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ABSTRACT
Some recent work in the area of learning structural descriptions from examples is reviewed in light of

the need in many diverse disciplines for programs which can perform conceptual data analysis, i.e..
can describe complex data in terms of logical, functional, and causal relationships. Traditional data
analysis techniques are not adequate for discovering such relationships. Primary attention is given to
methods of learning the simplest form of generalization, namely, the maximally specific conjunctive
generalizations (MSC-generalizations) which completely characterize a single set of structural
examples. Various important aspects of structural learning in general are examined and criteria for
evaluating learning methods are presented. The criteria include the adequacy of the representation
language, generalization rules used, computational efficiency, and flexibility and extensibility. Selec-
ted learning methods, developed by Buchanan et al. [2-4, 32), Hayes-Roth [8-11], Vere [34-37],
Winston [38, 39], and the authors, are analyzed according to these criteria. Finally some goals are
suggested for future research.

1. Introduction

1.1. Motivation and scope of paper

There are many problem areas where lérge volumes of data are generated
about a class of objects, the behavior of a system, or a process. Scientists of
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many disciplines, especially those working in experimental fields such as
medicine, agriculture, chemistry, psychology, and geology, regularly face the
need to analyze collections of data in order to detect regularities and common
patterns. Traditional tools for data analysis include various statistical tech-
niques, curve-fitting techniques, and numerical taxonomy. These methods,
however, are often not satisfactory because they impose an overly restrictive
mathematical framework on the scope of possible solutions. For example,
statistical methods describe the data in terms of probability distribution func-
tions placed on random variables. As a result, the types of patterns which they
can discover are limited to those which can be expressed by placing constraints
upon the parameters of various probability distribution functions. Because of
the mathematical frameworks upon which they are based, these traditional
methods cannot detect patterns such as the logical, causal, or functional
relationships that are typical of descriptions produced by humans. This is a
well-known problem in AI, namely that a system in order to learn something
must first be able to express it. The solution requires introducing more
powerful representations for hypotheses and developing corresponding tech-
niques of data analysis and pattern discovery. Work done in AI and related
areas on computer induction and learning structural descriptions from exam-
ples has laid the groundwork for research in this area. This is not accidental,
because, as Michie [23] has pointed out, the development of systems which deal
with problems in human conceptual terms is a fundamental characteristic of Al
research.

This paper examines some of the work in AI on inductive learning of
structural descriptions, i.e., on learning by generalizing structural descriptions
representing input examples. Structural descriptions involve not only global
properties of objects (represented by variables or null-ary predicates) but also
properties of their parts (represented by unary functions or predicates) and
relationships among these parts (represented by k-ary functions or predicates).
Non-structural descriptions involve only variables and null-ary predicates. The
variables, predicates, and functions involved in descriptions are called descrip-
tors.

Attention is given primarily to the simplest form of inductive learning,
namely that which produces the maximally specific (longest) conjunctive
statements which characterize a given class of entities (such statements are
called, for short, MSC-generalizations). These statements are an important
special case of the characteristic descriptions discussed in Section 1.4. The
reason for this choice is that most work done in this area is addressing this
narrow, but important, subject. Many researchers have worked on other
aspects of machine learning, e.g., on learning decision tree descriptions (Hunt
[12], Quinlan [28, 29]), on learning recursive descriptions (Cohen and Sammut
[S]), on generalization with multilevel exceptions (Vere [37]), or developing
optimal discriminant descriptions of a fixed number of objects classes (Michalski
[17, 20]). Work on these other subjects is much more diverse and consequently
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much more difficult to compare than the work on MSC-generalizations. Some
of these additional contributions are mentioned in the sections concerning
extensions.

This paper discusses the work of Buchanan et al. [2-4], Hayes-Roth [8-11],
Vere [34-37], Winston [38, 39], and the authors’ own work. In order to
compare these methods, we first discuss some general aspects of inductive
learning and then introduce several criteria for evaluating learning methods.
These criteria are used to explain the essential contributions and ideas under-
lying the methods. They also make it possible to abstract from the diversity of
notations and terminology used by the various authors. It is hoped that this
approach will help people who are not expert in this area to better understand its
progress.

Finally, some goals for future research in this area are outlined.

1.2. Important aspects of inductive learning

The process of inductive learning can be viewed as a search for plausible
general descriptions (inductive assertions) which explain the given input data
and are useful for predicting new data. In order for a computer program to
formulate such descriptions, an appropriate description language must be used.
For any set of input data and any non-trivial description language, a large
number of inductive assertions can be formulated. These assertions, as noted
by Mitchell [24, 25], form a set of descriptions partially ordered by the relation
of generality. The minimal elements of this set are the most specific descrip-
tions, in the given language, of the input data, and the maximal element is the most
general description of these data.

Viewing induction as a search through a space of generalized descriptions
draws attention to the following aspects of learning.

(a) Representation. ' What description language is used for expressing the
input examples and formulating the inductive assertions? What are the possible
forms of assertions which a method is able to learn? What operators are used
in these forms?

(b) Type of description sought. For what purpose are the inductive assertions
being formulated? What assumptions does the method make about the under-
lying process(es) which generated the data?

(¢) Rules of generalization. What kinds of transformations are performed on
the input data and intermediate descriptions in order to produce the inductive
assertions?

(d) Constructive induction. Does the induction process change the descrip-
tion space, i.e., produce new descriptors which were not present in the input
events?

(e) Control strategy. What is the strategy used to search description space:
bottom-up (data-driven), top-down (model-driven), or mixed?

(f) General versus problem-oriented methods. Is the method oriented toward
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solving a general class of problems, or is it oriented toward problems in some
specific application domain?
We now discuss each of these aspects in more detail.

1.3. Representation issues

There are, of course, many representational systems which can be used to
represent events and generalizations of events: predicate calculus, production
rules, hierarchical descriptions, semantic nets, and frames. Most work, with the
exception of AM [14], has used predicate calculus (or some closely related
system) because it is widely known and has a formally well-defined syntax and
semantics. (An important study of theoretical problems of induction in the
context of predicate calculus was undertaken by Plotkin [26, 27}.)

Given a description language, learning methods using this language typically
restrict the scope of the forms in which inductive assertions can be expressed.
There is frequently a difference between the legal forms of the description
language and the forms which a method is actually capable of learning. A
useful way to characterize these ‘learnable’ forms is to indicate the operators
which can be used in them. The most common operators are conjunction (),
disjunction (v), internal disjunction (see below), exception, and the existential
and universal quantifiers.

1.4. Types of descriptions

Since induction is a search through a description space, one must specify the
goal of this search, i.e., one must provide criteria which define the goal
description. These criteria depend upon the specific domain in question, but
some regularities are evident. We distinguish among characteristic, dis-
criminant, and taxonomic descriptions.

A characteristic description is a description of a single set of objects (exam-
ples, events) which is intended to discriminate that set of objects from all other
possible objects. It is assumed that this set represents a certain
conceptual class of objects. For example, a characteristic description of the set
of all tables would discriminate any table from all things which are non-tables.
In this way, the description characterizes the concept of a table. Psychologists
consider this problem under the name of concept formation (e.g. Hunt [12]).
Since it is impossible to examine all objects in a given class (or not in a given
class), a characteristic description is usually developed by specifying all charac-
teristics which are true for all known objects of the class (positive examples). In
some problems, negative examples (counterexamples) are available which
represent objects known to be not in the class. Negative examples can greatly
help to circumscribe the desired conceptual class. Even more helpful are
counterexamples which are ‘near misses,” as demonstrated by Winston [38, 39],
who uses them to create ‘must not’ conditions.
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A discriminant description is a description of a class of objects in the context
of a fixed set of other classes of objects. It states only those properties of
objects in the class under consideration which are necessary to distinguish
them from the objects in the other classes. A characteristic description can be
viewed as a discriminant description in which the given class is discriminated
against infinitely many alternative classes.

A taxonomic description is a description of a class of objects which subdivides
the class into subclasses. In constructing such a description, it is assumed that
the input data are not necessarily members of a single conceptual class. Rather
it is assumed that they are members of several different classes (or produced by
several different processes). An important kind of taxonomic description is a
description which determines a conceptual clustering—a structuring of the data
into object classes corresponding to certain concepts. A taxonomic description
is fundamentally disjunctive. If the object classes have conjunctive descriptions,
then the entire set of input data can be described as a disjunction of these
descriptions.

Determination of characteristic or discriminant descriptions is the subject of
learning from (pre-classified) examples, while determination of taxonomic
descriptions (conceptual clustering) is the subject of what can be called learning
from observation, i.e., ‘learning without teacher.’

In this paper we restrict ourselves to the problem of determining charac-
teristic descriptions. The problem of determining discriminant descriptions has
been studied by Michalski and his collaborators [15-22]. A general method and
computer program CLUSTER/PAF for conceptual clustering is described in [21].

1.5. Rules of generalization

The partially-ordered space of descriptions of different levels of generality can
be described by indicating what transformations are being applied to change
less general descriptions into more general ones. Consequently, determination
of inductive assertions can be viewed as a process of consecutive application of
certain ‘generalization rules’ to initial and intermediate descriptions. A
generalization rule is a transformation rule which, when applied to an expres-
sion S; in the description language L, produces a more general expression S,.
This means that the implication S,=>S; holds. A generalization rule is called
non-constructive if S, involves no descriptors other than those used in S;. If S,
does contain new descriptors, then the rule is called constructive (see Section
1.6). Non-constructive rules of generalization do not change the representation
space of the problem, while constructive rules do change it.

The concept of rules of generalization provides further insight into the view
of induction as a heuristic search of description space. The rules of generaliza-
tion specify the operators which the search uses to move from one node to
another in this space. The concept of generalization rules is also useful for
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comparing different learning methods because these rules abstract from the
particular description languages used in the methods.

Below are listed (non-constructive) generalization rules which are sufficient
to compare the methods described in this paper. They are based on the paper
by Michalski [20]. Other rules of generalization are possible, for example, rules
which use quantifiers (see [22]). The rules are expressed in the first-order
predicate calculus. (The rules could also be expressed in any other language
with the requisite operators.) These generalizations are not necessarily plausi-
ble. They are merely logically possible. The notation A [(B indicates that A
can be generalized to B.

(i) Dropping condition rule. A description which uses the conjunction opera-
tor can be generalized by dropping one or more terms in the conjunction. For
example

red(v) A big(v) [ red(v)

(this reads: “the description ‘vs which are red and big’ can be generalized to the
description ‘vs which are red’”).

(ii) Turning constants to variables rule. A description which has a constant as
an argument can be generalized by changing the constant to a variable. It is
assumed that this variable stands for (will match) any constant. (When typed
variables are used, it is assumed that the variable will only match constants from
the appropriate value set.) For example,

tall(Fred) A man(Fred) { tall(v) A man(v)

These first two rules of generalization are the rules most commonly used in the
literature on computer induction (e.g. by Vere [34-37], Winston [38, 39],
Hayes-Roth [8-11], Hunt [12], and Fikes et al. [7]). Both rules can, however, be
viewed as special cases of the following rule.

(iii) Generalizing by internal disjunction rule. A description can be general-
ized by extending the set of values which a descriptor (i.e. variable, function, or
predicate) is permitted to take on in order for the description to be satisfied.
This process involves an operation called the internal disjunction. For
example

shape(v) = square [( shape(v) € {square, triangle, rectangle}
Using the notation of variable-valued logic system VL [20] this rule can be
expressed somewhat more compactly:

[shape(v) = square] [( [shape(v) = square, triangle, rectangle]

The commas in the expression on the right of the |( denote the internal
disjunction. Although it may seem at first glance that the internal disjunction is
just a notational abbreviation, this operation appears to be one of the fun-
damental operations people use in generalizing descriptions. Its basic effect is
to expand the set of values which a given descriptor is allowed to assume.
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In general this rule can be expressed by
W[L = R1] |{ W[L = R2]

where W is some condition (possibly empty) and R1CR2. (The con-
catenation of W with the relational statement in brackets is interpreted as
logical conjunction.)

Some work on induction [2—4, 12, 17-22] makes use of typed descriptors with
specified value sets (also called domains). Typed descriptors provide an im-
portant mechanism for introducing domain knowledge into the learning pro-
gram. Two significant special cases of the internal disjunction rule involve typed
descriptors. First, when the descriptor takes on values which are linearly
ordered (a linear descriptor), and the second when the descriptor takes on
values which represent concepts which are partially ordered at various levels of
generality (a structured descriptor). These generalization rules can take ad-
vantage of the properties which are known to be true of the value sets of the
involved descriptor. Thus, they are more than purely logical rules of general-
ization; they incorporate some aspects of human plausible reasoning.

In the case of a linear descriptor we have the following rule.

(iv) Closing interval rule. For example, suppose two objects of the same class
have all the same characteristics except that they have different sizes, a and b.
Then it is plausible to hypothesize that all objects which share these charac-

teristics but which have sizes between a and b are also in this class.

W(size(vl) = a]

) ( W[size(v) = a..b]
W[size(v2)=b] ! .

This generalization rule makes use of the knowledge that the value set of the
involved descriptor (in this case size) is linearly ordered.

In the case of structured descriptors we have the following rule.

(v) Climbing generalization tree rule. Suppose the value set of the shape
descriptor is the tree (or hierarchy) of concepts:

plane geometric figure
polygon oval figure

triangle rectangle ellipse circle

With this tree structure, values such as triangle and rectangle can be generalized
by climbing the generalization tree:

[shape(v) = rectangle] '
. ( [shape(v) = polygon
[shape(v) = triangle] [shape(v) = polygon]
During the generalization process, a current description may become over-
generalized. If negative examples are known, then such an over-generalization
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will be indicated by the fact that some negative examples will satisfy the
current description. To ensure that the description doesn’t cover these negative
examples, the description must be specialized. This can be done by applying a
specialization rule to the current description. A reversal of any of the above
generalization rules (i.e. reading the rules from right to left) is a specialization
rule. Specialization rules obtained in this way can generally produce many
specialized descriptions from one over-generalized description. A useful tech-
nique for avoiding the proliferation of such possible specializations is to take
advantage of the negative examples which incorrectly satisfy the over-general-
ized description. One important way to do this is to use the following
specialization rule.

(vi) Introducing exception specialization rule. Given a description and a
negative example (incorrectly) satisfying it, this rule creates an exception
condition and adds it to the initial description. The general form of the rule is:

current description: P(v) ’
P
negative example:  P(v) A Q(v) ) PW)\Q'(v)

Where \ denotes the exception operator. The expression P(v)\ Q'(v) is read as
“P(v) except when Q'(v)” and is logically equivalent to P(v) A— Q'(v). Q'(v) is
either the same description as Q(v) or else a generalization of Q(v). The symbol
) denotes specialization.

As an example, consider the problem of learning the concept of “fish”.

current description: swims(v) swims(v) \
negative example:  swims(v) A breathes-air(v) breathes-air(v)

It is easy to see that the introducing exception specialization rule is a special
case of the ‘adding condition specialization rule’ (i.e. the inverse of the
dropping condition generalization rule).

1.6. Constructive induction

All of the generalization and specialization rules presented above involve the
same descriptors on both sides of the rule. Most methods of induction (e.g. by
Hunt [12], Hayes-Roth [8-11], Vere [34, 37], Mitchell [24-25]) use only these
kinds of generalization rules and consequently produce descriptions which
involve the same descriptors which were present in the initial data. Such
methods perform non-constructive induction. A method performs constructive
induction if it includes mechanisms which can generate new descriptors not
present in the input data. Constructive induction is a general term which
describes any induction technique which produces such new descriptors. A
program which performs constructive induction makes changes to the
representation of a problem. It is well known that in many Al problems (for
example, the mutilated checkerboard problem) finding an appropriate problem
representation is crucial to finding a good solution.
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We find it useful to classify constructive induction techniques in terms of
rules for constructive induction. Constructive induction rules are stated in-
dependently of their implementation. They may be based on general know-
ledge or on problem-specific knowledge. Some examples of constructive general-
ization rules are presented in [20, 22]. Rules of constructive induction can be
implemented as programs which generate new descriptors as functions of the
initial descriptors, and are invoked when certain contextual conditions are
satisfied. For example, when a program determines that parts of objects constitute
a linearly ordered set, then a procedure can be invoked to generate various
descriptors which apply to linearly ordered sets (e.g., the first element, the last
element, the length). The ‘grouping with a typical element’ transformation
described by Winston [38, 39] is another example of constructive induction.

One of our goals for further research is the identification and implemen-
tation of constructive induction rules. An inductive program should contain
facilities for constructive induction including a library of general constructive
induction rules. The user should be able to suggest new rules for the program
to apply. As more sophisticated constructive induction rules are implemented,
the ability of inductive programs to accomplish radical representation change
should be enhanced. However, the increased number of rules will also lead to
increased search problems. Consequently, these learning programs will also
need heuristic meta-rules which can guide the process of evoking constructive
induction rules.

1.7. Control strategy

Methods can be divided into bottom-up (data-driven), top-down (model-
driven), and mixed methods. Bottom-up methods generalize the input events
pairwise until the final conjunctive generalization is computed:

G,

e
S
Gs

/|
E1=G‘1 Ez E3 E4

G, is the set of conjunctive generalizations of E, and E,. G; is the set of
conjunctive generalizations obtained by taking each element of G,_, and
generalizing it with E;.

Only the methods described by Winston, Hayes-Roth, and Vere are re-
viewed in this paper. Some other bottom-up methods include the candidate
elimination approach described by Mitchell [24, 25], the ID3 technique of
Quinlan [28; 29], and the Uniclass method described by Stepp [33].

Model-driven methods search a set of possible generalizations in an attempt
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to find a few ‘best’ hypotheses which satisfy certain requirements. The two
methods discussed in this paper (by Buchanan et al. and Michalski) search for a
small number of conjunctions which together cover all of the input events. The
search proceeds by choosing as the initial working hypothesis some starting
point in the partially ordered set of all possible descriptions. If the working
hypotheses satisfy certain termination criteria, then the search halts. Otherwise,
the current hypotheses are modified by slightly generalizing or specializing
them. These new hypotheses are then checked to see if they satisfy the
termination criteria. The process of modifying and checking continues until the
criteria are met. Top-down techniques typically have better noise immunity,
and can easily be extended to discover disjunctions. The principal disadvantage
of these techniques is that the working hypotheses must repeatedly be checked to
determine whether they subsume all of the input events.

1.8. General versus problem-oriented methods

It is a common view that general methods of induction, although mathemati-
cally elegant and theoretically applicable to many problems, are in practice very
inefficient and rarely lead to any interesting solutions. This opinion seems to
have lead certain workers to abandon (at least temporarily) work on general
methods and concentrate on learning problems in some specific domains (e.g.,
Buchanan et al. [2-4] or Lenat [14]). Such an approach can produce novel and
practical solutions. On the other hand, it is difficult to extract general principles
of induction from such problem-specific work. It is also difficult to apply such
special-purpose programs to new areas.

An attractive possibility for solving this dilemima is to develop methods
which incorporate various general principles of induction (including con-
structive induction) together with mechanisms for using exchangeable packages
of problem-specific knowledge. In this way a general method of induction,
provided with an appropriate package of knowledge, could be both readily
applicable to different problems, and also efficient and practically useful. This
idea underlies the development of the INDUCE programs [15, 16, 20].

2. Comparative Review of Selected Methods

2.1. Evaluation criteria

The selected methods of induction are evaluated in terms of several criteria
considered especially important in view of the remarks in Section 1.

(i) Adequacy of the representation language. The language used to represent
input data and output generalizations determines to a large extent the quality
and usefulness of the output descriptions. Although it is difficult to assess the
adequacy of a representation language out of the context of some specific
problem, recent work in Al has shown that languages which treat all
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phenomena uniformly must sacrifice descriptive precision. For example,
researchers who are attempting to build systems for understanding natural
language prefer the richer knowledge representations, such as frames and
semantic nets (with their tremendous variety of syntactic forms), to the more
uniform and less structured representations, such as attribute-value lists and
PLANNER-style representations. Although languages with many syntactic forms
do provide greater descriptive precision, they also lead to exponential increases
in the complexity to the induction process. In order to control this complexity,
a compromise must be sought between uniformity and richness of forms. In the
evaluation of each method, a review of the operators and syntactic forms of
each description language is provided.

(i) Rules of generalization implemented. The generalization rules im-
plemented in each algorithm are listed.

(iii) Computational efficiency. The exact analysis of the computational
efficiency of the selected learning algorithms is very difficult due both to the
inherent complexity of the algorithms and to the lack of precise formulations of
the algorithms in available publications. However, it seems useful to have some
data comparing the efficiency of these algorithms even if that data is based on
the hand-simulation of only one sample problem. We have hand-simulated
each algorithm on the test problem shown in Fig. 2. To get some indication of
efficiency, we measure the total number of description generations and des-
cription comparisons required for this sample problem. The rationale for
counting description comparisons is that the comparison of two structural
descriptions (which are typically complex expressions or graphs) is a very
expensive operation (since subgraph isomorphism is NP-complete). Description
generations also provide an important measure of effort—especially for top-
down algorithms which use a form of generate-and-test search. The ratio of the
number of output conjunctive generalizations (i.e. the generalizations produced
as the final result of the algorithm) to the total number of generalizations
examined is also computed. Since these numbers are derived from only one
example, it is not appropriate to draw strong conclusions from them concerning
the general performance of the algorithms. Our evaluation is based primarily
on the general behavior of the algorithms.

(iv) Flexibility and extensibility. Programs which can only discover con-
junctive characteristic descriptions have very limited practical applications. In
particular, they are inadequate in situations involving noisy data or in which no
single conjunctive description can describe the phenomena of interest. Con-
sequently, as one of the evaluation criteria, we consider the ease with which
each method could be extended to

(a) discover descriptions with forms other than conjunctive generalizations
(see Section 1.3),

(b) include mechanisms which facilitate the detection of errors in the input
data,
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(c) Provide a general facility for incorporating domain-specific knowledge
into the induction process as an exchangeable package (ideally, the domain-
specific knowledge should be jsolated from the general-purpose inductive
process), and

(d) perform constructive induction.

It is difficult to assess the flexibility and extensibility of the algorithms
considered here. We base our evaluation on the general approaches of the
methods and on extensions which have already been made to them.

In the following sections, we describe each method by presenting the
description language used, sketching the underlying algorithm, and evaluating
the method in terms of the above criteria. Two sample learning problems will
be used to explain the methods. The first problem (Fig. 1) is made up of two
examples (E1 and E2). Each example consists of objects (geometrical figures)
which can be described by

e attributes size (small or large) and shape (circle or square), and
e relationships ontop (which indicates that one object is above another) and
inside (which indicates that one object lies inside another).

O
OB

E1 E2

FiG. 1. Sample problem for illustrating representation languages.

The second sample problem (Fig. 2) contains three examples which are also
constructions made of simple geometrical objects. These objects can be des-
cribed by

e attributes shape (box, triangle, rectangle, ellipse, circle, square, or diamond),
size (small, medium, or large), and fexture (blank or shaded), and
e relationships ontop and inside (the same as in the first sample problem).

El

FIG. 2. Sample problem for comparing the performance of the methods.
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In each sample problem, the task is to determine a set of maximally specific
conjunctive generalizations (MSC-generalizations) of the examples. No negative
examples are supplied in either problem. In the discussion below, the first
problem is used to illustrate the representational formalism and the general-
ization process implemented in each method. The second, more complex,
problem is used to compare the computational efficiency and representational
adequacy of each method. This comparison is based on the hand simulation of
each method as applied to this problem.

2.2. Data-driven methods: Winston, Hayes-Roth, and Vere
2.2.1. Winston: Learning blocks world concepts [38, 39]

Winston’s well-known work [38, 39] deals with learning concepts which
characterize simple toy block constructions. Although his method uses no
precise criterion to define the goal description, the method usually develops
msc-generalizations of the input examples. The method assumes that the
examples are provided to the program by an intelligent teacher who carefully
chooses both the kinds of examples used and their order of presentation. The
program uses so-called ‘near-miss’ negative examples to rapidly determine the
correct generalized description of the concept. The near-misses are also used to
develop ‘emphatic’ conditions such as ‘must support’ or ‘must not support.’
These Must- type descriptors indicate which conditions in the concept descrip-
tion are necessary to eliminate negative examples.

As Knapman has pointed out in his review of Winston’s work [13], many
parts of the exposition in Winston’s thesis [38] and subsequent publication {39]
are not entirely clear. Although the general ideas in the thesis are well
explained, the exact implementation of these ideas is difficult to extract from
these publications. Consequently, our description of Winston’s method is
necessarily a reconstruction.

The method uses a semantic network to represent the input events, the
background blocks-world knowledge, and the concept descriptions generated
by the program. The representation is quite general, although the implemented
programs appear to process the network in domain-specific ways (see [13], [38,
p. 196]). The algorithms which convert line drawings into the network
representation and perform object recognition use knowledge specific to the
blocks world.

Fig. 3 shows the network representation of the two examples in Fig. 1.

Nodes in the network are used for several different purposes. We will
illustrate these purposes by referring to the corresponding concepts in first-
order predicate logic. The first use of nodes is to represent various primitive
concepts which are properties of objects or their parts (e.g., small, size, circle,
shape). Nodes in this case correspond to constants in first-order predicate logic
expressions. There is no distinction between attributes and values of attributes
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HAS-AS-PART
ON-TOP

HAS-PROPERTY-OF

square

A-KIND-OF

FIG. 3a. Network representing example El in Fig. 1.

E2
HAS-ASPART
ON-TOP CONTAINS
a b <
BENEATH INSIDE
N HAS-PROPERTY-OF

—
AKIND-OF P

circle . square

A-KIND-OF

object

FiG. 3b. Network representing example E2 in Fig. 1.
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in Winston’s network representation, and, consequently, there is no represen-
tational equivalent of the one-argument predicates and functions of FOPL.

Another use of nodes is to represent individual examples and their parts.
Thus, in Fig. 3a, we have the node E1 and two nodes A and B which make up
El. These can be regarded as quantified variables in predicate calculus.
Distinct variable nodes are created for each training example.

Labeled links connecting these nodes represent various binary relationships
among the nodes. The links correspond to two-argument predicates. The first
two uses of nodes as constants and variables, plus the standard use of links as
predicates, constitute the basic semantic network representation used by Win-
ston.

There is, however, a third use of nodes. Each link type (analogous to a
predicate symbol) is also represented in the network as a node. Thus, in
addition to the numerous On-Top links which may appear in the network,
there is one On-Top node which describes the link type On-Top and its
relationship to other types. For example, there might be a Negative-Satellite
link which joins the On-Top node to the Beneath node. Such a link indicates
that On-Top and Beneath are semantically opposite predicates. Similarly, there
is a Must-Be-Satellite link connecting the Must-Be-On-Top node to the On-
Top node.

All of the nodes in the network are joined into one generalization hierarchy
through the A-Kind-Of links. This hierarchy is used to implement the climbing
generalization tree rule.

The learning algorithm proceeds in two steps. First, the current concept
description is compared to the next example, and a difference description is
developed. Then this difference description is processed to obtain a new,
generalized concept description. Often, the second step results in several
possible generalized concept descriptions. In such a case, one generalized
concept is selected for further refinement and the remaining possibilities are
placed on a backtrack list. The program backtracks when it is unable to
consistently generalize its current concept description.

The first step of the algorithm (the development of the difference descrip-
tion) is accomplished by graph-matching the current concept description
against the example supplied by the teacher, and annotating this match with
comment notes (c-NOTEs). These c-NoTEs describe conditions in the concept
description and example which partially matched or did not match. Winston’s
description of the graph-matching algorithm is sketchy ([13] and [38, pp.
254-263]). The algorithm apparently finds one ‘best’ match between the train-
ing example and the current concept description. The method does not address
the important problem of multiple graph sub-isomorphisms, i.e., the problem
arising when the training example matches the current concept description in
more than one way. This problem was apparently avoided by assuming that
the teacher will present training instances which can be unambiguously
matched to the current concept description.
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Once this match between the concept description and the example is
obtained, a generalized skeleton is created containing only those links and
nodes which matched exactly. The c-NoTEs are then attached to this skeleton.
Each c-NOTE is a sub-network of nodes and links which describes a particular
type of match. There are several types of c-notes. First, there are Intersection
c-noTEs which indicate when two nodes match exactly. Second, there are Exit
and Supplementary pointer C-NOTES which handle unmatched nodes and links
respectively. Then there are c-NOTEs for partially matched nodes. The A-Kind-
Of-Merge c-NOTE handles the case when two nodes mismatch, for example
when square mismatches triangle. The A-Kind-Of-Chain c-NOTE handles the
case when a node matches a more general node, for example when square
matches polygon.

The remaining c-NoTEs handle partially matched links. A Negative-Satellite-
Pair c-NOTE indicates that two semantically opposite links mismatched, for
example Marries and Does-Not-Marry. A Must-Be-Satellite- Pair c-NOTE in-
dicates that a normal link, e.g. Supports, matches an emphatic link, e.g.
Must-Support. A Must-Not-Be-Satellite-Pair c-NOTE indicates that a normal
link matches a Must-Not form of the same link.

Table 1 lists the c-NOTE types according to the circumstances in which they
are used. The network diagram of Fig. 4 shows the difference description which
results from matching the two networks of Fig. 3 to each other.

The generalization phase of the algorithm is fairly simple. Each c-NoTE is
handled in a way determined by the c-NOTE type and whether the example is an
instance of the concept or a near-miss. Winston provides a table that indicates
what actions his program takes in each case ([38, pp. 145-146}).

Some c-NOTEs can be handled in multiple ways. For positive examples, only
one C-NOTE causes problems: the A-Kind-Of-Merge. In this case, the program
can either climb the A-Kind-Of generalization tree or else drop the condition
altogether. The program develops both possibilities but only pursues the
former (leaving the latter on the backtrack list). The concept description which
results from generalizing the difference description of Fig. 4 is shown in
Fig. 5.

The alternative generalization would drop the Has-Property link from node
b.

TaBLE 1. Winston’s C-NOTE categories

Match Partially match Mismatch
Node Intersection A-Kind-Of Merge Exit
A-Kind-Of Chain
Link Negative-Satellite-Pair
Must-Be-Satellite-Pair Supplementary pointer

Must-Not-Be-Satellite-Pair
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FIG. 4. Difference description obtained by comparing E1 and E2 from Fig. 1 and annotating the
comparison with two C-NOTES.
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FIG. 5. Network representing the generalized concept resulting from generalizing the difference
description of Fig. 4.



274 T.G. DIETTERICH AND R.S. MICHALSKI

Evaluation. (i) Representational adequacy. The semantic network is used to
represent properties, object hierarchies (using A-Kind-Of), and binary rela-
tionships. As in most semantic networks, n-ary relationships cannot be
represented directly. The conjunction operator is implicit in the structure of the
network, since all of the conditions represented in the network are assumed to
hold simultaneously. There is no mechanism indicated for representing dis-
junction or internal disjunction. The Not and Must-Not links implement a form
of the exception operator. An interesting feature of Winston’s work is the use
of the emphatic Must- relationships.

The program works in a depth-first fashion and produces only one general-
ized concept description for any given order of the training examples. Permut-
ing the training examples may lead to a different generalization. Two general-
izations obtained by simulating Winston’s learning algorithm on the examples
of Fig. 2 are shown in Figs. 6a and 6b.

The second generalization (Fig. 6b) is not maximally specific since it does not
mention the fact that all training examples also contain a small or medium
sized shaded object. The algorithm cannot discover this generalization due to
the fact that the graph-matcher finds the ‘best’ match of the current concept

HAS-AS-PART

BENEATH
.

——A-KIND-OF

polygon
4
P

FI1G. 6a. The first generalization obtained by simulating Winston’s learning algorithm on the examples
of Fig. 2 (in thc? order E3, E1, E2). An English paraphrase is: *“There is a medium, blank polygon on top
of another object which has a size and texture. There is also another object with size and texture.”
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A-KIND-OF

FIG. 6b. The second generalization obtained by simulating Winston’s learning algorithm on the
examples of Fig. 2 (in the order E1, E2, E3). An English paraphrase is: ““There is a large, blank object.”

with the example. When the order of presentation of the examples is El
followed by E2 followed by E3, the ‘best’ match of the first two examples
eliminates the possibility of discovering the maximally specific conjunctive
generalization when the third example is matched.

(ii) Rules of Generalization. The program uses the dropping condition rule
(for generalizing exit c-NOTEs), the turning constants to variables rule (when
creating the generalized skeleton), and the climbing generalization tree rule
(for the A-Kind-Of-Merge). It also uses the introducing exception specializa-
tion rule (for the A-Kind-Of-Merge c-NOTE with negative examples).

(iii) Computational efficiency. The algorithm is quite fast: it requires only 2
graph comparisons to handle the examples of Fig. 2. However, the algorithm
does use a lot of memory to store intermediate descriptions. The first graph
comparison produces 8 alternatives of which only one is pursued. The second
graph comparison leads to 4 more alternatives from which one is selected as
the ‘best’ concept description. This inefficient use of memory is reflected in our
figure for computational efficiency (the number of output descriptions /the
number of examined descriptions) which is 1/11 or 9%.

The performance of the algorithm can be much worse in certain situations.
When ‘poor’ negative examples are used—those which do not match the
current concept description well—the number of intermediate descriptions
explodes combinatorially. Such situations are also likely to cause extensive
backtracking.

Since the algorithm produces only one generalization for any given order of
the input examples, it must be executed repeatedly if several alternative
generalizations are desired.



276 T.G. DIETTERICH AND R.S. MICHALSKI

(iv) Flexibility and Extensibility. It seems that it would be difficult to extend
the method to produce disjunctive concepts. The algorithm operates under
assumption that there is one conjunctive concept characterizing the examples,
so the development of disjunctive concepts is not consistent with the spirit of
the work.

Since the program behaves in a depth-first manner, noisy training events
cause it to make serious errors from which it cannot recover without extensive
backtracking. This is not surprising since Winston assumes that the teacher is
intelligent and does not make any mistakes in training the student. It seems to .
be very difficult to extend this method to handle noisy input data.

The inductive generalization portion of the program does not contain much
problem-specific knowledge. However, many of the techniques used in the
program, e.g., building complete difference descriptions and using a backtrack-
ing search, would not be feasible in any real-world problem domain. The
A-Kind-Of generalization hierarchy can be used to represent problem-specific
knowledge.

The system of programs described by Winston performs some types of
constructive induction. The original inputs to the system are noise-free line
drawings. Some knowledge-based algorithms convert these line drawings into
the network representation. Winston describes an algorithm for combining a
group of objects into a single concept and subsequently using this concept in
other descriptions. The ‘arcade’ concept ([38, p. 183]) is a good example of such
a constructive induction process.

2.2.2. Hayes-Roth: Program spROUTER [8-11]

Hayes-Roth’s work on induction [8-11] is concerned with finding msc-general-
izations of a set of input positive examples (in his work such generalizations are
called maximal abstractions or interference matches). Parameterized structural
representations (PSR’s) are used to represent both the input events and their
generalizations. The PSR’s for the two events of Fig. 1 are

El: {{circle:a{square:b}{small:a}
{small:bHontop:a, under:b}}

E2: {{circle:cHsquare:d}circle:e}
{small:cKlarge:d}{small:e}
{ontop:c, under:dHinside:e, outside:d}}

Expressions such as {small:a} are case frames, made up of case labels (small,
circle, etc.) and parameters (a, b, c, etc.). The PSR can be interpreted as a
conjunction of predicates of the form

case-label(parameter-list)

for example {small:a} can be interpreted as small(a). The parameters can be
viewed as existentially quantified variables denoting distinct objects.
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The induction algorithm works in a purely bottom-up fashion. The first set of
conjunctive generalizations, G;, is initialized to contain only the first input
example. Given a new example and the set of generalizations, G;, obtained in
the ith step, a new set of generalizations, G;,;, is obtained by performing an
interference match between each element in G; and the current training
example. It is not clear from publications [8-11] whether or not these sets G;
are pruned during this process.

The interference match attempts to find the longest one-to-one match of
parameters and case frames (i.e., the longest common subexpression). This is
accomplished in two steps. First, the case frames in E1 and E2 are matched in
all possible ways to obtain the set M. Two case frames match if all of their case
labels match. Each element of M is a case frame and a list of parameter
correspondences which permit that case frame to match in both events:

M = {{circle:((a/c)(a/e))},
{square:((b/d))},
{small:((a/c)(b/c)(a/e)(b/e))},
{ontop, under:((a/c b/d))}}

The second step involves selecting a subset of the parameter correspondences
in M such that all parameters can be bound consistently. This is conducted by a
breadth-first search of the space of possible bindings with pruning of unprom-
ising nodes. The search can be visualized as a node-building process. Here is
one such (pruned) search graph:

M Interference match
{circle}

a/c 13 14
ale 11 12
{square}

b/d 9 10
{small}

a/c 6 7

b/c 4\ e 5

ale 37<

b/e 2 8

{ontop, under}
a/cb/d — 1

The nodes are numbered in order of their generation. One at a time, a pair of
corresponding parameters is selected from M, and a new node is created for
them. Then this new node is compared with all previously generated nodes.
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Additional nodes are created for each case in which the new parameter
correspondence node can be consistently merged with a previously existing
node. In the search graph above, when the parameter binding {small:(a/c)} is
selected, node 6 is created. Then node 6 is compared to nodes 1 through 5 and
two new nodes are created: node 7, which is created by merging node 6 (a/c)
with node 2 (b/e), and node 8, which is created by merging node 6 (a/c) with
node 1 (a/c b/d). Node 6 cannot be merged with node 3, for instance, because
parameter a would be inconsistently bound to both parameters ¢ and e.

When the search is completed, nodes 7, 12, and 14 are bindings which lead to
conjunctive generalizations. Node 14, for example, binds a to ¢ (to give v1) and
b to d (to give v2) to produce the conjunction:

{{circle:v1H{square:v2H{small:vlH{ontop:v1, under:v2}}

The node-building process is guided by computing a utility value for each
candidate node to be built. The nodes are pruned by setting an upper limit on
the total number of possible nodes and pruning nodes of low utility when that
limit is reached.

Evaluation. (i) Representational adequacy. The algorithm discovers the fol-
lowing conjunctive generalizations of the example in Fig. 2.

1. {{ontop:v1, under:v2{medium:v1H{blank:v1}}
There is a medium, blank object ontop of something.

2. {{ontop:v1, under:v2{medium:v1}H{large:v2{blank:v2}}
There is a medium sized object ontop of a large, blank object.

3. {{medium:v1}{blank:v1}{large:v3H{blank:v3H{shaded:v2}}

There is a medium sized, blank object, a large sized, blank object, and a
shaded object.

PSR’s provide two symbolic forms: parameters and case labels. The case
labels can express ordinary predicates and relations easily. Symmetric relations
may be expressed by using the same label twice as in {same!size:a, same!size:b}.
The only operator is the conjunction. The language has no disjunction or
internal disjunction. As a result, the fact that each event in Fig. 2 contains a
polygon on top of a circle or rectangle cannot be discovered.

(ii) Rules of generalization. The method uses the dropping condition and
turning constants to variables rules.

(iii) Computational efficiency. On our test example, the algorithm requires
22 expression comparisons, and generates 20 candidate conjunctive generaliza-
tions of which 6 are retained. This gives a figure of 6/20 or 30% for com-
putational efficiency. Four separate interference matches are required since the
first match of E1 and E2 produces three possible conjunctive generalizations.
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(iv) Flexibility and extensibility. Hayes-Roth has indicated (personal com-
munication) that this method has been extended to produce disjunctive
generalizations and to detect errors in data. Hayes-Roth has applied this
method to various problems in the design of the speech understanding system
Hearsay I1. However, no facility has been developed for incorporating domain-
specific knowledge into the generalization process.

Also, no facility for constructive induction has been incorporated although
Hayes-Roth has developed a technique for converting a PSR to a lower-level
finer-grained uniform PSR. This transformation permits the program to
develop descriptions which involve a many-to-one binding of parameters.

2.2.3. Vere: Program Thoth [34-37]

Vere’s earlier work on induction [34] was also directed at finding the MSC-
generalizations of a set of input positive examples (in his work such generaliza-
tions are called maximal conjunctive generalizations or maximal unifying
generalizations). Each example is represented as a conjunction of literals. A
literal is a list of constants called terms enclosed in parentheses. For example,
the objects in Fig. 1 would be described as:

El: (circle a)(square b)(small a)(small b)(ontop a b)

E2: (circle c)(square d)(circle e)(small c)
(large d)(small e)(ontop c d)(inside e d)

Although these resemble Hayes-Roth’s PSR’s, they are quite different. There
are no distinguished symbols. All terms (i.e. constants) are treated uniformly.

As in Hayes-Roth’s work, Vere’s method operates in a purely bottom-up
fashion, in which the input examples are processed one at a time in order to
build the set of conjunctive generalizations. The algorithm for generalizing a
pair of events operates in four steps.

Step 1. The literals in each of the two events are matched in all possible
ways to generate the set of matching pairs MP. Two literals match if they
contain the same number of constants and share a common term in the same
position. For the sample problem of Fig. 1, we have

MP = {((circle a),(circle c)),
((circle a),(circle e)),
((square b),(square d)),
((small a),(small c)),
((small a),(small €)),
((small b),(small c)),
((small b),(small e)),
((ontop a b),(ontop ¢ d))}
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Step 2. This step involves selecting all possible subsets of MP such that no
single literal of one event is paired with more than one literal in another event.
Each of these subsets eventually forms a new generalization of the original
events.

Step 3. Each subset of matching pairs selected in Step 2 is extended by
adding to the subset additional pairs of literals which did not previously match.
A new pair p is added to a subset S of MP if each literal in p is related to some
other pair ¢ in S by a common constant in a common position. For example, if
S contained the pair ((square b), (square d)), then we could add to S the pair
((ontop a b),(inside e d)) because the third element of (ontop ab) is the second
element of (squareb), and the third element of (insideed) is the second
element of (square d) (Vere calls this a 3-2 relationship). New indirectly related
pairs are merged into S until no more can be added.

Step 4. The resulting set of pairs is converted into a new conjunction of
literals by merging each pair to form a single literal. Terms which do not match
are turned into new terms which may be viewed formally as variables. For
example, ((circle a),(circle c)) would be converted to (circle v1).

Evaluation. (i) Representational adequacy. When applied to the test example
(Fig. 2), this algorithm produces many generalizations. A few of the significant
ones are listed below.

1. (ontop v1 v2)(medium v1)(large v2)(blank v2)(blank v3)(shaded v4)
(v5v4)

There is a medium object on top of a large blank object. Another object is
blank. There is a shaded object. (The literal (v5 v4) is vacuous since it contains
only variables. Variable v5 was derived by unifying circle and triangle.)

2. (ontop v1 v2)(blank v1)(medium v1)(v9 v1)(v5 v3 v4)(shaded v3)
(v7 v3)(v6 v3)(blank v4)(large v4)(v8 v4)

There is a medium, blank object on top of some other object and there are two
objects related in some way (v5) such that one is shaded and the other is large
and blank.

3. (ontop v1 v2)(medium v1)(blank v2)(large v2)(v5 v2)(shaded v3)
(v7 v3)(blank v4)(v6 v4)

There is a medium object on top of a large blank object. There is a shaded
object and there is a blank object.

The representation is basically a Lisp-style list structure, and consequently
has very little logical structure. By convention the first symbol of a literal can
be interpreted as a predicate symbol. The algorithm, however, treats all terms
uniformly. This relaxation of semantic constraints creates difficulties. One
difficulty is that the algorithm generates vacuous literals in certain situations.
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For instance, Step 3 of the algorithm allows (circlea) to be paired with
(triangle b) to produce the vacuous literal (v5v4) as in generalization 1 above.
Although these vacuous literals could easily be removed after being generated,
the algorithm would perform more efficiently if it did not generate them in the
first place. A second difficulty resulting from the relaxation of semantic
constraints is that the algorithm creates generalizations involving a many-to-
one binding of variables. While such generalizations may be desirable in some
situations, their uncontrolled generation is computationally expensive.

The description language contains only the conjunction operator. No dis-
junction or internal disjunction is included.

(ii) Rules of generalization. The algorithm implements the dropping con-
dition rule and the turning constants to variable rule.

(iti) Computational efficiency. From the published articles [34-37] it is not
clear how to perform Step 2. The space of possibilities is very large and an
exhaustive search could not possibly give the computation times which Vere
has published. It would be interesting to find out what heuristics are being used
to guide the search.

(iv) Flexibility and extensibility. Vere has published algorithms which dis-
cover descriptions with disjunctions [36] and exceptions (which he calls coun-
terfactuals [37]). He has also developed techniques to generalize relational
production rules [35, 36]. The method has been demonstrated using the
traditional Al toy problems of IQ analogy tests and blocks-world sequences. A
facility for using background information to assist the induction process has
also been developed. It uses a spreading activation technique to extract
relevant relations from a knowledge base and add them to the input examples
prior to generalizing them. The method has been extended to discover dis-
junctions and exceptions. It is not clear how well the method would work in
noisy environments.

2.3. Model-driven methods: Buchanan et al., and Michalski
2.3.1. Buchanan et al.: Program Meta-pENDRAL [2—4, 32]

The algorithm described here is taken from the RULEGEN program (part of the
Meta-DENDRAL system). Meta-DENDRAL was designed to discover cleavage rules
to explain mass spectrometry data. In this application, no single cleavage rule (or
equivalently, no conjunctive generalization) can be expected to explain all of
the data in a particular experiment. Consequently, the program does not search
for MSC-generalizations. Instead, it develops a taxonomic description of the
mass spectrometry data in the form of a set of cleavage rules which together
cover all examples. Thus Meta-DENDRAL can be considered to perform a kind of
conceptual clustering. Because the goal description sought by Meta-DENDRAL is
not a conjunctive generalization, it is difficult to compare this method with the
previous methods presented in this paper.
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The description language used in Meta-DENDRAL is based on the ball-and-
stick model of chemical molecules. Each input event is a very specific cleavage
rule which predicts that a particular bond in a particular part of a molecule will
be cleaved (broken) when that molecule is placed in a mass spectrometer. Each
cleavage rule is thus a condition-action rule. The condition part of the rule is a
bond environment which describes some portion of a molecule. The environ-
ment is represented as a graph of the atoms in the molecule with four
descriptors attached to each atom. The action part of the rule indicates (by **)
the bond which is predicted to break. A typical cleavage rule (with atoms w, x,
y, and z) is:

CONDITION PART (BOND ENVIRONMENT):

Molecule graph: w--x--y--z--

Atom descriptors: atom type nhs nbrs dots
w carbon 3 1 0
X carbon 2 2 0
y nitrogen 1 2 0
z carbon 2 2 0

ACTION PART (CLEAVAGE PREDICTION):
wH**X—-y--z--

The atom descriptors have the following meanings. Type is the atomic
element of the atom. Nhs is the number of hydrogen atoms bound to that
atom. Nbrs is the number of non-hydrogen atoms bound to the atom. Dots
counts the number of unsaturated valence electrons of the atom. This rule says
that whenever a molecule containing the four atoms w, x, y, and z (connected
as shown in the molecule graph and with the indicated atom descriptors) is
placed in a mass spectrometer, then the bond joining w to x will be broken.

RULEGEN is given a large set of these specific cleavage rules (developed by the
program INTsuM from observations of the behavior of example molecules in the
mass spectrometer). The goal of the program is to produce a small set of
generalized cleavage rules which cover most of the input rules. The algorithm
chooses as its starting point the most general cleavage prediction (x ** y) with
no properties specified for either atom. During the search, this description is
grown by successively specializing a property of one of the atoms in the graph,
or by adding a new atom to the graph. After each specialization, the new graph
is checked to see if it is ‘better’ than the parent graph from which it was
derived. A ‘child’ graph is better than its ‘parent’ if it still explains peaks in the
spectra of at least half of the molecules under consideration (it’s general
enough) and focuses on roughly one cleavage process per molecule (it’s specific
enough). The cleavage rules built by this algorithm are further improved by the
program RULEMOD.
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Evaluation. (i) Representational adequacy. The representation was adequate
for the task of developing cleavage rules. It was specifically designed for use in
chemical domains and is not general. The descriptions can be viewed as
conjunctions. Individual rules developed by the program can be considered to
be linked by disjunction.

(i) Rules of generalization. The dropping condition and turning constants to
variables rules are used ‘in reverse’ during the specialization process. Meta-
DENDRAL also uses the generalization by internal disjunction rule. For example,
it can learn that the type of an atom is ‘anything except hydrogen’. In related
work on nuclear magnetic resonance (NMR), Schwenzer and Mitchell [32]
present an example in which the value of nhs is listed as ‘greater than or equal
to one’ (which indicates an internal disjunction).

(iii) Computational efficiency. The comparison of computational efficiency is
not provided for Meta-DENDRAL, because it is not possible to hand-simulate its
operation on the sample problem of Fig. 2. First of all, it is impossible to
represent the sample problem as a chemical graph because the problem uses two
different connecting relationships (ontop and inside) whereas Meta-DENDRAL
only allows one (chemical bonding). Secondly, as mentioned above, the
algorithm seeks a taxonomic—not characteristic—description of the input
examples. Thirdly, the termination criteria for the RULEGEN algorithm are
stated in purely chemical terms which have no counterpart in the domain of
geometric figures. The current program is considered to be relatively inefficient
[3].

(iv) Flexibility and extensibility. Meta-DENDRAL has been extended to handle
NMR spectra. The program works well in an errorful environment. It uses
domain-specific knowledge extensively. However, there is no strict separation
between a general-purpose induction component and a special-purpose know-
ledge component. It is not clear whether the methods developed for Meta-
DENDRAL could be easily applied to any non-chemical domain.

Meta-DENDRAL has extensive constructive induction facilities. In particular,
program INTSUM performs sophisticated transformations of the input spectrum
in order to develop the bond-environment descriptions. Unfortunately, this
part of the program is highly procedural. None of the rules of constructive
induction have been made explicit, nor is there a general facility for accepting
additional rules of constructive induction from the user.

2.3.2. Michalski and Dietterich: Program INDUCE 1.2

Michalski and his collaborators have worked on many aspects of induction.
Most relevant here are works by Larson and Michalski [15, 16, 20], which
describe a general method (and program) for determining disjunctive structural
descriptions which can also be used (somewhat inefficiently) to discover MSC-
generalizations. The method presented here is specially designed for finding
MSC-generalizations.

The language used to describe the input events is VL,, [20]: an extension to
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first-order predicate logic (FOPL) which was developed specifically for use in
inductive inference. Each event is represented as a conjunction of selectors. A
selector is a relational statement which typically contains a function or predi-
cate descriptor (with variables as arguments) and a list of values which the
descriptor may assume. For example, the selector [size(v1) = small, medium]
asserts that the size of v1 may take the values small or medium. Another form
of selector is an n-ary predicate in brackets, which is interpreted in the same
way as in FOPL. For example, the selector [ontop(v1, v2)] asserts that object v1
is ontop of object v2. A conjunction of selectors is denoted by their con-
catenation. The events in Fig. 1 are represented as

El: 3vl, v2[size(vl) = small][size(v2) = small]
[shape(v1) = circle][shape(v2) = square][ontop(v1, v2)]

E2: 3vl, v3[size(vl) = small][size(v2) = large]
[size(v3) = small][shape(v1) = circle]
[shape(v2) = square]{shape(v3) = circle]
[ontop(v1, v2][inside(v3, v2)]

In this method, we attempt to accelerate the search for plausible generaliza-
tions by using techniques similar to those of hierarchical planning [31]. First,
we separate all descriptors into two classes: unary and non-unary descriptors.
We call the unary descriptors attribute descriptors since they are typically used
to represent attributes such as size or shape. Non-unary descriptors are called
structure-specifying descriptors since they are typically used to specify structural
information (for example relationships ontop and inside).

The basic idea of the method is to first search the description space which is
defined by the structure-specifying descriptors. Once plausible generalizations
are found in the abstract structure-only space, attribute descriptor space is
searched to fill out the detailed generalizations. There are several advantages
to this two phase approach.

The first is representational. As we have seen above, it is usually necessary to
use a graph (or equivalent data structure) to represent an event in a structural
learning problem. This is due to the fact that a graph is the most compact way
to represent binary relationships among n objects when the number of such
relationships is substantially less than the n(n — 1) possible relationships (i.e.
when the relationship matrix is sparse). Thus, in our method, the structure-only
events are represented as graphs. But once we have located plausible points in
this structure-only space, we can continue the search in attribute space.
Attribute (or unary) descriptors can be represented as vectors which are
substantially more compact and more efficiently manipulated than graphs.

The second advantage of this hierarchical approach is computational. The
task of comparing two graph structures is NP-complete. Any decrease in the
size of these graph structures leads to large decreases in the cost of a graph
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comparison. Furthermore, we can confine graph comparisons to the first phase
of the algorithm.

A third advantage of this approach is that we can take ‘large steps’ during
the search for plausible descriptions by conducting much of the search in a
sparse, abstract space.

There are also several disadvantages to this approach. Firstly, no speedup
will be obtained unless the learning problem uses both unary and non-unary
descriptors. There are some learning problems in which attributes play almost
no role at all. In such cases, the structure-only search space is the same as the
complete search space, so no computational savings will be obtained. There are
also learning problems which require only unary descriptors (as in [12]). These
are not structural learning problems, and the structure-only space is empty.

A second disadvantage of this approach involves the problem of defining
‘plausible’ descriptions in structure-only space. One fact which can be used is
the following: If g is a MSC-generalization in structure-only space, then there
exists a full description G, such that g is the structure-only portion of G, and G
is a MSC-generalization in the complete space.

Thus, if we find all MSC-generalizations of the input events in structure-only
space, then we can use these to find MSC-generalizations in the complete
space. However, we will not necessarily find all possible MSC-generalizations
in this fashion, since there may exist MSC-generalizations in the complete
space whose structure-only component is not maximally specific in structure-
only space. To avoid this problem, the algorithm may accept less than maxi-
mally specific generalizations in the structure-only space (i.e. more general
descriptions), and terminate the search using some problem-oriented know-
ledge.

Another difficulty concerns how to conduct the attribute search once plausi-
ble structure-only descriptions have been located. Our approach is to use each
structure-only description to define a new attribute-only space into which all of
the input events are translated. Unfortunately, an input event can be mapped
to more than one attribute-only description as shown below. This complicates
the search.

The algorithm searches structure-only space using a ‘beam search’—a form
of best-first search in which a set of best candidate descriptions is maintained
during the search (see [30]). First, all unary descriptors are removed from the
input events (thus abstracting them into structure-only space). Then a random
sample of these events is taken to form the set B, the initial set of generaliza-
tions (the initial beam set). In each step, B; is first pruned to a fixed sized beam
width by removing unpromising generalizations. (Promise is determined by the
application of the heuristic evaluation functions described below.) Then B; is
checked to see if any of its generalizations covers all of the input examples. If
any do, they are removed from B; and placed in the set C of candidate
conjunctive generalizations. Lastly, B; is generalized to form B,,; by taking
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each element of B; and generalizing it in all possible ways by dropping single
selectors. When the set of candidates C reaches a prespecified size, the search
halts. The set C contains conjunctive generalizations of the input data, some of
which are maximally specific. The size limit on C determines how deeply the
algorithm searches.

The program allows the user to employ simultaneously several criteria for
evaluating the promise of intermediate generalizations. These criteria are
combined to form a lexicographic evaluation functional with tolerances [17].
Some of the criteria presently included in the program are

(a) maximize the number of input events covered by a generalization,

(b) maximize the number of selectors in a generalization, and

(c) minimize the total ‘cost’ of the descriptors in a generalization. Different
descriptors can be given costs according to their difficulty of measurement and
other domain-dependent properties.

The user creates the evaluation functional by selecting crtieria from a list of
available criteria and ordering them in decreasing order of importance. Each
criterion is accompanied by a tolerance which specifies the allowed departure
of the associated criterion from the optimum value (see [17]).

Once the structure-only candidate set C has been built, each candidate
generalization in C must be filled out by finding values for its attribute
descriptors. Each candidate generalization g in C is used to define an attribute-
only space which is then searched using a beam search technique similar to that
used to search the structure-only space. The attribute-only space is defined as
follows. Let {vy, ¥2, ..., v} be the existentially quantified variables used in the
candidate structure-only generalization g. The attribute-only space generated
by g is the space of all m X k-tuples consisting of the values of the m attributes
describing the k objects denoted by the quantified variables {»y, v, ..., v} In
cases where some of the m attributes are not applicable to some of the objects,
the attribute-only space will be correspondingly smaller.

In order to search this space, all of the input events must first be translated
into this attribute-only space. This is accomplished by matching g against all
input events, and extracting the attributes of the variables in the input events
which match »,, vy, ..., v in g The values of these attributes form a single
m X k-tuple. For example, if g = [ontop(vl, v2)] and the variables v1 and v2
have two attributes, size and shape, then the attribute-only space generated by
g is the space of all 4-tuples of the form

(size(v1), size(v2), shape(v1), shape(v2))
Let E, be the following input event:

E;: 3pl, p2, p3 [ontop(pl, p2)l[ontop(p2, p3)]
[size(pl) = 1][size(p2) = 3][size(p3) = 5]
[color(p1) = red][color(p2) = green][color(p3) = blue]
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Then we can translate E, into this attribute-only space in two different
ways—since g matches E; in two distinct ways. When g is matched to E,; so
that v1 is matched with p1, and v2 with p2, the resulting attribute-only 4-tuple is

(1, 3, red, green)
When v1 is matched to p2, and v2 to p3, then the resulting event is
(3, 5, green, blue)

During the search of this attribute-only space, the goal is to find an MSC-
generalization which covers at least one of these two translated events (and
thus covers E;). Such an MSC-generalization is in the form of an m X k-tuple
as above, except that each position in the tuple may contain a set of values of
the corresponding attribute. This set of values is expressed by an internal
disjunction in the final corresponding formula.

The beam search of attribute-only space is similar to the search of structure-
only space. A random sample of events is selected and generalized step-by-step
by extending the internal disjunctions in the events. The generalization process
is guided by a means-ends analysis to detect relevant differences between the
current generalizations and events which have not yet been covered. Heuristic
criteria are used to prune the beam set to a fixed beam width. Candidate
generalizations which cover all of the input events (i.e. at least one of the
attribute-only events translated from each input event) are removed from the
beam set and added to the candidate set C'. Each candidate in C' provides
possible settings of the attribute descriptors which, when combined with the
structure-specifying descriptors in g, produces an output conjunctive general-
ization G.

Among all conjunctive generalizations produced by this algorithm, there may
be some which are not maximally specific. This occurs when the search of
structure-only space is permitted to produce candidate structure-only general-
izations which are not maximally specific. In most observed cases such can-
didate generalizations become maximally specific when their attribute descrip-
tors are filled in during the second phase of the algorithm.

Evaluation. (i) Representational adequacy. Using only non-constructive rules
of generalization, the algorithm discovers, among others, the following
generalizations of the events in Fig. 2.

1. 3v1, v2 [ontop(vl, v2)][size(v1) = medium][shape(v1l) = polygon]
[texture(v1) = blank][size(v2) = medium, large]
[shape(v2) = rectangle, circle]

There exist two objects (in each event), such that one is a blank, medium-sized
polygon on top of the other, a medium or large circle or rectangle.
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2. 3vl, v2 [ontop(vl, v2)][size(vl) = medium]
[shape(v1)= circle, square, rectangle][size(v2) = large]
[shape(v2) = box, rectangle, ellipse] [texture(v2) = blank]

There exist two objects such that one of them is a medium-sized circle,
rectangle, or square on top of the other, a large, blank box, rectangle, or

ellipse.

3. 3v1, v2 [ontop(v1, v2)][size(v1) = medium][shape(v1) = polygon]
[size(v2) = medium, large][shape(v2) = rectangle, ellipse, circle]

There exist two objects such that one of them is a medium-sized polygon on
top of the other, a large or medium rectangle, ellipse, or circle.

4. 3v1 [size(v1) = small, medium}[shape(v1) = circle, rectangle]
[texture(vl) = shaded]

There exists one object, a medium or small shaded circle or rectangle.

A few simple constructive induction rules have been incorporated into the
current implementation. These include rules which count the number of objects
possessing certain characteristics, and rules which locate the top-most and
bottom-most parts of an object (or more generally, extremal elements in a
linearly-ordered set defined by any transitive relation, e.g., ontop). Other
constructive induction rules can be specified by the user. Using the built-in
constructive induction rules, the program produces the following conjunctive
generalization of the input events in Fig. 2.

5. [# v’s = 3, 4][# v’s with texture blank = 2] A
3vl, v2 [top-most(v1)][ontop(v1, v2)][size(v1) = medium]
[shape(v1) = polygon][texture(vl) = clear]
[size(v2) = medium, large][shape(v2) = circle, rectangle]

There are either three or four objects in each event. Exactly two of these
objects are blank. The top-most object is a medium sized, clear polygon and it
is on top of a large or medium sized circle or rectangle.

This algorithm implements the conjunction, disjunction, and internal dis-
junction operators. The representation distinguishes among descriptors, vari-
ables, and values. Descriptors are further divided into structure-specifying
descriptors and attribute descriptors. The current method discriminates among
three types of descriptors:

— nominal—which have unordered value sets,

- linear—which have linearly-ordered value sets, and

— structured—which have tree-ordered value sets.
This variety of possible representational forms is intended to provide a better
‘fit’ between the description language and any specific problem.
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(ii) Rules of generalization. The algorithm uses all rules of generalization
mentioned in Section 1.5, and also a few constructive induction rules. It does
not implement the introducing exception specialization rule. The effect of the
turning constants to variables rule is achieved as a special case of the general-
ization by internal disjunction rule.

(iii) Computational efficiency. The algorithm requires 28 comparisons, and
builds 13 rules during the search to develop the descriptions listed above. Four
rules are retained, so this gives an efficiency ratio of 4/13 or 30%.

(iv) Flexibility and extensibility. The algorithm can be modified to discover
disjunctions by altering the termination criteria for the search of structure-only
space to accept structure conjuncts which do not necessarily cover all of the
input events. The same general two-phase approach can also be applied to
problems of determining discriminant generalizations. Larson and Michalski
[15-18, 20] have done work on determining such discriminant descriptions.

The algorithm has good noise immunity. Noise events can be discovered
because the algorithm tends to place them in separate terms of a disjunc-
tion. )

Domain-specific knowledge can be incorporated into the program by
defining the types and domains of descriptors, specifying the structures of these
domains, specifying certain simple production rules (for domain constraints on
legal combinations of variables), specifying the evaluation functional, and by
providing constructive induction rules. These forms of knowledge represen-
tation are not always convenient, however. Further work should provide other
facilities for knowledge representation.

As mentioned above, the method does perform a few general kinds of
constructive induction. The method provides mechanisms for adding more
rules of constructive induction.

The comparison of the above methods in terms of the criteria of Section 2.1
is summarized in Table 2.

3. Summary and Suggested Topics for Further Research

We have discussed various aspects of structural machine learning and introduced
several criteria for evaluating learning methods. These criteria have been applied
to the evaluation of five selected methods of learning maximally specific
conjunctive descriptions, including the author’s own method. One of the features
revealed by the analysis is that top-down and bottom-up methods present a
tradeoff between computational efficiency on the one hand, and flexibility and
extensibility on the other. Bottom-up methods tend to be faster, but have lower
noise immunity and less flexibility. Top-down methods have good noise immunity
and can be easily modified to discover disjunctive and other forms of generaliza-
tion. They do tend to be computationally more expensive.

Another important point brought out by the analysis is the importance of
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selecting an appropriate description language for research in inductive learning.
A learning method which uses a language with little structure (i.e., which has
few operators and few types of operands) tends to be relatively efficient and
easy to implement, but may not be able to learn descriptions which are most
useful in real-world applications. On the other hand, a method which uses a
language which is too rich will lead to enormous implementation problems
which will be detrimental to successful research in machine learning.

A significant problem in current research on inductive learning is that each
research group is using a different notation and terminology. This not only
makes the exchange of research results difficult, but it also makes it hard for
new researchers to enter the field. This paper has attempted to develop a set of
concepts and criteria which abstract from these differences in notation and
terminology.

The analysis raises some important problems to be addressed in future
research:

(i) Further work on representations. Present learning programs are limited by
the kinds of operators and variable types they allow, and also by the forms of
descriptions they can produce. Methods for handling additional operators,
variable types, and forms of descriptions need to be designed and im-
plemented. Rules of generalization corresponding to these operators, types,
and forms should also be developed. Among forms which are particularly
desirable are hierarchical and related forms in which a name of one descrip-
tion is used to build other, more complex descriptions. Some initial work in this
area has been done by Winston [38, 39], Cohen and Sammut [5], and in the
area of grammatical inference in general (see Biermann [1]).

(ii) The Principle of Comprehensibility. In applications where people will
need to use the generalizations produced by a learning program, it is important
that the learning method produces generalizations which are easy to under-
stand and close to corresponding natural language descriptions. This means
that the descriptions developed by an inductive method must be structured to
take into consideration human information processing limitations. As a rough
guideline, conjunctions should involve no more than three or four conditions,
full descriptions should involve only two or three disjunctive terms, and there
should be no more than two quantifiers in the description. Descriptions should
correspond to single ‘chunks’ of information. Hierarchically structured des-
criptions may provide a way to meet these guidelines.

(iii) Constructive induction. The constructive induction techniques developed
to date are very limited. New rules of constructive induction need to be
identified and implemented. An important problem is the development of
efficient mechanisms for guiding the process of constructive induction through
the potentially immense space of possible derived descriptors.

(iv) Integration of problem-specific knowledge. Further work should be done
on the problem of when and how to use problem-specific knowledge in a
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general induction method. The use of typed variables is a good example of a
general way to incorporate problem-specific knowledge.

(v) Extension to discriminant and taxonomic descriptions. Much work has
been done on characteristic generalization. Discriminant and taxonomic des-
criptions are very important, especially in noisy environments. More work on
this subject is needed.

(vi) User interface. As Al learning programs become more powerful, their
functions will become more opaque. Learning programs should provide
explanation facilities for justifying their generalizations.

(vii) Handling errors and missing data. Very little attention has been paid to
the problem of developing methods which work well in noisy environments.
There is need for research on methods of learning from uncertain input
information, from incomplete information, and from information containing
errors.
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