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Abstract

NEW OPTIMIZATION BASED METHODOLOGY FOR CALCULATING THERMODY-
NAMIC EQUILIBRIA AND QUANTIFYING UNCERTAINTIES

Jeffrey H. Snider, PhD

George Mason University, 2020

Dissertation Co-Director: Dr. Maria Emelianenko

Dissertation Co-Director: Dr. Igor Griva

This dissertation presents a novel methodology for automatic calculation of thermodynamic

equilibria and quantifying numerical uncertainty for arbitrary multicomponent materials

systems using the calphad method. The methodology is based on mathematical analysis

of two different model formulations implemented using an efficient set-based framework,

and then applying state-of-the-art nonlinear optimization algorithms to find thermody-

namic equilibria and quantify uncertainty at the stage of Gibbs energy minimization. Un-

like previously developed methods that rely on guessing material components present in the

equilibria, the new methodology involves all the components of a material system in com-

putations, and thus is more robust. The thesis establishes theoretical equivalence between

the models and provides results on extensive numerical experiments that demonstrate the

practical importance of the developed methodology.
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Chapter 1: Background

With its origin in the work of J. W. Gibbs in the late 19th century, the calphad method

(CALculation of PHAse Diagrams) began to find extensive use as automated computing

became increasingly available in the 1960’s and later, and its method for extrapolating

from empirical data on individual elements and binary and ternary systems to arbitrary

systems of elements is now aiding the selection of advanced materials in 21st century fabri-

cation projects. Today, as omnipresent computing power expands the reach of the method

to a broader range of scientists, it is coming under increased scrutiny, its shortcomings

are enumerated in the literature alongside its extraordinary power, and opportunities for

improvement of the method are obvious. We identify crucial approaches to improving the

method, and we develop additional improvements of our own.

The calphad method is an extraordinarily valuable technique for determining thermo-

dynamic properties of a chosen ratio of elements, at a given temperature and pressure,

computationally rather than empirically. The method is rapidly expanding its reach to a

wider range of materials scientists and other researchers, but has attracted relatively little

interest from the mathematical community.

In recent years the calphad method has been the subject of many important develop-

ments, rapidly broadening its appeal to wider audiences and enabling calculation of more

features than free energy and atomic structure. Many old challenges remain incompletely

addressed, and new challenges are created by each expansion of its scope and each new

feature introduced to the method.

Until very recently even the most prominent thermodynamic software made no attempt to

guarantee it was identifying the true minimum configuration and energy of a system. The
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existence of optimization algorithms and software that more quickly and reliably identify

the minima is a significant improvement for the method.

The Inden-Hillert-Jarl magnetic model has been used almost unquestioned for nearly four

decades, but it is inadequate to modern needs and unnecessarily simplified, given current

computing power. The possibility of replacing the IHJ model with a more sophisticated one

is facilitated by our proposed framework, and enables research in an area of calphad where

little has been done recently.

While uncertainties are present at all stages of the method, from empirical measurements,

to parameter fitting, and to material quantities determined for unknown systems, no effort

has been made to maintain and convey that information to the researcher. Simply making

uncertainty information visible to the researcher would present a significant improvement

to the method.

We develop methods that solve the calphad problem using existing and custom optimiza-

tion software, e.g., ampl and its accompanying solvers. Within that framework we develop

various models and sub-models such as different magnetic models, variations on how va-

cancies are handled, etc., for comparison with published works. The output is visualized

with custom plotting packages depending on the particular features being examined. Com-

parisons with published research for validation is conducted at the level of phase diagrams,

energy diagrams, outputs common to thermodynamic software packages, and novel visual-

izations of uncertainty measurements.

The entire body of source code for database conversion, energy mapping, generation of phase

diagram data, and plotting diagrams is in the process of being made publicly available on

github. It will remain open source for academic and industrial community research.
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1.1 Definition of Key Terms

Many of these terms are familiar to materials scientists, however the audience of this doc-

ument includes many without that background. Here we give informal definitions of the

terms encountered in this document, interpreted from a mathematician’s point of view.

element – a chemical element, i.e., a type of atom.

constituent – a constituent of a phase can be an element or a chemical compound of mul-

tiple elements.

crystallographic lattice – the repeated symmetrical arrangement of constituents inside

a crystal.

thermodynamic (sub)lattice – a symmetric subset of a lattice corresponding to the iden-

tifiable positions in a unit of the parent lattice.

sites – a single identifiable position of a sublattice, sometimes also the total number of

constituents in that position per mole of a phase.

end-member – a specific arrangement of constituents on the sublattices of a lattice, used

to specify a free energy of a phase in a thermodynamic database. Some end-members are

purely hypothetical and cannot be physically present.

microstate – a specific configuration of a system associated with a specific probability in

statistical mechanics.

phase – a collection of microstates sharing a common crystal structure and set of con-

stituents, defined by its properties such as enthalpy, volume, etc., and specified in a database

by a set of end-members with corresponding energies as functions of temperature and pres-

sure.

system – a fixed set of components; binary systems have two components, ternary have

three, and systems with four or more components are termed multi-component.

component – the set of all constituents a system comprises; a phase has constituents, a

system has components.

composition – the ratio of components in a system, which necessarily sum to unity.
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vacancy – a site containing no constituent, often treated as a hypothetical constituent.

equilibrium – the set and ratio of phases giving the lowest possible energy for a given

composition, temperature, and pressure.

global minimizer / stable – the equilibrium of a system, the set and ratio of phases

giving the lowest possible energy.

local minimizer / metastable – a set and ratio of phases which has no lower energy in

a small neighborhood, but not the lowest possible energy for that system.

phase diagram – a chart of phases present at given temperature, pressure, and composi-

tion.

liquidus – the temperature boundary on a phase diagram above which a system is entirely

liquid in equilibrium.

solidus – the temperature boundary on a phase diagram below which a system is entirely

solid in equilibrium.

1.2 Introduction

The calphad method, developed and named for its ability to generate phase diagrams,

is well suited for calculating not only equilibrium energies of systems and closely related

features such as heat capacity, but also mechanical features like volume, thermal expansivity,

bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, and other features such as

electrical resistivity or conductivity, thermal conductivity, magnetism, and others.

The ability to extrapolate values for those features rests on a foundation laid originally over

one hundred years ago with the work of Josiah Gibbs and later Johannes van Laar, but

not put into practical use until the mid 1960’s when automatic computation was regularly

available to researchers and academics, at which point exponential growth in its use began.

Key moments in the development of the calphad method are in 1970 with Kaufman and
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Bernstein’s [3] publication of a seminal text on computer calculation, in 1976 when Inden [4]

formulated the magnetic model, slightly revised by Hillert and Jarl in 1978 [5] and still used

in that form today, and in 1991 with Dinsdale’s [6] regularization of elemental parameters.

Founded by Kaufman in 1977, the calphad [7] journal has become a central clearinghouse

for research related to the method.

Today “computational experiments” compliment physical gathering of data, for example

in the form of Density Functional Theory (dft) or other first-principles calculations. And

the calphad community is looking forward to improvements in its methodology and build-

ing on good collaboration with physicists and chemists to give the parameters used more

recognizable physical meaning, and to model more features than the basic method allows.

An idealized use of the method is for materials scientists who desire a certain set of features

in a novel material to computationally determine likely combinations of constituents, and

only then turn to the laboratory or manufacturing floor where they can be assembled and

physically tested. There are examples of this procedure being followed, e.g., Olson and

Kuehmann [8] [9] describe the integration of calphad into the successful development

process of “designer alloys” for airplane landing gear, and Reed et al. [10] applied it to

nickel-based “superalloys”.

The most important prerequisite in the foundation of the calphad method is the ability to

correctly and reliably identify the minimizer for the Gibbs energy of a system of constituents.

Without the ability to identify the phases present, their relative concentrations, and the state

of their internal variables, the method has no utility. Yet this fundamental necessity is rarely

discussed, even as it becomes increasingly difficult in multicomponent systems containing

phases with many internal degrees of freedom.

The extrapolative power of the core calphad concept is valuable: creating equilibrium phase

diagrams. However its ability to calculate features beyond Gibbs energy or heat capacity

is increasingly tantalizing to the materials science community, and many efforts are being
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made to extend the method to incorporate not only additional thermodynamic features, but

also electrical features such as conductivity, and many mechanical features such as volume

and bulk modulus.

The method has been in practice most often restricted to atmospheric pressure and to tem-

peratures above 298.15K. There is great interest in expanding the pressure and temperature

regimes over which calphad can be applied

The ability of calphad software to take input from and especially to provide output to

other software and other stages of a material research or development effort is essential

to is broad utility, and this has long been accomplished as regards diffusion (atomic mo-

bilities), and grain growth studies. Further integration efforts include calculation of molar

volume, elastic properties, thermal conductivity, thermoelectric properties such as electri-

cal resistivity, optical and acoustic properties, and many others. Simplifying and enabling

greater integration is an active topic of research in the Integrated Computational Material

Engineering (icme) community.

The magnetic model almost ubiquitously employed today is the Inden-Hillert-Jarl [5] model,

a short Taylor expansion of the “computationally difficult” Inden [4] model. In 2010 Xiong

[11] identified the need for a more sophisticated model, noting significant inaccuracies in

the important Fe-Ni system, and proposed some alterations. It is worthy of notice that

the “computationally difficult” Inden model is in fact quite simple to implement in ampl

and poses no challenges to our framework. There is much work taking place using ab initio

methods to calculate magnetic parameters, and although in its magnetic model calphad

uses values which have some physical meaning, β and TC , some focus has been placed on

how the method can be made more directly representative of what occurs physically rather

than merely fitting parameters for arbitrary curves to values only indirectly reflecting the

underlying physics.

The presence of uncertainty within calphad parameters has been explicitly acknowledged
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at least since the 1977 paper by Lukas [12] on parameter fitting, but little has been ac-

complished in carrying those uncertainties through to the final product of the method and

conveying the information to the researcher. The need to quantify the uncertainty at all

stages is increasingly apparent, and some important steps are now being taken to do so.

Open-source software is a byword of this internet-driven decade, and its value and even its

necessity affect the calphad community as much as the rest of the scientific community.

Some efforts have been made to produce completely free open-source calphad software,

yet many hurdles remain to producing reliable, extensible software usable by a majority of

interested researchers.

Many aspects of the calphad method are under active development, expansion, or inte-

gration into further materials science processes, and we cannot hope to cover all of them

in this one review. These are areas for the researcher to be aware of, but which are not

discussed here.

Data storage is an important and active theme in the literature [13] [14] [15]. In this disser-

tation we do not discuss data storage techniques or options. The assumption, which at the

current moment is only infrequently violated in practice, is that all thermodynamic data is

stored according to the de facto standard: in a “tdb” file, i.e., a file formatted according to

the Thermo-Calc database standard [16], which accompanies a published paper discussing

the researchers’ models and methods. The highly valuable line of research on updating how

thermodynamic data is stored re-appears many times, especially in regards to reducing it

to physically meaningful data rather than un-physical fitted parameters. Never the less, it

remains beyond the scope of this review.

While the flexibility to adapt a model rapidly to test new proposals is essential, e.g., the

two-state liquid model [17], and while we believe our model [1], elaborated below, to be the

most flexible possible, we do not directly compare the ability of various pieces of software

to make such adjustments.
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There are many thorough and interesting histories of calphad which have been published

from different perspectives, and many papers focused on a singular topic include a thorough

history as well. In this light, we do not present a detailed history of the method, but refer

the reader to these insightful references [18] [19] [15] [20].

The calphad community, including the larger materials science community now benefiting

from wide adoption of the calphad approach, have not uniformly adopted modern op-

timization approaches in their tools and research. We introduce the capabilities provided

by modern applied mathematics to the method, in a framework which reproduces exist-

ing results from published work. We employ this framework which makes use of modern

mathematical tools to evaluate prior research and as a testbed for solutions to outstanding

problems identified in the calphad and materials science literature.

1.3 Prior Work

Many themes connected to the calphad method have emerged in the literature of various

materials science communities as its extraordinary value has become more widely appreci-

ated:

1. incorporating data from ab initio methods into calphad

2. the extension of the method to additional material features

3. the extension to greater temperature (0K ≤ T < 298.15K) and pressure (P � 1atm)

ranges

4. integrating the calphad method with other methods and processes

5. the need for reliably and quickly identifying global minimizers

6. the inadequacy of the Inden-Hillert-Jarl magnetic model

7. quantifying uncertainties at all stages
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8. the benefit and growing ubiquity of open source software

First-principles methods are being increasingly used within calphad, and the ability to

determine material features not measurable empirically has provided enormous value to

the method. Improving the connection between first-principles methods and calphad is an

active area of research. The parameters used in calphad are fitted using empirical data,

but have no inherent physical meaning. Taking an alternative approach that ties directly

to physically relevant values would be a significant improvement in the method in the eyes

of many researchers and scientists from other fields.

The method traditionally was used only to determine thermodynamic features, such as free

energy, and heat capacity. It is readily extensible to other types of features, and a flexible

framework should be able to incorporate many of those features.

Data for the calphad method has traditionally been collected above 298.15K, while the

need to determine material properties below that temperature is obvious and present. Meth-

ods have been devised to use alternative approaches to thermodynamic free energy, such as

replacing Gibbs energy with Helmholtz energy, but this requires a significant retooling of

the method. Similarly, it can be inconvenient to measure thermodynamic properties away

from 1 atmosphere, so much of the calphad data is for that fixed pressure only. Extrapo-

lation to much higher pressures is necessary in many contexts, for example in Geophysics

where pressures up to 360 GPa exist.

calphad has huge potential for determining material features which are fed into an outside

process. The need for integration into a larger research structure has significant implications

for how a tool implementing the calphad method can be accessed by other programs, how

easily it performs without human intervention, and the speed and accuracy of its results.

Much of the thermodynamic software available today is closed-source, and some can be

prohibitively expensive for a single academic license. The advantages of creating software

which is open-source are many, not least is the importance of presenting reproducible results.

9



While this dissertation does not intend to act as an advocate for open-source, we examine

its benefits and follow its precepts in developing our framework.

Many other themes are present, such as the flexible data storage techniques necessary to

enable rapid development of new capabilities, but we have identified these relevant few

beyond the scope of this dissertation to include in this brief review.

1.4 CALPHAD’s Magnetic Model

In the calphad paradigm the parameters fitted to data often have little or no physical

meaning, and in some cases this limits the predictive power of the method. For example the

magnetic models available depend very little on the physics of magnetism at the atomic level,

beyond the use of the β and the short-range-order to long-range-order ratio sro/lro labeled

f which depends on the material structure. Assessments also typically use a short Taylor

expansion of the formula for magnetic contributions, that is the Inden-Hillert-Jarl [5] model

rather than the Inden [4] model, for reasons which do not apply to a modern framework.

There is a further improved model from Xiong [21] which seems to be an improvement on

Inden-Hillert-Jarl, but is in little use at present.

calphad is inherently a non-physical model – it reflects a mathematical model of the

free energy of a system, and need not rely on any physical meaning or parameters to do

so. However it has become clear that incorporating physically meaningful elements in the

model has value, as they allow more accurate energy estimates and better extrapolation.

One area where physical meaning was introduced into the calphad method in the mid

1970’s is magnetism. In 1975 and 1976 Inden [4] formulated and presented a magnetic

model for calphad, which was appropriate but too computationally intensive for the com-

puters and software available at the time to be fully incorporated. Following discussion by

Miodownik in 1977 [22], in 1978 Hillert and Jarl [5] published a version of the Inden model

simplified by using a short Taylor expansion of the computationally challenging functions.
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This had the added benefit of smoothing over the pole in the heat capacity which occurs

at the Curie temperature, and this model under the label Inden-Hillert-Jarl has been used

unaltered in the three decades since its publication. More recently, Xiong in 2010 and 2011

[11] [23] noted that the Inden-Hillert-Jarl model was insufficient to reproduce certain effects

in important ferromagnetic materials and proposed some modifications.

Most recently, Körmann et al., in their significant overview of lambda transitions [24] after

the 2013 Ringberg workshops [25], cite the possibility of using “microscopic model Hamilto-

nians (Hubbard model, Heisenberg model and beyond) in combination with dft-computed

parameters” to calculate magnetic contributions. It is interesting to note here the 2013

paper by Körmann et al. [26] that observes that even the atomic model for magnetism is

uncertain and subject to errors, and first-principles methods are still being revised and re-

fined. They mention that the effects of electronic, magnetic, and vibrational excitations are

not independent, as they are treated in the calphad model. Further, “One of the draw-

backs of current magnetic models within calphad is their inability to actually predict a

magnetic structure of a phase/alloy.” They do not propose a remedy, but the inadequacies

of the current approach are obvious.

Magnetism has long been recognized as one of the most significant factors in the heat ca-

pacity of paramagnetic materials [27] – the “magnetic specific heat.” The ability to model a

steep curve centered on a singularity by measuring a pair of physical values gives the method

improved accuracy and simultaneously improved physical meaning. As more accuracy and

precision is created with a physical model within calphad, less importance is placed on the

excess model and hence fewer or smaller terms are necessary to achieve the desired degree

of overall accuracy and precision.

The necessity to apply a three-decades-old simplified model for computational reasons has

been obviated in today’s high-speed computational environments, where even the most so-

phisticated formulas have their derivatives instantly computed by computer-algebra systems

[1] [28], and with comparatively vast amounts of cpu resources available on every desktop
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Figure 1.1: Heat Capacity by the Inden formula.

at very modest expense.

Heat capacity according to Inden [4] is

CLRO
P = KLRO ·R · ln 1+τ3

1−τ3 , τ < 1,

CSRO
P = KSRO ·R · ln 1+τ−5

1−τ−5 , τ > 1,
(1.1)

where τ := T/TC , lro corresponds to ferromagnetic and sro to paramagnetic states, β is

the mean magnetic moment, and Smagn
max = R · ln(β + 1). Recall that dG = dH − T · dS,

where H is the enthalpy and S is the entropy.
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Hillert and Jarl [5] found a short expansion of the above to be sufficient:

Gmagn
m = RT · ln(β + 1) · g(τ) (1.2)

where

g(τ) :=

 1− 1
A

[
79τ−1

140p + 474
497

(
1
p − 1

)(
τ3

6 + τ9

135 + τ15

600

)]
, τ < 1,

− 1
A

(
1
10τ
−5 + 1

315τ
−15 + 1

1500τ
−25
)
, τ ≥ 1,

(1.3)

where

A =
518

1125
+

11692

15975

(
1

p
− 1

)
, (1.4)

and p is the ratio of magnetic enthalpy in the paramagnetic state to the total magnetic

enthalpy, called the “structure factor.” The accepted values are p = 0.4 in bcc and p = 0.28

in fcc and hcp.

Sundman et al. [29] in 2009 highlighted the inadequacy of the magnetic model in their

assessment of the Al-Fe system by writing “The use of Redlich-Kister series are not well

suited to describe the Curie temperature and Bohr magneton number as these may very

rapidly with composition and can be zero for an extended composition range. However, in

order to calculate chemical potentials it is necessary to have a smooth function and thus

they are used.” Here, an assessment of an extremely important system is being knowingly

conducted with an inadequate model, as no alternative is ready.

Further, the magnetic model is well known to be inadequate at high pressures, such as

those studied in geophysics and mineral physics. Gheribi et al. [30] examined the addition

of pressure to the magnetic model and proposed a simple modification of Inden-Hillert-Jarl

by adding a few P dependent terms.

The ability of a computer algebra system such as that contained within ampl to calculate

derivatives, and the ability of optimization codes to find minimizers of complex nonlinear

13



functions seems to eliminate the need for anything but the most precise physically rep-

resentative functions. Xiong has taken some important steps in reconciling the calphad

magnetic model with current modeling needs, but further work is possible.

The framework we have developed readily allows comparison of differing models, including

ones involving functions formerly considered “difficult”, such as the pure Inden model. Rapid

prototyping of new models is simple, and this would enable a researcher in this field to find

the most physically appropriate model in a minimum of time.

Data from first-principles

In the early 20th century as the calphad approach was being developed, the first systems

examined were unary, and then later binary, phases had at most one internal degree of

freedom, all data was found by physical experiment, and phase diagrams were computed

and drawn by hand. By 1970 when the Compound Energy Formalism (cef) was clearly

explicated, the need for parameters matching end-members which could not physically exist

was obvious, however those parameters were still being found by extrapolation from stable

configurations found in physical experimental data. As ab initio methods matured, it became

possible to computationally model phases under conditions which are physically impossible.

This has allowed calphad researchers to fill in blanks in empirical data sets and has

improved the accuracy of the method.

The volume of thermodynamic research being conducted using ab initio computational

methods has grown dramatically in recent years, and is notably included in the charter of

the Materials Genome Initiative [31] under “Goal 2: Integrate Experiments, Computation,

and Theory.” The data gathered from these methods is used in parallel with data gathered

empirically for parameter-fitting in the calphad method. Further connections between the

methods have been suggested, such as a direct coupling of an ab initio model to a calphad

framework.

The most prominent first-principles method in the calphad literature is Density Functional
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Theory (dft), which models the quantum mechanical electronic structure of many-atom

systems. Direct connections between dft and calphad were already being discussed in

2009 by Liu [32], and comparisons between the results of dft calculations and calphad

calculations go back farther [33] [34]. Due to the complexity of the equations governing

interactions, the number of atoms it is possible to simulate with dft is strongly limited by

computational resources, and at present only occasionally exceeds hundreds of atoms.

A significant challenge to implementing a dft method is that the precise functionals gov-

erning exchange and correlation are not known, with the academic exception of the free

electron gas. Thus all current codes rely on approximation exchange-correlation function-

als, referred to in shorthand as xc functionals. The choice of xc functional determines much

of the accuracy of a code and its applicability to a particular need. Further, these are based

on a particular model such as the exact-muffin-tin-orbital method (emto) applied by Breidi

et al. [35] to obtain specific structural properties. There are many such choices available to

the researcher.

Many codes implementing dft exist, including abinit, quantum espresso [36], paw [37],

and vasp [38] – over 70 software packages including dft are identified today in an online

list of quantum chemistry and solid-state physics software [39]. According to Palumbo, “the

choice of the program package and thermodynamic tools is determined by criteria such as

availability and user friendliness, rather than accuracy and reliability for the specific mate-

rial system at hand” [40]. Hence, there is no single platonic ideal of dft which researchers

can turn to, but it remains the primary source of first-principles data for calphad re-

searchers at the moment.

dft was was until recently only applied to the T = 0K ground state, but now is being applied

to “finite temperatures”, meaning non-zero absolute temperature with some accuracy [41].

This is a key step in making dft data applicable to the calphad problem.

Several additional atomic methods exist. These include ab initio Monte Carlo methods and
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Molecular Dynamics which Becker et al. [17] applied to investigate liquids in the calphad

context after the 2013 Ringberg workshops [25].

First-principles methods can calculate features of materials at “regions in the temperature-

pressure-composition space where experimental data are hard or impossible to achieve, or

are simply absent” [40].

In particular, metastable phases by their very nature may not be possible to measure in

the laboratory, as they are never physically present, but having a precise estimate of their

theoretical thermodynamic features is essential to implementing the calphad method. Sig-

nificantly, the compound-energy-formalism (cef) requires that energies be provided for each

end-member in a phase, and some end-members are unstable and can never be measured

directly, while others are un-physical, e.g., a mostly-vacant four-sublattice end-member,

and can never exist. The energies are fitted as parameters using data from stable regions;

however, using ab initio methods the energy associated with any end-member can be cal-

culated directly, ideally reducing error introduced by the physical measurement and fitting

processes. This is limited by the error of the ab initio method, but tests of the accuracy of

dft have generally shown it obtains error less than that of a physical measurement process

when care is taken to select the correct dft method to apply.

Further, first-principles calculations can be used to identify possibly erroneous data gathered

by experiment, as Grabowski et al. [42] demonstrated. It is then possible to exclude such

unreliable values from thermodynamic databases.

The three excitations of a material which generate its thermodynamic properties are vibra-

tional, electronic (both discussed in [43]), and magnetic (discussed in [24]). Each of these is

modeled on a first-principles basis. Further contributions come from point defects (discussed

in [44]).

“A phonon is a discrete quantum of vibration” [45], which carries energy and “other quan-

tum numbers”, analogous to a photon being a quantized wave. These lattice vibrations are
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usually the major contributor to the enthalpy of a material [43], and a derivation of the

heat capacity from first principles is made possible by way of the phonon concept. The

precise lattice vibrations can only be calculated at the atomic level, and computationally

simulating a large enough number of atoms to correctly determine the phonon values is a

computational challenge, especially when considering quasiharmonics, second order terms

which are required explain thermal expansion, and anharmonicities, cubic terms and higher

in inter-atomic potentials. This is being tackled in unary systems today [43], with the hope

of developing a larger database as simulations speed up and researchers develop higher

throughput techniques.

Electronic contributions to free energy can be calculated in density-functional perturbation

theory (dfpt) or supercell approaches, and several software packages implementing each are

available [43]. The electronic contributions to heat capacity are important but smaller than

those of harmonic and quasiharmonic contributions, and are negligible above the Debye

temperature where all harmonic modes up to the highest frequency are excited.

Magnetic contributions are an example of a “Lambda transition”, which are discussed in

depth by Körmann et al. [24]. In a ferromagnetic material the thermal energy required to

overcome the electron exchange interactions as the Curie temperature TC is approached

becomes substantial. This results in a characteristic lambda-shaped spike in the heat ca-

pacity at TC . Calculating the required energies from first principles involves solving the

same Heisenberg-based Hamiltonians at the electron-electron interaction level, as in lattice

vibrations above. Among others, Körmann et al. [26] have been able to model many of the

important effects of magnetism using parameter-free methods.

Rogal et al. [44] review the contributions of various types of point-defects. Their effect on

ab initio calculations is straightforward, assuming a heterogeneous mix of constituents can

be modeled efficiently: an anti-site atom replaces the expected one in a lattice site, and a

vacancy is the absence of an atom in a site. Other types of defect are uncommon enough to

merit little discussion in the first-principles portion of calphad literature at this time.
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One interesting direction of research is to “store quantities such as phonon frequencies

and the electronic dos [density of states] and derive thermodynamic quantities at any

temperature, pressure and volume directly from these physical meaningful quantities. These

quantities can be obtained from first-principles, but experimental data can also be used”

[43].

Integrating ab initio models directly into calphad would be impossible due to their sub-

stantial computational expense. However, the possibility of finding analytical solutions to

Heisenberg-based model Hamiltonians is being investigated by various researchers, as well

as other promising alternative approaches relying only on first-principles data rather than

fitted parameters [24]. For example, Gheribi et al. [46] elaborate a method specific to insu-

lators for applying first-principles calculations directly within the calphad method using

alternative formulations based on physical models. Approaches such as these may allow the

calphad method to calculate its parameters from first-principles data, or rely directly on

that data, but the concept remains in its infancy.

Methods such as dft not only determine thermodynamic features such as those traditionally

included in calphad calculations, but additional features like volume, thermal expansivity,

bulk modulus, shear modulus, electrical resistivity or conductivity, thermal conductivity,

and magnetism. Basing calphad on Helmholtz energy [47], which is natural in the context

of dft, may facilitate the expansion of calphad into calculation of those other features, as

discussed at length in Section 1.4, as well as reaching beyond the typical lower temperature

limit of 298.15K, as discussed in Section 1.4.

Coupling the decades of accumulated experimental data with the results of ab initio calcu-

lations is enabling the calphad method to improve its accuracy and its reach to additional

material features. Directly applying ab initio methods within calphad is a tantalizing

possibility not yet realized.

The question of whether quantities such as phonon frequencies and electronic density of
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states are sufficient to derive thermodynamic quantities directly at any temperature, pres-

sure and volume is an interesting direction of research. The separate approach of finding

analytical solutionsto model Hamiltonians has promise of putting ab initio based methods

inside calphad. Either of these approaches has the possibility of moving calphad away

from fitted parameters with no direct physical meaning toward more physically meaningful

databases.

Extension to Additional Material Features

The calphad method was devised originally as a means of generating phase diagrams. This

necessitated calculation of free energy, which correlates directly with the calculation of heat

capacity and chemical potential. The method, however, is well suited to the calculation of

any type of quantitative material feature which can be modeled with fitted curves. With

this powerful technique in hand, researchers have recently sought to apply it to many other

features.

This extension of the method to additional properties beyond those deduced from the free

energy of phases and their driving force [13] is a topic of a substantial amount of research

and corresponding literature, and covers a wide range of different features, for example:

� atomic mobilities and diffusion [48] [49] [50] [51]

� molar volume [52] [53] [54] [55] [56]

� elastic properties [53] [55] [57]

� thermal conductivity [46]

� electrical conductivity

� interfacial energies

It is important to distinguish between using the calphad method to calculate a material

feature and coupling the output of the method with additional software or algorithms.

Here we focus on direct use of the method to determine specific quantitative values, and
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in a following section we will discuss integration of the method with other software and

algorithms. Very often the two uses overlap, and some references conflate the concepts, but

we attempt to keep them separate and provide some clarity on the distinction.

The original concept behind what is now called calphad, although as we see it provides

many benefits beyond merely “calculating phase diagrams”, was to fit parameters to the

curve representing free energy of each phase, and not to model specific physical processes.

Fitting meaningful curves has been accomplished with increasing sophistication and accu-

racy over many decades, in many cases by including more physical meaning in the model,

e.g., magnetism, order-disorder transition. However, the core concept of fitting parameters

to match a set of curves can be applied to much more than just the free energy of each

phase.

In this section we examine some efforts that have been made to expand the calphad

method in this way. There are a number of informative overviews of the subject, including

Campbell [13].

The ability of the method to reproduce measured results, or results calculated by ab inito

methods, has proven invaluable. Having this powerful tool in-hand, researchers naturally

have identified other ways it could be applied. Someone interested in how elastic properties

vary by changing the composition of a material would find this approach extremely useful

– if sufficient data has been compiled on elastic properties of the relevant elemental, binary,

and ternary systems. We do not address the very important need to collect such data before

the method can be applied in these novel ways, but it is an absolute prerequisite.

calphad is often touted as an ideal method of extrapolating features of unknown alloys.

As applied what it does is determine the equilibrium phases present in a given alloy – and

knowing the phases allows the researcher to infer physical features. Fortunately, the method

can be expanded to model more than phase energies.

An approach making use of the Helmholtz energy [47] in place of the Gibbs energy has
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proven effective at calculating thermophysical properties as well as thermodynamic ones,

and is particularly effective in low-temperature or high-pressure regimes where calphad

is notably weak. A full switch of the calphad method from Gibbs to Helmholtz energy

would entail a significant re-surveying of data on the existing thermodynamic databases.

It does, however, create a straightforward coupling between calphad and first-principles

techniques.

The most valuable calphad-based tool will be able to incorporate these additional features

and read the additional datasets as they are developed. To that end, any software tool should

be flexible in its design, and allow modification by a variety of researchers and software

developers. This implies the use of a language accessible to a wide range of people, and an

open-source project. We address open-source in particular in a later section.

The calphad method has been demonstrated at being effective and valuable in extrapo-

lating from empirical measurements of simple systems to determine the features of more

complex systems, sometimes with very high precision. Applying this technique to material

features beyond the thermodynamics at the origin of calphad is natural. While this ap-

proach has already shown important results, there remains much work to collect the relevant

data on the features of interest, and to develop and share databases of that information.

Extension to Broader Pressure and Temperature Regimes

This section on extending the practical temperature and pressure regimes in which calphad

can be applied is included as an overview of the important subject, to alert the reader to

known limitations on the calphad method, and to provide references on work being done

in the area. We do not identify a research question which we might address in this section

beyond verification that any framework we develop can handle T and P values in the

extended range.

The traditional calphad method limits itself to temperatures above 298.15K, and databases

generally restrict themselves to the range 298.15K to 6000K. If a researcher needs to predict
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features of a material at a lower temperature, those databases will not be useful.

Although the formulas for lattice stabilities (energy of end-members) allow the inclusion of

P terms, in practice they are rarely determined, instead assuming 1 atm or sometimes 100

kPa.

These limitations are not inherent to the method. Rather, they are are a result of traditional

data gathering techniques, due in part to the difficulties of measurements at high pressure

or obtaining true equilibria at low temperatures.

The most recent and thorough survey of the expansion into additional pressure and stress

regimes is Hammerschmidt et al. [58], following the 2013 Ringberg workshops [25], and

Palumbo et al. [43] includes a section on temperatures below 300K. Lu and Chen in 2009

[47] showed that using Helmholtz energy in place of Gibbs energy is an effective means of

expanding the temperature regime to 0K and the pressure regime to arbitrarily high levels,

although this is not directly compatible with the existing thermodynamic databases.

In the calphad model, magnetism and pressure are treated as independent factors. But

they are not in fact independent; after the work of Guillermet in 1987 [59] this has been

shown in separate contexts by at least Lu et al. [60], Gheribi et al. [30], and Körmann et

al. [61]. Treating them independently does limit the ultimate accuracy achievable in high

pressure regimes, but remains the de facto standard.

Many applications of the “designer alloys” envisioned by proponents of the calphad

method would be at temperatures well below 298.15K. Alloy components of a system op-

erating at very low temperatures are of interest, hence the necessary temperature range

examined must include single-digit Kelvin values. The present collection of databases does

not make this feasible.

Geophysical processes occur at very high pressures, up to 360 GPa, which is 3.6 × 106

atmospheres. Geophysicists would benefit tremendously from having calphad-type data

available, but at the present moment very few systems have been examined at these very
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high pressures.

Integrating with Other Methods and Processes

At its inception, the calphad method was devised to create hand-drawn phase diagrams,

and researchers, scientists, and industrial practitioners would refer to the diagrams in the

course of their work. Today the diagrams may still be used in that visual format, however

the quantitative data associated with the diagrams is extremely valuable when applied

computationally in processes outside of the method. This integration into other industrial

or scientific processes is an ongoing effort, with some noteworthy success stories while much

work and standardization of the practice remains to be completed.

This section covers integration of the calphad method with other methods and other

algorithms or software such as materials simulation codes, e.g., solidification simulations

[62] or phase field simulations [63]. It is important to distinguish between this integration

with outside methods and the inclusion of new features in the calphad method, such as the

calculation of mobilities, which in itself is insufficient to model diffusion without coupling

to software that can solve the relevant pdes.

Industrial processes involve calculation of different material features, including [18] [8] [13]

[9] solid diffusion (mobilities), molar volume, bulk modulus (elastic properties), electrical

resistivity, thermal conductivity, thermoelectric properties, optical properties, acoustic prop-

erties, interfacial energies, surface tension of the liquid phase, nucleation, grain boundary

diffusion, and thermal migration, among others.

Tools designed for the calculation of each of those specific features, both by continuum and

atomistic models, have been coupled to greater or lesser extent with the calphad method.

The state of the art includes improving the coupling between calculation and application of

those properties and tools applying the calphad method, and enabling researchers from

disparate fields to include the many kinds of tools within their efforts. There are active

efforts ongoing [64] to ensure interoperability in the Integrated Computational Material
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Engineering (icme) [65] setting.

“Integrating materials science, continuum mechanics and quantum physics, the systems de-

sign approach has featured a suite of validated computational tools enabled by an iterative

interaction of theory, simulation and experiment, spanning the full range of process/struc-

ture/property/performance relations,” [8] [9].

If we have reliable models for relevant thermodynamic, physical, electrical, or other prop-

erties of a material in its elemental form, in binary pairs and ternary combination, we can

hope to extrapolate to larger multicomponent systems and computationally explore the

composition space to identify materials with the necessary features for a given application.

Computational researchers identify desired features of the material and use a variety of

computational tools to model and simulate test materials before they are manufactured in

a laboratory or on the production floor. The tools include, among others, precipitation sim-

ulators, and macroscopic component-level simulation tools [8], which can be coupled with

each other to improve the speed of research.

Another example of solidification simulations being coupled with calphad is Schneider

et al. [66], where microstructures present in a final product were determined as different

heat-treatments are applied. They compared the dictra package, for simulating diffusion

reactions, [67] with Scheil simulations.

Although a long list exists of tools which may combine with calphad, specific examples

are scarce, and open-source or free code has not been found. This could be due to the

complexity of the processes which can make use of calphad, or that their profitable nature

requires industry to keep some methods as private intellectual property.

Open-Source Software

“A number of calphad software are available for the calculation of properties of multicom-

ponent systems, and the majority are commercial products.” [68] In contrast, Gibbs [28],

OpenCalphad [69], and pycalphad [70] are high quality open-source projects freely available
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under typical open-source licenses, and are focused specifically on calphad type thermo-

dynamic calculations. Other open-source projects connected with materials science include

FiPy [71] and the Virtual Kinetics of Materials Laboratory [72] incorporating it.

Additional features can be added to open-source projects, and improvements made by re-

searchers only tangentially attached to the project. For example, in 2012 Piro and Simunovic

[73] published algorithms for enhancing the calculations of thermodynamic equilibria. In the

context of open-source, they could contribute those directly to the relevant projects.

An important element of the Materials Genome [31] project is “open data” and reproducibil-

ity of results, meaning that when research is published, data is made available in a format

accessible to their peers. Open-source software speeds this process and allows all researchers

to disseminate their state-of-the-art and accelerate the overall research effort.

Open-source software delivers certain features which closed-source does not [74] [75]. We

discuss a few of these separately below.

With the source examinable by everyone, and especially by interested experts in the field,

bugs and logic errors are more likely to be found and fixed than those present in closed-

source code. The generally larger group of software developers contributing to the code

means that once a bug is identified, or an issue raised, a person is available to fix it more

quickly.

Software using proprietary data formats makes it difficult or impossible to switch to alterna-

tives without losing data, and will incur a difficult transition period. Open-source software

always makes its data formats public, and translation code between that open format and

other formats is often freely available, and can be written by anyone with access to the

second format. This means a researcher or research organization is not making a long-term

commitment to a given software stack when they begin using an open-source package.

A researcher desiring to modify code for a specific research need can readily do so with

open-source code. In contrast, it is not possible to modify closed-source code, and for-profit
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organizations often require substantial sums of money to create custom modifications –

sums well beyond the financial capacity of any but the very largest research organizations.

With open-source code, the cost is only the amount of time necessary for the research team

to make modifications to the code.

Most open-source projects are available free of charge. Contrast this to software sold for-

profit, which may cost tens of thousands of US dollars for a license. These for-profit codes

often have an academic license available for students, but these are not available to re-

searchers or have a limited time they may be used without charge.

Make a project open-source is an increasingly common decision, allowing outside researchers

to evaluate and contribute to the code, and enhances the effort from all perspectives.

Synopsis

The calphad method has demonstrated its value to a wide range of researchers and scien-

tists, and is increasing its reach well beyond its namesake “Calculation of Phase Diagrams”

to many other features of multicomponent systems. However, some old challenges to the util-

ity of the method remain incompletely addressed, and fresh challenges arise as the method

is stretched to cover new regimes, rely on new and different data sources, and treat disparate

new material features.

The incorporation of data from first-principles methods has been invaluable in improving the

accuracy and reliability of the method. Further integration and closer coupling between ab

initio method and calphad seems inevitable, although there are difficulties that stem from

the long execution times that ab initio methods require. Updating calphad parameters to

have physical meaning is another important goal which faces serious obstacles in the near

term.

Extending the temperature and pressure range in which the method can be applied is

essential for its appeal to many specific types of researcher and scientist. Geophysicists

cannot apply most calphad databases due to the absence of high pressure data.
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The calphad approach of taking measurements on simple systems and extrapolating to

multi-component systems may naturally be applied to many material features beyond the

original thermodynamic ones. This work is ongoing, but much data remains to be gathered

and validated.

The need to rapidly and reliably identify the minimizer of a system is a subject which has

received little discussion in the calphad literature, while many extraordinarily powerful

optimization techniques exist in other mathematical literature. Applying these general-

purpose techniques to the calphad problem has great potential to speed the method and

ensure its reliability without an experienced operator.

The magnetic models being used in calphad are antiquated by today’s computational

standards. There is a tremendous amount of room to test new models and achieve a better

fit to systems which the current models do not reflect accurately.

Uncertainties are present in the calphad process at all stages, but are not displayed in any

form to users of the method. This is a serious oversight which even the simplest steps could

begin to address. Challenges exist in how uncertainty data would be conveyed visually, but

many visualization options exist.
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Chapter 2: Systematic analysis of the modeling aspects in

CALPHAD

The enormous power of the calphad method relies on its ability to determine at a given,

fixed temperature, pressure, and composition: which phases exist, the Gibbs energy of each

phase, chemical potentials, and driving forces. This is can be extended even to metastable

and physically unrealistic phases when desired. This is a straightforward problem readily

solved using only basic methods in a system with few phases, especially phases with few

or no internal degrees of freedom. Indeed, in the early days of the method researchers

would plot energies by hand and use a straightedge to generate the lower convex hull of

all phases [76], from which the result would be determined graphically. As the method has

matured and become more sophisticated and as computing power increases geometrically

with time, the complexity of the models used for phases has steadily grown. For phases

modeled with several sublattices, and for systems with several or many such phases, the

computational challenge of determining the values of those internal variables which minimize

the overall energy can be considerable – even by today’s computing standards. A poorly

formulated problem and algorithm could be expected to require more computing resources

than theoretically available over the course of the next hundred years.

If a minimizer is found which is only a local minimizer, i.e., a metastable condition, while the

global minimizer produces lower overall energy, and is believed to be the global minimum,

then the result produced by the method will be incorrect and misleading.

Additionally, there are different formulations of the same problem which can be easier or

more difficult to solve. In particular, whether one explicitly calculates the energy of each

phase per mole of atoms, requiring a correction for the fraction of sites occupied by vacancy,

has an important effect on the method of solution.
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Having the means to reliably identify minimizers means the Hillert algorithm [77], while

profoundly insightful, and valuable on the slower and simpler computing platforms of the

past, is now facing competition. And yet it continues to be used both in well established

commercial software like ThermoCalc [78] and new software projects such as OpenCalphad

[69]. Modern optimization techniques can facilitate the discovery of a global minimizer, as

we do herein and in [1], and other projects such as Pandat [79] and Gibbs [28].

The meaningful results produced by the calphad method rest upon the ability to reliably

and quickly find the lowest energy configuration of a system. Software which identifies

metastable or unstable phases as if they were stable is misleading and untrustworthy. If the

researcher does not obtain repeatable, reliable and accurate results, then the method would

have little value in scenarios where much is at stake. Further, if only a highly experienced

specialist can produce good results with the method, then it lacks broad applicability outside

the relatively small field of calphad researchers.

Recent research has focused in part on high-throughput calphad methods [80] [81] [82],

as mentioned in the Materials Genome Initiative’s Objective 2.3 [31], implying a need for

extremely rapid convergence to the stable phases without direct human intervention.

Researchers developing software tools have traditionally created a model simple enough for

them to find derivatives by hand, to implement themselves even when they are not primarily

software developers, and to run quickly – even with today’s extremely fast computational

resources some researchers remain focused on streamlining code. Each of those trade-offs,

such as selecting a simpler model to facilitate analytical work and reduce development

effort, limits the potential of the framework which is ultimately developed. Hence, there is

a tremendous advantage in separating the software tools which conduct optimization from

the thermodynamic model.

In the framework we describe here, based on ampl [83], the model is entirely separate from

both the data and the wide range of solvers available to find minima [84] [85] [86]. This allows
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the researcher to focus on the structure of the model, and rely on a wide range of expertly

developed optimization solvers to conduct the difficult and often quite specialized work of

finding minima, as well as the computer algebra code within ampl which finds derivatives

automatically, similarly to the symbolic mathematics within the software package Gibbs

[28].

In such a framework models are easily and rapidly changed and compared. For example,

implementing the original Inden [4] magnetic model is straightforward in ampl, and com-

paring it to the Inden-Hillert-Jarl or the more recent Xiong modification, as well as testing

additional alternatives a researcher may have in mind, can be as easy as changing one line

in the model.

We can also take various approaches to modeling vacancies (e.g., with and without molar

correction), to finding the minimizers (the Hillert algorithm [77], or the full sum-of-phases

[1]), handling order-disorder transitions. In fact any part of the model is readily modified

to suit a researcher’s needs.

Care must still be taken to ensure functions are “smooth enough,” and that they can be

evaluated outside the feasible region. For example the entropy terms y ln y are singular at 0,

and complex for y < 0, which is handled with the typical glue function, a piecewise function,

Ent(y) :=


0 y = 0

y ln y y > 0

(2.1)

which is continuous for the feasible region y ≥ 0. For practical application we use the
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following glue function for the entropy term,

ε := 10−8 (2.2)

a :=
1

2ε
(2.3)

b := ln(ε) + 1− 2aε = ln(ε) (2.4)

c := ε ln(ε)− aε2 − bε = −1

2
ε (2.5)

Ent(y) :=


ay2 + by + c y < ε

y ln y y ≥ ε
(2.6)

which is well-defined and continuously differentiable everywhere on R. At y = 0 the glue

function differs from the exact value by 1
2ε.

Although we can prove that at equilibrium all y are positive, the glue function is neces-

sary as some optimization solvers will make use of the objective value at infeasible points,

including negative y values, as they converge toward feasibility and a minimum objective

value. The freedom to try many different models does not free the researcher from taking

proper mathematical care with the equations.

The solvers used in this research take different paths toward convergence, snopt using a

quadratic approximation at each iteration, and minos taking steps according to a quasi-

Newton direction with respect to linearized constraints. The difference in how they take

steps and converge results in some equilibria having relatively larger effective basins of

convergence with one solver and smaller with another, depending on the parameters present

in the thermodynamic database.

The calphad method determines equilibrium phases and their energy by solving the prob-

lem that follows, here using notation from Sundman [77]. For clarity some details are omitted
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here, such as the precise magnetic formulation, order-disorder transition, and multi-state

phases like the liquids of Ågren [87]. It is important to remember at all times that the G

terms that follow are functions of T and P as well as Y , however temperature and pressure

are held fixed in these examples and are omitted in the interest of space.

min
ℵ,Y

∑
α

ℵαGαM(Y α), (2.7)

subject to
∑
i

yαis = 1, ∀α, s, (2.8)

subject to
∑
α

ℵαMα
A = ÑA, ∀A, (2.9)

where Mα
A :=

∑
s

aαs y
α
A,s, ∀α, (2.10)

where GαM(Y α) :=
∑

h

Gαh
∏
i,s∈h

yαis +RT
∑
i,s

yαi,s ln yαi,s +Gαmagn(Y α) +GαE(Y α). (2.11)

Here, in Sundman’s notation, each phase is indexed by α, end-members in that phase by

h, constituents by i and separately by A, and sublattice by s. T is temperature and P is

pressure. ℵα indicates the amount of a phase, yαi,s is the fraction of constituent i on sublattice

s in phase α, and Y α represents the set of all y values for phase α. aαs is the site ratio of

sublattice s, ÑA indicates the amount of a constituent in the whole system, and Mα
A the

amount of a constituent in phase α. Gαmagn is the magnetic component of the energy.

GαE is the excess term, typically modeled by Redlich-Kister polynomials [88] as follows,

GαE =
∑
h,s,ν

[( ∏
i,t∈h

yαit

)
(yαA,s − yαB,s)ν

]
. (2.12)

Here h is an endmember, t is an index over sites and i over constituents, where s is the site

with mixing between constituents A and B of order ν.
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The standard procedure, as explicated by Sundman [77], is to put the above equations

explicitly into a Lagrangian and develop a minimization algorithm by hand.

The alternative we demonstrate herein and in [1], is to use an optimization modeling lan-

guage to represent the objective and constraints and let a software “black box” efficiently

find the solution and corresponding Lagrange multipliers. This frees the developer and re-

searcher from handling the low level software concerns in optimization, and allows them to

leverage extremely mature optimization techniques.

As examples used in this work, we look briefly at the commercial solvers snopt and minos.

snopt [84] [89] handles nonlinear objective functions with linear and nonlinear, equality

and inequality constraints. It solves successive quadratic subproblems with a merit func-

tion based on a sparse quasi-Newton approximation of the Hessian of the Lagrangian. Each

quadratic subproblem is handled by solving a sequence of linear problems from the reduced

Hessian ZTHZ, where Z is treated implicitly from LU factorization of the Jacobian, and

the working set of active constraints is updated with each minor iteration. snopt has a

well-developed set of techniques for handling infeasibility, negative curvature, and produc-

ing finite-difference estimates when derivatives are unavailable, and is well suited to large

nonlinear problems with many active constraints so that the number of degrees of freedom

remains relatively low, although the code can handle a problem of arbitrary size. By default

snopt identifies that it has converged when the complementarity gap and infeasibility have

been reduced to 10−6 or less; the values can be controlled by the user.

The solver minos (Modular In-core Nonlinear Optimization System) [86] [90] is well suited

to linear, quadratic, and general nonlinear problems and all types of constraints. minos

will use different methods to solve different classes of problems; for nonlinear problems

with nonlinear constraints, in major iterations an approximation of the problem with linear

constraints is solved using a reduced gradient method. The minor iterations use a reduced

Hessian of the augmented Lagrangian with linearized constraints and is solved with a quasi-

Newton method. Although minos was released in 1980 it remains an effective solver and is
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heavily used in academia and industry.

However, there is a benefit from working analytically with the Lagrangian, as it makes the

values of the Lagrange multipliers available for use in the equations.

2.1 Lagrangian

The Lagrangian can be written as follows

L =
∑
α

ℵαGαM(Y α)−
∑
α,s

λαs

(∑
i

yαis − 1
)
−
∑
A

µA

(∑
α

ℵαMα
A − ÑA

)
. (2.13)

Here the terms λαs and µA are Lagrange multipliers, also called dual variables, corresponding

to the two constraints: that the sum of fractions on each sublattice is unity, and that the

amount of each constituent in the system matches the specified concentration.

The solution in terms of ℵ and Y must satisfy the Karush-Kuhn-Tucker (kkt) conditions.

As this material does not appear in the relevant literature, we explore it as an appendix to

the research results chapter.

Hillert [91] showed that the µA dual variable is in fact the chemical potential for constituent

A. We prove that the Lagrange multipliers exist further below.

A wide range of methods exist for solving this problem [92]. We discussed the commercial

solvers snopt and minos above, but we must note they are equipped only for identifying a

local minimum given a certain initial starting point, or initial condition.

An effective means of finding low energy points in the configuration domain, although this

does not guarantee the very lowest, is to randomly sample the domain and take the lower

convex hull. This is the approach originally used by Gibbs [28] and pycalphad [70] [93],

and the latter has recently incorporated as a second refinement step of optimization.
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Each point is a set of consistent y values for a phase at a given temperature and pressure,

and corresponds to a single composition. Many such points are picked according to a random

or pseudo-random scheme, and the energy at each point is computed. The lower convex hull

in the composition-energy space gives an approximation to the energy curve for that phase.

The collection of energy curves for the phases in a system can be used to either generate a

lower hull directly, or as input to a common-tangent algorithm.

The difficulties of this approach include its approximate nature, and the large space of

consistent y values, sometimes requiring a very large number of points to be sampled to

achieve a reasonable density along the lower hull.

The formulation is dramatically affected by how vacancies are handled in the model. The

original model does not appear to anticipate the use of vacancies, and they were included

later as a physically important phenomenon.

The formula for computing the Gibbs free energy of a phase determines the energy per mole

of sites GM , labeled the mole formula unit, while what the researcher is interested in is the

energy per mole of atoms or constituents Gm. The two can be related by the fraction of

sites occupied by vacancies xVa:

Gm =
GM

1− xVa
. (2.14)

A few methods [1] minimize molar energy directly using Gm, while others [77] calculate

chemical potential µj for constituents j and use the relation

Gm =
∑
j

xjµj . (2.15)

Today varying approaches to point defects such as vacancies is a subject of much research,

including modeling using first-principles techniques. Rogal et al. [44] demonstrate tech-

niques to determine point defect concentrations, and how defect formation energies can be

35



formulated in various formulations.

Alternative views on how to handle vacancies exist, such as giving them a non-zero energy

[94]. This is a mathematically effective technique, but as it has no physical basis it has

not been widely adopted. Ågren and Hillert [95] discuss some of the problems that arise

when treating vacancy as a constituent, identify the unphysical high-vacancy equilibria, and

among other things propose a variable value ofGVaVa rather than Franke’s fixed values. They

state it is not possible for present software for CEF to handle varying parameters, while in

fact it is possible within our framework. Examination of this new approach is outside the

scope of this dissertation and must be left to future work.

2.2 Set-based Formulation

A variety of sources in the literature document pieces of the calphad model, however none is

comprehensive and some are contradictory. We developed our approach to minimizing Gibbs

energy, capable of handling an arbitrary number of constituents and phases with any number

of sublattices, miscibility gaps, order-disorder transitions, and magnetic contributions. Our

approach is set-based, avoiding the need to iterate explicitly through many levels of nested

loops. We have demonstrated its accuracy on a variety of systems, including Al-Pt, Co-Mo,

and Ca-Li-Na, which are known to be computationally challenging. We reproduce phase

diagrams created via Thermo-Calc, and identified areas where previously published work

may have been based on local equilibria rather than global.

The standard Gibbs energy minimization problem formulation (Model 1) described in [96],
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[97], [98] can be written as,

minf,yG =
∑

φ f
φGφ(y)

0 ≤ fφ ≤ 1 for each phase φ

0 ≤ xφe ≤ 1 for each phase-species pair (φ, e)

0 ≤ yφs,e ≤ 1 for each phase-species-sublattice triplet (φ, e, s)∑
e y

φ
s,e = 1, for each phase-sublattice pair (φ, s)∑

φ f
φxφe = f0

e , for each species e, such that
∑

e f
0
e = 1



(2.16)

Here xφe indicates the mole fraction of species e within the phase, yφs,e is the mole fraction of

species e in sublattice s within the phase, aφs is the site fraction at sublattice s in the phase,

and fφ indicates the mole fraction of the phase in the overall composition. Similarly to [96],

rather than being the subject of a constraint, xe is a function of ys,e in this implementation:

xφe :=

∑
s a

φ
s y

φ
s,e∑

c 6=Va

∑
s a

φ
s y

φ
s,c

, (2.17)

which reduces the number of variables and constraints.

In 2013 we developed a version of the calphad model in ampl, derived from a spreadsheet-

based implementation. The strict matrix-based implementation placed severe constraints on

the flexibility of the model and required a substantial software development effort for every

small change that was desired. This motivated a more flexible framework.

We developed the entirely set-based model and implemented it in ampl with an accompa-

nying Java-based database (tdb) converter. This is a constrained nonlinear problem, and

two suitable free solvers were identified (snopt and minos) and run independently at each

T, c point to test for the optimal solution.
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Motivating the set-based approach is the complexity of the many and varying number of

nested sums in Redlich-Kister polynomials for the excess energy, depending on the phases

present in the system, for a traditional indexed approach.

A phase having a single sublattice, where the standard form for excess energy xsGΦ
m is given,

e.g., in [99], as: ∑
i

∑
j>i

xixj
∑
k

kLΦ
i,j(xi − xj)k. (2.18)

Relabeling kL as kG terms, substituting x for y, and moving the inner sum to the outside,

(2.18) is written as, ∑
k

∑
i

∑
j>i

kGi,jyiyj(yi − yj)k. (2.19)

If there is mixing between two constituents in one sublattice, the formula can be written,

∑
s

∑
i

∑
j>i

∑
`

∑
m

∑
n

ys,iys,jyr,`yt,myu,n
∑
k

kLi,j:`:m:n(ys,i − ys,j)k. (2.20)

Relabeling kL as kG terms, replacing x with y, and moving the inner sum outside (2.20) is

written as,

∑
k

∑
s

∑
i

∑
j>i

∑
`

∑
m

∑
n

kGi,j:`:m:n ys,iys,jyr,`yt,myu,n(ys,i − ys,j)k. (2.21)

Two additional summations enter the formula if there is mixing at two sublattices. Other

models require more or fewer summations.

Observe that with appropriate definitions of G and y, (2.19) is identical to (2.18), and (2.20)

is identical to (2.21).

Applying this set-based framework with appropriate indices and sets, (2.19) and (2.21) is
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generalized as follows:

∑
(σ,ν)

[
νGσ

[ ∏
(s,e)

ys,e

] ∑
(sm,e0,e1)

(ysm,e0 − ysm,e1)ν

]
. (2.22)

A compound’s constituent array, first introduced in [100], denoted by σ, indicates which

constituents may be present at which sublattices, and is coupled with ν indicating mixing

order. In (2.22), σ ranges over the same constituent arrays as i, j, etc., and ν represents all

possible orders similar to the k index in (2.18)–(2.21). The tuple (s, e) defines the sublattice-

species pair and depends on the constituent array σ; while the pairing (sm, e0, e1) reflects

the sublattice and species of mixing.

The feature distinguishing (2.18) or (2.20) and (2.22) is that (2.18) or (2.20) can only be used

to model a particular fixed number of sublattices and mixing sites, while (2.22) can be used

to model arbitrarily varying sublattices and additional mixing sites. Below, we elaborate

the set based formulation, the inclusion of order-disorder and magnetic contributions, and

finally produce the general energy formula in (2.23) and (2.44).

Set Based Energy formulation

We now write out the details of the set-based formulation. In this discussion the following

notation is used: p is a particular phase, e indicates a constituent (element), and e0, e1

denote mixing constituents. σ indicates a particular constituent array, s is a sublattice, sm

indicates the sublattice where mixing is occurring with ν being the order of mixing in the

Redlich-Kister model – if there is no mixing then ν is zero. νGpσ is the Gibbs coefficient for

phase p, constituent array σ, and mixing order ν.

By use of unified index sets, a single formula can apply to an arbitrary number of sublat-

tices and any number of mixing sites per compound. These index sets are discussed below.

Before we examine those sets, we can write the energy term without disorder or magnetic
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contribution. It is distinguished from the complete energy term Gp and other similar terms

by a subscript ?,

Gp? =

∑
(σ,ν)∈S(p)

{
νGpσ

[ ∏
(s,e)∈T (p)

σ,ν

yps,e

] ∑
(sm,e0,e1)∈X(p)

σ,ν

(ypsm,e0 − y
p
sm,e1)ν

}

−R T
∑

(s,e)∈T (p)

(
a(p)
s yps,e ln yps,e

)
. (2.23)

Summation is conducted over every index from the data file, working from outer to inner

sum and product. The first sum is over each constituent array and mixing order pair (σ, ν)

for phase p. Then the product is over each sublattice and species pair (s, e) for that (p, σ, ν).

Most often ν is zero, except in first or higher order Redlich-Kister terms, where the final

sum is over all mixing site and pair of mixing species (sm, e0, e1) which exist for (p, ν, σ).

The term
∏
s,e y

p
s,e expands into a product of y values for sublattices s and species e. In the

presence of mixing in sublattice sm between species e0 and e1 the Redlich-Kister term is

[∏
s,e

yps,e

] ∑
sm,e0,e1

(ypsm,e0 − y
p
sm,e1)ν . (2.24)

In the case of a single mixed sublattice, the sum is over a single tuple. In a compound with

no mixing the sum is empty (see (5.65) in [96]).

When multiplying other terms, both the sum and product over the empty set equal one:

1 ·
∑
∅ · = 1, and 1 ·

∏
∅ · = 1. Similarly, when adding the sum or product over the empty
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set they are zero: 0 +
∑
∅ · = 0. Hence in the case of no mixing, the sum is empty and

νGpσ

[∏
s,e

yps,e

] ∑
sm,e0,e1

(ypsm,e0 − y
p
sm,e1)ν = νGpσ

[∏
s,e

yps,e

]
. (2.25)

(see (5.67) and (5.70) in [96]).

The energy for a phase will be a sum of terms like (2.24) with their respective coefficients

νGpσ, plus the entropy term. In [96] the coefficients are in the deepest part of the sum

denoted by νLij ; below they are pulled out front as νGpσ so that one unified set of coefficients

applies to mixing and non-mixing conditions equally. Each νGpσ coincides with a particular

constituent array σ and mixing order ν.

The entropy sum

−R T
∑
(s,e)

(
a(p)
s yps,e ln yps,e

)
, (2.26)

is over all existing (s, e) pairs for that phase p.

Example 1. A simple two sublattice phase; p := Al3Pt2. [1]

In the Al-Pt binary system, consider the phase which is the stoichiometric compound p :=

Al3Pt2, where the sole constituent array Al:Pt is modeled with two sublattices having site

fractions a
(p)
1 = 0.6 and a

(p)
2 = 0.4. In this case the only (σ, ν) pair is (al:pt, 0). For

this (σ, ν) pair the (s, e) pairs are (1,Al) and (2,Pt). Since there is no mixing, the set of

(sm, e0, e1) tuples is empty, and the empty product is taken to be 1. There is only one term

in the outer sum, σ = al:pt, ν = 0, hence for this phase

Gp? = 0GpAl:Pt y
p
1,Al y

p
2,Pt

−R T
(
a

(p)
1 yp1,Al ln yp1,Al + a

(p)
2 yp2,Pt ln yp2,Pt

)
(2.27)

41



Note that the coefficient 0GpAl:Pt with a preceding zero is distinct from the pure energy term

◦GpAl:Pt in the literature. The zero is superfluous in a context with no higher order mixing,

but included here for completeness.

Index Sets

Index sets are used in the sums and products in (2.23), where some sets are themselves

indexed by other sets. Define P to be the set of all phases p in the system, and E the set of

all species e in the system. Set S(p) lists as tuples (σ, ν) all constituent arrays σ in phase p

with all corresponding mixing orders ν. E.g., if a particular constituent array σ has mixing

of orders 0, 1, and 2, then S(p) will contain (σ, 0), (σ, 1), and (σ, 2), perhaps among others.

For each constituent array and order (σ, ν), each set T
(p)
σ,ν lists as tuples (s, e) all sublattices

s in the constituent array and the species e which exist in the data file at that sublattice for

that mixing order; the set T (p) lists all (s, e) pairs for the phase irrespective of compound

(it is the union of all T
(p)
σ,ν ); and for each constituent array and order (σ, ν), each set X

(p)
σ,ν

contains all mixing sublattices and the species which mix there (sm, e1, e2).

In other words,

constituent arrays of p S(p) ≡
{

(σ, ν) | (σ, ν) in p
}
, (2.28)

species sites of σ T (p)
σ,ν ≡

{
(s, e) | (s, e) in σ

}
, (2.29)

species sites of p T (p) ≡
⋃

(σ,ν)∈S(p)

T (p)
σ,ν , (2.30)

mixing sites of σ X(p)
σ,ν ≡

{
(sm, e0, e1) | (sm, e0, e1) in σ

}
. (2.31)

Example 2. A simple phase with multiple compounds; p := Laves. [1]

In the Ni-Al system the C14 LAVES phase comprises the four constituent arrays al:al,
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al:ni, ni:al, ni:ni, and has no mixing compounds. The set of (σ, ν) pairs is

S(p) =
{

(al:al, 0), (al:ni, 0), (ni:al, 0), (ni:ni, 0)
}
. (2.32)

For (al:al, 0) the set of (s, e) pairs is T
(p)
Al:Al,0 =

{
(1,Al), (2,Al)

}
, for (al:ni, 0) the (s, e)

pairs are (1,Al) and (2,Ni), and so on for the other constituent arrays. Since there is no

mixing, all the sets X
(p)
σ,ν are empty. The empty product is taken to be 1, and there are four

terms in the outer sum, so

Gp? = 0GpAl:Al y
p
1,Al y

p
2,Al + 0GpAl:Ni y

p
1,Al y

p
2,Ni

+ 0GpNi:Al y
p
1,Ni y

p
2,Al + 0GpNi:Ni y

p
1,Ni y

p
2,Ni

−R T
(
a

(p)
1 yp1,Al ln yp1,Al + a

(p)
1 yp1,Ni ln yp1,Ni

+ a
(p)
2 yp2,Al ln yp2,Al + a

(p)
2 yp2,Ni ln yp2,Ni

)
. (2.33)

Example 3. A simple phase with with mixing; p := liquid [1]

In the Co-Mo system, the liquid phase is modeled with first order mixing and com-

prises the three constituent arrays co, mo, and co,mo. The set of (σ, ν) pairs is S(p) ={
(co, 0), (mo, 0), (co,mo, 0), (co,mo, 1)

}
. The two sets of (s, e) pairs are identical: T

(p)
Co,Mo,0 =

T
(p)
Co,Mo,1 =

{
(1,Co), (1,Mo)

}
. The two sets of (sm, e0, e1) tuples are again identical: X

(p)
Co,Mo,0 =
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X
(p)
Co,Mo,1 =

{
(1,Co,Mo)

}
. There are four terms in the outer sum, so

Gp? = 0GpCo y
p
1,Co + 0GpMo y

p
1,Mo

+ 0GpCo,Mo y
p
1,Co y

p
1,Mo + 1GpCo,Mo y

p
1,Co y

p
1,Mo

(
yp1,Co − y

p
1,Mo

)
−R T

(
a

(p)
1 yp1,Co ln yp1,Co + a

(p)
1 yp1,Mo ln yp1,Mo

)
. (2.34)

Disordered Contribution

The general formula for Gp?(y
(p)) defined in (2.23) is used for modeling order-disorder tran-

sition:

G(p) = G
(p)
dis(x

(p)) +G
(p)
ord(y(p))−G(p)

ord(y(p) = x(p)), (2.35)

see (5.144) and (5.145) from [96].

First, G
(p)
ord(y(p)) = Gp?(y

(p)), so the above expression for Gp?(y
(p)) can be used “as is” for

the middle term in (2.35).

Second, replacing yps,e with x
(p)
e throughout Gp?(y

(p)) creates G
(p)
ord(y(p) = x(p)) in (2.35).

Finally, if ordered phase p has a disordered contribution from phase p̃, then replacing the

index sets from those that correspond to p with those corresponding to p̃ (as elaborated

below) and yps,e with x
(p)
e throughout Gp̃?(y

(p)) creates G
(p)
dis(x

(p)) in (2.35).

Thus a “disordered contribution” is defined, analogous but complimentary to the “ordered

contribution” in [96],

∆Gp := G
(p)
dis(x

(p))−G(p)
ord(y(p) = x(p)). (2.36)
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Using this to update (2.35),

G(p) = Gp? + ∆Gp (2.37)

More rigorously, consider the following expression using q as a dummy variable:

G
(p)
(q) =

∑
(σ,ν)∈S(q)

{
νGpσ

[ ∏
(s,e)∈T (q)

σ,ν

x(p)
e

] ∑
(sm,e0,e1)∈X(q)

σ,ν

(x(p)
e0 − x

(p)
e1 )ν

}

−R T
∑

(s,e)∈T (q)

(
a(q)
s x(p)

e lnx(p)
e

)
. (2.38)

The formula for G
(p)
(q) given in (2.38) is a modified version of the formula for Gp?(y

(p)), where

p is the phase under consideration, q is the phase providing index sets and coefficients, and

yps,e is replaced with x
(p)
e . Observe the location of q in S(q), T (q), T

(q)
σ,ν , and X

(q)
σ,ν , in contrast

with p in the coefficients νGpσ, and the replacement of y(p) variables with x(p).

The first and the third terms in (2.35) using G
(p)
(q) can be written,

G
(p)
dis = G

(p)
(p̃), (2.39)

G
(p)
ord(y(p) = x(p)) = G

(p)
(p). (2.40)

To specify the phases with disordered contributions, a set D is introduced which indicates

all disordered contributions in the system by pairs (p, p̃). Using set notation, for a phase p

this may be written as

D(p) = {(q, q̃) ∈ D | q = p}. (2.41)
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In all systems and for all phases p the set D(p) will contain zero or one pair (p, p̃). This

generic set based formulation allows summation over zero or one pairs to act as an “if”

condition,

∆Gp := G
(p)
dis −G

(p)
ord(y(p) = x(p)) =

∑
(p,p̃)∈D(p)

G
(p)
(p̃) −G

(p)
(p). (2.42)

A phase p receiving no disordered contribution does not appear in the left hand side of any

tuple in D, and in this case D(p) = ∅, and the sum over the empty set is zero. Hence the

disordered contribution received by such a phase is automatically zero: ∆Gp = 0, giving

G(p) = G
(p)
ord(y(p)) = Gp?(y

(p)).

Example 4. Al-Pt B2 with a disordered contribution from bcc. [1]

In the Al-Pt system the two-sublattice ordered B2 phase is present and receives a disordered

contribution from bcc with first order mixing.

The energy equation is

GB2 = GB2
? (y(B2)) + GB2

dis(x
(B2))− GB2

ord(y = x(B2))

= GB2
? (y(B2)) + GB2

(bcc)(x
(B2))− GB2

(B2)(y = x(B2)).

For a disordered phase such as bcc, because there is only one sublattice and no disordered

contribution, without considering a magnetic contribution, thus

Gbcc = Gbcc
? = Gbcc

dis (x(bcc)) = Gbcc
dis (y(bcc)) = Gbcc

(bcc)(y
(bcc)).

Magnetic Contribution and complete formulation
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The model for magnetic contribution used here is given in full generality in [21], and applied,

e.g., in [97] for Co-Mo using specific calculated values,

G(p)
mag = R T ln(β(p) + 1) g(τ). (2.43)

See [21] for detail on β, g(·), and τ .

Including the disordered and magnetic contribution as defined above, the complete formula

is

G(p) = G
(p)
? + ∆Gp +G(p)

mag. (2.44)

where G
(p)
? is defined in (2.23), and ∆Gp in (2.42).

Using the modeled Gibbs energy for each phase G(p), the total Gibbs energy function to be

minimized is

G =
∑
p∈P

G(p)f (p), (2.45)

where f (p) indicates the mole fraction of the phase in the overall composition.

Miscibility gap handling

Where the energy curve of a stable phase is concave down, it is called a miscibility gap, see

Figure 2.1. This means the lowest stable energy for that phase is a linear combination of

two (or more for multicomponent systems) points at distinct composition values. This for-

mulation automatically includes multiple instances for each phase, one for each constituent

in the phase including vacancies. This is the maximum possible present at equilibrium due

to Gibbs’ phase rule. In this manner they will span any possible miscibility gap. If no mis-

cibility gap is present then the two instances will coincide, or one or more of them will have

an f value of zero. While other approaches to managing miscibility gaps are well represnted

in the literature, the automatic creation of multiple instances is not found in the literature

and we believe it represents a novel contribution to the state of the art.
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Figure 2.1: Energy curve for a notional phase with a miscibility gap (a). By including two
instances for the phase, the miscibility gap is automatically spanned by a linear combination
of two compositions of that phase (b), as occurs in physical materials at thermodynamic
equiblibrium.

2.3 Two Models

Model 1 Variables and Formulation

φ is a single phase in the system.

e is a physical constituent of the system (“element”).

s is a sublattice in a phase.

yφe,s ∈ [0, 1] is the variable constituent fraction of e on sublattice s of phase φ.

Gφ(y) ∈ R, the energy of phase φ with composition y, is detailed further below.

fφ ≥ 0 is the variable fraction of the system that is phase φ.

F 0
e ≥ 0 is the specified composition of the system.
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min
f,y

∑
φ f

φGφ(y)∑
φ f

φξφe = F 0
e , ∀ constituent e∑

e y
φ
e,s = 1, ∀ phase-sublattice pair (φ, s)

0 ≤ fφ ∀ phase φ

0 ≤ yφe,s ∀ triplet (φ, e, s)

(2.46)

where aφs is the site ratio of sublattice s in phase φ, and

ξφe :=

∑
s a

φ
s y

φ
e,s∑

c

∑
s a

φ
s y

φ
c,s

(2.47)

is the real fraction of phase φ which is constituent e.

Energy Formulation

Energy of a single phase has four components

G(T, P, Y ) =Gentropy(T, P, Y ) (2.48)

+GCEF(T, P, Y ) (2.49)

+Gmagnetic(T, P, Y ) (2.50)

+Gdisorder(T, P, Y ) (2.51)

Configurational entropy is standard in the literature,

Gentropy(T, P, Y ) = −RT
∑
ij

yij ln yij (2.52)
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The magnetic and disorder/ordered contributions are also standard from the literature,

however are formulated using the set definitions which follow.

Using a set-based approach with the appropriate indices and index sets, the Compound

Energy Formalism can be fully generalized as follows:

GCEF(T, P, Y ) =
∑

(σ,ν)∈Sφ

[
νGφσ

[ ∏
(s,e)∈Tφσ,ν

ys,e

] ∑
(sm,e0,e1)∈Xφ

σ,ν

(ysm,e0 − ysm,e1)ν

]
. (2.53)

The flexibility comes from the definition of the sets, which are are extracted from the

configuration file: constituent arrays of φ, Sφ ≡
{

(σ, ν) | (σ, ν) in φ
}

, species sites of σ,

T φσ,ν ≡
{

(s, e) | (s, e) in σ
}

, species sites of p, T φ ≡
⋃

(σ,ν)∈Sφ T
φ
σ,ν , mixing sites of σ, Xφ

σ,ν ≡{
(sm, e0, e1) | (sm, e0, e1) in σ

}
, and disordered contributions, Dφ ≡

{
(q, q̃) ∈ D | q = φ

}
.

Model 2 Formulation and Variables

Model 2 treats vacancies explicitly, with differences from Model 1 highlighted in red,

min
f,y

∑
φ f

φ G
φ(y)

1−ξφVa∑
φ f

φxφe = F 0
e , ∀ constituent e∑

e y
φ
e,s = 1, ∀ phase-sublattice pair (φ, s)

0 ≤ fφ ∀ phase φ

0 ≤ yφe,s ∀ triplet (φ, e, s)

(2.54)

where aφs is the site ratio of sublattice s in phase φ, and

xφe :=

∑
s a

φ
s y

φ
e,s∑

c6=Va

∑
s a

φ
s y

φ
c,s

(2.55)
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is the real fraction of phase φ which is constituent e. The portions of Model 2 which are

different from Model 1 have been highlighted in red.

Models 1 and 2 are provably equivalent at equilibrium but alter the composition space away

from equilibrium. This change affects the performance of nonlinear solvers, discussed further

below.

2.4 Computational Framework

In this framework, the model is completely separated from the data, and any number of

systems can share the same model file. For each system being investigated, the converter

generates the necessary data files. The model comprises 100 statements across fewer than

200 (non-empty) lines of ampl code.

The model contains definitions of the data structures, the objective function, and the con-

straints.

The converter parses a Thermocalc [101] tdb database [16] into the necessary ampl data

format. Figure 2.2 depicts the information flow, and the components of the process. Java

was selected as the language for development of the converter in 2013 to enable maximum

portability and maintainability by diverse researchers in the field. Since that time Python

has eclipsed Java in its widespread use, but the converter has not needed to be rewritten.

The data file is produced by the converter from information in the thermodynamic database

(tdb) being examined. It contains data on the 1) elements/species; 2) phases; 3) sublattices

and their order of mixing; 4) symmetries; 5) disordered contributions; 6) site fractions; 7)

magnetic coefficients; 8) multiplicity of phases (to cover miscibility gaps); and 9) parameters

for each named formula in the tdb. The data file is read once by ampl, after reading the

model file.

The parameter file contains temperature dependent information, and fixes parameter values
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Figure 2.2: Information flow through the framework.

with let statements. It must be read once for each temperature row being examined. The

possibility of making these parameter values computed functions which change when the

parameter T changes exists, but it is not possible with the current implementation of ampl.

The proof-of-concept mapper for a binary phase diagram follows the algorithm shown in

2.3.

Although ampl is a modeling language, it has enough procedural features to allow de-

velopment of a “script” that iterates through a specified temperature range, and at each

temperature across the composition from 0 to 1. At each T, c point the script solves the

problem several times with random initial conditions (the number of trials is configurable)

and selects the lowest obtained value at that point. The set of all the obtained lowest values

is stored in a csv file for later depiction by a separate plotting mechanism.

An improved algorithm was developed for collecting data points for a binary phase diagram,

which begins at a low temperature (300K), in the middle of the composition, and traces

the monophasic lines upward in T and tracks topological changes and un-tested regions as

it proceeds. It maintains the set of all T, c areas yet to be explored and works until the

necessary diagram data has been accumulated. This has the advantage of being able to

make direct use of nearby optimal solutions as initial conditions for this current test point,

and enabled a 10x or greater improvement in speed.

52



1: function mapper()
2: load model as P (x, T )
3: load system data
4: T ← Tmin

5: x← 0
6: while T ≤ Tmax do
7: load system parameters
8: while x ≤ 1.0 do
9: calculate P (x, T )

10: if card
(
P (x, T )

)
= 2 then

11: mark xupper and xlower on diagram
12: x← xupper + ∆x

13: else
14: x← x+ ∆x

15: end if
16: end while
17: T ← T + ∆T

18: end while
19: end function

Figure 2.3: Mapping Algorithm [1]. P (x, T ): the set of phases present at composition x and
temperature T . card(P) indicates the cardinality of P (always 1 or 2 in this idealized
context). When there are two phases present, one has composition xlower and the other
xupper, where xlower ≤ xupper.

The tracer algorithm was never fully debugged and has remained in a state of near-

completion for some time. The complexities of tracking the un-searched area of the T, c

space requires careful examination, and other improvements are possible.

An algorithm for mapping the points in a Gibbs triangle at fixed T and P was developed

in an ampl script. It takes the trivial approach of testing every composition point in the

triangle with a fixed number of random initial conditions, and recording the lowest result

at each point. Many improvements are possible.

A matlab script to plot the binary diagram information was created and used for our 2015

paper [1]. This has since been superseded by a python script.

Our paper on the ampl framework was accepted in late 2014 and published in 2015 [1], de-

tailing the set-based concept and its advantages. It included the analysis of several systems,
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including the detection of errors in a prior publication on the Al-Pt system.

The first approach to mapping phase energy in a binary system at fixed T and P is to

test each composition point with many random initial conditions and a single fixed phase

present. This is inefficient and time consuming. The resulting information is stored in a csv

for later plotting.

The phase energy plotter was developed in python. (Earlier, ad-hoc plotting of phase ener-

gies was performed in matlab.)

A second approach to mapping phase energy was developed based on the “scatter” algorithm

in Gibbs and later in pycalphad: for each phase, a large number of feasible Y values each

have their energy computed, which requires no optimization step, and then the lower hull

if the c,G space is calculated. A later refinement is to track the lower hull within ampl

as the iteration over random values proceeds. This gives a very good approximation to

the energy curve, adequate for most needs, and is very fast when compared to the earlier

implementation.

2.5 Existence of the Lagrange Multipliers

Define

vφ = (fφ, yφj1,e1 , y
φ
j1,e2

, · · · , yφjm,en). (2.56)

which includes the fφ scalar and all the yφj,e scalars for phase φ. And

v = (vφ1 ,vφ2 , · · · ,vφn). (2.57)
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The constraints are,

fT(AY I0)T − nT = 0, (2.58)

Y 1− 1 = 0, (2.59)

f ≥ 0. (2.60)

The vector in the Jacobian for the composition constraint (2.58) for constituent e with

respect to v is, (
ξφ1e ,

aφ1j1∑
i a
φ1
i

fφ1 , 0, · · · , 0,
aφ1j2∑
i a
φ1
i

fφ1 , 0, · · ·

)
(2.61)

where the first entry in in the position corresponding to fφ1 and the other nonzero entries

for phase φ1 are in positions corresponding to the subscript e in yj1,e, matching that this

is the composition constraint for element e. Every position in v corresponding to an f has

a nonzero entry, as does every position corresponding to a y value for constituent e. Every

constituent e has such a row in the Jacobian.

The vector in the Jacobian for the sublattice unity constraint (2.59) for sublattice j is,

(0, 1, 1, 1, 0, 0, · · · ) (2.62)

where there is a 1 in each y location for sublattice j of phase φ, and there is one constraint for

each sublattice in each phase. The notional example above with three ones would correspond

to a sublattice where three constituents could be present.

For a phase φ where fφ = 0 the non-negativity constraint (2.60) is active and the row is

present in the Jacobian with a single nonzero entry of 1 corresponding to the position of fφ

in v,

(1, 0, 0, · · · ) (2.63)
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To conserve space on the page, define an explicit fraction for each site ratio by, e.g.,

aφ1j2 =
aφ1j2∑
i a
φ1
i

. (2.64)

This gives us a Jacobian matrix, J =



ξφ1
e1 aφ1

j1
fφ1 0 0 · · · aφ1

j2
fφ1 0 0 · · · ξφ2

e1 aφ2

j1
fφ2 0 0 · · · aφ2

j2
fφ2 0 · · ·

ξφ1
e2 0 aφ1

j1
fφ1 0 · · · 0 aφ1

j2
fφ1 0 · · · ξφ2

e2 0 aφ2

j1
fφ2 0 · · · 0 aφ2

j2
fφ2 · · ·

...
...

...
...

. . .
...

...
...

. . .
...

...
...

...
. . .

...
...

. . .

0 1 1 1 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · ·

0 0 0 0 · · · 1 1 1 · · · 0 0 0 0 · · · 0 0 · · ·

0 0 0 0 · · · 0 0 0 · · · 0 1 1 1 · · · 0 0 · · ·

0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 1 1 · · ·
...

...
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
. . .


(2.65)

For a phase where fφ = 0, meaning the inequality constraint fφ ≥ 0 is active, has a row

with a single nonzero entry in the row corresponding to fφ.
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The matrix J is full rank, and can be reduced by elementary row operations to

J ′ =



1 0 k11 k12 · · · 0 k13 k14 · · · 0 0 k15 k16 · · · 0 k17 · · ·

0 0 k21 k22 · · · 0 k23 k24 · · · 1 0 k25 k26 · · · 0 k27 · · ·
...

...
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
. . .

0 1 1 1 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · ·

0 0 0 0 · · · 1 1 1 · · · 0 0 0 0 · · · 0 0 · · ·

0 0 0 0 · · · 0 0 0 · · · 0 1 1 1 · · · 0 0 · · ·

0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 1 1 · · ·
...

...
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
. . .



(2.66)

The circled entries indicate the dependent variables for determining the null space; there is

exactly one per row.

Since the Jacobian is full rank, the constraints are linearly independent, and the licq

condition is satisfied.

The proof for the Molar formulation is analogous with x in place of ξ.

2.6 Existence of Feasible Point

At every temperature T and pressure P to be considered, a well-constructed thermodynamic

database must have at least one phase φ0 with y-values capable of attaining xφ0e = 0 for

each e, and at least one phase φ1 with y-values capable of attaining xφ1e = 1 for each e.

They may be the same phase, or distinct phases. If they are the same phase, then consider

two instances of that phase as distinct phases in what follows.

If two such phases do not exist, then there will exist some composition where no phase

can be present, a physical impossibility. (Special-purpose databases covering only a portion
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of the composition space are a theoretical possibility, but we are not aware of any in the

literature, and in those cases the lower or upper bound should be changed from 0 or 1

respectively to a value suited to the special-purpose database.)

Lemma 2.1. Feasible Point in Binary System Given ne at a temperature T and pres-

sure P suited to the thermodynamic database, φ0 with feasible y-values such that xφ0e ≤ ne,

and φ1 with feasible y-values such that ne ≤ xφ1e , then there exist 0 ≤ fφ0 and 0 ≤ fφ1 such

that

fφ0xφ0e + fφ1xφ1e = ne. (2.67)

Proof. Let

a = ne − xφ0e , (2.68)

b = xφ1e − ne, (2.69)

fφ0 =
b

a+ b
, (2.70)

fφ1 =
a

a+ b
. (2.71)

Then,

fφ0xφ0e + fφ1xφ1e =
b

a+ b
(ne − a) +

a

a+ b
(ne + b) (2.72)

= ne. (2.73)

This demonstrates the existence of a feasible point for every temperature, pressure, and
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composition a binary database covers. It is extended to higher order systems in the next

lemma.

There are two complementary assumptions about
∑

e ne that can be made in specifying a

composition,

1.
∑

e ne = 1

2.
∑

e ne is entirely free

If we allow the sum to be free, then
∑

i f
φi must also be free. This presents no theoretical or

practical obstacle, and is often the case in software packages and descriptions of algorithms

in the literature. As above, we continue below with no restriction on
∑

e ne.

Lemma 2.2. Feasible Point in a Multi-Component System For any specified vector

n of composition values ne, where 0 ≤ ne ≤ 1, at a temperature T and pressure P suited to

the thermodynamic database, there exist 0 ≤ fφi ≤ 1 such that

∑
i

fφixφie = ne, ∀e. (2.74)

Proof. For each e there must exist at least one phase φe with y-values such that xφee = 1

and all other xφed = 0. If not, then the thermodynamic database is incompletely defined for

that temperature T and pressure P .

Pick a set of phases P such that for each phase e there is exactly one phase satisfying the

above condition.

Let

fφe = ne. (2.75)
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Then

∑
d

fφdxφdd = xφe . (2.76)

Thus a feasible point exists.

2.7 Existence of a KKT Point

It is possible to define a thermodynamic database that has no stationary points, hence no

equilibria. Such a database would have no physical meaning, and would not be a well-formed

database. In any database relevant to materials science, each phase will have at least one

minimum with respect to y-values, at least one phase φ0 capable of attaining xφ0e = 0 and

at least one phase capable of attaining xφ1e = 1 for each e, each well-defined and with finite

energy at those points.

These assumptions alone are insufficient to prove the existence of a stationary point for

any given ne: the existence of y-values achieving a certain composition does not rule out

different Y values at that composition with negative-infinite energy.

From Lemmas 2.1 and 2.2 we have the existence of a feasible point satisfying the constraints.

Since we are given a feasible point, if we assume each gφ(Y ) is continuous, then the existence

of a minimum on the compact domain fφ ∈ [0, 1], yφj,e ∈ [0, 1] is given by the Extreme Value

Theorem.

However 1

xφnv
gφ(Y ) is not continuous where xnv = 0.

By excluding these points with the non-vacancy constraint, then we again have a continuous

function on a compact domain, with continuous constraints, hence a minimum is guaranteed

to exist. Since the constraints are linearly independent, we have satisfied the requirements
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for the existence of the Lagrange multipliers and a Karush-Kunn-Tucker point.

2.8 Equivalence of Models

2.8.1 Karush-Kunn-Tucker conditions for two formulations

In an optimization problem, the Karush-Kunn-Tucker (kkt) conditions are satisfied at

stationary points, and correspond to the first-order necessary conditions.

The second-order sufficient conditions are satisfied at local minima.

We define the parameters, variables, functions, and equations for the problem, then state

the kkt conditions with those definitions, and prove the two models are equivalent with

respect to points where the kkt conditions are satisfied.

As indices we use φ for phase, j for sublattice, and e for constituent (element) in the system.

There are l total sublattices across all phases, m phases, and n constituents.

Variables in the system are Y , discussed immediately below, and f ∈ Rm the vector of

phase fractions.

Parameters in the system are A ∈ Rm×l the matrix of site site ratios, g(Y ) ∈ Rm the vector

of Gibbs energies of the phases as a function of variable Y , n ∈ Rm the vector specifying the

composition of the system, µ ∈ Rm, λ ∈ Rl, and ν ∈ Rm vectors of Lagrange multipliers,

and 1 ∈ Rm a vector of all ones.

Each sublattice j of a phase φ has a variable yφj,e for each constituent e which can occur there.

We can also consider fixed value yφj,e ≡ 0 exist for constituents e which cannot occur on

sublattice j (for the entropy function over these fixed zeros we must also declare 0 ln 0 = 0).

In a computer algebra system these values are typically stored in a data structure adapted

to sparse data and not as matrices or fixed n-dimensional arrays. Here we represent the
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complete set of yφj,e values as Y , which for formal manipulations can be envisioned as a

3-dimensional array, one dimension for each of φ, j, and e, or as a 2-dimensional matrix

where j implicitly indicates the phase as well as sublattice, i.e., if across all phases there

are l sublattices, each phase will only have a small contiguous subset of them and no two

phases share a sublattice.

Y occurs in all following expressions in one of three ways: as a variable for a function, e.g.,

g(Y ); as AY where A are the site ratios; or as Y 1 indicating the sum of all values on a

single sublattice, e.g.,
∑

e y
φ
j,e. Each parameter in A is aφj and (AY )φe = ξφe =

∑
j a

φ
j y

φ
j,e for

each φ and e. Similarly in the molar formulation xφe = 1
rφ(Y )

∑
j a

φ
j y

φ
j,e.

Given that the y values can be stored or arranged in a variety of ways, for the purposes of

formal manipulations below it is always true that (AY ) ∈ Rm×n is the matrix of ξφe values

and xφe = 1
rφ(Y )

ξφe .

In the molar formulation the non-vacancy fraction of phase φ is,

rφ(Y ) =

∑
e6=Va

∑
j a

φ
j y

φ
j,e∑

e

∑
j a

φ
j y

φ
j,e

, (2.77)

and to conserve space we define

R(Y ) ≡



1
rφ0 (Y )

0 · · · 0

0 1
rφ1 (Y )

· · · 0

...
...

. . .
...

0 0 · · · 1
rφm (Y )


. (2.78)

Because the summation that defines rφ(Y ) includes all non-vacancy y values for a phase

in the numerator, the only case where rφ(Y ) = 0 is when phase φ is entirely vacant. As
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discussed in the vacancy portion of this dissertation, we bound the variables away from that

unphysical condition. Hence each rφ(Y ) is strictly greater than zero, and it follows that as

a diagonal matrix with positive entries, R(Y ) is always invertible.

AY is the matrix of ξ values for each phase and constituent, arranged so that a column of

AY corresponds to a phase and a row of AY corresponds to a constituent. Similarly the

matrix of x values in the molar formulation is X = AY R(Y ). For this proof we do not need

to know how R is calculated, only that it is a function of Y . For the Molar formulation

we use f̃ in place of f to indicate the phase fraction, and ν̃ in place of ν as a Lagrange

multiplier.

We choose to construct AY so that vacancy is the last column, and for the composition

constraint we define a matrix that removes that last column since there is no specified value

of vacancy as a constituent in a system,

I0 =



1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

0 0 · · · 0


.

Hillert formulation
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The Hillert formulation written as an optimization problem:

min
f ,Y

fTg(Y ), (2.79)

s.t. fT(AY I0)T = nT, (2.80)

s.t. Y 1 = 1, (2.81)

s.t. yφe,j ∈ [0, 1], ∀φ, e, j, (2.82)

s.t. fφ ≥ 0, ∀φ. (2.83)

Due to the entropy term −RTy ln y in g(Y ), and the requirement from (2.81) that
∑

e y
φ
e,j =

1, if any yφe,j = 0 or yφe,j = 1, then the derivative gφ(Y ) is infinite, hence at equilibrium

0 < yφe,j < 1 for all φ, e, and j, and the construction of the Lagrangian can be limited

to constraints (2.80) and (2.81), and (2.83), (µ is used here as the Lagrange multiplier for

(2.80) to coincide with its widespread use in the literature as chemical potential),

LH = fTg(Y )−
(
fT(AY I0)T − nT

)
µ− (Y 1− 1)λ− fTν. (2.84)

First-Order Necessary Conditions

The first-order necessary conditions for an equilibrium, the Karush-Kunn-Tucker (kkt)

conditions, are that (a) the partials of L with respect to the primary variables Y and f are

equal to zero,

∇Y LH = fT∇Y g(Y )− fT∇Y (AY I0)Tµ−∇Y (Y 1)λ = 0, (2.85)

∇fLH = g(Y )− (AY I0)Tµ− ν = 0, (2.86)
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that (b) the constraints are satisfied, that (c) the Lagrange multiplier ν on the inequality

constraint fφ ≥ 0 is non-negative, i.e., νφ ≥ 0 for all φ, and that (d) complementarity exists

for every constraint, i.e.,

(
fT(AY I0)T − nT

)
µ = 0, (2.87)

(Y 1− 1)λ = 0, (2.88)

fTν = 0. (2.89)

Molar formulation

The molar formulation of the Calphad problem written as an optimization problem, using

f̃ and ν̃ in place of f and ν:

min
f̃ ,Y

f̃TR(Y )g(Y ), (2.90)

s.t. f̃T(AY I0R(Y ))T = nT, (2.91)

s.t. Y 1 = 1, (2.92)

s.t. yφe,j ∈ [0, 1], ∀φ, e, j, (2.93)

s.t. f̃φ ≥ 0, ∀φ. (2.94)

As in the Hillert formulation the construction of the Lagrangian of the molar formulation

is limited to constraints (2.91) and (2.92), and (2.94),

LM = f̃TR(Y )g(Y )−
(
f̃T
(
AY R(Y )

)T − nT
)
µ− (Y 1− 1)λ− f̃Tν̃. (2.95)
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The partials with respect to Y and f̃ are

∇Y LM = f̃TR(Y )∇Y g(Y ) + f̃T∇YR(Y )g(Y )

− f̃TR(Y )∇Y (AY I0)Tµ− f̃T∇YR(Y )(AY I0)Tµ−∇Y (Y 1)λ = 0, (2.96)

∇f̃LM = R(Y )g(Y )−R(Y )(AY I0)Tµ− ν̃ = 0. (2.97)

One-to-one correspondence of KKT points

A fundamental relationship between the two formulations is R(Y )f̃ = f and ν̃ = R(Y )ν,

and we frequently use that substitution below.

The first lemma addresses the complementarity conditions for the composition constraint,

(2.80) in the Hillert formulation and (2.91) in the Molar formulation.

Lemma 2.3. fTν = 0 if and only if f̃Tν̃ = 0.

Proof. Since R(Y ) is a diagonal matrix with positive entries its inverse R−1(Y ) exists and

R(Y )T = R(Y ), so ν̃ = R(Y )ν is equivalent to R−1(Y )ν̃ = ν. Substituting R(Y )f̃ = f

and R−1(Y )ν̃ = ν,

fTν = (R(Y )f̃)TR−1(Y )ν̃ = f̃TR(Y )R−1(Y )ν̃ = f̃Tν̃. (2.98)

Lemma 2.4. (2.86) is true if and only if (2.97) is true.

Proof. Substitute ν̃ = R(Y )ν into (2.97). Since R(Y ) is a diagonal matrix with positive

entries, (2.86) is equivalent to (2.97).

Lemma 2.5. Every kkt point in the Hillert formulation is a kkt point in the Molar
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formulation

Proof. Assume Y,f is a kkt point of the Hillert formulation, hence (2.85) and (2.86) hold.

From (2.85) we have fT∇Y g(Y )− fT∇Y (AY I0)Tµ−∇Y (Y 1)λ = 0. Substituting f̃R(Y )

for f this coincides with three of the terms in (2.96), leaving this to prove:

f̃T∇YR(Y )g(Y )− f̃T∇YR(Y )(AY I0)Tµ = 0. (2.99)

By assumption, (2.86): g(Y )−(AY I0)Tµ−ν = 0. By left-multiplying (2.86) with f̃T∇YR(Y )

we have

f̃T∇YR(Y )g(Y )− f̃T∇YR(Y )(AY I0)Tµ− f̃T∇YR(Y )ν = 0. (2.100)

The first two terms coincide with (2.99). We show the last term is zero, by substituting

fTR−1(Y ) = f̃T,

fTR−1(Y )∇YR(Y )ν. (2.101)

We can avoid the technical details of multidimensional array multiplication by examining

the derivative term by term:

∂

∂yφe,j
R(Y ) (2.102)

is an n×n matrix with only a single nonzero entry, in a diagonal position. Substituting this

into (2.101), and knowing R−1(Y ) is a diagonal matrix,

fT
(
R−1(Y )

∂

∂yφe,j
R(Y )

)
ν, (2.103)

the middle factor inside parentheses is a matrix with a single nonzero entry which is on the

diagonal. We have assumed the point Y,f satisfies the kkt conditions for the Hillert for-

mulation, hence f and ν are complementary: fφνφ = 0 for all φ. Let B = R−1(Y ) ∂

∂yφe,j
R(Y )
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and k, k be the position of its nonzero entry. Then

fTBν = fkbk,kν
k = 0, (2.104)

hence (2.101) is an l ×m matrix of all zeros, thus (2.99) is zero, and so (2.96) is zero. We

conclude a point satisfying the kkt conditions in the Hillert formulation always satisfies

them in the Molar formulation with the relationships R(Y )f̃ = f and ν̃ = R(Y )ν.

Lemma 2.6. Every kkt point in the Molar formulation is a kkt point in the Hillert

formulation

Proof. Assume Y, f̃ is a kkt point of the Hillert formulation, hence (2.96) and (2.97) hold

and we seek to show this implies (2.85), fT∇Y g(Y ) − fT∇Y (AY I0)Tµ − ∇Y (Y 1)λ = 0,

and (2.86), g(Y ) − (AY I0)Tµ − ν = 0. From Lemma 2.4 we have that (2.97) ⇔ (2.86).

Left-multiply (2.86) by f̃T∇YR(Y ) and substitute R−1(Y )ν̃ = ν to find

f̃T∇YR(Y )g(Y )− f̃T∇YR(Y )(AY I0)Tµ− f̃T∇YR(Y )R−1(Y )ν̃ = 0. (2.105)

As in Lemma 2.5, by complementarity of f̃ and ν̃ we see the last term is zero, and by

subtracting the remaining terms from (2.96) we have

f̃TR(Y )∇Y g(Y )− f̃TR(Y )∇Y (AY I0)Tµ−∇Y (Y 1)λ = 0. (2.106)

Substitute fT = f̃TR(Y ) and we have shown (2.85).

Theorem 2.7. A point Y,f in the Hillert formulation is a kkt point if and only if the

corresponding point Y, f̃ in the Molar formulation is a kkt point.

Proof. This follows directly from Lemmas 2.5 and 2.6.
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Theorem 2.8. The objective value of Gibbs free energy at a kkt point Y,f in the Hillert

formulation is equal to the objective value at the corresponding kkt point Y, f̃ in the Molar

formulation.

Proof. The objective in the Hillert formulation is

fTg(Y ) (2.107)

and the objective in the Molar formulation is

f̃TR(Y )g(Y ). (2.108)

Since R(Y )f̃ = f , by substitution the result follows.

2.8.2 Second-Order Conditions at KKT points

If the objective was bounded below, equivalence of kkt points would be sufficient to con-

clude the global equilibrium is identical in both formulations. However, we have shown in

this dissertation that the objective is not guaranteed to be bounded below. Thermodynamic

databases exist, such as Al-Pt, where a phase with vacancy requires an artificial constraint

to prevent the objective from running to arbitrarily large negative values.

Due to the complexity of representing the higher dimension objects which result from mul-

tiple derivatives with respect to variables which are two or three dimensional arrays, we

look at partials with respect to individual scalar variables yφj,e and fφ.

In this section to reduce the amount of notation necessary we will use

ξφe =
∑
j

aφj y
φ
j,e (2.109)
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and

ξφ
T

=

( ∑
j a

φ
j y

φ
j,e1

, · · · ,
∑

j a
φ
j y

φ
j,en−1

)
, (2.110)

which excludes Vacancy if it exists as a constituent of the system. Note that

(
ξφ1 , · · · , ξφm

)
= AY I0, (2.111)

a term which appeared frequently in the preceding sections. So ξφ corresponds one column

of AY I0. (The alternative notation (AY I0)φ is possible in place of ξφ.)

Scalar Second Derivatives of the Hillert Formulation

To help speed comprehension and for ease of reference in proofs below, groups of terms in

the following equations are labeled and color coded.

As above, the Lagrangian for the Hillert formulation is

LH = fTg(Y )−
(
fT(AY I0)T − nT

)
µ− (Y 1− 1)λ− fTν, (2.84)

and the partials with respect to scalars are

∂

∂fφ
LH = gφ(Y )− ξφTµ− νφ︸ ︷︷ ︸

(AH)

, (2.112)

and

∂

∂yφj,e
LH = fφ

∂

∂yφj,e
gφ(Y )− fφaφj µe − λj︸ ︷︷ ︸

(BH)

. (2.113)
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The three second derivatives with respect to scalars are

∂2

∂fφ
2LH = 0, (2.114)

∂2

∂yφ1j,e∂f
φ2
LH =


0 φ1 6= φ2,

∂

∂yφj,e
gφ(Y )− aφj µe︸ ︷︷ ︸

(CH)

φ1 = φ2, (2.115)

and

∂2

∂yφ1j,1,e1∂y
φ2
j2,e2

LH =


0 φ1 6= φ2,

fφ1 ∂2

∂y
φ1
j1,e1

∂y
φ2
j2,e2

gφ1(Y ) φ1 = φ2.

(2.116)

Knowing that these terms are 0 when φ1 and φ2 don’t agree, we improve legibility by

writing, e.g.,

∂2

∂yφ1∂y
φ
2

LH = fφ
∂2

∂yφ1∂y
φ
2

gφ(Y )︸ ︷︷ ︸
(OM )

. (2.117)

Scalar Second Derivatives of the Molar Formulation

The Lagrangian of the Molar formulation from above is

LM = f̃TR(Y )g(Y )−
(
f̃T
(
AY R(Y )

)T − nT
)
µ− (Y 1− 1)λ− f̃Tν̃. (2.95)
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The partials with respect to scalars are

∂

∂f̃φ
LM =

1

rφ(Y )
gφ(Y )− 1

rφ(Y )
ξφ

T
µ− ν̃φ︸ ︷︷ ︸

(AM )

, (2.118)

and

∂

∂yφ1
LM =

f̃φ
1

rφ(Y )

∂

∂yφ1
gφ(Y )− f̃φ 1

rφ(Y )
aφj µe − λj︸ ︷︷ ︸

(B1M )

+ f̃φ
∂

∂yφ1

1

rφ(Y )
gφ(Y )− f̃φ ∂

∂yφ1

1

rφ(Y )
ξφ

T
µ︸ ︷︷ ︸

(A1M )

. (2.119)

The second derivatives have many more terms than in the Hillert formulation, and as above

if φ1 6= φ2 they are zero, so we assume the second derivative is with respect to two variables

with the same φ, and we replace the j, e subscripts yφj1,e1 with yφ1 and the corresponding

aφ1 = aφj1 and µ1 = µe1 ,

∂2

∂f̃φ1∂f̃φ2
LM = 0, (2.120)
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∂2

∂f̃φ∂yφ1
LM =

∂

∂yφ1

1

rφ(Y )
gφ(Y )− ∂

∂yφ1

1

rφ(Y )
ξφ

T
µ︸ ︷︷ ︸

(A2M )

+
1

rφ(Y )

∂

∂yφ1
gφ(Y )− 1

rφ(Y )
aφj µe︸ ︷︷ ︸

(C2M )

. (2.121)

Writing out the expression in the order it might be found by differentiating the terms in

(2.119) one at a time,

∂2

∂yφ1∂y
φ
2

LM =

f̃φ
∂

∂yφ2

1

rφ(Y )

∂

∂yφ1
gφ(Y ) + f̃φ

1

rφ(Y )

∂2

∂yφ1∂y
φ
2

gφ(Y )

− f̃φ ∂

∂yφ2

1

rφ(Y )
aφ1µ1

+ f̃φ
∂2

∂yφ1∂y
φ
2

1

rφ(Y )
gφ(Y ) + f̃φ

∂

∂yφ1

1

rφ(Y )

∂

∂yφ2
gφ(Y )

− f̃φ ∂2

∂yφ1∂y
φ
2

1

rφ(Y )
ξφ

T
µ− f̃φ ∂

∂yφ1

1

rφ(Y )
aφ2µ2, (2.122)
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and then grouping for use in proofs,

∂2

∂yφ1∂y
φ
2

LM =

f̃φ
1

rφ(Y )

∂2

∂yφ1∂y
φ
2

gφ(Y )︸ ︷︷ ︸
(OM )

+ f̃φ
∂2

∂yφ1∂y
φ
2

1

rφ(Y )
gφ(Y )− f̃φ ∂2

∂yφ1∂y
φ
2

1

rφ(Y )
ξφ

T
µ︸ ︷︷ ︸

(A3M )

+ f̃φ
∂

∂yφ1

1

rφ(Y )

∂

∂yφ2
gφ(Y )− f̃φ ∂

∂yφ1

1

rφ(Y )
aφ2µ2︸ ︷︷ ︸

(C3M )

+ f̃φ
∂

∂yφ2

1

rφ(Y )

∂

∂yφ1
gφ(Y )− f̃φ ∂

∂yφ2

1

rφ(Y )
aφ1µ1︸ ︷︷ ︸

(C4M )

. (2.123)

The second-order necessary condition is that in the Hillert formulation Y,f is a kkt point

and at that point ZT∇2LZ be positive semi-definite. In the Molar formulation the second-

order necessary condition is that Y, f̃ is a kkt point and at that point Z̃T∇2L̃Z̃ be positive

semi-definite. Similarly, the second-order sufficient condition is that the reduced Hessians

be positive definite rather than semi-definite.

Proposition 2.9. A kkt point in the Hillert formulation which meets the second-order

necessary conditions also meets the second-order necessary conditions in the Molar formu-

lation.

We know from Theorem 2.7 that if Y,f satisfies the kkt conditions in the Hillert formulation

then Y, f̃ satisfies them in in the Molar formulation, where f = R(Y )f̃ and the Lagrange

multipliers have the relationship ν̃ = R(Y )ν. Hence we have that the first derivatives in both
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formulations (2.112), (2.113), (2.118), and (2.119) are zero, and that the complementarity

conditions are met.

First observe that (OH) is equal to (OM ).

From (2.112) we can conclude

νφ = gφ(Y )− ξφTµ, (2.124)

and from (2.113) that

λj = fφ
∂

∂yφj,e
gφ(Y )− fφaφj µe. (2.125)

Under the assumption Y,f is a kkt point satisfying the second-order sufficiency conditions,

(2.115) is non-negative and then from (2.125) we see that λj ≥ 0 for all j. From (2.124) and

the complementarity of νφ and fφ we have

fφgφ(Y )− fφξφTµ = 0, (2.126)

which gives that (A3M ) is zero, and with (2.125) allows us to rewrite (2.123) as

∂2

∂yφ1∂y
φ
2

LM = fφ
∂2

∂yφ1∂y
φ
2

gφ(Y )︸ ︷︷ ︸
(OH)

+
∂

∂yφ1

1

rφ(Y )
λ2 +

∂

∂yφ2

1

rφ(Y )
λ1. (2.127)

We have assumed that (OH) is greater than or equal to zero at the point in question.

Derivative of non-vacancy reciprocal
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Examining the derivative of 1
rφ(Y )

, using dummy variable d for constituent and i for sub-

lattice, when j 6= Va,

∂

∂yφj,e

1

rφ(Y )
=

∂

∂yφj,e

∑
d

∑
i a
φ
i y

φ
i,d∑

d6=Va

∑
i a
φ
i y

φ
i,d

(2.128)

=
aj∑

d6=Va

∑
i a
φ
i y

φ
i,d

−
aj
∑

d

∑
i a
φ
i y

φ
i,d(∑

d6=Va

∑
i a
φ
i y

φ
i,d

)2 (2.129)

= −
aj
∑

i a
φ
i y

φ
i,Va(∑

d6=Va

∑
i a
φ
i y

φ
i,d

)2 (2.130)

≤ 0. (2.131)

For the derivative with respect to a vacancy term yφj,Va,

∂

∂yφj,Va

1

rφ(Y )
=

∂

∂yφj,Va

∑
d

∑
i a
φ
i y

φ
i,d∑

d6=Va

∑
i a
φ
i y

φ
i,d

(2.132)

=
aφj∑

d 6=Va

∑
i a
φ
i y

φ
i,d

(2.133)

≥ 0. (2.134)

It is apparent that, for y values dominated by vacancies, (2.130) can obtain negative values

of arbitrarily large magnitude, and (2.133) can obtain positive values of arbitrarily large

magnitude.

If the value of λj is fixed relative to Y , then there does not appear to be a guarantee the

second-order necessary conditions of the Molar formulation are met at a point where they

are met in the Hillert formulation.
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However, λj are not fixed relative to Y .

λj entered (2.127) as a substitution of (2.125) into (2.123),

λj = fφ
∂

∂yφj,e
gφ(Y )− fφaφj µe. (2.125)

The above approach to showing that sufficiency in one formulation implies sufficiency in

the other has reached challenges making it difficult or impossible.

Taking what we have learned in exploring this approach, instead of pursuing this line to

prove Proposition 2.9, we take an alternative approach below.

We begin with preliminary statements about the Hessians, and later state then prove the

theorem.

Hessian of the Lagrangian

Above we see that any partial second derivative of either Lagrangian is zero whenever

taking the derivative with respect to two variables from distinct phases. Hence, by creating

a vector with all f and Y scalars grouped together by phase the Hessian has a block diagonal

structure. In the remainder of this section we examine the Lagrangian and its Hessian on a

phase-by-phase basis. We define

vφ = (fφ, yφj1,e1 , y
φ
j1,e2

, · · · , yφjm,en). (2.135)

which includes the fφ scalar and all the yφj,e scalars for phase φ. In the remainder of this

section we drop the φ superscript and note an individual sublattice, constituent pair as y1.

We use terms developed above to write the Hessian of the two formulations in simplified

notation. In order to conserve space we introduce new notation, L is the Lagrangian of the

Hillert formulation and L̃ is the Lagrangian of the Molar formulation. To indicate derivatives
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with respect to fφ and y1 ≡ yφj,e we define

Lf ≡
∂

∂fφ
LH L̃f ≡

∂

∂fφ
LM (2.136)

L1 ≡
∂

∂yφ1
LH L̃1 ≡

∂

∂yφ1
LM (2.137)

Lff ≡
∂2

∂fφ∂fφ
LH L̃ff ≡

∂2

∂fφ∂fφ
LM (2.138)

L12 ≡
∂2

∂yφ1∂y
φ
2

LH L̃12 ≡
∂2

∂yφ1∂y
φ
2

LM (2.139)

L12 ≡
∂2

∂yφ1∂y
φ
2

LH L̃12 ≡
∂2

∂yφ1∂y
φ
2

LM (2.140)

Using this notation, the Hessian for a single phase in the Hillert formulation can be written

∇2L =



Lff Lf1 Lf2 · · · Lfn

Lf1 L11 L12 · · · L1n

Lf2 L12 L22 · · · L2n

...
...

...
. . .

...

Lfn L1n L2n · · · Lnn


(2.141)

From (2.114), (2.115), and (2.117) above we have the second derivatives of LH :

Lff = 0, (2.142)

Lf1 =
∂

∂y1
g(Y )− a1µ1, (2.143)

L12 = f
∂2

∂y1∂y2
g(Y ). (2.144)

78



These give the full Hessian of a single phase in the Hillert formulation,

∇2L =



0 ∂
∂y1

g(Y )− a1µ1
∂
∂y2

g(Y )− a2µ2 · · · ∂
∂yn

g(Y )− anµn
∂
∂y1

g(Y )− a1µ1 f ∂2

∂y1∂y1
g(Y ) f ∂2

∂y1∂y2
g(Y ) · · · f ∂2

∂y1∂yn
g(Y )

∂
∂y2

g(Y )− a2µ2 f ∂2

∂y1∂y2
g(Y ) f ∂2

∂y2∂y2
g(Y ) · · · f ∂2

∂y2∂yn
g(Y )

...
...

...
. . .

...

∂
∂yn

g(Y )− anµn f ∂2

∂y1∂yn
g(Y ) f ∂2

∂y2∂yn
g(Y ) · · · f ∂2

∂yn∂yn
g(Y )


(2.145)

Similarly the Hessian for a single phase in the Molar formulation is

∇2L̃ =



L̃ff L̃f1 L̃f2 · · · L̃fn

L̃f1 L̃11 L̃12 · · · L̃1n

L̃f2 L̃12 L̃22 · · · L̃2n

...
...

...
. . .

...

L̃fn L̃1n L̃2n · · · L̃nn


(2.146)

From above we have the second derivatives of LM :

(2.120) gives

L̃ff = 0. (2.147)
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Recalling (2.121),

∂2

∂f̃φ∂yφ1
LM =

∂

∂yφ1

1

rφ(Y )
gφ(Y )− ∂

∂yφ1

1

rφ(Y )
ξφ

T
µ︸ ︷︷ ︸

(A2M )

+
1

rφ(Y )

∂

∂yφ1
gφ(Y )− 1

rφ(Y )
aφj µe︸ ︷︷ ︸

(C2M )

, (2.121)

we have

L̃f1 =
∂

∂y1

1

r(Y )

(
g(Y )− ξTµ

)
+

1

r(Y )

( ∂

∂y1
g(Y )− a1µ1

)
(2.148)

=
∂

∂y1

1

r(Y )
ν +

1

r(Y )
Lf1, (2.149)

Recall that the complementarity of f and ν requires fν = 0.

From above (2.125) allowed us to rewrite (2.123) as

∂2

∂yφ1∂y
φ
2

LM = fφ
∂2

∂yφ1∂y
φ
2

gφ(Y ) +
∂

∂yφ1

1

rφ(Y )
λ2 +

∂

∂yφ2

1

rφ(Y )
λ1. (2.127)

which in the present notation is

L̃12 = f
∂2

∂y1∂y2
g(Y ) +

∂

∂y1

1

r(Y )
λ2 +

∂

∂y2

1

r(Y )
λ1. (2.150)

Second-Order Necessary Conditions
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In addition to the first-order necessary conditions, the kkt conditions, satisfied at Y,f , the

second-order necessary conditions are stated here.

Let Y,f ,λ,µ,ν be primary and dual variables satisfying the first-order necessary conditions.

Let v ∈ Rh be a row vector containing all the elements of f and Y , with the variables for

each phase φi grouped together as in (2.135), i.e.,

v =
(
vφ1 ,vφ1 , . . . ,vφ1

)
= (fφ1 , yφ1j1,e1 , y

φ1
j1,e2

, · · · , yφ1jm,en , f
φ2 , yφ2j1,e1 , y

φ2
j1,e2

, · · · , yφ2jm,en , f
φ3 , · · · ).

(2.151)

Where the Hessian of the Lagrangian is written below, it is with respect to v, i.e., ∇2L ≡

∇vvL.

Z is a basis for the null space of the Jacobian of the constraints. The three constraints

are the composition constraint, the sublattice unity constraint, and the phase fraction non-

negativity constraint,

fT(AY I0)T − nT = 0, (2.152)

Y 1− 1 = 0, (2.153)

f ≥ 0. (2.154)

The second-order necessary condition is that Y,f is a kkt point and at that point ZT∇2LZ

be positive semi-definite. Similarly, the second-order sufficient condition is that ZT∇2LZ

be positive definite.

Theorem 2.10. A point Y,f in the Hillert formulation is a local minimum if and only if

Y, f̃ is a local minimum in the Molar formulation.

Proof. Given that Y,f is a kkt point in the Hillert formulation, from Theorem 2.7 it is a
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kkt point in the Molar formulation. We will see that

ZT∇2LZ = Z̃T∇2L̃Z̃, (2.155)

where Z̃ is the null space in the Molar formulation at Y, f̃ .

We approach the equivalence in two steps. First we show the difference between the Hessians

is zero inside the null space Z, i.e.,

ZT(∇2L −∇2L̃)Z = 0. (2.156)

Then we show that

(Z − Z̃)T∇2L̃(Z − Z̃) = 0, (2.157)

so that by adding (2.156) and (2.157) the equivalence will be demonstrated.

Define a difference matrix D = ∇2L − ∇2L̃. The goal is to show that ZTDZ = 0. Entries

in D are indexed by two entries in v, one for the row and one for the column in D, which

are each indexed by φ, j, e. Since for any φ1 6= φ2 the entries in both Hessians are zero, the

Hessians and D share a block-diagonal structure with each block corresponding to a single

phase φ. Examining the entries in D for a single φ, using indices f and yj,e for that phase,

from (2.115), (2.117), (2.149), and (2.150),

Df,f = 0, (2.158)

Df,yj1e1
=

∂

∂yj1e1

1

r(Y )
ν, (2.159)

Dyj1e2 ,yj2e2
=

∂

∂ye1j1

1

r(Y )
λj2 +

∂

∂ye2j2

1

r(Y )
λj1 . (2.160)
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To aid in legibility, define, where 1 and 2 are arbitrary, e.g.,

r12 =
∂

∂yj1e2

1

r(Y )
, (2.161)

so,

Df,f = 0, (2.162)

Df,yj1e2
= r12ν (2.163)

Dyj1e2 ,yj3e4
= r12λj3 + r34λj1 . (2.164)

Now writing out Z the basis of the null space of the Jacobian explicitly. The constraints

again are,

fT(AY I0)T − nT = 0, (2.165)

Y 1− 1 = 0, (2.166)

f ≥ 0. (2.167)

The vector in the Jacobian for the composition constraint (2.165) for constituent e with

respect to v is, (
ξφ1e ,

aφ1j1∑
i a
φ1
i

fφ1 , 0, · · · , 0,
aφ1j2∑
i a
φ1
i

fφ1 , 0, · · ·

)
(2.168)

where the first entry corresponds to fφ1 and the other nonzero entries for phase φ1 corre-

spond to the subscript e in yj1,e matching that this is the composition constraint for element

e. Every position in v corresponding to an f has a nonzero entry, as does every position

corresponding to a y value for constituent e. Every constituent e has such a row in the
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Jacobian.

The vector in the Jacobian for the sublattice unity constraint (2.166) for sublattice j is,

(0, 1, 1, 1, 0, 0, · · · ) (2.169)

where there is a 1 in each y location for sublattice j of phase φ, and there is one constraint for

each sublattice in each phase. The notional example above with three ones would correspond

to a sublattice where three constituents could be present.

For a phase φ where fφ = 0 the non-negativity constraint (2.167) is active and the row is

present in the Jacobian with a single nonzero entry of 1 corresponding to the position of fφ

in v,

(1, 0, 0, · · · ) (2.170)

To conserve space on the page, define an explicit fraction for each site ratio by, e.g.,

aφ1j2 =
aφ1j2∑
i a
φ1
i

. (2.171)

For phases where fφ > 0 this gives us a Jacobian matrix as we saw above in (2.65) when
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proving the independence of the constraints, J =



ξφ1
e1 aφ1

j1
fφ1 0 0 · · · aφ1

j2
fφ1 0 0 · · · ξφ2

e1 aφ2

j1
fφ2 0 0 · · · aφ2

j2
fφ2 0 · · ·

ξφ1
e2 0 aφ1

j1
fφ1 0 · · · 0 aφ1

j2
fφ1 0 · · · ξφ2

e2 0 aφ2

j1
fφ2 0 · · · 0 aφ2

j2
fφ2 · · ·

...
...

...
...

. . .
...

...
...

. . .
...

...
...

...
. . .

...
...

. . .

0 1 1 1 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · ·

0 0 0 0 · · · 1 1 1 · · · 0 0 0 0 · · · 0 0 · · ·

0 0 0 0 · · · 0 0 0 · · · 0 1 1 1 · · · 0 0 · · ·

0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 1 1 · · ·
...

...
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
. . .


(2.172)

A phase where fφ = 0 introduces a row with a single nonzero entry in the row corresponding

to fφ.

Next the null space Z will be identified.

Let there be m leading rows of the composition constraint type, with a leading ξ variable.

We can assume basic conditions of regularity from the proof that the constraints are inde-

pendent. This corresponds to no phase’s composition fraction being a linear combination of

other phases composition fractions. I.e., an irregular condition would be two stable phases

occupying the same point on the phase diagram, a phase being on the line defined by two

other phases in a ternary diagram, the plane defined by three others in a quaternary, etc.

Having more stable phases than constituents in the system is also irregular. None of these

conditions is a strictly stable equilibrium – removal of one of the phases which is a linear

combination of the others will produce and equal or lower objective value.

Regularity provides that elementary row operations on J produce a matrix J ′ sharing the

same null space, where k are arbitrary constants produced by the row operations on aφ1j1 f
φ

values, (note that the two subscripts in k12 correspond to a sublattice and a constituent,
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respectively),

J ′ =



1 0 k11 k12 · · · 0 k13 k14 · · · 0 0 k15 k16 · · · 0 k17 · · ·

0 0 k21 k22 · · · 0 k23 k24 · · · 1 0 k25 k26 · · · 0 k27 · · ·
...

...
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
. . .

0 1 1 1 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · ·

0 0 0 0 · · · 1 1 1 · · · 0 0 0 0 · · · 0 0 · · ·

0 0 0 0 · · · 0 0 0 · · · 0 1 1 1 · · · 0 0 · · ·

0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 1 1 · · ·
...

...
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
. . .



(2.173)
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The circled entries above indicate the dependent variables for the null space. Hence,

Z =



k11 k12 · · · k13 k14 · · · k15 k16 · · ·

1 1 · · · 0 0 · · · 0 0 · · ·

−1 0 · · · 0 0 · · · 0 0 · · ·

0 −1 · · · 0 0 · · · 0 0 · · ·
...

...
. . .

...
... · · ·

...
...

. . .

0 0 · · · 1 1 · · · 0 0 · · ·

0 0 · · · −1 0 · · · 0 0 · · ·

0 0 · · · 0 −1 · · · 0 0 · · ·
...

...
. . .

...
...

. . .
...

...
. . .

k21 k22 · · · k23 k24 · · · k25 k26 · · ·

0 0 · · · 0 0 · · · 1 1 · · ·

0 0 · · · 0 0 · · · −1 0 · · ·

0 0 · · · 0 0 · · · 0 −1 · · ·
...

...
. . .

...
...

. . .
...

...
. . .

0 0 · · · 0 0 · · · 0 0 · · ·

0 0 · · · 0 0 · · · 0 0 · · ·
...

...
. . .

...
...

. . .
...

...
. . .



(2.174)

This is easily generalized to any number of phases, sublattices, and constituents.

Now use this matrix to compute Z>DZ for the difference D = ∇2L−∇2L̃. The difference
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matrix is block diagonal,

D =



Dφ1

Dφ2

. . .

Dφn


, (2.175)

where each array’s difference block, written to correspond with the above notional Jacobian

J and its null space Z, and for legibility omitting the φ terms on variables, Dφ =



0 r11ν r12ν r13ν · · · r21ν r22ν r23ν · · ·

r11ν
r11λ1

+r11λ1

r11λ1

+r12λ1

r11λ1

+r13λ1
· · · r11λ2

+r21λ1

r11λ2

+r22λ1

r11λ2

+r23λ1
· · ·

r12ν
r12λ1

+r11λ1

r12λ1

+r12λ1

r12λ1

+r13λ1
· · · r12λ2

+r21λ1

r12λ2

+r22λ1

r12λ2

+r23λ1
· · ·

r13ν
r13λ1

+r11λ1

r13λ1

+r12λ1

r13λ1

+r13λ1
· · · r13λ2

+r21λ1

r13λ2

+r22λ1

r13λ2

+r23λ1
· · ·

...
...

...
...

. . .
...

...
...

. . .

r21ν
r21λ1

+r11λ2

r21λ1

+r12λ2

r21λ1

+r13λ2
· · · r21λ2

+r21λ2

r21λ2

+r22λ2

r21λ2

+r23λ2
· · ·

r22ν
r22λ1

+r11λ2

r22λ1

+r12λ2

r22λ1

+r13λ2
· · · r22λ2

+r21λ2

r22λ2

+r22λ2

r22λ2

+r23λ2
· · ·

r23ν
r23λ1

+r11λ2

r23λ1

+r12λ2

r23λ1

+r13λ2
· · · r23λ2

+r21λ2

r23λ2

+r22λ2

r23λ2

+r23λ2
· · ·

...
...

...
...

. . .
...

...
...

. . .



.

(2.176)

Two indices specify a column of Z using j and e corresponding to the column’s first entry

kie. The product ZTDZ is made up of entries zTjeDzkl. Due to the block diagonal structure
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of D, the product Dzje only contains entries from a single phase. Writing it out,

Dφzje =



0 + rjjν − rjeν

kjer11ν + r11λj + rjjλ1 − r11λj − rjeλ1

kjer12ν + r12λj + rjjλ1 − r12λj − rjeλ1

kjer13ν + r13λj + rjjλ1 − r13λj − rjeλ1

...

kjer21ν + r21λj + rjjλ2 − r21λj − rjeλ2

kjer22ν + r22λj + rjjλ2 − r22λj − rjeλ2

kjer23ν + r23λj + rjjλ2 − r23λj − rjeλ2

...



=



(rjj − rje)ν

kjer11ν + (rjj − rje)λ1

kjer12ν + (rjj − rje)λ1

kjer13ν + (rjj − rje)λ1

...

kjer21ν + (rjj − rje)λ2

kjer22ν + (rjj − rje)λ2

kjer23ν + (rjj − rje)λ2

...



,

(2.177)

Hence,

zTklD
φzje = kkl(rjj − rje)ν + kjerk1ν + (rjj − rje)λj − kjerklν − (rjj − rjeλj) (2.178)

=
(
kkl(rjj − rje) + kje(rk1 − rkl)

)
ν. (2.179)

Every term in each zTklD
φzje is a multiple of νφ. Due to complementarity, if fφ > 0 then

νφ = 0. Recalling (2.172), which was row-reduced to (2.173), we see that if fφ = 0 then

kφje = 0 for all j and e. Hence the scalar zTklD
φzje is zero for all j, e, k, l, and it follows that

ZTDZ is an all-zero matrix. Thus (2.156) is true.

Next we show that (2.157) is true. Looking at (2.174), we can immediately see that for
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unknown values qij = kij − k̃ij ,

Z − Z̃ =



q11 q12 · · · q13 q14 · · · q15 q16 · · ·

0 0 · · · 0 0 · · · 0 0 · · ·

0 0 · · · 0 0 · · · 0 0 · · ·

0 0 · · · 0 0 · · · 0 0 · · ·
...

...
. . .

...
... · · ·

...
...

. . .

0 0 · · · 0 0 · · · 0 0 · · ·

0 0 · · · 0 0 · · · 0 0 · · ·

0 0 · · · 0 0 · · · 0 0 · · ·
...

...
. . .

...
...

. . .
...

...
. . .

q21 q22 · · · q23 q24 · · · q25 q26 · · ·

0 0 · · · 0 0 · · · 0 0 · · ·

0 0 · · · 0 0 · · · 0 0 · · ·

0 0 · · · 0 0 · · · 0 0 · · ·
...

...
. . .

...
...

. . .
...

...
. . .

0 0 · · · 0 0 · · · 0 0 · · ·

0 0 · · · 0 0 · · · 0 0 · · ·
...

...
. . .

...
...

. . .
...

...
. . .



, (2.180)

where the nonzero rows correspond to the position of f values in the Hessian, which is

a block diagonal, and each block φi has ∇2
fφ,fφ

L̃ = 0 in its top-right corner, the fφi , fφi

position of the matrix. The structure of Z − Z̃ will extract only those top-right corner

elements with multiples of q, all other terms are zero. Hence (Z − Z̃)T∇2L̃(Z − Z̃) = 0.
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By adding (2.156) and (2.157) we find,

ZT(∇2L −∇2L̃)Z + (Z − Z̃)T∇2L̃(Z − Z̃) = 0

ZT∇2LZ − ZT∇2L̃Z + ZT∇2L̃Z − Z̃T∇2L̃Z̃ = 0

ZT∇2LZ − Z̃T∇2L̃Z̃ = 0

ZT∇2LZ − Z̃T∇2L̃Z̃ = 0.

In conclusion, ZT∇2LZ = Z̃T∇2L̃Z̃, hence the reduced Hessian in the Hillert formulation

is positive definite at Y,f if and only if the reduced Hessian in the Molar formulation is

positive definite at Y, f̃ . Thus a point Y,f in the Hillert formulation is a local minimizer if

and only if the corresponding point Y, f̃ is a local minimizer in the Molar formulation.

2.9 Vacancies

We have encountered diverse Thermo-Calc databases for binary systems for which points

of global equilibrium include a phase which is mostly Vacancy. In the context of codes

which reliably determine the global energy minimum this creates computational difficulties

by driving the vacancy fraction towards unity. Including a phase which is mostly vacant is

un-physical and undesirable. Here we explore the root mathematical cause of this difficulty.

To provide a simple example we can work through by hand, we present a phase with

one sublattice and a single element “A” mixing with vacancy “Va”. In the CALPHAD

formulation it can have its Gibbs energy modeled as follows:

G = RTyA ln yA +RTyVa ln yVa +GAyA +GVayVa +
∑
i

GiA,VayAyVa(yA − yVa)i (2.181)
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We use the temperature-dependent coefficients GA, GVa, and GiA,Va for mixing of order

i. (In the literature the mixing coefficients are sometimes labeled Lνj for arbitrary integer

index j and mixing order ν, but we use the above variation of the notation.)

Equation (2.181) is the “formula energy”, determining the energy per mole of sites. To

convert this to energy per mole of atoms, we must divide by the fraction of non-vacancy

sites. In this very simple example we have

yVa = 1− yA, (2.182)

hence yA indicates the non-vacancy fraction we divide by to convert from functional to

molar energy. Now we substitute (2.182) into (2.181), and divide by yA, and find
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Gm =
1

yA
G (2.183)

=
1

yA

(
RTyA ln yA +RTyVa ln yVa +GAyA +GVayVa

+
∑
i

GiA,VayAyVa(yA − yVa)i
)

(2.184)

=
1

yA

(
RTyA ln yA +RT (1− yA) ln(1− yA) +GAyA +GVa(1− yA)

+
∑
i

GiA,VayA(1− yA)
(
yA − (1− yA)

)i)
(2.185)

= RT ln yA +RT
1− yA

yA
ln(1− yA) +GA +GVa

1− yA

yA

+
∑
i

GiA,Va(1− yA)(2yA − 1)i (2.186)

= RT ln yA +RT
ln(1− yA)

yA
−RT ln(1− yA) +GA +

GVa

yA
−GVa

+
∑
i

GiA,Va(1− yA)(2yA − 1)i (2.187)

Now consider the condition as yA → 0, i.e., the phase becomes dominated by vacancies. It

may be helpful to recall that

lim
y→0

ln(1− y)

y
= −1. (2.188)

Now,

lim
yA→0+

Gm = lim
yA→0+

RT ln yA −RT +GA + lim
yA→0+

GVa

yA
−GVa +

∑
i

GiA,Va(−1)i. (2.189)
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Four of the terms are simple constants (plus one that becomes zero), and pose no difficulties.

There are two interesting terms, RT ln yA, and GVa
yA

. When GVa 6= 0, it dominates the limit

as yA → 0. Meaning that if GVa > 0 then

lim
yA→0+

(
RT ln yA +

GVa

yA

)
= +∞, (2.190)

and if GVa < 0 then

lim
yA→0+

(
RT ln yA +

GVa

yA

)
= −∞. (2.191)

If GVa = 0 then the limit of that term is also zero, and because RT > 0 and limy→0 ln y =

−∞,

lim
yA→0+

(
RT ln yA +

0

yA

)
= −∞. (2.192)

However, even in the case when GVa > 0 but is not large, the sum of these terms can take a

significant negative value. The minimum is achieved at yA = GVa
RT , and for small GVa you can

demonstrate that the sum of the two terms takes a negative value, and as GVa approaches

zero it becomes arbitrarily large.

GVa is nearly always given the value zero in thermodynamic databases.

The energy diagram in Figure 2.4 visually demonstrates the difficulty for concrete values.

Code which reliably finds the global minimum will select the lowest point on each curve

for the phase at this temperature, given that selection of GVa. When GVa = 0 there is no

lowest point: the energy goes to −∞ as yVa → 1.
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Figure 2.4: For various values of GVa, the molar Gibbs energy of single-sublattice phase with
a single element “A” mixing with vacancy “Va”. Constants have been set to T = 2000; GA =
−4e4; G0

A,Va = 1e5; for i > 0, GiA,Va = 0; and GVa ∈ {0, 31, 100, 310, 1000, 3100, 10000}. An

equilibrium point is visible near x = 1 (no vacancy) for any selection of values, but for GVa

below approximately 50 it is not the global equilibrium: a composition of near-total vacancy
(x ≈ 0) has a lower energy. This includes the generally selected value GVa = 0.

The original implementation of the ampl-based calphad model used

xe =

∑
s asye,s∑

s as
∑

e6=Va ye,s
, (2.193)
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Figure 2.5: The derivative of the curves in Figure 2.4 in the equilibrium region near 2%
vacancy. We can see how the vacancy fraction of the equilibrium will change as GVa is
adjusted.

as the variable in the composition constraint

∑
φ

fφxφe = F 0
e . (2.194)
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In place of xe it may instead be correct to use

ξe =

∑
s asye,s∑

s as
∑

e ye,s
=

∑
s asye,s∑
s as

, (2.195)

where vacancies are included in the denominator. Using this alternative formulation has

initially provided good results – but a thorough comparison of the two must be completed.

Equivalence of the two formulations has been proven. However, the two formulations differ

in the search space for the optimization algorithm, and the efficiency and reliability of

finding the correct equilibrium differs between them.

One approach to handling the vacancy problem is to place a constraint on the fraction of

sites which may be vacant.

In the formulation using x in the composition constraint and dividing the energy by the

non-vacancy fraction, this is accomplished by using a variable

rφ :=

∑
s as

∑
e6=Va ye,s∑
s as

, (2.196)

and creating the constraint

rφ ≥ rmin, (2.197)

for some fixed rmin.

We must then decide whether to keep equilibria found with constraint (2.197) active, or

discard those as invalid.

We have had good results with rmin = 0.85, rmin = 0.5, and rmin = 0.15, but the phase

energies and diagrams differ.

In the ξ formulation, a constraint such as f ≤ fmax may be present in other existing codes.

Such a constraint would be similar to using rφ ≥ rmin, but different in that it places an
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element-wise minimum rather than a phase-wise minimum. The effectiveness of the two

differing constraints needs to be investigated and quantified.

Since there is no consensus on what a physically reasonable maximum amount of vacancy in

a single individual phase might be, we hope to identify a means to flexibly but intelligently

constrain each phase in the model. This “smart constraint” may allow an individual phase

to take a larger fraction of vacancy when the phase represents a smaller portion of the

equilibrium, or when it completely mixes with another phase that justifies the amount of

vacuum.

Pressure-Volume Equation

An interesting proposal from Pinwen Guan (a student of Zi-Kui Liu) is to counteract the

vacancy problem by putting in a pressure-volume condition. The proposal comprises an

additional term in Gm:

P

[
VA +

1− yA

yA
VVa

]
(2.198)

It is sound and makes energy go to +∞ as vacancies go to unity.

Units

Pressure at STP is P = 100 kPa, VCs = 7.0732× 105 m3 mol−1, and we selected an arbitrary

VA = 1× 105m3 mol−1 which is close to the value for Aluminum.

1 m3 mol−1 × 100 kPa = 1 joule · mol−1.

Our Gibbs energy is being calculated in J/mol, so the units agree.

Energy Charts

A plot of the energy for these values can be seen in Figure 2.6. The positive result is that
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it does prevent the energy from going to −∞ as yVa → 1. However, its magnitude is so tiny

that the global minimum remains close to the all-vacancy point. Compare with Figure 2.4,

which has a ×104 multiplier on its vertical axis.

For these test values, the global minimum is at yA ≈ 4 × 10−7 and the energy is Gm ≈

−1.8× 105. That Gm value is “off the chart” in Figure 2.4. See the plot in Figure 2.7.

The nonvacancy constraint

Among the approaches to handling the vacancy problem is to place a constraint on the

fraction of sites which may be vacant. In the literature it is suggested that when 10% of

sites are vacant the phase is no longer stable [44] due to rapid vacancy migration and a

breakdown of the crystal structure, and other similarly low terms have been proposed in

conversation, such as 25%.

Projections of the energy of the B2 phase calculated from the Al-Ni database provided by

Dupin and Sundman in 1999 [2] are in Figure 2.8 and Figure 2.9. Together they demonstrate

that it is impossible to select a constraint for the nonvacancy fraction which would always

be inactive, and that choosing a constraint below 50% would prevent the identification of

some mathematically correct equilibria.

2.10 Implementation

We develop an ampl-based framework for solving the calphad problem. Within this frame-

work we examine the research questions identified in the literature review and enumerated

therein. Some questions are answered by comparison of quantitative results with prior pub-

lished work, while others allow only a qualitative assessment of their success.

The Gibbs project [28] demonstrates many of the desirable features which our framework

necessarily reproduces, as well as many other features valuable to the researcher which we

cannot hope to have a single software developer implement alone in any reasonable time
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P=100 kPa, Varbitrary=1e-5 m3/mol,  Vcesium=7.074e-5 m3/mol
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Figure 2.6: A plot of the energy corresponding to solely the pressure-volume portion from
Pinwen Guan. The magnitude is 1/10000 that of our other terms: compare to the vertical
axis in Figure 2.4.

frame. For example, Gibbs interfaces with FiPy for diffusion and phase field models. A goal

of our project may be to gain a footing as public open-source and have multiple students and

100



y
A #10-6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

G
m

 (
jo

ul
es

)

#105

-1.9

-1.85

-1.8

-1.75

-1.7

-1.65

-1.6

RT[ln(x) + ln(1-x) / x - ln(1-x)] + G
A
 + G

Va
/x - G

Va
 + G0

A,Va
(1-x) + P * ( Varbitrary + (1-x)/x * Vcesium )

Figure 2.7: A plot of the energy of our fictional system with the pressure-volume incorpo-
rated. Pay attention to the axes: yA ≈ 0, and the energy at the minimizer is far below that
near yA ≈ 1⇒ Gm ≈ −4× 104 in Figure 2.4.

researchers contributing code. However, at the present moment, the repository is private

and we have only a single developer contributing code.
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Figure 2.8: Al-Ni Dupin and Sundman [2], the B2 phase at T = 1000 and molar composition
= 0% nickel. The vacancy fraction xVa is the vertical axis, y0,Al the horizontal axis, and
y0,Ni the axis pointing into the page, but the feasible range for this is zero. Red areas are
high energy, and blue areas are low energy. You can see there are two stable equilibria, one
around y0,Al = 0.9 and xVa = 0, and the other around xVa = 0.95. This demonstrates that
a vacancy barrier above 0.25 cannot be prevented from creating local stability points.

Fortunately, we are not attempting to compete in a hypothetical market for calphad

software – we are providing academic insights, and an alternative viewpoint from that of

the materials science researcher. Some of the advantages of our approach include the wide

variety of solvers available, the optimization focus of the work, and enormous flexibility of

the model and framework.

A python script was developed reproducing the Hillert algorithm, presumably identical to

the core of OpenCalphad’s code. This is a valuable resource, and comprises 457 lines of code,
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Figure 2.9: Al-Ni Dupin and Sundman [2], the B2 phase at T = 1000 and molar composition
= 100% nickel. The vacancy fraction xVa is the vertical axis, y0,Ni the horizontal axis, and
y0,Al the axis pointing into the page, but the feasible composition range for Al is zero. Red
areas are high energy, and blue areas are low energy. You can see there are two stable
equilibria, both around xVa = 0.5. This demonstrates that choosing a vacancy barrier at or
below 0.5 is not advisable.

but it was superseded by the much simpler ampl implementation of the Hillert-Sundman

model described below.

In order to ensure our grasp of the Hillert-Sundman model was correct, it was implemented

within a standalone ampl model for a specific system and set of active phases. This model

is entirely distinct from our ampl framework and from OpenCalphad, having been written

exclusively based on the 2015 Sundman paper [77]. This small implementation is simple and
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inflexible, but sufficient to ensure our understanding of the model is correct, and it does

highlight some of the necessary details absent in the paper.

In the Hillert-Sundman model, the composition of the system is maintained by the con-

straint, for element A,

NA =
∑
α

ℵαMα
A =

∑
α

ℵα
∑
s

aαs y
α
As. (2.199)

The important difference between this constraint and our corresponding constraint

F 0
A =

∑
α

fαxαA (2.200)

lies in the definition of x:

xαA =

∑
s a

α
s y

α
As∑

s a
α
s

∑
B 6={Va} y

α
Bs

=

∑
s a

α
s y

α
As∑

s a
α
s (1− yαVa,s)

. (2.201)

When no vacancies are present, they are identical. But in the presence of vacancies they

differ by the vacancy correction term, the very same term we have placed in our objective

function to achieve results in the Al-Fe system where the wide line-phase al13fe4 is not

otherwise corrected calculated.

So we create a new variable

ξαA =

∑
s a

α
s y

α
As∑

s a
α
s

(2.202)

for use in the composition constraint. ξ is equal to x when there are no vacancies, and

corresponds directly with Sundman’s Mα
A variable. By altering the constraint in this way,

we have achieved positive results.

Python [102] is a widely used high level programming language generally enabling both short

time to complete an implementation (ease of development), and rapid execution times. Many
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programming paradigms are supported by python, allowing developers with experience in

other languages to understand and write python code relatively quickly. It has a large

standard library, and due to the large number of people using python an extremely large

number (greater than 72,000) of packages are available providing additional functionalities.

The prefix py- is used to emphasize that something is python-related, with examples in the

calphad literature including pycalphad [70] and FiPy [71]. June 2016, python was ranked

as the fourth most popular programming language by the TIOBE Programming Community

Index [103], behind only Java, C, and C++. In 2014, python became “the Most Popular

Introductory Teaching Language at Top U.S. Universities” [104]. The combination of ease

of development, large number of available packages, and large body of practitioners made

python the natural choice for a front-end to our framework.

Originally the mapping algorithm was developed as an ampl script, which was cumbersome

and inflexible. Subsequently a python script was developed to generate ampl mod files, exe-

cute them in parallel, and compile the results into a single output csv. This provides a great

deal of flexibility via command-line arguments which control temperature and composition

range, number of parallel instances, step sizes, number of random initial conditions to try

at each point, the vacancy threshold, and other parameters.

It also allowed later integration of an energy mapper into a single uniform platform.

Under the python script, each time a system is examined a new directory is created where

all files are stored, and all execution occurs within that directory. This allows easy review

of past experiments, and retains data as long as necessary.

The implementation of parallelization (by executing several ampl.exe simultaneously) re-

duced execution time by up to 95%. With access to a large set of remote computers execution

time can be made arbitrarily small.

Further, the plotting of diagrams was moved out of matlab and into a python script using

numpy and matplotlib. The inclusion of numpy means that on a Windows platform
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installation of the correct python packages can be extremely tricky for a novice. At this

time Anaconda [105] is the recommended distribution, as it includes all of the most popular

high performance science packages in a single free and easy to install distribution and many

other beneficial features.

One limitation of the original formulation in ampl is that the parameters representing

energy of end-members of phases, the G terms, cannot be made as “indexed computed

parameters” which are functions of T and P and automatically change when T or P is

changed. Instead, they are indexed but not computed, and when T or P is changed they

must be reset with the let command. This means re-reading a mod file every time the

temperature or pressure is changed in making a phase diagram, and it prohibits using T or

P as a variable to be optimized under certain conditions.

A solution to this difficulty is to formulate the G terms representing energy of end-members

as variables with equality constraints on them. This creates a potentially enormous number

of variables, and the student (free) ampl license is limited to a maximum of 500 variables

and 500 constraints and objectives.

Fortunately, the ampl option presolve will eliminate fixed variables from the problem

before the 500 variable limit is enforced. presolve can be set to any whole number,

indicating the number of passes ampl makes through the problem to simplify it before

handing it to the solver. As long as it is greater than zero, the fixed variables are all

eliminated.

This allows a simpler implementation within ampl, and also allows experimentation with

using T or P as a variable. For example, it may be possible to formulate a problem that

directly identifies the liquidus for a given composition.

In the Thermo-Calc version S database specification, a four-sublattice phase may be labeled

with a :F or :B flag, for ordered fcc/hcp symmetry or ordered bcc symmetry respectively.

In those cases, a greatly reduced number of end-members needs to be specified, and all its
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permutations are automatically created by the software.

For phase-type F, the four sublattice sites indicate the four corners of a regular tetrahedron,

so any permutation of a four-sublattice end-member is identical. E.g., these are all the

same: A:B:B:B, B:A:B:B, B:B:A:B, and B:B:B:A. Hence, only one of those needs to be

presented in the tdb, and its permutations are automatically created [78].

For phase-type B, the tetrahedron is irregular with two pairs of sites as nearest-neighbors.

Hence, the end-member A:A:B:B is distinct from A:B:A:B, with the first having two

permutations and the second having four.

This presented a challenge to our converter, as it does also for pycalphad and OpenCalphad,

neither of which have implemented handling of those flags at the current time.

However, the code was written in the converter to handle the symmetry by automatically

ramifying each end-member as appropriate in the ampl data file it creates. In this regard,

this places our database interpreter ahead of either of those two open-source packages. That

is not the only meaningful comparison, but it does allow examination of some important

systems which are only represented by databases using those symmetry flags.

Examples of phases using the F symmetry are fcc 4sl in the Al-Fe database from Sundman

et al. [29], and L12 in the Al-Pt database from Kim et al. [98].

Examples of phases using the B symmetry are bcc 4sl and bcc va in the Al-Fe database

from Sundman, et al. [29].

However, aabc is apparently treated differently from abac under :B symmetry.

Fultz [106] provides a good reference on p.336 for bcc and fcc symmetries, including diagrams

of B2, D03, L12, L10, and B32, which have been recreated here in Figure 2.10 for bcc and

Figure 2.11 for fcc.

B2, D03, and B32 are specific kinds of bcc lattices:

� B2: every corner is the same, every center is the opposite from the corner.
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A2 B2

D03 B32

Figure 2.10: Four bcc lattice structures: A2, B2, D03, and B32.

A1 L10 L12

Figure 2.11: Three fcc lattice structures: A1, L10, and L12.

108



� D03: every corner is the same, the centers alternate.

� B32: corners alternate, centers alternate. Corner nearest neighbors are opposite to

themselves, centers are identical to the 000 corner.

The tests we developed for which type of symmetry an end-member has are:

isB2(e) := (e0 = e1 ∧ e0 6= e2 ∧ e0 6= e3) ∨ (e2 = e3 ∧ e0 6= e2 ∧ e1 6= e2), (2.203)

isB32(e) := e0 6= e1 ∧ e2 6= e3 ∧ (e0 = e2 ∨ e0 = e3 ∨ e1 = e2 ∨ e1 = e3). (2.204)
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Chapter 3: Optimization, Sampling, and Uncertainty

Quantification

3.1 Special-purpose solver separating iteration into two steps

In late 2014 we investigated a special-purpose optimization algorithm designed with knowl-

edge of the system in mind. We separated the optimization of the y variables from the f

variables. We fix f values, solve for optimal y values, and make use of the Lagrange mul-

tipliers for the constraint regarding conservation of constituents and the x value for that

constituent, as well as the energy of the phase, to make a step in the f space:

If the Lagrangian multipliers for the conservation of constituents are in the vector λ, the

matrix of constituent fractions is x, and the computed Gibbs energy in G, then

∆f := −λ>x+G. (3.1)

This was implemented in ampl as

1 for {phase in Phases, inst in PhaseInstances[phase]} {

2 for {elem in Elements : elem != 'Va'} {

3 let f[phase,inst] := f[phase,inst] -

Conservation_Components[elem] * x[phase,elem,

inst];

4 }

5 let f[phase,inst] := f[phase,inst] + phaseGibbs[phase,

inst];

6 }
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f would then need to be normalized so that
∑
f = 1. There are also complications with

phaseGibbs being a negative number with large magnitude.

After several months of experimentation, we concluded that this ingenious method of taking

steps in f knowing the result of optimizing y turns out to be less efficient than allowing a

general-purpose solver to optimize in both variables simultaneously.

3.2 Sampling

Some attention was given to picking appropriate points in Y space. Initial results can be

seen in Figure 3.1 and Figure 3.2.

An ideal algorithm would allow the automatic choice of Y values to correspond to a given

composition, but this has not yet been achieved.

Even including very many samples does not guarantee a dense collection of points in the

lower hull, as can be seen in Figure 3.3.

Better initial conditions

Our random initial conditions are almost always outside the feasible region. We select each

y value on a uniform interval, with no regard for the other y values or the fixed composition

this test is being conducted at.

If the y values are projected directly into the lower-dimension feasible space it’s quite

unlikely we would be conducting effective tests of the corners of feasible space. E.g., a two-

element single sublattice phase would have a composition space which looks like the segment

from (1, 0) to (0, 1), shown as blue in Figure 3.4.

By selecting uniformly from the whole space we are not selecting uniformly from the smaller

feasible space. Figure 3.4 shows 50 uniformly random points in the [0, 1]2 square projected

onto the feasible space.
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Figure 3.1: Energy of the AlNi system using the new ampl-only (no solver) method of
calculation.

In Figure 3.4 we see that the ends of the blue segment are under-represented, and the middle

is over-represented. The distribution on the segment is not uniform, it’s triangular.

Ensuring that sampling is uniform in the feasible y space is achieved by a two step algorithm,

ŷj := − ln
(
rnd(0, 1)

)
, ∀j (3.2)

yi := ŷi

/∑
j

ŷj , ∀i. (3.3)
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Figure 3.2: Lower hull of the energy of the AlNi system using the new ampl-only (no solver)
method of calculation.

Thus we have a uniform distribution on any unit polytope of dimension n − 1 in an n-

dimensional space, i.e., the polytope with vertices at points with coordinates consisting of

permutations of (1, 0, · · · , 0).

Example projections in 1-, 2-, and 3-d can be seen in Figure 3.5.
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(a) (b)

Figure 3.3: AlFe Sundman Option 2, bcc va energy at 1400K. The left image shows 50,000
sample points uniform in feasible region, the right image shows 500,000 points. Neither is
dense along the lower hull, nor in the extreme left or right edges of the image.

ya

yb

(a)

ya

yb

(b)

Figure 3.4: Sampling uniform in space projects non-uniformly on 1-d y subspace.
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Figure 3.5: Uniform sampling in the feasible space, in 1-d, 2-d, and 3-d. N.b., the 3-d view
is a projection onto the 3-d simplex from 4-d space.
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3.3 Uncertainty Quantification

Since its inception, calphad has relied on fitting parameters to a collection of sometimes

conflicting empirical data of varying quality. Researchers would minimize the error of the

fit to the empirical data in various ways, notably a computational least-squares approach

[12], but tracking the uncertainty in those fitted parameters and its effect on the final

quantitative result has not been introduced into the method. Prior to the inception of our

work, no method for quantifying the uncertainty of calphad results existed [18]. Parameters

and system assessments are validated by plotting diagrams overlaid with empirical and

computational (dft) results.

The entire calphad method at present is based upon using a combination of empirical and

computed values with some inherent error to determining fixed, absolute parameters with

no error information propagated forward. The researcher conducting parameter fitting must

choose which empirical values to keep and which to discard, and picks a method to minimize

the uncertainty, such as least squares [12], or a Bayesian method [107]. Once the errors have

been minimized by selecting certain parameters, the error information is discarded.

First-principles computational methods such as dft are increasingly being relied upon for

input into the calphad method, and measuring the uncertainties of values determined by

these ab initio methods is an active field of research [108] [40] [109]. Those uncertainties

provide extremely valuable information which, if they could be incorporated into calphad,

would increase the scientific credibility and reliability of its results.

A researcher naturally benefits from knowing when a calculated result is uncertain, or how

large the “error bars” are on a value. calphad is valuable in calculating many material

features of alloys and other combinations of multiple constituents (elements), originally

designed to determine the particular mix of phases in a system at a given temperature,

pressure, and composition. Determining which phase is present at a temperature naturally

also determines the liquidus of a system. Today the method is actively being extended to
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many other features, but here the liquidus provides a convenient example of quantitative

values readily generated by the traditional calphad method for which an estimate of error

would be immediately meaningful and valuable. Even this simple indication of uncertainty

has never been reported by researchers.

Another example of a quantitative value important in industry is the eutectic temperature

in steels. Proper heat treating involves crossing the eutectic temperature at a specific rate,

and varying the cooling rate can produce vastly different material features, e.g., hardness

by quenching (cooling relatively quickly), ductility by annealing (cooling relatively slowly).

Assigning uncertainty to the calculated eutectic temperature would improve the value of

the calphad method to industry.

Less straightforward is the presentation of uncertainties on the location of phase boundaries

(monophasic lines) in phase diagrams. If phase energies as a function of temperature, pres-

sure, and composition can be visualized with error bars, then a researcher could examine

such a diagram and visually ascertain the size of regions with uncertainty. Work specifically

on this subject does not appear in the literature at this time.

Every system assessment in the literature begins with a survey of all available empirical

data and of data from first principles calculations on the material features of interest.

For some systems important in industry many studies may have been published over the

course of many decades, and the data can be conflicting and of widely varying quality. The

researchers may choose to discard some data, and they will assign weights to the remaining

data according to its perceived quality, with larger weights implying greater accuracy or

importance of the data.

When this wide variety of data is combined, the researchers then fit parameters. For ex-

ample, they can use techniques which minimize the mean squared error [12] [110]. The

least-squares technique is based on the assumption that observed data follows a Gaussian

distribution and is greatly swayed by outliers in the data, which is a significant motiva-

tion for discarding data which does not fit the overall pattern. The parrot [111] module

117



included in Thermo-Calc conducts such a least-squares based parameter fitting. For data

presumed to follow a normal distribution, quantification of error is familiar to researchers

in the form of variance or standard deviation, and alternative distributions of error may in-

clude higher order moments such as skewness and kurtosis. Errors following an exponential

or other distribution may be transformed to a normal distribution by appropriate functions,

and least-squares can be applied using the transformed values.

An alternative approach which has been applied to parameter fitting is the Bayesian method

[107]. This may be less sensitive to outliers, and Königsberger states that it can produce good

results with less empirical data. Bayesian methods can include uncertainty quantification

[112], and that information can be passed forward to be included in the calphad method.

At the moment, although it is clear in some cases how to determine the uncertainties of

parameters, there appear to be no organized attempts to propagate uncertainties through

the calphad method to its outputs.

Even a basic approach to tracking and reporting uncertainties to the researcher would be

a significant and valuable addition to the calphad method at this time. A simple study

of the uncertainty surrounding the liquidus or any other calculable quantity, such as error

bars around monophasic lines, would be an advancement of the current state of the art.

Testing uncertainty quantification techniques may require fitting parameters for a system

to obtain the necessary error data.

In the absence of methods for quantifying uncertainty within calphad, phase diagrams

present values as though exact. Researchers relying on these diagrams will benefit from an

awareness of the precision, or the lack of precision, in values portrayed on a diagram.

While the ideal approach to UQ may involve tracking the uncertainty of parameters fitted

to experimental and computed material data, that lies beyond the reach of this dissertation.

Rather, we rely on the fitted parameters and produce a “heat map” of the nearness of a

metastable phase to the equilibrium at each point.
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Figure 3.6: Al-Pt energy at 1800K, without vacancy corrections.

In an energy diagram at a fixed temperature, e.g. Figure 3.6, at a given composition there

will be one phase or set of phases giving the lowest energy. There will be a phase or set

of phases giving the next-lowest energy, which is a metastable solution, potentially a local

equilibrium.

By identifying the difference between the equilibrium energy and the next-lowest energy

at each point in the temperature-composition space, we can create a “heat map” of the

differences as an indication of the uncertainty surrounding the diagram at each point.

Examining Figure 3.6, we can see there is little uncertainty at compositions in the left-hand

side of the diagram, but much more uncertainty in the right-hand side.

Figure 3.7 shows an Nb-Re phase diagram and the corresponding diagram of the distance

(in Joules per mole) to the next-lowest-energy metastable state.

At the moment, researchers have no indication of the uncertainty in a phase diagram, and

this provides a first look at these values.
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(a)

(b) (c)

Figure 3.7: (a) shows the Nb-Re phase diagram, (b) the corresponding diagram of the
additional energy required to reach the lowest metastable phase in the middle, and (c) the
ratio of initial conditions that converge to the lowest equilibrium to local equilibria on the
right.

Sampling Approaches

Our framework uses traditional optimization methods to converge to a local equilibrium, and

the solver is heavily dependent upon the initial conditions given to it. There are a variety of

heuristics for exploring the composition space to improve the odds that we identify the global

equilibrium, a few of which are mentioned in the following section. The approach we have

explored most thoroughly is to start the optimization several or many times with different
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initial conditions, and then select the minimizer producing the lowest system energy.

We call the pattern of initial conditions which are applied a sampling pattern. The most

näıve approach is to select random values for each y and f variable independently in [0, 1],

and then converge from there. This has a number of significant disadvantages: 1) the selected

values are almost never feasible, so the method must take one or more initial steps to reach

a feasible value, which can be a challenge for some methods; 2) a random pattern leaves

some areas of the space under-explored, and concentrates points in some other areas; and

3) which is exacerbated by the projection of the whole [0, 1]m space being strongly weighted

into some portions of the lower-dimension feasible space while making samples in other

feasible regions highly unlikely.

We have conducted research in ensuring initial conditions are always selected so they satisfy

the constraints of the optimization problem. This is described below.

The application of low-discrepancy techniques to the calphad problem has been described

by R. Otis et al., [113]. We apply a Halton sequence to selection of initial conditions for trials,

and the improved uniformity of sampling with this sequence compared to a pseudo-random

sequence can be seen in Figure 3.8.

Computational materials scientists are working to quantify uncertainties surrounding cal-

culated properties of materials such as those represented directly or indirectly in phase

diagrams: phase energies, material structures, liquidus, solidus, etc. One area of focus is

the CALPHAD method, which ideally fits parameters to the body of experimental and

ab initio computational evidence and extrapolates properties of new systems. Within this

methodology there are several sources of uncertainty. The natural uncertainty inherent in a

physical sample, the measurement error of samples, the uncertainty of the parameters fitted

to the sample data, uncertainty of the model itself, and propagation of uncertainty from

those sources through the model.

Various approaches are being taken to studying sources of uncertainty and its propagation,
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Figure 3.8: The Halton quasi-random sequence 2,3 (left) compared to pseudo-random points
(right). The improved uniformity of sampling is visible in the Halton sequence, eliminating
heavily over- and under-sampled regions apparent in the random sequence.

[114], [115], [116], [117].

The approach taken here is to accept the parameters as given and evaluate where un-

certainties can arise within the methodology, how large those uncertainties are and how

sensitive the results of the method are to those uncertainties. Two distinct metrics for UQ

within CALPHAD have been identified and developed here. The metrics devised provide

insight into existing thermodynamic databases, allowing researchers studying UQ to refine

and compare their methods in a new way, and providing practitioners insight into possible

errors in phase diagrams.

At a given temperature and composition there is the stable equilibrium, and possibly one or

more metastable equilibria at higher energies. The two approaches described here depend on

(1) the energy difference between the lowest metastable equilibrium and the stable (global)

equilibrium, and (2) the frequency with which an optimization method finds the stable vs

a metastable equilibrium.

During the process of creating a phase diagram, we can measure uncertainty in different

ways. Two we address here are,
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1. The energy difference between the global equilibrium and the lowest energy metastable

equilibrium

2. The fraction of initial conditions which converge to the global equilibrium

One consideration is whether a metastable equilibrium should be required to contain a

different mix of phases than the apparent global equilibrium.

In this section we compare Model 1 (the Hillert model) which corresponds to literature such

as [77], where it is thoroughly explained, and the other labeled Model 2 (the Molar model)

as described in this dissertation and in [1].

Equilibria

When examining at a binary system with vacancies and multiple phases, there are several

categories of equilibrium, with one, two, or three phases present. A monophasic equilibrium

has a single phase present. Most points in a typical binary phase diagram will be a mixture of

two phases each with a different composition that combine linearly to create the composition

of that T, c point. Given the presence of vacuum as a constituent of the system it is possible

for three phases to be present at equilibrium in a binary system.

A miscibility gap is a region where a single phase mixes with itself in more than one different

composition. Our framework automatically creates multiple instances of each phase based

on the number of constituents it comprises, to ensure any miscibility gap can be spanned

by that phase.

Optimization

For each temperature-composition (T, c) point of interest many initial conditions are tried

and an equilibrium is identified using one of the solvers available within AMPL. An initial

condition comprises a phase fraction, y values for each phase, and dual variables for the

optimization solver. The x value of a phase is fully determined by its y values.
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Depending on the system being examined, at each T, c point there are three basic cate-

gories of metastability: 1) every initial condition converges to the same equilibrium (i.e., no

metastable points); 2) there are two or a small number of clearly distinct equilibria; and

3) there may be many closely spaced equilibria. Equilibria are distinguished by the phases

which are present and by the y values and resulting energy of the phases.

Vacancies

Vacancy is a constituent used two distinct ways in thermodynamic databases. One corre-

sponds with physical vacancies present in the material, e.g., thermal vacancies. The other is

a “modeling vacancy” used to achieve a better mathematical representation of the energy

in a phase, which does not correspond to a physical feature of the system.

A database may be formulated in such a way that vacancies become the predominant con-

stituent as a solver seeks equilibrium, even until the phase has almost no real constituents.

For physical vacancies this is an unrealistic condition. Figure 2.4 shows how the only stable

equilibrium for a hypothetical phase can occur very close to an all-vacant condition.

Various remedies preventing an undesirable excess of vacancy are possible, with various im-

pacts and subtleties. However, for the purposes of this dissertation a simple, static constraint

is applied to each phase requiring it to contain a minimum fraction of real (non-vacancy)

constituents:

ξφVa ≤ CVa, ∀φ. (3.4)

Figures 2.8 and 2.9 show how there is no consistent vacancy constraint CVa you can pick a

priori, but applying this technique is adequate for the purposes of the current UQ study.

In particular any equilibrium found where the constraint (3.4) is active is discarded.

Figure 3.9 shows the effect of different vacancy barriers on the solution.

The framework has been further adapted to calculate two new types of metric:

1. The energy difference between the stable (global) equilibrium and the lowest-energy
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(a) ≥ 0.60 non-vacancy (b) ≥ 0.40 non-vacancy

Figure 3.9: Al-Pt binary phase diagrams calculated with different vacancy constraints using
Model 2 and snopt.

metastable (local) equilibrium

2. The fraction of distinct initial conditions which converge to the stable (global) equi-

librium vs the fraction which converge to a metastable (local) equilibrium

Each is discussed in detail below.

Energy delta

The stable (global) equilibrium has the lowest energy possible in that system at that T, c

point. For this research a predefined and fixed number of trials is performed at each point,

and assume – sometimes incorrectly – that the lowest energy found corresponds to the true

global equilibrium.

In the event that there are other distinct equilibria found, the energy delta between the

lowest and second-lowest equilibria provides information about the uncertainty of the result

or of the system.

There are several criteria that may be applied to distinguish the stable equilibrium from

the lowest metastable equilibrium. Do they contain distinct phases, or is the metastable
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equilibrium a different configuration of y values for the same phase(s)? Is the metastable

equilibrium sufficiently distinct, or does it differ by only a tiny fraction and produce only

a small energy difference? In the initial work shown here, the Gibbs energy is rounded to

the nearest integral J/mol value, and the lowest and second-lowest values found are tracked

without requiring the phases to be distinct or for there to be a minimum energy difference

other rounding to different integers.

This energy delta between the lowest energy result and the next lowest result is plotted in

the Results section below.

Fraction of initial-condition space

While AMPL offers some optimization methods labeled “global” methods, they are tailored

for smaller combinatorial problems, rather than the continuous nonlinear objective function

of the CALPHAD model with Gibbs energy. The optimization methods used in this study

are local methods which converge from a specified initial condition to a mathematically

stable equilibrium. The configuration space consists of y variables for each phase, and the

fraction of the system which comprises each phase, labeled f . Given feasible y and f variables

as an initial condition, a local optimization method such as SNOPT or MINOS reliably

converges to the same equilibrium – but selection of a different initial condition may converge

to a different equilibrium. The regions which converge to a particular equilibrium can be

viewed as a “basin of attraction” to that equilibrium, although the optimization methods

used here are substantially more sophisticated than a Newton-Raphson type method where

the basin terminology is encountered. Given the large number of variables, visualizing these

basins is challenging and not revealing. Rather than diagramming basins, the number of

initial conditions which result in each equilibrium can be counted to provide a fraction of

the configuration space which corresponds to that equilibrium, and this can be identified

as a metric of how difficult each equilibrium is to detect. For example, if the lowest-energy

equilibrium is the result every time, or 99% of the time, then it may be presumed to be the

correct result and it is subjectively easy to find the correct result. On the other hand, if
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pick a model
pick a solver
discretize the x-axis, xi = i∆x
for each T :

for each xi:
pick n low-discrepancy initial conditions
for each initial condition:

run solver to equilibrium

Figure 3.10: High level sketch of the algorithm for finding UQ values over the T, x space.

after 100 trials the lowest energy result has been found only a single time, or worse if there

are 100 distinct results, then it cannot be stated with any certainty that it is the true stable

(global) equilibrium, and it is subjectively hard to find the correct result.

In order to quantify the difficulty of identifying the global equilibrium, the fraction of the

configuration space that converges to the lowest energy equilibrium measured in this way

by sampling using initial conditions is plotted in the Results section below.

Technique

The x-axis is discretized and compositions xi = i∆x are used for any choice of ∆x suitable

to the analysis. In this work ∆x = 0.01 is to generate diagrams which are qualitatively useful

and demonstrate the effectiveness of the method. For a given choice of model and solver, at

each T and xi of interest, from n distinct initial conditions covering the composition space

the solver runs to equilibrium, producing n results.

The lowest energy found after n trials is assumed to be the stable equilibrium at that T, xi

point. In this work each point is independent from neighboring points and no equilibrium

data is shared. For future work, accuracy in estimating the energy and phase mix of the

stable state and might be improved by using more sophisticated sampling methods and

distributing information, but only the simplest method is applied here to demonstrate the

concept.

At each T, xi point, there are two metrics of uncertainty:
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� Energy difference between stable and lowest metastable state

� Fraction of samples that converge to the stable equilibrium

One motivation, and a caveat

A phase in itself may have many metastable states, as you see in Figure 3.11 for Al-Pt phase

bcc a2, and phase B2 which receives a disordered contribution from bcc a2.

As there can be a continuous range of energy values of metastable states in a single phase

there is no minimum positive value energy difference between a stable phase and it’s nearest

metastable state. Hence, a metastable state for energy difference is used only if it contains

at least one distinct phase from the stable state.

Results: Al-Pt

Here the Al-Pt system from the thermodynamic database published in June 2010 is exam-

ined [98]. This system has miscibility gap and challenging issues with vacancies.

Results from the various combinations of model and solver are shown in the following figures.

Figure 3.12 shows Model 1 and SNOPT, Figure 3.13 shows Model 2 and SNOPT, Figure 3.14

shows Model 1 and MINOS, and Figure 3.15 shows Model 2 and MINOS. In each figure, the

top image is simply the phase diagram itself. The second row is the Uncertainty metric

generated by counting the number of initial conditions which converge to different equilib-

ria. The third row is the Uncertainty metric generated by measuring the energy difference

between the lowest and second-lowest equilibria. Each represents data from 100 random

trials per point, maximum vacancy fraction 0.45, not accepting equilibria with close or-

dered and disordered phases, and phase-fixing 6 consecutive times. The first image is the

phase diagram as generated. The second image indicates the ratio of the number of times

the lowest-energy equilibrium is found to the number of random initial conditions tried,

where red shows a very small fraction of the attempts and blue a large fraction; red should

correspond to an equilibrium that is relatively difficult to detect, hence a high uncertainty
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(a) Al-Pt bcc a2 energy

(b) Al-Pt B2 energy

Figure 3.11: Al-Pt energies for bcc a2 and B2 phases, showing many metastable states
with energies very near the stable state. This motivates the choice of only taking an energy
difference between equilibria that have at least one distinct phase in the mix.
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that the correct equilibrium has been found. The third image indicates the energy difference

(in J/mol) between the lowest energy equilibrium and the next-lowest comprising at least

one distinct phase, with red showing a small energy difference and light blue a large energy

difference; red corresponds to a metastable equilibrium that is close in energy to the stable

equilibrium, hence some uncertainty in the correctness of the identified phases. To generate

the relatively coarse UQ diagrams, 129 distinct temperatures were used, with 101 distinct

composition points each; since 100 random trials were initiated at each of those 13,029

coordinates, information represented here is the result of 1.3 million independent runs of a

solver, which is enormously more time-consuming than simply generating a binary phase

diagram.

In the right-hand side of Figure 3.12 you can see the result from using SNOPT and Model 1.

In that figure there is a somewhat jagged boundary between fcc and L12 at x(pt) ≈ 0.85,

more pronounced at lower temperatures. That boundary is examined by running 500 trials

at uniform random initial conditions, and the result is seen in Figure 3.16. This diagram is

quite different from other diagrams in the literature.

The top image shows temperature along the vertical axis and composition along the hori-

zontal, and the bottom image instead shows energy along the horizontal axis – both images

represent the same data. The color indicates the phase which is present, and the size of the

circle indicates the relative frequency with which that phase is found at the composition or

energy. You can easily see that the lowest energy phase is pt2al, but that has fixed compo-

sition x(al) = 0.333 and must pair with a higher energy phase to be present, such as bcc

comprising only platinum.

The energy is examined further by looking at a chart showing the energy of phases found in

equilibrium (both stable and metastable), and the size of the disc showing the equilibrium

phase indicates the relative frequency with which it is found. That chart is in Figure 3.17.

Results: Co-Mo
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(a)

(b) (c)

Figure 3.12: The Al-Pt system, produced with Model 1 and SNOPT.

Here the Co-Mo system from the thermodynamic database published in 2009 is examined

[118]. This system has a miscibility gap but with no vacancies it presents a simpler problem

than the Al-Pt system above.

Each of the figures is generated from data compiled by running 100 random trials per point,

not accepting equilibria with close ordered and disordered phase, fixing phases six consecu-

tive times, and 0.55 nonvacancy fraction (irrelevant in this vacancy-free system). The top left

image is the phase diagram as generated. The top right image is a histogram of the energy

gap between the stable and lowest metastable states over the whole image. The bottom left
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(a)

(b) (c)

Figure 3.13: The Al-Pt system, produced with Model 2 and SNOPT.

image indicates the energy difference (in J/mol) between the lowest energy equilibrium and

the next-lowest comprising at least one distinct phase, with red showing a small energy dif-

ference and light blue a large energy difference; red corresponds to a metastable equilibrium

that is close in energy to the stable equilibrium, hence some uncertainty in the correctness

of the identified phases. The bottom right image indicates the ratio of the number of times

the lowest-energy equilibrium is found to the number of random initial conditions tried,

where red shows a very small fraction of the attempts and blue a large fraction; red should

correspond to an equilibrium that is relatively difficult to detect, hence a high uncertainty

that the correct equilibrium has been found. To generate the relatively coarse UQ diagrams,
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(a)

(b) (c)

Figure 3.14: The Al-Pt system, produced with Model 1 and MINOS.

129 distinct temperatures were used, with 101 distinct composition points each; since 100

random trials were initiated at each of those 13,029 coordinates, information represented

here is the result of 1.3 million independent runs of a solver, which is enormously more

time-consuming than simply generating a binary phase diagram.

Figure 3.21 shows the results from Model 1 and SNOPT, Figure 3.22 shows Model 1 and

MINOS, Figure 3.23 shows Model 2 and SNOPT, and Figure 3.24 shows Model 2 and MINOS.

Each figure shows the Uncertainty metric generated by counting the number of initial condi-

tions which converge to different equilibria, the Uncertainty metric generated by measuring
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(a)

(b) (c)

Figure 3.15: The Al-Pt system, produced with Model 2 and MINOS.

the energy difference between the lowest and second-lowest equilibria, and a histogram of

the energy differences over the whole temperature and composition range.

Figure 3.21 and Figure 3.22 show results from Model 1, using SNOPT and MINOS respec-

tively. Each of these phase diagrams agrees with other published phase diagrams for the

Co-Mo system, and is clean except for a few stray points where a metastable equilibrium

has been identified as stable. The stray points are a type of error inherent to creating a UQ

diagram in the manner proposed here, where each point is examined in isolation and in this

case exactly 100 trials are conducted. The “horn” typical in Co-Mo is visible in the phase
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(a) (b)

Figure 3.16: Two unusual complementary views of energy in the Al-Pt system at composition
x(pt) = 0.15, produced with Model 1 using SNOPT. The top graph has vertical axis T ,
horizontal axis x(pt) of the phase itself in equilibrium, and the relative size of the line shows
the frequency with which that phase is found in equilibrium. The bottom graph shows the
same data set with T on the vertical axis, and energy in J/mol on the horizontal axis. Since
the composition of the overall system is always the same, the phases in equilibrium must be
inferred from the other information on the graph – this can be challenging but revealing.

Figure 3.17: Energy and frequency of convergence for Al-Pt using Model 1 and MINOS at
806K. Smaller disks indicate fewer times converging to that phase in equilibrium.

diagram around x(mo) ≈ 0.05 and T ≈ 1150, demonstrating that the model has correctly

spanned the miscibility gap in the system.
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(a) Model 1 + MINOS

(b) Model 2 + SNOPT

Figure 3.18: The Al-Pt system at 1805K. These graphs show only equilibria the solver can
converge to with that model, both stable and metastable points – unstable points are never
identified. The presence of the L12 phase is apparent in the Model 2 + SNOPT graph,
and absent in the Model 1 + MINOS graph, which gives insight into the differences in the
corresponding phase diagrams.

3.4 Future Work

Optimization Techniques

There is a vast and growing body of optimization techniques available; some are recent
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(a) Model 2 + SNOPT

Figure 3.19: This graph is “sideways”, with temperature on the x-axis, fixed at composition
x(pt) = 0.34. It shows the uncertainty in the liquidus from the perspective of metastable
equilibria of the liquid phase.

Figure 3.20: The Co-Mo system.

products of academic research, many are heuristics designed for industry, and a third level

of “meta-heuristics” proposes to quickly identify techniques appropriate to a problem.

In our framework we use ampl as the interface between the model and the optimization

algorithms used to identify an equilibrium at a point in the composition and temperature

space, and this allows us to leverage state of the art solvers which very rapidly converge to

a feasible solution. However, the solutions returned by the solver are often not the strict
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(a) (b)

Figure 3.21: The Co-Mo system, produced with Model 1 and SNOPT.

(a) (b)

Figure 3.22: The Co-Mo system, produced with Model 1 and MINOS

minimizer, but rather represent a local solution. Our challenge is in identifying a means

to more rapidly and with greater assurance identify the global minimizer, or at least an

equilibrium very likely to be the global minimizer.

One approach we have already discussed is how we sample the space. By assuring effective

coverage of the y space as initial conditions for a given composition we can increase the

assurance that all equilibria have been identified, hence the global equilibrium has also been
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(a) (b)

Figure 3.23: The Co-Mo system, produced with Model 2 and SNOPT

(a) (b)

Figure 3.24: The Co-Mo system, produced with Model 2 and MINOS

identified. However when the space becomes large, having many degrees of freedom due to a

large number of possible phases with internal y variables, we cannot effectively explore every

region. The problem space can be very large: a 4-sublattice phase in a ternary system with

vacancies is 81-dimensional, and a multicomponent system may comprise dozens of such

phases. In these instances we must rely on techniques to direct sampling in a meaningful

way rather than attempting to cover the whole space.
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(a) (b)

(c) (d)

Figure 3.25: Meta-energy of the Co-Mo system, four histograms over the entire composition
and temperature range. The first two are Model 1, the last two are Model 2. The first and
third are SNOPT, the second and fourth are MINOS.

Each call to the solver and return to ampl is relatively time-consuming, as the solver runs to

convergence, requiring many evaluations of the energy function. An alternative is to evaluate

the energy function in ampl without calling the solver, and from those samples of the space

pick one or a few as promising initial conditions to initiate the solver. An extension of this

approach is to create a solver which applies this technique without returning to ampl until

it has reached some degree of assurance that it has the global equilibrium. By handling all

of this within the solver, likely written in a faster low-level language such as C, it should

execute much more quickly than the regular call and return between ampl and solver.

The development time necessary to develop, test, debug, and revise any new solver in a
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Figure 3.26: The Co-Mo system, four histograms over the entire composition and tempera-
ture range. The data is binned into bins with width 0.1 and then smoothed with a triangle
distribution of width 0.4.

low-level language is, however, quite substantial and beyond the time budget of a single

developer such as a PhD student. With that practical constraint in mind, we can test solver

heuristics written in the ampl language coupled with its state of the art solvers for final

convergence with the desired numerical accuracy, and leave full development of a solver for

later work. Here we need to identify specific directions of research without overcommitting

to a development effort.

We have tested the simplest approach: sample the space a fixed number of times, using each

of those samples as an initial condition for the solver, and take the lowest energy result as

the final supposedly global equilibrium. A number of straightforward improvements can be

made:

� Initially calculate the energy only within ampl and use a fixed number of the lowest

energies as initial conditions for the solver

Among the wide variety of modern global/stochastic optimization techniques/heuristics
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which exist, a few appear promising for this framework: evolutionary, swarm, simulated

annealing, and stochastic tunneling. Each of these techniques, if thoroughly tested on the

calphad problem, could produce a standalone peer reviewed paper.

Global Optimization

Global optimization, specifically in this case global minimization, is finding the minimum

value over all possible configurations, in contrast to converging on a local minimum as a

quasi-Newton or other nonlinear optimization method will do. A direct analytic solution

cannot be applied to an optimization problem of this complexity, and numerical strategies

are subject to substantial difficulties since a configuration space with even a small number

of dimensions (degrees of freedom) rapidly becomes quite large in measure and demands

significant computational expense to explore completely. Except in very small problems it

is impossible to practically provide a mathematical guarantee that a minimizer is the global

minimizer. Many so-called global optimization techniques use stochastic methods to achieve

a certain desired probability that the identified point is the global minimizer, but do not

offer absolute certainty.

The sampling methods mentioned above are an example of a direct Monte-Carlo method,

a global optimization technique giving good but approximate answers. Since the calphad

problem is almost everywhere smooth these approximate answers can be used in a hybrid

metaheuristic as initial conditions for a nonlinear method using the gradient, e.g., a quasi-

Newton method, to converge on the precise minimizer. One modification of the Monte-Carlo

approach in that hybrid context is to implement a tabu-type method [119] to prevent re-

searching a previously explored part of the configuration space, although delineating tabu

regions the non-discrete configuration space is a difficult challenge.

Often a heuristic method or a metaheuristic is applied to an optimization problem to provide

greater assurance that the global minimum has been achieved, and to identify it more

rapidly. Among the many machine learning techniques are evolutionary algorithms [120],

and swarm-based algorithms [121] which are known to be resilient to problems with many
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local minima, as well as a wide range of (meta-)heuristics such as simulated annealing [122]

and stochastic tunneling [123] that attempt to explore the configuration space in a more

intelligent or efficient way. Any of those methods may have some application to this problem.

The combination of a metaheuristic method and mathematical programming (i.e., optimiza-

tion algorithms) has been given the label matheuristics, or math-heuristics, more clearly

called Model-Based Metaheuristics [124]. With publications being made under those labels,

it may provide a clearinghouse for the type of hybrid methods which would apply well to

the calphad problem.

Due to the superficial simplicity of the calphad problem, it has not attracted much re-

search from the optimization community, and little literature exists connecting even well-

known optimization techniques to calphad. Various approaches are possible which are not

examined in the literature. For example, the problem can be explicitly modeled as a com-

binatorial one in the selection of stable phases, and mixed-integer methods [125] can be

applied. This is “mixed integer non-linear programming” (minlp) in contrast to the more

frequently encountered “mixed integer linear programming” (milp). Mixed-integer nonlin-

ear methods include branch-and-bound, cutting plane, and outer approximation methods.

In older calphad literature the combinatorial approach is sometimes dismissed out of hand

as impracticable, but modern optimization techniques may change this assessment. ampl

does include access to minlp solvers which may be extremely efficient in solving a problem

formulated in this way.

Inner and Outer Approximation are global optimization techniques for linear and convex

problems, as well as certain very restricted classes of nonlinear problems [126]. An Outer-

Inner Approximation is possible on problems separable into univariate functions [127], but

it is not immediately apparent how this could be applied to the non-separable, non-convex

calphad problem.

Determination of Criteria for Phase Stability
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As discussed in the section on the existence of kkt points and minimizers, a phase can be

constructed so that it has no stable points anywhere. Such a phase is physically meaningless

and should not be included in a database. A clear theoretical basis for determining whether

selected parameters guarantee the existence of stationary and stable points for a phase and

for a database would be meaningful and hold potential value to researchers who construct

databases from empirical data.

3.5 Summary and Discussion

In this dissertation we have motivated the study of the calphad problem from a modeling

and optimization viewpoint. We have developed a new approach to the calphad problem,

fully developed the molar model applicable to every phase, proven its equivalence with the

existing formula unit model, demonstrated the effectiveness of the approach in generating

phase diagrams and energy plots, developed two new approaches to calculating and visual-

izing uncertainties in the calphad method, providing a novel collection of methodologies

and tools for researchers to investigate and apply the calphad method.

In Chapter 2 we took a systematic approach to the modeling aspects in calphad. We

developed a set based formulation for modeling, and a complete computational framework

for generating and plotting phase diagram data and investigating phase energies. The use of

ampl provides a connection between materials science modeling and a wide variety of state

of the art optimization solvers. We proposed the use of a molar model for energy of each

phase, in contrast to the functional unit energy, where energy is explicitly calculated per

mole of constituents. This model was fully developed and the single unified model is used

for every phase regardless the number of sublattices and constituents, and the presence or

absence of magnetic component or disordered contribution. We proved the independence of

the constraints in the models, the existence of a feasible point, kkt points, and minimizers.

We proved the equivalence of the two models at equilibrium, with identity between kkt

144



points, objective values, and minimizers, by examining the Lagrangian, the Jacobian and

its null space Z, and the reduced Hessian ZT∇2LZ.

We then examined the challenge of modeling vacancies while retaining consistency of so-

lutions. We proposed a solution to the run-away vacancy problem of putting a constant

constraint on the amount of vacancy in each phase, and demonstrated its effectiveness in

producing consistent phase diagrams from challenging thermodynamic databases such as

Al-Pt. Concluding Chapter 2, we discuss the implementation of the framework and some of

the challenges in correct interpretation of a database.

In Chapter 3 we discuss approaches to optimization, sampling, and two novel methodolo-

gies for uncertainty quantification. We developed a special-purpose solver separating steps

in the Y and f variables. We apply logarithmic projection and low-discrepancy sampling to

ensure complete and uniform coverage of the feasible space. We provide several views of the

energy of phases at fixed temperatures. We develop two metric of uncertainty in a phase

diagram: a measure of the energy difference between the global (stable) equilibrium and

the lowest local (metastable) equilibrium; and a measure of the fraction of the composition

space which converges locally to the global equilibrium. These two metrics are presented in

heat maps overlaying the phase diagram, and provide the researcher with a direct indica-

tion of regions where the solution presented by a diagram may be subject to uncertainty.

We create histograms of the uncertainty values in a diagram, and by comparing the his-

tograms generated when selecting differing solvers and models we provide a comparison not

conceivable in any other thermodynamic framework.

For future application of the framework and models we have developed, there are a num-

ber of lines of research possible. Development of more sophisticated mapping algorithms

that distribute information between temperature and composition regions to identify global

equilibria more rapidly across the diagram, and automating the number of initial condi-

tions tested based on the difficulty in identifying global equilibrium will increase reliability

and ease of use of the framework. A variety of optimization techniques exist which more
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broadly attempt to find the global equilibrium, and many of these could be tested on the

model, such as evolutionary, swarm, simulated annealing, and stochastic tunneling. Addi-

tionally, meta-heuristic techniques may be usefully tested on this problem. Application of

the variable value of GVaVa proposed by Ågren and Hillert is a possibility unique within the

framework we have developed and of potential wide interest to the calphad community.

Development of methods for automatically determining appropriate values for the vacancy

constraint would be a direct improvement to the model. Characterizing the criteria that

parameters for a phase in a thermodynamic database must meet to have a guaranteed

bounded equilibrium, especially in the presence of modeling vacancies, would be a benefit

to researchers fitting those parameters.
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Chapter A: AMPL model

1 # General standards used in writing and maintaining this file:

2 #

3 # # Naming of sets, parameters, variables:

4 # - all set/param/var names are descriptive so the code is easy

to read

5 # - set/param/var names are generally IndexContentContent --

e.g., PhaseSiteElement is indexed by Phase and contains (Site,

Element)

6 # - sets start with a captial letter

7 # - parameters and variables start with a lower case letter

8 # - every word after the first in a set/param/var name is

capitalized

9 # - no special characters are used in set/param/var names (i.e.,

no _ or -)

10 # - dummy variables are lower case (e.g., "for {phase in Phase}

{..." uses dummy variable 'phase')

11 # - exceptions to capitalization are single letter parameters or

variables

12 # - single letter dummy variables are avoided

13 #

14 # # Sets:

15 # - wherever possible a set is constructed within ampl instead

of by the file converter

16 #
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17

18 model;

19

20 option abs_boundtol 1e-14; # just trying to be reasonable

21 option rel_boundtol 1e-8; # we'd like 6 decimal places at the

most

22 option show_boundtol 0; # silence numerous messages about

boundtol affecting deduced dual values

23

24 # ideal gas constant [Joule/(mole*Kelvin)]

25 param R := 8.3144598;

26

27 # Temperature

28 param T;

29

30 # Pressure

31 param P default 100;

32

33 # set of all phases

34 set Phases;

35

36 # set of all sublattices in each phase

37 set PhaseSublattice{Phases};

38

39 # set of all sublattices

40 set AllSublattices = union {phase in Phases} PhaseSublattice[

phase];

41

148



42 # set of all sites and elements in each sublattice

43 # multiple elements at one site indicates mixing

44 set SublatticeSiteElement{AllSublattices} dimen 2;

45

46 # set of all elements at each site in a phase

47 set PhaseSiteElement {phase in Phases} = union {subl in

PhaseSublattice[phase]} SublatticeSiteElement[subl];

48

49 # set of elements in each phase

50 set PhaseElementsVa {phase in Phases} = (setof {subl in

PhaseSublattice[phase], (site,elem) in SublatticeSiteElement[

subl]} elem) union {indexElem};

51 set PhaseElements {phase in Phases} = PhaseElementsVa[phase] diff

{'Va'};

52

53 # instances for each phase (to handle miscibility gap)

54 set PhaseInstances{phase in Phases} = 1..card(PhaseElementsVa[

phase]);

55

56 # sets of elements -- one with Va (if it's in the TDB file), one

without.

57 set ElementsVa ordered; # = union {phase in Phases}

PhaseElementsVa[phase];

58 set Elements ordered by ElementsVa = ElementsVa diff {'Va'};

59

60 # SER for each element

61 param ElementSER {ElementsVa} symbolic;

62
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63 # integer number of sites for each phase

64 param nSites {phase in Phases} = max {subl in PhaseSublattice[

phase], (site,elem) in SublatticeSiteElement[subl]} site;

65

66 # maximum number of sites over all phases

67 param maxSites = max {phase in Phases} nSites[phase];

68

69 # site fractions

70 param a{Phases,1..maxSites};

71

72 set PhaseDisorder dimen 2;

73

74 set phaseMagneticParam dimen 3; # defined in ..._data.dat

75

76 set PhasesMagnetic = setof {(phase,AF,SF) in phaseMagneticParam}

phase;

77

78 # the Structure Facture is variable 'p' in Xiong's 2012 paper --

we use SF here

79 # in the absence of a clear name we use AF for the second

coefficient, meaning Anti-Ferromagnetic

80 # in the following lines 'max' is irrelevant since there should

be only one member matching 'phase', but it is required to

extract a single member of the set

81 param phaseMagneticSF {phase in PhasesMagnetic} = max {(phase,AF,

SF) in phaseMagneticParam} SF;

82 param phaseMagneticAF {phase in PhasesMagnetic} = max {(phase,AF,

SF) in phaseMagneticParam} AF;
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83

84 set PhaseSublatticeMagnetic {PhasesMagnetic} dimen 3; # defined

in ..._data.dat

85

86 set PhaseMagneticSublattices {phase in PhasesMagnetic} = setof {(

subl,Curie,Bohr) in PhaseSublatticeMagnetic[phase]} subl;

87

88 param phaseSublatticeCurie {phase in PhasesMagnetic, subl in

PhaseMagneticSublattices[phase]} = max {(subl,Curie,Bohr) in

PhaseSublatticeMagnetic[phase]} Curie;

89 param phaseSublatticeBohr {phase in PhasesMagnetic, subl in

PhaseMagneticSublattices[phase]} = max {(subl,Curie,Bohr) in

PhaseSublatticeMagnetic[phase]} Bohr;

90

91

92 set PhaseSublatticeOrder {Phases,AllSublattices} default {0};

93 param maxOrder = max {phase in Phases, subl in PhaseSublattice[

phase], order in PhaseSublatticeOrder[phase,subl]} order;

94

95 param gibbs {Phases,AllSublattices,0..maxOrder};

96

97 # set of sites in each sublattice

98 set SublatticeSite {subl in AllSublattices} = setof {(site,elem)

in SublatticeSiteElement[subl]} site;

99

100 # all we care about are the sites where exactly 2 elements mix
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101 set SublatticeMixSite {subl in AllSublattices} = setof {site in

SublatticeSite[subl] : card( {(site,elem) in

SublatticeSiteElement[subl]} ) == 2} site;

102 set SublatticeSiteMixElem {subl in AllSublattices, site in

SublatticeMixSite[subl]} ordered = setof {(site,elem) in

SublatticeSiteElement[subl]} elem;

103 set SublatticeMixSiteElement {subl in AllSublattices} dimen 3 =

104 setof {site in SublatticeMixSite[subl]} (site,first(

SublatticeSiteMixElem[subl,site]),last(

SublatticeSiteMixElem[subl,site]));

105

106 # set of sites with symmetric sublattice

107 set PhaseSymmetric;

108

109 data (dataFile);

110

111 model;

112

113 #### parsing sublattices with AMPL instead of converter

114

115 set SublatticeElement {AllSublattices};

116 set SublatticeComp {AllSublattices} dimen 2;

117 param sublatticeSymmetries {AllSublattices};

118

119 # increase to whatever value you need.

120 param factMax := 12;

121 param factorial {0..factMax};

122 let factorial[0] := 1;
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123 for {n in 1..factMax} {

124 let factorial[n] := n * factorial[n-1];

125 }

126

127 param whatsleft symbolic;

128 param thisPiece symbolic;

129 param thisSite;

130 param numComp;

131 param numSym;

132 param numSites;

133 param subpiece symbolic;

134 for {subl in AllSublattices} {

135 let SublatticeElement[subl] := {};

136 let SublatticeComp[subl] := {};

137 let SublatticeSiteElement[subl] := {};

138

139 # This is an implementation of "split(':', ...)", which does

not exist in AMPL.

140 # Less lengthy methods may be possible, feel free to

implement a better one.

141 let thisSite := 1;

142 let whatsleft := subl;

143 repeat {

144

145 # This is an implementation of "split(',', ...)", which

does not exist in AMPL.

146 let thisPiece := sub(whatsleft,":.*$", "");
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147 let SublatticeComp[subl] := SublatticeComp[subl] union {(

thisSite,thisPiece)};

148 repeat {

149 let subpiece := sub(thisPiece, ",.*$", "");

150 let SublatticeSiteElement[subl] :=

SublatticeSiteElement[subl] union {(thisSite,

subpiece)};

151 let SublatticeElement[subl] := SublatticeElement[subl

] union {subpiece};

152

153 if (match(thisPiece, ",") == 0) then

154 break;

155

156 let thisPiece := sub(thisPiece, "ˆ[ˆ,]*,", "");

157 }

158

159 if (match(whatsleft,":") == 0) then

160 break;

161

162 let whatsleft := sub(whatsleft, "ˆ[ˆ:]*:", "");

163 let thisSite := thisSite + 1;

164 }

165

166 # Here we count the symmetries of each sublattice: (not used

for anything right now)

167 # symmetries = N! / (a!b!c!d!), where a,b,c,d are the number

of each component
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168 let numSites := card(SublatticeComp[subl]); # number of sites

in sublattice

169 let numSym := factorial[numSites];

170 for {component in union {(site,comp) in SublatticeComp[subl]}

{comp}} {

171 let numComp := card( {(site,component) in SublatticeComp[

subl]} );

172 let numSym := numSym / factorial[numComp];

173 }

174 let sublatticeSymmetries[subl] := numSym;

175 }

176

177 #display SublatticeElement, SublatticeComp, SublatticeSiteElement

, sublatticeSymmetries;

178

179

180 # glue function to avoid log of nonpositive values

181 param lowerBound := 1e-8;

182 param a_glue := 1/(2*lowerBound);

183 param b_glue := log(lowerBound) + 1 - 2*a_glue*lowerBound;

184 param c_glue := lowerBound*log(lowerBound) - a_glue*(lowerBound

ˆ2) - b_glue*lowerBound;

185

186 param A {phase in Phases};

187 let {phase in Phases} A[phase] := sum {i in 1..nSites[phase]} a[

phase,i];

188
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189 var y{phase in Phases, (site,elem) in PhaseSiteElement[phase],

inst in PhaseInstances[phase]} := 1/(card(Phases)*maxSites*

card(Elements));

190

191 var phaseNonVacancy {phase in Phases, inst in PhaseInstances[

phase]}

192 = (sum {(site,elem) in PhaseSiteElement[phase] : elem not in

{'Va'}} (a[phase,site] * y[phase,site,elem,inst])) / A[

phase];

193

194 var f{phase in Phases, inst in PhaseInstances[phase]} := 1/card(

Phases);

195

196 # x:

197 var x {phase in Phases, elem in PhaseElementsVa[phase], inst in

PhaseInstances[phase]}

198 = ((sum {(site,elem) in PhaseSiteElement[phase]} (a[phase,

site]*y[phase,site,elem,inst]))/A[phase]) /

phaseNonVacancy[phase,inst];

199

200 # xi:

201 var xi {phase in Phases, elem in PhaseElementsVa[phase], inst in

PhaseInstances[phase]}

202 = (sum {(site,elem) in PhaseSiteElement[phase]} (a[phase,site

]*y[phase,site,elem,inst]))/A[phase];

203

204 param F_0 {elem in Elements} in [0,1];

205
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206 ### these variables are separate just for legibility

207

208 var phaseEntropy {phase in Phases, inst in PhaseInstances[phase]}

=

209 #(1/(phaseNonVacancy[phase,inst])) *

210 R * T * sum {(site,elem) in PhaseSiteElement[phase]}

211 a[phase,site]

212 * ( if (y[phase,site,elem,inst] > lowerBound)

213 then

214 y[phase,site,elem,inst]*log(y[phase,site,elem

,inst])

215 else

216 a_glue*y[phase,site,elem,inst]ˆ2 + b_glue*y[

phase,site,elem,inst] + c_glue

217 );

218

219

220 var phaseEnthalpy {phase in Phases, inst in PhaseInstances[phase

]} =

221 #(1/(phaseNonVacancy[phase,inst])) *

222 sum {subl in PhaseSublattice[phase], order in

PhaseSublatticeOrder[phase,subl]}

223 gibbs[phase,subl,order]

224 * ( prod {(site,elem) in SublatticeSiteElement[subl]} y[

phase,site,elem,inst] )

225 * ( if (card(SublatticeMixSiteElement[subl]) == 0)

226 then

227 1
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228 else

229 ( sum {(mixSite,elem0,elem1) in

SublatticeMixSiteElement[subl]} (y[phase,

mixSite,elem0,inst]-y[phase,mixSite,elem1,inst

]) )ˆorder

230 )

231 ;

232

233 # Disordered Contribution: G = G_dis(x) + G_ord(y) - G_ord(y=x)

=> phaseDisorder = G_dis(x) - G_ord(y=x)

234 # there will only be one disPhase -- if there are none, this

block is 0

235 var phaseDisorderDelta {phase in Phases, inst in PhaseInstances[

phase]}

236 = sum {(plusMinus,thePhase) in union {(phase,disPhase) in

PhaseDisorder} {(-1,phase), (1,disPhase)} }

237 plusMinus *

238 ( R*T* sum {(site,elem) in PhaseSiteElement[thePhase]}

239 ( a[thePhase,site] *

240 (if (xi[phase,elem,inst] > lowerBound)

241 then

242 xi[phase,elem,inst]*log(xi[phase,elem,

inst])

243 else

244 a_glue*(xi[phase,elem,inst])ˆ2 + b_glue*

xi[phase,elem,inst] + c_glue

245 )

246 )
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247 + sum {subl in PhaseSublattice[thePhase], order in

PhaseSublatticeOrder[thePhase,subl]}

248 ( gibbs[thePhase,subl,order]

249 * ( prod {(site,elem) in SublatticeSiteElement[

subl]} xi[phase,elem,inst] )

250 * ( if (card(SublatticeMixSiteElement[subl]) ==

0)

251 then

252 1

253 else

254 ( sum {(mixSite,elem0,elem1) in

SublatticeMixSiteElement[subl]}

255 (xi[phase,elem0,inst]-xi[phase,

elem1,inst]) )ˆorder

256 )

257 )

258 );

259

260 ## Magnetic Contribution, largely from Xiong 2012

261

262 var magneticCurie {phase in PhasesMagnetic, inst in

PhaseInstances[phase]} =

263 sum {subl in PhaseMagneticSublattices[phase]}

phaseSublatticeCurie[phase,subl] * prod {elem in

SublatticeElement[subl]} x[phase,elem,inst];

264
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265 var magneticAbsCurie {phase in PhasesMagnetic, inst in

PhaseInstances[phase]} = if (magneticCurie[phase,inst] > 0)

then magneticCurie[phase,inst]

266 else abs(magneticCurie[phase,inst] / phaseMagneticAF[phase]);

267

268 var magneticBeta {phase in PhasesMagnetic, inst in PhaseInstances

[phase]} =

269 sum {subl in PhaseMagneticSublattices[phase]}

phaseSublatticeBohr[phase,subl] * prod {elem in

SublatticeElement[subl]} x[phase,elem,inst];

270

271 var magneticAbsBeta {phase in PhasesMagnetic, inst in

PhaseInstances[phase]} = if (magneticBeta[phase,inst] > 0)

then magneticBeta[phase,inst]

272 else abs(magneticBeta[phase,inst] / phaseMagneticAF[phase]);

273

274 var magneticTau {phase in PhasesMagnetic, inst in PhaseInstances[

phase]} = if (magneticAbsCurie[phase,inst] <> 0) then T /

magneticAbsCurie[phase,inst] else Infinity;

275

276 param magneticA {phase in PhasesMagnetic} = 518/1125 +

11692/15975 * (1/phaseMagneticSF[phase] - 1);

277

278 var magneticWeight {phase in PhasesMagnetic, inst in

PhaseInstances[phase]} = if (magneticTau[phase,inst] ==

Infinity) then 0

279 else if (magneticTau[phase,inst] < 1) then
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280 (1 - (1/magneticA[phase]) * (79 * magneticTau[phase,inst

]ˆ(-1) / (140 * phaseMagneticSF[phase]) + 474/497 *

(1/phaseMagneticSF[phase]-1)

281 * (magneticTau[phase,inst]ˆ3 / 6 + magneticTau[phase,

inst]ˆ9 / 135 + magneticTau[phase,inst]ˆ15 / 600))

)

282 else

283 (-(1/magneticA[phase]) * (1/10 * magneticTau[phase,inst

]ˆ(-5) + 1/315 * magneticTau[phase,inst]ˆ(-15) +

1/1500 * magneticTau[phase,inst]ˆ(-25) ));

284

285 var phaseMagnetic {phase in Phases, inst in PhaseInstances[phase

]} = if (phase not in PhasesMagnetic) then 0 else

286 R * T * log(magneticAbsBeta[phase,inst] + 1) * magneticWeight

[phase,inst];

287

288

289 var phaseGibbs{phase in Phases, inst in PhaseInstances[phase]} =

290 (

291 phaseEntropy[phase,inst]

292 + phaseEnthalpy[phase,inst]

293 + phaseDisorderDelta[phase,inst]

294 + phaseMagnetic[phase,inst]

295 ) / (A[phase] * phaseNonVacancy[phase,inst]); # OPTION --

multiply times phaseNonVacancy for Model 2, do not

multiply for Model 1

296

297 var cons_comp {elem in Elements : elem != 'Va'} =
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298 sum{phase in Phases, inst in PhaseInstances[phase] : elem in

PhaseElements[phase]} f[phase,inst]*x[phase,elem,inst]; #

OPTION xi (Model 1) or x (Model 2)

299

300 ################# Objective Function

301

302 minimize Energy:

303 sum{phase in Phases, inst in PhaseInstances[phase]}(f[phase,

inst] * phaseGibbs[phase,inst]);

304

305 ################# Constraints

306

307 subject to Non_Vacant_Phases {phase in Phases, inst in

PhaseInstances[phase]}:

308 phaseNonVacancy[phase, inst] >= minNonVacancy; # arbitrary,

but ensures continuity in the definition of x -- when this

is active at equilibrium we should discard the point

309

310 subject to yI0 {phase in Phases, (site,elem) in PhaseSiteElement[

phase], inst in PhaseInstances[phase]}:

311 y[phase,site,elem,inst] >= 0;

312

313 subject to yI1 {phase in Phases, (site,elem) in PhaseSiteElement[

phase], inst in PhaseInstances[phase]}:

314 y[phase,site,elem,inst] <= 1;

315

316 subject to fI0 {phase in Phases, inst in PhaseInstances[phase]}:

317 f[phase,inst] >= 0;
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318

319 subject to fI1 {phase in Phases, inst in PhaseInstances[phase]}:

320 f[phase,inst] <= 1;

321

322 subject to Conservation_Components {elem in Elements : elem != '

Va'}:

323 cons_comp[elem] == F_0[elem];

324

325 subject to Conservation_Sublattice {phase in Phases, site in 1

..nSites[phase], inst in PhaseInstances[phase]}:

326 (sum {(site,elem) in PhaseSiteElement[phase]} y[phase,site,

elem,inst]) = 1;

327

328 option substout 1;

329 option presolve 0;

330

331 # For Debugging

332 # for {phase in Phases} {

333 # for {subl in PhaseSublattice[phase]} {

334 # print subl & " order " & PhaseSublatticeOrder[

phase,subl];

335 # for {(site,elem0,elem1) in

SublatticeMixSiteElement[subl]} {

336 # print site & " " & elem0 & " " & elem1;

337 # }

338 # }

339 # }
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[51] J. Ågren, “Diffusion in phases with several components and sublattices,” Journal of
Physics and Chemistry of Solids, vol. 43, pp. 421–430, 1982.

[52] B. Zhang, X. Li, and D. Li, “Assessment of thermal expansion coefficient
for pure metals,” Calphad, vol. 43, pp. 7 – 17, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0364591613000928

[53] B. Hallstedt, N. Dupin, M. Hillert, L. Höglund, H. Lukas, J. Schuster, and N. Solak,
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