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Tropical cyclones (TCs) can cause heavy casualties due to storm surge, high wind 8 

gusts, heavy rainfall and flooding, and landslides, so predicting TC is important. There 9 

are mainly two elements of TC forecasting: tracking prediction and intensity prediction. 10 

So far, it is found that tracking prediction is more mature than the intensity prediction. 11 

Various models are developed for TC intensity prediction and can be simple enough to 12 

run for a few seconds or complex enough to run for a couple of hours on a 13 

supercomputer. Although with so many models are developed, the intensity prediction 14 

accuracy is still very low, and one primary reason is the existence of Rapid 15 

Intensification (RI).  16 

Currently, most RI prediction studies are conducted based on a subset of the SHIPS 17 

database using a relatively simple model structure. However, variables (features) in the 18 

SHIPS database are built upon expert knowledge in TC intensity studies, and the variable 19 

values are derived from gridded model outputs or satellite observations. Are there any more 20 
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important variables in TC intensity predictions but not identified in the SHIPS dataset? In 21 

this study, two AI-based techniques are used to extract new features from a widely used 22 

comprehensive gridded reanalysis data set. The original SHIPS data, and the newly derived 23 

features are used as inputs to an artificial intelligence (AI) for the RI prediction. 24 

This study first constructs a complicated artificial intelligence (AI) system, the COR-25 

SHIPS model, based on the complete SHIPS dataset that handles feature engineering and 26 

selection, imbalance, prediction, and hyper parameter-tuning simultaneously. The COR-27 

SHIPS model is derived to improve the performance of the current researches in RI 28 

prediction and to identify other essential SHIPS variables that are ignored by previous 29 

studies with variable importance scores. COR-SHIPS is also used as the baseline model in 30 

the dissertation. 31 

To distill new variables from vast amounts of gridded data, two models, with a similar 32 

structure to the COR-SHIPS model but with an additional data filters, are designed in the 33 

dissertation to identify new features related to TC intensity changes in general and RI in 34 

particular. Here, we adopt the Local linear embedding (LLE) and deep learning (DL) 35 

techniques respectively to filter the near center and large-scale spatial data of the European 36 

Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data, one 37 

of the best reanalysis products at the moment, for identifying new variables related to RI, 38 

and term the corresponding LLE-SHIPS model and DL-SHIPS model, respectively. 39 

The result of the three models outperforms most of the earlier studies by at least 40 

approximately 30%, 60%, and 75%, respectively. In addition to the well-known SHIPS 41 

database, we specify the 400 and 450 hPa wind speeds, identify 1000 hPa potential vorticity 42 



xiv 

and vertical pressure speed, and differentiate humidity southeast, vorticity north, and 43 

eastward wind north to the TC centers that could help the prediction and understanding the 44 

occurrence of RI. 45 

 46 

 47 
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CHAPTER 1 INTRODUCTION 48 

1.1 Background 49 

Tropical cyclones (TCs) can cause heavy casualties due to storm surge, high wind 50 

gusts, heavy rainfall and flooding, and landslides (Pacific Disaster Center. n.d.). On May 51 

2, 2008, Cyclone Nargis sent a storm surge in Myanmar and killed at least 138,000 52 

people (Enz et al. 2009). Prediction of the behavior of TCs can minimize deaths and 53 

losses. Therefore, skillful TC prediction is significant to mitigate risk by timely planning 54 

and preparation.  55 

The first known TC forecast was conducted by Lt. Col. William Reid of the Corps of 56 

Royal Engineers in the western hemisphere in 1846, and barometric pressure was used as 57 

the basis for Reed's approach (Reid 1846). Most forecasts before 1900 were obtained by 58 

direct observation at weather stations through the telegraph. Significant changes were 59 

made in data collection since 1900, where radiosondes (1930), aircraft (1943), coast 60 

weather radar (1950), and weather satellite (1960) were introduced (Sheets 1990). 61 

There are mainly two elements of TC forecasting: track forecasting and intensity 62 

forecasting. These two predictions are critical in disaster prevention, but the development 63 

of these two presents a difference. So far, it is found that tracking prediction is more 64 

mature than intensity prediction. DeMaria et al. (2007) examined the National Hurricane 65 

Center (NHC) and Joint Typhoon Warning Center operational TC intensity forecasts for 66 

the three major northern hemisphere TC basins (Atlantic, eastern North Pacific, and 67 
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western North Pacific) for the past two decades. The intensity forecasts were compared to 68 

the track forecasts for the same data sample. The performance of the two forecasts was 69 

comparable at 12 h, but the track forecasts were 2 to 5 times more skillful by 72 h, with 70 

the largest ratio in the western Pacific. As lead time increases, tracking prediction became 71 

more skillful than intensity prediction. Cangialosi and Franklin (2017) indicated that in 72 

the Atlantic and Pacific, the skill of track prediction is at least 3-7 times larger than that 73 

of intensity in 12, 24, 36 hours, and 10-40 times more skillful by 48, 72, 96, and 120 74 

hours in 2016. Since the tracking forecasting is relatively accurate, and the intensity 75 

forecasting is with low skills, recent research on TC prediction mainly focuses on 76 

intensity forecasting on a time scale from 12 hours to 120 hours (Cangialosi and Franklin 77 

2017).  78 

Various models were developed for TC intensity prediction and can be simple enough 79 

to run for a few seconds or complex enough to run for a couple of hours on a 80 

supercomputer. Based on the mechanism, these models can be characterized as the 81 

dynamical model, the statistical model, and the statistical-dynamical model.  82 

1.1.1 Dynamical models 83 

Dynamical models, also known as the numerical models, consider complex 84 

physical processes and are used on the supercomputer to solve the ordinary and partial 85 

differential equations in physics. One of the most critical and influential models is the 86 

Geophysical Fluid Dynamics Laboratory (GFDL) model (Kurihara et al. 1998), which 87 

was used for a research purpose during 1973 and 1980. Encouraged by the performance 88 

of the GFDL model, the research model (GFDL) was converted to a comprehensive 89 
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prediction system that started in the mid-1980s. The process took about 15 years, and 90 

GFDL model became operational in 1995. The interpolated form of GFDL model (GFDI) 91 

became available for intensity in 1996, and a U.S. Navy's version of GFDI was added in 92 

1999 (Rennick 1999). Another widely used dynamical model is the hurricane weather 93 

research and forecast (H-WRF) model, which became operational in 2007 (Miller 2007). 94 

1.1.2 Statistical Model 95 

A statistical model does not include the physics of the atmosphere but instead is 96 

based on the relationship between specific information and behavior of TCs. The first 97 

statistical model was developed in 1972 to help generate TC track forecasts, and the 98 

model was named Climatology and Persistence (CLIPER5). In 1979, the Statistical 99 

Hurricane Intensity Forecast (SHIFOR) model, which consisted of climatology and 100 

persistence variables, began operational for TC intensity prediction (Jarvinen and 101 

Neumann 1979). A 5-day SHIFOR version (SHIFOR5) was implemented in 2001 (Knaff 102 

et al. 2003). Decay-SHIFOR5 is a form of SHIFOR5 that includes a weakening 103 

component when TCs move inland, and Decay-SHIFOR5 modifies intensity over land 104 

using CLIPER track and climatological decay rate (Rhome 2007). 105 

A well-known statistical model is the Statistical Hurricane Intensity Prediction 106 

Scheme (SHIPS) developed by DeMaria and Kaplan (1994). In SHIPS, different multiple 107 

regression models with persistence, synoptic, and climatological variables were derived 108 

to predict TC intensity changes in 12, 24, 36, 48, 72 hours for the Atlantic basin. The 109 

storm intensity, i.e., the dependent variable, is measured by the maximum 1-min 110 

sustained surface wind, and an independent variable (predictor) is considered significant 111 
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if the probability that the regression coefficient is different from 0 with exceeds 95% 112 

confidence.  113 

The candidate variables were displayed in Table 1.1. Among those, JDATE, 114 

VMX, DVMX, LAT, LONG, USM, VSM, and CSM were climatological and persistence 115 

variables, and POT, SHR, DSHR, REFC, PEFC, SIZE, and DTL were synoptic variables. 116 

POT took the effect of sea surface temperature (SST) into account since SST is closely 117 

related to TC intensification (Merrill 1987). SHR and DSHR were used to evaluate the 118 

vertical shear, and plenty of studies have shown vertical shear of the horizontal wind has 119 

a negative influence on TC intensification (e.g., Gray 1967; Merrill 1988). REFC and 120 

PEFC are included to account for positive interactions between the TC and synoptic-scale 121 

systems. SIZE was included as a measure of the extent of the outer circulation of the TC. 122 

Although all landfall cases were eliminated from the data, the proximity to land might 123 

still have a modifying influence on the storm intensity, and DTL was involved in the 124 

model. A simple backward-stepping procedure was conducted for the variable selection 125 

and POT, SHR, DVMX, REFC, PRFC, JDATE, LONG, DTL, SIZE, and DSHR were 126 

selected as the variables for the multiple regression model. The model was tested using 127 

the Jackknife procedure, and the result indicated that the intensity errors were 10% - 15% 128 

smaller than the errors from a model that used only climatology and persistence 129 

(SHIFOR5). However, the forecast only explained about 50% of the variability of the 130 

observed intensity change, which indicates that a statistical model with large-scale 131 

variables is not able to explain all types of storm process effects adequately (DeMaria and 132 

Kaplan 1994).  133 
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 134 

Table 1.1: Candidate variables and their abbreviations included in DeMaria and 135 

Kaplan (1994). 136 

Variable Abbreviation 

Absolute value of Julian date – 253 JDATE 

Initial storm intensity  VMX 

Intensity change during previous 12 h  DVMX 

Initial storm latitude  LAT 

Initial storm longitude  LONG 

Eastward component of storm motion 

vector 

USM 

Northward component of storm motion 

vector  

VSM 

Magnitude of storm motion vector  CSM 

Maximum possible intensity - initial 

intensity  

POT 

Magnitude of 850-200-mb vertical shear  SHR 

Time tendency of vertical shear 

magnitude  

DSHR 

The 200-mb relative eddy angular 

momentum flux convergence  

REFC 

The 200-mb planetary eddy angular 

momentum flux convergence 

PEFC 

The 850-mb relative angular momentum  SIZE 

Distance to nearest major landmass DTL 

 137 

1.1.3 Statistical-Dynamical Model.  138 

Statistical-dynamical model blends the statistical model and the dynamical model 139 

(NHC Track and Intensity Models 2017). In other words, the statistical-dynamical model 140 

employs variables derived from the dynamical models. Although SHIPS proposed in 141 

DeMaria and Kaplan (1994) was regarded as a statistical or statistical-synoptic model. In 142 

1997, SHIPS was converted to a statistical-dynamical model by using large-scale 143 
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variables in Global Forecast System (GFS) (DeMaria et al. 2005). Therefore, the SHIPS 144 

after 1997 is regarded as a statistical-dynamical model. 145 

DeMaria et al. (2005) described modifications to the NHC operational SHIPS 146 

intensity model from 1997 to 2003, including an additional method to account for the use 147 

of variables from the dynamical model in 1997, the storm decay over land in 2000, the 148 

extension of the forecasts from 3 to 5 days in 2001, and the use of the GFS, a global 149 

numerical computer model run by National Oceanic and Atmospheric Administration 150 

(NOAA) in 2001. The study showed that SHIPS performs well in predicting 72 h 151 

intensity in the Atlantic, and at 48 and 72 h in the east Pacific. The inclusion of the 152 

effects of the decay over land beginning in 2000 reduces the short period Atlantic 153 

intensity error but not for 72 h forecasting. An experimental version of SHIPS consisted 154 

of satellite variables during the 2002 and 2003 seasons significantly improved skill in the 155 

east Pacific forecasts by up to 7% at 12–72 h, and 3.5% through 72 h in Atlantic forecasts 156 

(DeMaria et al. 2005).  157 

The latest version of SHIPS, which has an inland decay component, was known 158 

as Decay-SHIPS (DSHIPS). The DSHIPS typically provides more accurate TC intensity 159 

forecasts when TCs encounter or interact with the land. Over open water with no land 160 

interactions, the intensity forecasts from DSHIPS and SHIPS are identical (Rhome 2007). 161 

As SHIPS model is mainly used in Atlantic and northeast Pacific, a similar model 162 

known as the Statistical Typhoon Intensity Prediction Scheme (STIPS) was developed for 163 

the northwest Pacific Ocean and Southern Hemisphere by Knaff et al. (2005). 164 
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The values of SHIPS variables, available openly, are considered as the SHIPS 165 

database. Every year, instances from the previous year and new variables from other 166 

sources may be added to the database, while some old variables may be removed. The 167 

development of the SHIPS database was described in DeMaria and Kaplan (1994, 1999), 168 

DeMaria et al. (2005), and Kaplan et al. (2010, hereafter, KDK10). The most recent 169 

version of the database is the SHIPS Developmental Data, a complete dataset with known 170 

different types of the parameter related to TC intensity changes (SHIPS 2018a). The 171 

SHIPS database was used by many TC intensity related types of research. One such 172 

example is the logistic growth equation model (LGEM) (DeMaria 2009), which was also 173 

a type of statistical-dynamical TC intensity model and used the same input as SHIPS but 174 

in the framework of a simplified dynamical prediction system. LGEM estimated the only 175 

parameter in LGEM - population growth rate, which is proportional to the maximum 176 

sustained wind, using four free parameters. These four parameters were the time-177 

dependent growth rate, maximum potential intensity (MPI), and two constants that 178 

determine how quickly the intensity relaxes toward the MPI, i.e., vertical shear (S) and a 179 

convective instability parameter (C). LGEM was found to explain observed intensity 180 

variations better than SHIPS (DeMaria and Kaplan 1994). LGEM-MR, a version of 181 

LGEM, where the remaining parameters are determined by a multiple regression method 182 

using a subset of the SHIPS database, came to work in real-time from 2006. The average 183 

skill of LGEM-MR forecasts is up to 17% better than those from the SHIPS model 184 

(DeMaria 2009).  185 
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Since a large number of intensity forecasting models came into available, the 186 

consensus prediction model (ICON) was developed by Sampson et al. (2008). A three 187 

models consensus of DSHIPS, GFDI, and GFNI (The interpolated Navy version of 188 

GFDL hurricane model) were found outperform almost all the single intensity forecasting 189 

model in the Atlantic basin. 190 

1.2 The problem 191 

Although the statistical-dynamical models have been used since early 1990, the 192 

prediction accuracy is still not high. One primary reason is the existence of Rapid 193 

Intensification (RI) (Kaplan and DeMaria 2003; DeMaria et al. 2005; Yang et al. 2007).  194 

1.2.1 SHIPS-RII model (KD03) 195 

RI was defined in Kaplan and DeMaria (2003, hereafter, KD03), as the maximum 196 

sustained surface wind speed increase of 30 kt or more over a 24-h period, and KD03 197 

derived the initial version of the Statistical Hurricane Intensity Prediction Scheme Rapid 198 

Intensification Index (SHIPS-RII) model for RI prediction for the Atlantic basin. A two-199 

sided t-test was utilized in KD03 to determine if the 16 different variables, listed in Table 200 

1.2, display significant differences in RI instances and non-RI instances. 201 

 202 

Table 1.2: Candidate variables and their abbreviations included in KD03. 203 

Variable Abbreviation 

Maximum sustained surface wind speed  VMAX 

Latitude  LAT 

Longitude  LON 

Storm speed  SPD 

Intensity change during the previous 12 h DVMX 

Storm motion USTM 

The absolute value of (Julian date - 253)  JDAY 
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Sea surface temperature  SST 

Maximum possible intensity - initial 

intensity 

POT 

850–200-hPa vertical shear SHR 

200-hPa wind  U200 

200-hPa temperature  T200 

850–700-hPa relative humidity  RHLO 

850-hPa relative vorticity  Z850 

200-hPa relative eddy angular momentum 

flux  

REFC 

Steering layer  SLYR 

 204 

The result indicated that  205 

• 11 of 16 variables except for VMAX, SPD, JDAY, T200, and Z850 show 206 

significantly difference at the 95% significance level; 207 

• And among them, 10 variables except for LON show significantly difference at 208 

the 99% significance level;  209 

• 7 of them, i.e., LAT, DMAX, SST, RHLO, POT, SHR, and U200, show 210 

significantly difference at the 99.9% significance level 211 

in RI instances and non-RI instances.  212 

Variables that are significant at 95%, 99%, and 99.9% confidence level were used to 213 

evaluate the composite probability of RI, respectively, and variables at 99.9% level were 214 

found to have the highest probability. However, LAT and U200 were further removed 215 

because they were found to be highly correlated to SHR, and SST, and POT, respectively, 216 

and highly correlated variables do not give us much additional information. Therefore, 217 

DVMX, SHR, SST, POT, and RHLO were remained to achieve the highest composite 218 

probability of RI. 219 
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KD03 also found that RI instances tended to occur farther south and west than the 220 

non-RI instances. In addition, the RI instances had a more westerly component of motion 221 

and were intensifying more during the preceding 12h than the non-RI instances. 222 

Furthermore, the RI instances appeared farther from their maximum potential intensity 223 

and in regions of warmer water, higher lower-tropospheric relative humidity, lower 224 

vertical shear, and more easterly upper-tropospheric flow than the non-RI instances. 225 

Interestingly, RI was more likely to occur for systems that are in an environment where 226 

forcing from upper-level troughs or cold lows was weaker than the average of all.  227 

1.2.2 Revised RII model (KDK10) 228 

To employ a more sophisticated statistical method, compared to KD03, KDK10 used 229 

four more variables, one large-scale variable, and three satellite-derived variables,   230 

• 200-hPa divergence from the 0–1000-km radius (D200), 231 

• Percent area from 50 to 200 km covered by ≤ −30𝑜C  infrared (IR) imagery 232 

cloud-top brightness temperatures (PX30), 233 

• Standard deviation of 50–200-km IR cloud-top brightness temperatures (SDBT), 234 

and 235 

• Ocean heat content (OHC), 236 

to conduct a linear discriminant analysis for RI prediction both in the Atlantic and in the 237 

eastern North Pacific based on TCs happened during 1995 and 2006. KDK10 evaluated 238 

the performance of the model in terms of probability of detection (POD) and false alarm 239 

ratios (FAR), and the model was found better than any other operational RI prediction 240 

models at that time. Meanwhile, D200, SHRD, and the PER were found to be the most 241 
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important variables in the Atlantic basin RI prediction. In contrast, PER, SDBT, and POT 242 

were found to be the most important variables in the eastern North Pacific basin.  243 

1.2.3 Enhanced RII model (KRD15) 244 

To improve the usefulness of the revised RII model, Kaplan et al. (2015, hereafter, 245 

KRD15) reevaluated the variables for RI with 20-55 knots intensity changes in 12 to 48 246 

hours (seven combinations) for both the Atlantic basin and the eastern North Pacific and 247 

selected ten variables (replaced two and added two in comparison to those in KDK10). 248 

They then used the linear discriminant analysis technique to develop an enhanced SHIPS-249 

RII. The enhanced SHIPS-RII model, along with the logistic regression model and the 250 

Bayesian classification models by Rozoff and Kossin (2011), were fed into a probabilistic 251 

model, and resulted in a better RI prediction.  252 

Although KD03, KDK10, and KRD15 achieved certain prediction skills for the RI 253 

prediction, the test method used in those studies for variable selection is a one-by-one t-254 

test, which is a trial-and-error process on individual factors. There are possibilities that a 255 

single variable may be insignificantly correlated to response, but multiple variables 256 

together may have a significant impact on the response’s prediction skill (Trevor et al. 257 

2009). Furthermore, only a few variables (usually less than 20) are selected for these 258 

studies, and many useful variables may be neglected. Therefore, more systematic 259 

methods are needed to conduct an exhaustive search for the most influential factors 260 

contributing to RI in a given set of factors. Efforts were made by Yang et al. (2008), and 261 

Yang et al. (2011), which employed the association rule for feature selection among the 262 

variables identified by KD03. 263 
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1.2.4 Systematic machine learning and data mining models 264 

Association rule is an unsupervised and automatic data exploration method to 265 

explore multiple-to-one associations for discovering interesting relationships hidden in 266 

large databases (Yang et al. 2007). The strength of association rule can be measured 267 

concerning its support and confidence. Support determines how often a rule applies to a 268 

given data set, while confidence determines how frequently the rule happens (Tan 2015). 269 

Yang et al. (2007) adopted association rules with the 11 independent variables being 270 

discretized into two value ranges (High-Low) for each of the variables to predict RI. A 271 

three variables association rule (47.6% confidence, and 1.3% support) mined out has a 272 

higher RI probability than that with five variables (41% confidence, 0.7% support) 273 

identified by KD03. Yang et al. (2011) used association rule with more variables from 274 

KD03 database for the period 1997-2003. The result showed that the association rule 275 

reaches the support of 5.5% with an accuracy of no less than 70%. However, there are a 276 

large number of RI instances that do not follow the rule; a more generalized approach 277 

should be used.  278 

Furthermore, Yang (2016, hereafter, Y16) employed WEKA (Holmes et al. 1994), 279 

a machine learning toolbox, to conduct an exhaustive and systematic examination for 280 

classification-based RI prediction with various models, subset features, and cost values 281 

for imbalance handling. Y16 split the entire dataset into a training dataset for model 282 

fitting and a test dataset for model evaluation. Although the performance of the best 283 

model in Y16 achieved a decent training result, the performance on test data was not as 284 

good. Apparently, the commonly known overfitting caused an accuracy discrepancy.  285 
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One way to improve the performance of Y16 is to tweak the so-called 286 

hyperparameters, the set of model parameters that do not change over the training process 287 

because in Y16, only the default hyperparameter setting is used. The other way is to 288 

improve the cost-effective approach used in Y16 that handles the highly imbalanced RI 289 

and non-RI instances. 290 

So far, most RI prediction studies, including those introduced above, are 291 

conducted based on SHIPS database. However, variables in the SHIPS database are built 292 

upon human expertise in defining a relevant event based on hard and subjective 293 

thresholds. There are possibilities that those expert engineered variables in SHIPS may 294 

not be comprehensive enough, or some useful information may be ignored by the experts 295 

since the mechanism of TC intensification, and RI process is still not fully understood.  296 

Therefore, other data sources should be employed in addition to SHIPS data to 297 

enhance the performance of the model. As one of the best reanalysis products at the 298 

moment, European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-299 

Interim reanalysis data can be a candidate. A large number of researches regarding TCs 300 

are conducted based on ECMWF ERA-Interim reanalysis data. 301 

For example, in Wang et al. (2015), the relationship between the vertical wind 302 

shear (VWS) and the intensity change is analyzed based on ECMWF ERA-Interim 303 

reanalysis data. VWS was found negatively correlated with the intensity change, and 304 

furthermore, instead of commonly used shear between 200 and 850 hPa, the shear 305 

between 300 and 1000 hPa displays a higher negative correlation with the TC intensity 306 

change. Wang et al. (2015) also indicated that the probability for TC intensifies the 307 
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intensity and suffers RI increases when the VWS is falling and sea surface temperature 308 

(SST) is increasing. Other researches with the ERA-Interim data on TC related topics 309 

include Qian et al. (2016), Wang (2018), Astier et al. (2015), and Ferrara et al. (2017). 310 

1.3 Proposed approach 311 

To improve the performance of previous RI prediction researches and to identify 312 

the new additional essential variables from the prediction, this study constructs a well-313 

tailored artificial intelligence (AI) system that uses a data filter to process the input data 314 

into attribute-relation format, adopts a customized data sampler for overcoming the 315 

imbalance, employs a very powerful state-of-the-art classifier, and tweaks the 316 

hyperparameters for optimal results. The structure of the proposed AI system is displayed 317 

in Figure 1.1. The input data could be a single data source, as well as multiple data 318 

sources, and for a single data source input, the input data will be processed to attribute-319 

relation format by the data filter to be fed into the data sampler. If there are multiple input 320 

data sources, each data source will be processed into a separate attribute-relation table 321 

and are concatenated with each other before feeding into the data sampler. The data 322 

sampler will upsample RI (minority) instances and downsample non-RI (majority) 323 

instances accordingly, leading to a balanced augmented data set. The classifier will then 324 

classify the balanced data into RI or non-RI instances. Although the hyperparameter 325 

tuning is displayed as one component in Figure 1.1, the process could take place in 326 

multiple steps, either independently for one component, or in several components for the 327 

whole AI system. 328 
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Based on the AI system in Figure 1.1, three models, the COR-SHIPS model, the 329 

LLE-SHIPS model, and the DL-SHIPS model, are developed, and some details are 330 

elaborated below. 331 

 332 

 333 

 334 

Figure 1.1: The Artificial Intelligence (AI) system structure designed in this study. 335 

One data filter is displayed in the Figure to process one data source, but if there are 336 

multiple input data sources, multiple data filters will be used, and each input data 337 

will be processed separately from each data filter into a separate attribute-relation 338 

table. All of the data filters’ output is concatenated together before feeding into the 339 

data sampler. 340 

 341 

1.3.1 COR-SHIPS model  342 

COR-SHIPS model employs only SHIPS developmental data and is the continued 343 

work of Y16. Comparing with Y16, the COR-SHIPS model adopts a different data filter, 344 

upsamples RI instances, employs a more powerful classifier, and tunes their 345 

hyperparameters to improve the performance. Figure 1.2 displays the structure of the 346 

COR-SHIPS model, which consists of four components, SHIPS data filter, GMM-347 

SMOTE data sampler, XGBoost classifier, and hyperparameter tuning component. The 348 
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SHIPS data filter is first used to convert the SHIPS developmental case-based data blocks 349 

to commonly used attribute-relation format and to filter the variables to generate a 350 

reduced variable set as the input for the data sampler. The GMM-SMOTE data sampler, 351 

XGBoost classifier, and hyperparameter tuning component are working the same as the 352 

corresponding component in Figure 1.1.  353 

 354 

 355 

Figure 1.2: COR-SHIPS model structure. 356 

 357 

1.3.2 LLE-SHIPS model and DL-SHIPS model  358 

However, similar to Y16, the COR-SHIPS model still only employs the SHIPS 359 

dataset, which is largely based on expert experiences. Since the mechanism of the TC is 360 

unknown, the knowledge from the domain scientist may not be comprehensive, which 361 

may result in some important variables not being included in the SHIPS dataset. 362 

Therefore, an additional input data source, comprehensive ECMWF ERA-Interim 363 

reanalysis data, is used, and different ERA-Interim data filters are used to process the 364 

data into the attribute-relation format. Two models, the LLE-SHIPS model, and the DL-365 

SHIPS model, are proposed based on the structure that is described in Figure 1.3 with 366 



17 

 

almost the same structure as that of the COR-SHIPS model in Figure 1.2 except two 367 

differences. 368 

Firstly, in addition to using the SHIPS data filter, LLE-SHIPS model and DL-369 

SHIPS model employ other ERA-Interim data filters to process ERA-Interim data. The 370 

ERA-Interim data filter in the LLE-SHIPS model is used to only value near the TC center 371 

(near center information) that is derived from the reanalysis data. Due to the limitation on 372 

LLE implementation, the DL-SHIPS model will be used to derive additional large-scale 373 

variables, up to 1,200 km from the TC centers. 374 

 Secondly, the hyperparameter tuning component of the LLE-SHIPS model and 375 

DL-SHIPS model tune of ERA-Interim data filter independently from the other 376 

components, which are similar to the COR-SHIPS model. 377 

 378 

 379 

Figure 1.3: LLE-SHIPS and DL-SHIPS model structure. 380 

 381 



18 

 

In sum, this study unprecedently designs an AI system that automates data 382 

filtering, data augmentation, classification, and hyperparameter tuning for TC intensity 383 

prediction to improve the RI prediction performance and identify new variables that are 384 

critical in the prediction process. This is also one of the few attempts to explore how the 385 

state of art machine learning models perform in TC RI prediction. 386 

The outline of the remainder of this dissertation is constructed as follows. The 387 

datasets, including but not limit to ERA-Interim and SHIPS for this study, are introduced 388 

in Chapter 2. Chapter 3 specifies data filters, and Chapter 4 describes the data sampler. 389 

The classifier and hyperparameter tuning components are discussed in Chapter 5. Chapter 390 

6 delivers the result and discusses variable importance. Chapter 7 concludes the study and 391 

discusses future research. 392 
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CHAPTER 2 DATA 393 

The variables used in this study originated from three datasets for the 1982 to 394 

2017 period. The first data is SHIPS Developmental Data, the most complete dataset with 395 

known different types of the parameters related to TC intensity changes (SHIPS 2018a). 396 

Another data set is the ECMWF ERA-Interim pressure level reanalysis data, “a reanalysis 397 

of the global atmosphere covering the data-rich period since 1979 available every 6 hours 398 

over 37 different vertical pressure levels” (Berrisford et al. 2011). The last is the National 399 

Hurricane Center (NHC) best track data, which has “a comma-delimited, text format with 400 

six-hourly information on the location, maximum winds, central pressure, and (beginning 401 

in 2004) size of all known TCs and subtropical cyclones” (Landsea and Franklin 2013). 402 

To prepare for further analysis in this study, National Hurricane Center (NHC) best track 403 

data is first used to locate the center of the TC, and related spatial subsets around TC 404 

centers is cropped from ECMWF ERA-Interim pressure level reanalysis data. Then ERA-405 

Interim variables are processed through the ERA-Interim data filter and then 406 

concatenated with the SHIPS variables processed from the SHIPS data filter.  407 

2.1 SHIPS Developmental Data 408 

At the moment, SHIPS Developmental Data (SHIPS 2018a), collected in ASCII text 409 

file (SHIPS 2018b), is the most complete dataset with known different types of the 410 

parameters related to TC intensity changes. Every year, instances from the previous year, 411 

and possibly new variables from other sources are added to the SHIPS Developmental 412 

Data while some old variables may be removed. The 2018 version of the SHIPS 413 
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Developmental Data used in this study had TC instances from 1982 to 2017 in the 414 

Atlantic basin. 415 

SHIPS data consists of synoptic, climatological, persistence, geographical, satellite, 416 

experimental variables. Some of the variable examples are horizontal wind difference 417 

between 850 and 200 hPa (SHRD) 1, relative humidity between 850 and 700 hPa 418 

(RHLO), the maximum potential intensity from Kerry Emanuel equation (VMPI), 419 

previous 12-hour change intensity (BD12), the 200 hPa zonal wind (U200), the 200 hPa 420 

zonal wind with radius 0-200 km (U20C), and Reynolds SST (RSST) (DeMaria and 421 

Kaplan 1994; DeMaria and Kaplan 1999; DeMaria et al. 2005).  422 

The values of these variables are derived from multiple types of data sources and are 423 

accumulated based on multiyear data processing. It is almost impossible to describe all of 424 

them in detail, so we describe some data source examples below (Readers are referred to 425 

the SHIPS data description file for more information (SHIPS 2018c)). 426 

TPW (Total Precipitable Water), which is the volume of water vapor in a column that 427 

from the earth surface to the atmosphere, is a meteorological parameter used for heavy 428 

precipitation prediction. TPW is created by two satellite instruments, AMSU (Advanced 429 

Microwave Sounding Unit) on three NOAA satellites, and SSM/I (Special Sensor 430 

Microwave Imager) on three DMSP (Defense Meteorological Satellite Program) satellites 431 

(Kidder and Jones 2007), using a blending algorithm. In this study, 40 variables are TPW 432 

variables in different spatial scale related to TC center, including 21 variables in MTPW 433 

 
1 Original abbreviations used in SHIPS are used here. Readers are referred to SHIPS documentation (SHIPS 
2018c) for details. 
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(explained in Table 2.1 and also will be discussed below), and 19 variables, PW01 to 434 

PW19, in different temporal scale of MTPW. 435 

Infrared (IR) imagery is produced by sensing the electromagnetic radiations emitted 436 

or reflected from a target surface. IR imagery obtained from GEOS east and GEOS west 437 

has high temporal and spatial resolution and also is well known for its correlation with 438 

TC rapid intensification (Knaff et al. 2008). Variables in SHIPS created from GEOS 439 

infrared (IR) imagery are: IR00, IRXX, IRM3, and IRM1 are in different spatial and 440 

temporal scales. More details are explained in Table 2.1. 441 

 442 

Table 2.1: List of one-time variables (SHIPS 2018a), explaining the details of each 443 

variable, and the values for each corresponding time column (Adopted from SHIPS 444 

(2018c)). 445 

Variable 

Name 

Variable description  

HIST Storm history variable. The number of 6 hour periods the storm max wind 

has been above 20, 25, …, 120 kt 

IR00 Variables from GOES data (not time dependent). The 20 values in 

      this record are as follows: 

      TIME = 0: Time (hhmm) of the GOES image, relative to this case 

      TIME = 6:  Average GOES ch 4 brightness temp (deg C *10), r=0-200 

km  

      TIME = 12: Standard deviation of GOES BT (deg C*10), r=0-200 km  

      TIME = 18: Same as 2) for r=100-300 km 

      TIME = 24: Same as 3) for r=100-300 km 

      TIME = 30:  Percent area r=50-200 km of GOES ch 4 BT < -10 C  

      TIME = 36: Same as 6 for BT < -20 C 

      TIME = 42: Same as 6 for BT < -30 C 

      TIME = 48: Same as 6 for BT < -40 C 

      TIME = 54: Same as 6 for BT < -50 C 

      TIME = 60: Same as 6 for BT < -60 C 

      TIME = 66: max BT from 0 to 30 km radius (deg C*10) 

      TIME = 72: avg BT from 0 to 30 km radius (deg C*10) 

      TIME = 78: radius of max BT (km) 

      TIME = 84: min BT from 20 to 120 km radius (deg C*10) 
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      TIME = 92: avg BT from 20 to 120 km radius (deg C*10) 

      TIME = 98: radius of min BT (km) 

      TIME = 102 to 120: Variables need for storm size estimation 

IRXX Same as IR00 above, but generated from other variables (not satellite 

data). These should only be used to fill in for missing IR00 if needed 

IRM1 Same as IR00 but at 1.5 hours before initial time 

IRM3 Same as IR00 but at three hours before initial time 

PSLV Pressure of the center of mass (hPa) of the layer where storm motion best 

matches environmental flow (t=0 only). Also, the information used to 

calculate the steering layer pressure.  

              All fields are valid at TIME = 0, and those in the TIME = 6 to 

TIME = 102 columns include the following: 

  TIME = 6 column: The observed zonal storm motion component 

(m/s *10) 

 TIME = 12 column: The observed meridional storm motion 

component (m/s *10) 

TIME=18, TIME=24 columns: Same as t=6, 12 hr columns but for 

the 1000 to 100 hPa mass weighted deep layer environmental wind 

(m/s *10) t=30, t=36 columns: Same as t=6,12 columns but for the 

optimally weighted deep layer mean flow (m/s *10) 

 TIME=42 column: The parameter alpha that controls the constraint 

on the weights from being not too “far” from the deep layer mean weights 

(non-dimensional, *100) 

  TIME=48 to TIME=102 columns: The optimal vertical weights for 

p=100, 150, 200, 250, 300, 400, 500, 700, 850 and 1000 hPa (non-

dimensional *1000) 
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MTPW Total Precipitable Water (TPW) variables at t=0 from the GFS analysis. 

The 21 values in this record are as follows: 

TIME = 0: 0-200 km average TPW (mm * 10) 

TIME = 6: 0-200 km TPW standard deviation (mm * 10) 

TIME = 12: 200-400 km average TPW (mm * 10) 

TIME = 18: 200-400 km TPW standard deviation (mm * 10) 

TIME = 24: 400-600 km average TPW (mm * 10) 

TIME = 30: 400-600 km TPW standard deviation (mm * 10) 

TIME = 36: 600-800 km average TPW (mm * 10) 

TIME = 42: 600-800 km TPW standard deviation (mm * 10) 

TIME = 48: 800-1000 km average TPW (mm * 10) 

TIME = 54: 800-1000 km TPW standard deviation (mm * 10) 

TIME = 60: 0-400 km average TPW (mm * 10) 

TIME = 66: 0-400 km TPW standard deviation (mm * 10) 

TIME = 72: 0-600 km average TPW (mm * 10) 

TIME = 78: 0-600 km TPW standard deviation (mm * 10) 

TIME = 84: 0-800 km average TPW (mm * 10) 

TIME = 90: 0-800 km TPW standard deviation (mm * 10) 

TIME = 96: 0-1000 km average TPW (mm * 10) 

TIME = 102: 0-1000 km TPW standard deviation (mm * 10) 

TIME = 108: %TPW less than 45 mm, r=0 to 500 km in 90 deg 

azimuthal quadrant centered on up-shear direction 

TIME = 114: 0-500 km averaged TPW (mm * 10) in 90 deg up-

shear quadrant 

TIME = 120: 0-500 km average TPW (mm * 10) 

 446 

The NCODA system is “an oceanographic version of the multivariate optimum 447 

interpolation (MVOI) technique widely used in operational atmospheric forecasting 448 

systems. The ocean analysis variables in NCODA are temperature, salinity, geopotential 449 

(dynamic height), and velocity” (Cummings 2005). Related variables are NSST (SST 450 

from the NCODA analysis), NTMX (Max ocean temperature in the NCODA vertical 451 

profile), NDFR (Depth of the lowest model level in the NCODA analysis), NTFR (Ocean 452 

temperature at the lowest level in the NCODA analysis), NOHC (Ocean heat content 453 

from the NCODA analysis relative to the 26 degree C isotherm), NO20 (Same as NOHC 454 
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with respect to the 20 degree C isotherm), and XNST-XO20 (Climatological values of the 455 

NCODA variables with relate to the depth of the 30, 28, …, 16 deg C isotherms). 456 

The original format for SHIPS data is an ASCII text file, which consists of a large 457 

number of blocks, and each block involves variable names and their values from the 458 

current time up to 120 hours in a 6-hour interval. Some satellite and count variables only 459 

have one time only, and a few other variables are with values up to 12 hours before the 460 

current time.  461 

Figure 2.1 displays an example of one data block, which has 141 lines with the line 462 

name at the end of each row with two special notation HEAD/LAST for the start/end of 463 

the block. TIME indicates the relative hour to the current time, and 9999 is filled when 464 

the value of a variable is not available. Based on the contents of the data block, all the 465 

lines can be divided into three categories: 466 

• Special notations: HEAD, LAST, and TIME. The detailed information of HEAD, 467 

LAST, and TIME are displayed in Table 2.2. 468 

• One-time variables: HIST, IRXX, IR00, IRM1, IRM3, PSLV, and MTPW: Those 469 

variables have only one-time values such as satellite and count variables with 470 

each TC instance, and the values on a particular column are with different 471 

meanings rather than time-dependent values. In Figure 2.1, 0 to 120 hours are 472 

corresponding to 21 values. The detailed information is displayed in Table 2.2, 473 

which also indicates that within each line, each element (column) only presents a 474 

different variable rather than providing values of variables at 6 hour interval. For 475 

example, that MTPW at TIME 6 column is 44 implies 0-200 km Total 476 
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Precipitable Water standard deviation (mm * 10) is 44 based on Figure 2.1 and 477 

Table 2.1. 478 

• Time-dependent variables: all other lines (variable names): Each line provides 479 

values of the corresponding variable at 6 hour interval at most from past 12 hours 480 

(-12 in TIME line) up to 120 hours (120 in TIME line) in the future as displayed 481 

in Figure 2.1. For example, VMAX at TIME 6 is 25 implies that 6 hours later 482 

from the moment of the block the VMAX is 25 (kt) based on Figure 2.1. 483 

 484 

Table 2.2: List of the special notations (SHIPS 2018a), explaining the details of each 485 

variable (Adopted from SHIPS (2018c)). 486 

Variable 

Name 

Variable description  

HEAD Header line (1st four letters of storm name, 2-digit year, month, day, and 

UTC time, maximum winds, lat, lon, minimum sea level pressure, and 

ATCF ID number (e.g., AL011982) at t=0 of the current case) 

TIME Time away from current 

LAST The last line for this case 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 
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(a) 495 

 496 

 497 

 498 

 499 

 500 
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(b) 501 

 502 
Figure 2.1: An example of data block of original SHIPS ASCII text file with 141 503 

lines. a) the first 70 lines of the block. b) the rest lines with the first line duplicated 504 

with that in a). 505 

 506 

Only special notations and one-time variables are discussed in detail above 507 

because all the time-dependent variable values are organized in the same format.  508 

 509 



28 

 

2.2 ECMWF ERA-Interim reanalysis data 510 

ECMWF was founded in 1973 and is a research institute sponsored by several 511 

countries to produce numerical weather prediction to its member countries. ERA-Interim 512 

reanalysis data are generated by ECMWF every 6 hours and global wise covered with a 513 

horizontal resolution approximately 80km from its forecast numerical model to "improve 514 

on various technical aspects of reanalysis such as data selection, quality control, bias 515 

correction, and performance monitoring, each of which can have a major impact on the 516 

quality of the reanalysis products." (Dee et al. 2011). In short, the ERA-Interim reanalysis 517 

data is derived from the assimilating atmospheric model and can be regarded as the 518 

observed data. ERA-Interim reanalysis data has five data products, model level dataset, 519 

potential temperature dataset, potential velocity dataset, pressure level dataset, and 520 

surface dataset. Among them, the pressure level dataset is the most frequently used in TC 521 

researches. For example, Wang et al. (2015) adopted ERA-Interim pressure level data 522 

product to evaluate how vertical wind shear is influencing TC intensity change; Li et al. 523 

(2017) derived vorticity analysis from identifying TCs' track in Northwest Pacific Ocean 524 

Region based on ERA-Interim pressure level data product.  525 

As the primary focus of this study is the TC in the Atlantic basin, ERA-Interim 526 

pressure level dataset, stored in a netCDF format, in the Atlantic basin is used. The 527 

Temporal and spatial coverage, the pressure levels, as well as the variable abbreviations 528 

of ERA-Interim pressure level dataset, are listed in Table 2.3, and the variables are 529 

explained in Table 2.4. 530 

 531 
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 532 

Table 2.3: Temporal and spatial coverage of the ERA-interim pressure level data 533 

and its available pressure levels and variables. 534 

Temporal Coverage Four times daily, midnight, 6 am, noon, 

and 6 pm, January 1979 to two months 

delay of the moment  

Spatial coverage Global grid, 0.75 degree resolution 

Pressure levels (37 to 1) 1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 125, 

150, 175, 200, 225, 250, 300, 350, 400, 

450, 500, 550, 600, 650, 700, 750, 775, 

800, 825, 850, 875, 900, 925, 950, 975, 

1000 hPa 

Variables (short names explained in Table 

2.4) 

cc, ciwc, clwc, d, z, w, o3, pv, r, q, t, u, v, 

and vo 

 535 

Table 2.4: Variable names, abbreviations, units, and description for the 14 variables 536 

in the ERA-Interim pressure level dataset. 537 

Variable Name 

Abbrev

iation Units Description 

Fraction of cloud 

cover cc percentage 

Horizontal fraction of the grid box 

covered by cloud 

Cloud ice water 

content ciwc kg kg-1 

Grid-box mean specific cloud ice water 

content (mass of condensate / mass of 

moist air) 

Cloud liquid water 

content clwc kg kg-1 

Grid-box mean specific cloud liquid 

water content (mass of condensate / 

mass of moist air) 

Divergence d s-1 Relative divergence 

Geopotential z m2 s-2 At the surface: orography 

Vertical velocity w Pa s-1 

Pressure vertical velocity dp/dt. In the 

model equations it is usually denoted by 

the Greek letter omega 

Ozone mass 

mixing ratio o3 kg kg-1 Mass mixing ratio of Ozone 

Potential vorticity pv K m2 kg-1s-1 

The ability of air to rotate in the 

atmosphere.  “conservation equation 

directly ties together the dynamics and 

the heating” (Molinari 1989) 
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Relative humidity r percentage 

Relative humidity is defined with 

respect to saturation of the mixed phase, 

i.e. with respect to saturation over ice 

below -23oC and with respect to 

saturation over water above 0oC. In the 

regime in between a quadratic 

interpolation is applied 

Specific humidity q kg kg-1 

Grid box mean (mass of water vapour / 

mass of moist air) 

Temperature t K Temperature  

U component of 

wind u m s-1 West to east flow (eastward wind) 

V component of 

wind v m s-1 South to north flow (northward wind) 

Vorticity (relative) vo s-1 

Measure of the rotation of air in the 

horizontal 

 538 

As shown in Table 2.3, there are 14 variables and 37 pressure levels in the 539 

pressure level dataset, and some of these variables are the same as those used in SHIPS 540 

database, for example, vo in 850-hpa, t in 200-hPa, and v in 850-hpa to 200-hpa (Kaplan 541 

and DeMaria 2003).  542 

Table 2.4 displays the 14 variables with their explanations. Fraction of cloud cover (cc), 543 

cloud ice water content (ciwc), and cloud liquid water content (clwc) are similar variables 544 

since cc presents the proportional of a grid box covered either by liquid cloud or ice 545 

cloud, while ciwc presents in each grid box the mass of cloud ice particles per kilogram 546 

of the total mass of dry air, water vapor, cloud liquid, cloud ice, rain, and falling snow, 547 

and clwc is almost the same as ciwc except that cloud ice particles is replaced by cloud 548 

liquid water droplets. Divergence (d) implies the horizontal divergence rate of the 549 

velocity that the air is spreading out from a point, and d is positive when the air is 550 
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spreading out and negative vice versa. Geopotential (z) indicates the amount of work to 551 

lift a unit of air from the mean sea level to a certain point against the gravity. Vertical 552 

velocity (w) indicates the speed of air moving upward or downward. Ozone mass mixing 553 

ratio (o3) indicates “the mass of ozone per kilogram of air.” Potential vorticity (pv) 554 

indicates the ability of air to rotate in the atmosphere and usually is used to look for 555 

places where wind storm likely to occur. Relative humidity (r) indicates water vapor 556 

pressure as a percentage of a fixed vapor pressure value when water vapor becomes 557 

liquid water or ice. Specific humidity (q) is the same as ciwc, but the mass of cloud ice 558 

particles per kilogram is replaced with the mass of water vapor per kilogram. 559 

Temperature (t) indicates the temperature in the atmosphere. U component of wind (u) 560 

and V component of wind (v) indicates “the horizontal speed of air moving towards the 561 

east, in meters per second” and “the horizontal speed of air moving towards the north, in 562 

meters per second,” respectively. u and v can be combined to calculate the speed and 563 

direction of the wind. The negative sign of u and v shows that air moving to the west and 564 

south. Relative vorticity (vo) is a clockwise (positive) or counter clockwise (negative) air 565 

spin.  566 

2.3 NHC best track data 567 

To determine which part of the ERA-interim data should be used, the center of 568 

TCs need to be located. The NHC best track (HURDAT2) data, available every 6 hours 569 

(midnight (UTC 0), 6 am (UTC 600), noon (UTC 1200), and 6 pm (UTC 1800)), 570 

including the time, longitude, latitude, maximum sustained wind speed of the TCs will be 571 

used. Table 2.5 is a concise version from the original NHC best track data and shows a 572 



32 

 

TC cataloged as AL011982, indicating the TC is the 1st TC in 1982 that occurred in the 573 

Atlantic Ocean and had seventeen records named ALBERTO. The first record indicates 574 

the TC was recorded for June 2nd, 1982 at 1200 UTC. The TC was centered at 21.7oN and 575 

87.1oW with an intensity of 20 knots and minimum pressure 1005 millibars. RI occurs if 576 

and only if sustained wind speed in the next 24 hours increases 30 knots or more. 577 

Therefore, TC AL011982 undergoes RI at 1200UTC and 1800 UTC on June 2nd 1981, 578 

and at 0 UTC and 600 UTC on June 3rd 1981. 579 

 580 

Table 2.5: A TC record in NHC best track data. 581 

AL011982   ALBERTO 17   

Date Time 
System 

status 
Latitude Longitude 

Maximum 

sustained 

wind speed 

(in knots) 

Minimum 

Pressure 

(in 

millibars) 

19820602 1200  TD  21.7N   87.1W 20 1005 

19820602 1800  TD  22.2N   86.5W 25 1004 

19820603 0  TD  22.6N   85.8W 30 1003 

19820603 600  TS  22.8N   85.0W 40 1001 

19820603 1200  TS  23.2N   84.2W 50 995 

19820603 1800  HU  24.0N   83.6W 75 985 

19820604 0  HU  24.8N   83.4W 65 992 

19820604 600  TS  24.9N   84.1W 55 998 

19820604 1200  TS  24.9N   84.8W 45 1002 

19820604 1800  TS  25.0N   84.2W 40 1005 

19820605 0  TD  25.1N   84.1W 30 1007 

19820605 600  TD  25.2N   84.0W 25 1008 

19820605 1200  TD  25.3N   83.9W 25 1009 

19820605 1800  TD  25.4N   83.6W 25 1010 

19820606 0  TD  25.5N   83.3W 25 1010 

19820606 600  TD  25.5N   83.0W 25 1010 

19820606 1200  TD  25.5N   82.6W 20 1010 

 582 
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NHC best track data is used to identify TC’s center, and its related information 583 

from the entire ERA-Interim reanalysis data. The two datasets, with the same temporal 584 

resolution, will be processed through the ERA-Interim data filter, and details will be 585 

discussed in Chapter 3.  586 
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CHAPTER 3 DATA FILTER 587 

As indicated in Figure 1.1, the COR-SHIPS model, LLE-SHIPS model, and DL-588 

SHIPS model, although differ in certain parts, share the same logical structure. They 589 

share three of the four components, data sampler, classifier, and hyperparameter tuning 590 

process and differ only in the data filter. COR-SHIPS model employs only the SHIPS 591 

data filter, while the LLE-SHIPS model and DL-SHIPS model adopt extra ERA-Interim 592 

data with filters based on local linear embedding (LLE) and deep learning (DL), 593 

respectively, in addition to the SHIPS data filter. 594 

3.1 SHIPS data filter  595 

3.1.1 ASCII text to attribute-relation table 596 

For the RI classification analysis by the XGBoost classifier, the input data model is 597 

attribute-relation tables commonly used for relational databases, and therefore, each 598 

SHIPS instance block should be transformed into one entry in an attribute-relation table. 599 

One sample block of the SHIPS ASCII text file is displayed in Figure 2.1, which will be 600 

converted to one entry in an attribute-relation table, as shown in Figure 3.1. During the 601 

conversion, special notation, one-time variables, and time-dependent variables are 602 

handled differently and are described below in detail. The number of variables for each 603 

category is also listed for tracking purposes only. 604 

1. Special notations (3 lines in total: HEAD, LAST, and TIME): The HEAD line has ten 605 

elements: TC name (NAME); two-digit year (YEAR), month (MONTH), date 606 

(DATE); UTC; maximum surface wind; center latitude; center longitude; the 607 
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minimum sea level pressure; and the ATCF ID number (ATCF). Because the 608 

maximum surface wind; center latitude; center longitude; the minimum sea level 609 

pressure are included in the time dependent variables, only the rest six variables are 610 

extracted from the HEAD line: NAME, YEAR, MONTH, DATE, UTC, and ATCF. 611 

No information is retrieved from the TIME and LAST lines (result in 6 variables). 612 

2. One-time variables (7 lines: HIST, IRXX, IR00, IRM1, IRM3, PSLV, and MTPW): 613 

As indicated in section 2.1, since these seven lines contain values for many one-time 614 

variables, and index is added to denote and to distinguish the corresponding variables. 615 

Therefore, HIST_0, HIST_1, …, HIST_20 are created using values in the HIST line. 616 

Similarly, IRXX_1, …, IRXX_20, IR00_1, …, IR00_20, IRM1_1, …, IR M1_20, 617 

IRM3_1, …, IRM3_20 (when TIME = 0, IRXX, IR00, IRM1, and IRM3 present the 618 

relative time of GOES image relative to the instance, not related to the problem in the 619 

study, and therefore, are removed), PSLV_1, …, PSLV_18 (values in 108, 114, and 620 

120 hour are filled with 9999), MTPW_0, …, MTPW_20 are created using values in 621 

the corresponding lines (result in 140 variables). 622 

3. Time dependent variables (the remaining 131 lines2): The current value of a time 623 

dependent parameter (t=0) is associated with the corresponding TC instance. The 624 

values for other times (from previous 12 hours to future 120 hours) may be used to 625 

derive other variables or simply ignored (result in 131 variables, total 277 variables). 626 

 627 

 
2 Three lines, PC00, PCM1, PCM3 were mistreated as time-dependent initially. See details in the main text. 
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Table 3.1: One row of the attribute-relation table converted from original SHIPS data 628 

showed in Figure 2.1. Number 1 to 277 corresponds to the 1st to the 277th columns in 629 

the attribute-relation table is added for notation only here. 630 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

NAME YEAR 
MONT

H 
DATE TIME ATCF 

VMA

X 
MSLP TYPE DELV INCV LAT LON CSST CD20 CD26 

ALBE 1982 6 2 12 
AL011

982 
20 1005 1 0 9999 217 871 274 150 47 

                

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

COHC DTL OAGE NAGE RSST DSST DSTA U200 U20C V20C E000 EPOS ENEG EPSS ENSS RHLO 

24 21 0 0 280 274 276 224 238 99 3528 113 8 51 16 70 

                

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

RHMD RHHI Z850 D200 REFC PEFC T000 R000 Z000 TLAT TLON TWAC TWXC G150 G200 G250 

57 50 7 64 4 -1 259 84 -27 207 873 67 100 -5 3 13 

                

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 

V000 V850 V500 V300 TGRD TADV PENC SHDC SDDC SHGC DIVC T150 T200 T250 SHRD SHTD 

44 64 67 21 10 2 103 264 80 310 49 -665 -526 -408 251 94 

                

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

SHRS SHTS SHRG PENV VMPI VVAV VMFX VVAC HE07 HE05 O500 O700 CFLX PW01 PW02 PW03 

90 137 296 95 123 1288 860 1382 0 -29 -82 -60 139 618 44 580 

                

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 

PW04 PW05 PW06 PW07 PW08 PW09 PW10 PW11 PW12 PW13 PW14 PW15 PW16 PW17 PW18 PW19 

68 536 98 477 133 465 140 589 66 558 90 522 119 502 129 113 

                

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 

PW20 PW21 PC00 PCM1 PCM3 RD20 RD26 RHCN NSST NTMX NDTX NDML ND30 ND28 ND26 ND24 

510 575 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 

                

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 

ND22 ND20 ND18 ND16 NDFR NTFR NOHC NO20 XNST XTMX XDTX XDML XD30 XD28 XD26 XD24 

9999 9999 9999 9999 9999 9999 9999 9999 270 271 0 15 9999 9999 21 50 

                

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 

XD22 XD20 XD18 XD16 XDFR XTFR XOHC XO20 XDST HIST_1 HIST_2 HIST_3 HIST_4 HIST_5 HIST_6 HIST_7 

86 123 166 240 1183 57 7 177 266 1 0 0 0 0 0 0 

                

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 

HIST_8 HIST_9 
HIST_1

0 

HIST_1

1 

HIST_1

2 

HIST_

13 

HIST_

14 

HIST_

15 

HIST_

16 

HIST_1

7 

HIST_1

8 

HIST_1

9 

HIST_2

0 

HIST_2

1 

PSLV_

1 

PSLV_

2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 548 31 

                

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 

PSLV_

3 

PSLV_

4 

PSLV_

5 

PSLV_

6 

PSLV_

7 

PSLV_

8 

PSLV

_9 

PSLV

_10 

PSLV

_11 

PSLV_

12 

PSLV_

13 

PSLV_

14 

PSLV_

15 

PSLV_

16 

PSLV_

17 

PSLV_

18 

23 24 13 28 16 40 23 64 82 77 89 92 85 208 200 79 

                

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 

MTPW

_1 

MTPW

_2 

MTPW

_3 

MTPW

_4 

MTPW

_5 

MTPW

_6 

MTP

W_7 

MTP

W_8 

MTP

W_9 

MTPW

_10 

MTPW

_11 

MTPW

_12 

MTPW

_13 

MTPW

_14 

MTPW

_15 

MTPW

_16 

618 44 580 68 536 98 477 133 465 140 589 66 558 90 522 119 

                

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 

MTPW

_17 

MTPW

_18 

MTPW

_19 

MTPW

_20 

MTPW

_21 

IRXX_

1 

IRXX

_2 

IRXX

_3 

IRXX

_4 

IRXX_

5 

IRXX_

6 

IRXX_

7 

IRXX_

8 

IRXX_

9 

IRXX_

10 

IRXX_

11 

502 129 113 510 575 0 -105 200 -122 253 38 30 23 18 14 13 

                

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 

IRXX_

12 

IRXX_

13 

IRXX_

14 

IRXX_

15 

IRXX_

16 

IRXX_

17 

IRXX

_18 

IRXX

_19 

IRXX

_20 
IR00_1 IR00_2 IR00_3 IR00_4 IR00_5 IR00_6 IR00_7 

-54 -94 13 -173 -103 77 67 112 115 9999 9999 9999 9999 9999 9999 9999 

                

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 

IR00_8 IR00_9 
IR00_1

0 

IR00_1

1 

IR00_1

2 

IR00_1

3 

IR00_

14 

IR00_

15 

IR00_

16 

IR00_1

7 

IR00_1

8 

IR00_1

9 

IR00_2

0 

IRM1_

1 

IRM1_

2 

IRM1_

3 

9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 

                

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 

IRM1_

4 

IRM1_

5 

IRM1_

6 

IRM1_

7 

IRM1_

8 

IRM1_

9 

IRM1_

10 

IRM1_

11 

IRM1_

12 

IRM1_

13 

IRM1_

14 

IRM1_

15 

IRM1_

16 

IRM1_

17 

IRM1_

18 

IRM1_

19 

9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 

                

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 

IRM1_

20 

IRM3_

1 

IRM3_

2 

IRM3_

3 

IRM3_

4 

IRM3_

5 

IRM3_

6 

IRM3_

7 

IRM3_

8 

IRM3_

9 

IRM3_

10 

IRM3_

11 

IRM3_

12 

IRM3_

13 

IRM3_

14 

IRM3_

15 

9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 

                

273 274 275 276 277            

IRM3_

16 

IRM3_

17 

IRM3_

18 

IRM3_

19 

IRM3_

20 
           

9999 9999 9999 9999 9999            

 631 

 632 
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In SHIPS, three lines, PC00, PCM1, PCM3, give the first nine principal components 633 

(PCs) for IR imageries at the current time, 1.5 hours before, and 3 hours before. Initially, 634 

we misinterpret the variables as time-dependent variables and keep the current values, 635 

PC00_1, PCM1_1, and PCM3_1, only. Although it is not a correct treatment for those 636 

values, fortunately, the kept values are for the 2nd principal components, which are the 637 

only important components identified by previous studies (KRD15).  638 

With those information extractions and format conversion, each block (a TC 639 

instance) is converted to a row similar to the form in Figure 3.1, with a total of 277 640 

variables. In Figure 3.1, the first row is added to denote the column series numbers from 641 

1 to 277 for notation purposes only. The second row indicates the names of the variables 642 

or headers, and the third row gives the values of the variables for one instance. And all 643 

values for all other instances are stacked together to constitute an attribute-relation table 644 

with all TC instances for this study.  645 

3.1.2 Preprocessing of the SHIPS data in attribute-relation table  646 

The raw attribute-relation table obtained above is hard to be used directly due to 647 

variable natures, i.e., irrelevant variables, heavy missing values (9999 in original SHIPS 648 

data), scaling issue, and the inter-correlation between variables. In addition, some 649 

potential variables are not available directly from the simple conversion procedure. As a 650 

result, a preprocessing is performed on the raw attribute-relation table. 651 

3.1.2.1 Adding additional variables 652 

Based on previous studies (e.g., DeMaria et al. 2005), intensity change is critical 653 

for rapid intensification prediction. Therefore, the previous 6-hour intensity change 654 
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(BD06) is calculated as subtracting the current intensity by the intensity 6 hours before, 655 

and BD06 for the first instance of each TC is set as missing. Previous 12-hour intensity 656 

change (BD12) and 18-hour intensity change (BD18) are calculated similarly. The first 657 

two (three) instances of each TC for BD12 (BD18) are set as missing. Since BD06 and 658 

BD12 contain the information of DELV and INCV, the latter two are removed (3 659 

variables added and 2 removed resulting in 1 more variable, so 278 variables remained in 660 

total). 661 

To include temporal variation of RI, annual Julian date is created to combine the 662 

information of MONTH and DATE, while MONTH, DATE, and UTC are removed. In 663 

addition, TYPE (storm type) should not have any influence of RI prediction and hence is 664 

also removed (1 variable added and 4 removed leading to 3 variables less, so 275 665 

variables remained in total). 666 

3.1.2.2 Variable removal 667 

Some variables, such as the first four letters of storm name (NAME), are unique 668 

information used for tracing back the specific TC, and are unrelated to the RI prediction, 669 

which should be removed. ATCF and YEAR are also such variables and hence are 670 

removed. In addition, PSLV1 to PSLV18 represent storm motion information, where 671 

PSLV1 to PSLV8 are the storm motion component, and PSLV_9 to PSLV_18 indicates 672 

the optimal vertical weights for various pressures levels. Therefore, PSLV_9 to PSLV_18 673 

are not related to TC rapid intensification and hence is removed (13 variables removed, 674 

so 262 variables remained in total). 675 
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IRXX should only be used when IR00 values are missing. Therefore, missing 676 

values in IR00_1, …, IR00_20, are replaced with the corresponding values in 677 

IRXX_1, …, IRXX_20 respectively and then IRXX_1, …, IRXX_20 are removed (20 678 

variables removed, so 242 variables remained in total). 679 

Missing values in a variable do not provide much information for that variable. The 680 

more missing values in a variable, the less information it has. Table 3.1 displays the 681 

missing value percentage in the SHIPS data (SHIPS 2018b) for variables with at least one 682 

missing filling. XD30 contains more than 95% missing values, while the next nine 683 

variables have more than 50% missing values. Other variables have less than 45% 684 

missing percentages. Since variables with more than 50% are not expected to give much 685 

information in the RI prediction, XD30, NDML, ND30, ND28, ND24, ND22, ND18, 686 

ND16, NO20, and XD28 are removed. After this removal, the remaining missing values 687 

are coded as NA; a notation can be easily handled later for sampling and classification 688 

(10 variables removed, so 232 variables remained in total). 689 

 690 

 691 

Table 3.2: Variables with missing value and the missing percentage in SHIPS data. 692 

Variables are sorted according to the percentage. Variables without missing values 693 

are not listed. 694 

Variable Percentage Variable Percentage Variable Percentage 

XD30 98.08% RHCN 34.18% XDML 5.05% 

NDML 61.98% PCM1 21.86% XDTX 4.39% 

ND30 61.84% XD26 20.46% BD06 4.30% 

ND28 61.84% IRM1_2 to 

IRM_20 
14.12% 

XDFR 2.41% 

ND24 61.84% CD26 2.10% 

ND22 61.84% PC00 14.06% MSLP 1.08% 
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ND18 61.84% IRM1_1 13.84% TWAC 0.88% 

ND16 61.84% IRM3_2 to 

IRM2_20 
12.93% 

TWXC 0.88% 

NO20 61.84% DIVC 0.88% 

XD28 51.78% BD18 12.88% COHC 0.48% 

RD20 41.41% XD24 12.87% XNST 0.36% 

RD26 41.41% PCM3 12.84% XTMX 0.36% 

NDFR 39.57% IRM3_1 12.57% XTFR 0.36% 

NTFR 37.62% XD22 10.32% XOHC 0.36% 

NSST 37.31% XD20 9.23% XO20 0.36% 

NTMX 37.31% IR00_1 to 

IR00_20 
9.12% 

XDST 0.36% 

NDTX 37.31% DSST 0.03% 

ND26 37.31% XD18 8.96% PSLV_2 to 

PSLV_8 
0.01% 

ND20 37.31% XD16 8.65% 

NOHC 37.31% BD12 8.60%   

 695 

In addition to variables with high missing value percentages, there are variables 696 

with a very high percentage of a single value, and those variables are of less value in the 697 

RI prediction. Table 3.2 shows variables with its largest percentages (greater than 50) of 698 

single values, and PSLV_8, the constraint on the weight, has more than 99.999% of 699 

instances with a single value, 40, is removed by assuming a threshold of 90% (1 variable 700 

removed, so 231 variables remained in total). 701 

 702 

Table 3.3: Variables with higher than 50% single values in the SHIPS Data, the 703 

single values, and the percentages. 704 

Variable Value Percentage 

PSLV_8 40 99.99% 

HIST_21 0 89.76% 

HIST_20 0 88.10% 

HIST_19 0 86.39% 
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HIST_18 0 83.84% 

HIST_17 0 80.59% 

HIST_16 0 78.77% 

HIST_15 0 75.79% 

HIST_14 0 73.81% 

HIST_13 0 70.94% 

HIST_12 0 66.30% 

IRM3_1 -245 63.46% 

PCM3 -245 63.27% 

HIST_11 0 61.81% 

IR00_1 15 58.89% 

PC00 15 58.75% 

HIST_10 0 56.41% 

HIST_9 0 50.62% 

 705 

The above components, data conversion from ASCII blocks to the attribute-706 

relation table, irrelevant variable removal, missing value, and single value handling, new 707 

attribute creators together construct the SHIPS data filter. Through this filter, the original 708 

ASCII based block SHIPS dataset (SHIPS, 2018c) is filtered into an attribute-relation 709 

table for all TC instances with one TC instance as one row with 231 attributes (columns). 710 

3.1.2.3 Rescale variables between 0 and 1.  711 

To make the data internally consistent, numerical values for all variables are 712 

rescaled except for missing values (NA). All values are rescaled to between 0 and 1 using   713 

𝑉𝑎𝑙𝑢𝑒𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒−𝑀𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

𝑀𝑎𝑥𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒−𝑀𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
                                                            (3.1) 714 
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where Valuevariable represents the value of a particular variable that needs to be 715 

standardized, 𝑀𝑎𝑥𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 and 𝑀𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 represent the maximum and minimum values 716 

of the particular variable across all instances.  717 

3.1.3 Removal of highly correlated variables 718 

Highly correlated input variables could influence the accuracy of the variable 719 

importance evaluation. Therefore, among highly correlated variables in the SHIPS 720 

dataset, only one variable should be kept while others being removed.  721 

The definition of “highly correlated” depends on a predefined correlation threshold, 722 

which is related to the number of variables to be removed (or kept). This correlation 723 

threshold is one of the so-called hyperparameters.  724 

As the first step, pairwise correlations of all the variables are calculated and 725 

compared with the correlation threshold. For each variable, its highly correlated variables 726 

(correlation higher than the threshold) are identified and placed in a group started with 727 

that variable. Therefore, there is a group that started with each of the 231 variables. All 728 

groups are sorted in descending order based on the number of variables they have, and if 729 

the length of the two groups is the same, the sorting is alphabetically based on the leading 730 

variable names. Then starting from the first group, all following groups starting with any 731 

current group members are eliminated, and then member variables are also removed from 732 

all other remaining groups to guarantee that each variable will appear only once. This 733 

process continues until the last group is reached. After that, the first variables in all 734 

remained groups are selected as filtered variables. 735 
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For example, Table 3.3 displays a correlation matrix between BD06, BD12, and 736 

BD18, and the selection threshold is defined as 0.8. BD12 has two correlated variables, 737 

BD06 and BD18, while BD06 and BD18 have only one correlated variable, BD12 each. 738 

Therefore BD12’s group with length two is placed before BD06’s, and BD18’s of length 739 

one in the sorted list (not shown). In the removal process, groups started with BD06, and 740 

BD18 are removed because both are in the group starting BD12. If there were more 741 

groups (not this case), BD06 and BD18 should also be removed in all appearance. For 742 

this extremely simplified example, only variable BD12 is kept. 743 

 744 

Table 3.4: Correlation matrix for pairs among BD06, BD12, and BD18, and the 745 

highly correlated group lists leading with each variable based on a 0.8 correlation 746 

threshold. 747 

 
BD06 BD12 BD18 

Highly correlated 

variable (>=0.8) 

BD06 1.00 0.86 0.75 BD06, BD12 

BD12 0.86 1.00 0.92 
BD12, BD06, 

BD18 

BD18 0.75 0.92 1.00 BD18, BD12  

 748 

The final result from the above procedure should be sensitive to the to-be-tuned 749 

hyperparameter correlation threshold. If the threshold is too low, important variables 750 

could be removed, and the accuracy of the model is reduced; if the threshold is too high, 751 

the variable importance will be evaluated inaccurately because the variable importance 752 

score is largely influenced by highly correlated variables (multicollinearity). In this study, 753 
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0.7, 0.8, 0.9, and 0.95 are predetermined as the searching space to tune (find the best 754 

value for) this hyperparameter. The details will be discussed in Chapter 6. 755 

3.2 ERA-Interim data filters  756 

The SHIPS data filter converts ASCII SHIPS data from the instance block format to 757 

an attribute-relation table and is the only data filter used in the COR-SHIPS model. To 758 

identify new features beyond SHIPS and to improve the RI prediction performance, the 759 

ERA-Interim data set is used together with SHIPS data in this study. As for the SHIPS 760 

data, this gridded pressure level data should also be filtered into the attribute-relation 761 

table format.  762 

ERA data is filtered in two different ways to inspect the near core information and 763 

large-scale effects, respectively. As indicated in Figure 3.2, the average of the blue 3*3 764 

grid boxes is used to present the near center information, and the local linear embedding 765 

(LLE) model is employed to filter the near center values, leading to the LLE-SHIPS 766 

model. For large-scale features, 33*33 grid boxes around the TC centers are filtered with 767 

a deep learning (DL) model, and the result is the DL-SHIPS model. Comparing with the 768 

LLE data filter, which can only process small scale near core information, DL can extract 769 

more information in the large-scale, including the smaller core information processed by 770 

the LLE model, but also has the risk of overfitting with the complicated structure. 771 

Moreover, the structure of the DL model is very complicated; therefore, it is much more 772 

difficult to evaluate the feature importance for the DL-SHIPS model than for the LLE-773 

SHIPS model. 774 
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 775 
Figure 3.1: The 33*33 grid boxes centered at the grid box consisting of the center of 776 

a TC, denoted as the black dot, and the blue area presents the near core grids. 777 

 778 

3.2.1 Local Linear Embedding (LLE) for filtering near core ERA-Interim data 779 

The nine grid boxes around a TC center together with an approximated 780 

240km*240km size are considered as the near center area, and values for 14 variables at 781 

37 pressure levels are averaged over the nine boxes to have 37*14 representative values. 782 

As well known, the RI status is not only based on the current moment but also that of 783 

the last 18 hours. Therefore, for each instance, we include data from the previous 18 784 

hours to current, and therefore have 4*37*14 = 2072 features (variables). The features are 785 

labeled in a “time_variable_level” format. 18 hours before, 12 hours before, 6 hours 786 
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before, and at present are represented as NT18, NT12, NT06, and NT00. Level 1 (1000 787 

hPa) to level 37 (1 hPa) are represented as l1, …, l37. For example, NT18_pv_l37 788 

represents the horizontally averaged value of pv (potential vorticity) at pressure level 37 789 

(1000 hPa) at 18 hours before the TC instance time. 790 

For a classification problem, 2072 is a very high dimension number, and overfitting 791 

cannot be avoided if all of the 2072 features are used in a model. Therefore, we need to 792 

reduce the feature dimension, which can be achieved using the principal component 793 

analysis (PCA), designed to reduce the feature dimensions while keeping as much 794 

statistical information as possible. Pearson (1901) first came up with the idea of PCA, 795 

and later, this idea was independently proposed by Hotelling (1933). PCA is applied in a 796 

large number of areas such as exploratory analysis (Li and Ralph 2019), dimension 797 

reduction approach (Ron 2000; Labib and Vemuri 2006), and Geostationary Operational 798 

Environmental Satellite (GOES-East and GOES-West) infrared imagery variables 799 

creation (Kaplan et al. 2015). 800 

However, the principal components are constructed with a linear combination of the 801 

original features; hence nonlinear structure between these features is missed. To break 802 

this limit, kernel PCA, which uses a non-linear kernel to transfer the original feature 803 

space to a kernel Hilbert space and, therefore, to account for the nonlinear structure 804 

between features, was proposed (Schölkopf et al. 1998; Yang et al. 2006). Local linear 805 

embedding (LLE) is a type of kernel PCA and was first introduced in Roweis and Saul 806 

(2000) for dimension reduction. In traditional dimension reduction approaches such as 807 

the regular kernel PCA or multidimensional scaling (MDS), when the new reduced space 808 
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is searched, the geometry distance between different observations are not preserved. That 809 

is, far away observations in the original feature space may be mapped to their 810 

neighborhood in the new reduced feature space. By contrast, LLE preserves the global 811 

geometry structure from locally linear fits in the new space. In other words, low 812 

dimensional representation of the high dimensional data is discovered, where these local 813 

relationships are best preserved (Géron 2017).  814 

LLE is used to handle the near core ERA data in this study and leads to the LLE-815 

SHIPS model. As indicated above, each instance has 4*37*14 = 2072 features. Those 816 

features are rescaled to numbers between 0 and 1 using (𝑣𝑎𝑙𝑢𝑒 − min)/(𝑚𝑎𝑥 − 𝑚𝑖𝑛) 817 

where value presents the raw value while min and max imply the minimum and 818 

maximum value within 18 hours over all 37 levels for each of the 14 variables, similar to 819 

rescaling process in Equation (3.1). 820 

There are two steps in LLE itself. The first step is to evaluate “how each training 821 

instance linearly relates to its closest neighbors,” and then in the second step, “looking for 822 

a low dimensional representation of all training instances, where these local relationships 823 

are best preserved” (Géron 2017).  824 

Mathematically, we can elaborate the first step of LLE details with the following 825 

equations: 826 

  

𝑊̂~
𝑎𝑟𝑔𝑚𝑖𝑛

𝑊
∑ ||𝑥(𝑖) − ∑ 𝑤𝑖,𝑗𝑥(𝑗)

𝑘

𝑗=1

||

𝑚

𝑖=1

2

 

 

(3.2) 

subject to 827 
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{
𝑤𝑖,𝑗 = 0      𝑖𝑓 𝑥(𝑗) 𝑖𝑠 𝑛𝑜𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑘 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑥(𝑖),

∑ 𝑤𝑖,𝑗 = 1.                                                                                                           𝑚
𝑗=1

                          828 

(3.3) 829 

 830 

In the above equations, there are m instances in the entire dataset (𝑥(𝑖), 𝑖 = 1, … , 𝑚), 831 

where each instance 𝑥(𝑖) (𝑖 = 1, … , 𝑚) is a vector of dimension 2072. k is a to-be-tuned 832 

integer defining the neighborhood size. Then 𝑤𝑖,𝑗 , 𝑗 = 1, … , 𝑘 are the weights for the k 833 

nearest neighbors of 𝑥(𝑖), and 𝑤𝑖,𝑗 is summed up to 1 over all neighbors and set as 0 when 834 

𝑥(𝑗) is not the neighbor of 𝑥(𝑖). 𝑤𝑖,𝑗 are trained to minimize the sum of the square distance 835 

between 𝑥(𝑖) and its weighted neighbors' sum, ∑ 𝑤𝑖,𝑗𝑥(𝑗)𝑘
𝑗=1 . 𝑊̂ is the solution of the 836 

weight matrix 𝑊 (the matrix form of 𝑤𝑖,𝑗), that satisfies Equation (3.2). 837 

In the second step, after the trained weights are calculated, instances in the entire 838 

dataset are mapped to a d-dimensional space (d < 2072, which is undefined, and its 839 

tuning will be discussed later together with k) while preserving the relationship between 840 

instances as much as possible. 𝑧(𝑖) is the image of 𝑥(𝑖) in the d-dimension space, 𝑖 =841 

1, … , 𝑚. The weight 𝑊̂ derived from step 1 is fixed, and the sum of the squared distance 842 

between 𝑧(𝑖) and its weighted neighbors should be minimized to look for 𝑧(𝑗) (𝑗 =843 

1, … , 𝑚). That is, 844 

  

𝑍̂ =
𝑎𝑟𝑔𝑚𝑖𝑛

𝑍
∑ ||𝑧(𝑖) − ∑ 𝑤𝑖,𝑗𝑧(𝑗)

𝑘

𝑗=1

||

𝑚

𝑖=1

2

 

  (3.4) 

subject to 845 
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{
∑ 𝑧(𝑖,𝑗)=0   𝑗=1,…,𝑑𝑚

𝑖=1
1

𝑚
𝑧′𝑧=𝐼𝑑

                                                    (3.5) 846 

where each the 𝑧(𝑖,𝑗) (𝑖 = 1, … , 𝑚;  𝑗 = 1, … , 𝑑) represents i-th instances in j-th 847 

dimension, and 𝑍 is the matrix form of 𝑧𝑖,𝑗. 𝑧(𝑖) is summed to 0 over all d dimensions, 848 

and the covariance matrix of 𝑍 be the (d-dimensional) Id, where Id indicates the identity 849 

matrix with d*d dimension (Roweis and Saul 2000). 𝑍̂ is the solution of the weight 850 

matrix 𝑍 that satisfies Equation (3.4). 851 

Based on Ginsburg et al. (2016), LLE can be derived as a kernel PCA with kernel 852 

𝐾 =  𝜆𝑚𝑎𝑥𝐼 − (1 − 𝑊̂)(1 − 𝑊̂𝑇). More technical details of PCA and Kernel PCA are 853 

given in Appendix 1. 854 

In this work, LLE is used to reduce the original space with 2072 dimensions to the 855 

new d-dimensional space while preserving the maximal global geometry structure. How 856 

to define d is very subjective; if d is too large, the reduction of dimension is light, and the 857 

possibility of overfitting is not reduced much. And if d is too small, some important 858 

information about the original space may be lost in the new reduced space. Therefore, d 859 

is the hyperparameter of LLE that needs to be determined. Since SHIPS data filter 860 

outputs approximately 72 variables, 10 and 90 are defined as the lower bound and the 861 

upper bound to search for d. 862 

Another hyperparameter that describes how much geometry information should be 863 

kept is the number of the nearest neighbors identified for each observation, k. If k is too 864 

low, less geometry information is kept, and the new variables lose too much information 865 
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from the original variables. If k is too high, the computational cost is too high, and 866 

overfitting cannot be avoided. Therefore, to keep the balance, 5 and 15 are defined as the 867 

lower bound and the upper bound for searching k. 868 

Although k and d are independent of each other, the number of dimension (d) is 869 

usually larger than the number of neighbors (k). The search range for k and d are 870 

summarized in Table 3.4, and the tuning details will be discussed in Chapter 6. 871 

 872 

Table 3.5: Hyperparameters for the LLE and their searching range defined by the 873 

Min(imum) and Max(imum). 874 

Hyperparameter Explanation 
Min Max 

no_neighbors (k) The number of the nearest neighbors  
5 15 

no_dimension (d) The dimensions in the reduced space 
10 90 

 875 

3.2.2 Deep learning (ERA-Interim data filter for DL-SHIPS model)  876 

The large-scale range area with 33*33 grid cells cannot be processed by LLE 877 

because even a supercomputer cannot handle the computational cost. Correspondingly, an 878 

alternative data filter based on deep learning (DL), a well-known technique for its 879 

capacity to handle a large amount of data, is used to process information in the large-880 

scale range.  881 

DL is a kind of Artificial Neural Network (ANN) model, which is designed to solve 882 

learning tasks by imitating the human biological neural network. The first functional 883 

ANN like model was proposed by Hodgkin and Huxley (1952), who had used non-linear 884 
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features and multiple layers to develop a model. However, the ANN model was 885 

inefficient until 1985, when backpropagation was first employed in ANN (Holyoak 886 

1987). ANN became popular after 2006 when Hinton (2007) proposed the concept of 887 

"deep learning," an architecture with many more layers than ANN. Hinton (2007) also 888 

proved that backpropagation works efficiently in multilayer ANN learning.  889 

Although deep learning becomes very popular and a variety of implementations were 890 

developed since then, one significant breakthrough of deep learning was Alexnet deep 891 

learning model (Krizhevsky et al. 2012), which won the first prize and achieved exciting 892 

accuracy in ImageNet 2012 challenge and marked the start of the broad implementation 893 

of deep learning. Alexnet was the first end to end deep objective classification learning 894 

system and achieved 15.3% top-5 classification error rate for the ImageNet 2012 895 

challenge. Later work such as VGG (Simonyan and Zisserman 2014) and GoogleNet 896 

(Szegedy et al. 2015), which reach 7.3% and 6.7% top-5 error rate separately, are derived 897 

from Alexnet.  898 

All of those works are based on Convolutional Neural Network (CNN), one of the 899 

significant components in deep learning that extracts features, i.e., variables, directly 900 

from pixel-based images. CNN is an ANN-based network that is mainly used for 901 

processing natural images with 3 RGB channels, and it significantly outperforms all other 902 

data mining techniques (Krizhevsky and Hinton 2012; Simonyan and Zisserman 2014; 903 

Szegedy et al. 2015). To be specific, CNN can be viewed as a 2D version of ANN, where 904 

the one dimensional hidden layer is replaced by multiple 2D layers.  905 
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In addition to the astonishing accuracy in image object classification, CNN is 906 

successfully applied in other areas like text classification (Karpathy et al. 2014; Lai et al. 907 

2015), sentiment analysis (Santos and Gatti 2014), and extreme weather prediction (Liu 908 

et al. 2016; Racah et al. 2016). 909 

Liu et al. (2016) built an Alexnet alike CNN model to classify three extreme types of 910 

weather, TCs, atmospheric rivers, and weather fronts based on the CAM5.1 historical 911 

run, ERA-interim reanalysis, 20-century reanalysis, and NCEP-NCAR reanalysis data. 912 

The overall accuracy achieves more than 88%, and the TC detection rate reaches 98%. 913 

Although regular CNN achieves excellent accuracy in tasks like image classification, 914 

CNN cannot handle problems with temporal information involved. Tran et al. (2015) 915 

proposed a 3D CNN aiming at handling video analysis problem by adding another 916 

temporal dimension on to CNN.  917 

The large-scale ERA-Interim dataset consists of 14 variables of 33*33 gridded data 918 

with a temporal coverage from the previous 18 hours to the current time and 37 pressure 919 

levels. A 3D CNN can be used to extract features from each individual variable in such 920 

an arrangement. The 37 pressure levels are viewed as the 37 channels similar to RGB 921 

channels of video, the gridded data as images, and the temporal coverage as image 922 

sequence of a video.  923 

Another important structure of deep learning is the auto-encoder network, which is 924 

“a type of ANN that is trained to attempt to copy its input to its output. Internally, it has a 925 

hidden layer that describes a code used to represent the input. The network may be 926 
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viewed as consisting of two parts: an encoder represents a feature extracted process and a 927 

decoder that produces an input reconstruction” (Wei et al. 2018). Auto-encoder is used 928 

for dimension reduction when the original data space dimension is too large and is also 929 

used for classification and prediction (Gogna and Majumdar 2019). 930 

Racah et al. (2016) proposed an auto-encoder CNN architecture for a semi-931 

supervised classification on the extreme weather. Since there are a large number of 932 

unlabeled extreme weather images, and to expand the training dataset, Racah et al. (2016) 933 

employed a bounding box technique to recognize the location of extreme weather, and 934 

the classification is based on those data. Although the classification performance in 935 

Racah et al. (2016) still needs improvement, it reveals that there are many promises to 936 

consider deep learning techniques in the weather community. 937 

And in this work, the standard deep learning model is used to filter the large-scale 938 

ECMWF ERA-Interim reanalysis data, the data associated with all grids in Figure 3.2. 939 

Each instance has 4(-18h, -12h, -6h, 0h)*37(pressure level)* 33(grid vertical 940 

dimension)*33(grid horizontal dimension) dimensions (values) (instead of 4*37*14 in 941 

LLE-SHIPS model), and the values are scaled to between 0 and 1 again, as did for LLE.  942 

In a 2D convolutional layer, the same learnable filter is applied to each group of 943 

nearby pixels to extract features. The filter is defined as a p∗q (p, q are integers) size 944 

rectangle that can be convolved through the entire input array with the m*n dimension. 945 

The dot product is computed between the filter weights and the input, and producing an 946 

(m-p+1)∗ (n-q+1) output array after scanning assuming a stride of 1. Figure 3.3 displays 947 
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an example of the convolution operation. A 3*3 filter is convolved through a 4∗4 array 948 

and output a 2∗2 array with values calculated by the dot product of the sliding filter and 949 

the original data value. If the input array has more than one channel, as in a natural image 950 

with RGB channels, there will be the 3rd dimension (depth) added to the previous two-951 

dimension filer, and the output array will still be two-dimension with value summing 952 

over the depth dimensions. Figure 3.4 shows a multi-channel example with a 4*4 image 953 

with 3 channels (Figure 3.4a). A three-dimension filter (Figure 3.4b) are designed and 954 

each is applied to the corresponding channel, and the result will be 3*2*2 outputs (Figure 955 

3.4c). Then these 3 outputs will be simply summed up together, leading to one 2*2 output 956 

(Figure 3.4d).  957 

 958 

 959 

 960 

Figure 3.2: Demonstration of the convolution operation. (a) a 4∗4 array, (b) a 3∗3 961 

filter and its weights, and (c) the resulting output array. 962 

 963 

 964 

 965 

 966 

 967 

 968 

 969 

 970 

(b)  (a) (c) 
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 971 
(a)                                       (b)                                (c)                         (d) 972 

Figure 3.3: Convolution operation for input with multiple channels. (a) 3∗4∗4 973 

arrays, (b) a three-dimension filter, (c) the output arrays after filtering the 3 974 

channels one by one, and (d) the final output array with values being the sum of 975 

values on the depth dimension. 976 

 977 

When the input is 3D arrays, the 3D filter and its convolve operation are the same to 978 

that of 2D except that an additional dimension is added. To be specific, a 3D p∗q∗r filter 979 

is used to extract 3D information from the m∗n∗o input, and result in an (m-p+1)∗ (n-980 

q+1)*(o-r+1) output array assuming stride of 1 for all dimensions. Multiple filters may 981 

be applied to the same data to extract different levels of information. 982 

The above described convolution procedure only extracts linear information, and for 983 

obtaining nonlinear information, an activation layer is introduced after each 984 

convolutional layer. Rectified Linear Units (ReLU) is the most commonly used activation 985 

function that maps negative values to 0, and keeps the positive values, respectively. This 986 

function will not affect the size of the data arrays. 987 

A pooling layer is usually applied after the convolution and activation transformation 988 

to reduce the input’s dimension in order to avoid overfitting, and unlike convolution, 989 
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there’s no overlap in pooling operations for each pooling layer. Max pooling is the most 990 

widely used pooling method. Figure 3.5 displays the 2D maximum pooling; the 991 

maximum value is taken from each block (2*2) of the original image (4*4) and generate 992 

a 2*2 pooled image. Similarly, 3D max-pooling layer uses pooling operation in 3D space, 993 

where all 3 dimensions are reduced simultaneously.  994 

 995 

 996 
        (a)                                                                     (b)                                 997 

Figure 3.4: Max pooling example. A 4*4 image is sampled by a 2*2 max pooling. (a) 998 

the original image, and (b) the pooled image.  999 

 1000 

There are various types of deep learning models, and the most appropriate model for 1001 

converting the gridded data into features for mining purposes is the auto-encoder 1002 

network. Each auto-encoder network is composed of multiple deep learning layers, which 1003 

is divided into two parts: an encoder represents a feature extraction process from the 1004 

input and a decoder that reconstructs the input.  1005 

With the 14*4*37*33*33 dimensional ERA-Interim data, a more efficient auto-1006 

encoder network is a 3D Conv-auto-encoder. That is an auto-encoder with a group of 3D 1007 

convolutional, activation (ReLu), and pooling layers. In each 3D convolutional layer, 1008 
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there are multiple 3D convolutional filters with learnable weights with an additional 1009 

channel dimension on the input channels. Moreover, the 14 variables in ERA-Interim 1010 

data are treated differently than usual spatial or temporal dimension, and therefore, 14 1011 

different 3D Conv-auto-encoders are adopted to handle the ERA-Interim data. 1012 

To be specific, the input of the encoder are observations with dimension of 1013 

37*4*33*33, with pressure level (37) as its channel. There are 14 such auto-encoder 1014 

networks. 1015 

The network working on a single variable is elaborated below in detail, and the 1016 

dimension changes of the data are displayed in Figure 3.6.  1017 

 1018 

 1019 

Figure 3.5: Dimension changes of the ERA data through the 3D CNN auto-encoder 1020 

layers. 1021 

 1022 
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• The first convolution layer is with 64 different 37(channel)*2*4*4 filters and 1023 

converts the 37*4*33*33 array for one variable to 64 3*30*30 arrays. In other 1024 

words, a 37*2*4*4 filter is applied and the results are summed up in the channel 1025 

dimension (37), and therefore the vertical pressure layer dimension number is 1026 

reduced to 1. This procedure is repeated 64 times with different convolution 1027 

weights. Therefore, after the first convolution layer, the original 37*4*33*33 1028 

array becomes 64 3*30*30 arrays. The activation applications after each filter in 1029 

the convolution layer do not change the array size and therefore are not shown in 1030 

Figure 3.6. 1031 

• A 1*2*2 pooling layer converts the 64 arrays with dimension 3*30*30 to 64 1032 

arrays with dimension 3*15*15. 1033 

• The second convolution layer has 32 different filters with dimensions 64*2*4*4, 1034 

and in this layer, the new dimension due to 64 different filters in the previous 1035 

layer is considered as “channels” and the filtered arrays will be summed over the 1036 

channel dimension. As a result, each of the 32 filters converts the 64*3*15*15 1037 

array to 1 array with reduced dimensions 2*12*12 with the same operation as that 1038 

of the first convolution layer, and finally there are 32 such arrays. 1039 

• The same 1*2*2 pooling layer is applied to the 32 2*12*12 arrays and that results 1040 

in 32 2*6*6 arrays. 1041 

• Similar to the previous two convolutional layers, the third convolution layer has 1042 

num different convolution filters 32*2*5*5, and the dimension of 32 is treated as 1043 
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channel again. The result after this filtering process is num arrays of dimension 1044 

1*2*2, where the num is a to be determined hyperparameter. 1045 

• The 1*2*2 pooling layers will finally compress the arrays into num scalar 1046 

features. 1047 

The decoder is the reverse of the encoder by using the deconvolutional and unpooling 1048 

layers in DeConvNet network (Zeiler et al. 2010, 2011, 2013) to reconstruct the 1049 

convolutional networks, i.e., reverse the convolution and the pooling operations. In 1050 

deconvolutional, 0s are padded to the neighbor of the input (output of the corresponding 1051 

convolution operation) to generate an intermediate grid, and a learnable filter is used to 1052 

convolve through the intermediate grid to generate the output, which is the reconstruction 1053 

of the convolutional input. The learnable filter in deconvolution is updated in the same 1054 

way as the learnable filter in convolution. 1055 

An example is displayed in Figure 3.7, which is the deconvolution operation to 1056 

reverse the convolution operation described in Figure 3.3. To reverse the 2*2 image to 1057 

the 4*4 image, the original 2*2 image (a) is padded with 2 rows and 2 columns 0 around 1058 

each pixel to generate the intermediate grid (b), which is then convolved through the 1059 

filter (c), and result in the output (d), which is the upsampled result with regard to (a). 1060 

 1061 
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 1062 
(a)                         (b)                                (c)                                 (d)  1063 

Figure 3.6: The deconvolution operation, reverse of operations shown in Figure 3.3. 1064 

(a) a 2*2 array, (b) padded 0 to (a), (c) the filter, and (d) resulting output array after 1065 

filtering. 1066 

 1067 

To reconstruct the Max pooling operation, the location of the feature map that has the 1068 

maximum value (location of the passed value through Max pooling) is recorded in a 1069 

switch during the corresponding Max pooling operation. Then the input of the Unpooling 1070 

is upsampled where the maximum value is put to the saved position in the switch, and 0 1071 

is put into everywhere else. An example is displayed in Figure 3.8, which is used to 1072 

reconstruct the output of Figure 3.5. ReLu function in the convolutional network is the 1073 

same as in the DeConvNet network. 1074 

 1075 

 1076 
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 1077 
Figure 3.7: An unpooling example. A 2*2 image is upsampled by a unpooling 1078 

process to a 4*4 image. The position of the valid value (nonzero) in each 2*2 sub-1079 

image is based on the location of maximum value during pooling (see Figure 3.5 for 1080 

details). (a) the original image, and (b) the unpooled image.   1081 

 1082 

 1083 

The structure of DeConvNet network is displayed on the left in Figure 3.9, which is 1084 

used to reconstruct the corresponding CNN. 1085 

 1086 

 1087 

(b) (a) 
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Figure 3.8: The CNN on the right that first runs through the input to the output 1088 

(from bottom to top), and the position of the Max Pooling pixel is saved as a switch 1089 

that will be used later for the unpooling operation on the left. On the left, the 1090 

structure of the corresponding DeConvNet network consisting of one unpooling 1091 

layer, one ReLu function (the same as in CNN), and one deconvolution layer to 1092 

reconstruct the CNN on the right based on its output (top to bottom) (Zeiler et al. 1093 

2011).  1094 

 1095 

The network is trained through the backpropagation, where the mean square error 1096 

(Trevor et al. 2009) is used as the loss function, and Adam optimizer (Ruder 2016) is 1097 

used as the optimizer to update the filter weights through backpropagation. 1098 

14 separate networks with the same structure displayed in Figure 3.6 are trained 1099 

separately for 14 different ERA-Interim variables as shown in Figure 3.10. The 1100 

compressed features from each of the networks are merged with filtered SHIPS variables 1101 

and together used as the input of the GMM-SMOTE.  1102 

 1103 

 1104 
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 1105 
Figure 3.9: Combined deep learning filters for the 14 variables in ERA-Interim 1106 

data. 1107 

 1108 

 1109 
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CHAPTER 4 GMM-SMOTE SAMPLER 1110 

In a binary classification (prediction) problem such as the RI vs. non-RI 1111 

prediction, we use the machine learning (ML) model to look for a decision boundary in 1112 

the feature space (Friedl and Brodley 1997) to separate RI and non-RI instances, and the 1113 

prediction is made for any new instance based on its location in the feature space.  1114 

The decision boundary in the feature space will be highly skewed if the data are 1115 

with highly imbalanced class samples. Unfortunately, the RI and non-RI instances are 1116 

highly imbalanced because only about 5% of TC instances undergo RI process. 1117 

Generally, three types of techniques are used to handle the imbalanced data problem, 1118 

algorithm level approach, cost-sensitive approach, and resampling data approach (Last et 1119 

al. 2017).  1120 

The algorithm level approach aims at modifying ML algorithm that applies to 1121 

regular balanced data to cope with imbalanced data to correct the skewed decision 1122 

boundary. Such techniques, including changing the decision threshold and training a 1123 

separate model (Anyfantis et al. 2006; Chawla et al. 2004; Galar et al. 2012). Cost-1124 

sensitive approach assigns different costs for incorrectly classifying different classes in 1125 

the ML model to correct the skewed decision boundary. In other words, cost-sensitive 1126 

approach assigns a lower cost for misclassifying majority class and a higher cost for 1127 

misclassifying minority class (Galar et al. 2012; Castro et al. 2013; López et al. 2015). 1128 

Instead of making modifications of the ML algorithm structure, the resampling data 1129 
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approach resamples the imbalanced dataset to create a balanced one to decrease the effect 1130 

of the skewed distribution in the ML model’s learning process (Krawczyk et al. 2014). 1131 

At present, resampling is the most widely used approach to overcome the 1132 

imbalanced data problem. The resampling approach falls into three categories: 1133 

upsampling, downsampling, and the hybrid method (Last et al. 2017). The upsampling 1134 

approach upsamples the data by duplicating observations in minority class until the 1135 

number of observations in minority class matches that of the majority class, and the 1136 

downsampling removes additional observations in the majority class (Japkowicz 2000). 1137 

However, simply upsampling or downsampling does not significantly improve the 1138 

minority class prediction accuracy because they do not fortify the decision boundary. The 1139 

hybrid method combines both of them by generating new instances different from 1140 

existing ones for the minority class and removing the majority class instances 1141 

simultaneously. As an approach that combines upsampling and downsampling 1142 

approaches to improve their drawbacks, the hybrid method should be used. Among all the 1143 

hybrid resampling approaches, Synthetic Minority Over-sampling Technique (SMOTE) 1144 

has been widely employed by researchers and scientists to solve the real-world problem 1145 

and academy problem due to its simplicity and its advantages to random sampling 1146 

(Shaiba and Hahsler 2016). SMOTE was proposed by Chawla et al. (2002) to handle the 1147 

imbalanced dataset, which upsamples minority classes by constructing "synthetic" 1148 

examples rather than upsampling with replications and outperforms upsampling and 1149 

downsampling alone (Akbani et al. 2004; Batista et al. 2004; Liu et al. 2006).  1150 
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The decision boundary that separates RI and non-RI instances in SMOTE may not 1151 

be enforced since instances in minority class far from the decision boundary have the 1152 

same probability of being selected as those closed ones. In addition, SMOTE may further 1153 

amplify the noise present in the data (Nguyen et al. 2011). When all the instances in the 1154 

minority class have an equal probability of being selected, those noise observations may 1155 

be amplified and hence decrease the accuracy of the model (Bunkhumpornpat et al. 1156 

2009). 1157 

To decrease the influence of the noise observations, Han et al. (2005) proposed 1158 

two approaches, SMOTE1 and SMOTE2, to improve SMOTE by splitting minority class 1159 

instances into three groups, i.e., noise, safe, and danger using a k-nearest neighbor 1160 

approach. An instance is regarded as noise if all its neighbors are belonging to the 1161 

majority class and as safe if more than half of the neighbors are belonging to the minority 1162 

class. Otherwise, that instance is regarded as danger. Noise instances are useless because 1163 

they do not provide information about the minority class, and so do safe instances, in that 1164 

no matter what classification model is used, they are less likely to be misclassified. 1165 

Therefore, augmenting danger instances could be the most efficient way to increase 1166 

classification accuracy. Therefore, approaches proposed by Han et al. (2005) only 1167 

augment danger minority instances. 1168 

To avoid the influence of the extreme values in the sampling process, and to make 1169 

the resample process more efficient (Jo and Japkowicz 2004), Song et al. (2016) 1170 

proposed a bi-directional sampling approach, where minority and majority classes are 1171 

separately clustered using K-Means. The majority class is downsampled by only selecting 1172 
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instances near the cluster center, and the minority instances are upsampled by SMOTE 1173 

using instances in the same cluster. The downsampling and upsampling processes are 1174 

replicated multiple times until instances in majority class and minority class are balanced. 1175 

Last et al. (2017) proposed K-means SMOTE by first clustering the entire population into 1176 

different clusters. Then only clusters with more than a certain ratio of minority class 1177 

instances are selected, and each cluster is assigned with a weight equals to the number of 1178 

minority class elements divided by the sum of their distance to the center of that cluster. 1179 

Then minority instances are augmented the number of times proportional to their weight. 1180 

However, K-means is not working efficiently on complex geometrical shaped 1181 

data, especially in a high dimensional space. Furthermore, K-means SMOTE does not 1182 

handle missing values in attributes. Finally, clustering is an unsupervised approach that 1183 

the selection of the number of clusters is very subjective. If too few clusters are specified, 1184 

underfitting may occur - to cluster apparently different instances into one cluster hence 1185 

unable to identify the difference. If too many clusters are specified, overfitting may occur 1186 

- instances that have a similar property could be clustered into different clusters.  1187 

To better fit SMOTE based approach to the high-dimensional data, here, the 1188 

Gaussian Mixture Model (GMM) with a weighted Euclidean distance is used for 1189 

clustering (Friedl and Brodley 1997). As a type of model-based clustering approach, 1190 

GMM has been used in a large number of areas, such as speech recognition (Reynolds et 1191 

al. 2000), and feature extraction (Torres-Carrasquillo et al. 2002). 1192 

However, the number of clusters (𝑀) in GMM should be defined before fitting the 1193 

model to the data. Bayesian Information Criterion (BIC) (Volinsky and Raftery 2000) is a 1194 
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statistic calculated for each clustered dataset based on the likelihood to identify enough 1195 

clustering information while avoiding overfitting as much as possible. BIC can be used to 1196 

help select the best number of clusters, which is defined as n_cluster, a to be tuned 1197 

hyperparameter in GMM. The search space for n_cluster is defined as 2 to 10, which 1198 

implies BIC will be calculated for each n_cluster starting from 2 iteratively, and the 1199 

process stops when BIC stops decreasing for two continuous iterations or n_cluster 1200 

equals 10 is reached.  1201 

GMM is an unsupervised approach that assumes each observation in the 1202 

population can be represented as a weighted sum of several (the number of pre-1203 

determined clusters) Gaussian distributions, and the weights are summed to 1. Each 1204 

cluster corresponds to one Gaussian distribution, and observation will be assigned to the 1205 

cluster with the highest weight (Fraley and Raftery 1998), which is unlike clustering 1206 

approaches such as K-means, assigning each observation to a different cluster directly. 1207 

To be specific, assume 𝑥 is an observation in population 𝑋 with 𝐷 feature 1208 

dimensions, 𝑀 is the number of Gaussian distribution (clusters) within 𝑋, 𝑤𝑖 is the mixed 1209 

weight for each component and sum to 1, and 𝑔(𝑥|𝑢𝑖 , Σ𝑖) is the i-th Gaussian distribution 1210 

with mean 𝑢𝑖 and standard deviation σ𝑖. 𝑢𝑖 and σ𝑖 is calculated by expectation-1211 

maximization (E-M) algorithm, which is a likelihood based approach that starts from 1212 

some initial estimates and stops until convergence arrives (Dempster et al. 1977). 1213 

  

𝑝(𝑥|𝜆) = ∑ 𝑤𝑖𝑔(𝑥|𝑢𝑖 , Σ𝑖)

𝑀

𝑖=1

 

(4.1) 

 
𝑔(𝑥|𝑢𝑖 , σ𝑖) =

1

2𝜋1/2|σ𝑖|1/2
exp {−

1

2
(𝑥 − 𝑢𝑖)2σ𝑖

−1} 

 

(4.2) 
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The GMM clustering and the SMOTE sampling processes is combined in this 1214 

study as the data sampler to resample the unbalanced RI dataset, and the data sampler 1215 

employs the BIC to determine the number of clusters for GMM from a predefined range 1216 

(searching space) between 2 and 10; then GMM is used to cluster all the instances. Every 1217 

cluster is defined as safe, noise, or dangerous based on the instance imbalance rate (IIR), 1218 

i.e., the ratio of the minority instances in the cluster divided by the ratio for the entire 1219 

population. For example, if there are 3% minority instances in a cluster and 5% minority 1220 

instance in the population, IIR = 3%/5% = 0.6 for this cluster. When a cluster is 1221 

composed of mainly majority instances, the classification of all instances would be 1222 

majority class no matter the actual instance is the majority or not. Those clusters cannot 1223 

make any contribution to improve the classification accuracy and are termed as noise 1224 

clusters. Similarly, a cluster is defined as safe when its minority instances are dominant in 1225 

the cluster and are less possible to be misclassified. In this study, 0.2 (5) of IIR value is 1226 

set as the threshold, and any clusters with IIR <=0.2 (>=5) are termed noise (safe). 1227 

Otherwise (0.2<IIR<5), the classification of the minority is difficult, and the cluster is 1228 

termed dangerous.  Similar to Last et al. (2017), instances can also be identified as safe, 1229 

noise, or danger based on the number of minority instances in their m_neighbors 1230 

neighbors, but slightly different here, an instance is termed as noise (safe) if none (more 1231 

than half) of its neighbors is in the minority class; otherwise, as danger. Only danger 1232 

instances in dangerous clusters are upsampled with SMOTE following 1233 

𝑢𝑛𝑒𝑤 =  𝑢𝑐 + 𝑤 ∗ (𝑢𝑛 − 𝑢𝑐),    𝑤 ~ 𝑈(0,1)    1234 

𝑖𝑓 𝑢𝑛  𝑖𝑠 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑤 ~ 𝑈(0,0.5)                     (4.3) 1235 
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where uc presents the selected minority class instance that needs to be augmented; un 1236 

presents the randomly selected neighbor of uc using k nearest neighbor in the same 1237 

cluster with k= k_neighbors, another to-be-determined hyperparameter; U(0,1) and 1238 

U(0,0.5) present random numbers with a uniform distribution between 0 and 1, and 0 and 1239 

0.5, respectively. Because the number of majority instances is much larger than that of 1240 

the minority instance, the increase of m_neighbors will result in the increase of the 1241 

number of majority neighbors for an instance, leading to the increased possibility of the 1242 

instance is classified as noise; hence the instance is less likely to be upsampled. 1243 

Therefore, the number of instances that are upsampled are fewer, and the variety of the 1244 

upsampled instances is decreased. Similarly, smaller k_neighbors will lead to a smaller 1245 

variety because fewer neighbors will be selected for the upsampling. Smaller (larger) 1246 

variety represents less (more) coverage in the feature space and would more likely result 1247 

in an underfitted (overfitted) model, or a conservative (aggressive) model. Therefore, 1248 

large (small) m_neighbors and small (large) k_neighbors will lead to conservative 1249 

(aggressive) models.  1250 

Each danger instance in dangerous clusters is augmented Na times using equation 1251 

(4.3) where Na is defined as the integer part of 1252 

0.75 ∗
The number of majority instance in the population

The total number of minority instances need to be augmented
− 1, 1253 

which makes the final number of minority instances are approximately 75% of the 1254 

majority instance number, assuming most of the minority instances will be augmented. 1255 

Then, as the final step of the resampling, 25% instances in the majority class are 1256 
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randomly removed (downsampled) to make the majority class and minority class have 1257 

similar numbers of instances (Song et al. 2016; Last et al. 2017). Clusters with the 1258 

number of instances less than the maximum of m_neighbors and k_neighbors will be 1259 

removed. 1260 

The GMM-SMOTE approach described above will be used to augment the output 1261 

data from the data filter of the COR-SHIPS model, LLE-SHIPS model, and DL-SHIPS 1262 

model. There are 3 hyperparameters that need to be tuned, as listed in Table 4.1. To avoid 1263 

overfitting and underfitting, i.e., not to select too large or too small k_neighbors, and 1264 

m_neighbors, the search space is defined as 3 to 14, and 3 to 10, respectively. 1265 

Furthermore, n_cluster should guarantee that each cluster has at least k_neighbors+1 1266 

instances. Therefore, the search space for n_cluster is defined as 2 to 10. A cluster will be 1267 

removed if the number of its total instances is less than k_neighbors or m_neighbors. 1268 

 1269 

 1270 

 1271 

 1272 

 1273 

 1274 

 1275 

 1276 

 1277 
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Table 4.1: Hyperparameters and their searching space in GMM-SMOTE sampling 1278 

process. 1279 

Hyperparameter Component Explanation Minimum Maximum Initial 

value 

n_cluster GMM-

SMOTE 

The number of 

clusters in the 

Gaussian Mixture 

Model function  

2 10 1 

m_neighbors GMM-

SMOTE 

The number of 

nearest neighbors 

used to determine if a 

minority sample is in 

danger 

3 10 10 

k_neighbors GMM-

SMOTE 

The number of 

nearest neighbors 

used to construct 

synthetic samples 

3 14 5 

 1280 
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CHAPTER 5 XGBOOST CLASSIFIER AND 1281 

HYPERPARAMETER TUNING PROCESS 1282 

5.1 XGBoost classifier 1283 

The classification and regression tree model (CART) (Friedl and Brodley 1997) is 1284 

one of the most popular classifications and prediction models in the machine learning 1285 

community that is capable of capturing the linear and nonlinear relationship between 1286 

predictors. However, a single CART usually is a weak classifier, only slightly better than 1287 

random guessing. Therefore, a boosting approach is commonly used, which trains a set of 1288 

weak classifiers to enhance the classification performance, with new classifiers being 1289 

trained to correct the mistake made by the previous classifiers. The performance of the 1290 

boosting model with a large set of weak classifiers usually outperforms the single strong 1291 

classifier.  1292 

State of the art boosting tree model is the Gradient Boosting Tree (GBT) (Trevor 1293 

et al. 2009), which trains a series of weak CART classifiers iteratively. Each classifier is 1294 

constructed on the remaining errors of previous classifiers, and new classifiers are trained 1295 

to correct the mistake made by the previous classifiers. The output of each classifier is a 1296 

leaf level score, as shown in Figure 5.1, as an example for RI prediction. An instance 1297 

with attributes A and B lands at leaf A1 of Tree 1 based on the A value, and leaf B1 of 1298 

Tree 2 based on the B value. The raw classification score for being a RI instance is a 1299 

weighted sum, w1*S1+w2*S3, with w1 and w2 being the weights for Tree 1 and Tree 2, 1300 

respectively. The raw score is rescaled to a value between 0 and 1 using a sigmoid 1301 
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function (Trevor et al. 2009). In the binary classification in this study, where 0 and 1 are 1302 

used to encode non-RI and RI classes, if the rescaled score is less than a decision 1303 

threshold, which is a to-be-tuned hyperparameter, and preselected as 0.5, the instance is 1304 

predicted as non-RI. Otherwise, the instance is predicted as RI. A greedy algorithm like 1305 

GBT may generate too many weak classifiers fitting in the residuals that the total model 1306 

can be easily overfitted, and a regularized distributed GBT, i.e., XGBoost, is designed to 1307 

control the overfitting (Chen and Guestrin 2016). 1308 

 1309 

 1310 
Figure 5.1. CART sample. Two regression trees 1 and 2, split based on values of 1311 

variable A and variable B, respectively. A1, A2, B1 and B2 are the leave names and 1312 

S1, S2, S3, and S4 are the corresponding classification scores. 1313 

 1314 

XGBoost generates weaker classifiers iteratively by minimizing an objective 1315 

function, consisting a loss function and a regularization function. The loss function is 1316 

based on the errors between the predicted classes and the ground truth classes for all 1317 

instances. The regularization function is a function of classifiers, and its purpose is to 1318 

control the overfitting of the final classification. In short, the strategy in XGBoost is to 1319 
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have the best prediction (minimum loss function) with the regularized complexity of the 1320 

tree structure (to avoid overfitting). 1321 

The regularization constraints can be roughly divided into two categories. The 1322 

first category is on the overall structure outside individual classifier, which includes 1323 

shrinkage ratio (shrinkage), the number of classifiers (n_estimator), subsample ratio 1324 

(subsample), and features ratio (colsample). The second category is on the individual 1325 

CART (classifier) level, which includes L1 regularization (reg_alpha) and L2 1326 

regularization (reg_lambda), minimum loss reduction required to make a split (Split 1327 

criteria, aka, gamma) and the minimum sum of instance weight in a split 1328 

(min_child_weight), and the maximum depth of the CART (max_depth).  1329 

In the first category, since the subsequent classifiers are iteratively fitted into the 1330 

remained error from the previous classifiers, the subsequent classifiers contribute less and 1331 

less as boosted trees go deeper. Therefore, similar to gradient descent algorithm with 1332 

decreasing steps for better approximation (Trevor et al. 2009), we decrease the 1333 

contribution of even weaker classifiers with a rate of shrinkage, a hyperparameter within 1334 

(0,1]. Empirically XGBoost was found to perform best with the shrinkage around 0.1, 1335 

and the search space is defined as 0 to 0.3 here. While more classifiers would result in 1336 

better accuracy, too many classifiers will result in overfitting. Therefore, the number of 1337 

classifiers, n_estimator, is limited in [100, 2000] and will be searched in that range to 1338 

avoid underfitting and overfitting simultaneously. In addition to the classifier number, 1339 

overfitting can also be reduced by using only a reduced set of datasets and variables 1340 

(Trevor et al. 2009). Subsample ratio (subsample) and features ratio (colsample) are used 1341 
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to control the sizes of randomly selected reduced datasets and feature sets, and the search 1342 

spaces are defined as 0.5 (50% instances) to 1 and 0.4 (40% features) to 1, respectively. 1343 

In total, four constrains: shrinkage, n_estimator, subsample, and colsample are adopted as 1344 

hyperparameters for overall constrains in the classification process.  1345 

In the second category, the concern is the same, to avoid overfitting by similar 1346 

strategies but on individual trees. Although the number of features is reduced by 1347 

colsample, that process is random. The number of the features are further controlled by 1348 

L1 regularization and L2 regularization based on their importance, where L1 1349 

regularization (reg_alpha) and L2 regularization (reg_lambda) are similar to Ridge and 1350 

Lasso (Friedl and Brodley 1997) in linear regression but apply on CART to reduce the 1351 

impact of less-predictive features. The search spaces of L1 and L2 regularization are 1352 

specified as 0 to 20, and 0.1 to 20, respectively. Another tree-level constraint is to limit 1353 

tree growth. This can be achieved by setting the minimum loss reduction required to 1354 

make a split (gamma) and a minimum sum of instance weight in a split 1355 

(min_child_weight), and 0 to 10, and 0.5 to 5 are defined as their search space, 1356 

respectively. Finally, the maximum depth (max_depth) is used to control the depth of a 1357 

CART and is searched in the space from 3 to 10.  1358 

The last to-be-tuned hyperparameter is the decision threshold. If the summed 1359 

score output from the XGboost is above the threshold, an instance is classified as RI. 1360 

Tentatively, the decision threshold is preselected as 0.5, and will be tuned. 1361 

Details of all hyperparameters are specified in Table 5.1. For a short note, lower 1362 

m_neighbors, k_neighbors, shrinkage, n_estimators, subsample, colsample, max_depth, 1363 
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and higher reg_alpha, reg_lambda, gamma, min_child_weight lead to a more 1364 

conservative model. n_cluster and decision threshold will not influence the 1365 

conservativeness of the model. More details of XGBoost will be elaborated in Chapter 6.  1366 

 1367 

Table 5.1: Hyperparameters, their searching space defined by the minimum and 1368 

maximum, and the initial values in GMM-SMOTE sampling process and XGBoost 1369 

classifier. 1370 

Hyperparameter Component Explanation Min Max Initial 

value 

shrinkage XGBoost Shrinkage ratio for each 

feature 

0 0.3 0.1 

n_estimator XGBoost The number of CART to 

grow 

100 2000 100 

subsample XGBoost Subsample ratio of the 

training instances 

0.5 1 1 

colsample XGBoost Subsample ratio of 

columns for creating each 

classifier 

0.4 1 1 

reg_alpha XGBoost L1 regularization term on 

weights 

0 20 0 

reg_lambda XGBoost L2 regularization term on 

weights 

0.1 20 1 

gamma XGBoost Minimum loss reduction 

required to make a further 

partition on a leaf node of 

the CART 

0 10 0 

min_child_weight XGBoost Minimum sum of instance 

weight in a split 

0.5 5 1 

max_depth XGBoost Max depth of each CART 

model in XGBoost 

3 10 3 

decision threshold XGBoost Decision threshold on the 

XGBoost classifier output 

0 1 0.5 

 1371 
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5.2 Hyperparameter tuning process 1372 

Hyperparameter tuning is based on pre-defined measures of classification 1373 

performance, and all performance measures are derived from the elements of the so-1374 

called confusion matrix, as shown in Table 5.2. The commonly used accuracy, 1375 

(TP+TN)/(TP+FP+FN+TN), is not a good measure for the unbalanced RI cases. Instead, 1376 

Probability Of Detection (POD), False Alarm Ratio (FAR), Peirce's Skill Score (PSS), 1377 

and kappa scores are often used in RI prediction evaluations (Wilks 2011; Yang 2016; 1378 

Kaplan et al. 2015). 1379 

 1380 

Table 5.2: Confusion matrix. 1381 

 Predicted positive Predicted negative 

Actual positive Truth positive (TP) False negative (FN) 

Actual negative False positive (FP) Truth negative (TN) 

 1382 

POD (aka recall) is defined as TP/ (TP + FN), or the ratio of correct positive 1383 

prediction cases to all the positive cases. FAR is defined as FP/ (TP + FP) measuring the 1384 

false positive prediction ratio compared to all the positive predictions. PSS, defined as 1385 

TP/(TP + FN) - FP/(FP+TN), can be interpreted as the sum of the class level accuracy. 1386 

And the kappa score, defined as 2*(TP*TN-FN*FP)/[(TP+FN)(FN+TN)-1387 

(TP+FP)(FP+TN)], conceptually the same as Brier Skill Score (BSS), measuring the 1388 

relative improvement of the prediction against the prediction based on samples without 1389 
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any models (Wilks 2011). In this study, a single metric, the kappa score, is mainly used 1390 

for the hyperparameters tuning. Other measures are used mostly to report the 1391 

performance of the prediction and to compare with previous studies. 1392 

To find the optimal values of the hyperparameter set (maximizing the kappa score 1393 

in this study), grid search is performed in most previous works but the grid search is too 1394 

time-consuming, especially with a large number of hyperparameters in the model. 1395 

Bayesian optimization (BO) is then designed to reduce the time consumption, which uses 1396 

an iteration procedure to search the global optimum. In reality, it is difficult for BO to 1397 

find the global optimum, and instead, the BO will converge to local optima and diverge 1398 

from them during the global optimum searching process. Therefore, the iteration should 1399 

stop at a pre-defined maximum iteration number to avoid almost never-end global 1400 

optimum search (Snoek et al. 2012; Shahriari et al. 2015). In this study, BO is used with 1401 

pre-defined ranges for most of the searched hyperparameters, and the ranges are 1402 

independent of each other. 1403 

 1404 

 1405 

 1406 

 1407 

 1408 

 1409 

 1410 

 1411 

 1412 

 1413 

 1414 

 1415 

 1416 
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CHAPTER 6 RESULT 1417 

 In data mining and machine learning, a dataset is usually divided into training 1418 

dataset, validation dataset, and test dataset. The training dataset is used to train the model, 1419 

the validation dataset is adopted for hyperparameter tuning, and the test dataset is 1420 

employed to provide the final assessment of the model (James et al. 2013).  1421 

 In this study, the whole dataset is divided into 90% for training-validation and 1422 

10% for test. To further divide the training-validation dataset into the training dataset and 1423 

validation dataset, the entire training-validation dataset is split into ten mutually exclusive 1424 

equal-sized subsets. One of the subsets is reserved as the validation dataset, and the rest 1425 

nine subsets are used for training. Each of the subsets is used in turns for validation 1426 

dataset once. This is defined as 10-fold cross-validation (Kohavi 1995). The model’s 1427 

performance (kappa score) is evaluated by the mean performance (mean kappa score) on 1428 

the 10 validation datasets.  1429 

 When the study is first conducted with the SHIPS data, there were 11,317 1430 

instances (cases) from 1982 to 2016, and 571 (approximately 5%) were under rapid 1431 

intensification (RI). A random stratified sampling on RI and non-RI cases was drawn 1432 

with a similar proportion, and that resulted in 10,185 instances (including 523 RI cases, 1433 

5.1%) in the training-validation set, and 1,132 instances (including 48 RI cases, 4.2%) in 1434 

the test dataset.  1435 

 After the training was done, however, 465 instances in 2017 and the last 1436 

tropical cyclone in 2016 are added to the SHIPS developmental database, and all of these 1437 
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instances are added to the test dataset. The test dataset proportion is ended up with 1,597 1438 

(14.1%) instances in total with 95 RI instances (5.9%). 1439 

 Therefore, in this study, COR-SHIPS, LLE-SHIPS, and DL-SHIPS models are 1440 

trained using the training dataset initially. Then their hyperparameter tuning process will 1441 

be derived on the validation dataset following steps introduced in Chapter 6, and their 1442 

performance will be evaluated in the test dataset, which will be compared with previous 1443 

works in Y16 and KRD15. Finally, their variable importance will be evaluated and 1444 

discussed.  1445 

All algorithms, including those for data processing, data visualization, and data 1446 

mining and machine learning in this study are performed with R (version 3.5.1), python 1447 

base (version 3.7.0), python multiprocessing package (version 2.5), scikit-learn package 1448 

(version 1.9.2), XGBoost package (version 0.83), and pyspark package (Spark API) 1449 

(version 2.21). The entire process is implemented on Amazon Web service (72 cpus (3.0 1450 

GHz Intel Xeon Platinum processors), 144 G memory), and a local machine (8 i7 cores, 1451 

32G RAM, and GTX 1080). 1452 

6.1 COR-SHIPS model 1453 

6.1.1 Hyperparameter tuning for model selection 1454 

6.1.1.1 Hyperparameters tuning for SHIPS data filter 1455 

The structure of the COR-SHIPS model is displayed in Figure 1.1, and the 1456 

correlation threshold in the SHIPS data filter is tuned based on the trial-and-error with 4 1457 

values, 0.7, 0.8, 0.9, and 0.95. For each of the correlation threshold, variables are first 1458 

filtered as discussed before. Then Bayesian Optimization with 40 iterations is used to 1459 
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tune hyperparameters in Table 4.1 and Table 5.1 with no clustering and the preset 0.5 1460 

classification decision threshold. With each iteration, a 10 cross-validation kappa score is 1461 

recorded with a corresponding set of hyperparameter values, and the top 5 out of 40 1462 

kappa scores for each threshold are listed in Table 6.1. Threshold 0.95, 0.9, 0.8, 0.7 reach 1463 

mean kappa scores of 0.401, 0.409, 0.411, and 0.343, respectively. This indicates the 1464 

model performs the best at 0.8 and 0.9 among the four given numbers. 1465 

 1466 

Table 6.1: Kappa scores of the 5 best 10-fold cross-validation results and their 1467 

means for different correlation thresholds. The name of the 1st to 5th indicates the 1st 1468 

to 5th best kappa scores. The “number variables selected” is the number of variables 1469 

kept after highly correlated variables removal. 1470 

Correlation 

Threshold 

5th  4th  3rd 2nd  1st Mean Number 

variables 

selected 

0.7 0.314 0.321 0.334 0.352 0.392 0.343 56 

0.8 0.404 0.407 0.411 0.417 0.418 0.411 72 

0.9 0.402 0.403 0.405 0.415 0.419 0.409 99 

0.95 0.387 0.397 0.401 0.409 0.411 0.401 136 

 1471 

Table 6.1 also shows there are 136, 99, 72, and 56 variables left for threshold 1472 

0.95, 0.9, 0.8, and 0.7, respectively after filtering. Approximately 30 variables are 1473 

reduced when the threshold is changed from 0.95 to 0.9, 0.9 to 0.8, and 0.8 to 0.7. Having 1474 

less number of variables results in a lower possibility of overfitting, and the score of 1475 

threshold 0.8 is higher than that of 0.9. Therefore, 0.8 is selected as the correlation 1476 

threshold for removing highly correlated attributes in the SHIPS data. After the removal, 1477 
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there are 72 groups of highly correlated variables, as listed in Table A1, and the first 1478 

variable in each group will be selected to form the 72 selected variables. 1479 

6.1.1.2 The number of clusters selected in GMM-SMOTE 1480 

After the correlation threshold is determined, the hyperparameters for GMM-1481 

SMOTE and XGBoost still need to be tuned for the best results. In GMM tunning for the 1482 

“optimal” cluster numbers, BIC is chosen as the selection criterion, and the BIC values 1483 

with the different number of clusters are displayed in Figure 6.1. The BIC values 1484 

decrease with the cluster number first and then increase. The BIC values decrease with 1485 

the cluster number for small cluster numbers, but stop decreasing at n_cluster=6, and 1486 

increases when the cluster numbers increase to 7 and 8. Therefore, n_cluster is selected as 1487 

6, associated with the lowest BIC value. 1488 

 1489 
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 1490 
Figure 6.1: BIC (𝟏𝟎^𝟓) for GMM with different number of clusters. 1491 

 1492 

The six clusters with the numbers of minority (RI) and total instances, and the IIR 1493 

in each are displayed in Table 6.2. As we defined danger clusters with 0.2-5 IIR range, 1494 

Clusters 3 and 5 could be excluded due to too few minority cases in the following 1495 

augmentation, which removed a total of 2,401 instances with 17 RI cases (0.71%). 1496 

 1497 

Table 6.2: The number of minority and total instances, and the Imbalance Ratio 1498 

(with population RI ratio at 5.1%) for the 6 clusters. 1499 

Cluster 1 2 3 4 5 6 Total 

Number of the minority 

instance 

84 69 12 235 5 118 523 

Number of the total 

instance 

2275 1481 1255 2390 1146 1638 10185 

Imbalance Rate 0.724 0.914 0.187 1.928 0.086 1.413 1 
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 1500 

6.1.1.3 Hyperparameters tuning for GMM-SMOTE and XGBoost 1501 

While the correlation threshold in the SHIPS data filter and the cluster number are 1502 

tuned separately, all other eleven hyperparameters except for the decision threshold are 1503 

tuned together by Bayesian Optimization (BO). Those parameters are listed in Table 4.1 1504 

and Table 5.1 with the pre-defined searching spaces and initial values. 1505 

Figure 6.2 shows the change of the 10-fold cross-validation kappa scores, the 1506 

tuning criterion, over a total 40 BO iterations. The kappa score is fluctuating over the 1507 

iterations. For example, BO process helps the model reach a local optimum at iteration 8, 1508 

and diverges from the local optimum to look for the global optimum and reach another 1509 

local optimum after iteration 11. This process continues until the global optimum is 1510 

found, which is barely possible, or the maximum iteration, 40 preset in this case, is 1511 

reached. Since the trend with the iteration is unpredictable, hyperparameter sets with the 1512 

best 5 kappa scores are selected, and the scores and hyperparameter values are displayed 1513 

in Table 6.3. The different hyperparameter set is named as MX, where X is defined by the 1514 

iteration number. For example, M11 implies the parameter set is selected after the 11th 1515 

iteration.  1516 

 1517 
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 1518 
Figure 6.2: Variation of Cross-validation kappa scores over Bayesian Optimization 1519 

iteration numbers.  1520 

 1521 

Based on Table 6.3, the performance of M14 (0.418) and M36 (kappa=0.417) are 1522 

better than M25 (0.411), M38 (0.405), and M11(0.407). As indicated in previous 1523 

sections, lower k_neighbors, shrinkage, n_estimators, subsample, colsample_bytree, 1524 

max_depth, and higher m_neighbors, reg_alpha, reg_lambda, gamma, min_child_weight 1525 

will lead to a more conservative prediction model. Therefore, we will analyze the values 1526 

of hyperparameters to find a balanced (not too conservative and not to aggressive) model 1527 

based on the ranking of those values.  1528 

 1529 

 1530 

 1531 

 1532 
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Table 6.3: Top performed hyperparameter sets, the corresponding cross-validation 1533 

kappa scores, and specific values of the tuned hyperparameters. The numbers after 1534 

“M” denoting the iteration numbers. 1535 

Name M38 M11 M25 M36 M14 

Kappa score 0.405 0.407 0.411 0.417 0.418 

m_neighbors 4 3 3 3 5 

k_neighbors 6 11 9 10 10 

shrinkage 0.29 0.23 0.3 0.3 0.21 

n_estimators 2000 572 2000 376 1510 

subsample 0.75 0.5 0.5 0.5 0.67 

colsample 0.99 0.78 0.99 0.9 0.99 

reg_alpha 0.5 1.34 0.5 0.5 0.5 

reg_lambda 20 20 20 18.91 20 

gamma 0 0 0 0 0 

min_child_weight 0.5 0.5 2.12 1.26 0.91 

max_depth 7 8 7 7 10 

 1536 

To look for the balanced model, a system is designed to score the 1537 

conservativeness of the hyperparameter set. The scores are based on a 1 (the least 1538 

conservative) to 5 (the most conservative) scale associated with the hyperparameter value 1539 

ranks, as listed in Table 6.4. For hyperparameters favoring smaller values for 1540 

conservativeness (k_neighbors, shrinkage, n_estimators, subsample, colsample, 1541 

max_depth), the scores are the same as the descending parameter value ranks. When a tie 1542 

appears, the tied values will have the same rank (score), and the next rank value depends 1543 

on how many values tie together. For example, in k_neighbors, M11 has the largest 1544 

value, 11, hence M11 is scored 1. M36 and M14 have the second largest value, 10, hence 1545 

they are scored 2. The next largest value, 9, is ranked the 4th (instead of the 3rd) in M25, 1546 

and is scored 4. For other hyperparameters (m_neighbors, reg_alpha, reg_lambda, 1547 

gamma, and min_child_weight), the conservativeness ranking scores are opposite to the 1548 
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descending value ranks. After the ranking scores are assigned to all of the 11 1549 

hyperparameters in the five local optimal cases, the scores are summed up for the five 1550 

cases (Table 6.4). Since our goal is to choose a model neither conservative nor 1551 

aggressive, the parameter set M36 with the middle conservativeness ranking score is 1552 

chosen for following implementation and discussion. 1553 

 1554 

Table 6.4: The descending value ranking of individual hyperparameter among the 1555 

top 5 performed cases, and the corresponding conservativeness ranking scores in 1556 

parentheses. The variables with normal font are those favoring smaller values for 1557 

conservativeness, and those italicized favoring larger values. 1558 

 1559 

Name M38 M11 M25 M36 M14 

m_neighbors 2 (4) 3 (1) 3 (1) 3 (1) 1 (5) 

k_neighbors 5 (5) 1 (1) 4 (4) 2 (2) 2 (2) 

shrinkage 3 (3) 4 (4) 1 (1) 1 (1) 5 (5) 

n_estimators 1 (1) 4 (4) 1 (1) 5 (5) 3 (3) 

subsample 1 (1) 3 (3) 3 (3) 3 (3) 2 (2) 

colsample 1 (1) 3 (3) 1 (1) 2 (2) 1 (1) 

reg_alpha 2 (1) 1 (5) 2 (1) 2 (1) 2 (1) 

reg_lambda 1 (2) 1 (2) 1 (2) 5 (1) 1 (2) 

gamma 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 

min_child_weight 5 (1) 5 (1) 1 (5) 2 (4) 3 (3) 

max_depth 3 (3) 2 (2) 3 (3) 3 (3) 1 (1) 

Total score 23 27 23 24 26 

 1560 

6.1.1.4 Hyperparameters tuning for XGBoost decision threshold 1561 

The last tuned hyperparameter is the decision threshold on the XGBoost classifier 1562 

output, which was set as 0.5 before tuning. To tune this hyperparameter, we use a graphic 1563 

method based on the relative values of POD and FAR as well as the kappa score. Since 1564 
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POD and FAR are monotonically decreasing function with the decision threshold, we 1565 

instead use precision (1-FAR) for identifying a threshold that balances the POD and 1566 

FAR. 1567 

Figure 6.3a displays the variations of precision and POD as functions of the 1568 

decision threshold. The precision and POD curves cross each other around 0.2 of the 1569 

threshold value, a relatively balanced point for POD and FAR. At the same point, the 1570 

kappa scores shown in Figure 6.3b close to the highest value, 0.35. As a result, 0.2 is 1571 

selected as the decision threshold, which is expected to balance the POD and FAR, and 1572 

therefore could minimize the overfitting effect in the final classification results. 1573 

 1574 

 (a)                                                                    (b)   1575 

       1576 
 1577 

Figure 6.3: (a) Precision and POD score vs. decision threshold, and (b) Kappa score 1578 

vs. decision threshold. 1579 

 1580 
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6.1.2 COR-SHIPS result on test data 1581 

Unlike the traditional classifier such as decision tree (Yang et al. 2016), modern 1582 

classifier such as the XGBoost gives almost perfect classification on the training-1583 

validation data, i.e., POD≈1 and FAR≈0. Due to this fact, the performance measures on 1584 

the training results are of little value, and therefore, the evaluation of the prediction is on 1585 

the test data only. 1586 

The confusion matrix for the testing data, before hyperparameter tuning (MB), 1587 

and after hyperparameter tuning (MA) is displayed in Table 6.5. The hyperparameter set 1588 

of MB is displayed in the last column of Table 4.1, and Table 5.1 (initial values set by the 1589 

software) with the decision threshold as 0.5, and the MA is with the hyperparameter set 1590 

of M36 (Table 6.3) with the 0.2 decision threshold and 6 clusters. MA’s TN (1,438) and 1591 

FN (56) are slightly smaller than 1,447 and 62 of MB, while MA’s TP (39) and FP (64) 1592 

are larger than 33 and 55 of MB. Smaller TP and larger FN in MB implies that MB is 1593 

worse at correctly predicting RI instances, and vice versa. It seems that there is a trade-1594 

off between correctly predicting RI and non-RI, i.e., if we want to better predict the RI 1595 

instance, we should sacrifice the power we predict for non-RI instances, and vice versa.  1596 

 1597 

Table 6.5: Confusion matrix values of our model after (before) hyperparameter 1598 

tuning 1599 

 Predicted RI Predicted 

non-RI 

Actual 

Actual RI 39 (33) 56 (62) 95 

Actual non-RI 64 (55) 1438 (1447) 1502  
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Predicted 103 (88) 1494 (1509)  

 1600 

Kappa, PSS, POD, and FAR are used for the model evaluation, and their values 1601 

for MB and MA are elaborated in Table 6.6. The POD and FAR values for MB and MA 1602 

cases demonstrated the importance of hyperparameter tuning. After tuning, POD 1603 

increases 26.1% from 0.326 to 0.411, while FAR increase only from 0.617 to 0.621, 1604 

almost nill (0.6%). That is, the benefit of higher correct RI prediction is much higher than 1605 

the cost of false alarm with the hyperparameter tuning. The overall statistics PSS and 1606 

kappa score also increased from 0.293 to 0.368 (25.6%) and from 0.315 to 0.354 1607 

(12.4%), respectively, confirming the significant improvement on RI prediction with the 1608 

hyperparameter tuning procedure.  1609 

 1610 

Table 6.6: Performance comparisons. MB and MA denote the models before and 1611 

after the hyperparameter tuning. 1612 

Model Kappa PSS POD FAR 

MB 0.315 0.293 0.326 0.617 

MA 0.354 0.368 0.411 0.621 

Improvement MB 12.4% 25.6% 26.1% +0.6% 

 1613 

6.1.3 Feature importance 1614 

Generally, the variable (feature) importance is used to leverage the variable 1615 

contribution and is defined as a quantitative score. The higher the score is, the more the 1616 

variable contributes and the more useful that variable is for classifying RI. The classifier 1617 
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used in this study, XGBoost, provides the scaled importance scores with the sum of all 1618 

scores being one. 1619 

Table 6.7 displays the variables with the top 10 importance scores and their definition 1620 

(SHIPS 2018c). The scores of the full 72 variables are given in Table A4. The past 12-1621 

hour intensity change, BD12, has the largest importance score, 0.0362, which almost 1622 

doubles the importance score of the second important variable. Because BD18 and BD06 1623 

are highly correlated with BD12 (see Table A1), we can safely assume that they are as 1624 

important as BD12. The second most important variable is DTL, the distance from a TC 1625 

to the nearest major land. The importance of DTL is slightly higher than the third to 1626 

seventh most important variables, CFLX, SHRD, G150, jd, and VAMX, which are 1627 

related to dry air, vertical wind shear magnitude at 850-200 hPa, the temperature 1628 

perturbation at 150 hPa, Julian day, and the current TC intensity. The eighth to ninth 1629 

variables are IRM1_5 and PW08. The tenth most important variable is VMPI, the 1630 

Maximum potential intensity, which ranked higher in other RI studies.  1631 

 1632 

Table 6.7: Features of top ten importance, their importance scores, and feature 1633 

description from SHIPS (2018c) in the COR-SHIPS model. 1634 

Variable Importance Description 

BD12 0.0362 The past 12 hour intensity change 

DTL 0.0217 The distance to nearest major land 

CFLX 0.0207 

Dry air predictor based on the 

difference in surface moisture flux 

between air with the observed 

(GFS) RH value, and with RH of 

air mixed from 500 hPa to the 

surface 
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SHDC 0.0206 

850-200 hPa shear magnitude (kt 

*10) vs time (200-800 km) but 

with vortex removed and averaged 

from 0-500 km relative to 850 hPa 

vortex center 

G150 0.0205 

Temperature perturbation at 150 

hPa due to the symmetric vortex 

calculated from the gradient 

thermal wind. Averaged from 

r=200 to 800 km centered on input 

lat/lon (not always the 

model/analysis vortex position) 

(deg C*10) 

jd 0.0204 Julian date 

VMAX 0.0201 Maximum Surface Wind 

IRM1_5 0.0199 
Predictors from GOES data (not 

time dependent) for r=100-300 km 

but at 1.5 hours before initial time 

PW08 0.0191 
Time dependent 600-800 km TPW 

standard deviation (mm * 10) 

VMPI 0.0190 
Maximum potential intensity from 

Kerry Emanuel equation (kt) 

 1635 

It is interesting to notice that, IRM1_5, the standard deviation (STD) of GOES (Knaff 1636 

et al. 2008) BT (brightness temperature) in 100-300 km radius 1.5 hours before the initial 1637 

time, is more important than the average BT value itself (IRM1_2). The phenomenon 1638 

plausibly says that the non-uniform BT distribution around TC center plays a more 1639 

important role than the uniform BT level for the RI. The same thing takes place with 1640 

PW08, the 600-800 km TPW (Total Precipitable Water) standard deviation from the GFS 1641 

analysis (Berger 2016), which is more important than the corresponding TPW value, 1642 

PW07 represented by the highly correlated RHMD (Table A1). This finding is consistent 1643 

with the relationship between TC intensity and the symmetricity of the TC structure. Asif 1644 
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et al. (2020) used the STD and other statistics of brightness temperature in centric bands 1645 

to establish a relationship with TC intensity, and those statistics play a similar role of the 1646 

variance of the deviation angle described by Piñeros et al. (2011) and Ritchie et al. 1647 

(2012).  1648 

6.2 LLE-SHIPS model 1649 

6.2.1 Hyperparameter tuning for model selection 1650 

6.2.1.1 Hyperparameters tuning for data filters 1651 

LLE-SHIPS model is trained with both the SHIPS data and the near core ERA 1652 

gridded data. The SHIPS data will inherit the filtered data for the COR-SHIPS model, 1653 

and the ERA data will be filtered with LLE. Two new hyperparameters will present with 1654 

the LLE filter, the number of the nearest neighbors for each observation (no_neighbors), 1655 

and the number of dimensions in the reduced space (no_dimension). As we did in the 1656 

tuning process for the COR-SHIPS model, BO with 40 iterations is used to tune the two 1657 

new hyperparameters with no clustering and the preset 0.5 classification decision 1658 

threshold. In addition, a 10-fold cross-validation kappa score is recorded with a 1659 

corresponding set of hyperparameter values in each iteration, and the 5 hyperparameter 1660 

sets with the best 10-fold cross-validation kappa scores are listed in Table 6.8. The search 1661 

range for no_neighbors and no_dimension are pre-defined to 5 to 15 and 10 to 90, 1662 

respectively. 1663 

Based on Table 6.8, we can find that the best kappa score is 0.297 achieved at 1664 

no_dimension being 90, and no_neighbors equaling 15. Therefore, 90 and 15 are selected 1665 

as final parameter values for no_dimension and no_neighbors. With the above filter 1666 
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setting, the original 4*37*14 = 2072 features are filtered into 90 new variables, named as 1667 

lle1 to lle90. Based on the property of LLE, lle1 to lle90 are independent of each other, 1668 

i.e., the correlation between any of them is 0. In addition, after calculation, the absolute 1669 

correlation between new lle variables and the SHIPS variables are less than 0.8; hence no 1670 

additional variables will be removed in this phase.  1671 

 1672 

Table 6.8: The performance for models with different sets of values of the 1673 

hyperparameters,  no_dimension and no_neighbors.  1674 

Kappa 

Score  

Rank no_dimension no_neighbors 

0.297 1 90 15 

0.295 2 89 15 

0.290 3 87 13 

0.287 4 90 14 

0.282 5 80 15 

 1675 

6.2.1.2 The number of clusters selected in GMM-SMOTE 1676 

After the hyperparameters in data filters are tuned, the hyperparameters for 1677 

GMM-SMOTE and XGBoost still need to be tuned for the best results. Similar to the 1678 

COR-SHIPS model, the BIC values with the different number of clusters are displayed in 1679 

Figure 6.4, and the BIC values decrease with the cluster number first and then increase. 1680 

BIC stops decreasing for the next two iterations first at cluster 7, and the minimum  BIC 1681 

is reached at 5 before reaching at 7. Therefore, n_cluster is selected as 5. 1682 
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 1683 
Figure 6.4: BIC (𝟏𝟎^𝟔) for GMM with a different number of clusters in LLE-1684 

SHIPS model. 1685 

 1686 

The clustering result is displayed in Table 6.9 with the numbers of minority (RI) 1687 

and total instances, and the IIR in each cluster. As we defined danger clusters with a 0.2-1688 

5 IIR range, all the clusters are included in the following augmentation. Although there is 1689 

no instance removed, the synthetic instances are created only using instances in the same 1690 

cluster, which decreases the possibility of outlier creations. 1691 

 1692 

 1693 

 1694 
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Table 6.9: The number of minority and total cases, and the Imbalance Rate (with 1695 

population RI ratio at 5.1%) for the 5 clusters generated by GMM. 1696 

Cluster 1 2 3 4 5 Total 

Number of the 

minority instance 

196 26 112 39 150 523 

Number of the 

total instance 

3048 1858 1078 1608 2593 10185 

Imbalance Rate 1.286 0.280 2.078 0.485 1.157 1 
 1697 

6.2.1.3 Hyperparameters tuning for GMM-SMOTE and XGBoost 1698 

While the hyperparameter tuning is conducted separately for the two data filters, 1699 

the hyperparameters in the GMM-SMOTE and XGBoost in Table 4.1 and Table 5.1 with 1700 

their pre-defined searching space are tuned together by BO as for the COR-SHIPS model. 1701 

Figure 6.5 shows the change of the 10-fold cross-validation kappa scores, the tuning 1702 

criterion, over a total 40 BO iterations. 1703 

 1704 



98 

 

 1705 
Figure 6.5: Variation of Cross-validation kappa scores over Bayesian Optimization 1706 

iteration numbers for LLE-SHIPS model.  1707 

 1708 

As shown in Table 6.10, the top 5 performed hyperparameter sets are M18 1709 

(kappa=0.472), M25 (0.464), M16 (0.464), M13 (0.461), and M32 (0.456). To find a 1710 

balanced model, the same score system described for the COR-SHIPS model is used, and 1711 

the value ranks and their corresponding conservativeness ranking scores are listed in 1712 

Table 6.11. The total conservativeness scores are also calculated, which are 25, 20, 30, 1713 

31, and 23, respectively for M18, M25, M16, M13, and M32, and the parameter set M18 1714 

with the middle conservativeness ranking score is chosen for the following 1715 

implementation and discussion. Coincidently, M18 is also the set associated with the 1716 

highest kappa score. 1717 

 1718 
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Table 6.10: Top 5 performed hyperparameter sets, the corresponding cross-1719 

validation kappa scores, and specific values of the tuned hyperparameters. The 1720 

numbers after “M” denoting the iteration numbers. 1721 

Name M18 M25 M16 M13 M32 

Kappa score 0.472 0.464 0.464 0.461 0.456 

n_cluster 5 5 5 5 5 

m_neighbors 8 8 3 7 7 

k_neighbors 12 14 3 14 14 

shrinkage 0.21 0.16 0.23 0.16 0.16 

n_estimators 731 2000 2000 1286 1819 

subsample 0.85 0.9 0.64 0.77 0.72 

colsample_bytree 0.8 0.99 0.4 0.4 0.99 

reg_alpha 0.1 0.1 0.1 0.1 0.1 

reg_lambda 0.5 0.5 20 17.93 12.2 

gamma 0 0 0 0 0 

min_child_weight 1.4 0.5 0.5 3.48 0.5 

max_depth 10 10 3 7 8 

 1722 

Table 6.11: The descending value ranking of individual hyperparameter among the 1723 

top 5 performed cases, and the corresponding conservativeness ranking scores in 1724 

parentheses. The variables with normal font are those favoring smaller values for 1725 

conservativeness, and those italicized favoring larger values. 1726 

Name M18 M25 M16 M13 M32 

m_neighbors 1 (4) 1 (4) 5 (1) 3 (2) 3 (2) 

k_neighbors 4 (4) 1 (1) 5 (5) 1 (1) 1 (1) 

shrinkage 2 (2) 3 (3) 1 (1) 3 (3) 3 (3) 

n_estimators 5 (5) 1 (1) 1 (1) 4 (4) 3 (3) 

subsample 2 (2) 1 (1) 5 (5) 3 (3) 4 (4) 

colsample_bytree 3 (3) 1 (1) 4 (4) 4 (4) 1 (1) 

reg_alpha 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 

reg_lambda 4 (1) 4 (1) 1 (5) 2 (4) 3 (3) 

gamma 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 

min_child_weight 2 (4) 3 (1) 3 (1) 1 (5) 3 (1) 

max_depth 1 (1) 1 (1) 5 (5) 4 (4) 3 (3) 

Total score 28 16 30 32 23 

 1727 
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6.2.1.4 Hyperparameter tuning for the decision threshold  1728 

The last tuned hyperparameter is the decision threshold on the XGBoost classifier 1729 

output. Initially, the decision threshold is set as 0.5. Figure 6.6 (b) displays that the kappa 1730 

score approximates the highest value, 0.52 when the decision threshold reaches 0.15. 1731 

Figure 6.6 (a) displays variations of precision (1-FAR) and POD variations as functions 1732 

of the decision threshold from 10-fold cross-validation in the training/validation data. 1733 

Decision threshold of 0.15 also close to the intersection of the POD and precision score, a 1734 

relatively balanced point for POD and FAR. As a result, 0.15 is selected as the decision 1735 

threshold. 1736 

 1737 

                                (a)                                                         (b) 1738 

 1739 
Figure 6.6: (a) Precision and POD score vs. decision threshold. (b) Kappa score vs. 1740 

decision threshold in LLE-SHIPS model. 1741 

 1742 
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6.2.2 LLE-SHIPS result on test data 1743 

As discussed in the COR-SHIPS model, the evaluation of the prediction 1744 

performance is on test data only. The test confusion matrix for the model, before 1745 

hyperparameter tuning (MB), and after hyperparameter tuning (MA) is displayed in Table 1746 

6.12. Learning from the Table, MA’s TN (1,469) and FN (55) is slightly smaller than 1747 

1,491 and 75 of MB, while MA’s TP (40) and FP (33) is significant larger than 20 and 11 1748 

of MB.  1749 

 1750 

Table 6.12: Confusion matrix values after (before) hyperparameter tuning with the 1751 

test data. 1752 

 Predicted RI Predicted 

non-RI 

Actual 

Actual RI 40 (20) 55 (75) 95 

Actual non-RI 33 (11) 1469 (1491) 1502  

Predicted 73 (88) 1524 (1509)  

 1753 

Kappa, PSS, POD, and FAR are used for the model evaluation, and their values 1754 

for MB and MA are elaborated in Table 6.13. The POD and FAR values for MB and MA 1755 

cases demonstrated the importance of hyperparameter tuning. After tuning, POD 1756 

increases 99.5% from 0.211 to 0.421, while FAR decreases from 0.645 to 0.563, 12.7%. 1757 

The overall statistics PSS and kappa score also increased from 0.203 to 0.399 (96.6%) 1758 

and from 0.297 to 0.454 (52.9%), respectively, confirming the significant improvement 1759 

on RI prediction with the hyperparameter tuning procedure, and apparently, the model 1760 



102 

 

was overfitted before tuning process with so many features. Furthermore, the 1761 

improvement is almost 4 times than that of the COR-SHIPS model (25.6% and 12.4% in 1762 

PSS and kappa improvement), indicating the hyperparameter tuning is more efficient in 1763 

the more complicated LLE-SHIPS model. 1764 

 1765 

Table 6.13: Performance comparisons. MB and MA denote the models before and 1766 

after the hyperparameters in GMM-SMOTE and XGBoost are tuned. 1767 

Model Kappa PSS POD FAR 

MB 0.297 0.203 0.211 0.645 

MA 0.454 0.399 0.421 0.563 

Improvement MB 52.9% 96.6% 99.5% -12.7% 

 1768 

6.2.3 Feature importance 1769 

We learned from section 6.1.3 that how XGBoost evaluates the variable (feature) 1770 

importance score for COR-SHIPS model. In LLE-SHIPS model, the same approach can 1771 

be used to calculate the importance score for the SHIPS variables and lle1, …, lle90, but 1772 

we cannot directly calculate the importance score for the original ERA-Interim variables 1773 

in their feature space; hence they cannot be linked to the original ERA variables. So 1774 

instead, we try to relate the IS of all the lle1, …, lle90 to individual ERA parameter 1775 

groups (based on correlation). Therefore, the feature importance evaluation in the LLE-1776 

SHIPS model is divided into 2-steps. First, the XGBoost is used to evaluate the 1777 

importance score for SHIPS variables and lle1 to lle90 in the same way as in COR-1778 

SHIPS model, and then a feature permutation approach is used to evaluate the importance 1779 
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score for the original ERA-Interim feature space separately based on the importance 1780 

score generated from the first step. 1781 

6.2.3.1 Variable importance in XGBoost 1782 

Table 6.14 displays the 10 most important variables among the 162 selected not 1783 

highly correlated variables (90 LLE variables and 72 SHIPS variables) and their 1784 

definition. We need to notice that none of the LLE variables are among the top 10 1785 

variables. The reason might be there are too many variables generated from the LLE, and 1786 

having so many variables reduces the importance score for each of them. The assumption 1787 

is confirmed by summing the importance score for lle1 to lle90, which is 0.4288, only a 1788 

bit smaller than that of the SHIPS variables (0.5712). 1789 

 1790 

Table 6.14: Variables of top ten importance, their importance scores, and feature 1791 

description from SHIPS (2018c) in LLE-SHIPS model. 1792 

Variable Importance Description 

BD12 0.018769 The past 12 hour intensity change 

VMAX 0.016706 Maximum Surface Wind 

DTL 0.013821 The distance to nearest major land 

SHRD 0.012952 850-200 hPa shear magnitude 

TWXC 0.01151 
Maximum 850 hPa symmetric tangential wind at 850 

hPa from NCEP analysis 

G150 0.011339 

Temperature perturbation at 150 hPa due to the 

symmetric vortex calculated from the gradient 

thermal wind. Averaged from r=200 to 800 km 

centered on input lat/lon (not always the 

model/analysis vortex position) (deg C*10) 

VMPI 0.011262 
Maximum potential intensity from Kerry Emanuel 

equation (kt) 

REFC 0.011262 Relative eddy momentum flux convergence 
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TGRD 0.01106 

The magnitude of the temperature gradient between 

850 and 700 hPa averaged from 0 to 500 km 

estimated from the geostrophic thermal wind 

IRM1_5 0.010672 
Predictors from GOES data (not time dependent) for 

r=100-300 km but at 1.5 hours before initial time 

 1793 

The past 12 hour intensity change, BD12, has the largest importance score, 1794 

0.018769, which slightly better than the importance score of the second important 1795 

variable, VMAX, the Maximum Surface Wind, and its highly correlated variable, the 1796 

Minimum Sea Level Pressure. The importance score between BD12 and VMAX is very 1797 

similar. The rest top 10 variables are DTL, SHRD, TWXC, G150, VMPI, REFC, TGRD, 1798 

and IRM1_5. The highly correlated variable groups with the important variables and the 1799 

importance scores of all of the 162 variables can also be found in Table A2. 1800 

6.2.3.1 Group importance in LLE 1801 

Molnar (2019) described a feature permutation approach to evaluate the 1802 

importance of features on training dataset for nonlinear models where the importance 1803 

score cannot be derived easily. We assume that for the feature space in any given dataset 1804 

is X, f(X) is the predicted value by the classifier f, and y is the ground truth. We further 1805 

assume the loss of the classifier is L(y, f(X)). Then for each feature in the feature space X, 1806 

permute its value to 0 for all the observations while keeping other features unchanged 1807 

(represented as 𝑋𝑝𝑒𝑟𝑚𝑢𝑡𝑒). Finally, the difference between the loss of the permuted 1808 

feature space (𝑋𝑝𝑒𝑟𝑚𝑢𝑡𝑒), and the original loss is calculated for each feature, and the 1809 

difference is used as its importance. 1810 
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Although feature permutation is an efficient approach to evaluate the feature 1811 

importance for different models, especially for a black-box model such as LLE, Molnar 1812 

(2019) also indicates that the permutated feature importance could be biased by the 1813 

highly correlated features. For example, if we evaluate the importance score for each of 1814 

the 2,072 variables, the result, i.e., the importance score is not accurate due to the 1815 

existence of the highly correlated variables because they could influence each other. 1816 

Similar to the removal of highly correlated variables in the SHIPS data filter, pairwise 1817 

correlations of all the features are calculated and compared with the correlation threshold 1818 

0.8. This process results in 135 groups, and the details of the Group are elaborated in 1819 

Table A2. Then an importance score is calculated for each Group, and details will be 1820 

elaborated later in the section. 1821 

The group-level importance score is calculated specifically as: 1822 

f: trained model; X: original feature space; y: ground truth; L(y, f(X)): loss between the 1823 

ground truth and the predicted value by the classifier. 1824 

1. Calculate 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝐿𝐿𝐸_𝑇𝑜𝑡𝑎𝑙 as the sum of the importance score of lle1 to lle90 1825 

derived from XGBoost, here is 0.4288. 1826 

2. Calculate the original model error L(y, f). 1827 

3. for each group: 1828 

a) Generate feature matrix 𝑋𝑝𝑒𝑟𝑚𝑢𝑡𝑒by setting features in that group to 0, 1829 

which breaks the corresponding correlation between all the features 1830 

b) Calculated error L(y, f(𝑋𝑝𝑒𝑟𝑚𝑢𝑡𝑒)) 1831 

c) Estimate the importance for the group imp = L(y, f(𝑋𝑝𝑒𝑟𝑚𝑢𝑡𝑒)) - L(y, f) 1832 
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d) Associate the score to the group 1833 

e) Negative importance is set to 0 1834 

4. Group importance score is rescaled as attributing the total important scores by 1835 

LLE variables based on the ratio of loss of a particular group to the total loss (sum 1836 

of a group losses), the specific calculation is: 1837 

𝐼𝑚𝑝𝑔𝑟𝑜𝑢𝑝 = 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝐿𝐿𝐸_𝑇𝑜𝑡𝑎𝑙 ∗ 𝑖𝑚𝑝𝑔𝑟𝑜𝑢𝑝/ ∑  𝑖𝑚𝑝𝑖𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝𝑠              (6.1) 1838 

5. Sort groups by their number of features. 1839 

 Based on the Algorithm, the importance score for each Group is calculated, and 1840 

groups with the top five important scores are list in Table 6.15. Intuitively, turning much 1841 

more variables to 0 could reduce the model’s performance more than turning much fewer 1842 

variables to 0 because changing more variables are likely to alternate the model’s 1843 

performance more. However, based on Table 6.15, we find that the top 5 does not contain 1844 

too many groups with a large number of variables, which indicates that these groups with 1845 

few variables play a more important role in RI prediction than other groups, especially 1846 

the groups with significant more variables. 1847 

 1848 

 1849 

 1850 

 1851 
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Table 6.15: ERA-Interim variable group with top 5 importance scores, calculated 1852 

from the second step. The group number (Group), the number of variables in the 1853 

group (Group size), and the importance score (Importance). 1854 

Group Group size Importance 

49 5 0.023614 
88 1 0.021988 
1 309 0.019687 
29 11 0.019662 
3 148 0.017280 

 1855 

Group 49 (G49) has the highest importance score (IS), 0.024, and it has 5 1856 

variables, NT12_v_l18, NT06_v_l18, NT00_v_l17, NT00_v_l18, NT06_v_l17, which 1857 

indicates that the northward wind speed on level 17 (450 hPa) at 6 hours before, and at 1858 

present, together with level 18 (400 hPa) at 12 hours before, 6 hours before, and at 1859 

present are important in RI prediction. We can find that the middle level’s (400 hPa and 1860 

450 hPa) northward wind plays a significant role than that in the lower level, i.e., 1000 1861 

hPa, and higher level (1 hPa). The reason could be when the RI starts to occur, the 1862 

northward wind speed in 400 and 450 hPa change faster than that of other levels. We can 1863 

also find that both 6 hours before and the present northward wind speed are important at 1864 

400 and 450 hPa, which indicates that the northward wind speed in 400 and 450 hPa start 1865 

to change immediately before the occurrence of RI, and 18 hours before are too long to 1866 

influence the occurrence of RI.  1867 

Wang et al. (2015) found that “In the active (inactive) season, the low-level (deep 1868 

layer) shear is more negatively correlated with the TC intensity change than the deep-1869 

layer (low level) shear.” Our study identifies that importance of the northward wind 1870 
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speed in the 400 and 450 hPa for the RI prediction, that could contribute to the 400 and 1871 

450 hPa VWS (vertical wind shear), which recognizes the importance of the mid-layer 1872 

shear with regard to the intensity change in addition to the finding of Wang et al. (2015).  1873 

The second most important group, the G88 with an IS of 0.0220, only has one 1874 

variable, NT18_pv_l1, the potential vorticity at 18 hours before on the first level (1000 1875 

hPa). The importance score for NT18_pv_l1 is even 17% higher than that for the most 1876 

important variable in Table 6.13, BD12 with a 0.0188 score, which is also the highest 1877 

importance for a single variable.  This result demonstrated that the machine learning 1878 

method could identify important features, which may not be in the commonly used data 1879 

set, such as the SHIPS database. However, the role of pv in RI was identified by others 1880 

already (e.g., Martinez et al. 2019; Tsujino and Kuo 2020). Tsujino and Kuo (2020) 1881 

detailed the changed of pv during the RI of Supertyphoon Haiyan (2013) with numerical 1882 

simulation. They emphasized the pv increasing around 3-5km height at the beginning 1883 

stage of the RI. Carefully checking their results (Fig. 2b&c), one can find the pv actually 1884 

increases simultaneously around the sea level in 20-40 km range from the center, which 1885 

is the same as what we identified here by the NT18_pv_l1. 1886 

All other level 1 pv (3 of them) are grouped in G63 with importance scores (IS) 1887 

(0.010746). All level 2 in G55 with 4 members and IS 0.004744. All other pv are in G4 1888 

with 140 members but IS being only 0.006264. Those numbers demonstrated that only 1889 

lower layer pv affects the RI process. 1890 
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The third most important Group is G1, which has 309 features in the Group, and 1891 

with IS 0.0197. Since all types of ERA-Interim variables are included in the Group, it is 1892 

difficult to trace back which variable is more important. This implies the SHIPS dataset is 1893 

very useful because it removes a lot of highly correlated variables and only extract 1894 

important information from these variables. 1895 

The fourth most important group is G29, which has the IS, 0.020, and consists of 1896 

11 variables, i.e., NT18_u_l1, NT12_u_l1, NT06_u_l1, NT00_t_l10, NT00_u_l16, 1897 

NT00_u_l17, NT06_u_l17, NT12_u_l17, NT18_u_l18, NT12_u_l18. We can find that 1898 

most of the variables in the group is u, the eastward wind speed. Similar with G49 but a 1899 

slightly different, the eastward wind speed at level 17 (450 hPa), and 18 (400 hPa) play 1900 

an important role in RI prediction. Other than 400 and 450 hPa eastward wind speed, the 1901 

eastward wind at 1000 hPa at 6, 12, and 18 hours before RI also plays an important role. 1902 

As discussed above, Wang et al. (2015) found that “low-level shear between 850 (or 700) 1903 

and 1000 hPa is more negatively correlated with TC intensity change than any deep-layer 1904 

shear during the active typhoon season,” which matches our findings that eastward wind 1905 

speed, related to the VWS, at 1000 hPa are significant in RI prediction. Additionally, we 1906 

also recognize that the mid-level (400 and 450 hPa) eastward wind speed (VWS) are 1907 

important to TC intensity change. One exception variable in the Group is the temperature 1908 

(t) at 775 hPa, NT00_t_l10, although highly correlated with u in terms of value, possibly 1909 

misplaced in the group because there’s only one t variable in the Group. 1910 

The fifth most important Group, G3, has IS 0.017 and 148 variables, consists of w 1911 

(the pressure vertical velocity) at all levels over 18 hours before, 12 hours before, 6 hours 1912 
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before, and at present. This indicates the vertical pressure speed plays an important role 1913 

in RI prediction, which includes SHIPS variable O500 (highly correlated with O700 in 1914 

Table A1), ranked 72 in Table A5. This indicates that other than 500 and 700 hPa, the 1915 

pressure vertical velocity (w) at other pressure levels is also important, and more 1916 

researches should be done to figure out more details.  1917 

In sum, two out of the top five important groups, G45, and G29, contain eastward 1918 

and northward wind speed variables, especially at 400, 450, and 1000 hPa, which 1919 

indicates that wind velocity, hence the VWS at 400, 450, and 1000 hPa pressure level 1920 

plays a significant role in RI prediction, not only matches what have been found in Wang 1921 

et al. (2015) but also identifies the importance of the mid-level vertical shear to intensity 1922 

change. Another group, G3, only contains the pressure vertical velocity, indicates that 1923 

vertical pressure speed is critical in RI prediction. Other than the O500, and O700 1924 

included in the SHIPS database, it is necessary to dig out other significant pressure levels 1925 

for the pressure vertical velocity. One variable, 18 hour before potential vorticity at 1000 1926 

hPa, is more significant than BD12, and more researches need to be done for this specific 1927 

variable. 1928 

Here we derive the group level importance score for ERA-Interim variables. 1929 

Although because the AI system is consisted of too many components that the score is 1930 

not 100% accurate, the system is still able to identify useful features in addition to SHIPS 1931 

database.  1932 

More details of the XGBoost scores can be found in Table A5, group importance 1933 

scores can be found in Table A3. 1934 



111 

 

6.3 DL-SHIPS model 1935 

6.3.1 Hyperparameters tuning and result 1936 

6.3.1.1 Hyperparameters tuning for data filter 1937 

The structure of the DL-SHIPS model is almost the same as that of the LLE-1938 

SHIPS model except that the ERA-Interim data is filtered with a CNN-based autoencoder 1939 

network, as introduced in section 3.2.3. Similar to the LLE-SHIPS model, in the DL-1940 

SHIPS model, the correlation threshold (0.8) in the SHIPS data filter is inherited directly 1941 

from that of the COR-SHIPS model. The difference is that in the DL-SHIPS model, 1942 

unlike in the LLE-SHIPS model where all variables in ERA-Interim reanalysis data are 1943 

treated together with only one dimension reducing model for the feature extraction, one 1944 

autoencoder network is trained to extract information from each individual of 14 ERA-1945 

Interim variables. In other words, there are 14 different autoencoder networks in total for 1946 

the 14 variables. Other components in the LLE-SHIPS model and the DL-SHIPS model 1947 

are the same. 1948 

In the tuning process of the ERA-Interim data filter in the DL-SHIPS model, all 1949 

14 ERA-Interim original variables are initialed with the same 3D CNN auto-encoder 1950 

structure as described in Figure 3.6. The to-be-determined hyperparameter, the dimension 1951 

of the compressed feature (num), is pre-determined as 8, therefore, 8 new variables are 1952 

generated from each network, labeled as variable+order in the compressed feature layer 1953 

(’1’ to ‘8’). For example, v1 to v8 are new variables derived from the trained 3D CNN 1954 

auto-encoder for variable v. A three-step tuning process for “num,” which is similar with 1955 

the tuning process of SHIPS data filter. In the first step, training a separated 3D CNN 1956 
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auto-encoder for each of the 14 variables for 200 epochs. In the second step, the output 1957 

from SHIPS data filter (72 variables) and the output of the ERA data filter (the trained 1958 

DL models), which is all the 14 variables from variable1 to variable8 (14*8 = 112) are 1959 

concatenated to form the input to the sampler, where zero (zero values for all instances) 1960 

and highly correlated variables are removed. Then the BO with 40 iterations is used to 1961 

tune hyperparameters in for GMM-SMOTE in Table 4.1 and XGBoost related 1962 

hyperparameters listed in Table 5.1 with no clustering, and the preset 0.5 classification 1963 

decision threshold. Finally, the hyperparameter set with the highest 10-fold cross-1964 

validation is selected; instead of kappa score, here, we use the importance score for 1965 

hyperparameter tuning instead of the kappa score used in the SHIPS data filter tuning. 1966 

The importance score for each input variable is derived. In the third step, the importance 1967 

for each of the 14 variables is calculated as the sum of the variable1 to variable8, and the 1968 

num is determined by the summed importance score that will be discussed later.  1969 

Figure 6.7 shows the training losses (mean square error) of 14 auto-encoder 1970 

networks change over iterations that are trained for 200 epochs, respectively, which 1971 

indicates that all the networks are converged after 100 epochs. 8 new variables are 1972 

engineered from each ERA-interim variable first, because of the characteristic of the 1973 

auto-encoder, features with no information, i.e., zero feature, could be created. The zero 1974 

features are listed in the last column of Table 6.16, and they are removed. A correlation 1975 

check is conducted among the 72 SHIPS variables and the newly derived non-zero 1976 

variables, and highly correlated (>0.8) variables should be removed. There are two 1977 

correlations, i.e., the correlation between ERA variables vs. SHIPS variables, and the 1978 
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correlation between only ERA variables, as highly correlated SHIPS variables are already 1979 

removed in section 3.1.3. Correlation between ERA variables vs. SHIPS variables is all 1980 

less than 0.8 so no variable will be removed in this phase. However, when we check the 1981 

correlation between ERA variables, we find highly correlated (>0.8) variables are existed, 1982 

and should be removed. The same procedure in section 3.1.3 in SHIPS data filter is used 1983 

again, and highly correlated variables are sorted in Table 6.17 (only variables with highly 1984 

correlated ones are displayed). Therefore, d5, r4, clwc4, w6 are kept as well as those not 1985 

highly correlated features, while d2, d3, cc8, q7, cc3, and w1 are removed. Then all 1986 

remained features are concatenated together and fit into the GMM-SMOTE sampler and 1987 

XGBoost classier. The hyperparameters of the model is tuned by BO based on no 1988 

clustering, decision threshold set at 0.5, and other hyperparameters as listed in the final 1989 

column of Table 4.1 and Table 5.1. The summed importance score for all 14 variables are 1990 

displayed in Table 6.16, where variables are sorted based on their summed importance 1991 

scores. Based on Table 6.16, we can find that with the decreasing of the summed 1992 

importance score, the number of kept (removed) features are roughly decreasing 1993 

(increasing). Therefore, we are tuning the hyperparameter, dimension of the compressed 1994 

feature (num), based on the summed importance score for each variable, and the details 1995 

are displayed in Table 6.16. 1996 

 1997 

 1998 
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Table 6.16: 14 variables, their summed importance score, non-zero features 1999 

extracted from each variable network, and the corresponding missing variables due 2000 

to all zeros. 2001 

Variable Summed 

Importance 

Score 

The number of 

kept features 

Corresponding missing features 

q 0.062  6 q3, q8 

r 0.055 7 r4 

u 0.055  8  

v 0.056  7 v7 

pv 0.050  6 pv7, pv8 

vo 0.049  5 vo1, vo6, vo7 

w 0.042  6 w3, w4 

d 0.039  5 d1, d4, d6 

t 0.020  4 t1, t2, t5, t6 

z 0.017  3 z2, z3, z5, z7, z8 

o3 0.019  3 o31, o32, o33, o34, o36 

clwc 
0.014  2 

clwc2, clwc4, clwc5, clwc6, 

clwc7, clwc8 

cc 0.011  2 cc1, cc2, cc4, cc5, cc6, cc7 

ciwc 
0.008  1 

ciwc2, ciwc3, ciwc4, ciwc5, 

ciwc6, ciwc7, ciwc8 

 2002 

Table 6.17: Highly correlated variable groups. Only groups with more than one 2003 

variable is displayed. “Variable” column indicates the selected variable, and its 2004 

highly correlated (>0.8) variables are displayed in “Highly correlated variables.” 2005 

Variables Highly correlated variables 

d5 d2, d3 

r4 cc8, q7 

clwc4 cc3 

w6 w1 

 2006 
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 2007 
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Figure 6.7: Network training loss over iterations for pv, z, t, q, w, vo, d, u, v, r, o3, 2008 

clwc, ciwc, cc from left to right and from top to bottom. The 14 graphs represent the 2009 

training loss change for each variable respectively. The y-axis represents the 2010 

training loss, and decreasing from top (the maximum loss value of the variable) to 2011 

bottom (0). The x axis represents the iterations, and increasing from left (0) to right 2012 

(200). 2013 

 2014 

These variables are categorized into 3 classes in Table 6.18 based on their 2015 

summed importance score described in Table 6.16, and their new structures are displayed 2016 

in Figure 6.8. The dimension of the compressed feature (num) equal to 8, 4, and 2 in 2017 

Table 6.18 corresponding to (a), (b), and (c), respectively in Figure 6.8. Therefore, the 2018 

auto-encoder network for each variable is retrained with the new structure, i.e., Figure 6.8 2019 

(a) for variables pv, q, r, u, v, and vo, Figure 6.8 (b) for variables, w, d, t, Figure 6.8 (c) 2020 

for z, o3, cc, ciwc, and clwc.  2021 

 2022 

Table 6.18: Dimensions of the compressed features of auto-encoder after tuning 2023 

based on the summed importance score described in Table 8 for each of the 14 2024 

variables.  2025 

Importance sum Dimension of the compressed feature 

(num) 

Less than 0.02 2 

0.02 to 0.045 4 

Above 0.045 8 

 2026 

 2027 
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(a) 2028 

 2029 

 2030 

 2031 

 (b) 2032 

 2033 

 2034 

 2035 



118 

 

 2036 

 2037 

(c) 2038 

2039 
Figure 6.8: Structure for adjusted auto-encoder network. 2040 

 2041 

After the new structure for DL Interim filter is derived, we retrain each network 2042 

for 200 times, and the training loss is very similar with those shown in Figure 6.7 so their 2043 

training loss graph is not displayed. We also find that all the networks are converged in 2044 

100 iterations. As same as being processed above, pv2, pv4, pv5, q1, u4, u7, v1, v2, vo2, 2045 

vo7, w4, d1, d2, d4, t2, t3, t4, z1, and o32 are zero features, i.e., contain all zeros, are 2046 

removed. cc2 is highly correlated (>0.8) with cc1, and w2 and w3 are highly correlated 2047 

with w1. Hence clwc1, w2, and w3 are removed. The remained 48 (6*8+3*4+5*2-22) 2048 

features are concatenated with the filtered SHIPS variables, and are used as the input to 2049 

the GMM-SMOTE. 2050 
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6.3.1.2 The number of clusters selected in GMM-SMOTE 2051 

After the hyperparameters in data filters are tuned, the hyperparameters for 2052 

GMM-SMOTE and XGBoost still need to be tuned for the best results. Similar to the 2053 

LLE-SHIPS model, the BIC values with the different number of clusters are displayed in 2054 

Figure 6.9, n_cluster is selected as 3 with the smallest BIC value. 2055 

The clustering result is displayed in Table 6.19 with the numbers of minority (RI) 2056 

and total instances, and the IIR in each cluster. As we defined danger clusters with 0.2-5 2057 

IR range, Clusters 1, 2, and 3 are all included in the following augmentation. 2058 

 2059 

 2060 
Figure 6.9: BIC (𝟏𝟎^𝟔) for GMM with different number of clusters. 2061 

 2062 
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Table 6.19: Number of minority, total cases, and the IIR (with population RI ratio 2063 

at 5.1%) for the 3 clusters generated by GMM. 2064 

Cluster 1 2 3 Total 

Number of the minority instance 209 36 258 523 

Number of the total instance 3222 2645 4318 10185 

Imbalance Rate 1.297 0.272 1.195 1 

 2065 

 2066 

6.3.1.3 Hyperparameters tuning for GMM-SMOTE and XGBoost 2067 

Similar to LLE-SHIPS model, Figure 6.10 shows the 10-fold cross-validation 2068 

kappa scores on the training-validation dataset change over a total 40 BO iterations. 2069 

Similarly, since the trend with the iteration is unpredictable, hyperparameter sets with the 2070 

best 5 kappa scores are selected, and their performance and hyperparameter values are 2071 

displayed in Table 6.20 with the same MX notation.  2072 

The top 5 performed hyperparameter sets are M23 (0.516), M25 (0.506), M27 2073 

(0.502), M31 (0.501), and M21 (0.498). Similarly, the ranking for conservativeness 2074 

among the five groups for individual hyperparameters are listed in Table 6.21. The total 2075 

conservativeness scores are also calculated, which are 17, 25, 23, 32, and 32 respectively 2076 

for M21, M31, M27, M25, and M23. Since our goal is to choose a model neither 2077 

conservative nor aggressive, the parameter set M31 with the middle conservativeness 2078 

ranking score is chosen for following implementation and discussion. 2079 
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 2080 
Figure 6.10: Variation of Cross-validation kappa scores over Bayesian Optimization 2081 

iteration numbers.  2082 

 2083 

Table 6.20: Top performed hyperparameter sets, the corresponding cross-validation 2084 

kappa scores, and specific values of the tuned hyperparameters. The numbers after 2085 

“M” denoting the iteration numbers. 2086 

Name M21 M31 M27 M25 M23 

Kappa score 0.498  0.501  0.502  0.506  0.516  

m_neighbors 10 10 10 10 9 

k_neighbors 14 9 14 7 8 

shrinkage 0.23  0.19  0.15  0.12  0.15  

n_estimators 2000 2000 2000 1088 1603 

subsample 0.50  0.50  0.50  1.00  0.88  

colsample_bytree 1.00  1.00  1.00  0.50  0.82  

reg_alpha 0.50  0.50  0.50  0.50  0.82  

reg_lambda 20.00  20.00  0.50 20.00  18.38  

gamma 0 0 0 0 0 

min_child_weight 0.50  0.50  0.50  0.50  0.76  

max_depth 6 3 3 5 3 

 2087 
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Table 6.21: The descending value ranking of individual hyperparameter among the 2088 

top 5 performed cases, and the corresponding conservativeness ranking scores in 2089 

parentheses. The parameters with normal font are those favoring smaller values for 2090 

conservativeness, and those Italicized favoring larger values. 2091 

Name M21 M31 M27 M25 M23 

m_neighbors 1 (2) 1 (2) 1 (2) 1 (2) 5 (1) 

k_neighbors 1 (1) 3 (3) 1 (1) 5 (5) 4 (4) 

shrinkage 1 (1) 2 (2) 3 (3) 5 (5) 3 (3) 

n_estimators 1 (1) 1 (1) 1 (1) 5 (5) 4 (4) 

subsample 3 (3) 3 (3) 3 (3) 1 (1) 2 (2) 

colsample_bytree 1 (1) 1 (1) 1 (1) 5 (5) 4 (4) 

reg_alpha 2 (1) 2 (1) 2 (1) 2 (1) 1 (5) 

reg_lambda 1 (3) 1 (3) 5 (1) 1 (3) 4 (2) 

gamma 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 

min_child_weight 2 (1) 2 (1) 2 (1) 2 (1) 1 (5) 

max_depth 1 (1) 5 (5) 5 (5) 2 (2) 5 (5) 

Total score 16 23 20 31 36 

 2092 

6.3.1.4 Hyperparameters tuning for XGBoost 2093 

Similarly, to tune the decision threshold, Figure 6.11 (a) displays variations of 2094 

precision and POD variations as functions of the decision threshold from 10-fold cross-2095 

validation in the training/validation data. The precision and POD curves cross each other 2096 

around 0.2 of the threshold value, a relatively balanced point for POD and FAR. At the 2097 

same point, the kappa scores shown in Figure 6.11 (b) is closer to the highest value, 0.61. 2098 

As a result, 0.2 is selected as the decision threshold as before. 2099 

 2100 

 2101 

 2102 

 2103 
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(a)                                                         (b) 2104 

 2105 
Figure 6.11: (a) Precision and POD score vs. decision threshold. (b) Kappa score vs. 2106 

decision threshold 2107 

 2108 

6.3.2 Model result on test data 2109 

Similar to LLE-SHIPS model, the evaluation of the prediction for DL-SHIPS 2110 

model is on the test data only. The test confusion matrix for the model, before 2111 

hyperparameter tuning (MB), and after hyperparameter tuning (MA) is displayed in Table 2112 

6.22. The result indicates that the hyperparameter tuning procedure does help the model 2113 

performance. 2114 

 2115 

Table 6.22: Confusion matrix values after (before) hyperparameter tuning with the 2116 

test data. 2117 

 Predicted RI Predicted 

non-RI 

Actual 

Actual RI 48 (29) 47 (66) 95 

Actual non-RI 37 (31) 1465 (1471) 1502  

Total Predicted 85 (60) 1512 (1537)  
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 2118 

Kappa, PSS, POD, and FAR are used for the model evaluation, and their values 2119 

for MB and MA are elaborated in Table 6.23. The POD and FAR values for MB and MA 2120 

cases demonstrated the importance of hyperparameter tuning. After tuning, POD 2121 

increases 65.6% from 0.305 to 0.505, while FAR decreases from 0.517 to 0.435, 15.9%. 2122 

The overall statistics PSS and kappa score also increased from 0.285 to 0.481 (68.8%) 2123 

and from 0.344 to 0.506 (47.1%), respectively, confirming the significant improvement 2124 

on RI prediction with the hyperparameter tuning procedure, and apparently, the model 2125 

was overfitted before tuning process with so many variables. 2126 

 2127 

Table 6.23: Performance comparisons. MB and MA denote the models before and 2128 

after the hyperparameters in GMM-SMOTE and XGBoost are tuned. 2129 

Model Kappa PSS POD FAR 

MB 0.344 0.285 0.305 0.517 

MA 0.506 0.481 0.505 0.435 

Improvement MB 47.1% 68.8% 65.6% -15.9% 

 2130 

6.3.3 Feature importance  2131 

Similar to LLE-SHIPS model, the importance score could be derived from XGBoost 2132 

for the output of the data filters. However, in the DL-SHIPS model, since there are even 2133 

significantly more variables (each grid in each variable could be regarded as a feature) 2134 

than that of the input for the LLE data filter, it is even more computationally expensive 2135 

and impossible to implement the same feature importance evaluation approach 2136 
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(permutation) as in LLE-SHIPS model, i.e., tracing back the importance of each ERA-2137 

Interim feature is almost impossible for DL-SHIPS model. Therefore, although we can 2138 

evaluate the importance of the output of data filters, how to evaluate the contribution 2139 

from each of the original ERA-Interim variables is a notoriously difficult task for deep 2140 

learning networks, a.k.a, autoencoder network. Here we are roughly evaluating the 2141 

importance of the ERA-Interim variables by calculating their summed importance score 2142 

derived from the XGBoost classifier for each of the 14 ERA-Interim variables, as well as 2143 

the averaged individual score for parameters associated with each variable. And for the 2144 

variables with higher importance score, the feature level information from the individual 2145 

3D auto-encoder are traced back based on the feature map (Zeiler 2014), where the 2146 

extracted information, for example, the geometric location, is visualized. 2147 

Table 6.24 displays the 10 most important variables among the 120 selected 2148 

variables, including not highly correlated 72 SHIPS variables, and 48 variables extracted 2149 

from the DL ERA-interim data filter. We can find that among the top 10, there are six 2150 

SHIPS variables and four DL variables, and the total importance score for DL variables is 2151 

0.4119, while that of SHIPS variables is 0.5881. Therefore, the average score per SHIPS 2152 

variable/ERA variable is 0.0082/0.0086. The fact that the average score for the SHIPS 2153 

variable is less than that of ERA variables indicates that the ERA-Interim data filter has a 2154 

similar importance score comparing to that of SHIPS variables; hence DL ERA-interim 2155 

data filter is working efficiently. 2156 

 2157 
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Table 6.24: Variable importance in DL-SHIPS model. 2158 

Variable Importance Description 

BD12 0.019747 The past 12 hour intensity change 

VMAX 0.017600 Maximum Surface Wind 

SHRD 0.014810 850-200 hPa shear magnitude 

DTL 0.014381 The distance to nearest major land 

IRM1_5 0.013737 

Predictors from GOES data (not time 

dependent) for r=100-300 km but at 1.5 hours 

before initial time 

o31 0.013308 3rd variable in o3 

G150 0.013093 

Temperature perturbation at 150 hPa due to the 

symmetric vortex calculated from the gradient 

thermal wind. Averaged from r=200 to 800 km 

centered on input lat/lon (not always the 

model/analysis vortex position) (deg C*10) 

q7 0.013093 7th variable in q 

u3 0.012878 3rd variable in u 

q4 0.012878 4th variable in q 

 2159 

Table 6.24 also indicates that BD12 has the largest importance score, 0.0197, and the 2160 

second most important variable is VMAX. The third and fourth most important variables, 2161 

SHRD and DTL. The fifth to tenth variables are IRM1_5, o31, G150, q7, u3, and q4, and 2162 

four of them are derived from the DL-interim data filter. o31 is the first variable extracted 2163 

from o3’s network, while q7, u3, and q4 are the seventh, third, and fourth variables of q, 2164 

u, and q. The importance scores of all of the 120 variables can also be found in Table A6. 2165 

Since the 3D auto-encoder model structure is different over 14 ERA-Interim 2166 

variables, the summed importance score, which is the sum over all the output from the 2167 

same network, for example, the summed importance score for r is the sum of the 2168 

importance score over r1, r2, …, r8, for each of the 14 variables, as well as the averaged 2169 
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importance score on the non-zero, non-highly-correlated features. For example, the 2170 

averaged importance score for r is the summed importance score for r divided by 8, are 2171 

described in Table 6.25. Based on Table 6.25, we can find that q, vo, and u are scored in 2172 

the top 5 in terms of both summed score and the average score. Therefore, below we are 2173 

looking at feature maps from the first layer of the networks for q, vo, and u between an 2174 

example RI and non-RI instances to roughly estimate what plays a more significant role 2175 

to distinguish between RI and non-RI instances. 2176 

 2177 

Table 6.25:  Summed variable importance score, the number of non-zero, non-2178 

correlated features, the feature-wise averaged importance score, and its ranking for 2179 

each ERA-Interim variable.  2180 

Variable The 

number 

of 

features 

Summed 

Importance 

Score 

Importance 

score rank 

Average 

importance 

score 

Average 

importance 

score rank 

q 7 0.062 1 0.010843 3 

vo 6 0.055 2 0.010583 4 

u 6 0.055 3 0.00975 5 

v 6 0.056 4 0.008483 7 

pv 5 0.050 5 0.00882 6 

r 8 0.049 6 0.004838 14 

ciwc 2 0.042 7 0.0072 10 

o3 1 0.039 8 0.0133 1 

cc 2 0.020 9 0.006 12 

d 1 0.017 10 0.0118 2 

t 1 0.019 11 0.0082 8 

z 1 0.014 12 0.0077 9 
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w 1 0.011 13 0.0071 11 

clwc 1 0.008 14 0.0058 13 

 2181 

Figure 6.12 and Figure 6.13 represent examples of non-RI and RI instances featutres 2182 

extracted by the 3D autoencoder in all 3 channels in terms of variable relative humidity 2183 

(q), and based on the figures we can find that the extracted feature maps are sparse, with 2184 

only 22/64, and 24/64 non empty feature maps, where the deep blue feature maps 2185 

represents all the pixels have value 0, for non-RI and RI instances respectively. With the 2186 

limited available information, we can find the non-RI instances are extracting features 2187 

from the northeast (upper left) of the center or the whole domain, while RI instances are 2188 

extracting features mainly on the southeast (bottom right) of the center. So we can 2189 

conclude that the relative humidity (q) in northeast of the center is more important in RI 2190 

occurance. 2191 

 2192 

 (a)                                         (b)                                           (c) 2193 

          2194 
Figure 6.12：3 channels, 64 feature maps for the first layer (dimension: 3 (channel) 2195 

* 64 (feature map) * 30 (feature map dimension) * 30 (feature map dimension)) of 2196 

the network that is immediate after the input layer (dimension: 37 (pressure level) * 2197 
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4 (-18h, -12h, -6h, and 0h) * 33 (vertical grid) * 33 (horizontal grid)) for variable q 2198 

with its network structure displayed in Figure 6.8a. This is an example for a non-RI 2199 

instance, and (a) Non-RI in channel 1. (b) Non-RI in channel 2. (c) Non-RI in 2200 

channel 3, and the sequence of the channel does not matter. In each channel, there 2201 

are 64 (8 in the row and 8 in the column) feature maps, and each feature map has 30 2202 

(pixels) * 30 (pixels) dimension. Deep blue implies the value in that pixel is 0, and 2203 

the brighter the color is, the high the value in that pixel. 2204 

 2205 

 2206 

 2207 
Figure 6.13：Same as Figure 6.12 but for  a RI instance (a) RI in channel 1. (b) RI 2208 

in channel 2. (c) RI in channel 3. 2209 

 2210 

Figure 6.14 describes the examples of non-RI instances and Figure 6.15 describes the 2211 

RI features extracted by the 3D autoencoder in all 3 channels in terms of variable relative 2212 

vorticity (vo), and we can find that the feature map is even more sparse comparing to 2213 

variable relative humidity (q), with only approximately 7/64, and 7/64 non empty feature 2214 

maps for both situations. Among them, 5/7 feature maps are towarding north (top; of the 2215 

center) and the rest 2 feature maps are towarding south (bottom; of the center). In 2216 

comparison, RI instance indicates that 5 are towarding south (lower) and 2 are towarding 2217 

north (of the center). So we can conclude that relative vorticity (vo) in the south  of the 2218 

center are more important in RI occurance.  2219 

 2220 

(a) (b) (c) 
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 2221 

 2222 

Figure 6.14：Same as Figure 6.12 but for variable vo with its network structure in 2223 

Figure 6.8a in a non-RI instance: (a) non-RI in channel 1. (b) non-RI in channel 2. 2224 

(c) non-RI in channel 3. 2225 

 2226 

Figure 6.15：Same as Figure 6.12 but for variable vo with its network structure in 2227 

Figure 6.8a in 3 channels in a RI instance: (a) RI in channel 1. (b) RI in channel 2. 2228 

(c) RI in channel 3. 2229 

 2230 

Similarly, based on Figure 6.16 and 6.17, 11/64 and 11/64 are non-empty feature 2231 

maps for non-RI and RI instances in variable eastward wind (u), non-RI instance has 6, 1, 2232 

and 4 feature maps toward south, north, and east of the center. In comparison, RI instance 2233 

has 6, 4, and 1 feature maps concentrating north, south, and east of the center, which 2234 

indicated that eastward wind (u) in the north of the center is more possible to result in RI. 2235 

(a) (b) (c) 

(a) (b) (c) 
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 2236 

 2237 

Figure 6.16：Same as Figure 6.12 but for variable u with its network structure in 2238 

Figure 6.8a in a non-RI instance: (a) non-RI in channel 1. (b) non-RI in channel 2. 2239 

(c) non-RI in channel 3. 2240 

 2241 

Figure 6.17：Same as Figure 6.12 but for variable u with its network structure in 2242 

Figure 6.8a in  3 channels in a RI instance: (a) RI in channel 1. (b) RI in channel 2. 2243 

(c) RI in channel 3. 2244 

 2245 

6.4 Model performance comparison 2246 

Two works, i.e., the best model in Y16 and KRD15, which outperforms almost all 2247 

of the other works in the RI prediction, are used to compare with the performance of the 2248 

COR-SHIPS model, LLE-SHIPS model, and DL-SHIPS model. 2249 

(a) (b) (c) 

(a) (b) (c) 
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6.4.1 Model performance in Yang (2016) and Kaplan et al. (2015) 2250 

In Y16, experiments are conducted using C4.5 decision tree (Quinlan, 1993), 2251 

alternating decision tree (ADTree; Freund and Mason, 1999), random forest (Breiman, 2252 

2001), classification and regression tree (CART; Breiman et al. 2017), logistic model tree 2253 

(LMT; Landwehr et al. 2005), the repeated incremental pruning to produce error 2254 

reduction (RIPPER; Cohen 1995), function-based classification such as support vector 2255 

machines with sequential minimal optimization (SMO; Platt 1999), naïve Bayes scheme 2256 

(Tan et al. 2015), and the decision tree with naïve Bayes classifiers at the leaves 2257 

(NBTree; Kohavi 1996) with cost ratio 4.6 to predict RI. Figure 6.18 shows the best 2258 

performed two classifiers C4.5 decision tree and ADTree, where measures in Figure 6.18 2259 

is defined as the different groups of variables selected by different variable selection 2260 

criteria. The performances of ADTree over all measures are more robust since its kappa 2261 

scores over different dataset is more stable than that of C4.5 decision tree, although the 2262 

best test kappa (27.5%) is achieved by C4.5 decision tree. 2263 
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      (a)                                                                         (b)2264 

 2265 
Figure 6.18: Kappa, POD, and FAR for (a) C4.5 decision tree. (b) ADTree. Data are 2266 

from Y16. 2267 

 2268 

In KRD15, CON-RII outperforms all other operational models, i.e., the 5-day 2269 

SHIFOR model (SHF5; Knaff et al. 2003), the decay version of the SHIPS model 2270 

(DSHP; DeMaria et al. 2005), the logistic growth equation model (LGEM; DeMaria 2271 

2009), the Geophysical Fluid Dynamical Laboratory (GFDL) hurricane prediction model 2272 

early (GFDI) and late (GFDL) versions (Kurihara et al. 1998) and the Hurricane Weather 2273 

Research and Forecasting Model early (HWFI) and late (HWRF) versions (Tallapragada 2274 

et al. 2014), and the NHC official forecast (OFCL) in RI prediction at the threshold 30 2275 

knots in the 24-hour lead-time in terms of Peirce's skill score (PSS) with approximately 2276 

0.225 for TC cases in 2008–13. The result details of all the models are presented in 2277 
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Figure 6.19, the CON-RII with PSS 0.225 performs little over two times than the second 2278 

best-performed model (OFCL). 2279 

 2280 

 2281 

Figure 6.19: Different model’s performance regarding Peirce's skill score (PSS) 2282 

based on data from KRD15. 2283 

 2284 

6.4.2 Model comparison 2285 

Figure 6.20 displays the model performance comparison between the best model in 2286 

Yang (2016) (a.k.a. Y16) and the three newly developed models in this study for kappa 2287 

score, POD, and FAR. The performance of the COR-SHIPS model, LLE-SHIPS model, 2288 

and DL-SHIPS model is significantly better than that of the best model in Yang (2016). 2289 
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Details are listed in Table 6.26, and we can find that the performance (kappa score, POD, 2290 

and FAR) improvement by using the entire SHIPS database with regard to Y16 is 2291 

medium with 28.7%, 20.9%, and -12.7%, respectively. If we use ERA-Interim data in 2292 

addition to the SHIPS database, we achieve significant improvement by at least 65.1%, 2293 

23.8%, and -20.8% in terms of kappa score, POD, and FAR (the smaller, the better). 2294 

 2295 

 2296 

 2297 
Figure 6.20: Model performance comparison: Model’s test kappa, FAR, and POD 2298 

score in the best model in Yang (2016), SHIPS model, LLE-SHIPS model, and DL-2299 

SHIPS model. 2300 

 2301 

Table 6.26: Performance comparison between our models, and Y16 and KRD15. 2302 

Model Kappa PSS POD FAR Improvement Yang Improvement KRD15 

Kappa POD FAR PSS POD FAR 

COR-

SHIPS 

0.354 0.368 0.411 0.621 28.7% 20.9% -12.7% 63.6% 49.5% -24.7% 
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LLE-

SHIPS 

0.454 0.399 0.421 0.563 65.1% 23.8% -20.8% 77.3% 53.1% -31.8% 

DL-

SHIPS 

0.506 0.481 0.505 0.435 84.0% 48.5% -38.8% 114.0% 83.6% -47.3% 

Y16 0.275 NA 0.340 0.711       

KRD15  NA 0.225 0.275 0.825       

 2303 

Figure 6.21 displays the model performance comparison among CON-RII in Kaplan 2304 

et al. (2015) (a.k.a. KRD15), COR-SHIPS model, LLE-SHIPS model, and DL-SHIPS 2305 

model in terms of PSS, POD, and FAR. The performance of the SHIPS model, LLE-2306 

SHIPS model, and DL-SHIPS model is significantly better than that of KRD15 as at least 2307 

63.6%,49.5%, 24.7% improvement in PSS score, POD, and FAR, and more details are 2308 

elaborated in Table 6.26. The performance improvement in KRD15 for our 3 models are 2309 

more significant than that in Y16, especially we are considering that the performance of 2310 

the model in KRD15 is evaluated in the training dataset, and the performance in Y16 and 2311 

our models are evaluated based on the test dataset. 2312 

 2313 
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 2314 

Figure 6.21: Model’s test PSS, FAR, and POD score in KRD15 (Kaplan et al., 2015), 2315 

COR-SHIPS model, LLE-SHIPS model, and DL-SHIPS model. 2316 

 2317 

The performance comparison between our 3 models – COR-SHIPS, LLE-SHIPS, 2318 

and DL-SHIPS are elaborated in Table 6.27. We can find a moderate improvement was 2319 

made from the COR-SHIPS model to the LLE-SHIPS model in terms of kappa, PSS, 2320 

POD, and FAR of 28.2%, 8.4%, 2.4%, and 9.3%, which indicates that most of the near 2321 

center information has already been explored/extracted by variables in SHIPS database. 2322 

In comparison, a significant change is made from the COR-SHIPS model to the DL-2323 

SHIPS model in terms of kappa, PSS, POD, and FAR of 42.9%, 30.7%, 22.9%, and 2324 

30.0%, which indicates that the DL-SHIPS model catches large-scale information not 2325 

only as averages (from SHIPS database) but also the variations (from DL model). With 2326 
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almost half (48 vs. 90) variables generated from ERA-Interim data filter, the DL-SHIPS 2327 

model still outperforms the LLE-SHIPS model significantly, which not only indicates 2328 

that DL ERA-interim data filter is extracting more efficient information, but also shows 2329 

that using large-scale ERA variables provides much more information than incorporating 2330 

near core ERA variables only in RI prediction.  2331 

 2332 

Table 6.27: Performance comparison between 3 models developed in this study, ‘X’ 2333 

in the table indicates that not available value. 2334 

Model Kappa PSS POD FAR Improvement COR-SHIPS Improvement LLE-SHIPS 

Kappa 

 

PSS POD FAR Kappa PSS 

 

POD FAR 

COR-

SHIPS 

0.354 0.368 0.411 0.621 X X X X X X 

 

X X 

LLE-

SHIPS 

0.454 0.399 0.421 0.563 28.2% 8.4% 2.4% -9.3% X X X X 

DL-

SHIPS 

0.506 0.481 0.505 0.435 42.9% 30.7% 22.9% -

30.0% 

11.5% 20.6% 20.0% -

22.7% 

 2335 

6.5 Feature importance  2336 

6.5.1 Feature importance comparison between COR-SHIPS model, LLE-SHIPS 2337 

model, and DL-SHIPS model 2338 

Table 6.28 lists the 36 most important variables for each of the three models. 2339 

Learning from Table 6.28, 7 out of top 10 in the LLE-SHIPS model is in the top 10 of the 2340 

COR-SHIPS model, and in all the SHIPS variables identified in top 10 in the DL-SHIPS 2341 

model are included in that of the COR-SHIPS model and LLE-SHIPS model. This 2342 

indicates that all three models identify similar important variables.  2343 
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 2344 

Table 6.28: Top 36 most important variables in COR-SHIPS model, LLE-SHIPS 2345 

model, and DL-SHIPS model. 2346 

Rank 

COR-SHIPS 

model 

variable 

COR-SHIPS 

model variable 

Importance 

Score 

LLE-SHIPS 

model 

variable 

LLE-SHIPS 

model variable 

Importance 

Score 

DL-SHIPS 

model 

variable 

DL-SHIPS  

model variable 

Importance 

Score 

1 BD12 0.0362 BD12 0.0188  BD12 0.0197  

2 DTL 0.0217 VMAX 0.0167  VMAX 0.0176  

3 CFLX 0.0207 DTL 0.0138  SHRD 0.0148  

4 SHDC 0.0206 SHRD 0.0130  DTL 0.0144  

5 G150 0.0205 TWXC 0.0115  IRM1_5 0.0137  

6 jd 0.0204 G150 0.0113  o31 0.0133  

7 VMAX 0.0199 VMPI 0.0113  G150 0.0131  

8 IRM1_5 0.0199 REFC 0.0113  q7 0.0131  

9 PW08 0.0191 TGRD 0.0111  u3 0.0129  

10 VMPI 0.019 IRM1_5 0.0107  q4 0.0129  

11 SHTD 0.0187 IR00_12 0.0107  G200 0.0129  

12 IR00_12 0.0183 V300 0.0105  vo3 0.0127  

13 HE07 0.018 VVAC 0.0105  REFC 0.0124  

14 MTPW_2 0.0177 G200 0.0103  vo5 0.0122  

15 XD18 0.0177 PEFC 0.0096  vo8 0.0120  

16 SHTS 0.0175 MTPW_2 0.0096  PEFC 0.0120  

17 PW14 0.0173 XDTX 0.0095  d3 0.0118  

18 TWXC 0.0172 PSLV_1 0.0095  CFLX 0.0116  

19 R000 0.0168 T150 0.0095  PSLV_3 0.0116  

20 V300 0.0167 CFLX 0.0094  T150 0.0114  

21 OAGE 0.0165 HIST_2 0.0094  jd 0.0114  

22 PSLV_1 0.0162 HE07 0.0092  R000 0.0114  

23 Z850 0.0161 SHTS 0.0091  TWXC 0.0112  

24 SHRS 0.0161 PSLV_3 0.0089  u8 0.0112  

25 SDDC 0.0157 SHTD 0.0085  PW08 0.0112  

26 VVAC 0.0156 G250 0.0085  q3 0.0112  

27 PSLV_5 0.0156 CD26 0.0085  XDTX 0.0112  

28 TGRD 0.0154 lle84 0.0082  CD26 0.0109  

29 T150 0.0153 EPSS 0.0082  q8 0.0109  

30 CD26 0.0153 R000 0.0077  pv3 0.0107  

31 TADV 0.0152 SDDC 0.0076  v4 0.0107  

32 V850 0.0151 IRM3_19 0.0075  r1 0.0105  

33 PSLV_4 0.0148 RD26 0.0075  u1 0.0101  

34 Z000 0.0145 PW08 0.0074  q5 0.0099  

35 REFC 0.0145 SHRS 0.0074  IR00_12 0.0099  

36 RD26 0.0142 NDTX 0.0074  vo4 0.0099  

 2347 
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The 6 common variables are BD12, VMAX, SHRD, DTL, IRM1_5, and G150. 2348 

Although there is no LLE engineered variables in the top 10 in the LLE-SHIPS model, 2349 

the importance score for the most important variable, BD12, is only approximately 11% 2350 

higher than the second important variable VMAX. In comparison, the importance score 2351 

for BD12 in the COR-SHIPS model has 50% higher importance score than the second 2352 

most important variable, DTL, which indicates that the performance of the LLE-SHIPS 2353 

model does not heavily rely on one individual variable. In addition, the performance of 2354 

the LLE-SHIPS model has approximately 28% higher kappa score than that of the COR-2355 

SHIPS model, which indicates that the ERA-interim data filter efficiently extracts 2356 

important near center features that help the RI prediction.  2357 

DL-SHIPS model has 120 variables, which is 42 (33%) variables less than that of the 2358 

LLE-SHIPS model, and the performance of the DL-SHIPS model (0.506 kappa value) is 2359 

approximately 11% better than that of the LLE-SHIPS model (0.454). The fact that with 2360 

much fewer variables, the DL-SHIPS model is performing much better than the LLE-2361 

SHIPS model, indicates that DL ERA-Interim data filter extracts large-scale features that 2362 

is more representative of RI than that of LLE ERA-Interim data filter, i.e., near center 2363 

feature. However, unlike the LLE-SHIPS model, the DL-SHIPS model extracts features 2364 

from each variable separately, and interaction between different variables are ignored. If 2365 

we also extract the interaction between terms in the large-scale dataset, we can get better 2366 

performance. 2367 

Since we have 72 variables in the COR-SHIPS model, we further compare the top 2368 

36, i.e., 50% number of variables in the COR-SHIPS model, for the COR-SHIPS model, 2369 
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LLE-SHIPS model, and DL-SHIPS model that described in Table 6.28. LLE-SHIPS 2370 

model has 34 SHIPS variables, and 2 ERA-Interim variables, and 25 of 34 variables 2371 

(73.5%) are overlapped with that of the COR-SHIPS model, which also support the fact 2372 

that LLE ERA-interim data filter extracts important near center features that help the RI 2373 

prediction, although the new features seem not as efficient since there are only 2 in the 2374 

top 36. However, with 162 variables in total, the LLE-SHIPS model has the total 2375 

importance score 0.259 for the overlap variables, and only with 72 variables, COR-2376 

SHIPS model has 0.456 for the same overlap variables, which almost double that of the 2377 

LLE-SHIPS model. The reason is there are significantly more variables in the LLE-2378 

SHIPS model, and it is not surprising that the importance score for the overlapped 2379 

variables is significantly different in the COR-SHIPS model, and LLE-SHIPS model. 2380 

In contrast, the DL-SHIPS model has 19 SHIPS variables, and 17 ERA-Interim 2381 

variables. Among all these variables, 14 of 19 SHIPS variables (73.7%) are overlapped 2382 

with that of the COR-SHIPS model, and the summed importance scores are 0.276, and 2383 

0.180 respectively for the COR-SHIPS model and DL-SHIPS model, which indicates 2384 

DL-SHIPS model relies less on SHIPS variables. 18 of 19 SHIPS variables (94.7%) are 2385 

overlapped with that of the LLE-SHIPS model, and the summed importance scores are 2386 

0.199, and 0.231 respectively for the LLE-SHIPS model and DL-SHIPS model, almost 2387 

same. 2388 

With significantly less ERA-Interim variables and almost the same number of SHIPS 2389 

variables, we can conclude that the DL ERA-interim data filter is efficient at either 2390 

improving the prediction accuracy, or extracting new variables at the large-scale. There 2391 
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might be two reasons for this. The first reason might be large-scale features are more 2392 

efficient than the near center features in RI prediction, which matches domain scientist 2393 

experience, because most of the SHIPS variables are large scale variables. The second 2394 

reason might be compared with the LLE data filter, the DL data filter has multiple 2395 

convolutional layers, which distilled the all levels of large-scale information 2396 

comprehensively that may be ignored by domain scientists for a long time. 2397 

 2398 

6.5.2 Feature importance comparison between previous studies and this study 2399 

A two-side t-test is used for variable selection in KD03, and the RII model was 2400 

built based on the five variables, DVMX (Intensity change during the previous 12 h), 2401 

SST, POT (Maximum potential intensity (MPI) – maximum sustained surface wind 2402 

speed), SHR (850-200-hPa vertical shear averaged from r = 200-800 km), and RHLO 2403 

(850-700-hPa relative humidity averaged from r=200-800 km), which are found 2404 

significant in a 99.9% level and with the highest individual RI prediction power. In the 2405 

first 10 importance variables identified by the COR-SHIPS model, BD12 (ranked 1st), 2406 

SHRD (4th), VMPI (10th), and VMAX (7th) (POT = VMPI - VMAX) are consistent with 2407 

the selected variables in KD03. The missed variables in the top ten compared with the top 2408 

five in KD03 are SST and RHLO. SST is highly correlated with the selected E000, which 2409 

is listed 52th in the importance ranks. RHLO is highly correlated with RHMD, which is 2410 

listed 57th in the importance ranks (Table A1 and Table A4). 2411 

Compared with variables selected by KD03, in KDK10, SST is removed and 4 2412 

additional variables, D200 (time averaged 200-hPa divergence within a 1000-km radius), 2413 
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OHC (time averaged oceanic heat content), SDBT (STD of GOES-IR BT (t = 0h) within 2414 

a 50–200-km radius), and PX30 (the percentage area from 50- to 200-km radius covered 2415 

by IR cloud-top BT of -30oC or colder), are added. Among the four new variables, D200 2416 

is ranked 44th with a 0.0131 importance score (Table A4) in the COR-SHIPS model. The 2417 

OHC related parameters include COHC, NOHC, and RHCN, and among them, the 2418 

highest importance score is achieved by COHC, which is highly correlated with CD26 2419 

ranked 30th with a score of 0.0153. The PX30 is corresponding to IR00_8, which is 2420 

highly correlated with IRM1_16 ranked 50th with a 0.0119 score value. The only caught 2421 

new KRD10 variable in our top ten in the COR-SHIPS model is the SDBT by IRM1_5 2422 

(ranked 8th), representing GOES BT STD within the 100-300 km around the TC centers 2423 

but 1.5 hours before the current time. 2424 

KRD15 replaced RHLO with TPW (Percentage of an area with TPW<45 mm 2425 

within a 500-km radius and ±45o of the upshear SHIPS wind direction (t = 0h)), and 2426 

PX30 with PC2 (second principal component of GOES-IR imagery within a 440-km 2427 

radius (t = 0h)), and added 2 new variables, ICDA (Inner-core dry-air predictor (time 2428 

avg)), and VMX0 (Max sustained wind (t = 0h)), comparing with variable used in 2429 

KDK10. Among the four new variables, VMX0 is consistent with VMAX, ranked 7th in 2430 

the COR-SHIPS model importance list. ICDA is not directly included in SHIPS data, but 2431 

the related parameter found is CFLX, the dry air predictor except for a factor of VMX0 in 2432 

KRD15, and CFLX is ranked the 3rd in the top 10 parameter list. The definition of TPW 2433 

is the same as MTPW_19 in the SHIPS, which ranked only 37th with an importance score 2434 

of 0.014. The PC2 equivalent parameter in SHIPS is PC00, which ranked only the 70th. 2435 
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In summary, variables used by KD03, KDK10, and KRD15 for RI prediction are 2436 

mostly caught up with our top 10 variables in the COR-SHIPS model. The missed 2437 

variable in KD03 is RHLO and SST, and RHLO was actually replaced by TPW later 2438 

(KRD15), and TPW is ranked 37th in our list, much more important than the RHLO via 2439 

the highly correlated RHMD at the 57th place. Among the 4 newly added parameters in 2440 

KDK10, three, OHC, D200, and PX30, are outside the top 10 list. There are several 2441 

variables in SHIPS representing the OHC. The most important one is found to be 2442 

climatological OHC via the highly correlated parameter CD26 at the 30th rank. KRD15 2443 

mentioned that OHC works well only when the other two variables, POT and ICDA are 2444 

included in a model. D200 was introduced to SHIPS in 1998 (DeMaria and Kaplan 2445 

1999), but it was eliminated in 2001 and added back in 2002 (DeMaria et al. 2005). 2446 

DeMaria et al. (2005) also found that the role of this divergence in TC intensity 2447 

forecasting is sensitive to the data sources. Therefore, it is not very unusual if this model 2448 

did not rank this predictor high. The last parameter not in the top 10 list, PX30, was 2449 

replaced by PC2 in KRD15. Actually, PC2 is ranked 70th in this study, and it is hard to 2450 

interpret the result. It is very unfortunate that the GOES-IR principal components were 2451 

mistreated initially in this work, and we missed the opportunity to rank the importance of 2452 

other PCs among the first nine PCs. The other missed parameter in KRD15 is the TPW, 2453 

ranked only 37th. It is plausible that the humidity effects are also reflected in the 3rd 2454 

ranked parameter CFLX. 2455 

Comparing to the COR-SHIPS model, the LLE-SHIPS model not only employs 2456 

SHIPS parameters but also ERA-Interim near center parameters for predicting RI, and we 2457 
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divide the ERA-Interim parameters into different groups with highly correlated 2458 

parameters to evaluate the group importance instead of evaluating the importance for 2459 

each parameter. Based on the top 5 important groups, we can find that wind speed, 2460 

especially at 400, 450, and 1000 hPa play a significant role in RI prediction. Another 2461 

important information we get, potential vorticity at 1000 hPa, although possibly the 2462 

importance score is over-estimated, is more important than the most important SHIPS 2463 

variable, BD12. Finally, vertical pressure speed is also found important in RI prediction. 2464 

In addition to the LLE-SHIPS model, the DL-SHIPS model, which adopts the large-2465 

scale ERA-Interim information, further improves the performance of COR-SHIPS 2466 

significantly. Relative humidity (q), relative vorticity (vo), and eastward wind (u) are 2467 

found to be top 3 important variables, but evaluating the contribution from each of the 2468 

original ERA-Interim parameters is a notoriously difficult task for deep learning 2469 

networks. So we roughly evaluating their 3D auto-encoder first layer weights, and find 2470 

out that RI instances tend to have higher weights in southeast humidity (q), north relative 2471 

vorticity (vo), and  north eastward wind (u), where the direction is with regard to the TC 2472 

center 2473 

  2474 
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CHAPTER 7 CONCLUSION AND DISCUSSION 2475 

To improve RI prediction with modern techniques, this study constructs a well-2476 

tailored artificial intelligence (AI) system that goes back to the SHIPS database, the most 2477 

complete dataset with parameters known to be related to TC intensity changes, as well as 2478 

the ERA-Interim dataset, the best reanalysis product at the moment, to extract 2479 

information from a more complete set of variables. This system consists of four major 2480 

components, data filters to remove variables unrelated to RI, reduce variables among 2481 

highly correlated variables, screen out variables with high missing value rates, and 2482 

engineer/extract a reduced set of variables from the high dimensional variable space; a 2483 

customized sampler to upsample the minority (RI) instances and to downsample majority 2484 

instances simultaneously by a GMM-SMOTE sampler; a very powerful state-of-the-art 2485 

classifier, the XGBoost, to classify instances into RI and non-RI and to evaluate variable 2486 

importance based on the information gain; a hyperparameter tuning procedure tweaking 2487 

hyperparameters appearing in all of the three above components, within pre-defined value 2488 

ranges. 2489 

Based on the AI system shown in Figure 1.1, three models, the COR-SHIPS 2490 

model, the LLE-SHIPS model, and the DL-SHIPS model, are developed. The COR-2491 

SHIPS model only employs SHIPS data and is the continued work of Y16. Comparing 2492 

with Y16, the COR-SHIPS model adopts a different data filter, oversamples RI instances, 2493 

employs a more powerful classifier, and tunes their hyper-parameters to improve the 2494 

performance.  2495 
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However, the COR-SHIPS model still only employs the SHIPS dataset, which is 2496 

largely based on expert experiences. Since the mechanism of the tropical cyclone RI is 2497 

unknown, the knowledge from the domain scientist may not be comprehensive, which 2498 

indicates some important variables may not be included in the SHIPS dataset. Therefore, 2499 

ECMWF ERA-Interim reanalysis data are used to improve the performance of the COR-2500 

SHIPS model. Two automatic feature extraction approaches, local linear embedding 2501 

(LLE) and deep learning (DL), are used to extract features from near center data (small 2502 

scale) and large-scale data respectively to create the LLE-SHIPS model and DL-SHIPS 2503 

model. 2504 

The entire dataset is split into training/validation and test set, where the former is 2505 

used to fit our model and to tune the hyperparameters, and the latter is used for the 2506 

performance evaluation and comparison. The performance of our model on the test data 2507 

shows improvement in the RI prediction with hyperparameter tuning. 2508 

It is found that our three model outperforms Y16 by 20.9%, 23.8%, and 48.5%, 2509 

and KRD15 by 49.5%, 53.1%, and 83.6% on POD, while reducing the FAR by 12.7%, 2510 

20.8%, and 38.8% comparing with Y16, and 24.7%, 31.8%, and 47.3% with KRD15 2511 

respectively. Our model also improves the kappa score of 28.7%, 65.1%, and 84.0% vs. 2512 

Y16 and the PSS 63.6%, 77.3%, and 114% against KRD15. With the difficulties in RI 2513 

prediction and the slow improvement rates in previous studies (KD03, KDK10, KRD15, 2514 

Y16), we believe the improvement by this work is substantial. The significant 2515 

improvement made by the three models also challenges the mainstream point of selecting 2516 

only a few variables fitting in the simple model for the prediction, i.e., involving more 2517 
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variables in the complicated model with high penalty terms is better than a simple model 2518 

with few variables. 2519 

The variable importance is also evaluated, and BD12, the past 12-hour intensity 2520 

change, is found to have the largest importance score and contributes more than other 2521 

variables in all three models, and the common 6 variables in top 10 are BD12, VMAX, 2522 

SHRD, DTL, IRM1_5, and G150. 2523 

Previous important variables for RI prediction are determined by the significance test 2524 

in KD03, KDK10, and KRD15, and most of them are consistent with top 10 variables in 2525 

our three models with some exceptions. The variables in the top 10 list but not considered 2526 

in other RI studies may be helpful for future RI studies, especially for DLT, jd, G150, 2527 

PW08, TWXC, REFC, and TGRD. The additional significant variables identified by the 2528 

ERA-Interim data filter are the wind speed, especially at 400 and 450 hPa, potential 2529 

vorticity at 1000 hPa, vertical pressure in the near center and southeast humidity (q), 2530 

north relative vorticity (vo), and north eastward wind (u) in the large-scale and those 2531 

would help understand the mechanism of the TC intensification.  2532 

COR-SHIPS, LLE-SHIPS, and DL-SHIPS model designed in this study performed 2533 

significantly better than most of the previous works such as KRD15, and Y16. Although 2534 

we are able to evaluate the importance of the output of different data filters, and we can 2535 

somehow even trace back the importance to the feature level, the feature level importance 2536 

is not accurate. Accurately tracing back the feature level importance is related to 2537 

interpretability or explaiability of the complicated machine learning model, which is still 2538 

a challenging problem in the AI field because with so many non-linear transforms 2539 
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happening in the machine learning model structure, no one could easily tell what’s going 2540 

on (Molnar 2019). There are some attempts for the model interpretability mentioned 2541 

above, such as Lime (Local Interpretable Model-Agnostic Explanations) (Ribeiro et al. 2542 

2016), that a simple/explainable model is used to approximate the underline model, 2543 

SHAP (Shaley Additive Explanations) (Lundberg and Lee 2017) that a game theory-2544 

based approach is used to evaluate the feature level importance score, but these are all the 2545 

workaround solutions, and more researches need to be done for more accurately 2546 

describing the importance of the original variables. 2547 
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APPENDIX 1 PRINCIPAL COMPONENT ANALYSIS 2548 

1.1 Principal component analysis  2549 

Principal component analysis (PCA) is a dimension reduction approach to identify 2550 

new features (principal component, i.e., PC) that contain as much statistical information 2551 

of the original features as possible, and PCs that are not correlated to each other. 2552 

Statistical information is represented by the variance of the original features. The 2553 

correlation between different PCs equal to 0, and PCs are sorted by their variance. 2554 

PCA is elaborated in math format as below: 2555 

Assume there are m observations in the entire dataset w.r.t. each observation 2556 

𝑥(𝑖)    𝑖 = 1, … , 𝑚, where each observation 𝑥(𝑖) (𝑖 = 1, … , 𝑚) is a multi-dimension 2557 

vector. 2558 

The data 𝑋 = [𝑥(1), … , 𝑥(𝑚)] is centered through 𝑋̂ = 𝑋 − [
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1 , … ,

1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1 ], 2559 

where 𝑋̂ represents that each column of 𝑋 is subtracted by 
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1 . Assume 𝐴 =2560 

 [𝐴1, … , 𝐴𝑚]  is the projection matrix that  2561 

𝑌 = 𝐴𝑋̂ 2562 

Where 𝐴𝑖
𝑇𝐴𝑖 = 1  for 𝑖 = 1, … , 𝑚,  𝑌 = [𝑌1, … , 𝑌𝑚], and 𝑌𝑖𝑌𝑗 = 0 for 𝑖, 𝑗 = 1, … , 𝑚; 𝑖 ≠2563 

𝑗.  2564 
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 2565 

 (the largest variance for each 𝑌𝑖 while 𝑌𝑖𝑌𝑗 = 0 for 𝑖, 𝑗 = 1, … , 𝑚; 𝑖 ≠ 𝑗). Therefore, since 2566 

the variance of 𝑌𝑖 that 𝑌𝑖𝑌𝑗 = 0 for 𝑖, 𝑗 = 1, … , 𝑚; 𝑖 ≠ 𝑗 should be maximized, hence the 2567 

trace of the covariance matrix of 𝐴𝑋̂ should be maximized, which results in (1). 2568 

 2569 

𝐴 =
𝑎𝑟𝑔𝑚𝑎𝑥

𝐴
𝑡𝑟𝑎𝑐𝑒(𝐴𝑇𝑆𝐴) 

𝑠. 𝑡.             𝐴𝑇𝐴 = 𝐼 𝑎𝑛𝑑 𝑆 =
1

𝑚
𝑋̂𝑋̂𝑇 

 

(1) 

 2570 

By using Lagrangian multiplier and taking the derivative on (1), we get 2571 

𝑆𝐴 = λ𝐴 2572 

where λ is Lagrangian multiplier. 2573 

Based on eigen-decomposition described in Stoer and Bulirsch (2013), λ is the 2574 

diagonal eigenvalue matrix of 𝑆, where eigenvalues of S are located in the diagonal of λ, 2575 

and sorted decreasingly from left upper corner to the right lower corner. 𝐴 is the 2576 
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corresponding eigenvector matrix of S, where 𝐴𝑖 for 𝑖 = 1, … , 𝑚 is the eigenvector that 2577 

corresponds to i-th largest eigenvalue of 𝑆. 𝐴𝑖 for 𝑖 = 1, … , 𝑚 represent the first 𝑚 PCs. 2578 

 In applications, the first few PCs are chosen with the largest contribution to the total 2579 

variance (variation). 2580 

More details can be found in Friedman et al. (2001). 2581 

1.2 Kernel PCA 2582 

Kernel PCA maps the original data 𝑋 to a kernel Hilbert space through a 2583 

transformation 𝜙 to perform the PCA, and the kernel space is unknown. Similarly, 2584 

assume there are m observation in the entire dataset w.r.t. each observation 𝑥(𝑖)    𝑖 =2585 

1, … , 𝑚. Therefore, data 𝑋 = [𝑥(1), … , 𝑥(𝑚)], and  𝐴 =  [𝐴1, … , 𝐴𝑚]  is the projection 2586 

matrix that 2587 

𝑌 = 𝐴𝜙(𝑋) 2588 

𝑌 = [𝑌1, … , 𝑌𝑚], and 𝑌𝑖𝑌𝑗 = 0 for 𝑖, 𝑗 = 1, … , 𝑚; 𝑖 ≠ 𝑗 2589 

Similar to PCA, the problem can be rewritten as (2) 2590 

 2591 

 2592 
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𝐴 =
𝑎𝑟𝑔𝑚𝑎𝑥

𝐴
𝑡𝑟𝑎𝑐𝑒(𝐴𝑇𝐶𝐴) 

𝑠. 𝑡.             𝐴𝑇𝐴 = 𝐼 𝑎𝑛𝑑 𝐶 =
1

𝑚
𝜙(𝑋)̂𝜙(𝑋)̂𝑇 

 

  (2)  

 2593 

where 𝜙(𝑋)̂ =  𝜙(𝑋) − [
1

𝑚
∑ 𝜙(𝑥𝑖)𝑚

𝑖=1 , … ,
1

𝑚
∑ 𝜙(𝑥𝑖)

𝑚
𝑖=1 ] 2594 

Equation (2) could be solved as same as Equation (1), hence convert to  2595 

 2596 

𝐶𝐴 = λ𝐴 

 

(3)  

(3) can be transformed to vector form  2597 

 2598 

𝐶𝐴𝑘 = λ𝑘𝐴𝑘 

 

(4)  

since 𝐶 =
1

𝑚
𝜙(𝑋)̂𝜙(𝑋)̂𝑇, (4) becomes 2599 
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1

𝑚
∑ 𝜙(𝑥𝑖)̂[𝜙(𝑥𝑖)̂

𝑇𝐴𝑘] = λ𝑘𝐴𝑘

𝑚

𝑖=1
 

 

(5)  

 2600 

If both sides of the (5) is divided by λ𝑘, 𝐴𝑘 can be rewritten as  2601 

𝐴𝑘 = ∑ 𝑡𝑘𝑖𝜙(𝑥𝑖)
𝑚

𝑖=1
 

 

(6) 

 2602 

1

𝑚
∑ 𝜙(𝑥𝑖)̂𝜙(𝑥𝑖)̂

𝑇 ∑ 𝑡𝑘𝑗𝜙(𝑥𝑗)
𝑚

𝑗=1
= λ𝑘 ∑ 𝑡𝑘𝑖𝜙(𝑥𝑖)

𝑚

𝑖=1

𝑚

𝑖=1
 

 

(7) 

Define 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜙(𝑥𝑖)̂
𝑇𝜙(𝑥𝑖)̂ for 𝑖, 𝑗 = 1, … , 𝑚. 𝐾 is a 𝑚 ∗ 𝑚 dimensional matrix 2603 

that 𝐾(𝑖, 𝑗) =  𝑘(𝑥𝑖, 𝑥𝑗) for 𝑖, 𝑗 = 1, … , 𝑚. 2604 

1

𝑚
∑ 𝑘(𝑥𝑙, 𝑥𝑖) ∑ 𝑡𝑘𝑗𝑘(𝑥𝑖, 𝑥𝑗)

𝑚

𝑗=1
= λ𝑘 ∑ 𝑡𝑘𝑖𝑘(𝑥𝑙, 𝑥𝑖)

𝑚

𝑖=1

𝑚

𝑖=1
 

 

    (8)  

Then (8) becomes 2605 
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𝐾2𝑡𝑘 = λ𝑘𝑚𝐾𝑡𝑘 

 

  (9)  

 2606 

where 𝑡𝑘 = [𝑡𝑘1 , … , 𝑡𝑘𝑚]𝑇 2607 

(9) is divided by 𝐾   2608 

𝐾𝑡𝑘 = λ𝑘𝑚𝑡𝑘 

 

(10)  

𝑌𝑘 is then calculated as: 2609 

𝑌𝑘 = 𝜙(𝑋)̂𝑇𝐴𝑘 = ∑ 𝑡𝑘𝑖𝑘(𝑥, 𝑥𝑖)
𝑚

𝑖=1
 

 

      (11)  

(Schölkopf et al. 1997) 2610 

More details can be found in Schölkopf et al. (1998). 2611 

 2612 

 2613 

 2614 
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APPENDIX 2 ADDITIONAL TABLES 2615 

Table A1: The highly correlated parameter group list. 2616 

 [IRM1_16, IR00_10, IR00_13, IR00_15, IR00_16, IR00_2, IR00_4, IR00_6, IR00_7, 2617 

IR00_8, IR00_9, IRM1_10, IRM1_12, IRM1_13, IRM1_15, IRM1_2, IRM1_4, IRM1_6, 2618 

IRM1_7, IRM1_8, IRM1_9, IRM3_10, IRM3_12, IRM3_13, IRM3_15, IRM3_16, 2619 

IRM3_2, IRM3_4, IRM3_6, IRM3_7, IRM3_8, IRM3_9] 2620 

 [E000, CSST, DSST, DSTA, ENEG, ENSS, EPOS, MTPW_10, MTPW_12, MTPW_14, 2621 

MTPW_16, MTPW_20, MTPW_2, MTPW_4, MTPW_6, MTPW_8, PW03, PW05, 2622 

PW07, PW09, PW11, PW13, PW15, PW17, PW21, RSST, T000, XDST, XNST, 2623 

XTMX] 2624 

[HIST_8, HIST_9, HIST_10, HIST_11, HIST_12, HIST_13, HIST_14, HIST_2, 2625 

HIST_3, HIST_4, HIST_5, HIST_6, HIST_7] 2626 

[PW14, MTPW_11, MTPW_13, MTPW_15, MTPW_3, MTPW_5, PW04, PW06, 2627 

PW12, PW16] 2628 

[CD26, CD20, COHC, ND26, XD20, XD22, XD24, XD26, XO20, XOHC] 2629 

[MTPW_19, MTPW_0, MTPW_18, PW01, PW19, PW20], [HIST_15, HIST_16, 2630 

HIST_17, HIST_18, HIST_19, HIST_20] 2631 

[IRM3_19, IRM1_18, IRM1_19, IRM1_20, IRM3_18, IRM3_20] 2632 

[PW08, MTPW_9, MTPW_17, PW10, PW18] 2633 

[PSLV_4, PSLV_2, PSLV_6, U200, U20C] 2634 

[IRM1_5, IR00_5, IRM1_3, IRM3_3, IRM3_5] 2635 

[SHRD, SHDC, SHGC, SHRG] 2636 

[V850, TWAC, V000, V500] 2637 

[IRM3_11, IR00_11, IRM1_11] 2638 

[RHMD, RHHI, RHLO] 2639 

[IR00_20, IR00_18, IR00_19] 2640 

[DTL, LON, TLON] 2641 

[PSLV_3, PSLV_5, PSLV_7] 2642 

[PENV, PENC, Z000] 2643 

[VVAC, VMFX, VVAV] 2644 

[BD12, BD06, BD18] 2645 

[T250, T200] 2646 
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[NSST, NTMX] 2647 

[HIST_1, HIST_0] 2648 

[NOHC, RHCN] 2649 

[RD26, RD20] 2650 

[XD18, XD16] 2651 

[D200, DIVC] 2652 

[PC00, IR00_1] 2653 

[OAGE, NAGE] 2654 

[NTFR, XTFR] 2655 

[PCM1, IRM1_1] 2656 

[HE07, HE05] 2657 

[PEFC, V20C] 2658 

[PCM3, IRM3_1] 2659 

[VMAX, MSLP] 2660 

[TLAT, LAT] 2661 

[MTPW_1, PW02] 2662 

[O500, O700] 2663 

[NDFR, XDFR] 2664 

[IR00_12] 2665 

[VMPI] 2666 

[IR00_3] 2667 

[ND20] 2668 

[EPSS] 2669 

[TWXC] 2670 

[G150] 2671 

[SHTD] 2672 

[NDTX] 2673 

[XDML] 2674 

[Z850] 2675 

[CFLX] 2676 

[XDTX] 2677 
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[SHTS] 2678 

[SDDC] 2679 

[jd] 2680 

[SHRS] 2681 

[IR00_14] 2682 

[IR00_17] 2683 

[G250] 2684 

[G200] 2685 

[REFC] 2686 

[PSLV_1] 2687 

[V300] 2688 

[IRM1_17] 2689 

[T150] 2690 

[TGRD] 2691 

[TADV] 2692 

[IRM3_14] 2693 

[R000] 2694 

[IRM3_17] 2695 

[IRM1_14] 2696 

 2697 

 2698 

Table A2: Detail of the Group with the original score from LLE data filter. 2699 

Group1, 0.07131729492630356, [NT18_cc_l11, NT18_cc_l12, NT18_cc_l13, 2700 

NT18_cc_l14, NT18_cc_l15, NT18_ciwc_l12, NT18_ciwc_l13, NT18_ciwc_l14, 2701 

NT18_ciwc_l15, NT18_ciwc_l16, NT18_o3_l1, NT18_o3_l10, NT18_o3_l11, 2702 

NT18_o3_l14, NT18_o3_l15, NT18_o3_l16, NT18_o3_l17, NT18_o3_l2, NT18_o3_l9, 2703 

NT18_q_l1, NT18_q_l2, NT18_q_l3, NT18_q_l37, NT18_q_l4, NT18_q_l5, 2704 

NT18_q_l6, NT18_r_l11, NT18_r_l12, NT18_r_l14, NT18_r_l15, NT18_r_l16, 2705 

NT18_t_l10, NT18_t_l14, NT18_t_l15, NT18_t_l16, NT18_t_l17, NT18_t_l18, 2706 

NT18_t_l19, NT18_t_l20, NT18_t_l21, NT18_t_l22, NT18_t_l5, NT18_t_l6, NT18_t_l7, 2707 

NT18_t_l8, NT18_t_l9, NT18_u_l11, NT18_u_l12, NT18_u_l13, NT18_u_l14, 2708 

NT18_u_l15, NT18_u_l16, NT18_u_l25, NT18_u_l26, NT18_u_l27, NT18_u_l28, 2709 

NT18_u_l29, NT18_u_l30, NT18_u_l31, NT18_u_l32, NT18_u_l33, NT18_u_l34, 2710 

NT18_u_l35, NT18_u_l36, NT18_u_l37, NT12_cc_l11, NT12_cc_l12, NT12_cc_l13, 2711 

NT12_cc_l14, NT12_cc_l15, NT12_ciwc_l12, NT12_ciwc_l13, NT12_ciwc_l14, 2712 

NT12_ciwc_l15, NT12_ciwc_l16, NT12_o3_l1, NT12_o3_l10, NT12_o3_l11, 2713 
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NT12_o3_l14, NT12_o3_l15, NT12_o3_l16, NT12_o3_l17, NT12_o3_l2, NT12_o3_l5, 2714 

NT12_o3_l9, NT12_q_l1, NT12_q_l13, NT12_q_l14, NT12_q_l2, NT12_q_l3, 2715 

NT12_q_l37, NT12_q_l4, NT12_q_l5, NT12_q_l6, NT12_r_l11, NT12_r_l12, 2716 

NT12_r_l13, NT12_r_l14, NT12_r_l15, NT12_r_l16, NT12_t_l10, NT12_t_l11, 2717 

NT12_t_l14, NT12_t_l15, NT12_t_l16, NT12_t_l17, NT12_t_l18, NT12_t_l19, 2718 

NT12_t_l20, NT12_t_l21, NT12_t_l22, NT12_t_l5, NT12_t_l6, NT12_t_l7, NT12_t_l8, 2719 

NT12_t_l9, NT12_u_l11, NT12_u_l12, NT12_u_l13, NT12_u_l14, NT12_u_l15, 2720 

NT12_u_l16, NT12_u_l25, NT12_u_l26, NT12_u_l27, NT12_u_l28, NT12_u_l29, 2721 

NT12_u_l30, NT12_u_l31, NT12_u_l32, NT12_u_l33, NT12_u_l34, NT12_u_l35, 2722 

NT12_u_l36, NT12_u_l37, NT12_z_l15, NT12_z_l16, NT12_z_l17, NT12_z_l18, 2723 

NT06_cc_l11, NT06_cc_l12, NT06_cc_l13, NT06_cc_l14, NT06_cc_l15, 2724 

NT06_ciwc_l12, NT06_ciwc_l13, NT06_ciwc_l14, NT06_ciwc_l15, NT06_ciwc_l16, 2725 

NT06_o3_l1, NT06_o3_l10, NT06_o3_l11, NT06_o3_l12, NT06_o3_l13, NT06_o3_l14, 2726 

NT06_o3_l15, NT06_o3_l16, NT06_o3_l17, NT06_o3_l2, NT06_o3_l5, NT06_o3_l9, 2727 

NT06_q_l1, NT06_q_l13, NT06_q_l14, NT06_q_l15, NT06_q_l2, NT06_q_l3, 2728 

NT06_q_l4, NT06_q_l5, NT06_q_l6, NT06_r_l11, NT06_r_l12, NT06_r_l13, 2729 

NT06_r_l14, NT06_r_l15, NT06_r_l16, NT06_t_l10, NT06_t_l11, NT06_t_l14, 2730 

NT06_t_l15, NT06_t_l16, NT06_t_l17, NT06_t_l18, NT06_t_l19, NT06_t_l20, 2731 

NT06_t_l21, NT06_t_l22, NT06_t_l28, NT06_t_l29, NT06_t_l30, NT06_t_l31, 2732 

NT06_t_l32, NT06_t_l5, NT06_t_l6, NT06_t_l7, NT06_t_l8, NT06_t_l9, NT06_u_l11, 2733 

NT06_u_l12, NT06_u_l13, NT06_u_l14, NT06_u_l15, NT06_u_l16, NT06_u_l25, 2734 

NT06_u_l26, NT06_u_l27, NT06_u_l28, NT06_u_l29, NT06_u_l30, NT06_u_l31, 2735 

NT06_u_l32, NT06_u_l33, NT06_u_l34, NT06_u_l35, NT06_u_l36, NT06_u_l37, 2736 

NT06_z_l14, NT06_z_l15, NT06_z_l16, NT06_z_l17, NT06_z_l18, NT06_z_l19, 2737 

NT00_cc_l11, NT00_cc_l12, NT00_cc_l13, NT00_cc_l14, NT00_cc_l15, 2738 

NT00_ciwc_l11, NT00_ciwc_l12, NT00_ciwc_l13, NT00_ciwc_l14, NT00_ciwc_l15, 2739 

NT00_ciwc_l16, NT00_o3_l1, NT00_o3_l10, NT00_o3_l11, NT00_o3_l12, 2740 

NT00_o3_l13, NT00_o3_l14, NT00_o3_l15, NT00_o3_l16, NT00_o3_l17, NT00_o3_l2, 2741 

NT00_o3_l5, NT00_o3_l9, NT00_q_l1, NT00_q_l13, NT00_q_l14, NT00_q_l15, 2742 

NT00_q_l2, NT00_q_l3, NT00_q_l4, NT00_q_l5, NT00_q_l6, NT00_q_l7, NT00_r_l11, 2743 

NT00_r_l12, NT00_r_l13, NT00_r_l14, NT00_r_l15, NT00_r_l16, NT00_t_l11, 2744 

NT00_t_l14, NT00_t_l15, NT00_t_l16, NT00_t_l17, NT00_t_l18, NT00_t_l19, 2745 

NT00_t_l20, NT00_t_l21, NT00_t_l22, NT00_t_l27, NT00_t_l28, NT00_t_l29, 2746 

NT00_t_l30, NT00_t_l31, NT00_t_l32, NT00_t_l33, NT00_t_l34, NT00_t_l5, 2747 

NT00_t_l6, NT00_t_l7, NT00_t_l8, NT00_t_l9, NT00_u_l11, NT00_u_l12, 2748 

NT00_u_l13, NT00_u_l14, NT00_u_l15, NT00_u_l26, NT00_u_l27, NT00_u_l28, 2749 

NT00_u_l29, NT00_u_l30, NT00_u_l31, NT00_u_l32, NT00_u_l33, NT00_u_l34, 2750 

NT00_u_l35, NT00_u_l36, NT00_u_l37, NT00_z_l13, NT00_z_l14, NT00_z_l15, 2751 

NT00_z_l16, NT00_z_l17, NT00_z_l18, NT00_z_l19, NT18_r_l13] 2752 

Group2, -0.040873502972860964, [NT18_cc_l16, NT18_cc_l17, NT18_cc_l18, 2753 

NT18_cc_l19, NT18_cc_l20, NT18_cc_l21, NT18_cc_l22, NT18_cc_l23, NT18_cc_l27, 2754 

NT18_cc_l28, NT18_cc_l29, NT18_cc_l30, NT18_cc_l31, NT18_cc_l32, NT18_cc_l33, 2755 

NT18_cc_l34, NT18_ciwc_l18, NT18_ciwc_l19, NT18_ciwc_l20, NT18_ciwc_l21, 2756 

NT18_clwc_l21, NT18_clwc_l22, NT18_clwc_l24, NT18_clwc_l25, NT18_clwc_l26, 2757 
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NT18_clwc_l27, NT18_clwc_l28, NT18_clwc_l29, NT18_clwc_l30, NT18_clwc_l31, 2758 

NT18_q_l15, NT18_q_l16, NT18_q_l17, NT18_q_l18, NT18_q_l19, NT18_q_l20, 2759 

NT18_q_l21, NT18_q_l22, NT18_q_l23, NT18_q_l28, NT18_q_l29, NT18_q_l30, 2760 

NT18_q_l31, NT18_q_l32, NT18_q_l33, NT18_q_l34, NT18_r_l17, NT18_r_l18, 2761 

NT18_r_l19, NT18_r_l20, NT18_r_l21, NT18_r_l22, NT18_r_l23, NT18_r_l24, 2762 

NT18_r_l25, NT18_r_l26, NT18_r_l27, NT18_r_l28, NT18_r_l29, NT18_r_l30, 2763 

NT18_r_l31, NT18_r_l32, NT18_r_l33, NT18_r_l34, NT18_r_l35, NT18_r_l36, 2764 

NT12_cc_l16, NT12_cc_l17, NT12_cc_l18, NT12_cc_l19, NT12_cc_l20, NT12_cc_l21, 2765 

NT12_cc_l22, NT12_cc_l23, NT12_cc_l27, NT12_cc_l28, NT12_cc_l29, NT12_cc_l30, 2766 

NT12_cc_l31, NT12_cc_l32, NT12_cc_l33, NT12_ciwc_l17, NT12_ciwc_l18, 2767 

NT12_ciwc_l19, NT12_ciwc_l20, NT12_ciwc_l21, NT12_ciwc_l22, NT12_clwc_l19, 2768 

NT12_clwc_l20, NT12_clwc_l21, NT12_clwc_l22, NT12_clwc_l23, NT12_clwc_l24, 2769 

NT12_clwc_l25, NT12_clwc_l26, NT12_clwc_l27, NT12_clwc_l28, NT12_clwc_l29, 2770 

NT12_clwc_l30, NT12_clwc_l31, NT12_q_l16, NT12_q_l17, NT12_q_l18, 2771 

NT12_q_l19, NT12_q_l20, NT12_q_l21, NT12_q_l22, NT12_q_l23, NT12_q_l27, 2772 

NT12_q_l28, NT12_q_l29, NT12_q_l30, NT12_q_l31, NT12_q_l32, NT12_q_l33, 2773 

NT12_r_l17, NT12_r_l18, NT12_r_l19, NT12_r_l20, NT12_r_l22, NT12_r_l23, 2774 

NT12_r_l24, NT12_r_l25, NT12_r_l26, NT12_r_l27, NT12_r_l28, NT12_r_l29, 2775 

NT12_r_l30, NT12_r_l31, NT12_r_l32, NT12_r_l33, NT12_r_l34, NT12_r_l35, 2776 

NT12_r_l36, NT12_r_l37, NT06_cc_l16, NT06_cc_l17, NT06_cc_l18, NT06_cc_l19, 2777 

NT06_cc_l20, NT06_cc_l21, NT06_cc_l22, NT06_cc_l23, NT06_cc_l28, NT06_cc_l29, 2778 

NT06_cc_l30, NT06_cc_l31, NT06_cc_l32, NT06_cc_l33, NT06_ciwc_l18, 2779 

NT06_ciwc_l19, NT06_ciwc_l20, NT06_ciwc_l21, NT06_ciwc_l22, NT06_clwc_l20, 2780 

NT06_clwc_l21, NT06_clwc_l22, NT06_clwc_l23, NT06_clwc_l24, NT06_clwc_l25, 2781 

NT06_clwc_l26, NT06_clwc_l27, NT06_clwc_l28, NT06_clwc_l29, NT06_clwc_l30, 2782 

NT06_clwc_l31, NT06_q_l16, NT06_q_l17, NT06_q_l18, NT06_q_l19, NT06_q_l20, 2783 

NT06_q_l21, NT06_q_l22, NT06_q_l23, NT06_q_l24, NT06_q_l25, NT06_q_l26, 2784 

NT06_q_l27, NT06_q_l28, NT06_q_l29, NT06_q_l30, NT06_q_l31, NT06_q_l32, 2785 

NT06_r_l17, NT06_r_l18, NT06_r_l19, NT06_r_l20, NT06_r_l21, NT06_r_l22, 2786 

NT06_r_l23, NT06_r_l24, NT06_r_l25, NT06_r_l26, NT06_r_l27, NT06_r_l28, 2787 

NT06_r_l29, NT06_r_l30, NT06_r_l31, NT06_r_l32, NT06_r_l33, NT06_r_l34, 2788 

NT06_r_l35, NT06_r_l36, NT00_cc_l16, NT00_cc_l17, NT00_cc_l18, NT00_cc_l19, 2789 

NT00_cc_l20, NT00_cc_l21, NT00_cc_l22, NT00_cc_l31, NT00_cc_l32, 2790 

NT00_ciwc_l18, NT00_ciwc_l19, NT00_ciwc_l20, NT00_ciwc_l21, NT00_clwc_l21, 2791 

NT00_clwc_l22, NT00_clwc_l23, NT00_clwc_l24, NT00_clwc_l25, NT00_clwc_l26, 2792 

NT00_clwc_l27, NT00_clwc_l28, NT00_q_l17, NT00_q_l18, NT00_q_l19, 2793 

NT00_q_l20, NT00_q_l21, NT00_q_l22, NT00_q_l23, NT00_q_l24, NT00_q_l25, 2794 

NT00_q_l26, NT00_q_l27, NT00_r_l17, NT00_r_l18, NT00_r_l19, NT00_r_l20, 2795 

NT00_r_l21, NT00_r_l22, NT00_r_l23, NT00_r_l24, NT00_r_l25, NT00_r_l26, 2796 

NT00_r_l27, NT00_r_l28, NT00_r_l29, NT00_r_l30, NT00_r_l31, NT00_r_l32, 2797 

NT00_r_l33, NT00_r_l34, NT00_r_l35, NT12_r_l21] 2798 

Group3, 0.06259891129094408, [NT18_w_l1, NT18_w_l10, NT18_w_l11, 2799 

NT18_w_l12, NT18_w_l13, NT18_w_l14, NT18_w_l15, NT18_w_l16, NT18_w_l17, 2800 

NT18_w_l18, NT18_w_l19, NT18_w_l2, NT18_w_l20, NT18_w_l21, NT18_w_l22, 2801 
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NT18_w_l23, NT18_w_l24, NT18_w_l25, NT18_w_l26, NT18_w_l27, NT18_w_l28, 2802 

NT18_w_l29, NT18_w_l3, NT18_w_l30, NT18_w_l31, NT18_w_l32, NT18_w_l33, 2803 

NT18_w_l34, NT18_w_l35, NT18_w_l36, NT18_w_l37, NT18_w_l4, NT18_w_l5, 2804 

NT18_w_l6, NT18_w_l7, NT18_w_l8, NT18_w_l9, NT12_w_l1, NT12_w_l10, 2805 

NT12_w_l11, NT12_w_l12, NT12_w_l13, NT12_w_l14, NT12_w_l15, NT12_w_l16, 2806 

NT12_w_l17, NT12_w_l18, NT12_w_l19, NT12_w_l2, NT12_w_l20, NT12_w_l21, 2807 

NT12_w_l22, NT12_w_l23, NT12_w_l24, NT12_w_l25, NT12_w_l26, NT12_w_l27, 2808 

NT12_w_l28, NT12_w_l29, NT12_w_l3, NT12_w_l30, NT12_w_l31, NT12_w_l32, 2809 

NT12_w_l33, NT12_w_l34, NT12_w_l35, NT12_w_l36, NT12_w_l37, NT12_w_l4, 2810 

NT12_w_l5, NT12_w_l6, NT12_w_l7, NT12_w_l8, NT12_w_l9, NT06_w_l1, 2811 

NT06_w_l10, NT06_w_l11, NT06_w_l12, NT06_w_l13, NT06_w_l14, NT06_w_l15, 2812 

NT06_w_l16, NT06_w_l17, NT06_w_l18, NT06_w_l19, NT06_w_l2, NT06_w_l20, 2813 

NT06_w_l21, NT06_w_l22, NT06_w_l23, NT06_w_l24, NT06_w_l25, NT06_w_l26, 2814 

NT06_w_l27, NT06_w_l28, NT06_w_l29, NT06_w_l3, NT06_w_l30, NT06_w_l31, 2815 

NT06_w_l32, NT06_w_l33, NT06_w_l34, NT06_w_l35, NT06_w_l36, NT06_w_l37, 2816 

NT06_w_l4, NT06_w_l5, NT06_w_l6, NT06_w_l7, NT06_w_l8, NT06_w_l9, 2817 

NT00_w_l1, NT00_w_l10, NT00_w_l11, NT00_w_l12, NT00_w_l13, NT00_w_l14, 2818 

NT00_w_l15, NT00_w_l16, NT00_w_l17, NT00_w_l18, NT00_w_l19, NT00_w_l2, 2819 

NT00_w_l20, NT00_w_l21, NT00_w_l22, NT00_w_l23, NT00_w_l24, NT00_w_l25, 2820 

NT00_w_l26, NT00_w_l27, NT00_w_l28, NT00_w_l29, NT00_w_l3, NT00_w_l30, 2821 

NT00_w_l31, NT00_w_l32, NT00_w_l33, NT00_w_l34, NT00_w_l35, NT00_w_l36, 2822 

NT00_w_l37, NT00_w_l4, NT00_w_l5, NT00_w_l6, NT00_w_l8, NT00_w_l9, 2823 

NT00_w_l7] 2824 

Group4, 0.02269292645906973, [NT18_pv_l10, NT18_pv_l11, NT18_pv_l12, 2825 

NT18_pv_l13, NT18_pv_l14, NT18_pv_l15, NT18_pv_l16, NT18_pv_l17, 2826 

NT18_pv_l18, NT18_pv_l19, NT18_pv_l20, NT18_pv_l21, NT18_pv_l22, 2827 

NT18_pv_l23, NT18_pv_l24, NT18_pv_l25, NT18_pv_l26, NT18_pv_l27, 2828 

NT18_pv_l28, NT18_pv_l29, NT18_pv_l3, NT18_pv_l30, NT18_pv_l31, NT18_pv_l32, 2829 

NT18_pv_l33, NT18_pv_l34, NT18_pv_l35, NT18_pv_l36, NT18_pv_l37, NT18_pv_l4, 2830 

NT18_pv_l6, NT18_pv_l7, NT18_pv_l8, NT18_pv_l9, NT12_pv_l10, NT12_pv_l11, 2831 

NT12_pv_l12, NT12_pv_l13, NT12_pv_l14, NT12_pv_l15, NT12_pv_l16, 2832 

NT12_pv_l17, NT12_pv_l18, NT12_pv_l19, NT12_pv_l20, NT12_pv_l21, 2833 

NT12_pv_l22, NT12_pv_l23, NT12_pv_l24, NT12_pv_l25, NT12_pv_l26, 2834 

NT12_pv_l27, NT12_pv_l28, NT12_pv_l29, NT12_pv_l3, NT12_pv_l30, NT12_pv_l31, 2835 

NT12_pv_l32, NT12_pv_l33, NT12_pv_l34, NT12_pv_l35, NT12_pv_l36, 2836 

NT12_pv_l37, NT12_pv_l4, NT12_pv_l5, NT12_pv_l6, NT12_pv_l7, NT12_pv_l8, 2837 

NT12_pv_l9, NT06_pv_l10, NT06_pv_l11, NT06_pv_l12, NT06_pv_l13, NT06_pv_l14, 2838 

NT06_pv_l15, NT06_pv_l16, NT06_pv_l17, NT06_pv_l18, NT06_pv_l19, 2839 

NT06_pv_l20, NT06_pv_l21, NT06_pv_l22, NT06_pv_l23, NT06_pv_l24, 2840 

NT06_pv_l25, NT06_pv_l26, NT06_pv_l27, NT06_pv_l28, NT06_pv_l29, NT06_pv_l3, 2841 

NT06_pv_l30, NT06_pv_l31, NT06_pv_l32, NT06_pv_l33, NT06_pv_l34, 2842 

NT06_pv_l35, NT06_pv_l36, NT06_pv_l37, NT06_pv_l4, NT06_pv_l5, NT06_pv_l6, 2843 

NT06_pv_l7, NT06_pv_l8, NT06_pv_l9, NT00_pv_l10, NT00_pv_l11, NT00_pv_l12, 2844 

NT00_pv_l13, NT00_pv_l14, NT00_pv_l15, NT00_pv_l16, NT00_pv_l17, 2845 
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NT00_pv_l18, NT00_pv_l19, NT00_pv_l20, NT00_pv_l21, NT00_pv_l22, 2846 

NT00_pv_l23, NT00_pv_l24, NT00_pv_l25, NT00_pv_l26, NT00_pv_l27, 2847 

NT00_pv_l28, NT00_pv_l29, NT00_pv_l3, NT00_pv_l30, NT00_pv_l31, NT00_pv_l32, 2848 

NT00_pv_l33, NT00_pv_l34, NT00_pv_l35, NT00_pv_l36, NT00_pv_l37, NT00_pv_l4, 2849 

NT00_pv_l5, NT00_pv_l6, NT00_pv_l7, NT00_pv_l8, NT00_pv_l9, NT18_pv_l5] 2850 

Group5, -0.042245901124683405, [NT18_d_l1, NT18_d_l10, NT18_d_l11, 2851 

NT18_d_l12, NT18_d_l13, NT18_d_l14, NT18_d_l15, NT18_d_l16, NT18_d_l17, 2852 

NT18_d_l18, NT18_d_l19, NT18_d_l2, NT18_d_l20, NT18_d_l21, NT18_d_l22, 2853 

NT18_d_l23, NT18_d_l24, NT18_d_l25, NT18_d_l26, NT18_d_l28, NT18_d_l29, 2854 

NT18_d_l3, NT18_d_l30, NT18_d_l31, NT18_d_l4, NT18_d_l5, NT18_d_l6, 2855 

NT18_d_l7, NT18_d_l8, NT18_d_l9, NT12_d_l1, NT12_d_l10, NT12_d_l11, 2856 

NT12_d_l12, NT12_d_l13, NT12_d_l14, NT12_d_l15, NT12_d_l16, NT12_d_l17, 2857 

NT12_d_l18, NT12_d_l19, NT12_d_l2, NT12_d_l20, NT12_d_l21, NT12_d_l22, 2858 

NT12_d_l23, NT12_d_l24, NT12_d_l25, NT12_d_l26, NT12_d_l27, NT12_d_l28, 2859 

NT12_d_l29, NT12_d_l3, NT12_d_l30, NT12_d_l31, NT12_d_l32, NT12_d_l4, 2860 

NT12_d_l5, NT12_d_l6, NT12_d_l7, NT12_d_l8, NT12_d_l9, NT06_d_l1, 2861 

NT06_d_l10, NT06_d_l11, NT06_d_l12, NT06_d_l13, NT06_d_l14, NT06_d_l15, 2862 

NT06_d_l16, NT06_d_l17, NT06_d_l18, NT06_d_l19, NT06_d_l2, NT06_d_l20, 2863 

NT06_d_l21, NT06_d_l22, NT06_d_l23, NT06_d_l24, NT06_d_l25, NT06_d_l26, 2864 

NT06_d_l27, NT06_d_l28, NT06_d_l29, NT06_d_l3, NT06_d_l30, NT06_d_l31, 2865 

NT06_d_l32, NT06_d_l4, NT06_d_l5, NT06_d_l6, NT06_d_l7, NT06_d_l8, 2866 

NT06_d_l9, NT00_d_l1, NT00_d_l10, NT00_d_l11, NT00_d_l12, NT00_d_l13, 2867 

NT00_d_l14, NT00_d_l15, NT00_d_l16, NT00_d_l17, NT00_d_l18, NT00_d_l19, 2868 

NT00_d_l2, NT00_d_l20, NT00_d_l21, NT00_d_l22, NT00_d_l23, NT00_d_l24, 2869 

NT00_d_l25, NT00_d_l26, NT00_d_l27, NT00_d_l28, NT00_d_l29, NT00_d_l3, 2870 

NT00_d_l30, NT00_d_l31, NT00_d_l32, NT00_d_l4, NT00_d_l5, NT00_d_l6, 2871 

NT00_d_l7, NT00_d_l8, NT00_d_l9, NT18_d_l27] 2872 

Group6, -0.02193022436520109, [NT18_vo_l1, NT18_vo_l10, NT18_vo_l2, 2873 

NT18_vo_l20, NT18_vo_l21, NT18_vo_l22, NT18_vo_l23, NT18_vo_l24, 2874 

NT18_vo_l25, NT18_vo_l26, NT18_vo_l27, NT18_vo_l28, NT18_vo_l29, NT18_vo_l3, 2875 

NT18_vo_l30, NT18_vo_l31, NT18_vo_l32, NT18_vo_l33, NT18_vo_l34, 2876 

NT18_vo_l35, NT18_vo_l36, NT18_vo_l37, NT18_vo_l4, NT18_vo_l5, NT18_vo_l6, 2877 

NT18_vo_l7, NT18_vo_l8, NT18_vo_l9, NT12_vo_l1, NT12_vo_l10, NT12_vo_l2, 2878 

NT12_vo_l21, NT12_vo_l22, NT12_vo_l23, NT12_vo_l24, NT12_vo_l25, 2879 

NT12_vo_l26, NT12_vo_l27, NT12_vo_l28, NT12_vo_l29, NT12_vo_l3, NT12_vo_l30, 2880 

NT12_vo_l31, NT12_vo_l32, NT12_vo_l33, NT12_vo_l34, NT12_vo_l35, 2881 

NT12_vo_l36, NT12_vo_l37, NT12_vo_l4, NT12_vo_l5, NT12_vo_l6, NT12_vo_l7, 2882 

NT12_vo_l8, NT12_vo_l9, NT06_vo_l1, NT06_vo_l10, NT06_vo_l2, NT06_vo_l21, 2883 

NT06_vo_l22, NT06_vo_l23, NT06_vo_l24, NT06_vo_l25, NT06_vo_l26, 2884 

NT06_vo_l27, NT06_vo_l28, NT06_vo_l29, NT06_vo_l3, NT06_vo_l30, NT06_vo_l31, 2885 

NT06_vo_l32, NT06_vo_l33, NT06_vo_l34, NT06_vo_l35, NT06_vo_l36, 2886 

NT06_vo_l37, NT06_vo_l4, NT06_vo_l5, NT06_vo_l6, NT06_vo_l7, NT06_vo_l9, 2887 

NT00_vo_l1, NT00_vo_l10, NT00_vo_l2, NT00_vo_l21, NT00_vo_l22, NT00_vo_l23, 2888 

NT00_vo_l24, NT00_vo_l25, NT00_vo_l26, NT00_vo_l27, NT00_vo_l28, 2889 
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NT00_vo_l29, NT00_vo_l3, NT00_vo_l30, NT00_vo_l31, NT00_vo_l32, NT00_vo_l33, 2890 

NT00_vo_l34, NT00_vo_l35, NT00_vo_l36, NT00_vo_l37, NT00_vo_l4, NT00_vo_l5, 2891 

NT00_vo_l6, NT00_vo_l7, NT00_vo_l8, NT00_vo_l9, NT06_vo_l8] 2892 

Group7, -0.053063711383979584, [NT18_clwc_l32, NT18_clwc_l33, NT18_q_l35, 2893 

NT18_q_l36, NT18_r_l37, NT18_t_l1, NT18_t_l12, NT18_t_l13, NT18_t_l2, 2894 

NT18_t_l23, NT18_t_l24, NT18_t_l25, NT18_t_l26, NT18_t_l27, NT18_t_l28, 2895 

NT18_t_l29, NT18_t_l3, NT18_t_l30, NT18_t_l31, NT18_t_l32, NT18_t_l33, 2896 

NT18_t_l34, NT18_t_l35, NT18_t_l36, NT18_t_l37, NT18_t_l4, NT12_clwc_l32, 2897 

NT12_clwc_l33, NT12_q_l15, NT12_q_l35, NT12_q_l36, NT12_t_l1, NT12_t_l13, 2898 

NT12_t_l2, NT12_t_l23, NT12_t_l24, NT12_t_l25, NT12_t_l26, NT12_t_l27, 2899 

NT12_t_l28, NT12_t_l29, NT12_t_l3, NT12_t_l30, NT12_t_l31, NT12_t_l32, 2900 

NT12_t_l33, NT12_t_l34, NT12_t_l35, NT12_t_l36, NT12_t_l37, NT12_t_l4, 2901 

NT06_clwc_l32, NT06_clwc_l33, NT06_r_l37, NT06_t_l1, NT06_t_l13, NT06_t_l2, 2902 

NT06_t_l23, NT06_t_l24, NT06_t_l25, NT06_t_l26, NT06_t_l27, NT06_t_l3, 2903 

NT06_t_l33, NT06_t_l34, NT06_t_l35, NT06_t_l36, NT06_t_l37, NT06_t_l4, 2904 

NT00_clwc_l32, NT00_clwc_l33, NT00_q_l16, NT00_r_l36, NT00_r_l37, NT00_t_l1, 2905 

NT00_t_l13, NT00_t_l2, NT00_t_l23, NT00_t_l24, NT00_t_l26, NT00_t_l3, 2906 

NT00_t_l35, NT00_t_l36, NT00_t_l37, NT00_t_l4, NT00_t_l25] 2907 

Group8, 0.0, [NT18_clwc_l1, NT18_clwc_l10, NT18_clwc_l11, NT18_clwc_l12, 2908 

NT18_clwc_l13, NT18_clwc_l14, NT18_clwc_l15, NT18_clwc_l16, NT18_clwc_l17, 2909 

NT18_clwc_l2, NT18_clwc_l3, NT18_clwc_l4, NT18_clwc_l5, NT18_clwc_l6, 2910 

NT18_clwc_l7, NT18_clwc_l8, NT18_clwc_l9, NT12_clwc_l1, NT12_clwc_l10, 2911 

NT12_clwc_l11, NT12_clwc_l12, NT12_clwc_l13, NT12_clwc_l14, NT12_clwc_l15, 2912 

NT12_clwc_l16, NT12_clwc_l17, NT12_clwc_l2, NT12_clwc_l3, NT12_clwc_l4, 2913 

NT12_clwc_l5, NT12_clwc_l6, NT12_clwc_l7, NT12_clwc_l8, NT12_clwc_l9, 2914 

NT06_clwc_l1, NT06_clwc_l10, NT06_clwc_l11, NT06_clwc_l12, NT06_clwc_l13, 2915 

NT06_clwc_l14, NT06_clwc_l15, NT06_clwc_l16, NT06_clwc_l17, NT06_clwc_l2, 2916 

NT06_clwc_l3, NT06_clwc_l4, NT06_clwc_l5, NT06_clwc_l6, NT06_clwc_l7, 2917 

NT06_clwc_l8, NT06_clwc_l9, NT00_clwc_l1, NT00_clwc_l10, NT00_clwc_l11, 2918 

NT00_clwc_l12, NT00_clwc_l13, NT00_clwc_l14, NT00_clwc_l15, NT00_clwc_l16, 2919 

NT00_clwc_l17, NT00_clwc_l3, NT00_clwc_l4, NT00_clwc_l5, NT00_clwc_l6, 2920 

NT00_clwc_l7, NT00_clwc_l8, NT00_clwc_l9, NT00_clwc_l2] 2921 

Group9, -0.026883331336958416, [NT18_ciwc_l24, NT18_o3_l12, NT18_o3_l13, 2922 

NT18_o3_l5, NT18_r_l10, NT18_t_l11, NT18_z_l11, NT18_z_l12, NT18_z_l13, 2923 

NT18_z_l14, NT18_z_l15, NT18_z_l16, NT18_z_l18, NT18_z_l19, NT18_z_l20, 2924 

NT18_z_l21, NT18_z_l22, NT18_z_l23, NT18_z_l24, NT18_z_l25, NT12_o3_l12, 2925 

NT12_o3_l13, NT12_r_l10, NT12_z_l11, NT12_z_l12, NT12_z_l13, NT12_z_l14, 2926 

NT12_z_l19, NT12_z_l20, NT12_z_l21, NT12_z_l22, NT12_z_l23, NT12_z_l24, 2927 

NT12_z_l25, NT06_r_l10, NT06_u_l24, NT06_z_l10, NT06_z_l11, NT06_z_l12, 2928 

NT06_z_l13, NT06_z_l20, NT06_z_l21, NT06_z_l22, NT06_z_l23, NT06_z_l24, 2929 

NT06_z_l25, NT00_r_l10, NT00_u_l24, NT00_u_l25, NT00_z_l10, NT00_z_l11, 2930 

NT00_z_l12, NT00_z_l20, NT00_z_l21, NT00_z_l22, NT00_z_l23, NT00_z_l24, 2931 

NT00_z_l25, NT18_z_l17] 2932 
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Group10, 0.006458219563131418, [NT18_o3_l25, NT18_o3_l26, NT18_o3_l27, 2933 

NT18_o3_l28, NT18_o3_l29, NT18_o3_l30, NT18_o3_l31, NT18_o3_l32, 2934 

NT18_o3_l33, NT18_o3_l34, NT18_o3_l35, NT12_o3_l24, NT12_o3_l25, 2935 

NT12_o3_l26, NT12_o3_l27, NT12_o3_l28, NT12_o3_l29, NT12_o3_l30, 2936 

NT12_o3_l31, NT12_o3_l32, NT12_o3_l33, NT12_o3_l34, NT12_o3_l35, NT12_z_l37, 2937 

NT06_o3_l24, NT06_o3_l25, NT06_o3_l26, NT06_o3_l27, NT06_o3_l28, 2938 

NT06_o3_l29, NT06_o3_l30, NT06_o3_l31, NT06_o3_l33, NT06_o3_l34, 2939 

NT06_o3_l35, NT06_z_l37, NT00_o3_l24, NT00_o3_l25, NT00_o3_l26, NT00_o3_l27, 2940 

NT00_o3_l28, NT00_o3_l29, NT00_o3_l30, NT00_o3_l31, NT00_o3_l32, 2941 

NT00_o3_l33, NT00_o3_l34, NT00_o3_l35, NT06_o3_l32] 2942 

Group11, -0.04429699024103351, [NT18_v_l27, NT18_v_l28, NT18_v_l29, 2943 

NT18_v_l30, NT18_v_l31, NT18_v_l32, NT18_v_l33, NT18_v_l34, NT18_v_l35, 2944 

NT18_v_l36, NT18_v_l37, NT12_v_l27, NT12_v_l28, NT12_v_l29, NT12_v_l30, 2945 

NT12_v_l31, NT12_v_l32, NT12_v_l33, NT12_v_l34, NT12_v_l35, NT12_v_l36, 2946 

NT12_v_l37, NT06_v_l27, NT06_v_l28, NT06_v_l29, NT06_v_l30, NT06_v_l32, 2947 

NT06_v_l33, NT06_v_l34, NT06_v_l35, NT06_v_l36, NT06_v_l37, NT00_v_l27, 2948 

NT00_v_l28, NT00_v_l29, NT00_v_l30, NT00_v_l31, NT00_v_l32, NT00_v_l33, 2949 

NT00_v_l34, NT00_v_l35, NT00_v_l36, NT00_v_l37, NT06_v_l31] 2950 

Group12, 0.016470284903957744, [NT18_vo_l11, NT18_vo_l12, NT18_vo_l13, 2951 

NT18_vo_l14, NT18_vo_l15, NT18_vo_l16, NT18_vo_l17, NT18_vo_l18, 2952 

NT18_vo_l19, NT12_vo_l11, NT12_vo_l12, NT12_vo_l13, NT12_vo_l14, 2953 

NT12_vo_l15, NT12_vo_l16, NT12_vo_l17, NT12_vo_l18, NT12_vo_l19, 2954 

NT12_vo_l20, NT06_vo_l12, NT06_vo_l13, NT06_vo_l14, NT06_vo_l15, 2955 

NT06_vo_l16, NT06_vo_l17, NT06_vo_l18, NT06_vo_l19, NT06_vo_l20, 2956 

NT00_vo_l11, NT00_vo_l12, NT00_vo_l13, NT00_vo_l14, NT00_vo_l15, 2957 

NT00_vo_l16, NT00_vo_l17, NT00_vo_l18, NT00_vo_l19, NT00_vo_l20, 2958 

NT06_vo_l11] 2959 

Group13, 0.023626937292063666, [NT18_cc_l25, NT18_cc_l26, NT12_cc_l24, 2960 

NT12_cc_l25, NT12_cc_l26, NT12_cc_l34, NT12_cc_l35, NT12_cc_l36, NT12_cc_l37, 2961 

NT06_cc_l24, NT06_cc_l25, NT06_cc_l26, NT06_cc_l34, NT06_cc_l35, NT06_cc_l36, 2962 

NT06_cc_l37, NT06_clwc_l34, NT06_clwc_l35, NT06_clwc_l36, NT06_clwc_l37, 2963 

NT00_cc_l23, NT00_cc_l24, NT00_cc_l25, NT00_cc_l26, NT00_cc_l27, NT00_cc_l28, 2964 

NT00_cc_l29, NT00_cc_l30, NT00_cc_l33, NT00_cc_l34, NT00_cc_l35, NT00_cc_l36, 2965 

NT00_cc_l37, NT06_cc_l27] 2966 

Group14, -0.07471531491655992, [NT18_v_l10, NT18_v_l2, NT18_v_l3, NT18_v_l4, 2967 

NT18_v_l5, NT18_v_l6, NT18_v_l7, NT18_v_l8, NT18_v_l9, NT12_v_l10, 2968 

NT12_v_l3, NT12_v_l4, NT12_v_l5, NT12_v_l6, NT12_v_l7, NT12_v_l8, NT12_v_l9, 2969 

NT06_v_l10, NT06_v_l3, NT06_v_l4, NT06_v_l5, NT06_v_l6, NT06_v_l7, 2970 

NT06_v_l8, NT06_v_l9, NT00_v_l10, NT00_v_l2, NT00_v_l3, NT00_v_l4, 2971 

NT00_v_l5, NT00_v_l7, NT00_v_l8, NT00_v_l9, NT00_v_l6] 2972 

Group15, 0.0, [NT18_ciwc_l1, NT18_ciwc_l2, NT18_ciwc_l3, NT18_ciwc_l4, 2973 

NT18_ciwc_l5, NT18_ciwc_l6, NT18_ciwc_l7, NT18_ciwc_l8, NT18_ciwc_l9, 2974 

NT12_ciwc_l1, NT12_ciwc_l2, NT12_ciwc_l3, NT12_ciwc_l4, NT12_ciwc_l5, 2975 

NT12_ciwc_l7, NT12_ciwc_l8, NT06_ciwc_l1, NT06_ciwc_l2, NT06_ciwc_l3, 2976 
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NT06_ciwc_l4, NT06_ciwc_l5, NT06_ciwc_l6, NT06_ciwc_l7, NT06_ciwc_l8, 2977 

NT00_ciwc_l1, NT00_ciwc_l2, NT00_ciwc_l3, NT00_ciwc_l4, NT00_ciwc_l5, 2978 

NT00_ciwc_l6, NT00_ciwc_l7, NT00_ciwc_l8, NT12_ciwc_l6] 2979 

Group16, 0.025737968406863487, [NT18_r_l1, NT18_r_l2, NT18_r_l3, NT18_r_l4, 2980 

NT18_r_l5, NT18_r_l6, NT18_r_l7, NT18_r_l8, NT12_r_l1, NT12_r_l2, NT12_r_l3, 2981 

NT12_r_l4, NT12_r_l5, NT12_r_l6, NT12_r_l7, NT12_r_l8, NT06_r_l1, NT06_r_l2, 2982 

NT06_r_l3, NT06_r_l4, NT06_r_l5, NT06_r_l6, NT06_r_l7, NT06_r_l8, NT00_r_l1, 2983 

NT00_r_l2, NT00_r_l3, NT00_r_l4, NT00_r_l6, NT00_r_l7, NT00_r_l8, NT00_r_l5] 2984 

Group17, 0.0032523694495293354, [NT18_z_l26, NT18_z_l27, NT18_z_l28, 2985 

NT18_z_l29, NT18_z_l30, NT18_z_l31, NT18_z_l32, NT18_z_l33, NT12_z_l26, 2986 

NT12_z_l27, NT12_z_l28, NT12_z_l29, NT12_z_l30, NT12_z_l31, NT12_z_l32, 2987 

NT12_z_l33, NT06_z_l26, NT06_z_l27, NT06_z_l28, NT06_z_l29, NT06_z_l30, 2988 

NT06_z_l31, NT06_z_l32, NT00_z_l27, NT00_z_l28, NT00_z_l29, NT00_z_l30, 2989 

NT00_z_l31, NT00_z_l32, NT00_z_l26] 2990 

Group18, -0.012730578721368735, [NT18_v_l11, NT18_v_l12, NT18_v_l13, 2991 

NT18_v_l14, NT18_v_l15, NT18_v_l16, NT18_v_l17, NT12_v_l11, NT12_v_l12, 2992 

NT12_v_l13, NT12_v_l15, NT12_v_l16, NT12_v_l17, NT06_v_l11, NT06_v_l12, 2993 

NT06_v_l13, NT06_v_l14, NT06_v_l15, NT06_v_l16, NT00_v_l12, NT00_v_l13, 2994 

NT00_v_l14, NT00_v_l15, NT00_v_l16, NT12_v_l14] 2995 

Group19, -0.0462370812127475, [NT18_v_l21, NT18_v_l22, NT18_v_l23, 2996 

NT18_v_l24, NT18_v_l25, NT18_v_l26, NT12_v_l21, NT12_v_l22, NT12_v_l23, 2997 

NT12_v_l24, NT12_v_l26, NT06_v_l21, NT06_v_l22, NT06_v_l23, NT06_v_l24, 2998 

NT06_v_l25, NT06_v_l26, NT00_v_l21, NT00_v_l22, NT00_v_l23, NT00_v_l24, 2999 

NT00_v_l25, NT00_v_l26, NT12_v_l25] 3000 

Group20, -0.03416642562085348, [NT18_u_l20, NT18_u_l21, NT18_u_l22, 3001 

NT18_u_l23, NT18_u_l24, NT18_u_l9, NT12_u_l20, NT12_u_l21, NT12_u_l22, 3002 

NT12_u_l23, NT12_u_l24, NT12_u_l9, NT06_u_l20, NT06_u_l21, NT06_u_l22, 3003 

NT06_u_l23, NT06_u_l9, NT00_u_l20, NT00_u_l21, NT00_u_l22, NT00_u_l9, 3004 

NT00_u_l23] 3005 

Group21, -0.015980995488767524, [NT18_o3_l4, NT18_z_l10, NT18_z_l8, NT18_z_l9, 3006 

NT12_o3_l4, NT12_z_l8, NT12_z_l9, NT06_o3_l4, NT06_z_l7, NT06_z_l8, 3007 

NT06_z_l9, NT00_o3_l4, NT00_z_l5, NT00_z_l6, NT00_z_l7, NT00_z_l8, NT00_z_l9, 3008 

NT12_z_l10] 3009 

Group22, -0.022620312860484826, [NT18_z_l3, NT18_z_l4, NT18_z_l5, NT18_z_l6, 3010 

NT18_z_l7, NT12_z_l3, NT12_z_l4, NT12_z_l5, NT12_z_l6, NT12_z_l7, NT06_z_l3, 3011 

NT06_z_l4, NT06_z_l5, NT06_z_l6, NT00_z_l2, NT00_z_l3, NT00_z_l4] 3012 

Group23, -0.009525048312305717, [NT18_ciwc_l11, NT18_ciwc_l17, NT12_ciwc_l11, 3013 

NT12_q_l34, NT06_ciwc_l11, NT06_q_l34, NT06_q_l35, NT00_ciwc_l17, 3014 

NT00_clwc_l29, NT00_clwc_l30, NT00_clwc_l31, NT00_q_l34, NT00_q_l35, 3015 

NT06_ciwc_l17] 3016 

Group24, 0.016470284903957744, [NT18_o3_l37, NT12_o3_l37, NT06_o3_l37, 3017 

NT06_q_l36, NT00_o3_l37, NT00_q_l28, NT00_q_l29, NT00_q_l30, NT00_q_l31, 3018 

NT00_q_l32, NT00_q_l33, NT00_q_l36, NT06_q_l33] 3019 
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Group25, 0.003052627038463651, [NT06_ciwc_l25, NT06_ciwc_l26, NT06_ciwc_l27, 3020 

NT06_ciwc_l29, NT06_ciwc_l30, NT06_ciwc_l31, NT06_ciwc_l32, NT06_ciwc_l33, 3021 

NT06_ciwc_l34, NT06_ciwc_l35, NT06_ciwc_l36, NT06_ciwc_l37, NT06_ciwc_l28] 3022 

Group26, 0.025737968406863487, [NT18_ciwc_l25, NT18_ciwc_l26, NT18_ciwc_l27, 3023 

NT18_ciwc_l29, NT18_ciwc_l30, NT18_ciwc_l31, NT18_ciwc_l32, NT18_ciwc_l33, 3024 

NT18_ciwc_l34, NT18_ciwc_l35, NT18_ciwc_l36, NT18_ciwc_l37, NT18_ciwc_l28] 3025 

Group27, 0.031109314730230153, [NT18_o3_l18, NT18_o3_l19, NT18_o3_l20, 3026 

NT12_o3_l18, NT12_o3_l19, NT12_o3_l20, NT06_o3_l18, NT06_o3_l19, 3027 

NT06_o3_l20, NT00_o3_l19, NT00_o3_l20, NT00_o3_l18] 3028 

Group28, 0.0032523694495293354, [NT18_u_l4, NT18_u_l5, NT18_u_l6, NT12_u_l4, 3029 

NT12_u_l5, NT12_u_l6, NT06_u_l4, NT06_u_l6, NT00_u_l4, NT00_u_l5, NT00_u_l6, 3030 

NT06_u_l5] 3031 

Group29, 0.0712300559164073, [NT18_u_l1, NT18_u_l18, NT12_u_l1, NT12_u_l17, 3032 

NT12_u_l18, NT06_u_l1, NT06_u_l17, NT00_t_l10, NT00_u_l16, NT00_u_l17, 3033 

NT18_u_l17] 3034 

Group30, 0.04046369350173762, [NT18_u_l10, NT18_u_l7, NT12_u_l10, NT12_u_l7, 3035 

NT12_u_l8, NT06_u_l10, NT06_u_l7, NT06_u_l8, NT00_u_l7, NT00_u_l8, 3036 

NT18_u_l8] 3037 

Group31, 0.026777194098555834, [NT12_ciwc_l25, NT12_ciwc_l26, NT12_ciwc_l27, 3038 

NT12_ciwc_l28, NT12_ciwc_l29, NT12_ciwc_l30, NT12_ciwc_l31, NT06_ciwc_l24, 3039 

NT12_ciwc_l24] 3040 

Group32, -0.0032999087322507226, [NT18_d_l33, NT18_d_l34, NT18_d_l35, 3041 

NT18_d_l36, NT18_d_l37, NT12_d_l33, NT12_d_l34, NT00_d_l33, NT18_d_l32] 3042 

Group33, -0.03088094284403675, [NT18_u_l3, NT12_u_l2, NT12_u_l3, NT06_u_l2, 3043 

NT06_u_l3, NT00_u_l1, NT00_u_l2, NT00_u_l3, NT18_u_l2] 3044 

Group34, -0.015980995488767524, [NT12_d_l35, NT06_d_l34, NT06_d_l35, 3045 

NT06_d_l36, NT06_d_l37, NT00_d_l34, NT00_d_l35, NT06_d_l33] 3046 

Group35, 0.016470284903957744, [NT18_v_l19, NT18_v_l20, NT12_v_l19, 3047 

NT06_v_l19, NT06_v_l20, NT00_v_l19, NT00_v_l20, NT12_v_l20] 3048 

Group36, -0.015980995488767524, [NT18_o3_l7, NT12_o3_l7, NT12_o3_l8, 3049 

NT06_o3_l7, NT06_o3_l8, NT00_o3_l7, NT00_o3_l8, NT18_o3_l8] 3050 

Group37, -0.009776487332806783, [NT18_o3_l22, NT12_o3_l21, NT12_o3_l22, 3051 

NT06_o3_l21, NT06_o3_l22, NT00_o3_l21, NT00_o3_l22, NT18_o3_l21] 3052 

Group38, 0.012734297741761935, [NT00_ciwc_l30, NT00_ciwc_l31, NT00_ciwc_l33, 3053 

NT00_ciwc_l34, NT00_ciwc_l35, NT00_ciwc_l36, NT00_ciwc_l37, NT00_ciwc_l32] 3054 

Group39, -0.01927724806311193, [NT18_cc_l35, NT18_cc_l36, NT18_cc_l37, 3055 

NT18_clwc_l23, NT18_clwc_l36, NT18_clwc_l37, NT18_cc_l24] 3056 

Group40, 0.029881404183944138, [NT18_q_l24, NT18_q_l25, NT18_q_l26, 3057 

NT18_q_l27, NT12_q_l24, NT12_q_l25, NT12_q_l26] 3058 

Group41, 0.02269292645906973, [NT18_q_l7, NT18_q_l8, NT12_q_l7, NT12_q_l8, 3059 

NT06_q_l8, NT00_q_l8, NT06_q_l7] 3060 

Group42, -0.0032999087322507226, [NT00_ciwc_l23, NT00_ciwc_l25, 3061 

NT00_ciwc_l26, NT00_ciwc_l27, NT00_ciwc_l28, NT00_ciwc_l29, NT00_ciwc_l24] 3062 
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Group43, -0.022620312860484826, [NT18_q_l12, NT18_q_l13, NT12_q_l12, 3063 

NT06_q_l12, NT00_q_l12, NT18_q_l14] 3064 

Group44, 0.010064393684136919, [NT12_u_l19, NT06_u_l18, NT06_u_l19, 3065 

NT00_u_l10, NT00_u_l19, NT18_u_l19] 3066 

Group45, -0.025199275642583396, [NT12_ciwc_l32, NT12_ciwc_l33, NT12_ciwc_l34, 3067 

NT12_ciwc_l36, NT12_ciwc_l37, NT12_ciwc_l35] 3068 

Group46, 0.04046369350173762, [NT12_z_l36, NT06_z_l35, NT00_z_l35, 3069 

NT00_z_l36, NT00_z_l37, NT06_z_l36] 3070 

Group47, 0.03294056980791549, [NT18_clwc_l19, NT18_clwc_l20, NT00_clwc_l19, 3071 

NT00_clwc_l20, NT06_clwc_l19] 3072 

Group48, 0.04348999451297464, [NT18_o3_l23, NT12_o3_l23, NT06_o3_l23, 3073 

NT00_o3_l23, NT18_o3_l24] 3074 

Group49, 0.08554519157484475, [NT12_v_l18, NT06_v_l18, NT00_v_l17, 3075 

NT00_v_l18, NT06_v_l17] 3076 

Group50, 0.026777194098555834, [NT12_cc_l10, NT12_ciwc_l10, NT06_ciwc_l10, 3077 

NT00_cc_l10, NT06_cc_l10] 3078 

Group51, 0.013290747725846708, [NT18_clwc_l34, NT12_clwc_l35, NT12_clwc_l36, 3079 

NT12_clwc_l34] 3080 

Group52, -0.019890565190348153, [NT12_z_l34, NT06_z_l34, NT00_z_l33, 3081 

NT06_z_l33] 3082 

Group53, 0.02269292645906973, [NT18_o3_l3, NT06_o3_l3, NT00_o3_l3, 3083 

NT12_o3_l3] 3084 

Group54, 0.010064393684136919, [NT18_o3_l36, NT12_o3_l36, NT00_o3_l36, 3085 

NT06_o3_l36] 3086 

Group55, 0.01718412356692567, [NT12_pv_l2, NT06_pv_l2, NT00_pv_l2, 3087 

NT18_pv_l2] 3088 

Group56, 0.026777194098555834, [NT18_q_l11, NT12_q_l11, NT00_q_l11, 3089 

NT06_q_l11] 3090 

Group57, 0.0032523694495293354, [NT18_r_l9, NT12_r_l9, NT00_r_l9, NT06_r_l9] 3091 

Group58, -0.02851378448120112, [NT12_q_l9, NT06_q_l9, NT00_q_l9, NT18_q_l9] 3092 

Group59, -0.03528302096554892, [NT18_q_l10, NT06_q_l10, NT00_q_l10, 3093 

NT12_q_l10] 3094 

Group60, -0.051288793867985794, [NT00_clwc_l35, NT00_clwc_l36, NT00_clwc_l34] 3095 

Group61, -0.01927724806311193, [NT18_z_l2, NT06_z_l2, NT12_z_l2] 3096 

Group62, 0.025737968406863487, [NT12_o3_l6, NT00_o3_l6, NT06_o3_l6] 3097 

Group63, 0.03892763335500793, [NT12_pv_l1, NT00_pv_l1, NT06_pv_l1] 3098 

Group64, 0.006458219563131418, [NT18_clwc_l18, NT06_clwc_l18, NT12_clwc_l18] 3099 

Group65, 0.05435473046696537, [NT00_q_l37, NT06_q_l37] 3100 

Group66, 0.026777194098555834, [NT12_d_l37, NT12_d_l36] 3101 

Group67, -0.013099278001989068, [NT00_d_l37, NT00_d_l36] 3102 

Group68, 0.00961854131774742, [NT18_z_l35, NT18_z_l34] 3103 

Group69, 0.02269292645906973, [NT18_z_l36, NT18_z_l37] 3104 

Group70, 0.006149179017971962, [NT06_t_l12, NT12_t_l12] 3105 

Group71, -0.009776487332806783, [NT18_ciwc_l10, NT18_cc_l10] 3106 
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Group72, -0.03187470567985029, [NT00_cc_l9, NT00_ciwc_l9] 3107 

Group73, 0.03739216600762729, [NT06_cc_l9, NT06_ciwc_l9] 3108 

Group74, -0.013099278001989068, [NT12_cc_l9, NT12_ciwc_l9] 3109 

Group75, -0.022620312860484826, [NT00_ciwc_l22] 3110 

Group76, 0.01960401690104774, [NT18_clwc_l35] 3111 

Group77, 0.006458219563131418, [NT18_ciwc_l22] 3112 

Group78, 0.00961854131774742, [NT12_clwc_l37] 3113 

Group79, -0.06863045489336894, [NT00_clwc_l37] 3114 

Group80, 0.05516234025094624, [NT00_v_l11] 3115 

Group81, 0.04046369350173762, [NT00_u_l18] 3116 

Group82, 0.031109314730230153, [NT18_v_l18] 3117 

Group83, -0.016470284903957633, [NT00_z_l34] 3118 

Group84, 0.03294056980791549, [NT12_z_l35] 3119 

Group85, 0.034274390568905466, [NT12_v_l2] 3120 

Group86, -0.013099278001989068, [NT06_v_l2] 3121 

Group87, -0.03528302096554892, [NT00_clwc_l18] 3122 

Group88, 0.07965337355823643, [NT18_pv_l1] 3123 

Group89, 0.03294056980791549, [NT00_t_l12] 3124 

Group90, 0.026777194098555834, [NT00_ciwc_l10] 3125 

Group91, 0.02269292645906973, [NT06_ciwc_l23] 3126 

Group92, -0.0065008857713687584, [NT06_v_l1] 3127 

Group93, -0.05485916703871707, [NT18_z_l1] 3128 

Group94, -0.047768415870933056, [NT18_v_l1] 3129 

Group95, -0.047768415870933056, [NT18_ciwc_l23] 3130 

Group96, 0.016470284903957744, [NT12_ciwc_l23] 3131 

Group97, 0.0, [NT18_o3_l6] 3132 

Group98, -0.042245901124683405, [NT00_v_l1] 3133 

Group99, -0.053063711383979584, [NT12_v_l1] 3134 

Group100, 0.01960401690104774, [NT12_z_l1] 3135 

Group101, -0.03187470567985029, [NT00_z_l1] 3136 

Group102, 0.03294056980791549, [NT06_z_l1] 3137 

Group103, 0.0, [NT18_cc_l2] 3138 

Group104, 0.0, [NT06_cc_l1] 3139 

Group105, 0.0, [NT12_cc_l7] 3140 

Group106, 0.0, [NT06_cc_l8] 3141 

Group107, 0.0, [NT00_cc_l6] 3142 

Group108, 0.0, [NT18_cc_l8] 3143 

Group109, 0.0, [NT00_cc_l3] 3144 

Group110, 0.0, [NT00_cc_l4] 3145 

Group111, 0.0, [NT12_cc_l1] 3146 

Group112, 0.0, [NT12_cc_l5] 3147 

Group113, 0.0, [NT12_cc_l8] 3148 

Group114, 0.0, [NT12_cc_l2] 3149 

Group115, 0.0, [NT18_cc_l4] 3150 
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Group116, 0.0, [NT00_cc_l1] 3151 

Group117, 0.0, [NT00_cc_l7] 3152 

Group118, 0.0, [NT18_cc_l5] 3153 

Group119, 0.0, [NT00_cc_l8] 3154 

Group120, 0.0, [NT06_cc_l4] 3155 

Group121, 0.0, [NT06_cc_l3] 3156 

Group122, 0.0, [NT00_cc_l5] 3157 

Group123, 0.0, [NT06_cc_l7] 3158 

Group124, 0.0, [NT06_cc_l5] 3159 

Group125, 0.0, [NT18_cc_l6] 3160 

Group126, 0.0, [NT18_cc_l9] 3161 

Group127, 0.0, [NT12_cc_l3] 3162 

Group128, 0.0, [NT18_cc_l3] 3163 

Group129, 0.0, [NT06_cc_l6] 3164 

Group130, 0.0, [NT06_cc_l2] 3165 

Group131, 0.0, [NT18_cc_l1] 3166 

Group132, 0.0, [NT18_cc_l7] 3167 

Group133, 0.0, [NT00_cc_l2] 3168 

Group134, 0.0, [NT12_cc_l4] 3169 

Group135, 0.0, [NT12_cc_l6] 3170 

 3171 

 3172 

Table A3: Group level importance from LLE data filter with the group number, the 3173 

number of variables in each group, the importance score, and the rank. 3174 

Group Num score Rank 

49 5 0.023614 1 

88 1 0.021988 2 

1 309 0.019687 3 

29 11 0.019662 4 

3 148 0.01728 5 

80 1 0.015227 6 

65 2 0.015004 7 

48 5 0.012005 8 

81 1 0.01117 9 

46 6 0.01117 10 

30 11 0.01117 11 

63 3 0.010746 12 

73 2 0.010322 13 

85 1 0.009461 14 

47 5 0.009093 15 
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84 1 0.009093 16 

102 1 0.009093 17 

89 1 0.009093 18 

82 1 0.008587 19 

27 12 0.008587 20 

40 7 0.008249 21 

90 1 0.007392 22 

56 4 0.007392 23 

50 5 0.007392 24 

66 2 0.007392 25 

31 9 0.007392 26 

62 3 0.007105 27 

16 32 0.007105 28 

26 13 0.007105 29 

13 34 0.006522 30 

91 1 0.006264 31 

41 7 0.006264 32 

53 4 0.006264 33 

69 2 0.006264 34 

4 140 0.006264 35 

100 1 0.005412 36 

76 1 0.005412 37 

55 4 0.004744 38 

35 8 0.004546 39 

96 1 0.004546 40 

12 39 0.004546 41 

24 13 0.004546 42 

51 4 0.003669 43 

38 8 0.003515 44 

54 4 0.002778 45 

44 6 0.002778 46 

78 1 0.002655 47 

68 2 0.002655 48 

77 1 0.001783 49 

10 49 0.001783 50 

64 3 0.001783 51 
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70 2 0.001697 52 

17 30 0.000898 53 

57 4 0.000898 54 

28 12 0.000898 55 

25 13 0.000843 56 

135 1 0 57 

115 1 0 58 

114 1 0 59 

113 1 0 60 

112 1 0 61 

15 33 0 62 

111 1 0 63 

117 1 0 64 

110 1 0 65 

109 1 0 66 

108 1 0 67 

107 1 0 68 

106 1 0 69 

8 68 0 70 

105 1 0 71 

104 1 0 72 

116 1 0 73 

120 1 0 74 

118 1 0 75 

119 1 0 76 

134 1 0 77 

133 1 0 78 

132 1 0 79 

131 1 0 80 

130 1 0 81 

129 1 0 82 

128 1 0 83 

127 1 0 84 

126 1 0 85 

125 1 0 86 

124 1 0 87 
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123 1 0 88 

122 1 0 89 

121 1 0 90 

97 1 0 91 

103 1 0 92 

32 9 0 93 

42 7 0 94 

92 1 0 95 

23 14 0 96 

71 2 0 97 

37 8 0 98 

18 25 0 99 

74 2 0 100 

67 2 0 101 

86 1 0 102 

21 18 0 103 

34 8 0 104 

36 8 0 105 

83 1 0 106 

61 3 0 107 

39 7 0 108 

52 4 0 109 

6 109 0 110 

75 1 0 111 

22 17 0 112 

43 6 0 113 

45 6 0 114 

9 59 0 115 

58 4 0 116 

33 9 0 117 

72 2 0 118 

101 1 0 119 

20 22 0 120 

87 1 0 121 

59 4 0 122 

2 255 0 123 
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5 127 0 124 

98 1 0 125 

11 44 0 126 

19 24 0 127 

95 1 0 128 

94 1 0 129 

60 3 0 130 

99 1 0 131 

7 86 0 132 

93 1 0 133 

79 1 0 134 

14 34 0 135 

 3175 

 3176 

Table A4: COR-SHIPS model feature importance and its ranking. 3177 

Importance score Variable Ranking 

0.0362 BD12 1 

0.0217 DTL 2 

0.0207 CFLX 3 

0.0206 SHRD 4 

0.0205 G150 5 

0.0204 jd 6 

0.0199 VMAX 7 

0.0199 IRM1_5 8 

0.0191 PW08 9 

0.019 VMPI 10 

0.0187 SHTD 11 

0.0183 IR00_12 12 

0.018 HE07 13 

0.0177 MTPW_1 14 

0.0177 XD18 15 

0.0175 SHTS 16 

0.0173 PW14 17 

0.0172 TWXC 18 

0.0168 R000 19 

0.0167 V300 20 
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0.0165 OAGE 21 

0.0162 PSLV_1 22 

0.0161 Z850 23 

0.0161 SHRS 24 

0.0157 SDDC 25 

0.0156 VVAC 26 

0.0156 PCM3 27 

0.0154 TGRD 28 

0.0153 T150 29 

0.0153 CD26 30 

0.0152 TADV 31 

0.0151 V850 32 

0.0148 PSLV_4 33 

0.0145 PSLV_3 34 

0.0145 REFC 35 

0.0142 RD26 36 

0.014 MTPW_19 37 

0.0138 ND20 38 

0.0138 XDML 39 

0.0137 PENV 40 

0.0137 EPSS 41 

0.0136 G200 42 

0.0134 IR00_3 43 

0.0131 D200 44 

0.013 NTFR 45 

0.0124 T250 46 

0.0124 O500 47 

0.0124 IR00_20 48 

0.012 NSST 49 

0.0119 IRM1_16 50 

0.0119 TLAT 51 

0.0115 E000 52 

0.0112 IRM3_17 53 

0.0112 IRM3_11 54 

0.0109 HIST_1 55 

0.0109 G250 56 
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0.0109 RHMD 57 

0.0106 NDFR 58 

0.0104 IR00_17 59 

0.0099 IRM1_17 60 

0.0098 NOHC 61 

0.0089 PEFC 62 

0.0083 IR00_14 63 

0.0075 IRM3_14 64 

0.0063 PCM1 65 

0.0057 IRM1_14 66 

0.0052 NDTX 67 

0.0043 HIST_8 68 

0.0041 XDTX 69 

0.0031 PC00 70 

0.0023 IRM3_19 71 

0.0019 HIST_15 72 

 3178 

 3179 

Table A5: LLE-SHIPS model feature importance score and its ranking. 3180 

Importance score Variable Ranking 

0.0188 BD12 1 

0.0167 VMAX 2 

0.0138 DTL 3 

0.013 SHRD 4 

0.0115 TWXC 5 

0.0113 G150 6 

0.0113 VMPI 7 

0.0113 REFC 8 

0.0111 TGRD 9 

0.0107 IRM1_5 10 

0.0107 IR00_12 11 

0.0105 V300 12 

0.0105 VVAC 13 

0.0103 G200 14 

0.0096 PEFC 15 

0.0096 MTPW_1 16 
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0.0095 XDTX 17 

0.0095 PSLV_1 18 

0.0095 T150 19 

0.0094 CFLX 20 

0.0094 HIST_2 21 

0.0092 HE07 22 

0.0091 SHTS 23 

0.0089 PSLV_3 24 

0.0085 SHTD 25 

0.0085 G250 26 

0.0085 CD26 27 

0.0082 lle84 28 

0.0082 EPSS 29 

0.0077 R000 30 

0.0076 SDDC 31 

0.0075 IRM3_19 32 

0.0075 RD26 33 

0.0074 PW08 34 

0.0074 SHRS 35 

0.0074 NDTX 36 

0.0073 lle75 37 

0.0073 jd 38 

0.0073 TADV 39 

0.0072 NDFR 40 

0.0072 E000 41 

0.0072 HIST_9 42 

0.0072 PSLV_4 43 

0.0071 MTPW_19 44 

0.007 IRM1_16 45 

0.007 PW14 46 

0.007 OAGE 47 

0.007 lle78 48 

0.0068 XD18 49 

0.0068 lle1 50 

0.0066 lle49 51 

0.0066 lle24 52 
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0.0065 PCM1 53 

0.0065 ND20 54 

0.0064 lle2 55 

0.0064 IR00_20 56 

0.0063 NSST 57 

0.0062 Z850 58 

0.0062 NTFR 59 

0.0061 IR00_14 60 

0.0061 NOHC 61 

0.0061 lle89 62 

0.006 IRM3_14 63 

0.006 lle71 64 

0.006 lle3 65 

0.006 lle52 66 

0.0059 lle19 67 

0.0059 lle51 68 

0.0059 lle72 69 

0.0059 IR00_17 70 

0.0059 lle4 71 

0.0058 O500 72 

0.0058 lle53 73 

0.0058 V850 74 

0.0058 TLAT 75 

0.0057 lle66 76 

0.0057 lle30 77 

0.0056 RHMD 78 

0.0056 lle60 79 

0.0056 lle16 80 

0.0055 IR00_3 81 

0.0055 lle76 82 

0.0055 lle57 83 

0.0054 lle69 84 

0.0054 lle54 85 

0.0054 PC00 86 

0.0053 lle8 87 

0.0052 lle77 88 
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0.0052 IRM3_11 89 

0.0052 IRM1_14 90 

0.0052 lle33 91 

0.0051 lle10 92 

0.0051 IRM1_17 93 

0.0051 lle55 94 

0.0051 lle56 95 

0.0051 T250 96 

0.005 lle26 97 

0.005 lle81 98 

0.005 lle73 99 

0.0049 XDML 100 

0.0049 lle13 101 

0.0049 D200 102 

0.0048 lle17 103 

0.0048 lle37 104 

0.0048 lle21 105 

0.0048 lle20 106 

0.0048 lle48 107 

0.0048 lle9 108 

0.0047 lle7 109 

0.0047 lle39 110 

0.0047 lle29 111 

0.0046 lle11 112 

0.0046 IRM3_17 113 

0.0046 lle44 114 

0.0046 lle12 115 

0.0046 lle42 116 

0.0045 lle27 117 

0.0045 lle74 118 

0.0045 lle22 119 

0.0044 lle62 120 

0.0044 lle82 121 

0.0044 PCM3 122 

0.0044 lle47 123 

0.0044 lle32 124 
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0.0043 lle43 125 

0.0043 lle80 126 

0.0043 lle83 127 

0.0043 lle31 128 

0.0042 lle6 129 

0.0042 lle15 130 

0.0042 lle70 131 

0.0042 lle63 132 

0.0042 lle38 133 

0.0042 lle46 134 

0.0042 lle23 135 

0.0041 lle34 136 

0.0041 PENV 137 

0.0041 lle58 138 

0.004 lle36 139 

0.0039 lle59 140 

0.0039 lle68 141 

0.0039 lle65 142 

0.0039 lle25 143 

0.0039 lle28 144 

0.0038 lle45 145 

0.0038 lle14 146 

0.0038 lle64 147 

0.0038 lle61 148 

0.0037 lle41 149 

0.0037 lle85 150 

0.0037 lle90 151 

0.0036 lle88 152 

0.0036 lle79 153 

0.0035 lle87 154 

0.0035 lle5 155 

0.0035 lle35 156 

0.0034 lle18 157 

0.0034 lle67 158 

0.0034 lle86 159 

0.0032 lle50 160 
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0.003 lle40 161 

0.0018 HIST_16 162 

 3181 

 3182 

Table A6: DL-SHIPS model feature importance score, and its ranking. 3183 

Importance score Variable Ranking 

0.0197 BD12 1 

0.0176 VMAX 2 

0.0148 SHRD 3 

0.0144 DTL 4 

0.0137 IRM1_5 5 

0.0133 o31 6 

0.0131 G150 7 

0.0131 q7 8 

0.0129 u3 9 

0.0129 q4 10 

0.0129 G200 11 

0.0127 vo3 12 

0.0124 REFC 13 

0.0122 vo5 14 

0.012 vo8 15 

0.012 PEFC 16 

0.0118 d3 17 

0.0116 CFLX 18 

0.0116 PSLV_3 19 

0.0114 T150 20 

0.0114 jd 21 

0.0114 R000 22 

0.0112 TWXC 23 

0.0112 u8 24 

0.0112 PW08 25 

0.0112 q3 26 

0.0112 XDTX 27 

0.0109 CD26 28 

0.0109 q8 29 

0.0107 pv3 30 
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0.0107 v4 31 

0.0105 r1 32 

0.0101 u1 33 

0.0099 q5 34 

0.0099 IR00_12 35 

0.0099 vo4 36 

0.0097 HE07 37 

0.0097 u6 38 

0.0097 q2 39 

0.0094 r6 40 

0.0094 vo6 41 

0.0094 MTPW_1 42 

0.0092 u2 43 

0.0092 r4 44 

0.0092 pv7 45 

0.0092 pv6 46 

0.009 PSLV_1 47 

0.009 TADV 48 

0.0088 v8 49 

0.0088 HIST_2 50 

0.0088 VMPI 51 

0.0088 V300 52 

0.0088 SHRS 53 

0.0086 VVAC 54 

0.0086 MTPW_19 55 

0.0086 v5 56 

0.0082 t1 57 

0.0082 RD26 58 

0.0082 SDDC 59 

0.0082 q6 60 

0.0082 O500 61 

0.0082 v7 62 

0.0082 IRM3_11 63 

0.0079 E000 64 

0.0079 PW14 65 

0.0077 z2 66 
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0.0077 G250 67 

0.0075 pv1 68 

0.0075 cc1 69 

0.0075 XDML 70 

0.0075 pv8 71 

0.0073 vo1 72 

0.0073 ciwc1 73 

0.0073 v3 74 

0.0073 SHTS 75 

0.0073 v6 76 

0.0071 ciwc2 77 

0.0071 w1 78 

0.0071 IRM3_19 79 

0.0071 IR00_17 80 

0.0069 Z850 81 

0.0069 SHTD 82 

0.0069 NOHC 83 

0.0067 OAGE 84 

0.0064 XD18 85 

0.0064 IR00_3 86 

0.0064 IRM1_16 87 

0.0064 PSLV_4 88 

0.0062 NTFR 89 

0.0062 HIST_9 90 

0.006 ND20 91 

0.006 IR00_14 92 

0.0058 IRM3_17 93 

0.0058 EPSS 94 

0.0058 clwc2 95 

0.0058 D200 96 

0.0058 V850 97 

0.0056 PC00 98 

0.0056 r8 99 

0.0054 u5 100 

0.0054 NDFR 101 

0.0052 PCM1 102 
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0.0052 NSST 103 

0.0052 PENV 104 

0.0052 TGRD 105 

0.0047 IRM3_14 106 

0.0047 IR00_20 107 

0.0047 T250 108 

0.0047 RHMD 109 

0.0047 IRM1_14 110 

0.0047 IRM1_17 111 

0.0045 cc2 112 

0.0034 NDTX 113 

0.0034 r7 114 

0.0032 TLAT 115 

0.0024 PCM3 116 

0.0015 HIST_16 117 

0.0006 r2 118 

0 r3 119 

0 r5 120 
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