partition! The best-first search
strategy outlined below solves this problem.

- Performing an efficient search for the best set of complexes can be viewed
as finding an optimal path through the search tree whose nodes are complexes.
The ith level of the tree corresponds to the ith star. The height of the tree is %,
and a path of length k corresponds to a particular k-partition. The pathrank of
a path is the sum of the rapks of the complexes along the path. The sequences
of complexes (paths) are considered in order of increasing pathrank so that
complexes with minimum sparseness are considered first.

Frequently the cover with minimum total sparseness will not be disjoint.
A procedure called NID tries to transform a non-disjoint cover into a disjoint
one by making small adjustments in cluster memberships. The NID procedure is
not always successful, and when it cannot create a disjoint cover of all events in
E, it creats the disjoint cover which covers as many events in £ as possible. The
events it is unable to cover are reported as ‘exceptional events’.

4.4 A note on the CLUSTER/paf implementation of the algarithm

The algorithm described above has been implemented in a program CLUSTER/paf,
written in PASCAL. The program contains about 3500 PASCAL statements and
requires about 20K 60-bit words of memory for clustering problems of the kind
shown in Fig. 2. CLUSTER/paf is connected to a relational data base, and all the
input examples and parameters are supplied to it in the form of relational tables.
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Data points and complexes are stored in one common data structure, the
COMPLEXT, which is an array of SELECTORS declared as objects of the PAscay
type ‘set of interger’. The integercoded values in the reference set of each
variable, x;, are stored in SELECTOR;. When a particular variable, X;, is not
present in a complex, SELECTOR; is assigned the set representing the entire
domain of the variable. Each COMPLEX is thus of fixed length even though the
number of selectors in the corresponding complex vares. This data structure
provides an easy way to compute the total number of events in a complex
t(a), the number of data points covered by a complex p (), and from these two,
the sparseness of the complex s(a). -

The program supports five criteria for evaluating the quality of a k-partition:

® the total sparseness of the complexes,
® the degree of inter-cluster disjointness (the total number of disjoint

selectors in the k-partition),
® the imbalance in cluster populations (the uneveness of the distribution

of events in complexes of the k-partition),
® the dimensionality (the number of different variables used in the com-

plexes of the k-partition),
® the total number of selectors in the k-partition.

Selected criteria from the above list are applied in a lexicographical order defined
by the user.

5. AN EXAMPLE

The simple example problem described below was designed to illustrate the
major differences between traditional clustering techniques and the conceptual

Fig. 6 - BEAD STRINGS.

+ Upper-case will be used to denote data structures within CLUSTER /paf.

100
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clustering method described in the paper. Results from applying the traditional
numerical taxonomy techniques to the problem were obtained by using a
program NUMTAX? which implements the standard algorithms from Sokal &
Sneath [14]. Results from applying the conjunctive conceptual method were
obtained by using the program CLUSTER/paf.

The problem is to structure hierarchically the ten objects shown in Fig. 6.
Each object is described by values of the four variables: size of beads, number of
beads, shape of beads, and orientation of beads. Figure 7 shows the table of

descriptions of the beads. The symbolic values of variables in Fig. 7 were encoded
as integer values to prepare the data for NUMTAX and CLUSTER/paf, The

encoding was:

x1: size of beads X3: shape of beads
0 — large 0 — circle
1 — medium 1 — square
2 — small 2 — triangle
X,: number of beads  x4: alignment of beads
0 — 2 beads 0 — vertical
1 — 3 beads -1 — diagonal
2 — 4 beads 2 — horizontal

The encoded values for this problem were given in Fig. 2, and used to illustrate
the inner PAF algorithm in section 4.

size number shape  orientation
string of of of of
symbol beads beads beads beads

a small 2 square ' vertical
b medium 2 circle horizontal
c small 3 circle diagonal
d medium 4 square diagonal
B small 3 square  horizontal
f farge 2 circle diagonal
g small 4 circle vertical
h large 3 circle vertical
i small 4 triangle horizontal
j large 4 square  horizontal

Fig. 7 — The description of BEAD STRINGS.,

5.1 Results fram NUMTAX

Given a set of events, the numerical taxonomy program, NUMTAX, organizes
the events into a hierarchy which reflects the numerical distances between
consecutively larger subcategories of events, which at the highest level, merge to

t NUMTAX was written by R. Selander of the University of Illinois.
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become the union of all events (a dendrogram). Figure 8 shows the dendrogram
generated by NUMTAX using the reciprocal of unweighted Euclidean distance
as the measure of sisimilarlity. (The distances were calculited from standardized
data (z-scores)). Eighteen different distance measurem«nis were tried in the
experiment by using various combinations of a data transformation (raw data,
ranging, z-scores); a similarity measure (reciprocal Euclidean distance, product-
moment correlation, simple matching coefficient); and weighting (unweighted,
weighted by the number of events in a group),
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Fig. 8 — A dendrogram of BEAD STRINGS produced by NUMTAX. Coefficients
assigned to the nodes represent the Fuclidean distance {in the n-dimensional space)
between the objects indicated by branches from the node. The distances are calculated
using standardized data values, i.e., the values of a variable are divided by their standard
deviation. The distance between groups of objects is defined as the average of the
distances from objects in one group to those of the other group.
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Because dendrograms are constructed bottom-up, the entire dendrogram
must always be generated. The after this has been done, the dendrogram may be
cut apart at some level to produce clusters. The collections of BEADS shown in
Fig. 9 are the result of conmdenng only the two major subtrees of the dendrogram
of Fig. 8. The three clusters shown in Fig. 10 were obtained in a similar manner

g i f § 1. [Bead shape = circle] ar [Orientation = vertical
g
O O

4
< b
§ e
; 2

. [Bead shape + circle] & [Orientation # vertical.

Fig. 9 — Clusters obtained from the dendrogram generated by NUMTAX (K =2).
Description of the clusters were obtained by program AQl11.

m 1. [Bead size # small] & [Bead shape # square]

h
B § g 2. [Bead size = small] & [Orientation # horizonta
q (man 3. [Bead size # small] & [Bead shape = square] o
I [Orientation = horizontal]
i

I J ANNA ({Bead shape = square) or [Bead size = small})

Fig. 10 — Clusters obtained from the dendrogram generated by NUMTAX (K = 3).

Descriptions of the clusters were obtained by program AQI11. In both figures, the
inner lines show possible further partitions.
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by cutting the dendrogram into three portions. The two illustrations are typical
of the many dendrograms generated. None of the dendrograms form clusters
which have simpler characterizations.

The clusters obtained from the dendrogram are not accompanied by any
description. In order to determine the meaning of the clusters, an additional
step which generates cluster characterizations is incorporated. The program used
to provide these characterizations in this experiment was AQ11 [11]. This
program accepts sets of events (the clusters defined by dendrogram subtrees)
and produces maximally generalized descriptions of them in the form of a logical

disjunction of complexes.

; g 1. [Bead shape = circle]

A&A&
(11 2. [Beach shape # circle]
d e
j a
Fig. 11 — Clusters generated by CLUSTER/paf for K = 2.
r
10
: g 6? 1. [Bead size = small]
a Fa¥aVaVal "
(9 00 2. [Bead size # smail] & [#Beads < 3] &
r b [Bead shape = circle]
h
"—[ ' 3. [Bead size # small] & [#Beads = 4] &
; [Bead shaps = square]
d

Fig. 12 — Clusters generated by CLUSTER/paf for K = 3.
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52 Results from conceptual clustering

The conceptual clustering program CLUSTER/paf was run with two different
criteria of clustering optimality:

(a) ‘minimize sparseness, then minimize the number of selectors’, and
(b) ‘minimize the degree of disjointness, then minimize sparseness’.

Results when using criterion (a) are shown in Figs. 11 and 12. Figures 13 and 14
show results when using criterion (b).

OO '

g

(]

2. [#Beads = 4]

S |=

£ | 1. [#Beads < 3}
f c§
[ 11

Fig. 13 — Another solution generated by CLUSTER/paf for K = 2.

B & CD 1. [#Beads = 2]
t. b

§ § cr 2. [#Beads = 3]
h
i

g 3. [#Beads = 4]

ferrr

Fig. 14 — Another solution generated by CLUSTER/paf for K = 3.
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5.3 Discussion of results

An experiment with human subjects solving this problem indicated that people
categorize objects using the object’s most noticeable properties. Typical solutions
were, e.g.,

[shape of BEAD = circle] vs. [shape of BEAD # circle] ,
[#BEADS = 2] vs. [#BEADS =3] vs. [#BEADS = 4] .

The clusterings produced by NUMTAX seem ‘unnatural’ when compared to
human clustering. The distinction can also be observed by looking at the cluster
descriptions. The descriptions determined by program AQII for the clusters
generated by NUMTAX involve disjunction, and seem to be more complex than
the descriptions which people consider most natural. On the other hand, the
descriptions produced by CLUSTER/paf matched the human sohitions.

It should be noted that the descriptions generated by AQIl1 for clusters
obtained from NUMTAX were ‘biased’ towards the type of descriptions
were used. In any case, however, since NUMTAX is not equipped with knowledge
of any concepts, it cannot knowingly produce clusters corresponding to
concepts.

CLUSTER/paf has been applied to some ‘real world’ clustering problems.
One application was to cluster data describing 47 diseased soybean plants (each
described by 34 many-valued variables). CLUSTER/paf accurately partitioned
the diseased plants into the four disease categories presented in the sample,
and described the clusters by the proper concepts, stated in terms of disease

symptoms confirmed by plant pathologists.

and

6. CONCLUSION
he conceptual clustering method, PAF, determines a hierarchv of subcategories
ithin a collection of objects. The subcategories are determi~ ° in such a way
1at an appropriate generalization of the description of each subcategory yields a
angle conjunctive statement which is disjoint from the similar statements
“haracterizing other subcategories. The difference between this method and
traditional methods can be explained by extending the concept of the measure
of similarity into the more general notion of conceptual cohesiveness.

A limitation of the program is that it describes subcategories of objects solely
2y conjunctive statements. Although a conjunctive statement is probably the
nost common descriptive form used by humans, it is a quite limited form. An
nteresting extension of the work would be to use other forms of descriptions,
.8, involving logical implication, equivalence, and exception. Also, the program
equires thttthat all potentially relevant variables for clustering are supplied in
he input data (as in all other clustering methods).

The problems which are suitable to the PAF algorithm involve objects
lescribable by variable-value pairs, i.e., objects without any structure of their
'wn. When the objects of interest do have structure which has to be taken into
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consideration (e.g., relationships between features of object subparts), the
techniques presented here become inadequate. Clustering of such objects will
require the use of a richer description language than that used here, such as first-
order predicate logic or its equivalent.

7. ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation under prant No.
MCS-79-06614. The authors wish to thank Professor R. Selander of the University
of Illinois for providing the NUMTAX numerical taxonomy program.

REFERENCES

[1] Anderberg, M. R., (1973). Cluster Analysis for Applications. New York and London:
Academic Press.

[2] Diday, E., & Simon, J. C., (1976). Clustering analysis, Communication and Cybernetics,
10, (ed. Fu, K. 8.). Berlin, Heidelberg, New York: Springer Verlag.

[3] Diday, E., (1978). Problems of clustering and recent advances, 11th Congress of
Statistics, Oslo, Norway.

(4] Gowda, K. Chidananda, & Krishna, G., (1978). Disaggregative clustering using the
concept of mutal nearest neighbourhood, JEE Trans. On Systems, Man and Cyber-
netics, SMC-8, No. 12, 888-894.

{5] Hanani, U., (1979). Multicriteria dynamic clustering. Rocquencourt: INRIA Reports.

[6] Michalski, R. S., (1974). Variable-valued logic: System VL,, Proceedings of the 1974
Int. Symp. on Multiple-Valued Logic, West Virginia University, Morgantown, West
Virginia, May 29-31, :

[7] Michalski, R. S., (1975). Synthesis of optimal and quasi-optimal variable-valued logic
formulas, Proceedings of the 1975 Int, Symp. on Multiple-Valued Logic, Bloomington,
Indiana, May 13-16,

[8] Michalski, R.S.,(1975). Variable-valued logic and its applications to pattern recognition
and machine learning, Multiple-Valued Logic and Computer Science, (ed. D. Rine).
Amsterdam: North-Holland.

[9] Michalski, R. 8., (to appear). Studies in inductive inference and plausible reasoning,
Technical Report, Urbana-Champaign: Department of Computer Science, University
of Hlinois. ‘

[{10] Michalski, R. S., (1978). A planar geometrical model for representing multidimensional
discrete spaces and multiple-valued logic functions, UIUCDCS-R-897, Urbana-
Champaign: Department of Computer Science, University of Illinois.

[11] Michalski, R. S., & Larson, J. B., (1978). Selection of most representative training
examples and incremental generation of VL, hypotheses: the underlying methodology
and the description of programs ESEL and AQ11, UTUCDCS-R-86 7, Urbana-Champaign:
Department of Computer Science, University of Illinois.

[12] Michalski, R. S., (1980). Knowledge acquisition through conceptual clustering: A
theoretical framework and an algorithm for partitioning data into conjunctive concepts,
(Special issue on knowledge acquisition and induction), Policy Analysis and Infor-
mation Systems, No. 3, 219-244,

[13] Nilsson, N. ., (1980). Principles of Artificial Intelligence, Menlo Park: Tioga Publishing
Company.

[14] Sokal, R.R., & Sneath,P. H., (1963). Principles of Numerical Taxonomy. San Francisco:
Freeman.

[15] Stepp, R., (1979). Learning without negative examples via variable-valued logic charac-
terizations: the uniclass inductive program AQ7UNI, UIUCDCS-R-982. Urbana-
Champaign: Department of Computer Science, University of Iliinois.

[16] Stepp, R., (1980). Learning by observation: experiments in conceptual clustering,
Workshop on Machine Learning, Carnegie-Mellon University, Pittsburgh, Pennsylvania,
July 16-19.



ACQUISITION AND MATCHING OF PATTERNS

[17] Stepp, R., (to appear). A description and user’s guide for CLUSTER/paf - a program
for conjunctive conceptual clustering. Technical Report, Urbana-Champaign: Depart-
ment of Computer Science, University of Illinois, Urbana, Ilinois,

[18] Watanabe, S., (1968). Pattern recognition as an inductive process, Methodologies of
Pattern Recognition, (ed. Watanabe, S.). New York and London: Academic Press.

[19] Watanabe, S., (1969). Knowing and Guessing: a quantitative study of inference and
information, New York: Wiley.

[20] Winston, P. H., (1977). Artificial Intelligence, Reading, Mass: Addison-Wesley.



