
 

EXAMINING THE SPATIAL AND TEMPORAL PROPERTIES OF 
UNCONSTRAINED MOTOR SKILL LEARNING 

by 
 

Erin McKenna 
A Dissertation 

Submitted to the 
Graduate Faculty 

of 
George Mason University 
in Partial Fulfillment of 

The Requirements for the Degree 
of 

Doctor of Philosophy 
Neuroscience 

 
Committee: 
 
_________________________________________ Dr. James C. Thompson, Committee Chair 
 
_________________________________________ Dr. Martin Wiener, Committee Member 
 
_________________________________________ Dr. Wilsaan M. Joiner, Committee 

Member 
 
_________________________________________ Dr. Susan Shields, Committee Member 
 
_________________________________________ Dr. Laurence Bray, Committee Member 
 
_________________________________________ Dr. Saleet Jafri, Department Chairperson 
 
_________________________________________ Dr. Donna M. Fox, Associate Dean, 

Office of Student Affairs & Special 
Programs, College of Science 

 
_________________________________________ Dr. Ali Andalibi, Interim Dean, College of 

Science 
 
Date: __________________________________    Fall Semester 2019 
 George Mason University 
 Fairfax, VA 



 

Examining the Spatial and Temporal Properties of Unconstrained Motor Skill Learning 

A Dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at George Mason University 

by 

Erin McKenna 
Dual Bachelor of Science and Bachelor of Arts 

University of Delaware, 2014 

Director: Laurence Bray, Interim Associate Provost for Graduate Education 
Office of the Provost 

Fall Semester 2019 
George Mason University 

Fairfax, VA 



ii 
 

 
Copyright 2019 Erin McKenna 

All Rights Reserved 



iii 
 

DEDICATION 

This is dedicated to my grandmother Emma McKenna. She emphasized the importance 
of education to both her children and grandchildren. I know she would be proud of this 
accomplishment. 



iv 
 

ACKNOWLEDGEMENTS 

I would like to thank my family for their unwavering support while on this journey 
toward earning my PhD. To my husband, Will, thanks for supporting me throughout 
graduate school. We were not always together; it was not always easy; but we made it. 
Thank you for editing my papers, listening to complaints, and endless worries, and for 
sharing many beers to celebrate little successes along the way. To my parents, Bill and 
Linda, thank you for being there. Your countless visits were always something I looked 
forward to, especially when I was in Virginia by myself. There was nothing Wednesday 
night dinner, a bike ride, and beers could not fix. Thank you for supporting me in 
everything that I have done and trusting my vision for my education and career. To 
Jennifer Jones, my color guard partner and first friend I made in Virginia, thank you for 
inviting me to join the staff at Freedom. Rehearsal was a chance to escape from reality 
and enjoy the art we created.  

A big thanks to the all of the former members of the Motor Lab and the other members of 
the George Mason community that I had the privilege to work alongside. Laurence, thank 
you so much for sticking with me throughout graduate school. While your role at George 
Mason changed several times while I was in school, our relationship sure did not. Thank 
you for always being someone I could talk to and for stepping in to help me finish up 
during my last year. Weiwei, thank you for saving my life several times by helping make 
figures, write code, and edit papers under overwhelming stress at times. Wendy, thank 
you for your help with the cameras and sharing the occasional stress that came along with 
using them. Susan and Buffy, thank you for allowing us to bring our research into the 
dance school. I truly felt that I was living the dream studying the arts while working on 
my dissertation and I would not have been able to do any of it without you. And thank 
you to my committee for your thoughtful comments that made my dissertation a success. 

The most important thank you I can give is to my advisor, Wilsaan Joiner. Your support 
and guidance over the last five years has made me a better scientist. You have taught me 
everything; how to write succinctly and effectively, how to analyze data in MATLAB, 
and of course how to make the prettiest figures in Illustrator. While learning all of this, 
you treated me as one of your students, but also a person. Our mentor/mentee relationship 
was always positive and this allowed for the other relationships I previously mentioned to 
flourish too. For all of this, I owe you everything. 



v 
 

TABLE OF CONTENTS 

Page 
List of Figures ................................................................................................................... vii  

Abstract ............................................................................................................................ viii 

Experiment One: Spatial Navigation of Dancers and Non-dancers With and Without 
Vision .................................................................................................................................. 1  

Introduction ..................................................................................................................... 1  

Methods ........................................................................................................................... 3  

Participants .................................................................................................................. 3  

Experimental Setup...................................................................................................... 3 

Task ............................................................................................................................. 5 

Experimental Procedure .............................................................................................. 6 

Analysis of Body Motion ............................................................................................ 6 

Statistical Analysis ...................................................................................................... 9 

Results ........................................................................................................................... 10 

Comparison of duration and steps required during path navigation .......................... 10 

Dancer and non-dancer, example comparison ........................................................... 12 

Dancer and non-dancer, group comparison ............................................................... 15 

Discussion ..................................................................................................................... 22  

Neural activation during spatial navigation ............................................................... 22 

Effects of dance experience on motor control ........................................................... 23 

Experiment Two: Spatial Generalization of Unconstrained Motor Skills ........................ 25 

Introduction ................................................................................................................... 25  

Methods ......................................................................................................................... 28  

Participants ................................................................................................................ 28  

Experimental Setup.................................................................................................... 28 

Task ........................................................................................................................... 29 

Experimental Procedure ............................................................................................ 30 



vi 
 

Analysis of body motion............................................................................................ 30 

Statistical Analysis .................................................................................................... 35 

Results ........................................................................................................................... 36 

Comparison of time elapsed during trials in each spatial configuration ................... 36 

Comparison of performance to the ideal trajectory and mean path for each pattern . 36 

Analysis of spatial scaling between configurations ................................................... 38 

Discussion ..................................................................................................................... 40  

Experiment Three: Temporal Generalization of Unconstrained Motor Skill ................... 42 

Introduction ................................................................................................................... 42  

Methods ......................................................................................................................... 44  

Participants ................................................................................................................ 44  

Experimental Setup.................................................................................................... 45 

Task ........................................................................................................................... 45 

Experimental Procedure ............................................................................................ 47 

Analysis of body motion............................................................................................ 47 

Statistical Analysis .................................................................................................... 50 

Results ........................................................................................................................... 50 

Discussion ..................................................................................................................... 56  

Summary, Limitations, and Future Directions .................................................................. 60 

Summary ....................................................................................................................... 60  

Limitations .................................................................................................................... 61 

Future Directions ........................................................................................................... 62 

References ......................................................................................................................... 63  

 

 



vii 
 

LIST OF FIGURES 

Figure Page 
Figure 1 Schematic of the Motion Capture Setup ............................................................... 4 
Figure 2 Skeleton Recreation .............................................................................................. 4 
Figure 3 Movement Patterns from Bird’s Eye View Perspective ....................................... 5 
Figure 4 Example Dancer and Non-dancer ....................................................................... 13 
Figure 5 Dancer and Non-dancer Group Data .................................................................. 15 
Figure 6 MSEi Scatterplot for the A) Circle B) Zigzag 1 and C) Zigzag 2 patterns ......... 19 
Figure 7 MSEm Scatterplot for the A) Circle B) Zigzag 1 and C) Zigzag 2 patterns ....... 21 
Figure 8 Ideal Movement Trajectories from Bird’s Eye View Perspective ...................... 30 
Figure 9 Illustration of Calculating the Ideal Spatial Scaling Based on Ideal Training and 
Novel Zigzag Patterns ....................................................................................................... 33 
Figure 10 Illustration of Calculating the Each Subject’s Spatial Scaling Based on Mean 
Training Data and Data from a Single Novel Zigzag Trial .............................................. 34 
Figure 11 Hip Trajectories and MSEi and MSEm ............................................................. 37 
Figure 12 Ideal Horizontal and Vertical Scaling of Training Pattern to Match Novel 
Zigzag Pattern Performance .............................................................................................. 39 
Figure 13 Ideal Movement Trajectory .............................................................................. 46 
Figure 14 Total Distance Traveled in Each Tempo Condition in Meters ......................... 51 
Figure 15 Average Hip Trajectories for Each Tempo ...................................................... 52 
Figure 16 MSEi Versus MSEm .......................................................................................... 54 
Figure 17 Scaled Versus Ideal Tempo .............................................................................. 55 
 
 
 

 

 

 



viii 
 

ABSTRACT 

EXAMINING THE SPATIAL AND TEMPORAL PROPERTIES OF 
UNCONSTRAINED MOTOR SKILL LEARNING 

Erin McKenna, Ph.D. 

George Mason University, 2019 

Dissertation Director: Dr. Laurence Bray 

 

There are at least two types of motor learning: motor adaptation and motor skill learning. 

Motor adaptation is characterized by fast changes to simple, constrained movement, 

where the goal is to counter a perturbation and return to baseline performance. Motor 

skill learning is defined by slow changes to complex, unconstrained movement where the 

goal is to improve beyond baseline performance (Krakauer et al. 2012, 2014). Previous 

work has established several spatial and temporal properties of motor adaptation 

including spatial and temporal generalization. Spatial generalization describes the transfer 

of motor learning from a trained to untrained spatial configurations. Similarly, temporal 

generalization describes the transfer of motor learning from a trained to untrained 

movement speeds. This dissertation aims to determine whether these known spatial and 

temporal properties of motor adaptation, also apply to motor skill learning. Dancers are 

an ideal population of motor skill experts to study because dance technique requires 
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dancers to move consistently through space and in time with music or a metronome. This 

dissertation is designed to answer three research questions: 1) Do dancers spatially 

navigate better than non-dancers with and without vision? 2) Can dancers transfer motor 

skills from trained to novel spatial contexts? 3) Can dancers transfer motor skills from 

trained to novel speeds? We utilized motion capture technology to continuously measure 

dancers and non-dancers' movement throughout their performance on each task. Our 

results suggest that spatial navigation for both dancers and non-dancers deteriorates when 

vision is restricted, but dancers outperform non-dancers when navigating complex 

configurations both with and without vision. In addition, our results imply that dancers 

are able to transfer motor skills from trained to untrained spatial contexts and speeds. 

Taken together, the results of this dissertation demonstrate that some of the known spatial 

and temporal properties of motor adaptation also apply to motor skill learning. 
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EXPERIMENT ONE: SPATIAL NAVIGATION OF DANCERS AND NON-
DANCERS WITH AND WITHOUT VISION 

Introduction 

Spatial navigation is an important skill required for humans to appropriately 

interact with the environment. A wide variety of studies have examined the ability of 

humans to navigate through space, however, a large portion of these studies required 

participants to remain still and navigate through virtual environments. A somewhat small 

subgroup of these studies have required humans to walk during a spatial navigation task 

(Ehinger et al. 2014; Commins et al. 2013; Sun et al. 2004), but many do not measure the 

movement of the subjects continuously throughout each trial of the experiment. The 

current study intends to examine human spatial navigation using motion capture to 

measure the specific location of humans as they actively move through their 

environment.  

Vision is widely accepted as the sensory system most heavily used by humans to 

navigate through their environment. This is evidenced by severe navigational 

impairments in blind humans (Thinus-Blanc and Gaunet, 1997, Ekstrom, 2015) and the 

presence of neurons in the human hippocampus that respond specifically to visual 

landmarks (Ekstrom et al., 2003; Janzen and van Turennout, 2004). Several blind-

walking studies suggest that humans can navigate through their environment without 

vision, but tend to walk slower (Hallemans et al. 2010), adjust step length (Courtine and 
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Schieppati, 2003), increase variance of movement trajectory (Courtine and Schieppati, 

2003), and demonstrate a reduction in upper body stability (Iosa et al. 2012). Other 

studies have found no effect of lack of vision on walking (Ruddle and Lessels, 2006; 

Kallie et al. 2002). But, again, the vast majority of these studies did not continuously 

measure whole body movement. 

Humans have a range of ability to spatially navigate. Spatial navigation has been 

shown to improve due to expertise in some motor skills. For example, Danion et al. 

(2000) asked gymnasts to walk, steer a wheel chair, and verbally direct a person pushing 

them in a wheel chair with and without vision. They found that when vision was 

unavailable, gymnasts deviated from the desired straight line path, but outperformed 

other motor skill experts (soccer, tennis, handball, and basketball players). Danion et al. 

(2000) speculated that the superior performance observed in gymnasts could be a result 

of improved proprioceptive sense that comes with extensive gymnastics training, but may 

not be required for other motor skills. Similarly, extensive dance training leads to 

cognitive benefits over non-dancers including a heightened sense of body awareness and 

orientation within the environment (Fonseca et al. 2014; Margaret et al. 2014). Dancers 

also have an increased ability to integrate proprioceptive signals compared to non-

dancers; dancers tend to utilize proprioceptive information more than non-dancers when 

vision information is present (Jola et al., 2011). Thus, dance training represents an 

acquired expertise in spatial navigation.  

In the current study, we examined the whole body movements of dancers and 

non-dancers as they navigated specific spatial configurations. Utilizing motion capture, 
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we monitored the body position throughout each trial and examined the effect of vision 

on the performance (trial-to-trial variance and accuracy with respect to the ideal path 

trajectory). We tested dancers and non-dancers in three different patterns with and 

without vision. These results provide insight into the role of vision and body 

representation expertise on spatial navigation tasks requiring whole body movements. 

Methods 

Participants 

Twenty subjects volunteered to participate in this experiment. All participants had 

no known neurological impairment and were naive to the purpose of this study, which 

consisted of walking in specific spatial patterns with and without vision. Subjects did not 

receive any training before data collection, and each individual completed one 1-hour 

session. A group of ten female students age 18-22 enrolled in the George Mason 

University School of Dance comprised the “dancer” group. Ten subjects (2 men and 8 

women, 18-30 years of age) who had no prior dance experience comprised the “non-

dancer” group. Prior dance experience was defined as participating in dance classes 

regularly for more than one year. The study protocol was approved by the George Mason 

University Institutional Review Board. All participants gave informed consent. 

Experimental Setup 

Motion capture technology was used to monitor subjects’ position within a 6.45 m 

by 4.50 m rectangular space. Twenty Optitrack Prime 13 cameras were mounted in a 

dance studio in the George Mason University School of Dance (Figure 1).  
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Figure 1 Schematic of the Motion Capture Setup. Twenty Optitrack Prime 13 cameras were mounted on a pipe 
just below the ceiling of the dance studio. The bounds of the space where motion capture data was collected 
reliably was marked in blue tape on the floor. The start and stop locations of the spatial configurations were 
marked on the floor with an X.  

 

The Optitrack baseline marker set (n = 37 markers) was applied to each subject 

(Figure 2). Three-dimensional position data were collected at 120 Hz for each of the 37 

markers. 

 

 
 

Figure 2 Skeleton Recreation. Subjects were fitted with a motion capture suit and markers were placed in 
specified locations based on Optitrack guidelines for the baseline marker set. Optitrack software utilized the 
position of the markers in space to recreate a skeleton which moved in real-time with the subject. 
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The rectangular space was marked on the floor with tape and subjects were 

instructed to stay within these bounds throughout the duration of the experiment. Four 

white X’s marked the start and stop locations for the three walking patterns of interest: 

circle, zigzag 1, and zigzag 2 (Figure 3). 

 

 
 
Figure 3 Movement Patterns from Bird’s Eye View Perspective. In each pattern, the dark gray filled circle 
represents the start position and the light gray filled circle represents the end position. Arrows indicate the 
direction of movement. Open black circles indicate the changes in direction which were not explicitly marked on 
the floor. Dotted lines show the ideal movement trajectory for the A) circle, B) zigzag 1, and C) zigzag 2 
patterns. 

 

Task 

Subjects were shown Figures 3A, B and C to familiarize themselves with the 

required walking pattern at the beginning of each block of trials. The experimenter 

explicitly pointed out the location of the start and stop positions marked on the floor. The 

locations where subjects should change direction in the zigzag patterns were not 

explicitly marked on the floor and subjects were not instructed where they should occur. 

Thus, these transition points were completely estimated by the subjects. At the beginning 

of each trial, subjects were asked to start with their body facing the front of the room for 
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both the circle and zigzag 2 patterns, and facing the side for the zigzag 1 pattern. During 

each trial, a metronome played at 110 beats per minute and subjects were told to take one 

step on each click of the metronome. On trials without vision, a blindfold was placed on 

subjects at the start position. To signal the end of the trial, subjects were told to stop and 

put their feet together once they felt they had reached the end location. On trials where a 

subject stepped outside of the blue tape, subjects were instructed to stop and the trial was 

repeated. This occurred 40 times out of 340 attempted trials (11.7%). Following each no 

vision trial, the experimenter guided subjects back to the start position and corrected their 

body position. The blindfold was removed after all no vision trials were completed for 

the given walking pattern. 

Experimental Procedure 

Subjects were asked to walk in three different patterns, a circle and two zigzag 

patterns, and ten trials were recorded for each pattern; a block of five trials with vision 

and a block of five trials without vision. The order of the patterns was counterbalanced 

across subjects and the order of vision and without vision blocks was randomized.  

Analysis of Body Motion 

The position of the body (hip trajectory) was determined using the average 

location of the four markers on the hips. The velocity of the body was calculated based 

on the change in position in the horizontal and vertical dimensions of the body position. 

The start (end) of a trial was represented by the point in time where the body velocity 

increased (decreased) to 0.05 m/s. We determined the duration of the movement from 

movement start to end and converted this to a percentage from 0% to 100%. We then 
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examined the hip trajectory at each 0.5% increment. The hip trajectory was then averaged 

across each trial within a given block of trials (e.g. circle with vision, zigzag 1 without 

vision) and then across subjects within the dancer or non-dancer groups. The ideal pattern 

was based on the position of the start and end markers on the floor. For both ideal zigzag 

patterns, the second change in direction was the midpoint between the start and end 

locations. For the ideal zigzag 1, the first and third changes in direction were determined 

by dividing the distance between the start and midpoint position and the midpoint and the 

end position in the vertical dimension, respectively, and 15 cm from the outer bounds of 

the space (marked in blue tape) in the horizontal dimension. For the ideal zigzag 2, the 

first and third changes in direction were determined by dividing the distance between the 

start and midpoint position and the midpoint and the end position in the horizontal 

dimension, respectively, and 15 cm from the outer bounds of the space in the vertical 

dimension. The diameter of the ideal circle was 4.20 m (15 cm inside the bounds of the 

rectangular space). 

To examine consistency of movement over the course of each trial, we calculated 

the number of steps taken and the total time taken. For the zigzag 1 and zigzag 2 trials, 

we divided the trial into four segments based on the changes in direction. For zigzag 1 

trials, changes in direction were defined by a change from positive to negative or 

negative to positive horizontal distance traveled between any two points in each subject’s 

hip trajectory. For zigzag 2 trials, changes in direction were defined by a change from 

positive to negative or negative to positive vertical distance traveled between any two 

points in each subject’s hip trajectory. We defined the completion of a step of the left 
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(right) foot as the point where the height-position data of the marker on the outside of the 

foot left (right) foot decreased below the value of the height-position data of the marker 

on the outside of the right (left) foot. We then summed the number of steps on the left 

and right feet between changes in direction for the zigzag patterns and over the course of 

the whole trial for the circle pattern, averaged across trials within a block, then across 

subjects. The time was calculated between the changes in direction for the zigzag patterns 

and over the course of the whole trial for the circle pattern and then averaged across trials 

within a block, then across subjects.  

We also examined the hip trajectory of an example subject for the dancer and 

non-dancer groups (Figure 4). Here, we quantified accuracy and precision. Accuracy 

refers to the closeness of data to the task goal (e.g. in the game of darts, accuracy refers to 

the closeness of darts to the bullseye) and precision refers to the consistency or spread of 

data (e.g. in the game of darts, precision refers to how close darts are clustered relative to 

each other). To examine each subject’s accuracy, we compared each hip trajectory within 

a given block of five trials to the ideal pattern by calculating the mean squared error 

(MSE) (Figure 4, top bar graphs). We will refer to this calculation as mean squared error 

relative to the ideal pattern or MSEi. To quantify precision of the hip trajectory, we 

calculated the mean squared error between the average hip trajectory for a given block of 

trials (n=5) to each individual trial’s actual hip trajectory (Figure 4, bottom bar graphs). 

We will refer to this calculation as the mean squared error relative to the average hip 

trajectory or MSEm. We then examined the group data where we averaged the hip 

trajectory across a block of five trials for each subject, then across subjects (Figure 5). 
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Here, we quantified accuracy by calculating the MSEi for a block of trials for each 

subject, then across subjects (Figure 5, top insets). We also quantified precision by 

calculating the MSEm for a given block of trials for each subject, then averaged across 

subjects (Figure 5, bottom insets). 

To evaluate the effect of lack of vision on accuracy (precision) of spatial 

navigation, we plotted the average MSEi (MSEm) on no vision trials versus the average 

MSEi and (MSEm) on vision trials for each subject in Figure 6 (Figure 7). To ensure the 

data was normally distributed we performed Anderson-Darling tests and took the 

logarithm (base 10) of all the data for this analysis. Data points that fell on the unity line 

represented subjects that were unaffected by the lack of vision. Points that fell above the 

unity line represented subjects that experienced difficulty in navigation with the lack of 

vision. 

Statistical Analysis 

Statistical significance of the effect of vision and effect of dance experience on 

time elapsed, steps taken, MSEi, and MSEm, and was determined using 2-way ANOVAs. 

Paired, one-tailed t-tests were utilized for post-hoc comparison of the dancer group 

performance across the vision and no vision condition and non-dancer group performance 

across the vision and no vision condition. Two-sample, one-tailed t-tests were utilized for 

post-hoc comparison of the dancer and non-dancer group performance in each vision 

condition.  Error bars and shading in Figure 4 represent standard deviation. Error bars and 

shading in Figure 5 represent standard error. To ensure data was normally distributed, we 

ran Anderson-Darling tests and transformed data by taking the logarithm when necessary. 
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All statistical analyses were performed with MATLAB, and for all tests the significance 

level was 0.05. 

Results 

Comparison of duration and steps required during path navigation 

In order to compare performance between the two groups (dancers versus non-

dancers), we first quantified the number of steps taken and time elapsed from the start to 

the end of each trial to examine the consistency of movement throughout each trial. For 

the circle pattern, we found no main effect of group, condition, or an interaction for the 

number of steps taken throughout each trial which suggests that dancers and non-dancers 

required the same number of steps regardless of whether vision was provided in the circle 

pattern (2-way ANOVA, p = 0.26 for group, p = 0.20 for condition, and p = 0.38 for 

interaction). We also found no main effect of group, vision, or an interaction for the 

number of steps taken during segment 1 (2-way ANOVA, p = 0.20 for group, p = 0.56 for 

condition, and p = 0.52 for interaction), segment 2 (2-way ANOVA, p = 0.41 for group, p 

= 0.53 for condition, and p = 0.87 for interaction), segment 3 (2-way ANOVA, p = 0.18 

for group, p = 0.61 for condition, and p = 0.89 for interaction), or segment 4 (2-way 

ANOVA, p = 0.96 for group, p = 0.73 for condition, and p = 0.97 for interaction) for the 

zigzag 1 pattern. In addition, we found no main effect of group, vision, or an interaction 

for the number of steps taken during segment 1 (2-way ANOVA, p = 0.87 for group, p = 

0.38 for condition, and p = 0.82 for interaction), segment 2 (2-way ANOVA, p = 0.72 for 

group, p = 0.94 for condition, and p = 0.90 for interaction), segment 3 (2-way ANOVA, p 

= 0.96 for group, p = 0.61 for condition, and p = 0.93 for interaction), or segment 4 (2-
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way ANOVA, p = 0.35 for group, p = 0.98 for condition, and p = 0.75 for interaction) for 

the zigzag 2 pattern. Together, these results indicate that dancers and non-dancers 

required the same number of steps regardless of whether vision was available in both 

zigzag patterns.  

When we considered time elapsed for the circle pattern, we found no main effect 

of group, condition, or an interaction which suggests dancers and non-dancers took the 

same amount of time for start to finish of a circle pattern trial regardless of whether 

vision was available (2-way ANOVA, p = 0.15 for group, p = 0.07 for condition, and p = 

0.62 for interaction). We examined the time elapsed during the zigzag 1 pattern and 

found no significant main effects of vision or condition, or an interaction for segment 1 

(2-way ANOVA, p = 0.36 for group, p = 0.57 for condition, and p = 0.47 for interaction), 

segment 2 (2-way ANOVA, p = 0.39 for group, p = 0.46 for condition, and p = 0.78 for 

interaction), segment 3 (2-way ANOVA, p = 0.15 for group, p = 0.49 for condition, and p 

= 0.94 for interaction), or segment 4 (2-way ANOVA, p = 0.17 for group, p = 0.11 for 

condition, and p = 0.84 for interaction). This indicates that dancers and non-dancers took 

similar amounts of time to complete zigzag 1 trials regardless of whether or not they used 

vision. When we examined time elapsed during each segment of the zigzag 2 pattern, we 

found no significant main effect of group, condition, or an interaction for segment 1 (2-

way ANOVA, p = 0.56 for group, p = 0.63 for condition, and p = 0.86 for interaction), 

segment 2 (2-way ANOVA, p = 0.89 for group, p = 0.81 for condition, and p = 0.99 for 

interaction), and segment 3 (2-way ANOVA, p = 0.99 for group, p = 0.42 for condition, 

and p = 0.97 for interaction) of the pattern. However, we did find a main effect of 
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condition, but not for group or interaction for the final segment of the zigzag 2 pattern (2-

way ANOVA, p = 0.09 for group, p = 0.03 for condition, and 0.27 for interaction). This 

suggests that a lack of vision influenced the amount of time subjects took only in the final 

segment of the zigzag 2 pattern.  

Dancer and non-dancer, example comparison 

We examined the average hip trajectory of an example dancer and an example 

non-dancer for each block of trials (Figure 4). We chose these subjects because their hip 

trajectories were accurate examples of the group average trajectories. Ideal trajectories 

are shown as thick black lines (see Methods). Thin dark (with vision) and light (without 

vision), red (dancer) and blue (non-dancer) lines show the average hip trajectory for a 

block of trials (n=5). Shading represents the standard deviation. Bar graphs show the 

MSEi (top) and MSEm (bottom) with units of cm2 for each block of trials.  
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Figure 4 Example Dancer and Non-dancer. A) B) and C) represent single subject data from one dancer. D) E) 
and F) represent single subject data from one non-dancer. Red bars and traces show data from the example 
dancer. Blue bars and traces show data from the example non-dancer. Darker shades show data from the vision 
condition and lighter shades represent data from the no vision condition. Thick black traces show the ideal 
patterns. In each panel, the top bar graph shows MSEi and the bottom bar graph shows MSEm. The units for the 
MSE measures are cm2. Thin black lines on the bars show standard deviation. 

 

For the example dancer and non-dancer, the MSEi was higher for the no vision 

conditions for the circle (mean ± SD: dancer vision: 2737 ± 1304 cm2 dancer no vision: 

10103 ± 2462 cm2 non-dancer vision: 2251 ± 2125 cm2 non-dancer no vision: 4342 ± 

1914 cm2) and zigzag 1 patterns (mean ± SD: dancer vision: 3532 ± 2122 cm2, dancer no 

vision: 5493 ± 1212 cm2, non-dancer vision: 2999 ± 860 cm2, non-dancer no vision: 7503 

± 2900 cm2) which suggests both example subjects’ hip trajectories were less accurate on 

no vision trials. The dancer had higher MSEm for the circle when vision was available 
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(mean ± SD: dancer vision: 924 ± 501 cm2 dancer no vision: 347 ± 208 cm2) which 

implies that the dancer performed more precisely without vision in the circle condition. 

The non-dancer on the other hand had higher MSEm on the no vision trials than on vision 

trials for the circle pattern (mean ± SD: non-dancer vision: 466 ± 632 cm2 non-dancer no 

vision: 1264 ± 916 cm2) which implies that the non-dancer performed less precisely when 

vision was unavailable. Both the dancer and non-dancer had higher MSEm when vision 

was eliminated for the zigzag 1 pattern (mean ± SD: dancer vision: 1240 ± 882 cm2, 

dancer no vision: 3007 ± 1552 cm2, non-dancer vision: 530 ± 750 cm2, non-dancer no 

vision: 2264 ± 1637 cm2). This suggests that both subjects performed the zigzag 1 pattern 

less precisely when vision was not available.  

For the zigzag 2 pattern, the dancer’s MSEi and MSEm for the vision and no 

vision conditions was not significantly different (mean ± SD, MSEi dancer vision: 2835 ± 

2039 cm2 dancer no vision: 2761 ± 922 cm2, MSEm dancer vision: 680 ± 765 cm2 dancer 

no vision: 556 ± 394 cm2) which suggests that the dancer performed equally accurately 

and precisely when vision was eliminated in this condition. The non-dancer had higher 

MSEi and MSEm in the zigzag 2 pattern when vision was eliminated (mean ± SD, MSEi 

non-dancer vision: 6803 ± 959 cm2, non-dancer no vision: 10010 ± 5248 cm2, MSEm 

non-dancer vision: 792 ± 1148 cm2 non-dancer no vision: 3149 ± 1386 cm2), revealing 

that the non-dancer performed less accurately and less precisely when vision was not 

available.  
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Dancer and non-dancer, group comparison 

We studied the group average hip trajectories for each block of trials (Figure 5). 

As in Figure 4, the ideal trajectories are shown as thick black lines, thin dark (with 

vision) and light (without vision), red (dancer) and blue (non-dancer) lines show the 

group average hip trajectory for a block of trials (n=10), and shading represents the 

standard error. Bar graphs show the MSEi (top) and MSEm (bottom) in units of cm2 for 

each block of trials.  

 

 
 
Figure 5 Dancer and Non-dancer Group Data. A) B) and C) show dancer group data. D) E) and F) show non-
dancer group data. Red bars and traces show data from the dancer group. Blue bars and traces show data from 
the non-dancer group. Darker shades show data from the vision condition and lighter shades represent data 
from the no vision condition. Thick black traces show the ideal patterns. In each panel, the top bar graph shows 
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MSEi and the bottom bar graph shows MSEm. The units for the MSE measures are cm2. Thin black lines on the 
bars show standard error. 

 

For the circle pattern, MSEi was not significantly different for the dancer and non-

dancer groups, but there was a main effect of condition (2-way ANOVA, p = 0.31 for 

group, p < 0.01 for condition, and p = 0.66 for interaction). Post-hoc tests revealed that 

MSEi was lower when vision was available compared to when it was unavailable for both 

the dancer (paired, one-tailed t-test, p < 0.01) and non-dancer groups (paired, one-tailed t-

test, p < 0.01) in the circle pattern. Together these data suggest that the both dancers and 

non-dancers’ hip trajectories were equally accurate in the circle pattern, but both groups 

were less accurate when vision was restricted (Figure 5A, D top graphs).  

In the zigzag 1 pattern, MSEi was not significantly different for group, but there 

was a main effect for condition (2-way ANOVA, p = 0.31 for group, p = 0.01 for 

condition, and p = 0.48 for interaction). Post-hoc tests revealed that MSEi was 

significantly lower when vision was available compared to when it was unavailable for 

the non-dancer group (paired, one-tailed t-test, p < 0.01) in the zigzag 1 pattern. The 

same post-hoc test did not reach significance for the dancer group (paired, one-tailed t-

test, p = 0.06) in the zigzag 1 pattern. This suggests that dancers and non-dancers 

performed equally accurately in the zigzag 1 pattern, but only the non-dancer group 

performed less accurately when vision was not available (Figure 5B, E).  

In the zigzag 2 pattern, MSEi was significantly different for group and condition 

(2-way ANOVA p < 0.01 for group, p < 0.01 for condition, and p = 0.05 for interaction) 

(Figure 5C, F). Post-hoc tests revealed that MSEi was lower when vision was available 
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compared to when it was unavailable for both dancers (paired, one tailed t-test, p < 0.01) 

and non-dancers (paired, one tailed t-test, p < 0.01) in the zigzag 2 pattern. Post-hoc tests 

also showed that MSEi was lower for dancers than for non-dancers both when vision was 

(two-sample, one tailed t-test, p = 0.04) and was not available (two-sample, one tailed t-

test, p < 0.01) in the zigzag 2 pattern. This suggests that dancers performed more 

accurately than non-dancers overall, but both groups performed less accurately when 

vision was restricted. 

For the circle pattern, MSEm was not significantly different for the dancer and 

non-dancer groups, but there was a main effect of condition (2-way ANOVAs, p = 0.60 

for group, p < 0.01 for condition, and 0.80 for interaction). Post-hoc tests revealed that 

MSEm was lower when vision was available compared to when it was unavailable for 

both dancers (paired, one-tailed t-test, p = 0.04) and non-dancers (paired, one-tailed t-test, 

p < 0.01) in the circle pattern. Together these data suggest that the both dancers and non-

dancers’ hip trajectories were equally precise in the circle pattern, but both groups 

performed less precisely when vision was restricted (Figure 5A, D).  

In the zigzag 1 pattern, MSEm was not significantly different for group, but there 

was a main effect for condition (2-way ANOVA, p = 0.24 for group, p < 0.01 for 

condition, and p = 0.71 for interaction). Post-hoc tests revealed that MSEm was lower 

when vision was available compared to when it was unavailable for both the dancers 

(one-tailed t-test, p = 0.03) and non-dancers (one-tailed t-test, p < 0.01) in the zigzag 1 

pattern. This suggests that dancers and non-dancers performed with equal precision in the 
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zigzag 1 pattern, but both groups performed less precisely when vision was restricted 

(Figure 5B, E).  

In the zigzag 2 pattern, MSEm was significantly different for group and condition 

(2-way ANOVA, p = 0.02 for group, and p < 0.01 for condition, and p = 0.31 for 

interaction) (Figure 5C, F). Post-hoc tests revealed that MSEm was lower when vision 

was available compared to when vision was unavailable for both the dancer (paired, one 

tailed t-test, p < 0.01) and non-dancer groups (paired, one tailed t-test, p < 0.01) in the 

zigzag 2 pattern. Post-hoc tests also showed that MSEm was lower for dancers compared 

to non-dancers both when vision was (two-sample, one-tailed t-test, p = 0.03) and was 

not available (two-sample, one tailed t-test, p = 0.04) in the zigzag 2 pattern. This 

suggests that dancers performed more precisely than non-dancers, but both groups 

performed less precisely when vision was restricted. 

To examine the effect of lack of vision on the accuracy of the hip trajectory, we 

plotted the average MSEi for no vision trials versus the MSEi for vision trials for each 

subject (Figure 6). We took the logarithm of the raw data for this figure to ensure the data 

was normally distributed for statistical analysis. In this figure, points that fell on the unity 

line indicate subjects whose accuracy were not affected by lack of vision. That is, the 

MSEi for the vision and no vision trials were equal in this case. Points that fell above the 

unity line indicate subjects whose hip trajectories were less accurate with a lack of vision; 

the MSEi for the no vision trials was greater than for the vision trials. Points that fell 

below the unity line indicate subjects whose hip trajectories were more accurate with a 

lack of vision; the MSEi for the no vision trials was less than for the vision trials.  
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Figure 6 MSEi Scatterplot for the A) Circle B) Zigzag 1 and C) Zigzag 2 patterns. MSEi for the no vision 
condition was plotted with respect to MSEi for the vision condition. Filled, small circles show average data over 
five trials for each dancer (red) and nondancer (blue). Red and blue ellipses represent the two standard errors 
around the group means for the dancer and non-dancer groups, respectively. The thin black line is the unity 
line. Thick black traces show an example shape of each pattern. 

 

For the circle pattern, there was a significant main effect of condition, but no 

significant main effect of group or an interaction (2-way ANOVA, p = 0.19 for group, p 

< 0.01 for condition, and p = 0.77) (mean ± SEM: dancer vision: 8.24 ± 0.14, dancer no 

vision: 9.25 ± 0.20, non-dancer vision: 7.97 ± 0.15, non-dancer no vision: 9.08 ± 0.17) 

(Figure 6A). This suggests that dancers and non-dancers were equally accurate, but the 

lack of vision influenced accuracy of both groups.  

For the zigzag 1 pattern, we found a significant main effect of vision, but no main 

effect of group or interaction (2-way ANOVA, p = 0.30 for group, p < 0.01 for condition, 

and p = 0.74 for interaction) (mean ± SEM: dancer vision: 8.33 ± 0.11, dancer no vision: 

9.00 ± 0.23, non-dancer vision: 8.10 ± 0.18, non-dancer no vision: 8.88 ± 0.10) (Figure 
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6B). This suggests that both dancers and non-dancers were similar in their accuracy, but 

both experienced a change in accuracy when vision was eliminated.  

For the zigzag 2 pattern, there was a significant main effect of group and 

condition, but no interaction (2-way ANOVA, p < 0.01 for group, p < 0.01 for condition, 

p = 0.26 for interaction) (mean ± SEM: dancer vision: 8.05 ± 0.15, dancer no vision: 8.56 

± 0.17, non-dancer vision: 8.39 ± 0.19, non-dancer no vision: 9.29 ± 0.19) (Figure 6C). 

This suggests that the dancers were more accurate relative to the ideal than non-dancers 

in the zigzag 2 pattern and both groups experienced a change in accuracy when vision 

was eliminated. Importantly, our results demonstrate that when the spatial navigation task 

was more complex, like in the zigzag 2 configuration, dancers outperformed non-dancers 

in terms of accuracy both when vision was available and restricted. 

To examine the effect of lack of vision on precision, we plotted the average 

MSEm for no vision trials versus the MSEm for vision trials for each subject (Figure 7). 

As above, we determined the logarithm of the raw data for this figure to ensure the data 

was normally distributed for statistical analysis. In this figure, points that fell on the unity 

line indicate subjects whose precision of hip trajectory was not affected by lack of vision; 

the MSEm for the vision and no vision trials were equal. Points that fell above the unity 

line indicate subjects whose precision of hip trajectory decreased with a lack of vision; 

the MSEm for the no vision trials was greater than for the vision trials. Points that fell 

below the unity line indicate subjects whose hip trajectories were more precise with a 

lack of vision; the MSEm was lower for the no vision trials than the vision trials.  
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Figure 7 MSEm Scatterplot for the A) Circle B) Zigzag 1 and C) Zigzag 2 patterns. MSEm for the no vision 
condition was plotted with respect to MSEm for the vision condition. Filled, small circles show average data over 
five trials for each dancer (red) and nondancer (blue). Red and blue ellipses represent the two standard errors 
around the group means for the dancer and non-dancer groups, respectively. The thin black line is the unity 
line. Thick black traces show an example shape of each pattern. 

 

For the circle pattern, there was a significant main effect of condition, but no 

significant main effect of group or an interaction (2-way ANOVA, p = 0.47 for group, p 

< 0.01 for condition, p = 0.64 and for interaction) (mean ± SEM: dancer vision: 6.23 ± 

0.23, dancer no vision: 7.17 ± 0.25, non-dancer vision: 6.29 ± 0.26, non-dancer no vision: 

7.44 ± 0.19) (Figure 7A). This suggests that dancers and non-dancers were equally 

precise in their hip trajectories, but the lack of vision influenced precision of both groups.  

For the zigzag 1 pattern, we found a significant main effect of vision, but no main 

effect of group or interaction (2-way ANOVA, p = 0.62 for group, p < 0.01 for condition, 

and p = 0.63 for interaction) (mean ± SEM: dancer vision: 6.76 ± 0.30, dancer no vision: 

7.68 ± 0.26, non-dancer vision: 6.54 ± 0.19, non-dancer no vision: 7.68 ± 0.09) (Figure 

7B). This suggests that both dancers and non-dancers were similar in their precision, but 

both experienced a change in precision when vision was eliminated.  
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For the zigzag 2 pattern, there was a significant main effect of group and 

condition, but no interaction (2-way ANOVA, p = 0.02 for group, p < 0.01 for condition, 

and p = 0.82 for interaction) (mean ± SEM: dancer vision: 6.24 ± 0.19, dancer no vision: 

7.27 ± 0.14, non-dancer vision: 6.74 ± 0.23, non-dancer no vision: 7.67 ± 0.19) (Figure 

7C). This suggests that the dancers were more precise in their hip trajectory than non-

dancers in the zigzag 2 pattern and both groups experienced a change in precision when 

vision was eliminated. Critically, our results demonstrate that when the spatial navigation 

task was more complex, like in the zigzag 2 configuration, dancers outperformed non-

dancers in terms of precision both when vision was available and restricted. 

Discussion 

Here we found that for each spatial configuration, the accuracy and precision of 

hip trajectories of dancers and non-dancers were affected by the lack of vision. This 

demonstrated that dance expertise does not aid in spatial navigation when vision is 

restricted. We also found that dance expertise did not aid in the accuracy or precision of 

walking simple spatial configurations like the zigzag 1 and circle patterns. However, 

dance expertise did allow for more accurate and more precise performance of complex 

spatial configurations like the zigzag 2 pattern. Thus, our data suggest that dance 

expertise does aid in the spatial navigation of complex, but not simple spatial 

configurations.  

Neural activation during spatial navigation 

Neuroimaging studies have identified the importance of the hippocampus and the 

parahippocampal region in human navigation (Aguire et al. 1998; Agurie et al. 1996; 



23 
 

Maguire et al. 1998). These structures are necessary for the memory aspects of spatial 

navigation and it is suggested that spatial navigation deteriorates with age due to a 

decrease in this visual memory (Moffatt et al., 2001). Interestingly, these same brain 

regions also respond to visual stimuli (Cameron et al. 2001; Epstein et al. 2003; Epstein 

and Kanwisher, 1998; Kreiman et al. 2000; Ojemann et al. 2002). This, again, highlights 

the importance of the visual system for accurate spatial navigation in humans. When 

vision is restricted however, these areas receive less input which may account for both 

dancers and non-dancers decrease in performance when vision was eliminated.  

Effects of dance experience on motor control 

Previous studies have identified some tasks in which dance experience provides 

an advantage over non-dancers. Dancers have been shown to have improved postural 

control (Rein et al., 2011) and to be able to hold postures longer (Crotts et al., 1996) than 

non-dancers. These studies suggest that dance expertise improve postural control in static 

positions. Dance expertise has also been shown to improve balance proficiency and 

distance traveled in a beam walking task (Sawers and Ting, 2015). This improved 

balance proficiency has been linked to improved neural control of movement as 

evidenced by more consistent motor modules with less coactivity of muscles in dancers 

compared to non-dancers (Sawers et al., 2015). Taken together, these studies imply that 

dance expertise improves balance in both static and dynamic balance control tasks. Our 

results add to this body of motor control research to show that dance expertise provides 

an advantage when navigating complex spatial configurations.  
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There is also evidence to suggest that the advantages dance expertise provides are 

eliminated when vision is not available. Golomer et al. (1999) tested the postural sway of 

dancers of varying age. They found that the most experienced dancers were more 

dependent on vision than the younger dancers. de Mello et al. (2017) also found that 

ballet dancers had more postural sway that non-dancers in a single-leg stance when vision 

was restricted. These results could be a reflection of how dancers are taught to use their 

visual system during their training. For example, spotting is a technique used both to 

balance and to prevent dizziness while turning. This use of the visual system during 

spotting is a fundamental component of dance expertise. Our results further demonstrate 

dancers’ reliance on the visual system in motor control tasks; dance expertise did not 

provide any advantage in spatial navigation over non-dancers when vision was restricted.  

We also found that dancers and non-dancers performed similarly in two of the 

three spatial configurations. It is possible that this may be a result of the simplicity of the 

two configurations and the simplicity of the walking task. However, when the spatial 

configuration was more complex in the zigzag 2 pattern, dancers outperformed non-

dancers. This suggests that spatial navigation may be independent of body representation. 

Alternatively, when asked to perform more complex skills along the same path, body 

representation may be more critical for accurate performance. Our next study intends to 

examine this by having dancers perform choreography in the same spatial configurations 

and determine whether they are able to transfer these motor skills from one spatial 

context to another. 
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EXPERIMENT TWO: SPATIAL GENERALIZATION OF UNCONSTRAINED 
MOTOR SKILLS 

Introduction 

Motor learning describes the changes in movements that occur with practice or 

experience. Recently, Shmuelof and Krakauer (2012, 2014) provided a meaningful 

distinction between two categories of motor learning: motor adaptation and unconstrained 

motor skill learning. Motor adaptation is characterized by fast behavioral changes in 

response to a perturbation that induces a systematic error (Held, 1965; Shadmehr and 

Mussa-Ivaldi 1994; Krakauer, 2009). In this case, motor learning returns performance to 

baseline levels. In contrast, motor skill learning requires slower changes in behavior that 

lead to improvements in performance beyond baseline levels (Schmidt, 1975; Wulf et al. 

2010). If motor adaptation and unconstrained motor skill learning are both properties of 

motor learning, then the features observed in motor adaptation (retention, generalization 

to untrained contexts, etc.) should also apply to motor skill formation. 

Generalization, one feature of motor adaptation, refers to the ability to transfer 

learning from a trained context to an untested context. Generalization has been studied 

extensively using several motor adaptation paradigms including visuomotor rotation 

(Krakauer, 2009), force-field adaptation (Criscimagna-Hemminger et al. 2003), and split-

belt treadmill walking (Reisman et al. 2009, Vasudevan and Bastian 2010, Savin et al. 

2014). Through these studies, generalization has been studied across movement speeds 



26 
 

and extents (Goodbody and Wolpert 1998; Mattar and Ostry 2010; Joiner et al. 2011), 

configurations (Shadmehr and Mussa-Ivaldi, 1994; Shadmehr and Moussavi, 2000; 

Malfait et al. 2002), effectors (Criscimagna-Hemminger et al. 2003, Malfait et al. 2004, 

Taylor et al. 2011, Joiner et al. 2013), and directions (Donchin et al. 2003; Thoroughman 

and Taylor, 2005; Hwang et al. 2006; Fernandes et al. 2012). Currently, however, few 

studies have determined the extent generalization is also a property of motor skill 

learning. 

Here, we will focus specifically on spatial generalization which has been studied 

extensively in motor adaptation paradigms, particularly force-field adaptation. Force-field 

adaptation is commonly studied using a robotic manipulandum. Subjects make 

constrained reaching movements where the goal is to place a cursor in a goal target. 

During baseline movements, the robotic manipulandum moves freely and subjects make 

straight reaching movements unperturbed. At the beginning of the training period, a force 

proportional in magnitude and orthogonal in direction is applied to the robotic handle. 

Initially, subjects’ movements take a curved path and subjects apply little force to the 

handle. By the end of training, subjects learn to apply a force to the handle that 

corresponds to the force that the robot applies and subjects make straighter movements 

between targets (Shadmehr and Mussa-Ivaldi, 1994).  

Previous work has shown that aftereffects in response to a force-field perturbation 

also occur in novel workspaces (Shadmehr and Mussa-Ivaldi, 1994) which suggests that 

adaptation to perturbations can generalize to new contexts. Malfait et al. (2002) expanded 

upon this and identified that adaptation to force-field perturbations generalizes from one 
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arm configuration to another as long as the joint displacements remain the same. This 

suggests that motor adaptation is tied to intrinsic coordinates, and much less to joint 

velocities. Force-field adaptation has also been demonstrated to generalize from a learned 

body posture to a novel posture (Ahmed and Wolpert, 2009). While it is clear that 

generalization occurs in a wide variety of the spatial context changes, it remains unclear 

whether these observations would occur for skilled, unconstrained movement tasks. 

To study generalization of motor skills, we examined dancers performing a phrase 

of choreography in a trained and untrained spatial contexts. Dance is an ideal motor skill 

for study because ballet technique requires that movements be performed in precise ways 

which allows individual dancers to perform skills consistently from repetition to 

repetition (Hopper et al., 2018). In addition, ballet training ensures that multiple dancers 

on stage together will perform skills in an aesthetically similar way. Dancers are also 

trained to move in time with music or a metronome which allows for a consistent 

performance across dancers with respect to time. Previous work has found that dance 

training leads to some cognitive benefits over non-dancers including a heightened sense 

of body awareness and orientation within the environment (Fonseca et al. 2014; Margaret 

et al. 2014). The current study aims to examine the generalization of motor skills, so we 

chose dancers as our model for experts of spatial awareness, orientation within the 

environment, and motor skill. 

In the current study, we examined dancers performing a phrase of choreography 

that was learned in one spatial configuration, and then tested in two novel configurations. 

Utilizing motion capture cameras and analysis, we monitored body position throughout 
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each trial. We examined the accuracy of the dancers’ performance of the desired 

configurations and the consistency of their performance from trial to trial. Our results 

provide insight into the extent generalization occurs in tasks requiring highly skilled, 

unconstrained movements. 

Methods 

Participants 

Ten subjects volunteered to participate in this experiment. All participants were 

female, age 18-22, had no known neurological impairment, and were naive to the purpose 

of this study, which consisted of performing complex dance movements in different 

spatial configurations. All subjects were enrolled in the George Mason University School 

of Dance and had completed more than twelve years of dance experience, defined as 

participating in weekly dance classes, prior to participation in the study. Subjects did not 

receive any training before data collection, and each individual completed one 1-hour 

session. The study protocol was approved by the George Mason University Institutional 

Review Board. All participants gave informed consent. 

Experimental Setup 

Motion capture cameras were used to monitor subjects’ position within a 6.45 m 

by 4.50 m rectangular space. Twenty Optitrack Prime 13 cameras were mounted in a 

dance studio in the George Mason University School of Dance (Figure 1). The Optitrack 

baseline marker set (n = 37 markers) was applied to each subject (Figure 2). Three-

dimensional position data were collected at 120 Hz for each of the 37 markers. 
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The rectangular space was marked on the floor with tape and subjects were 

instructed to stay within those bounds through the duration of the experiment. Four X’s 

marked the start and stop location for the trained and the novel spatial configurations 

(training: zigzag 1, test: circle and novel zigzag). 

Task 

Dancers learned a phrase of choreography via video recordings. Two of the 

videos were slow demonstrations of the choreography; a peer showed the specific 

movements required in the phrase and the timing of those movements. In one of the 

demonstration videos, the camera filmed the peer from the front, and the other 

demonstration video filmed the peer from the back. Two other videos were examples of 

the peer performing the choreography at the trained speed (110 beats per minute (bpm)) 

and in the trained configuration (zigzag 1 pattern). One example video was filmed from 

the front perspective and one was filmed from the back. Both example videos had audio 

of a metronome set to 110 bpm. Dancers were able to watch these videos as many times 

as they needed to feel confident in their ability to perform the choreography on their own. 

The phrase of choreography was composed of eight sets of three counts for a phrase total 

of 24 counts. To complete one trial, the phrase of choreography was repeated twice for a 

trial total of 48 counts. At the ideal tempo, the duration of one trial was 26.18 seconds (48 

beats at 110 bpm). The choreography was written such that dancers would make the 

trained zigzag 1 pattern as they traveled through the rectangular space (Figure 8). At the 

beginning of the training block and each test block, dancers were shown the desired 

pattern like those shown in Figure 8 and the experimenter explicitly pointed out the start 
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and stop locations marked on the floor. Dancers were not able to practice the circle or 

novel zigzag patterns prior to data collection. The same phrase of choreography was used 

through the duration of the experiment. 

 

 
 
Figure 8 Ideal Movement Trajectories from Bird’s Eye View Perspective. In each pattern, the dark gray filled 
circle represents the start position and the light gray filled circle represents the end position. Arrows indicate the 
direction of movement. Open black circles indicate the changes in direction which were not explicitly marked on 
the floor. Dotted lines show the ideal movement trajectory for the A) training, B) circle, and C) novel zigzag 
patterns. 

 

Experimental Procedure 

Dancers first completed a training period where they performed a block of ten 

trials in the trained zigzag 1 configuration. Following this training period, dancers were 

asked to perform two test blocks of four trials in the two test configurations: circle and 

novel zigzag. The order of the test blocks was randomized for each subject. During each 

trial, a metronome played at 110 bpm. 

Analysis of body motion 

The position of the body (hip trajectory) was determined using the average 

location of the four markers on the hips. The velocity of the body was calculated based 
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on the change in position in the X and Y dimensions of the body position. The start (end) 

of a trial was represented by the point in time where the body velocity increased 

(decreased) to 0.05 m/s. We then determined the duration of the movement from 

movement start to end and converted this to a percentage from 0% to 100%. We then 

examined the hip trajectory at each 0.5% increment. The hip trajectory was then averaged 

across each trial within a block of training or test trials and then across subjects.  

The ideal pattern was based on the position of the start and end tapes marked on 

the floor. For both ideal zigzag patterns (trained and novel), the second change in 

direction was the linear midpoint between the start and end locations. For the ideal 

trained pattern, the first and third changes in direction were determined by dividing the 

distance between the start and midpoint position and the midpoint and the end position in 

the Y dimension, respectively, and 15 cm from the outer bounds of the space based on the 

blue tape in the X dimension. For the ideal novel zigzag, the first and third changes in 

direction were determined by dividing the distance between the start and midpoint 

position and the midpoint and the end position in the X dimension, respectively, and 15 

cm from the outer bounds of the space based on the blue tape in the Y dimension. The 

diameter of the ideal circle was 4.20 m (15 cm inside the bounds of the rectangular 

space). 

To examine the consistency of movement across conditions, we calculated the 

total time taken to complete each trial. The time was calculated from the start to the stop 

of each trial, averaged across trials within a block, then across subjects. 
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To determine how accurately dancers were able to adjust their movements from 

the training pattern to the novel zigzag pattern, we scaled their movement from the 

training pattern to most closely match their movement from the novel zigzag pattern. We 

compared the scaling the dancers actually performed to the ideal scaling based on the 

ideal training and novel zigzag patterns. We first identified the horizontal and vertical 

scaling of the ideal training pattern that resulted in the lowest MSE when compared to the 

ideal novel zigzag pattern. Here we rotated the ideal training pattern so the start and end 

locations line up with those from the novel zigzag pattern. We then identified the ideal 

scaling of the horizontal and vertical position points from the rotated ideal training 

pattern such that the scaled horizontal and vertical position points and the points from the 

ideal novel zigzag pattern have the lowest MSE. We found that multiplying the horizontal 

position data from the rotated ideal training pattern by 1.47 and the vertical position data 

from the rotated ideal training pattern by 0.69 resulted in the lowest MSE between the 

ideal novel zigzag pattern and the scaled data (Figure 9).  
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Figure 9 Illustration of Calculating the Ideal Spatial Scaling Based on Ideal Training and Novel Zigzag Patterns. 
Dashed traces represent the ideal training pattern. Solid traces represent the ideal novel zigzag pattern. Green, 
black, and red sections represent the beginning, the middle, and the end of the ideal patterns, respectively. A) 
Ideal training pattern. B) Ideal novel zigzag pattern. C) Ideal novel zigzag and ideal training pattern rotated to 
match the dimensions of the novel zigzag pattern. D) Ideal novel zigzag pattern plotted with the rotated ideal 
training pattern scaled down in both the horizontal and vertical dimensions. E) Ideal novel zigzag pattern 
plotted with the rotated ideal training pattern scaled up in both the horizontal and vertical dimensions. F) Ideal 
novel zigzag pattern plotted with the ideally scaled and rotated training pattern where we found the minimum 
MSE between the two traces. 

 

To determine the actual scaling dancers performed, we first rotated and then 

scaled the average training pattern from each subject from 0.97 to 1.97 by 0.005 in the 

horizontal dimension and 0.185 to 1.185 by 0.005 in the vertical dimension. We then 

found the MSE between each scaled training pattern and the actual data from each trial of 

the novel zigzag pattern (Figure 10). We averaged the MSEs across novel zigzag pattern 
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trials, then across subjects. The MSEs were plotted in a heat map (Figure 12). We also 

found the horizontal and vertical scaling each dancer used and plotted the average over 

all dancers and the ideal scaling based on the ideal training and novel zigzag patterns 

(Figure 12). 

 

 

Figure 10 Illustration of Calculating the Each Subject’s Spatial Scaling Based on Mean Training Data and Data 
from a Single Novel Zigzag Trial. Dashed traces represent one subject’s mean hip trajectory in the training 
pattern. Solid traces represent the hip trajectory on a single novel zigzag trial. Green, black, and red sections 
represent the beginning, middle, and end of the trajectories, respectively. A) Mean hip trajectory for one subject 
in the training pattern. B) Hip trajectory from one trial in the novel zigzag pattern. C) Single trial novel zigzag 
hip trajectory and mean training hip trajectory rotated to match the dimensions of the novel zigzag trial. D) 
Single trial novel zigzag hip trajectory plotted with the rotated mean training hip trajectory scaled down in both 
the horizontal and vertical dimensions. E) Single trial novel zigzag hip trajectory plotted with the rotated mean 
training hip trajectory scaled up in both the horizontal and vertical dimensions. F) Single trial novel zigzag hip 
trajectory plotted with the rotated mean training hip trajectory scaled in the horizontal and vertical dimensions 
where we found the minimum MSE between the two traces. 
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We also examined the hip trajectory of each trial relative to the ideal pattern and 

to the mean hip trajectory for each block of training or test trials (Figure 11). To quantify 

the accuracy of the hip trajectories, we calculated the mean squared error (MSE) between 

the hip trajectory on each trial and the ideal pattern. We will refer to this calculation as 

mean squared error relative to the ideal pattern or MSEi. In Figure 11D, we calculated the 

MSEi for each subject within a given block of trials, then averaged across subjects. To 

examine the precision of hip trajectory, we calculated the MSE between the hip trajectory 

on each trial and the mean hip trajectory for the respective block of training or test trials. 

We will refer to this calculation as the mean squared error relative to the mean hip 

trajectory or MSEm. In Figure 11E, we calculated the MSEm for each subject within a 

given block of trials, then averaged across subjects. The units for all measures of MSE 

are cm2. 

Statistical Analysis 

A one-way ANOVA was performed to identify whether there was a difference in 

the average time to complete trials in the trained and test patterns. We also performed two 

one-way ANOVAs to test whether there was a difference in MSEi or MSEm for the three 

spatial configurations. Because we found a main effect for MSEi, we also performed 

paired t-tests to determine which pair or pairs of the three conditions contained a 

significant difference in MSEi. We used a Bonferroni correction to adjust for multiple 

comparisons. To determine whether the average horizontal and vertical scaling was 

significantly different from the known ideal horizontal and vertical scaling, we performed 



36 
 

two one-tailed t-tests. All statistical analyses were performed with MATLAB, and for all 

tests the significance level was 0.05. 

Results 

Comparison of time elapsed during trials in each spatial configuration 

We first quantified the amount of time dancers required to complete the training, 

circle, and novel zigzag pattern trials. The repeated phrase of choreography was the same 

for each of the patterns. Therefore, the time used to complete each pattern should have 

been approximately equal provided performance was not different between spatial 

configurations. A one-way ANOVA revealed that there was no significant difference in 

the average time taken to complete training, circle, and novel zigzag patterns (p = 0.35). 

The dancers took 28.5 ± 0.6, 27.1 ± 0.7, and 28.1 ± 0.7 seconds on average to complete 

trials in the training, circle, and novel zigzag conditions, respectively. This suggests that 

dancers performed the choreography consistently in time despite the change from trained 

to untrained spatial configurations.  

 
Comparison of performance to the ideal trajectory and mean path for each pattern 

We then examined the hip trajectories (Figure 11). We first plotted the average 

hip trajectory across all subjects for each pattern (Figure 11A, B, and C). We then 

calculated the MSEi between the hip trajectory on each trial and the ideal pattern (Figure 

11D) and the MSEm between the hip trajectory on each trial and the average hip 

trajectory for each pattern (Figure 11E). A one-way ANOVA found that there was a 

significant difference between the MSEi for the three different patterns (p = 0.04). Post-

hoc tests with a Bonferroni correction for multiple comparisons revealed that the MSEi 
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for the novel zigzag pattern was lower than for the training pattern (one-tailed, t-test p < 

0.01). This suggests that the dancers perform more accurately in the novel zigzag 

condition than in the training condition. A one-way ANOVA comparing the MSEm for 

the three patterns revealed no significant difference between the three patterns (p = 0.52). 

This implies that the dancers performed the three patterns equally precisely. 

 

 
 
Figure 11 Hip Trajectories and MSEi and MSEm. Average hip trajectories are plotted with the ideal trajectory 
for each of the three patterns: A) training, B) circle, and C) novel zigzag. Thick black traces represent the ideal 
trajectory for each pattern. Thin colored traces represent the average hip trajectory across ten subjects. 
Shading represents standard error. Green represents data from the training condition. Red shows data from the 
circle condition and blue shows data from the novel zigzag pattern. The mean squared error relative to the ideal 
(MSEi) and mean squared error relative to the mean hip trajectory (MSEm) are plotted in the bar graphs with 
units of cm2 in D) and E). Thin black lines on bars represent the standard error. 
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Analysis of spatial scaling between configurations 

Finally, we compared the horizontal and vertical scaling of the training hip 

trajectories dancers performed and the ideal scaling they should have applied in order to 

accurately perform the novel zigzag pattern. The surface plot of MSE values shows low 

values of MSE in cooler colors and higher values of MSE in hotter colors (Figure 12). 

The thick black lines indicate the ideal scaling of the training pattern that results in the 

lowest MSE between the scaled training pattern and the ideal novel zigzag pattern (1.47 * 

ideal rotated training horizontal data and 0.69 * ideal rotated training vertical data). The 

dashed lines indicate the group average of the horizontal and vertical scaling that resulted 

in the lowest MSE between the actual rotated and scaled training data and the actual data 

from the novel zigzag pattern.  
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Figure 12 Ideal Horizontal and Vertical Spatial Scaling of the Training Pattern to Match the Novel Zigzag 
Pattern Performance. Heat map represents the scaling of the horizontal data from the training pattern on the X 
axis and scaling of the vertical data from the training pattern on the Y axis. Each point in this figure represents 
the MSE between the data from the novel zigzag pattern and the scaled horizontal and vertical data from the 
training pattern. Warm colors show high MSE values and cooler colors show lower MSE values with units of 
cm2. The thick black lines represent the ideal horizontal and vertical scaling based on the ideal training and 
novel zigzag patterns. Gray dashed lines represent the average scaling that resulted in the lowest MSE between 
the scaled training positional data and the actual positional data from the novel zigzag pattern. The top bar 
graph shows the ideal horizontal scaling based on the ideal patterns in black and the group average of the actual 
horizontal scaling in gray. The bottom bar graph shows the ideal vertical scaling based on the ideal patterns in 
black and the group average of the actual vertical scaling in gray. Thin black lines represent the standard error. 

 

The group average horizontal scaling was identified as 1.64 ± 0.05 (mean ± SE) 

times the rotated training horizontal data and the group average vertical scaling was 

identified as 0.59 ± 0.03 (mean ± SE) times the rotated training vertical data. We ran two 

t-tests to identify whether the group averages for the horizontal and vertical scaling of the 

actual data differed from the scaling based on the ideal patterns. We found that the actual 
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horizontal scaling was significantly greater than 1.47 (one-tailed t-test, p < 0.01) and the 

actual vertical scaling was significantly less than 0.69 (one-tailed t-test, p < 0.01). This 

indicates that dancers tended to overestimate the upscaling they needed to transform the 

training pattern to the novel zigzag pattern in the horizontal dimension and tended to 

overestimate the downscaling needed to transform the training pattern to the novel zigzag 

pattern in the vertical dimension. 

Discussion 

Collectively, our results suggest that spatial generalization does occur in the case 

of unconstrained motor skills. We found that dancers moved in the desired patterns with 

equal precision in the trained and novel contexts. Additionally, dancers performed with 

equal accuracy for the trained and circle pattern and performed more accurately in the 

novel zigzag pattern. Finally, dancers were able to scale their movements from the 

trained pattern to the novel zigzag pattern though they tended to overestimate the 

upscaling needed in the horizontal dimension and overestimate the downscaling needed 

in the vertical dimension.  

To better understand the underlying neural processes of generalization, Brayanov 

et al. (2012) evaluated whether intrinsic or extrinsic representations are used in 

generalization of motor adaptation. They identified that both intrinsic and extrinsic 

representations are used when transferring learning from a training to an untrained 

context. When considering our results, it is likely that dancers utilized both intrinsic and 

extrinsic representations while transferring motor skills from the trained pattern to the test 

patterns.  
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Brayanov et al. (2012) also posit that a collection of neurons may encode the 

memory of generalization of simple movement using a gain-field combination of intrinsic 

and extrinsic representations. It is possible that these same neurons contribute to the 

motor memories dancers’ utilize to transfer motor skills to new contexts. This hypothesis 

could be tested and confirmed using functional magnetic resonance imaging, but the 

skilled motor learning task would need to involve only hand or wrist movements as in 

Shmuelof et al. (2012) due to the limitations of brain imaging which require subjects to 

remain still during scans. 

In the future, we will examine the whole-body movement in three dimensions. 

Here, we will determine how consistent dancers perform the choreography over the 

course of each trial. More specifically, we intend to examine the variability of the arm 

and leg movements across trials in the training and test blocks in order to quantify the 

consistency of the dancers’ movements despite the change in spatial context. We expect 

that the dancers’ movement will have very low variability within each subject, but also 

across subjects. We expect the change in spatial context will have very little effect on the 

variability of the movement which would provide further evidence that dancers are able 

to transfer motor skills from a trained to an untrained spatial configuration. 
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EXPERIMENT THREE: TEMPORAL GENERALIZATION OF 
UNCONSTRAINED MOTOR SKILL 

Introduction 

The previous study established that dancers are able to transfer motor skill 

learning from a trained spatial configuration to untrained spatial configurations. Thus, our 

results suggest that generalization may be a property of both motor adaptation and motor 

skill learning. In the subsequent study, we further examined generalization of motor skill 

learning, but in this case we tested the extent dancers are able to transfer skill learning 

from a trained to untrained performance speeds. 

Generalization of learning across movement speeds and extents has been 

demonstrated using simple, confined movements (Goodbody and Wolpert 1998; Mattar 

and Ostry 2010; Joiner et al. 2011). In each of these studies, subjects completed a force-

field adaptation task where subjects were asked to counter a velocity-dependent force that 

was applied orthogonally to the direction of movement. Goodbody and Wolpert (1998) 

found near linear transfer of adaptation from slow to fast movements. These results, 

however, could be explained by the random presentation of force-fields of differing 

magnitude. Scheidt et al. (2001) found that when varying magnitudes of force-field are 

presented, subjects adapt to the average of those force-fields. Later, Mattar and Ostry 

(2010) found level extrapolation of adaptation from trained to untrained speeds. Their 

study, however, increased both speed and extent simultaneously, so their results could be 
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attributed to contextual effects. Joiner et al. (2011) addressed the study design issues that 

could have contributed to previous conflicting results. Importantly, Joiner et al. (2011) 

trained subjects to move to a target within a specified movement duration (speed), then 

tested transfer of force-field adaptation to a shorter movement duration (faster speed). 

They found that approximately 74% of adaptation transferred from the longer to the 

shorter movement duration. Their results definitively show generalization of motor 

adaptation across movement speeds, but it remains unknown whether this effect can be 

observed in motor skill learning. 

Dancers provide an interesting population to study temporal generalization of 

motor skills because they are often asked to perform these tasks during the process of 

learning and perfecting choreography. Dancers often learn choreography at slower speeds 

and then perform that choreography at faster speeds with music. Similarly, a 

choreographer or teacher may ask dancers to perform at slower or faster tempos to teach 

dancers differences in the weight and flow of movement. Sgouramani and Vatkis (2014) 

evaluated dancer and non-dancer timing judgments using a production task where 

subjects were asked to stop a video when they felt a certain amount of time had passed. 

They found that dance expertise was associated with lower variability in these timing 

judgments.  

In addition, dancers have been shown to display more interpersonal synchrony 

than dyads of non-dancers (Sofianidis and Hatzitaki, 2012) which suggests that dancers 

are better able to integrate timing cues in order to synchronize movement with a partner 

than non-dancers. Interestingly, when dancers were asked to perform a four-minute 
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phrase of choreography without music or timing cues, dancers tended to speed up the 

choreography and end fourteen seconds early. This 5% difference was attributed more to 

memory errors (forgetting segments of choreography) rather than internal timing errors 

(Stevens et al. 2009). It appears that dancers have a superior ability to judge timing, 

integrate time cues to guide movement, and perform motor skills consistently in time 

without any time cues. This information suggests that dancers may have an advantage in 

transferring motor skills from trained to untrained speeds, but their ability to do this has 

yet to be studied or quantified. 

In the current study, we examined dancers performing a phrase of choreography 

in a trained tempo (110 bpm) and then tested transfer to several untrained tempos (55 

bpm, 88 bpm, 99 bpm, 121 bpm, 132 bpm, and 165 bpm). We utilized motion capture 

analysis to monitor dancers’ body position throughout each trial. Our results provide 

insight into the ability of humans to transfer motor skills from experienced movement 

speeds to unexperienced movement speeds. We intend to further establish that temporal 

generalization is not just a property of motor adaptation, but is also a property of motor 

skill learning. 

Methods 

Participants 

Ten subjects volunteered to participate in this experiment. All participants were 

female, age 18-22, had no known neurological impairment, and were naive to the purpose 

of this study, which consisted of performing a complex movement sequence at different 

speeds. All subjects were enrolled in the George Mason University School of Dance and 
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had completed more than 12 years of dance experience, defined as participating in 

weekly dance classes, prior to participation in the study. Subjects did not receive any 

training before data collection, and each individual completed one 1-hour session. The 

study protocol was approved by the George Mason University Institutional Review 

Board. All participants gave informed consent. 

Experimental Setup 

Motion capture cameras and markers were used to monitor subjects’ position 

within a 6.45 m by 4.50 m rectangular space. Twenty Optitrack Prime 13 cameras were 

mounted in a dance studio in the George Mason University School of Dance (Figure 1). 

The Optitrack baseline marker set (n = 37 markers) was applied to each subject (Figure 

2). Three-dimensional position data were collected at 120 Hz for each of the 37 markers. 

The rectangular space was marked on the floor with tape and subjects were 

instructed to stay within those bounds through the duration of the experiment. Two X’s 

marked the start and stop location for each trial. 

Task 

Dancers learned a phrase of choreography via video recordings. Two of the 

videos were slow demonstrations of the choreography; a peer showed the specific 

movements required in the phrase and the timing of those movements. In one of the 

demonstration videos, the camera filmed the peer from the front, and the other 

demonstration video filmed the peer from the back. Two other videos were examples of 

the peer performing the choreography at the trained speed, 110 bpm; one example video 

filmed from the front perspective, and one from the back. Both example videos had audio 
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of a metronome set to 110 bpm. Dancers were able to watch these videos as many times 

as they needed to feel confident in their ability to perform the choreography on their own. 

The phrase of choreography was composed of eight sets of three counts for a phrase total 

of 24 counts. To complete one trial, the phrase of choreography was repeated twice for a 

trial total of 48 counts. At the trained tempo, the duration of one trial was ideally 26.18 

seconds (48 beats at 110 bpm). The choreography was written such that dancers would 

make a zigzag pattern as they traveled through the rectangular space (Figure 13). The 

example videos showed the peer performing the zigzag pattern. Dancers were also shown 

Figure 13 so they could clearly see the ideal pattern and the experimenter explicitly 

pointed out the start and stop locations marked on the floor. The same phrase of 

choreography was used throughout the duration of this experiment. 

 

 
 

Figure 13 Ideal Movement Trajectory. The dark gray filled circle represents the start position and the light gray 
filled circle represents the end position. Arrows indicate the direction of movement. Open black circles indicate 
the changes in direction which were not explicitly marked on the floor. Dotted lines show the ideal movement 
trajectory for the trial. 
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Experimental Procedure 

Dancers first completed a training period where they performed a block of ten 

trials at the trained speed, 110 bpm. Following this training period, dancers were asked to 

perform one block of four trials at each of the test tempos (55, 88, 99, 121, 132, and 165 

bpm), for a total of six test periods. These tempos represent 10%, 20%, and 50% 

increases and decreases in tempo. The extremely low and extremely high tempos were 

chosen in order to collect data at speeds dancers were less likely to perform accurately. 

The order of the test tempos was randomized for each subject. During each trial, a 

metronome clicked at the desired tempo. 

Analysis of body motion 

The position of the body (hip trajectory) was determined using the average 

location of the four markers on the hips. The velocity of the body was calculated based 

on the change in position in the horizontal and vertical dimensions of the body position. 

The start (end) of a trial was represented by the point in time where the body velocity 

increased (decreased) to 0.05 m/s. We then determined the duration of the movement 

from movement start to end and converted this to a percentage from 0% to 100%. We 

then examined the hip trajectory at each 0.5% increment. The hip trajectory was then 

averaged across each trial within a block of trials at a given tempo and then across 

subjects. The ideal pattern was based on the position of the start and end positions 

marked on the floor. The second change in direction or the halfway point of the pattern 

was the linear midpoint between the start and end locations. The first and third changes in 

direction were determined by dividing the distance between the start and midpoint 
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position and the midpoint and the end position in the vertical dimension, respectively, 

and 15 cm from the outer bounds of the space in the horizontal dimension.  

To examine the consistency of movement across trials, we calculated the total 

distance traveled during each trial. Distance traveled was calculated using change in 

horizontal and vertical position of the body at each 0.5% of the hip trajectory. The 

distance traveled over the course of each 0.5% of the trial was summed for each trial, 

averaged across trials within a block, then across subjects (Figure 14). 

We also examined the hip trajectories (Figure 15) and quantified accuracy and 

precision for each tempo. To quantify accuracy, we calculated the mean squared error 

(MSE) between the actual hip trajectory on each trial and the ideal pattern. We refer to 

this calculation as MSEi. To quantify precision, we calculated the MSE between the hip 

trajectory on each trial and the mean hip trajectory for a block of trials for a given tempo. 

We refer to this calculation as MSEm. In Figure 16A and 16B, we calculated the MSEi for 

each subject within a given tempo condition and plotted this versus the MSEm for each 

subject within a given tempo condition. All MSE values have units of cm2. We also 

plotted the ellipse representing two standard errors around the group mean for each 

tempo condition. Figure 16A has squared axes with the same values on each axis. In 

Figure 16B, we zoom in on the X axis to better show the distribution of dancers and the 

group data ellipses. 

To determine how accurately dancers were able to scale the speed of their 

movements from the training tempo to the test tempos, we scaled the timing of their 

movement at the trained tempo by known amounts and identified the tempo that most 
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closely matched the speed of actual movement in the test tempo trials. We first identified 

the ideal scaling based on the time dancers should have taken to complete each trial. For 

the trained tempo, each trial should have taken 26.18 s (48 beats at 110 bpm). The 

duration of the trial for 55 bpm, 88 bpm, 99 bpm, 121 bpm, 132 bpm, and 165 bpm 

tempos ideally should be 52.36 s, 32.73 s, 29.09 s, 23.80 s, 21.82 s, and 17.45 s in 

duration, respectively. With this information, we identified the ideal scaling should be 

necessary to align test trials to the ideal in time. The ideal constant scalars used to 

multiply the training time stamps to match the ideal time stamps for the 55 bpm, 88 bpm, 

99 bpm, 121 bpm, 132 bpm, and 165 bpm trials were 2, 1.25, 1.11, 0.91, 0.83, and 0.67, 

respectively.  

To determine the actual scaling dancers performed in each of the test patterns, we 

first scaled the average timestamps (n = 200 timestamps) from the training trials for each 

dancer from 0.80 to 2.20, 1.05 to 1.45, 0.91 to 1.31, 0.71 to 1.11, 0.63 to 1.03, and 0.47 to 

0.87 by 0.01 for the 55 bpm, 88 bpm, 99 bpm, 121 bpm, 132 bpm, and 165 bpm trials, 

respectively. This gave us 41 sets of scaled training time stamps for each test tempo. For 

each of the 41 sets of scaled training timestamps, we examined the position of the actual 

hip trajectory at each of the 200 timestamps. This gave us a new hip trajectory based on 

the scaled timestamps. With the 41 sets of scaled timestamps, we found 41 hip 

trajectories for each dancer for each test trial. We calculated the MSE between these 41 

hip trajectories and the actual hip trajectory for each test trial. We did this process for 

each test trial, averaged the MSEs across the four test trials at each tempo. We found the 

scaling of the training timestamps that produced the minimum MSE for each dancer. We 
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converted this actual scaling back to the equivalent tempo and plotted this as a function 

of the ideal tempo in each tempo condition. We also calculated and plotted the group 

average of the actual tempo each dancer used based on the scaling of the trained tempo 

(Figure 17). 

Statistical Analysis 

A one-way ANOVA was performed to identify whether there was a difference in 

the average distance traveled in the trained and test patterns. We performed post-hoc t-

tests to determine which conditions differed in distance traveled. We used a Bonferroni 

correction to adjust for multiple comparisons. To determine whether the average scaling 

was significantly different from the known ideal tempo for each tempo condition, we 

performed six two-tailed t-tests. All statistical analyses were performed with MATLAB, 

and for all tests the significance level was 0.05. 

Results 

To quantify the consistency of movement, we first examined the distance dancers 

traveled during the trained and test tempos (Figure 14). Because the ideal movement 

trajectory was the same for the training and test conditions, we expected that the distance 

traveled in each condition would be approximately equal across tempos. However, a one-

way ANOVA revealed a significant difference in the distance traveled for the conditions 

(p < 0.01). Post-hoc tests revealed significant differences in distance traveled for the 

following pairs of tempos: 55 bpm and 121 bpm (paired, two-tailed t-test p = 0.03), 55 

bpm and 165 bpm (paired, two-tailed t-test p < 0.01), 88 bpm and 132 bpm (paired, two-

tailed t-test p = 0.01), 88 bpm and 165 bpm (paired, two-tailed t-test p < 0.01), 99 bpm 
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and 165 bpm (paired, two-tailed t-test p < 0.01), 110 bpm and 165 bpm (paired, two-

tailed t-test p < 0.01), 121 bpm and 165 bpm (paired, two-tailed t-test p < 0.01), and 132 

bpm and 165 bpm (paired, two-tailed t-test p < 0.01). Each post-hoc test was Bonferroni 

corrected for multiple comparisons. Dancers traveled less distance in 121 bpm trials and 

132 bpm compared to 55 bpm trials and 88 bpm trials, respectively. Also, dancers 

traveled less during the 165 bpm trials than all other tempo conditions. Taken together 

these results suggest that dancers tended to travel less at faster tempos, particular at the 

fastest tempo. 

 

 
 

Figure 14 Total Distance Traveled in Each Tempo Condition in Meters. Bars show the group average of the total 
distance traveled during training and test tempos. Dark red, red, orange, light green, dark green, cyan, and blue 
bars represent data from the 55 bpm, 88 bpm, 99 bpm, 110 bpm, 121 bpm, 132 bpm, and 165 bpm trials, 
respectively. Black lines on bars show standard error. 
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We then examined the hip trajectories for each tempo condition (Figure 15). Here, 

thin colored lines show the group average hip trajectories for each condition and shading 

represents the standard error. Thick black traces show the ideal zigzag pattern. 

 

 
 
Figure 15 Average Hip Trajectories for Each Tempo. Average hip trajectories are plotted with the ideal 
trajectory for each of the seven tempos. Thick black traces represent the ideal trajectory. Thin colored traces 



53 
 

represent the average hip trajectory across ten subjects. Shading represents standard error. Dark red, red, 
orange, light green, dark green, cyan, and blue traces and shading represent data from the 55 bpm, 88 bpm, 99 
bpm, 110 bpm, 121 bpm, 132 bpm, and 165 bpm trials, respectively. 

 

To evaluate dancers’ accuracy in performing the ideal zigzag pattern, we 

calculated the MSE between each actual hip trajectory and the ideal pattern (MSEi). A 

one-way ANOVA revealed no significant difference in the MSEi for the tempo 

conditions (p = 0.52). This suggests that dancers performed with equal accuracy at the 

trained and each of the test tempos. To evaluate the precision of hip trajectory, we 

calculated the MSE between each hip trajectory and the mean hip trajectory for a given 

condition (MSEm). A one-way ANOVA revealed there was no significant difference in 

the MSEm for the tempo conditions (p = 0.12). This suggests that dancers’ hip trajectories 

were equally precise when performing at the trained tempo and each of the untrained 

tempo compared to the other conditions. In Figure 16, we plotted the MSEi versus MSEm 

for each dancer in each tempo condition and the ellipse representing two standard errors 

around the group mean. The unity line represents the location where accuracy and 

precision values are equal. All of the data points and ellipses fall above the unity line 

which illustrates how much greater the MSEi was compared to the MSEm for every 

dancer in every tempo condition. This indicates that dancers are much more precise, than 

they are accurate in their performance of the ideal trajectory.  
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Figure 16 MSEi versus MSEm. A) MSEi versus MSEm with the same X and Y axes. B) MSEi versus MSEm 
with uneven X and Y axes. Small filled circles represent the average MSEi and MSEm for each of the ten 
subjects in each of the seven tempo conditions. MSE values have units of cm2. Ellipses represent two standard 
errors around the group mean in each tempo condition. Dark red, red, orange, light green, dark green, cyan, 
and blue represent data from the 55 bpm, 88 bpm, 99 bpm, 110 bpm, 121 bpm, 132 bpm, and 165 bpm trials, 
respectively. Thin black lines represent the unity line. 

 

To determine how well dancers were able to adjust their speed to the novel 

tempos, we scaled the timestamps from the training data and identified the scaling that 

led to the lowest MSE between the trajectory based on the scaled timestamps and the 

actual trajectory dancers performed in the test conditions (see Methods). We plotted each 

dancer’s scaled tempo versus the ideal tempo to evaluate how effectively dancers 

adjusted to the novel tempos (Figure 17).  
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Figure 17 Scaled Versus Ideal Tempo. The thick, dashed black line represents the unity line where the scaled 
tempo and the ideal tempo are equal. Thin colored circles represent each dancer’s average of the scaled tempo 
that led to the lowest MSE between the scaled trajectory and the actual hip trajectory. Thick colored circles 
represent the group average of the scaled tempos. Thin black lines show standard error. Dark red, red, orange, 
light green, dark green, cyan, and blue circles represent data from the 55 bpm, 88 bpm, 99 bpm, 110 bpm, 121 
bpm, 132 bpm, and 165 bpm trials, respectively. 

 

The scatterplot shows that dancers match the ideal tempo in the 88 bpm and 99 

bpm conditions. We ran two-tailed t-tests to comparing the scaled and the ideal tempo for 

the 88 bpm and the 99 bpm conditions and found no significant differences between the 
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scaled and ideal tempos (88 bpm: p = 0.11 and 99 bpm: p = 0.96). This suggests that 

dancers were able to accurately adjust their speed to match the ideal tempo at these 

tempos. We ran four t-tests comparing the scaled and the ideal tempo; one t-test for the 

55 bpm, 121 bpm, 132 bpm, and 165 bpm conditions. Each t-test revealed significant 

differences between the scaled and ideal tempos (55 bpm: p < 0.01, 121 bpm: p = 0.01, 

132 bpm: p < 0.01, and 165 bpm: p < 0.01). This suggests that for the 55 bpm condition, 

dancers scaled their movement, but undershot the temporal decrease necessary to perform 

at the slowest speed (i.e. they scaled to tempos faster than the ideal). In addition, for the 

121 bpm, 132 bpm, and 165 bpm conditions, dancers scaled their movement, but 

undershot the temporal increase necessary to perform at the faster than trained speeds 

(i.e. they scaled to tempos slower than the ideal). Taken together, these results suggest 

that dancers scale their speed well at intermediate tempos (88 bpm and 99 bpm), but tend 

to undershoot the necessary scaling for extreme tempos (55bpm, 121 bpm, 132 bpm, and 

165 bpm). 

Discussion 

Collectively, our results suggest that dancers are able to transfer motor skill 

learning from trained to untrained speeds, but there is a threshold at which dancers can no 

longer accurately perform the task at the new speeds. We found that dancers are able to 

maintain the distance they travel and accurately match their hip trajectories to the ideal 

pattern at novel speeds until they were asked to perform the choreography at 165 bpm, 

the fastest speed. Dancers also performed more precisely than they did accurately 

compared to the ideal trajectory. In addition, dancers were able to scale their movements 
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accurately in time to lower speeds, but not the extreme at 55 bpm. They were not able to 

accurately scale their movements in time to higher speeds. This suggests that dancers 

may be able to transfer motor skills more accurately to novel slower speeds compared to 

novel faster speeds. 

Zijlstra et al. (1995) identified a relationship between stride length and step 

frequency when walking was constrained. When subjects were asked to walk in time with 

a metronome (1 step on each beat), subjects increased the frequency of stepping with 

increasing tempo, but did not adjust their step length. Critically, the maximum tempo this 

study examined was 125 bpm. This study predicts that when frequency is increased, but 

the number of steps remains constant, distance traveled should remain constant. 

However, we found that dancers traveled less distance when they performed at the fastest 

tempo. Perhaps at the fastest tempo, the dancers in our study were forced to take shorter 

steps in order to transfer their weight in time. By testing the faster tempos, particularly 

165 bpm, we may have found a threshold where step size must decrease in order for step 

frequency to match the task demands.  

Previous work has also quantified preferred movement speeds for simple, 

unconstrained movement tasks. Collyer et al. (1994) had subjects freely tap their finger at 

a rate that was comfortable without any outward timing cues. They found average 

preferred tapping rates for the first few trials (subjects tended to tap faster after the first 

few trials) at inter-response intervals of 460 to 490 milliseconds. These inter-response 

intervals correspond to a tempos of 122 to 130 bpm. Kay et al. (1987) also found 

preferred inter-response intervals of 490 milliseconds (122 bpm) when subjects freely 
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tapped one hand; however, when subjects were asked to tap at their preferred speed with 

alternating hands, average preferred speeds were slower. These tasks suggest that humans 

may have a preferred speed to perform specific tasks, but that this speed varies depending 

upon the complexity of the task. Based on dancers’ limited ability to scale their 

movements to novel speeds in our experiment, dancers may prefer to perform the given 

choreography between 88 and 110 bpm. 

Another important consideration is that there is a physical limitation to how 

accurately the dancers can perform the movement at extremely high and extremely low 

speeds. The dynamical systems theory of motor control explains that movement arises 

from the interaction between the subsystems of the body, the environment, and the 

specific task. Ester Thelen demonstrated that motor control depends on the physics that 

underlie movement, not just the top-down signals from the brain (Thelen, 2005). Thelen 

and Fisher (1982) showed that the stepping reflex observed in babies disappears and then 

reappears, but is a result of weak leg muscles, not a spontaneous loss of motor control 

ability. This highlights importance of the physics behind the movement we asked dancers 

to perform. In the phrase of choreography, dancers performed a cartwheel. The 

dynamical systems theory would suggest that a potential reason we found dancers unable 

to scale their speed to higher tempos and extremely low tempos is that they physically 

could not perform a cartwheel as quickly or as slowly as the tempo demanded. We 

studied these extreme speeds specifically to quantify dancers’ physical limitations, so we 

expected dancers to be unable to match the extreme speeds, 55 bpm and 165 bpm. 
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Future directions for this experiment include examining the whole-body 

movement of the dancers in three dimensions. We will evaluate the consistency of 

movement each dancer performs within blocks of training and test trials. In addition, we 

will quantify the consistency of movement across dancers. To do this, we will quantify 

the variability of limb movement across trials. We expect that the variability of limb 

movement will be low at speeds around the trained tempo, but will increase when the 

speed increases and decreases to the extreme tempos. We expect that these data will 

confirm dancers’ ability to transfer motor skill learning from trained to novel speeds.  
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SUMMARY, LIMITATIONS, AND FUTURE DIRECTIONS 

Summary 

Collectively, the three experiments described above provide insight to the spatial 

and temporal properties of unconstrained motor skills.  

Our first study examined the ability of dancers and non-dancers to navigate in 

three spatial configurations with and without vision. We found that both dancers and non-

dancers’ performance was negatively influenced when vision was restricted, but dancers 

performed better than non-dancers in more complex spatial configurations.  

Our second study examined whether dancers are able to transfer a phrase of 

skilled movement from a trained spatial context to two untrained contexts. Here, we 

found dancers performed with equal precision in the trained and untrained contexts and 

dancers performed more accurately in an untrained context than the trained context. In 

addition, dancers were able to scale their movement from the trained pattern to a novel 

zigzag pattern, but tended to overestimate the necessary upscaling in the horizontal 

dimension and overestimate the necessary downscaling in the vertical dimension. 

Together, these results suggest that dancers are able to transfer movement from a trained 

to untrained spatial contexts.  

Finally, our third study examined whether dancers are able to transfer a phrase of 

skilled movement from a trained to novel speeds. We found that dancers performed with 
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equal accuracy and precision in each tempo condition. We also found that dancers are 

able to temporally scale their movement to intermediate tempos, but scale less accurately 

at extremely high and extremely low tempos. Our results indicate that dancers can 

transfer choreography from trained to untrained speeds, but tend to perform this task less 

accurately at extremely fast and extremely slow speeds. 

Limitations 

The contents of the room we used to collect data were constantly changing. The 

metronome was roughly placed in the same location for every subject, but we did not 

have a way to ensure that this was true. Particularly on trials without vision in experiment 

1, dancers and non-dancers could have used the auditory cue of the metronome to 

determine their position in the room. This cue, therefore, may have been in slightly 

different location from subject to subject. The room also had chairs, tables, and other 

objects on the perimeter. Dancers and non-dancers may have guided their movement 

based on the location of these objects, but these objects were in different locations for 

each subjects. This could have influenced the behavior of dancers and non-dancers. 

 In addition, it was possible for markers to fall off in the middle of a trial. Though 

this happened infrequently, it did require elimination of a trial that was partially 

completed from analysis. On the rare occasion this happened, subjects gained experience 

in whatever task they had been performing due to this extra trial where we could not use 

the data. This could influence the results to suggest that subjects performed better than 

they did given the additional, unmeasured experience they gained. 
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Similarly, it was possible for subjects to step outside of the bounds of the space 

when they were blindfolded in no vision trials in experiment 1 which led us to stop and 

eliminate a partially completed trial from analysis. Though this happened infrequently, 

dancers and non-dancers experienced a trial that was not measured in our results. This 

could have influenced the performance of dancers and non-dancers because they were 

stopped in a random location and brought back to the start position. They may have used 

the proprioceptive cues from the guided return to correct their next movement. 

Future Directions 

The current studies examine movement of dancers and non-dancers using only 

two-dimensional data from our motion capture system. The future direction of the two 

generalization studies is to examine the movement of the dancers in three dimensions. 

We are collaborating with computer scientists at University of California, Davis to 

analyze our data. We will measure the variability of the limb and head movement across 

tempo conditions and spatial contexts. What we expect to see is that the variability of the 

limb movement will be similar in both trained and untrained contexts. The dancers are 

extremely good at being able to perform the choreography with new task demands, so we 

anticipate that there will be little variability despite changing contexts. 
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