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ABSTRACT 

THE APPLICATION OF COGNITIVE DIAGNOSTIC APPROACHES VIA NEURAL 

NETWORK ANALYSIS OF SERIOUS EDUCATIONAL GAMES 

Richard L. Lamb, Ph.D. 

George Mason University, 2013 

Dissertation Director: Dr. Leonard A. Annetta 

 

Serious Educational Games (SEGs) have been a topic of increased popularity within the 

educational realm since the early millennia. SEGs are generalized form of Serious Games 

to mean games for purposes other than entertainment but, that also specifically include 

training, educational purpose and pedagogy within their design. This rise in popularity 

(for SEGs) has occurred at a time when school systems have increased the type, number, 

and presentations of student achievement tests for decision-making purposes. These tests 

often task the form of end of course (year) tests and periodic benchmark testing. As the 

use of these tests, has increased policymakers have suggested their use as a measure for 

teacher accountability. The change in testing resulted from a push by school districts and 

policy makers at various component levels for a data-driven decision-making (D3M) 

approach. With the data-driven decision making approaches by school districts, there has 

been an increased focus on the measurement and assessment of student content 

knowledge with little focus on the contributing factors and cognitive attributes within 
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learning that cross multiple-content areas. One-way to increase the focus on these aspects 

of learning (factors and attributes) that are additional to content learning is through 

assessments based in cognitive diagnostics. Cognitive diagnostics are a family of 

methodological approaches in which tasks tie to specific cognitive attributes for 

analytical purposes. This study explores data derived from computer data logging 

(n=158,000) in an observational design, using traditional statistical techniques such as 

clustering (exploratory and confirmatory), item response theory and through data mining 

techniques such as artificial neural network analysis. From these analyses, a model of 

student learning emerges illustrating student thinking and learning while engaged in SEG 

Design. This study seeks to use cognitive diagnostic type approaches to measure student 

learning while designing science task based SEGs. In addition, the study suggests that it 

may be possible to use SEGs to provide a means to administer cognitive diagnostic based 

assessments in real time. Results of this study suggest the confirmation of four families 

(factors) of traits illustrating a simple factor loading structure. Item response theory (IRT) 

results illustrate a 2-parameter logistic model (2PLM) fit allowing for parameterization 

using the IRT-True Score Method (X2
=1.70, df=1, p=0.19). Finally, fit statistics for the 

artificial neural network suggest the developed model adequately fits the current data set 

and provides a means to explore cognitive attributes and their effect on task outcomes. 

This study has developed a justification for combining and developing two distinct areas 

of research related to student learning. The first is the use of cognitive diagnostic 

approaches to assess student learning as it relates to the cognitive attributes used during 

science processing. The second area is an examination and modeling of the relationship 
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between attributes as propagated in an artificial neural network. Results of the study 

provide for an ANN model of student cognition while designing science based SEGs 

(r
2
=0.73, RMSE= 0.21) at a convergence of 1000 training iterations. The literature 

presented in this dissertation work integrates work from multiple field areas. Fields 

represented in this work range from science education, educational psychology, 

measurement, and computational psychology.  

 



 

1 

 

CHAPTER ONE 

Introduction 

One goal of science educators is to assist secondary school students (9-12) in 

achieving increased levels of understanding in their learning content areas, specifically 

the natural sciences. One potential way to improve this understanding is with the use of 

Serious Educational Games (SEG). SEG computer games and their closely related 

brethren, virtual laboratory simulations, are of immediate interest to the science education 

community. SEGs are games designed for educational or training purposes with specific 

pedagogical approaches. The inclusion of pedagogical approaches specifically 

differentiates SEGs from other forms of computer-based learning. A second way that 

SEGs differ from their counterparts is by the immersive nature of their environments. 

Within the SEG, the virtual learning environment mimics the actual environments in 

which the subject would conduct their tasks as closely as possible. The mimicry of actual 

environments along with the interactivity (open-ended) and complexity of the 

environment and problems is what adds to the authenticity of the tasks (Annetta, 2010). 

The task authenticity provides an ideal means for SEGs to present virtual tasks to subjects 

for diagnostic purposes. In addition to the task authenticity, SEGs provide an additional 

advantage of creating continuous, large data streams through data logging for analysis. 
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Given the digital nature of the data stream, SEG data readily lends itself to effective 

Bayesian data mining techniques such as Artificial Neural Network Analysis.  

Video Games in Education  

One goal of science educators is to assist secondary school students (9-12) in 

achieving increased levels of understanding in their learning content areas, specifically 

the natural sciences. One potential way to improve this understanding is with the use of 

Serious Educational Games (SEG). SEG computer games and their closely related 

brethren, virtual laboratory simulations, are of immediate interest to the science education 

community. SEGs are games designed for educational or training purposes with specific 

pedagogical approaches. The inclusion of pedagogical approaches specifically 

differentiates SEGs from other forms of computer-based learning. A second way that 

SEGs differ from their counterparts is by the immersive nature of their environments. 

Within the SEG, the virtual learning environment mimics the actual environments in 

which the subject would conduct their tasks as closely as possible. The mimicry of actual 

environments along with the interactivity (open-ended) and complexity of the 

environment and problems is what adds to the authenticity of the tasks (Annetta, 2010). 

The task authenticity provides an ideal means for SEGs to present virtual tasks to subjects 

for diagnostic purposes. In addition to the task authenticity, SEGs provide an additional 

advantage of creating continuous, large data streams through data logging for analysis. 

Given the digital nature of the data stream, SEG data readily lends itself to effective 

Bayesian data mining techniques such as Artificial Neural Network Analysis.  
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There is considerable research, which, suggests that when properly designed with 

underlying science concepts and by extension, Science, Technology, Engineering, and 

Mathematics (STEM) principles, learning environments improve student skill levels in 

cognitive attributes such as practical reasoning, complex problem solving, transfer of 

learning, inductive reasoning, and the use of mapping in multidimensional space (Abell 

& Lederman, 2007; Spector & Changmin, 2012). In addition to improving student 

learning using videogames, there is considerable interest within the educational, 

government and business community in developing game formats that are capable of 

assessing students’ science and STEM learning outcomes (Wall, 2011). Assessment of 

student learning is a multi-billion dollar industry with many stakeholders within and 

outside of, the educational community (Flaitz, 2011). Assessment is also one of the most 

contentious issues within the current educational environment with educators and 

policymakers often lining up on opposite sides as to the role of assessment within the 

school system (Messick, 1985; Odena, 2010). Educators suggest that the assessments are 

not meaningful measures of student learning and do not account for key student gains. On 

the other side of the debate about assessments role, policy makers demand accountability 

of the educator as the primary function of the test. This disconnect between educators and 

policymakers provides a stimulus for business and government to seek more appropriate 

and authentic measures of student learning in order to drive decision making processes 

for curriculum and learning (Demarest, 2010; Young, 2011). The call by business, 

government, educators, and policymakers for more authentic and realistic assessment has 

driven much of the innovation in assessment in recent years (Hanson & Mohn, 2011; 
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Hall, 2012). On this point, Educational Testing Service (ETS) presented the ETS 

Assessment Games Challenge as a means to challenge researchers and educators to 

develop assessments tasks in the form of a game. ETS presents awards on a yearly basis 

around assessed learning progressions (ETS, 2012). ETS is not the only entity to call for 

researchers to help bridge the gap in assessment, the National Science Foundation (NSF), 

Microsoft, Intel, the National Science Teacher Association and the National Education 

Association have all committed resources to address the disconnect in assessment 

between educators and policymakers. Each of these organizations sees educational 

gaming (SEGs) as a means to accomplish the repair of this disconnect and meaningfully 

engage students in the assessment process.  

Background, Previous Work and Justification 

 

 There is very little argument that high stakes content assessments affect the 

science curriculum tremendously through its choice of question and topic (Penuel, 

Fishman, Gallagher, Korbak, & Lopez-Prado, 2009). The power of the “test” rests with 

the tests ability to shape, stretch, and remove portions of the science curriculum. The 

test’s effect on the curriculum has been a subject of discussion since the inception of 

testing. The origins of formal testing are thought to begin with the Chinese Imperial 

Examination system designed to select candidates to serve as administrators as early as 

141 BCE during the Han Dynasty (Elman, 2002). Impacts on the Chinese curriculum 

resulting from these examinations was well established by 105 BCE with the mandate 

from Emperor Wu of Han that all local officials take part in examinations designed to 

show aptitude through an understanding of the Confucian Classics. To say high stakes 
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testing has been a part of education for an extended period is an understatement. From 

this beginning, the concept of the standardized test to measure content extended through 

the Chinese sphere of influence and eventually arose in the West based upon the Chinese 

Imperial Examination. Viewing documents from the late 15th and 16th century, there are 

hints to the use of testing within the Western hemisphere with the development of 

entrance examinations for university admissions and the origins of the doctoral 

dissertation and thesis arising during this time (Clegg, 1979). Testing in this capacity 

remained relatively unchanged through the 17th and 18
th

 century into the early 19
th

 

century. At this point it is necessary to focus away from a global-historical view of 

testing due to the rise of the dominance of empirical study such as mathematics, science 

etc. Specifically, it is necessary to focuses on the rise of science education as it 

development intertwines with the development of the testing movement within the United 

States.  

Prior to reform in the early 19
th

 century, science education within the United 

States was often a subjective scattering of practical topics such as navigation, agriculture, 

and surveying. The beginning of the standardization of the science curriculum occurred 

when Harvard University required the completion of high school courses in Physics and 

Chemistry for admission. Shortly thereafter, many colleges and universities followed 

Harvard’s lead. In essences, the high school science courses developed into the premier 

admissions requirements for the universities. In 1892, the Committee of Ten, a group of 

educators designated to appoint subject matter experts and make recommendations for 

curriculum and college admission requirements, appointed three subject matter experts in 
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the sciences. The science content areas specifically represented were Physics, 

Astronomy, and Chemistry. The members of the Committee of Ten submitted several 

recommendations via the Cardinal Principals of Secondary Education, to the National 

Education Association for implementation (NEA, 1918). Chief among the 

recommendations were (a) elementary science should focus on natural phenomena, (b) 

secondary science should focus on laboratory work, and finally (c) science is a means to 

develop students for college. This began to set science apart from other content areas and 

set the stage for science to act as an assessment for college admissions. A second set of 

reforms in 1920 called the Reorganization of Science in Secondary Schools added to the 

role of science specifically the reforms called to develop individuals for effectiveness in 

science (NEA, 1920).  

Over time, the science programs found their place not just within the university 

setting but also within the K-12 setting and science-teacher education programs. 

Acceptance of science education as a discipline came about with the inclusion of science 

education methods courses within college and university departments of education. As 

science education progressed, it began to change, after 1957 with the insistence by 

leaders within the United States that the United States match the Soviet Union 

scientifically and technologically after the launch of Sputnik 1 and 2 in 1957. As 1960 

approached, the science education community shifted its focus from individual 

preparation to a strategic view of science’s role within the country with the National 

Defense Education Act (1960) and the Guidelines for Secondary Science and 

Mathematics (1961). Radical new technologies and concerns for national security drove 
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the science educational reforms of the 1960s and early 1970s. However, the educational 

community provided an inadequate response to these developing scientific aspects of 

society and this initiated the shortage of technically trained personnel the educational 

community is grappling with today. As the acute need for STEM trained professionals 

has grown, the United States has declined in its position economically and educationally. 

This decline is exemplified in the Trends in Mathematics and Science Survey (TIMSS) 

from 1995 through 2011. As seen in an analysis of United States performance trends, the 

United States made the top 10 rankings in science only in the years, 2007 (9
th

), and, 2011 

(10
th

) (United States Department of Education, 2013). 

 As part of the growing need for adequately trained personnel several science 

education stakeholders’ organizations organized reforms. The Department of Education 

in 1983 released The Nation at Risk: An Imperative for Educational Reform outlining the 

need for radical educational change across all content areas. In an attempt to remedy the 

inadequate science education response of the 1970s (outlined in the Nation at Risk 

Report), the National Science Teacher Association (NSTA) constructed the science-

technology-society (STS) curriculum. The goal of STS was to provide educators a means 

to develop scientifically minded individuals. With the position of the NSTA in mind, The 

American Association for the Advancement of Science (AAAS) implemented Project 

2061 in 1985. Project 2061 was an attempt to identify the most important aspect of 

science education. Reformers at AAAS outlined many of the most important 

recommendations of Project 2061 in the 1989 publication, Science for All Americans. An 

additional inclusion within the Project 2061 reform that was not included in other reforms 
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was the inclusion of informal education as a contributing equal partner to science 

education.  

During the development of the science education reforms of the middle and late 

1980s, a parallel movement occurred; this movement was the rise of required national 

benchmarking. Congress established the National Assessment Governing Board to set 

policy for the National Assessment of Education Progress (NAEP) or more familiarly 

known as The Nation’s Report Card. Following NAEP was Goals 2000: Education 

America Act. The Goals 2000 Act provided the initial foundations for standards based 

educational reform, and provided the framework for the development of the No Child 

Left Behind Act, 2001 (NCLB). It is at this point that assessment as envisioned by the 

Imperial Exams of China and throughout educational history and modern assessment 

depart from one another. Assessment moved from a means to understand student content 

learning to a means to hold educators, schools, and state public educational agencies 

accountable. Policy makers and educators have particularly focused on accountability in 

science education as a means to reform education and increase the number of technically 

proficient citizens. Common Core –developed by the National Governors Association 

Center for Best Practices- and the 21
st
 Century Skills (Trilling & Fadel, 2009), and the 

Next Generation Science Standards (Achieve Inc., 2013) holds science as a corner stone 

of economic development and as a means to maintain the United States’ current role in 

the world. 

Within the current context of the testing and accountability, movement there 

seems to be a dichotomy between content learning measurement and stakeholder 
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accountability. The standards focus more on cognitive approaches, while assessments for 

accountability focus more on content. This dichotomy can be resolved though the 

development of new assessment techniques. The focus on accountability and assessment, 

coupled with the rise of inexpensive computing power, has increase the frequency and 

amount of data collected on students. Increased data collection has led to calls by those 

outside of education to mirror professions in which data provides a means to establish 

empirically based rational decisions, in other words, a Data Driven Decision Making 

(D3M) approach. The rise of D3M occurred in parallel with the rise of the accountably 

movement in education. D3M refers to the use of data to inform educational decisions. 

Specifically, No Child Left Behind (NCLB) mandates that the educational units 

specifically gather, aggregate, and report student-level data. NCLB also implicitly 

demands that school units initiate change in teaching practice, based upon changing 

accountability data, into actionable information. Many educators and educational units 

lack the specific training in analysis and data mining to make use of the vast data 

collected from assessments. Thus, there are vast data streams that are currently 

underutilized. Recently however, there have been movements by private organization and 

universities to develop a new field by combining analysis of data with pattern seeking 

analysis with continuous, large, data streams. Tentatively, this field has been named 

educational analytics or educational informatics. These areas are on the forefront of 

assessment and D3M. This dissertation is an attempt to provide a methodological 

approach centered on student cognition as a means to analyze and develop a sound D3M 

approach for science education.  
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Current assessment techniques both in education and in psychology rely heavily 

upon the theoretical foundations of Classical Test Theory (CTT) or alternatively, Item 

Response Theory (IRT). While each of these theoretical frameworks provides for a 

meaningful approach to test development and assessments, in general terms, other more 

recently developed techniques (beginning in the late 1980s) may prove useful. Chief 

among these techniques is that of Cognitive Diagnostics used as an assessment technique. 

Thus, we seek to separate and target the underlying aspects of learning through the 

targeting of student thinking. A somewhat analogous understanding of the relationship 

between content and cognitive attributes is, content is the phenotype (outward expression 

of learning) while cognition is the genotype (the underlying expression of learning). 

Using cognitive diagnostic approaches, coupled with neural network modeling, it may be 

possible to develop assessments using authentic task presentation with fewer items and 

outcomes for analysis across multiple curricular domains. These alternative assessment 

types would take the form of the design of SEGs using cognitive diagnostics. 

Purpose, Research Questions and Hypothesis 

 

The primary purpose of this study is to establish and suggest a methodological 

procedure for exploration of large data sets and analysis of the latent cognitive attributes 

associated with the design of SEG as a means to teach science concepts. The second goal 

of this study is to understand the proper data structures, which allows an artificial neural 

network (ANN) model to converge and provide a meaningful simulation of student 

learning relating to SEG design. The third purpose of this study is to uncover the 

associated cognitive attributes impacted while designing science based SEGs. Lastly, this 
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study seeks to develop and propose an exploratory model of the interaction between the 

cognitive attributes, factors, and game items. The research questions and associated 

hypotheses addressed within this study are: 

Research Question 1 (RQ1): What are the underlying factors exhibited through the 

measurement of task items associated with student development of Serious Educational 

Games? 

Hypothesis 1 (H1): Using appropriate clustering techniques, one can cluster Serious 

Education Game tasks to provide meaningful information for the development of a 

computational model. Ho Λi=0 

Research Question 2 (RQ2): What are the cognitive attributes that underlie the design of 

Serious Educational Games? 

Hypothesis 2 (H2): By using Serious Educational Game design, in the learning 

environment, it is possible to map the relationship between task items and latent cognitive 

attributes. Ho ΡAi=0 

Research Question 3 (RQ3): What theoretical mathematical / statistical model develops 

using an Artificial Neural Network to describe the interaction of the items, factors, and 

attributes as student design Serious Educational Games?  

Hypothesis 3 (H3): A computational-cognitive model to describing the underlying 

cognitive attributes activated while designing Serious Educational Games can be 

developed with valid predictive value. H0 R
2
=0 

 

As researchers discover the latent attributes driving cognition, they can prescribe 

tasks to stimulate cognitive attributes associated with the science-based tasks. The key 

process for discovering the latent cognitive attributes is with cognitive diagnostic 
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approaches. This study presents literature from a series of papers examining how the 

design of games acts as an assessment tool and proposes the underlying cognitive 

attributes activated when engaging in tasks related to science game design and play. 

However, many of the current games used for educational purposes lack the depth and 

intricacy found in SEGs. Current work and literature completed by researchers thus far, 

has focused on the two variations of the second research question. The first is what 

factors affect science based game play, and what role does science based games play in 

student learning outcomes. For the completion of this study, the study tested each of the 

components related to SEG design. Each component has been tested using techniques 

outlined in the methods section and validated through a pilot study.  

The remainder of the dissertation covers many topics to include computational 

modeling, measurement, and cognition. The Background section defines SEGs and 

makes the case for using artificial neural networks (ANN) and cognitive diagnostic 

approaches as a means to model and study student cognition. The Background also 

introduces and justifies the choice of SEGs in science education as a domain topic for 

experimentation. The Model section introduces neural networks for the application of 

cognitive diagnostics. The Methodologies section presents means for developing a 

picture of cognitive attributes and task completion. The Results section describes 

analytical outcomes and develops a proposed model for student cognition. The Future 

Work section describes how to continue the direction of this research to understand the 

conceptual basis of the observed results. In the final two sections, the study discusses the 

results of the cognitive diagnostic analysis and presentations an artificial neural network 
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model as a potential form of assessment. This form of assessment contrasts with other 

assessment approaches such as Item Response Theory and Classical Test Theory. 

Definitions 

 

The study contains several key words and concepts, which have specific 

contextual meanings and operationalized for the purposes of this study. The following 

section contains key definitions as used within the context of this study.  

A priori: A method of relating to, or denoting reasoning or knowledge proceeding from 

theoretical deduction as opposed to, observation or experience (Demopoulos, 2003).  

 

AAAS: The American Association for the Advancement of Science. 

 

Artificial Neural Network: A mathematical model consisting of interconnected groups of 

neurons used for information processing and predicting outcomes (Oczkowski & Barreca, 

1997). 

 

Attribute Mastery Pattern (AMP): The pattern denoting the presence or absence of 

particular cognitive attributes related to a task. The AMP is similar to item response 

pattern s within the IRT framework, represented by the symbol PA (Im & Yin, 2009). 

 

Bartlett Test of Sphericity: A test statistics used to examine the hypothesis that the 

correlation matrix is an identity matrix meaning the variables are uncorrelated (Yang, 

2005).  

 

Bayesian Models: A framework for probabilistic inference providing a general approach 

to understanding problems of induction paralleled in the development within the human 

mind (Peifors, Tenenbaum, Griffiths, & Xu, 2011).  

 

Classical Test Theory: A testing theory in which assumes that each observed score (X) 

contains a True score component (T) and an Error Component (E) (Lord, 1980).  

 

Cluster Analysis: A statistical technique that naturally group data using response 

relationships (Borgen & Barnett, 1987). 

 

Cognitive Architecture: A computer architecture involving multiple inference process 

within artificial neural network software, made to model the human brain using fuzzy 

logic calculations (Papageorgiou, 2011). 
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Cognitive Attributes: Psychological characteristics shown to be use during the thinking 

process. Attributes are normally distributes and relatively stable (Riding & Cheema, 

1991).  

 

Cognitive Matrix: See Q-Matrix  

 

Confirmatory Factor Analysis: A form of factor analysis used in social science research 

to measure fit to a conceptual model (Fabrigar, Wegener, MacCallum, & Strahan, 1999).  

 

Conjunctive Model: A cognitive diagnostic model, which assumes all attributes, must be 

present in some degree in order to complete a task (Medin & Shoben, 1998). 

 

Construct Validity: The degree to which one can infer from operationalized definitions 

(Fraenkel, Wallen, & Hyun, 1993). 

 

Critical Reasoning: A cognitive attribute exemplified by the purposeful use of 

information to, informed outcomes focused using logic, skills, and experience (Phillips & 

Bond, 2004). 

 

Cronbach’s Alpha: The average inter-correlation coefficient among items, this coefficient 

denotes levels of reliability within measures and assessments (Cortina, 1993). 

 

Data Driven Decision Making (D3M): A process of curriculum and instructional 

development based upon the analysis of student level assessment data (Mandinach, 

Rivas, Light, Heinze, & Honey, 2006).  

 

Digital Game-Based Learning: Learning games on a computer or online which are 

developed to teach content (Papastergiou, 2009). 

 

Discrete Latent Attribute Model: A statistical model relating hidden variable values to 

observable variables (Meila & Heckerman, 2001).  

 

Edutainment: Entertainment, computer games, films, or shows designed with educational 

aspects (Squire, 2003). 

 

E-Learning: Learning occurring online or via the Internet using a computer (Sharma & 

Kitchens, 2004). 

 

Exploratory Factor Analysis: A statistical technique used to identify clusters of inter-

correlated variables (Goddard & Kirby, 1976).  

 

Eigenvalues: The explained variance of the factor loadings in factor analysis (Tinsley & 

Tinsley, 1987). .  
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Fit Statistics: The set of statistics describing the measures the total deviation of the 

responses values to the expected values (Smith, 1991).  

 

Frontolimbic: The portion of the brain responsible for attention and arousal (Fichtenholtz, 

Dean, Dillon, Yamasaki, McCarthy, & LaBar, 2004). 

 

Frontostriatal: See Frontolimbic 

 

Functional Magnetic Resonance Imaging (fMRI): A method of brain imaging designed to 

detect metabolic changes in brain function meant to represent activity within the brain 

(DeYoe, Bandettini, Neitz, Miller & Winans, 1994). 

 

Gaussian Distribution: A normal distribution with a standard deviation of one and a total 

area under the curve equal to one this distribution is the basis for many inferential 

statistics (DeLong, DeLong, & Clarke-Pearson, 1998).  

 

Generalized Linear Model: A generalization of the linear regression model used for 

modeling and prediction of relationships between variables (Nelder & Wedderburn, 

1972).  

 

GRADUATE: A National Science Foundation grant funded project examining the role 

and effects of Serious Educational Game design on high-risk students (Annetta, 2008).  

 

Hebb’s Synapse and Learning Rule: A model used to explain associative learning and the 

activation of neurons (Caporale & Dan, 2008). 

 

Hidden Nodes: A Node within a neural network that modifies data using weighting 

factors for analysis purposes. The output of the hidden nodes creates the values for the 

output nodes (Dawson & Wilby, 1998).  

 

Independent Component Analysis: A computational methodology similar to principal 

component analysis used to minimize the variance around an orthogonal vector with the 

data set (Hyvärinen & Oja, 2000). 

  

Infit Statistics: Inlier sensitive fit statistic (Petridou & Williams, 2010).  

 

Input Nodes: The node within the artificial neural network responsible for transmitting 

data to the hidden nodes (Somoza, Eugene & Somoza, 1993).  

 

IRT True-Score Method: A method for determining population parameters from the item 

response parameters, discrimination (a), difficulty (b), and guessing (c), using Item 

Response Theory (Dimitrov, 2010).  
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Item Response Theory (IRT): Also known as latent trait theory, this theory is a modern 

test theory, in which, the true-score is defined by a subject’s ability associated with a 

given trait on a logit scale (Hambleton & Jones, 1993).  

 

Kaiser-Meyer-Olkin Measure of Sampling: A statistical method for examining the 

appropriateness of factor analysis by testing the underlying assumptions related to the 

sample (Stewart, 1981).  

 

Latent Trait Reliability Method: A method used to determine inter-item reliability not 

dependent upon the assumptions of Cronbach’s alpha (Dimitrov, 2009).  

 

Least Square Distance Model: Is the minimization of matrix norms using the Euclidean 

least square distance (Glunt, Hayden, Hong & Wells, 1990).  

 

Level 4 Biosafety Laboratory: The maximum levels of biological containment for 

infectious agents (Hawley & Eitzen, 2001).  

 

Linear Learning: The assumption that learning occurs incrementally, in ordered discreet 

units from beginning to end (Grefenstette, Ramsey & Schiltz, 1990). 

 

Linear Logistic Test Model: A method used to examine the validity if item constructs 

(Embretson & Gorin, 2001).  

 

Logical Reasoning: A cognitive attribute used to develop a rational, systematic series of 

steps to arrive at a conclusion (Baril, Cunningham, Fordham, Gardner & Wolcott, 1998). 

 

Mental Calculation: A cognitive attribute used to arrive at arithmetic calculation without 

the aid of computers, calculators or other external devices for numerical manipulation 

(Heid & Blume, 2008). 

 

MERCI Model: A model of assessment replacing personal ability with attribute 

probabilities to measure a subject’s cognitive attribute profile using real-time adaptive 

testing (Lamb, 2011).  

 

Orthogonal Factors: Assumes that the factor loadings are uncorrelated (DeYoung, 2006).  

 

Outfit Statistics: The outlier-sensitivity fit statistic (Petridou & Williams, 2010).  

 

Output Node: The reflection of the input node once the data has been processed through 

the hidden node and weighted (Somoza, Eugene & Somoza, 1993). 

 

P-16 Student: The grade levels ranging from pre-school (P) to the end of the 4-year 

bachelor’s degree (16).  
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Parameter a: Item Discrimination (Petridou & Williams, 2010). 

 

Parameter b: Subject Ability (Petridou & Williams, 2010). 

 

Parity Judgment: A cognitive attribute used to estimate the equality between two 

quantities (Allik, Tuulmets, & Vos, 1991). 

 

Perceptive Learning Rule: The learning algorithm contained within the artificial neural 

network (Carpenter, 1989).  

 

Perceptual Binding: A cognitive attribute used to couple characteristics between items 

(Mitchell, Johnson, Raye, Mather, & Esposito, 2000). 

 

Person Item Map: A graphical distribution of person ability versus item difficulty on a 

logit scale (Tesio, 2003).  

 

Posteriori: Relating to or denoting conclusions derived by reasoning from of observed 

facts (Gauvain & Chin-Hui, 1994). 

 

Principal Component Analysis of Residuals: A data transformation that uses orthogonal 

vectors through a data matrix, this approach accounts for the maximum amount of 

variance possible in the set of data (Rao, 1964).  

 

Principle Factor Method: A method of factor extraction and is the first phase of 

exploratory factor analysis (Pruzek, 2005).  

 

Projection Pursuit: A statistical method in which, one identifies deviations from a normal 

distribution in 3-D space (Li, 1991).  

 

Q-matrix: A mathematical representation linking cognitive attributes with specific tasks 

using a one and zero to designate the presence or absence of an attribute (Choi, 2010).  

 

Radial Basis Function: An activation function for a linear combination within a neural 

network (Specht, 1991).  

 

Science Process: Processes that use deductive reasoning to produce empirically consistent 

results obtained through experimentation (Hodson, 1985).  

 

Serious Educational Game: Serious Educational Games are a generalized form of Serious 

Games to mean games for purposes other than entertainment but that also specifically 

include training and educational purpose and pedagogy within their design (Annetta, 

2008). 
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Sublexical Routing: A process in the subject converts a portion of a word, into its holistic 

form when reading, for cognitive processing purposes and ultimately comprehension 

(Au-Young, James & Howell, 2002).  

 

Task-Attribute Relationship: The assignment of specific cognitive attributes required to 

complete a task. Psychologists outline this relationship within a Q-matrix (Gierl, Alves, 

& Majeau, 2010). 

 

Theta (Θ): The mathematical representation of subject ability within the IRT framework 

used for comparative and analysis purposes (Petridou & Williams, 2010). 

 

Verbal Production: A cognitive attribute responsible for the creation and processing of 

verbal language for comprehension purposes (Bock & Levelt, 2002). 

 

Visual-Spatial Thinking: A cognitive attribute used to determine the position of an object 

in three-dimensional spaces (Kozhevnikov, Kosslyn, & Shepard, 2006). 

 

Vygotskian Framework: An overarching theory of learning in which the individual 

constructs knowledge based upon the interplay of internal representations and external 

social interaction (John-Steiner & Mahn, 1996).  

 

Zone of Proximal Development (ZPD): The difference between the tasks a learner can 

complete independently and those tasks the learner can complete with minimal assistance 

from a peer at approximately the same level of ability (Rezaee & Azizi, 2012).  
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CHAPTER TWO 

Literature Review 
 

This section provides an overview of the current literature relating to Serious 

Educational Games and their use in the classroom. The relationship of Serious 

Educational Games to education ties to increases in computational power and task 

authenticity. These increases lend to the potential development of cognitive diagnostic 

approaches using Serious Educational Games as an assessment platform.  

History of Serious Educational Games and a Definition 

 

Although there are overlapping domains related to SEGs such as e-learning, 

edutainment, and digital game-based learning, this study focused on the domains related 

to science education. Each component has specific characteristics and conceptions of how 

the learner interacts within the particular virtual environment. E-learning environments 

are a broadly inclusive category to include computer based training, online education and 

computer aided instruction (Bernard, Abrami, Borokhovski, Wade, Tamim, Surkes, & 

Bethel, 2009). This form of learning is typically isolated to the individual used with little 

to no synchronous interaction with the instructor or other students. Using Charsky (2010) 

as a basis, Edutainment is electronic forms of learning that are design to entertain and 

educate. Edutainment tends to be one-way and without interaction. An example of 

Edutainment would be an educational television show or documentary. Game-based 
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learning is a form of learning though game playing (Papastergiou, 2009). This form of 

learning can use video games and other electronic means to learn but is not limited to 

digital or electron play. It is through this interaction, between the environment and the 

student that results in learning. E-learning is a generalization of this computer-enhanced 

learning and distance-education approach (Demetriadis & Pombortsis, 2007). Following 

the increased use of E-learning in the 1990s, and its combination with new multi-media 

technology, Edutainment, or educational entertainment developed (Michael & Chen, 

2005). However, more recently, edutainment has become associated with video games 

with learning intent. Researchers design edutainment approaches to target preschooler 

and younger children (Sarama & Clements, 2002). Creators of the Edutainment genre 

target this younger age group in an effort to expose them to science and mathematics, 

thinking and processing. Over time, the development of Edutainment stalled due to 

content associated with the games being thought of as “boring, drill, and kill learning.”  

Overall, one serious problem within the gaming industry was the lack of hardware 

development (processing power, graphic rendering, and interface development) in 

allowing for the realistic settings, tool interactions, and tasks to effectively create 

diagnostic educational games. Many of these limitations changed during the early 

millennia when individual processing power reached a sufficient level to make realistic 3-

dimensional (3-D) renderings of environments possible (Yang, Tong, Yip, & Xu, 2009). 

This increase in processing power also coincided with new memory formats allowing the 

average user to have access to unprecedented quantities of computer memory. The 

outcome of this increase in processing and memory capacity was the evolution of the v-
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learning environment or virtual learning environment from the e-leaning environment; 

these learning environments particularly focus on the K-16 teaching and learning 

(Annetta, Folta, & Klesath, 2010).  

In response to this increasing memory and more realistic 3-D rendering capability, 

the United States Army released a game titled America’s Army in 2002 (Gudmundse, 

2006). To describe these new genera of games, Zyda and Falstein (2002), independently 

coined the term Serious Game (Newsome & Lewis, 2011). The release of the Army’s 

Serious Game, in conjunction with the Woodrow Wilson Center introduction of the 

Serious Games Initiative, created the impetus within the educational sector to develop 

games for more than just entertainment, and decidedly placed the term Serious Game into 

the public lexicon. Through this initiative by the Woodrow Wilson Center to design and 

produce Serious Games, coupled with work by researcher-educators such as Annetta 

(2008), to add pedagogical and learning aspects to Serious Games, the term Serious 

Educational Game came about. Annetta conceptualized the term SEGs as a generalized 

form of Serious Games to mean games for purposes other than entertainment but that 

specifically include training and educational purposes within their design.  

Out of the Serious Games drive, comes the concept of game-based learning. This 

particular branch of educational gaming or game based learning, deals with a very 

specific approach in which one defines learning outcomes (Kim, Park, & Baek, 2009). 

Game-based learning, the direct predecessor to SEGs, specifically has the capacity to 

enhance training, learning, and practice (Hayes & Games, 2008). From this fringe, the 

term Serious Educational Games has matured and current searches using Google Scholar 
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(03/2013) with the search term Serious Educational Games yields over 298,000 peer-

review journal articles across numerous disciplines ranging from, education, computer 

science, business, and economics to engineering, natural sciences, and communications. 

Through its maturation within the literature, the term (Serious Educational Games) more 

recently has become more specific; referring to games designed to run on personal 

computers or video game consoles with the intent of training, simulating, and educating 

the subject, specifically targeting P- 20 content areas (Annetta, 2010). These games are 

designed specifically to take advantage of the engaging nature of video games through 

the bridging of cognition and psychological reward systems through stimulation 

(activation) of the areas of the brain associated with attention and arousal – namely- the 

frontostriatal and frontolimbic regions of the brain (Schmitz, Rubia, van Amelsvoort, 

Daly, Smith, & Murphy, 2008). A comparison of the SEGs with their non-Serious 

counterparts may provide the most telling definition of what a SEG is. Annetta and others 

suggest that while both SEGs and non-Serious Games contain art, story, development and 

software, it is the addition of the content and pedagogy, which separate the two (Annetta, 

2008; Breuer & Bente, 2010; Maher, 2011). More specifically, the pedagogy of the task 

completion processes, and the learning content integration play the critical role while, 

story, and characters, etc. support these components and act as a means to promote affect 

arousal within subjects taking part in the SEG. (Johnson, Rickel, & Lester, 2000).  
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Games in the educational setting. The use of video games in the educational 

setting has been in existence for a significant period. Numerous empirical studies suggest 

that there is significant educational value to their use (Annetta, 2008; Annetta, Minogue, 

Holmes, Cheng, 2009; Mitchell & Savill-Smith, 2004). SEGs present the learner with 

complex representations of real-world problems within the educational environments. 

These complex representations would not otherwise be possible for a student to interact 

within the real world (Dondinger, 2007). For example, is very unlikely that a P-16 

student would have access to or engage in learning within a Level 4 biosafety laboratory. 

The learner within these environments, video games, is exposed to complex 

representations often requiring specific tasks to be completed in order to forward the 

game toward the objective and, by extension, promote learning. Through task completion 

within the game, knowledge construction takes place and the video game acts as the 

mediator. 

The construction of learning in a virtual environment is analogous to construction 

within other environments. This occurs because humans construct and use knowledge to 

identify and understand critical processes regardless of the environment. Thus, this 

construction is common while designing SEGs (Jamaludin, Chee, & Mei Lin Ho, 2009). 

The student develops concepts associated with learning through the generation and use of 

internal representations of concrete objects in the real world while using the virtual 

equivalent (Perlovsky, 2007). Thus, there is a tendency to focus on the faculties that 

develop recognition of the significant objects within a problem and solve for those 

objects (i.e. inferential and critical reasoning). Based in this understanding, one can 
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propose that computer game designers would need highly organized cognitive structures 

to facilitate internal representation. Therefore, it is plausible that these internal 

representations would be necessary in order to use science knowledge, when confronted 

with ‘game situations’. Studies suggest that video game designers, and by extension SEG 

designers, would have the need to encode explicit information presented in the game for 

use later in task based problem-solving, thereby potentially transferring awareness and 

knowledge application to similar environments within the real world (Moreno-Ger, 

Burgos, Martinez-Ortiz, Sierra, & Fernandez-Manjon, 2007). This explicit encoding or 

knowledge construction, and knowledge deployment, is the key feature for the 

measurement of cognitive attribute sets. In other words, task completion is a key 

consideration when assessing cognitive attributes (Hadwin, Winne, & Nesbit, 2005). 

However, skill transfer across multiple domains and generalization of these cognitive 

attributes outside of the particular context of SEGs is still an area of intensive research 

(Baden, 2008). Specifically, the identification of patterns of cognitive processes used by 

SEG designers in multiple science domains is of critical significance to the science 

education and psychology community.  

The primary assumption when exposing a student to science-based, educational 

computer environments is that the students (subjects) undertake specific tasks when using 

the SEGs and the tasks result in learning gains. This assumption is the underlying 

principal of educational gaming, more specifically SEGs (Annetta et. al, 2008). However, 

in many cases, educational software incorporates design principles that mimic 

recreational software as a means to engage students (Thomas & Macredie, 1994). One 
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particular domain of educational software that illustrates this point is science based 

SEGs. In many cases, SEGs purposefully imitate their recreational counterparts with the 

hope of creating engagement in tasks leading to learning. This engagement is also a key 

point in the extension of SEGs as a means to measure student performance. 

Alternative Means of Measurement and Assessment in Education 

 

Item Response Theory (IRT) and Classical Test Theory (CTT) provide a means 

for obtaining examinee’s scores and scale measures for latent traits (Harvey, 1999; Lamb, 

Annetta, Meldrum, & Vallett, 2011). However, it is not possible to use IRT and CTT to 

assess and profile combinations of latent traits and attributes (Henson, Roussos, Douglas, 

& He, 2008). An alternative approach to these measurement techniques (IRT and CTT) is 

the estimation of the cognitive attributes mastery patterns (CAMPs) and Cognitive 

Diagnostic Assessment (CDA) models. Researchers can develop each of these 

measurement techniques (CAMPs and CDA) through cognitive diagnostic approaches 

originally developed in clinical psychology. While educational testing data can provide 

meaningful information to guide student learning, there is still a need to develop an 

understanding of the underlying psychological processes, which can help to model and 

explain underlying testing outcomes.  

CAMPs and CDA, diagnostic models are appropriate when the educational focus 

is not the estimation of general student ability (Θ), but the estimation of specific task 

ability (A) (Almond, DiBello, Moulder, & Zapata-Rivera, 2007). More specifically, these 

models provide for the probability of correctly answering an item or completing a task as 

a function of a particular cognitive matrix pattern or attribute mastery pattern. These 
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models can provide a means to access latent attribute profiles of student cognitive 

strengths and weaknesses (Gierl, Cui, & Zhou, 2009). Researchers within the field of 

cognitive diagnostics seek to develop, the power of the CDA approach, not at the district 

level as it is currently employed but at the individual student (classroom) level (Roberts 

& Gierl, 2010).  

Despite the potential power of student-level, cognitive diagnostic assessment 

(CDA) reports, there are limitations to current reporting methods for CDAs. Typical 

CDA reporting methods center on the aggregation of large numbers of samples at the 

national, state, or district level (Hattie & Jaeger, 1998). At these levels of reporting there 

are often questions of timeliness, and meaningfulness to the classroom level practitioner. 

This disconnect between levels of reporting can potentially be mitigated with the use of 

computerized testing and direct access to task-based assessments via virtual tasks. 

Computerized testing provides a means for educators to develop large data streams for 

analysis beyond content outcomes. Task-based assessments using cognitive diagnostics 

can also aid educators in their understanding of student learning. In particular, a thorough 

review of these assessments can allow for a view of student cognition while engaged in 

the learning process.  

Cognition 

 

Psychologists see individual human cognition as a means to embody a set of 

processes and mechanisms by which an individual understands the world though thinking 

and problem solving (Wilson & Keilm, 2001). Brown defines general cognition as, a 

combination of several cognitive attributes activated in parallel and simultaneously. This 
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process of understanding has in some ways led to an artificial separation between the 

knowing and doing (Brown, Collins, & Duguid, 1988; Hotton & Yoshimi, 2011). One-

way to bridge this separation between knowing and doing is with authentic tasks. 

Authenticity is a key feature of learning and by extension learning in the SEG 

environment. The authenticity found in SEGs derives from the realistic immersive 

environments rendered via the design process. Thus, there is a linkage between the 

product of learning and the structure of the activity. This linkage between the structure of 

the activity and the authenticity demands that the one's processes (cognition) situate into 

the context of the learning environment. Within the context of the situated cognition, 

most adults have a system of skills that are rooted in their perceptual process that 

develops throughout their early life and into their late teens. These processes develop into 

a set of diverse and complex cognitive procedures when used in parallel and 

simultaneously (Langley, Laird, & Rogers, 2009; Moreau, 2012). These component skills 

or attributes include, but are not limited to, the ability to comprehend and produce written 

and oral statements describing the interaction of complex variables, critical reasoning, 

and the ability to retrieve, calculate, estimate and reason through simple and complex 

problems. These relationships result in numerical and mathematical conceptual and 

procedural integration of activities (Wang, Geng, Hu, Du, & Chen, 2013). Given the 

connection between mathematics and science, portions of these task activations of 

cognitive attributes also activate when engaging in science processing (Hestenes, 2010). 

Conceptualization of the underlying cognitive architecture in mathematical and 

science processing skills is the focus of intensive research and discussion (Kalyuga, 
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Rikers, Slava, & Paas, 2012; Kroeger, Brown, & O’Brian, 2012). First, the discussion 

centers on the extent to which the distinct attributes exhibit local independence. Second, 

there is disagreement around the specific degree to which mathematics and science 

processing are specific to individual encodings. Several researchers note the formulation 

of encodings found in the processing of science skills related to quantified magnitudes 

(Kolkman, Hoijtink, Kroesbergen, & Leseman, 2013), verbal production (Deans, 2010), 

inference (Alfieri, Brooks, Albrich & Tenenbaum, 2011), reading (Ozuru, Dempsey & 

McNamara, 2009), and parity judgment (Gobel & Snowling, 2010). Such phenomena 

indicate that functionally distinct processes activate in parallel and interact, because of 

different functions involved shared representations. Further review of attribute activation 

profiles suggests a hierarchical relationship between the attributes. Specifically, vision-

spatial representations are integral to magnitude judgments, estimations, and arithmetic 

(Green, Feinerer, & Burman, 2013). Similarly, verbal-code structures encode fact 

retrieval processes. Within current models, there are assumptions that comprehension 

processes and interaction between attributes convert different surface forms into common 

abstract formats for input and storage. The cognitive architecture discussed in this study 

is broken into seven domains for exploratory and explanatory purposes. These domains 

act as a means to structure and organize the cognitive attributes. The seven domains are 

attention, mathematical learning and deductive reasoning, inductive reasoning and 

decision-making, perception, language processing and action. To organize the cognitive 

attributes further, the study assigned the attributes to domains based upon activation 

during task completion. The domains are Attention, Mathematical Learning and 
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Deductive Reasoning, Inductive Reasoning and Decision Making, Perception, Language 

Processing and Action. 

Cognition related to the domain of attention. Cognition provides a framework 

for clarity and, each of the attributes rests upon a framework bridging between 

neuroscience, science education, and educational psychology. Specifically, the following 

portion of this study develops both the conceptual and operational definitions, which 

drive the data mining and exploratory nature of the study. The definitions of attention 

switching and visual attention are rooted in the more generalized process of selective 

attention. Selective attention generally refers to a set of operations, which assist in the 

determination of how to analyze multiple input streams (Song, 2011). Due to the limited 

processing capability associated with cognitively intensive tasks, it becomes necessary to 

allocate cognitive resources in a selective manner. The first of these possible modes for 

discrimination is attention switching (Hanania & Smith, 2010) and the second is visual 

attention. Mayer, Roebroeck, Mauer and Linden (2010), define attention switching as the 

subject’s ability to change between performing multiple, individual tasks. Subjects 

experience activation in the areas associated with the dorsal posterior parietal and frontal 

cortex with transient activation in the occipital region (Corbetta & Shulman, 2002; 

Pennick & Kana, 2012). Psychologists define visual attention as the development of a 

scene through a combination of attention, eye movement, and memory. Subjects 

activating the visual attention cognitive attribute experience signaling within the visual 

cortex and superior colliculus (Posner, Peterson, Fox, & Raichle, 1988; Posner, 1990; 

Pasqualotto & Proulx, 2012). Peripheral stimuli localization is an outward expression of a 
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subject’s attention, and is often related to visual attention (Hoyer, Cerella, & Buchler, 

2011). Visual attention is thought to act as the initial stimulus drawing the subject’s 

attention followed by peripheral localization (Hubert-Wallander, Green, & Bavelier, 

2011). 

Cognition related to the domain of mathematical learning and deductive 

reasoning. Mental calculation (arithmetic numerical sense), is another component 

suspected of being used within the science process and is defined as the ability to 

determine the exact size or quantity of a system. Activation in the areas associated with 

this attribute is located in the left temporal lobe (Moeller, Wood, Doppelmayr, & Nuerk, 

2010). Another related cognitive attribute is mental calculation; the subject uses mental 

calculation or the ability to complete mathematical operations without the aid of external 

devices in estimation of numeral attributes. These estimations when conducted in parallel 

with one another determine the ability to approximate size or quantity. Functional MRI 

studies note that activation of the parietal cortex occurs during estimation tasks (Dormal, 

Dormal, Joassin, & Pesenti, (2012). A third related attribute is that of quantification; this 

attribute is the mental processes associated with counting, and measuring as function of 

inputs from the senses (Berglund, Rossi, & Wallard, 2012). The areas of the brain 

activated when engaged in quantification, are the dorsolateral prefrontal lobe, and the 

temporal lobe (Arsalidou & Taylor, 2011). Acting as a subcomponent of quantification 

and mental calculation is the attribute parity judgment, or the ability to judge whether two 

quantities, verbally or in written modes are equal. Researchers observe activation of the 
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intraparietal silcus and the superior colliculus when subjects complete tasks related to 

parity judgment (Winkler, 2009).  

Cognition related to the domain of inductive reasoning and decision-making. 

Critical reasoning or logical reasoning is the formation of conclusions, inferences, or 

judgments based upon stimulus input. Science educators suggest that critical reasoning is 

a key or even the key attribute used in the science learning process (Bond, Philo, & 

Shipton, 2011). Educators explain critical reasoning as a mental process and procedural 

moves culminating in a logically valid conclusion (Manktedlow, 2012). Functional 

Magnetic Resonance Imaging (fMRI) studies of reasoning tasks result in activation 

centering in the striatum area of the brain (Barbey, Koenigs, & Grafman, 2012). 

Inference is a closely related attribute to critical or logical reasoning. Inference is a 

process of deriving logical conclusions from known premises (Hayes, Heit, & Swendsen, 

2010). The more generalized attribute of critical reasoning incorporates three components 

of perception, expectation, and inference (Ren, Schweizer, & Xu, 2013). This 

relationship between critical reasoning and inference provides a view of the hierarchical 

nature of cognitive attributes and helps to explain the differential weightings found in 

artificial neural network models. The final cognitive attribute found within this domain is 

that of memory retrieval. Memory retrieval is the process by which one accesses a stored 

memory and activates it as part of several cognitive interactions such as recall, 

recognition, and remembering (Cabeza & Moscovitch, 2013). Areas of the brain 

associated with the retrieval are located in the temporal lobe, the amygdala, the 
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hippocampus, the rhinal cortex and the prefrontal cortex (Ku, Tolias, Logothetis, & 

Goense, 2011).  

Cognition related to the domain of perception. The fourth domain associated 

with the cognitive attributes identified within the interaction of science process is that of 

perception and perceptual binding (Teufel, Fletcher, & Davis, 2010). A definition of 

perceptual binding is the ability to link characteristics between multiple items an 

individual perceives within the environment (Mance, & Vogel, 2013). While perception 

is similar to pattern recognition, the key difference is pattern recognition results from an a 

priori approach, while perceptual binding is posteriori (Linhares, Freitas, Mendes, & 

Silva, 2012). Neuroscientists see activation of the neocortex when studying subjects 

engaging in perceptual binding tasks. A second cognitive attribute located under the 

domain of perception is that of spatial ability. Spatial ability is the attribute associated 

with the perceptions of the visual world in a 3-D environment. In addition to the 

perceptions associated with the world, it is also important for the recreation, 

transformation, and modification of visual aspects of experiences (Hoffman & Nadelson, 

2010). Kravitz, Saleem, Baker and Mishkin,(2011) observed activations during tasks 

related to spatial ability in the hippocampus, posterior parietal cortex, entorhinal cortex, 

prefrontal cortex, retrosplenial cortex, and the perirhinal cortex .  
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Cognition related to the domain of language processing. Reading is the means 

by which individuals link orthographic symbols to phonological, sematic, morphological, 

and grammatical information to develop meaning (Rastle, 2012). Reading experts suggest 

the cognitive attribute reading, relates to other attributes such as sublexical routing and 

word recognition. Areas of the brain associated with the reading attribute are associated 

with the frontal lobe, the occipital lobe, and temporal lobe (Buchweitz, Mason, Tomitch, 

& Just, 2009). A second cognitive attribute used within the science process is that of 

verbal fluency. Verbal fluency is the ability to rapidly, mentally-access vocabulary while 

speaking and writing (Birn, Kenworthy, Case, Caravella, Jones, Bandettini, & Martin, 

2010). Subjects activate portions of the brain during the use the verbal fluency. These 

portions of the brain are the frontal lobe, temporal lobe, parietal lobe, occipital lobe and 

the limbic lobe (Binney, Embleton, Jefferies, Parker, & Ralph, 2010).  

Cognition related to the domain of action. The smallest unit of control within 

the domain of action is the motor unit. The motor unit consists of a synaptic junction, a 

motor axon, and the associated muscle fibers. Recruitment of the motor units occurs 

under the motor cortex of the brain (prefrontal cortex) through integration of sensory 

inputs (Neary, 1997). Motor control is itself the function of supervising motor activities 

from a cognitive perspective. Researchers have isolated motor activities to the motor 

cortex portion of the brain (Reynolds, Lane, & Richards, 2010). Related to the motor 

control attribute are, motor after effect, motor execution, motor inhibition, motor 

planning, motor program, and sequencing.  



 

34 

 

Cognition and video games. Teaching methods in the physical sciences, 

specifically chemistry, have traditionally employed models in a two-dimensional format 

as illustrations within textbooks. Illustrations assist in the spatial-learning and memory of 

chemical structures. Several studies suggest virtual manipulatives, simulations, and SEGs 

positively affect student achievement (Lamb & Annetta, 2009; Criswell, 2011; Tolentino, 

Birchfield, Megowan-Romanowicz, Johnson-Glenberg, Kelliher, & Martinez, 2009). 

Furlan and Bell-Loncella (2010) also suggest that the combination of computation and 

visualization in the form of modeling software, via SEGs, improves student 

understanding of chemistry concepts. The benefits of chemistry models help the learner’s 

understanding of the arrangements of molecules in solid matter in a variety of settings. In 

the examination of the efficacy of various types of modeling and visualization for 

chemistry learning, results have indicated that three-dimensional representations, in 

particular those representations in a SEG environment, better supported student 

understanding of molecular structure and resulted in greater student enthusiasm for 

learning the tasks (Lamb & Annetta, 2009; Limniou, Roberts, & Papadopoulos, 2008). 

Other studies demonstrate that learners are more apt to perform better using visual 

displays that educators have optimized to reduce cognitive load. Wang & Borrow (2011), 

building on Wu and Shah (2004), have suggested that visual-spatial thinking is an 

important aspect to successful learning of chemistry concepts. Literature linking 

cognition to the specific types of learning is a natural outcome of video game design for 

learning and education. However, a consistent finding regarding the relationship of 

cognition to video game design is the transference and improvement of multiple cognitive 
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attributes. Specifically, transference of peripheral localization, visual attention, attention 

switching, general cognition, visual-motor coordination, and spatial ability develop 

rapidly from video game design and use (Li, 2009; Spence & Feng, 2010). Each of these 

areas in particular have been shown to have a relationship to Science Technology 

Engineering and Mathematics (STEM) fields such as architecture, engineering, and 

drafting along with more generalized fields such as piloting, mechanics and machine 

operation (Uttal & Cohen, 2012). 

From a neurochemical point of view, successful video game design also 

stimulates cognition though the release of dopamine. The stimulation of dopamine, as a 

model for learning, provides a linkage from biological response to psychological 

outcomes making learning via video game play one of the best mapped out phenomena in 

education (Waldmann, 2012). By providing an underlying biological reasoning for 

educational outcomes, educators can more specifically target interventions understood to 

derive from biological (neurochemical) means. Dopamine acts as one of the many 

neurotransmitters allowing for the modulation of information transference between one 

area of the brain and another. This is important when considering the transference of 

virtual tasks to task within the real-world. Multiple cognitive attributes aid transference 

through executive functions triggered via the release of neurotransmitters such as 

dopamine. Positron Emission Tomography (PET) illustrates the release of significant 

amounts of dopamine from the brain during successful video game design and the 

resulting activation within areas of the brain associated with the executive functions. This 

release is particular closely tied to the areas tied to reward and learning (Bateman & 
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Nacke, 2010), thus providing a means to explain persistence and fluency found while 

subjects design SEGs. This release seems to play a crucial role in learning by stimulating 

the reorganization of neural pathways.  

Cognitive Diagnostics 

 

Nationwide, our schools have increased the number of student achievement and 

content tests; this increase results from the push for data driven decision-making (D3M) 

approaches to student learning. This increased focus, on measuring students’ abilities for 

placement into the appropriate grade and level for their educational needs, has led to 

concerns from educators such as overreliance on test outcomes and increased 

accountability for educators for outcomes not directly under their control. However, 

educators have always been challenged by attempts to measure indirectly observable 

characteristics, such as efficacy (Bandura, 2006), computational thinking (Qui, 2008), 

and other internal, latent constructs. Measurement of these latent attributes is contingent 

upon observed responses to items indicating attributes (Lord & Novick, 1968; Wang & 

Chang, 2008). This reasoning is analogous to the difficulty educators have in identifying 

underlying cognition when students engage in the learning process. A means to discover 

these underlying processes is through CDA models and by extension the Q-matrix. 

Researchers often link attributes and items using a Q-matrix (Von Daver, 2010). One area 

of exploration is the use of SEGs to present tasks related to particular attributes 

(Kirriemuir & Mcfarlane, 2004).  

Researchers from the beginning of the testing movement have posited that subject 

performances on specific test items (tasks) are contingent upon specific cognitive aspects 
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called attributes. For the purposes of the study, the term cognitive attribute is a skill or 

process that a subject must possess to solve a particular task or item (Gierl, 2007). The Q-

matrix is a mathematical model associated with the cognitive diagnostic methods. 

Educational measurement experts classify individual responses into categories of 

cognitive attribute patterns based upon test or task performance (Sventina, Gorin & 

Tatsuoka, 2011). Classification of response patterns into the Q-matrix depends upon the 

estimation of a subject’s ability (Θ) and item difficulty (b) (Briggs & Alonzo, 2012). 

Using the specific items (tasks) linked to the necessary cognitive attributes (in a 

conjunctive model) that make up the assessment; one can develop patterns seen as acting 

as an ideal response pattern (task completion pattern) for a specific knowledge state. The 

results from the response pattern analysis develop into likelihoods of correctly 

completing the tasks. Through the linkage of testing and cognitive attributes, the fields of 

cognitive psychology and psychometrics are able to bridge (Dimitrov, 2007; Kaufman, 

2011). Dimitrov uses the least square distance model (LSDM) to evaluate the probability 

of an item being answered corrected using an IRT model (Dimitrov, 2007). The equation 

below specifies the calculation of the attribute. The two models commonly used for the 

development of the cognitive diagnosis are the conjunctive model and the disjunctive 

model. Within the conjunctive model, each attribute is a key component and necessary 

for task completion. Specifically within the attribute mastery pattern (AMP), removal of 

one attribute from the pattern results in the subject failing to complete the task. In other 

words, each attribute is critical to task completion. This model assumes the requirement 

of local independence for the attributes. A second advantage of this model is the ability to 
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frame the AMP as an IRT measurement problem. The ability to analyze the attribute 

mastery patterns as IRT problems provides a significant advantage in that cognitive 

attributes are on a common scale of logits for comparison purposes. Equation 1 provides 

the means for the calculation of the probability of success in completing a task under an 

IRT model.  

E 

Equation 1 Probability of Success under IRT 

Pi= ∏          
   Θ)]         (1) 

 

Learning Theory 

 

Laboratory based learning in the sciences has been described as a series of 

isolated skills, developed in linear fashion, resulting in successful processing of tasks for 

completion in the form of learning progressions (Hipkins & Kenneally, 2003). More 

recently, studies of laboratory science suggest that this approach, isolating specific skills, 

results in a poor success rate for completion of the laboratory and content learning 

(Songer, Kelcey & Gotwals, 2009). Psychologists and educators attribute this lack of 

success using these methods to the non-linear aspects of learning, thus measures that rely 

on the linearity of the learning as a means of progressing may not be adequate to model 

students’ learning. Thus, Bayesian approaches such as ANNs may be of significant use to 

researchers. In this framework, full assessments, which integrate learning, such as that, 

found in SEG environments, where the game presents all skills and actions in an open-

ended, non-linear format reflects learning behaviors found in real-world settings.  

Further evidence of non-linear learning is in the process of equilibration. 

Equilibration of new learning experiences via assimilation and accommodation takes 
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place in a non-linear order. The non-linear presentation of tasks is present in SEGs via the 

open-ended formatting and interactions. This lack of linearity in learning can confound 

currently available assessments as current curriculums assume a linear progression of 

topics (Xu, Meyer & Morgan, 2006). The misapplication of information and process 

occurs due to the lack of exposure to the overall big-picture view of the place of the task 

in the science process. Within the traditional linear format, contradictions and confusion 

continues until the learner’s mental concepts stabilize via successful application of 

disparate information, further developed into meaningful knowledge and application via 

appropriate cognitive attributes (Clements & Samama, 2011). Equilibration or 

reconstruction of conceptions is often a self-regulated process mediated through affective 

and cognitive processes (Volet, Vauras, & Salonen, 2009; Kitsantas & Zimmerman, 

2009). 

SEGs by design exemplify scaffold type learning using Zone of Proximal 

Development (ZPD). The ZPD is a point, which resides on the edge of a person’s 

understanding related to a concept. Incorporation of this knowledge is often contingent 

upon meaning making associate with abstract information represented symbolically. It is 

due to the symbolical nature of the conceptual representation that links the symbols of the 

SEG with the symbols of the real world. Based in this view, one can suggest that learning 

within the SEG takes place under a Vygotskian framework. Vygotsky views learning in 

terms of symbolic representations via language and abstractions (Vygotsky, 1978). New 

material presented below the ZPD results in low-level learning and little stimulation of 

cognition. New material presented above the ZPD results in confusion and cognitive 
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overloading evidenced by mistakes and lack of task completion (Fayol, Largy, & 

Lemaire, 1994). Students engaging in learning compare new and old conceptions and 

evaluate usable heuristics to solve novel problems at the critical point within their ZPD. 

Item-task misfit analysis reveals low-level and confused learning outcomes when 

evaluating items (tasks) using the IRT framework. Thus, with the use of IRT, it is 

possible to quantify ZPD misfit.  

The linkage of cognition (higher-order) and more traditional models of learning in 

the form of computational linkage illustrated through ANN models arises out of attempts 

to develop artificial intelligence (Efendigil, Onut, & Kahrman, 2009). Artificial 

Intelligence treats higher-order thinking as a computational task. Due to the treatment of 

higher order thinking as a computational task, the cognitive attributes identification 

allows for their parameterization via IRT. Researchers contrast this view (modern 

computational view) of cognition with more traditional views of cognition in which 

higher-order thinking is treated as a symbolic and representative endeavor (Woelert, 

2012). Bruner also reflects these assumptions that human cognition is symbolic and 

operates within an externalized, sequenced linear progression (Bruner, Goodnow, & 

Austin, 1986). This view culminates in the conceptualization that the human mind and 

brain along with computers act as a physical symbolic system operated upon by serial 

processors using memory and language (Lipinski, Sandamirskaya, & Schoner, 2009). A 

concern when viewing learning as a symbolic model is the limitations associated with 

current models, using traditional assessment data sets within the representation of internal 

processing with novel information, without known algorithms and rules. These 
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limitations make it difficult to model the human process of acquiring information and 

problem solving in the context of science processing.  

Pilot Study  
 

This section of the dissertation discusses a pilot study conducted during the spring 

of 2012. The purpose of this pilot study was to provide evidence for the validity of 

techniques used to integrate conceptually Bayesian Models (Artificial Neural Networks) 

with Item Response Models and cognitive diagnostics. This section also provides the 

background information needed to understand the descriptions and results of the piloted 

techniques. 

Pilot study description. The purpose of the pilot study was to establish an 

exploratory procedure for understanding the role of latent cognitive attributes associated 

with the use of SEGs play to teach science processing within the context of 

biotechnology. A secondary purpose of the study was to uncover the associated cognitive 

attributes used while using a science based SEG. Lastly, the study seeks to develop a 

means to create an artificial neural network (ANN) model of the interaction between the 

cognitive attributes and game task items. The research questions addressed within the 

pilot study were: 

RQ1. What are the underlying factors exhibited through the measurement of task items 

associated with Serious Educational Games? 

RQ2. What are the cognitive attributes that underlie Serious Educational Game play? 

 



 

42 

 

Consideration of the research questions and the supporting literature suggests the 

following hypotheses: while playing SEGs within immersive learning environments, it is 

possible to map the relationships between items, factors, and cognitive attributes using a 

cognitive diagnostics approach through development of an artificial neural network 

model.  

Pilot Study Method 

 

The purpose of this section is to outline the methods initially used to develop 

techniques refined in this study. This section primarily focuses on the use of Factor 

Analysis and Artificial Neural Networks to establish cognitive relationships. 

 

Pilot study sample. This study analyzed data from 500 students located within 

multiple states within the Southeastern and Midwestern portions of the United States. 

Subjects’ grade levels ranged from 9th grade to 12th grade; using grade as a proxy for 

age, the subjects’ age range from 14 to 18. Data collection occurred via real-time, server, 

data logging, as the subjects played Mission Biotech (MBt). MBt is a first person SEG 

designed to teach concepts related to biotechnology. Logged server data consisted of all 

actions taken while playing MBt. Examples of actions included; player non-player 

character interactions, tool use, and key strokes. The total number of analyzed actions 

was n=132,453 actions. Each study subject has a unique player identifier to assist in data 

sorting from the server logs. Each subject had prior exposure to some biotechnology 

education within their science course work and therefore possessed cursory domain 

knowledge but lacked task specific knowledge related to task completion within the 
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game. It is important to understand the intent of the study was not to measure subjects’ 

gains in content knowledge, but to understand the cognitive attributes associated with the 

science based tasks the subjects completed. 

Pilot study design. The study design was a one-group, posttest only design. Lack 

of pretest creates positive and negative outcomes for internal validity of the measure 

(game actions and tasks). Positive data manipulation outcomes (model fit) suggest that 

there are no threats to internal validity of the measure from pretesting. This lack of 

pretesting reduces the overall threat to internal validity of the task items by reducing item 

task familiarity and carry-over. However, without a proper control group it is difficult to 

assess changes due to treatment effects. Methodologists suggest this design for initial 

exploratory studies such as this pilot study help to establish initial study questions and 

hypotheses. Embedding the study intervention in the classroom creates a more true-to-life 

classroom experience and the quality of collected data may be superior. 

Pilot study task presentation. Mission Biotech (MBt) is a first person SEG 

grounded in a problem-based learning model. MBt provides subjects with a realistic 

approximation of scientific problem solving and research work in a scenario, task-based 

presentation. Upon initial login, subjects receive a description of an outbreak of an 

unknown disease occurring somewhere within the world. As the introduction progresses 

the game assigns the subject’s character to an elite organization known as Mission 

Biotech, which is responsible for attempting to stop the viral outbreak. The subject 

(player) is then required to complete various science-based, problem-solving tasks in a 

SEG environment to forward game play. The complex tasks involve, but are not limited 
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to, the use of polymerase chain reaction, DNA base-pair identification and other 

laboratory based actions and equipment use. Through these processes, the game leads the 

subject to identify and isolate the source of the viral outbreak while learning biological 

concepts through mentor characters, readings, and task-based training.  

The subjects answer items and complete tasks in a drag and drop interface 

(matching), and a behavior-task outcome interface. The behavior-task interface is an 

interface in which the subject completes tasks designed to mimic closely their real-world 

counterpart. An example of this behavior task is balancing a centrifuge using blank 

centrifuge test tubes when spinning their samples. Completing the particular task items 

result in their progression through the game. The game logs each action (mouse clicks, 

inventory interactions, and questions answered, etc.) taken in the game, per session, per 

subject. Each subject action is then coded using a dichotomous outcome approach; 

coding was either a “1” for successful completion of the task item or a “0” for 

unsuccessful completion of the item or task. Through cumulative completion of the 

simple tasks, subjects are able to show mastery of complex tasks, subtasks, and content 

knowledge related to the game. The relationship allows for the suggestion of hierarchical 

associations between attributes. To address researcher bias data mining approaches were 

used to analyze emergent patterns within the data set and allow those patterns to guide 

the analysis and task-attribute relationships. In addition, the use of outside reviewers 

provides a guard against bias as the researcher did not assign task-attribute validity 

coding.  
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Pilot study results 

 

A reasonable approach to determining the number of factors to fit the cognitive 

attribute is through a scree test (Cattell, 1966). The scree test plots the Eigenvalues in 

descending order and shows the point at which they level off. Results of the scree plot 

suggest that there are three underlying factors using the root ≥ 1 criterion (Dimitrov, 

2010). Using root >1 criterion, eigenvalues less than one are not considered important 

because the variance that each standardized variable contributed to the extraction equals 

one. Methodologists suggest the root ≥ 1 criterion for 40 or fewer variables. Results of 

the scree test suggest that there are three underlying factors within the proposed 

construct. The outcome of the exploratory factor analysis support earlier results 

(eigenvalues) for the Varimax rotated simple solution. Analysis of the linear relationships 

and resulting correlation coefficients suggests that there may be a slight positive linear 

relationship between factor 1 and factor 2. Review of the results for factor 3 show a 

slightly negative relationship between factor 3 and the other 2 factors.  

Results of the factor loading suggest there are three orthogonal factors present 

during game play. Post rotation of the three factors indicates, X1, X3, X5, X7, X8, and 

X10 relate to factor 1. Further examination shows that X2 and X6 relate to factor 2, X4, 

and X9 load on factor 3. Based upon this array and types of items on each factor, it is 

logical to suggest that factor 1 is game control, factor 2 is flow, and factor 3 is science 

processing knowledge. The three common factors game control interactions, flow, and 

science processing knowledge accounts for 67.48% of the variance in the observed 

variables.  
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Parameter estimates for a 1PLM model indicate adequate model fit. Fit statistics 

for the logit model suggest that items within the model are functioning within an 

adequate range. Item infit statistics range from 0.45 to 1.36 indicating proper functioning 

of the items and very little distortion associated with using the game tasks as a measure of 

each factor. However, analysis of the item outfit statistics suggests that items 4 and 5 are 

susceptible to outlier influences; the effects of these outliers are ameliorated by the large 

‘n’ (n=500). Item-measure difficulty results suggest that Item 4 provides the greatest 

level of difficulty and item 2 shows least difficulty.  

Successful completion of X3 increases the probability of the successful task 

completion of the remaining items, as it is the most “difficult” item to complete. 

Conversely, X2 shows the greatest probability of successful completion. These results 

lend validity to the proposed model, as they align with the measure difficulty. Calculation 

of the mean parameter weights involved aggregation of the individual parameter weights 

resulting from the neural network analysis.  

Fit statistics indicate that the research fails to disconfirm the IRT model as means 

for establishing probable task completion. Key to this point is the interpretation of theta 

(Θ). Within this proposed model, Θ represents the residual skill associated with the item 

attribute. Development of the hypothesized model allows for the use of the suggested 

artificial neural network model to develop propagation weightings. Probabilities for 

subject mastery of individual factors via APM show high variance accounting (r
2

 = 

0.9783). Parzen described the expected probability for each attribute via mathematical 

equation (Parzen, 1962).  
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Removing the Θ parameter from the Bayesian model (ANN) fosters the 

development of a discrete model, allowing for cross application of models, and the 

attributes of the developed model, to be more transferable for external model 

comparisons. The artificial neural network (ANN) model is most likely to propagate 

attribute 1 given appropriate stimuli for each cognitive attribute. Without the presence of 

Θi in the Bayesian Model, each item, i, the probability, π (Bayesian), and ∏ (IRT) have 

similar interpretations. The interpretation of each symbol represents the probability of 

solving an item given the subject has mastered the requisite skills.  

Each weighting (coefficient) represents the strength of propagation through the 

neural network. A weighting of 1.71 for the factor 1 (F1) indicates that attribute 5 (A5) 

has the greatest impact on the probability of completion of items associated within the 

factor. A8 shows the least impact on item completion. Factor 2 (F2) task completions is 

most significantly impacted by A2 and least impacted by A7. However, one should note, 

that the differences between F2A4 and F2A7 propagation weightings are negligible. 

Factor 3 displays attributes from greatest impact to least-. Factor 3 consists of A8, A9 and 

A11. The comparison of F3A9 and F3A11 shows approximately the same propagation 

weighting.  

Based upon factor analysis, item content, and expert review, the study assigned 

cognitive attributes to each factor. While each attribute listed reveals a positive 

weighting, there are negative weightings that act to counteract the attribute. However, it 

is beyond the scope of this pilot study and the proposed model to discuss in detail the 

effects of the negative weightings. For the purpose of the pilot study, negative weighting 
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are inhibitory to task completion when using those cognitive attributes. However, 

exploration of these attributes is beyond the scope of this pilot study.  

The Q-matrix does not represent the definitive listing of factors and attributes for 

each of these tasks. Training the ANN to recognize the relationships between each 

attribute develops the mean probabilities (Modeled Bayesian Probabilities) for each 

factor within the Cognitive attribute matrix. Placing each group of attributes into the 

training model creates the recognition by the ANN of the cognitive attribute 

relationships. Upon completion of the ten thousand training iterations, the neural network 

calculated the probability of propagation using non-linear, neural network, propagation. 

Propagation probabilities and endorsement probability, in conjunction with parameter 

weightings, allow for the development of a modified Q-matrix. This necessitates the need 

to use dichotomous outcomes (1 = neuron does propagate, 0 = neuron does not 

propagate). 

Pilot Study Discussion. The use of contrast-oriented design is important in the 

development of valid and usable CDA models. Tatsuoka (1983) established the construct-

oriented design used to identify attributes that represent the skills and attributes, which 

when assessed provide meaningful information. The outcome of this process is the 

development of the Q-matrix tying the items tasks to the specific cognitive attributes. A 

cell within the matrix Qij takes the value of 1 if the mastery of the skill (k) is required to 

solve the represented items. The result of the study suggests that it is possible to use a 

science based SEG environment to generate an understanding of the underlying cognitive 

processes using a cognitive attribute matrix, forward-feed artificial neural network, and 
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classic factor analysis. Consideration of the results suggests rejection of the null 

hypothesis as adequate model fit and that generation of the Q-matrix is possible. The 

strength of the neural network analysis is that it allows for the analysis of the relationship 

between fewer items and attributes than in a traditional cognitive diagnostic analysis. 

Literature suggests that this result is congruent with expectations as convergence of the 

neural network model occurred after 1000 iterations.  

The emergent factors developed from the factor analysis provide a starting point 

for the process of matrix development. The researchers classified game data into three 

categories: Control Interaction, Flow, and Science Process. The limited external 

instructions given to the subjects, and the repeated exploratory behaviors (subject 

repeating steps to ascertain cause and effect) seen within the data, illustrate that the 

subjects had no task-specific and little domain-specific knowledge. Factor analysis 

assesses the commonality of actions within the observed variables as part of a larger 

construct. For this study there appears to be three orthogonal factors (Research Question 

1). Rotated solutions reveal a simple structure with three linearly independent factors 

(Thurstone, 1947). Cross-validation of the three factors corroborates the exploratory 

outcome. Each of these three factors results from extrinsically measured item loadings on 

the appropriate latent trait. Examples of items within the game control interactions 

construct are Help Menu Interactions and Resource Use and Interactions. Examples of 

the flow construct are Time on a Particular Task and Total Amount of Time. Rank and 

Badge Attainment exemplify the final construct, science process.  
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Parameterization of the three factors occurred using the 1PLM model (D=1.0). 

Infit, outfit and X
2
 suggests adequate fit of item parameters. Model fit provides an 

adequate probability of action at the 95% confidence interval (Pilot Study Research 

Question 2). The researcher extracted post parameterization probabilities of subjects 

engaging in particular actions. From these extractions, artificial neural network 

weightings were developed. The study used artificial neural network weightings to 

identify the highest probability of action propagation throughout the network. The 

assignment of higher weighting, by the artificial neural network (ANN), results in those 

attributes belonging to the highest levels within an attribute hierarchy matrix and thus 

indicating upstream and downstream attributes. The neural network activates attributes 

with a higher possibility of propagation prior to activation of lower level attributes, thus 

creating a cognitive attribute hierarchy. This lends evidence to the appropriateness of the 

use of a forward-feed neural network and adequate neural network fit. This model of 

placement within a hierarchy also helps to explain why attributes -for example A5, which 

have a higher weighting, but also have a lower probability of completion. In this model, 

A5 is lower (downstream) than A1 in the hierarchy because A5, although it has a greater 

weight, it does not have a higher probability of propagation. Thus the order of 

consideration for ANN development should first be the probability of propagation and 

then secondly the weighting within the propagation. Neural network weighting, when 

placed in the factor loading positions, can also help to elucidate the relative ‘pull’ each 

attribute has within each factor assisting in the development of the hierarchy. 
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The study placed each attribute, based upon the weightings, and the extracted 

probabilities; taking into account the characteristics of the attribute description by the 

panel of experts. Based upon these characterizations, three experts in the field of 

cognition evaluated placement and naming of the attributes. A reliability coefficient of 

0.70 between each reviewer suggests that weightings, and the context of the subject 

actions, support the attribute descriptions. One additional area not addressed in this study 

is the role of negative attributes. For the purposes of this study, negative attributes inhibit 

network propagation, or in other words, act as part of a backward propagation network. 

Lack of backward propagation does increase the probability of overfit error. This 

problem is in need of more study in order to develop this portion of the model. Tying the 

attribute descriptions to particular factors provides for the development of a cognitive 

profile of some cognitive attributes used within the SEG.  

Evaluation of the factors, probability of endorsement, probability of propagation, 

and attribute descriptions, results in the development of a Q-matrix. Remembering that 

the Q-matrix relates the attributes to items through factors, consideration of the model 

results suggests that the model is an appropriate description of the CAMP (Pilot Study 

Research Question 3). Confirmation of the model can occur through appropriate 

structural equation models, which are beyond the score and breadth of this current study. 

Each factor acts as the extrinsic measure of the latent attributes. Through this reasoning, 

it is possible to represent Q-matrix graphically, wherein arrows from F1 to A5, F2 to A4 

and F3 to A9 indicate that each of the attributes is subordinate to the larger factor 

domain. Examination of weightings shown in the Q-matrix showing that A1 and A10 are 



 

52 

 

subordinate to A5 as a set of cognitive operations required by the items associated with 

F1. This subordination supposes that the operation A1 and A10 require the operation of 

A5 a priori. Therefore, assessing the A5, A1 and A10 within matrix Q, show Q11= 1 

while Q12=0. Other entries within the Q-matrix show similar patterns.  

Evaluation of the factors found in the Q-matrix indicates that subjects playing a 

SEG exhibit cognitive process similar to those found in a laboratory-based problem 

solving systems. In addition to the traits such as problem-solving and critical thinking, 

there are other cognitive attributes assigned to technology use such as attributes 

associated with flow (engagement and time dissociation) and attributes associated with 

computer control. Thus, there is little difference between virtual and real-world 

interactions. In particular, there is little cross-over of attributes between factors 

suggesting that each attribute is domain (factor) is specific and local independence. This 

also suggests that there are higher-level or more general attributes. These general 

attributes may be those attributes that are “upstream,” from the current set of attributes. 

As the subjects deal with multiple set of information found in the SEG environment while 

solving complex problems, cognitive load (A5) becomes a consideration. However, 

review of the A5 in light of the hierarchical nature of the attributes suggests that as load 

levels increase, it (A5) begins to inhibit other factors. The ANN model assigns negative 

coefficients when they act as inhibitors of other factors. Initial game behavior seemed to 

focus on F1 as the subjects engaged in exploration and transitioned to F3 as load levels 

decreased.  
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CHAPTER THREE 

Method 
 

The validation of the pilot study suggests that the methodologies used within the 

pilot study are valid and usable for the larger study with some slight modifications to 

address questions regarding the design of SEGs and the underlying cognitive attributes. 

In particular, the use of factor analysis loadings, neural network weightings, and methods 

for the assignment of cognitive attributed to particular tasks. The following section of 

methods refers to methods used in this dissertation study specifically focuses on the 

design and not the play of SEGs. 

Items as the Unit of Analysis 

 

With the explosive growth of resources available when using computers, it is 

important to find ways to seek out and analyze useful information from these large 

amounts of user-generated data. Methods based in item response theory (IRT) and data 

mining provide for a useful framework from which to develop item parameters for these 

large data sets. This study used a combination of computer usage data, data mining 

techniques, and more traditional item analysis methods found within measurement, to 

capture, model, analyze behaviors, and task completion patterns exhibited by subjects. 

Within this framework, it is important to understand that the data derived from the 

computer usage logs is the unit of analysis. Computer usage log data-mining uses 
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secondary data retained in server logs, user profiles, registration data, user sessions, 

transactions, mouse clicks, and other data. More specifically the data consists of a unique 

identification number, gender, race, school level, state, Internet protocol address (IP 

address), and action identification number. The action identification numbers (task) are 

coded 1 through 45 and considered key tasks by the designers to complete the design of 

the SEGs. It is important to understand that the study author did not select the tasks and 

that these tasks are intrinsic to the design software. Table 1 describes the codes and the 

corresponding tasks. 
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Table 1  

Data Code Description 

Code  Task Description 

1 Science Based Task Editing 

2 Initiated Game Play Mode 

3 Initiated Editing Mode 

4 Completed Science Content Based Task 

5 Play Science Based Task Within Game 

6 End Game Play Mode 

7 Complete Science Task Development 

8 Add Session Notes 

9 Add Objects to Game 

10 Delete Objects from Game 

11 Add Text to the Game 

12 Science Quiz Question Answered Correctly 

13 Quiz Questions Added 

14 Quiz Questions Deleted 

15 Decision Point Added 

16 Decision Point Deleted 

17 Total Quiz Questions Added 

18 Edit Decision Point 

19 Quiz Notes Added 

20 Total Quiz Questions Deleted 

21 Total Triggered Events 

22 Total Decision Points 

23 Successfully Completed Science Quiz  

24 Delete Text From the Game 

25 End Editing Mode 

26 Successfully Completed Science Tasks 

27 End of Level Achieved 

28 Total Levels Edited 

29 End of Game Achieved 

30 Delete Session Notes 

31 Total Time In Game 

32 Map Code 

33 Total Data Stream 

34 Game Check Point Achieved 

35 Quiz Choices Added 

36 Quiz Saved 

37 Decision Point Triggered 

38 Total Decision Points Added 

39 Total Decision Points Deleted 

40 Decision Point Mapped  

41 Total End of Games Initiated 

42 Total Text Characters Added 

43 Total Text Characters Deleted 

44 Total Games Initiated  

45 Total Session Notes Made 

 

The data discussed within this study consists of weblogs of subjects’ activities, 

coded while building SEGs designed around the generalized concept of science 
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processing. The discovered patterns via data mining in the item responses are 

representative of probabilities of task completion related to science content.  

An important task in the computer usage mining is the creation of suitable pre-

processed data sets. Meaning that the data must be cleaned and usable coding created 

from the larger conceptual codes created by the computer. The purpose of the pre-

processed data is to offer a structurally reliable and integrated data source for pattern 

discovery. The total number of items used in the analysis n=154,240. In the application 

(the server logs) data was stored in extended log files, formatted as a comma delimited 

(CSV) file in excel.  

In summary, data collection occurred via real-time, server data logging, as the 

subjects develop SEGs using a video games design system. Each subject’s unique 

identifier assists in data sorting from the server logs. Server log data consists of all 

subjects’ actions taken during the development and test play of the SEGs. 

Sample 

 

The unit of analysis for this study is the subjects’ responses, i.e. mouse click and 

keystrokes. However, for the purposes of clarity, it may be illustrative to identify the 

human sample characteristics. The target population in the full study (not the pilot study) 

was subjects located in the mid-Atlantic region of the United States. Targeted subjects 

consist of students enrolled full-time traditional high school science program at grade 9-

12 levels. Subjects’ ages ranged from 14 to 18. Subjects within the study have taken a 

science class within the last semester (Fall 2012 or Spring 2013). Science classes 

considered in this study are Earth Science, Biology, Chemistry, or Physics. Criteria for 
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selecting subjects included; (1) taking their current science class for the first time; (2) 

taking the course as a member of a class and not in an online or virtual capacity; (3) 

admitted into the class within the first two weeks of class. This study derived the data set 

from a preexisting data set using the target population description as means to screen data 

points.  

The study used a proportionate stratified sampling approach of science students to 

generate the computer log data. The sample size of each stratum was proportionate to the 

population size within the school district of interest. This particular sampling technique 

provides a higher statistical precision compared to simple random sampling and allows 

for a smaller sample size. In addition, this sampling technique increases the probability of 

inclusion of specific subgroups within the sample (Wallander, 2009). Stratum parameters 

for the stratified sample are grade, gender, and science class. Due to the sequential 

analysis of this study, selection of results within each phase results in aggregation of 

group results to reduce the number of dimensions for analysis. This population is of 

interest due to the increased perception that exposure to STEM rich environments 

increases the likelihood that subjects’ select STEM discipline based majors in college and 

STEM careers after college (Lamb & Annetta, 2009; Lamb & Annetta, 2012; Lamb, 

Annetta, Meldrum & Vallett, 2011). This work is a result of The National Mathematics 

Advisory Panel and the National Science Foundation assessment of the United States 

standing in the STEM disciplines as in jeopardy, and will lose its status and place within 

the early 21st century without increases in outputs from the STEM pipeline (Annetta, 

2008).  
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Subjects have had prior exposure to some educational game development within 

their science course work and therefore possessed cursory domain knowledge but lacked 

task specific knowledge. The subjects also took part in classroom activities such as 

lecture, content instruction and mentor-guided research reports in an effort to build an 

understanding of their topics and drive game design. It is important to understand the 

intent of the study is not to measure student gains in content knowledge, but to 

understand the cognitive attributes associated with the design of SEGs.  

Informed Consent 

 

The principal investigator obtained informed consent from the parent or guardian 

allowing their child to participate in a study associated with the National Science 

Foundation (NSF), 
1
GRADUATE. To examine review board approval for the 

GRADUATE study please see appendix E. During data collection, members of the team 

obtained assent from all students prior to the initiation of each component of the study. 

The principal investigator sent a letter communicating procedures and expectations to the 

subjects (students) and their parents / guardians. The primary investigator presented each 

student and their parents / guardians with a printed copy of the informed consent for 

review along with ways in which to address concerns and questions. The parent / 

guardian and the primary investigator provided their signatures as means to express 

                                                 

 
1This material is based upon work supported by the National Science Foundation under Grant No. 1114499. Any 

opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not 

necessarily reflect the views of the National Science Foundation."  
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consent. Study subjects participating as part of the study received compensation in the 

form of iTunes gift cards and entrance into a competition for a scholarship. 

Confidentiality. Maintenance of confidentiality occurred in the following ways: 

1. Study organizers collected informed consent and assent separately. In addition, the 

consent was not a part of the protocols and questionnaires.  

2. The study outside evaluator developed an identification code to identify each subject 

anonymously and disassociated the code with subject personally identifiable information.  

3. Subject informed consent forms were stored in a locked file cabinet separated from 

other data sets.  

4. Only, the outside evaluator had access to the identifying information.  

5. Subject codes and resultant data were stored in an encrypted folder on a password-

protected computer.  

6. Upon completion of the study, the outside evaluator destroyed the subject master list of 

code numbers.  
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Risk to subjects. The nature of the research and intervention was such that the 

risk for harm, discomfort, or damage to the subjects was very low. No questions or 

actions within the study touched upon emotionally or physically sensitive topics. A 

review of the research procedures suggests that subjects may experience fatigue from 

extended computer use. The subjects and study directors mitigated risk through self-

paced resting measures. Study protocols reminded subjects that participation within the 

context of the study was voluntary and thus no adverse outcomes were associated with 

withdrawal from the study. Finally, subjects were encouraged to express concerns and 

questions though multiple modes of communication to include discussion boards, phone, 

and emails. 

Design 

 

Based upon the pilot study discussed earlier, the current study design was 

modified to improve upon the pilot study design, in particular, the use of a one-group 

observational design as a means to minimize intervention bias. The study design is a one-

group, test-retest, and observation only, design. The use of an observation only design 

aids in the evaluation of the validity of the results. Specifically, intervention variables do 

not confound observed results. Lack of pretest creates positive and negative outcomes for 

internal validity of the measurements (game design actions and tasks). Positive outcomes 

would suggest that there are no threats to internal validity due to pretesting. Lack of 

pretesting reduces the overall threat to internal validity of the task items by reducing item 

familiarity and carry-over (Dimitrov, 2010). Methodologists suggest this design type for 

exploratory studies such as this one to help establish initial study questions and 
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hypotheses. Embedding the study intervention in the classroom creates a more true to life 

classroom experience; and the quality of collected data may be superior.  

Task Presentation. The subjects took part in the NSF funded study 

GRADUATE. GRADUATE is a Serious Educational Game design process grounded in a 

problem-based learning model. GRADUATE provides subjects with the ability to design 

a realistic virtual environment involving scientific problem solving and research work in 

a scenario, task-based presentation. The overall intervention took place over the span of 

8-months and integrated into the normal curricular environment (science class). Prior to 

contact with the subjects (students) the research team met with teachers to establish 

lesson plans around the topic of alternative energy use. The teachers worked with the 

Primary Investigator, staff, and mentor scientists to create lesson plans. Teachers taught 

lessons during normal instructional units and times to minimize interruption to the normal 

curricular flow. As part of the units study subjects conducted independent research on 

their topics related to alternative energy. In addition to the independent research, the 

subjects wrote an extensive research paper and met with mentor scientists who provided 

guidance and assistance on the topic. Based upon their research and meetings with the 

mentor scientists the subjects initiated the design of the SEG with the creation of a 

storyboard. Subjects presented their storyboards to peers, their teacher, and the mentor 

scientists for feedback and review. Subjects integrated the feedback and review into the 

design of the game along with the modified storyboard in an iterative process. Upon 

completion of the storyboard and reports, students initiated the actual use of the SEG 

design software. During the design of the SEGs, students used classroom discussion, 
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chats, feedback, and design testing as a means to modify and complete their games. 

Figure 1, illustrates a graphical view of the overall game design process. Note that while 

there seems to be a singular linear pathway for the overall design process, subjects actual 

sequences through the design process were not always linear. Each component of the 

design process provides a framework for the work of the GRADUATE project. For 

example, conducting research for the research paper would occur under the Gather 

Information portion of the framework. Infusing pedagogy a key component of the SEGs 

game design process occurs within the Analyze Information portion of the framework. 

Prototyping, testing and improvement would occur within the Testing and Feedback, 

Improvement and Develop Products portion of the framework.  

  

 
 

Figure 1. Iterative Design Process for GRADUATE. 
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Subjects designed SEGs focused on concepts related to alternative energy as 

presented across the five principal domains of science (Earth and Space, Biological 

Science, Chemistry, Physics and Environmental Science). Upon initial login, subjects 

receive a description of a learning problem to solve using a games based design 

approach. As the building and design of the game progresses, the subjects (game 

designers) assign characters to complete tasks in keeping with game completion and 

ultimately this supports learning. The subject is then required to design various science-

based, problem-solving tasks in a SEG environment to complete their video game 

building. The complex tasks involve, but are not limited to, storyboarding, creation of a 

learning scenario, and design and placement of objects in a three-dimensional working 

environment. Through these processes, the subject identifies key learning tasks through 

experimentation, teacher led instruction, readings, and singular task-based training.  

The subjects of the study also designed and answered items in a drag and drop 

interface (matching). Completion of the particular task items result in their progression 

through the game design process. The game logs each action (mouse clicks, inventory 

interactions and questions answers, etc.) taken in the game, on a per session, per player, 

basis. During data cleaning, and coding of subjects’ task completion outcomes used a 

dichotomous approach. Data were coded either a “1” for successful completion of the 

task item, or a “0” for unsuccessful completion of the item. Through completion of the 

complex tasks, subjects are able to show mastery of simple tasks, subtasks, and content 

knowledge related to the games design and underlying science processes. 
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Based upon the identification of the factors and tasks, the researcher assigned 

tentative cognitive attributes found in the literature to the tasks. The cognitive attributes 

identify the underlying components of cognition needed to complete tasks. After 

assignment of the cognitive attributes to the tasks, the study author presented the resulting 

matrix to expert reviewers for an assessment of relevance for each attribute task 

combinations. Reviewers designated the assignment of the attribute to the task as 

Strongly Relevant (SR) or Weakly Relevant (WR). The assignment of the relevance rating 

is based upon, the supplied supporting literature, experience and expertise, and nature of 

the task-attribute relationship. These results develop into a matrix outlining the relevancy 

combinations.  

Analysis 

 
This study intertwines the two disciplines of data mining and statistics as a means 

to analyze the large data streams. To understand the role each plays in the development of 

the data structures, a brief history and outline of statistics versus data mining is necessary. 

Statistics is the mathematical science pertaining to the collection, analysis and 

interpretation of data (Steen, 2010). Data mining is the process of collecting, analyzing, 

and identifying patterns found in large data sets (Ngai, Hu, Wong, Chen, & Sun, 2011). 

Both statistics and data mining have common goals. One primary goal of both is to 

understand the structure of the data. However, in addition to this goal, the aim of data 

mining is to make use of computational methodologies such as artificial neural network 

analysis (ANN) to develop predictive pattern recognition. This goal (pattern recognition) 



 

65 

 

makes data mining a suitable methodological approach for CDA. However, one specific 

difference between data mining and statistics is that many of the data mining 

methodologies make use of the ad hoc analyses, coupled with data driven models, as 

opposed to those models derived from theoretical approaches such as those found in 

statistics. While the differences between data mining and statistics may not be readily 

apparent, historical context provides a means to justify the use of data mining or pattern 

seeking within large data sets. The mathematical background and history of statistics 

encourages a tendency to require evidence that a particular methodology is successful 

prior to its employment. One can necessarily contrast statistics in many ways with the 

history of data mining, which, arises from computer science and machine learning 

research methodologies. In practice, this contrast with data mining (lack of evidence), 

results in the use of methodologies, that provide insight into the nature of the learning 

without a foundation based in proven outcomes. Given that the development of statistics 

predated the invention of the computer and more recently the invention of the parallel 

processing in the mid-1990s, many of the statistical techniques were developed 

employing “hand” calculation methods; utilizing samples smaller than 1000. While 

rigorous in nature, the older techniques (generation one) were often unable to handle the 

large data sets now generated by computer-enhanced learning (i.e. computer data 

logging). The principal outcome and problem with large data sets in statistics is the 

development of statistical significance due to minor variations that are not practically 

significant due to the large sample size. Thus, it becomes a problem of practical 

significance versus statistical significance. To place this differential into perspective, the 
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typical statically manipulated data sets of 10,000 data points is 13,000 times smaller than 

the data points generated via computer data logging on a daily basis for the Visa 

Corporation (retrieved: 3/10/2013 http://corporate.visa.com/about-

visa/technology/transaction-processing.shtml) when analyzing purchase data for its 

customers. In regards to this generation, one statistical analysis would be woefully 

inadequate to develop understanding from this vast data set. From this difference, it is 

clear that manipulations of data at this scale require the use of a computer and 

methodology with the capacity for pattern searching such as data mining.  

Analysis of this study’s large data sets requires a combination of data mining 

techniques and inferential statistics developed in a measurement framework such as IRT 

and cognitive diagnostics. The study analyzed the data in three interconnected phases: 

phase 1, dimensional reduction using exploratory factor analysis cross-validated with a 

confirmatory factor analysis, phase 2 psychometric analysis of task responses (subject 

movement through the game design) using a 2PLM IRT model for parameterization, and 

phase 3, development of the of the Q-matrix and development of the artificial neural 

network (ANN).  

Phase 1 consists of randomly dividing the sample in half, while maintaining 

strata. The study then compared the two subsamples to ensure equality of sample and 

variance. Exploratory factor analysis (EFA) outcomes for ½ N to assist in dimensional 

reduction and identification of the unknown factors that underlay the direct measures 

associated with game construction related to science content. Three experts in the field of 

science education and educational psychology examined the results of this portion of the 
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analysis aiding in identification of relevance of the cognitive attributes and perceived 

validity of their association with tasks. The cross-validation of the EFA results used the 

second half of the sample through a Confirmatory Factor Analysis as suggested by 

Dimitrov (2011). The resulting model provides the framework from which to create the 

task item parameters results for the second phase of the study.  

Phase 2 is a psychometric analysis of subject responses to the task sets. This 

phase involved the use of item response theory to validate the assessment, model fit, item 

constructs, item functioning, along with probabilities. In this case, the assessment is the 

successful completion of tasks associated with the build of the subject-developed video 

games (SEGs). Parameterization of the probabilities occurred by calculating the odds of 

task completion, using a “1” for success and “0” for failure to complete the task. The log- 

odds of completion provided the information pertaining to the probability of successfully 

completing both content tasks and game design tasks. Specifically, the parameterization 

encompasses a comparison of expected completion, versus actual task completion, 

measured through X
2
. Item (task) fit analysis is conducted using a two-parameter model 

(2PLM) (a and b) with resulting infit and outfit statistics providing model fit information.  

The results of phase 1 and 2 inform phase 3, and the development of the Attribute 

Mastery Pattern (AMP) in the form of a Q-Matrix and artificial neural network. 

Development of the AMP involved identification and validation of the cognitive 

constructs that underlie the task items via expert review. These phases result in the 

creation of expected response patterns and attribute probabilities. The study presented the 
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results from this phase to an artificial neural network in the form of training and test data 

to establish attribute hierarchy via propagation weightings and model fit.  

Summary of techniques. This study used several statistical and data mining 

approaches in order to develop a repeatable, methodological approach to the 

measurement of cognitive attributes in Serious Educational Game design. The methods 

provide information for each of the follow-on analysis. Figure 2 provides an overview of 

the methods used to answer each research question. 
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Figure 2. Summary of Methods and Related to Each Research Question 

 

Exploratory factor analysis. Results of the exploratory factor analysis and 

confirmatory factor analysis, answered research question 1, what are the underlying 

factors exhibited through the measurement of task items associated with subject 

development of Serious Educational Games? Initial exploration of the data structures 

methodologies indicate the use of exploratory factor analysis (EFA), cross-validated with 

confirmatory factor analysis (CFA), to simplify, explain, and confirm the complex 

variables and the relationships among them. EFA provides a means for uncovering 

underlying clustering patterns within the data when there is little underlying theoretical 

framework. Construction of the factors that underlie the relationship between item results 

from EFA clustering. More specifically, we can determine how many factors underlie a 

set of variables and which variables form which factor. Construction of the factors, which 

underlie the relationship between the items results from the EFA loading. More 

specifically, one can determine how many factors underlie a set of variables and which 

variables form each factor. Validation of the EFA occurred via the use of confirmatory 

factor analysis. Through maximization of the total variance, one can choose the most 

appropriate factors for the observed variables. 

Using Varimax rotated EFA; the resulting structure provides the greatest variance 

in accounting and produces a simple solution with one major loading per factor. The 

study used the simple solution to develop an understanding of the relationship between 

items and factors, along with the proportion of the variance accounted for between the 
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factors as the partial loading. Each of the factors represents the maximization of the total 

variance in the observed variables. Methodologists suggest the use of exploratory factor 

analysis (EFA) when there is insufficient theoretical information to hypothesize the 

number of underlying factors accounted for by the variables. As this study is an 

exploratory study, there is little theoretical foundation to draw from.  

Researchers use the principle factor method (PCA and ICA) for analysis of the 

underlying factors to confirm and explain the underlying latent constructs of a measure. 

Extraction of the first factor is contingent upon maximization of the variances accounted 

for in the primary factor. The process then removes the factor and the next factor, which 

accounts the maximum variance, is calculated. Analysis continues through this process 

until it accounts for all variance in the resulting factors. Low correlation between the 

items structures can suggests a trend toward an orthogonal factor structure maximizing 

the variance across all factors. If the resulting factor model produces orthogonal factors, 

which when rotated, produce more interpretable results. The resulting factors from the 

CFA confirm the attributes related to the factors. The research validated the correlation 

between factors using Pearson’s r.  
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Item response theory (IRT). Results of the IRT analysis assisted in answering 

research question 2, what are the cognitive attributes that underlie the design of Serious 

Educational Games? Researchers use IRT analysis primarily for the development, 

evaluation, and validation of assessment instruments. Instruments developed using IRT 

analysis contains items or tasks, which remain fixed along a scale allowing for calibration 

across differing samples. The use of two-parameter measurement models constructed 

under the paradigm of IRT provides a theoretical model to create an equal measure 

analysis of the embedded assessed items, which equated with tasks in this study. 

The two-parameter IRT model is probabilistic and based upon the logit function 

(Rasch, 1960; Linacre, 1991 & 1999; Chen, Wong, Leung, & Kwan, 2012). This 

probabilistic model allows for an adequate measure of those items (tasks) which the 

subjects are least likely to be successfully complete. Individuals who exhibit a higher 

likelihood of exhibiting a greater completion level are more likely to show increases in 

task completion. Consequently, when a high measuring subject does not complete items 

that are ranked lower, those endorsements are considered unexpected and result in larger 

outfit deviations. A second advantage of the two-parameter IRT model is that the model 

provides for the construction of a linear measure through transformation from ordinal 

observation and quantification of the response categories within the task list (Linacre, 

1999). The construction of the linear measure, from the ordinal data set, derives from the 

transformation of raw scores, to the common metric of logits (inverse of the sigmoidal 

function). The transformation of the measure responses and item calibrations occurs via 

comparison of the data to an existing IRT model. The ordering of the items on the 
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response measure creates an additive relationship allowing for the development of 

probabilistic models (Betemps, Smith, & Baker, 2004). Probabilistic models allow for 

statistical comparisons of the expected responses to the actual responses within the model 

using X2
. From the comparison of expected task completions to the observed task 

completion, it is possible to provide an indication of IRT model fit. The use of the single 

parameter model is only applicable to the characterization of single trait constructs such 

as that of specific cognitive attributes.  

IRT and the Q-matrix. The resulting parameters a and b link the IRT model to 

the Q-matrix via marginal true-score measures for binary items (Dimitrov, 2003). 

Researchers use the Q-matrix to calibrate the probability of task completion. Probabilities 

derive from using IRT develop the parameters of the Q-matrix. Within the Q-matrix, the 

inverse linear-equal measure interval probability is a measure of the extent to which 

abilities not specified in the developed Q-matrix, affects the probability of correctly 

completing a task. The task completion probability is the inverse to the difficulty 

parameter in the two-parameter IRT model. Lower values imply an influence from 

abilities not specified in the Q-matrix. Rasch in 1960 proposed an equation that is the 

derivation of this model for cognitive validation. Based upon combination of the 

Suppes’s probabilistic model, (Suppes, 1969), and the Spada probabilistic model (Spada, 

1977). Dimitrov (2007) combined these two models to account for the differences in error 

rates among individual subjects creating a uniform step model for clearer 

parameterization of the Q-matrix. 
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Attribute mastery pattern (AMP). The probabilities developed using the IRT 

model integrates into the attribute mastery pattern via the Q-matrix. Development of the 

attribute mastery pattern uses only dichotomous values, indicating either the presence or 

absence of the cognitive attribute related to the proposed task. Using a componential 

approach, such as Attribute Mastery Patterns (AMPs) applied to factor analysis as a 

means, reduces the factors to a minimum number of dimensions. The researchers then 

determine the number of underlying components of the AMP from the reduced factors 

(Sternberg, 1982). Three experts in the field of science education and psychology made 

the determination of presence of the attribute within the construct through review of 

factor-item relationships. Suitable agreement (agreement coefficients of 0.70) between 

reviewers indicated the presence of the cognitive attribute (Lamb, Annetta, Meldrum, & 

Vallett, 2011). Further analysis and confirmation of the proposed cognitive attributes via 

verbal report studies will support selection of this model.  

The Attribute Mastery Pattern (AMP) is a method of item response classification 

that categorizes subject responses based upon cognitive models of task performance 

(Leighton Et al., 2004; Leighton, Gierl, & Hunka, 2006). Task performances are 

representative of the underlying cognitive traits and attributes. Items within the attribute 

mastery pattern are related in a nonlinear-network using Bayesian probabilities, the 

approximation of which is possible with artificial neural networks (ANNs). This non-

linear network represents the interrelationship between the attribute competencies, the 

measurable factors, and the items (Anderson, Douglass, & Qin, 2005; Kuhn & Matson, 

2002). An Artificial Neural Network uses in this capacity validated model fit, i.e. to test 
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the AMP. Specifically, the cognitive attributes within the AMP network represent the 

procedural knowledge and processing functions needed to perform particular domain 

based tasks (Wang, Jackson, & Zhang, 2011). The IRT model extracted the subjects’ 

probability of mastery in relation to factors using neural networks parameterized 

weightings. The presentation of response patterns to the neural network determined 

model fit, paired with comparison of the results to the expected outcome. Calculation of 

model fit for the AMP uses the following equation, Equation 2 proposed by Cui, & 

Leighton (2006): 

Equation 2 AMP Model Fit 

HCli= 1-2∑ ∑ 
   Xij(1-Xig) /Nc       (2) 

 

Wherein J is the total number of items, X, is the subjects score to item j, S, 

includes items that require the subset of attributes of item j, and Nc is the total number of 

comparisons for the correct answers. Values for the AMP are between -1.00 and +1.00. 

Mean values above 0.60 indicate adequate model fit while values below 0.30 suggest 

poor model fit (Wang & Gierl, 2007). 

Artificial neural networks (ANN). An artificial neural network (ANN) is a 

method of computing relationships based upon the interaction of multiple, connected, 

processing elements in a non-linear fashion (Pinkus, 1999; Gupta, 2010). A key feature of 

artificial neural networks is that there is a strong connection between input elements and 

output elements. However, the elements dealing with the input-output relationships are 

not fully known or researchers could model these connections directly. Artificial neural 

networks represent a new paradigm for the analysis of complex human emotional and 
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cognitive constructs, such as the construct of interest and items relating to cognitive 

attributes. Designers of ANN models base them upon an abstraction of higher-level, 

cognitive functions associated with neural “wetware” (i.e. vertebrate brains). Specifically, 

the ANN and derived statistical models mimic the architecture of the parallel, non-linear 

processing found in organic based brain systems. Represented statically in the form of a 

graphic is the parallel architect that provides an understanding of emergent relationships 

(patterns such as those found in data mining). These ANNs are often used in three modes: 

(1) as a model of biological nervous systems and intelligence, (2) real-time, adaptive, 

signal processors, and (3) as a data analytical methods. This study uses ANNs in the 

second and third capacity as a real-time adaptive signal processor of cognitive inputs, and 

a data analytical method to theorize and model task completions. The generalization of 

this artificial neural network model reduces to the underlying functions, algorithms, of 

pattern recognition. Given this understanding, it is important to remember that 

researchers represent the patterns of an ANN in the terms of numerical values assigned to 

nodes within the model. The numerical values transmitted along the network use an 

algorithm for propagation. It is important at this point to differentiate between the ANN 

models and ANN algorithms. One of the major differences between ANN models and 

ANN algorithms is the manner in which data is used. The ANN algorithms are more 

appropriate to analyze transient data thus making them relatively useless as a statistical 

test procedure. However, ANN models are far more useful for developing the repetitive 

analysis necessitated by statistical algorithms. While there are considerable similarities 
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between the statistical models and ANN models, there are differences within the 

terminology and language of ANNs. 

Developers of Artificial Neural Networks designate nodes using one of three 

descriptions. The designations are input nodes, output nodes and hidden nodes. The 

nodes link using weighting parameters, thus the input nodes, hidden nodes and output 

nodes become a multivariate function similar to the concept of a non-linear structural 

equation model (Dijkstra & Henseler, 2011). This nonlinear function describes the 

movement and transformation of task processes, via weightings along the network nodes. 

The ANN accomplished the actual transformation of the parameter estimates via learning 

algorithms that include the use of backward propagation in the case of multi-layer 

perception delta-rule networks such as the ANN in this study. This propagation makes the 

network model adaptable by adjusting the weighting by a proportional difference 

between the expected output and the actual output. In addition to weighting adjustments, 

it is possible to standardize the output of the maximum propagation weight to 1.00 as in 

this study. This adaptive ability allows for flexibility within this model not seen in other 

modeling techniques. Smith and Gupta (2003) proposed equation 3, the general equation 

for adaptation and propagation within an ANN:  

  
Equation 3 Adaption and Propagation within an ANN 

           )           (3) 

 

Where ᾐ is the learning rate of the ANN, D is the desired output and Y is the 

actual output. The above equation is an extension of the Perceptive Learning Rule (also 
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known as the Hebb’s Synapse and learning rule) (Hebb, 1949). Figure 2 provides a 

proposed model of an artificial neuron and its propagation to output.  

 

 
 

Figure 3. Artificial Neuron, the Functional Portion of the Neural Network 

 

The movement from a narrow view of ANN as an adaptive message-passing 

algorithm to a statistical processor involves the inclusion of probabilistic assumption 

regarding the data in particular the input nodes and output nodes. The development of 

probabilistic assumptions for the ANN in this study derives from the 2PLM IRT 

parameters. The ANN represents the input nodes as patterns, which appear in the input, 

while the output nodes are recast as resulting samples of a density of higher–dimension, 

randomized, probability estimations. It is this link to inferential statistics, which allows 

linkage of an ANN to practical descriptions of real-world problems such as cognitive-

attribute, task completion probabilities, and development of the hierarchical relationships. 

It is in this light that the ANN offers answers to a complex array of problems though its 

Output=f (Sj) 
Unj 

Un 
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intricate statistical modeling with an emphasis on flexibility. However, this inherent 

flexibility is sometimes the cause of overfit errors, which increases as the increase in 

variables creates randomization of components resulting in a decreased performance for 

future data. To control for this, it is important that the data have a similar level of, or 

greater level of, complexity than the existent data. The use of a back propagation, 

regularization and other Bayesian methodologies results in a decrease in the number and 

type of overfit errors. 

Statisticians classify the statistical approach to ANN in the class of statistical 

models for nonparametric statistics, thus, are not subject to assumptions of normality and 

sample size. Some examples of similar statistical models are the Generalized Linear 

Model, Maximum Redundancy Model, Projection Pursuit, Cluster Analysis, and Radial 

Basis Function (Orr, 1995). If the model does not contain hidden layers and instead 

maintains direct connection between the inputs and output neurons, the model becomes a 

Functional Link Network. This Functional Link Network is akin to the statistical term 

known as main effects analysis. The generalized equation for neural network propagation 

shown in equation 4: 

Equation 4 Tthe Generalized Equation for Neural Network Propagation 

       (4) 

 

Methodologists suggest the use of a stepwise neural network to ascertain the 

number of cognitive attributes and their hierarchical relationship contained within the 

proposed model. Fit statistics found in the pilot study suggest that a model using 16 
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attributes is the most parsimonious model. Using the statistical software package JMP 

10.0, the results (item responses) were presented to the artificial neural network.  

The nodes within this model fulfill different functions. The input nodes within 

this network present data to the remainder of the network, with each node containing one 

piece of the larger data items. Within in this model, a data item is one task. Each of the 

hidden nodes indicates the presence or absence of a particular attribute. The model then 

has two output nodes, each node representing either successful completion, or 

unsuccessful completion of the task. The output nodes also represent an additional factor 

of strength of propagation allowing for the development of hierarchal relationships 

between each of the attributes. During this study, resultant ANN, weightings normalized 

the outputs to sum to 1.00 (100%). Thus, the node with the highest value is basal attribute 

for the remaining two subordinate attributes.  

Further analysis of the ANN outputs occur using Independent Component 

Analysis (ICA). ICA is a clustering algorithm based in neural outputs and found in JUMP 

10.0 helping to assign grouping of cognitive attributes to tasks within the Q-matrix. ICA 

can provide outputs where such traditional analyses such as Principle Component 

Analysis have failed (Beckmann, 2012; Bingham, Kuusisto & Lagus 2002; Chang, 2012). 

Clustering of this nature confirms prior analyses of factors relating to attributes 

developed during phase 1 and 3 of the analysis.  

ICA hidden layer analysis. ICA differs from PCA in a key assumption relating 

to the treatment of the data post decorrelation and variance accounting. ICA requires an 

additional data transformation to develop independent components. This assumption 



 

80 

 

plays a particularly necessary role when dealing with non-normal (non-Gaussian) 

distributions such as those found at the school or classroom levels of educational data 

analysis. A violation of the normality assumption is of concern because when using a 

non-normal distribution, independence and non-correlation differ with independence 

being the stronger property (Lechner, Lollivier & Magnac, 2008). When using ICA, one 

assumes that independent components lack a Gaussian distribution as opposed to PAC in 

which the analyst assumes components are normally distributed. Taking this distribution 

assumption into account then, ICA is equivalent to PCA. However, if the data is not 

normally distributed and multi-dimensional ICA is superior as it (ICA) can take 

complicated multi-dimensional data and identify its underlying structure.  

Selection and design of training and test data. Science processing is a complex 

domain; researchers must take care to ensure that modeled tasks are not overly complex 

for this exploratory study. It is not computationally possible to model all process attribute 

types. The goal is to select tasks that would reflect the domain complexity and provide 

generalizable results. Limiting of task selection occurs through using tasks already 

intrinsic to the game software design-process. In particular, the 45 tasks identified are 

those tasks. Therefore, to successfully generate a model and balance the computational 

concerns with useable tasks, considerable care in task selection is required. The study 

models allow duplication of task types within the science processing domains as task 

types often overlap between multiple tasks. During this study, a panel of experts 

validated core-task selection, within the domains to ensure applicability. Each task was 

assigned to a factor and randomly assigned to the training set or test set. This ensured that 
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there is no crossover between testing sets and training sets. Encoding of the attributes 

parameters occurred via the development of the Q-matrix.  

Combining Bayesian models and IRT models. Parameterization of the task 

completion likelihoods and the use of ANN training models (Bayesian Approaches), as in 

this study, assist in the development of more effective targeting of tasks to attributes. The 

use of these particular models helps to develop an effective picture (model) of individual 

subject cognitive processes for simulation and teaching purposes. Effective ANN 

development provides researches with an effective means to simulate and test learning. 

To create input vectors for each of the science process tasks it is necessary to encode 

probabilities of successful completion of the task item. Transformation of initial 

responses occurred using an IRT model, specifically the 2PLM model. The study used 

two-parameter logistic model parameters to compute the population probability using the 

IRT True-Score method. Based upon the results of the IRT True-Score tasks probabilities 

for the population, individual probabilities are assigned to cognitive attributes using a Q-

matrix and the artificial neural network propagation weightings Node coding developed 

using one input node per attribute; flagging of the node via a “0” or “1” indicates the 

presence or absence of the attribute. This type of coding provides a simpler model 

allowing the ANN to learn the input parameters more efficiently (Bishop, 1995; Bhatt, 

2012). Folding all values of the parameters into one node and all constants into another 

node is a way to represent and account for prior knowledge. The accounting for prior 

knowledge within the ANN model is a key feature of Bayesian models, which are not 

present in IRT models (Soares, 2009). Since propagation across the network is contingent 
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upon the presence or absence of the attribute. The attribute values used to determine 

success are not of consequence to the solution and its propagation across the ANN. 

Coding input vectors (tasks and attributes) in this manner permits the coding of a large 

number of examples of science process tasks which preserve individual identities of the 

tasks. Due to the potential for a larger number of coded tasks, the ANN model becomes 

more flexible and generalizable as the number of parameters increases. This also reduces 

the likelihood that review bias concerning relative importance of one attribute versus the 

others affected the results.  

A second area of strength, thus indicating the mixing of IRT and Bayesian models 

as superior, is in the number of attributes required for analysis. Model convergence using 

an ANN occurs with smaller number of attribute to item-task ratio. Researchers using this 

modified form of cognitive diagnostics can obtain usable result with fewer suggested 

attributes resulting in easier interpretation for practitioners. Fewer attributes make it more 

likely that the educator can successfully target those attributes during instruction in a 

timely manner (Huff& Goodman, 2007). The use of fewer attributes in-turn can help to 

increase interpretability of the data at the classroom level (Roberts & Gierl, 2010). 

Through a combination of the Bayesian and IRT models researchers are able to capitalize 

on strengths of each while accounting for weaknesses.  
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CHAPTER FOUR 

Results 

 

The results section is organized by analysis type and research question. The three 

research questions answered are; RQ1, what are the underlying factors exhibited through 

the measurement of task items associated with student development of Serious 

Educational Games? RQ 2, what are the cognitive attributes that underlie the design of 

Serious Educational Games? RQ3, what theoretical mathematical / statistical model 

develops using an Artificial Neural Network to describe the interaction of the items, 

factors, and attributes as subjects design Serious Educational Games? The main results 

of this study include the theoretical connection between the games and attributes through 

the Q-matrix. A second result is a model of Serious Games as assessment. The third 

result is the identification of tasks and attributes used in the design of SEGs, and lastly, 

an artificial neural network used as a model to investigate how subjects learn science 

while designing Serious Education Games.  

Exploratory Factor Analysis 

 

Results of the exploratory and confirmatory factor analysis inform RQ1; what are 

the underlying factors exhibited through the measurement of task items associated with 

student development of Serious Educational Games? Results within this section suggest 

rejection of the null hypothesis (Ho Λi=0). The Kaiser-Meyer-Olkin measure of sampling 
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adequacy was 0.764 and the Bartlett test of sphericity was significant (X2
=3579.78, 

df=780, p<.001). Each of these statistical results suggests that the data is appropriate for 

factor analysis. Initial inspection of the scree plot (Figure 4) of eigenvalues evidences a 

departure from linearity coinciding with a 4-factor solution.  

 

 

Figure 4. Scree Plot of factors. 

 

The EFA loading coefficients were examined for their resemblance to a simple 

factor structure. Meaning that in an ideal case, each item would have one large loading on 

a single factor with all others loading close to zero. Methodologists suggest the removal 

of items that do not illustrate a simple structure. Removal of these items from the model 

aids in the development of a clean construct. A second consideration is the cutoff value 

for loadings. Portney & Watkins (2000) suggest a cutting score of 0.30 as a sufficient 
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loading (Portney & Watkins, 2000). Consideration of these criteria resulted in the 

removal of 11 items for low or improper loadings. The rotated factor matrix shown in 

Table 2 suggests that four factors account for 80.75% of the total observed variance in the 

measure. Analysis of the factor loading items suggests the factor loading descriptions. 

Factor 1 consists of items; 1,4,5,7,12,23,26,27,29, and 34. Each of these items 

(1,4,5,7,12,23,26,27,29, and 34) concern subject outcomes to science process skills tasks. 

Each task relies on a subjects’ understanding of science process for success. From this 

relationship it is suggests that the factor be labeled Science Process. Factor 2 consists of 

items: 2, 3, 6, 8, 9,10, 11, 24, 25, 28, 30, 31, 32 and 33. Each of these items suggests a 

factor related to game editing and control tasks. An example of this type of item is the 

item (task) 9, Add Objects to Game. Results suggest Factor 2 is Game Control. Factor 3 

consists of 5 items; 13,14,19,35, and 36. Each item suggests the addition of quiz item(s) 

within the game related to science based task items. An example of this type of item is 

item (task) 13 Quiz Question Added. A label, which may be applied to this factor, is Quiz 

Development. The final factor, Factor 4, consists of five items; 15, 16, 18, 37 and 40. 

Each of these items is associated with the development of decision points within science 

game contexts. Examples of these items are Edit Game Decision Points. An appropriate 

label for this factor is Game Logic. Relationships between the items suggest the label of 

Game Decision Development for this factor. Results suggest the removal of several task 

items from the model due to factor loadings below 0.30. Confirmatory factor analysis 

aided in the development of greater clarity. This clarity arose from examination of the 

factor structure established using the confirmatory factor analysis (CFA).  
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Table 2  

 

Task Factor Loading 
 

Task Number Task Description Factor 1 Factor 2 Factor 3 Factor 4 

1 Science Based Task Editing 0.91    

2 Initiated Game Play Mode  0.88   

3 Initiated Editing Mode  0.60   

4 Completed Science Content Based Task 0.48    

5 Play Science Based Task Within Game 0.48    

6 End Game Play Mode  0.50   

7 Complete Science Task Development 0.54    

8 Add Session Notes  0.40   

9 Add Objects to Game  0.38   

10 Delete Objects from Game  0.35   

11 Add Text to the Game  0.30   

12 Science Quiz Question Answered Correctly 0.63    

13 Quiz Questions Added   0.91  

14 Quiz Questions Deleted   0.31  

15 Decision Point Added    0.30 

16 Decision Point Deleted    0.37 

17 Total Quiz Questions Added Suggested for Removal, Did Not Load 

18 Edit Decision Point    0.93 

19 Quiz Notes Added   0.27  

20 Total Quiz Questions Deleted Suggested for Removal, Did Not Load 

21 Total Triggered Events Suggested for Removal, Did Not Load 

22 Total Decision Points Suggested for Removal, Did Not Load 

23 Successfully Completed Science Quiz  0.94    

24 Delete Text From the Game  0.87   

25 End Editing Mode  0.59   

26 Successfully Completed Science Tasks 0.51    

27 End of Level Achieved 0.47    

28 Total Levels Edited  0.50   

29 End of Game Achieved 0.57    

30 Delete Session Notes  0.39   

31 Total Time In Game  0.35   

32 Map Code  0.33   

33 Total Data Stream  0.30   

34 Game Check Point Achieved 0.62    

35 Quiz Choices Added   0.91  

36 Quiz Saved   0.30  

37 Decision Point Triggered    0.30 

38 Total Decision Points Added Suggested for Removal, Did Not Load 

39 Total Decision Points Deleted Suggested for Removal, Did Not Load 

40 Decision Point Mapped     0.94 

41 Total End of Games Initiated Suggested for Removal, Did Not Load 

42 Total Text Characters Added Suggested for Removal, Did Not Load 

43 Total Text Characters Deleted Suggested for Removal, Did Not Load 

44 Total Games Initiated  Suggested for Removal, Did Not Load 

45 Total Session Notes Made Suggested for Removal, Did Not Load 

Total Items  10 14 5 5 

Cumulative Percentage  28.95% 28.06% 14.07% 9.67% 
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Confirmatory Factor Analysis 

  

Examination of a confirmatory factor analysis on 1/2n confirmed the data 

structure and resultant model for task groupings. Estimation of the model parameters 

occurred using the maximum likelihood method. A series of four models were tested. 

Reviewed for maximum model fit are the sequence of modeling outcomes and summary 

statistics. As reported for comparison with those of the EFA in Table 3, are the factor 

loadings for the final CFA model in Appendix D. Within the framework for confirmatory 

factor analysis, one specifies the factor structure that is hypothesizes from the exploratory 

factor analysis, in this case 4-factors. Results of the CFA suggests an adequate mode fit 

for a uncorrelated four factor model using an imposed restriction of all factor correlations 

at zero, (WRMR=0.56). The use of the imposed restriction is indicated when the 

correlation between all factors is not statistically significant. The indications of 

unidimensionality allow for the use of IRT on each factor grouping and not 

Multidimensional Item Response Theory (MIRT). Model fit is adequate despite the 

significant chi-square as the chi-square statistics is sensitive to sample size. Review of 

modification indices suggests that the removal of the fifth factor (MI=12.00). The 

hypothesized 4-factor model illustrated adequate model fit (X2
 =2.39, df=44, p>0.001, 

CFI=0.95, TLI=0.95 RMSEA=0.04, 90% CI RMSEA=0.01, 0.05). Inspection of the 

factor loading coefficients from the confirmatory model revealed that, as with the 

exploratory model, 11-task items did not load sufficiently on any of the four suggested 

factors. The remaining items as suggested in the exploratory factor analysis maintained 

the factor structure developed in the exploratory phase. Appendix B illustrates the 
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confirmed factor task- item structure. Mplus code for the confirmatory factor analysis is 

in Appendix A. 

Table 3 displays the resulting tasks as a function of the suggested factors. The 

table also combines the results of the 2PLM IRT model analysis. The suggested task 

items indicated for removal due to poor parameterization are task items 9, 11, and 31-33. 

The total number of task items loaded on each factor range from 5 to 10. The factor with 

greatest number of task items is Factor 1. This is expected, as Factor 1 (Science Process) 

deals with the most complex of the tasks.  

 

Table 3  

 

Task by Factor Breakdown 

 

Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Removed Due 

to Factor 

Loading 

Removed Due to 

Lack of 2PLM 

IRT Fit 

1 2 13 15 17 9 

4 3 14 16 20 11 

5 6 19 18 21 31 

7 8 35 37 22 32 

12 10 36 40 38 33 

23 24   39  

26 25   41  

27 28   42  

29 30   43  

34    44  

    45  

      

10 9 5 5 11 5 Total Number 

 

This study uses the results of the IRT analysis to answer research question 2; what 

are the cognitive attributes that underlie the design of Serious Educational Games? 
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Results of this section suggest rejection of the null hypothesis (Ho ΡAi =0). Results 

illustrated in Table 4 are for the population parameters for the tested tasks. Table 4 

displays the population proportion of correct response on item i (π), the population 

estimate of the item error variance σ2 (ei), the population estimate of the item true 

variance σ2 (τi), and the population estimate of item reliability ρii. Review of Table 5 

provides the overall descriptive statistics for the combined test tasks as Pi = 0.366, VAR 

(ei) = σ2e =4.21, VAR (τi) = σ2 τ =51.05, ROxx= ρxx =0.95. These results suggest the test 

population reliability parameter is high (ρxx =0.95). However, the overall difficulty of the 

test is moderate with 36.6% of the population correctly completing all tasks. Of the total 

items included in the final analysis, item 19 is the most difficult while item 6 is the 

easiest task to complete. Items, showing difficultly over +/- 2 on Table 5, were removed 

due to poor 2PLM model fit. Item 1 is the most reliable at ρii = .64 while item 14 is the 

least reliable ρii = .10. 
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Table 4  

 

2PLM Item Response Model (Parameters a and b) 

 
Task 

Number 

Task Description Discrimination 

(a) 

Difficulty (b) Notes 

1 Science Based Task Editing 2.56 1.00  

2 Initiated Game Play Mode 0.89 1.21  

3 Initiated Editing Mode 1.46 1.36  

4 Completed Science Content Based 

Task 

1.61 0.72  

5 Play Science Based Task Within 

Game 

0.95 1.02  

6 End Game Play Mode 0.72 0.87  

7 Complete Science Task 

Development 

1.40 1.31  

8 Add Session Notes 1.09 2.58  

9 Add Objects to Game 0.58 2.08 Removed (a) 

10 Delete Objects from Game 0.54 3.14  

11 Add Text to the Game 0.63 3.77 Removed (b) 

12 Science Quiz Question Answered 

Correctly 

4.48 0.85  

13 Quiz Questions Added 0.72 0.98  

14 Quiz Questions Deleted 0.83 1.95  

15 Decision Point Added 1.30 0.95  

16 Decision Point Deleted 0.99 1.18  

17 Total Quiz Questions Added 0.66 0.84 Removed EFA 

18 Edit Decision Point 1.54 1.24  

19 Quiz Notes Added 1.17 2.24  

20 Total Quiz Questions Deleted 0.44 3.01 Removed EFA 

21 Total Triggered Events 0.36 4.66 Removed EFA 

22 Total Decision Points 0.57 4.15 Removed EFA 

23 Successfully Completed Science 

Quiz  

3.34 0.83  

24 Delete Text From the Game 1.01 1.02  

25 End Editing Mode 1.42 1.41  

26 Successfully Completed Science 

Tasks 

1.83 0.63  

27 End of Level Achieved 0.96 1.01  

28 Total Levels Edited 0.78 0.74  

29 End of Game Achieved 1.59 1.14  

30 Delete Session Notes 1.33 2.10  

31 Total Time In Game 0.56 2.18 Removed (a) 

32 Map Code 0.55 3.12 Removed (b) 

33 Total Data Stream 0.63 3.78 Removed (b) 

34 Game Check Point Achieved 4.48 0.85  

35 Quiz Choices Added 0.72 0.98  

36 Quiz Saved 0.83 1.96  

37 Decision Point Triggered 1.31 0.96  

38 Total Decision Points Added 0.99 1.18 Removed EFA 

39 Total Decision Points Deleted 0.66 0.85 Removed EFA 

40 Decision Point Mapped  1.53 1.24  

41 Total End of Games Initiated 0.45 2.86 Removed EFA 

42 Total Text Characters Added 0.45 2.71 Removed EFA 

43 Total Text Characters Deleted 0.34 5.09 Removed EFA 

44 Total Games Initiated  0.51 4.67 Removed EFA 

45 Total Session Notes Made 0.60 1.01 Removed EFA 
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Table 5  

 

Task Completion Probability 

 
Task Number Task Description πi var (ei) var (τi) ρii 

1 Science Based Task Editing .38 .06 .01 .63 

2 Initiated Game Play Mode .41 .12 .03 .22 

3 Initiated Editing Mode .33 .08 .04 .37 

4 Completed Science Content Based Task .47 .10 .01 .49 

5 Play Science Based Task Within Game .44 .13 .04 .27 

6 End Game Play Mode .51 .16 .04 .21 

7 Complete Science Task Development .34 .08 .04 .36 

8 Add Session Notes .23 .02 .00 .03 

9 Add Objects to Game .15 .11 .01 .08 

10 Delete Objects from Game .27 .07 .00 .04 

11 Add Text to the Game .02 .02 .01 .23 

12 Science Quiz Question Answered 

Correctly 

.40 .08 .01 .57 

13 Quiz Questions Added .48 .17 .04 .20 

14 Quiz Questions Deleted .31 .09 .00 .01 

15 Decision Point Added .43 .10 .07 .38 

16 Decision Point Deleted .40 .12 .04 .26 

17 Total Quiz Questions Added .32 .18 .04 .11 

18 Edit Decision Point .35 .08 .06 .40 

19 Quiz Notes Added .24 .03 .00 .09 

20 Total Quiz Questions Deleted .11 .01 .00 .02 

21 Total Triggered Events .06 .06 .00 .00 

22 Total Decision Points .02 .02 .00 .23 

23 Successfully Completed Science Quiz  .41 .06 .11 .68 

24 Delete Text From the Game .43 .12 .06 .29 

25 End Editing Mode .32 .08 .03 .34 

26 Successfully Completed Science Tasks .50 .01 .11 .53 

27 End of Level Achieved .44 .13 .06 .28 

28 Total Levels Edited .53 .17 .06 .24 

29 End of Game Achieved .17 .08 .07 .43 

30 Delete Session Notes .25 .03 .00 .18 

31 Total Time In Game .14 .11 .00 .07 

32 Map Code .07 .07 .00 .04 

33 Total Data Stream .02 .02 .00 .23 

34 Game Check Point Achieved .40 .08 .01 .57 

35 Quiz Choices Added .48 .17 .04 .20 

36 Quiz Saved .31 .09 .00 .01 

37 Decision Point Triggered .42 .11 .07 .38 

38 Total Decision Points Added .20 .12 .04 .26 

39 Total Decision Points Deleted .32 .18 .04 .11 

40 Decision Point Mapped  .35 .08 .06 .40 

41 Total End of Games Initiated .12 .10 .00 .02 

42 Total Text Characters Added .13 .11 .00 .03 

43 Total Text Characters Deleted .05 .04 .00 .00 

44 Total Games Initiated  .02 .02 .00 .21 

45 Total Session Notes Made .30 .18 .03 .17 

Note. Pi = 0.366, VAR (e) =4.212, VAR (τ) =51.051, P=0.95 

 



 

92 

 

The person item map displayed in Figure 5 provides subject scores and relative 

difficulty of items on a logit scale. The left side of the plot displays subjects’ responses 

and the right hand shows the item difficulty. The item person map displays those subjects 

exhibiting the highest level of task completion at the top. Displayed at the bottom of the 

plot are respondents who least likely completed the tasks successfully. An approximate 

equivalent distribution, shown between the items and respondents, suggests tasks were of 

appropriate difficultly for the respondents. In addition, there seems to be adequate item 

coverage for all levels of ability as there not significant gaps within the person item map. 

Within the 2PLM item response model, Table 4 provides information regarding item 

parameters a and b, Fit statistics for the 2PLM model suggest adequate model fit for the 

data (X2
=1.70, df=1, p=0.19).  

Comparison of 2PLM model fit statistics and one-parameter logistic item 

response model (1PLM) fit statistics suggest that the 2PLM model was more appropriate. 

1PLM model fit statistics resulted in a significant chi-square statistics suggesting a 

significant deviation from the expected results. The study did not consider a three-

parameter logistic item response mode (3PLM) as the items are representative of tasks 

and guessing was not a feasible option. Thus, the study used a 2PLM model to develop 

population parameters and select tasks for later development into the artificial neural 

network and the Q-matrix under the IRT TRUE model in Table 5 (Dimitrov, 2009). 

Appendix B depicts the item characteristics curves and over all test information function.  
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Figure 5. Item Person Map 

 

Reliability 

 

Estimation of reliability for the measured constructs used the Latent Trait 

Reliability Method (LTRM) (Dimitrov, 2012; Raykov, 2009; Raykov, Dimitrov & 

Asparouhov, 2010). This method (LTRM) provides superior estimation of internal 

reliability as it does not rely upon the assumptions associated with more common 

reliability methods such as Cronbach’s alpha. Specifically, Cronbach’s alpha requires 

essential tau equivalence and no correlated errors. Within the framework for latent 

variable modeling, score reliability developed as the ratio of the true-score variance to the 

observed variance (Dimitrov, 2012). Mplus code for LTRM is included in Appendix A. 

The reliability of the measured constructs is estimated at REL = 0.78, CI 5% [0.76-0.80], 
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SEM 2.32, CI 5% [2.27- 2.37]. The computed level of reliability is adequate for this type 

of measure. The study reported reliability based upon the current sample and not 

computed at the population level.  

Task Attribute Matrix 

 

The results of the Neural Network Analysis approach answer research question 3; 

what theoretical mathematical / statistical model develops using an Artificial Neural 

Network to describe the interaction of the items, factors, and attributes as subjects design 

Serious Educational Games? Results within this section suggest the rejection of the null 

hypothesis (H0 R
2
=0). Constructs such as this the relationship between attributes and 

tasks, in an exploratory study such as this reflects measure performance on tasks 

(Cronbach & Meehl, 1955; Embretson, 1983). Construct validity is the degree to which a 

scale measures the proposed trait is thought to measure. When such a test measures a 

trait, which is difficult to define such as in a cognitive diagnostic measure, multiple 

expert reviewers may rate individual pairings of attributes with tasks. Table 6 shows the 

independent relevance rating for the item task construct contained in this study.  
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Table 6  

 

Relevance Rating for Each Task Attribute Pairing 

 

  Reviewer 2 

  Weakly Relevant Strongly Relevant 

Reviewer 1 Weakly Relevant 18 10,29,34,35,36 

 Strongly Relevant 15,16,24,25,28,30 1,2,3,4,5,6,7,8,12,13,

14,19,23,26,27,37,40 

Note. Numbers correspond to individual tasks within the design of SEGs. Letters 

corrections to relevance grouping; A: WR x WR, B: WR x SR, C: SR x WR and D: SR x 

SR 

 

Analysis of reviewer agreement of relevance suggests a task-attribute validity 

coefficient of 0.59. This level of task-attribute validity is adequate for an exploratory 

study such as this one. Equation 5 is a calculation of task-attribute validity using the 

coefficient of agreement d.  

Equation 5 Agreement Coefficient Calculation 

d= ID / ∑   
   A-D         (5) 

 

A discrete latent attribute model was used to develop an understanding of the 

place of each cognitive attribute within the current model. This model allows for the 

modeling of cognitive weighting -via artificial neural network propagation weights- and 

for inferences about the hierarchical position of the cognitive attributes of the subjects. 

Within the models, the latent variables conceptualize as a vector of 0s and 1s for each 

subject. Zero indicates the absence of the trait and 1 indicates the presence of the trait. 

Table 7 illustrates the hypothetical attributes needed to complete the corresponding tasks. 
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More specifically to describe the model one can draw upon a similar model developed by 

Tatsuka (1995), where N examines and J binary task performances variables combine. A 

fixed set of K cognitive attributes are involved in performing the tasks. Thus, one can 

understand model parameters in the terms below, 

Xij = 1 or 0, indicating whether examinee i performed task j correctly; 

Qjk = 1 or 0 indicating whether attribute k is relevant to task j; and 

αik = 1 or 0, indicating whether examinee i possesses attribute k. 

 

Analysis of the Q-matrix assists with the standardization of the outputs by fixing 

term Qjk to 1 prior to insertion into the matrix. The underlying reasoning for fixing term 

Qjk equal to 1 is similar to the logic associated with the Linear Logistic Test Model 

(LLTM). From this development, it is important to understand the objective is to infer 

about the latent cognitive attributes developed via the artificial neural network model 

weightings. This is not to suggest traits the examinees do or do not possess but to 

aggregate the attributes along with suitable tasks to measure them. Note that the matrices 

are developed out of statistical estimations associated with task response parameters 

under a 2PLM. Table 7 also displays the odds of successful completion of the task. Table 

8 illustrates the binary Q-matrix. 
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Table 7  

 

Task Attribute Matrix (Q-Matrix) 

 
Task 

Number 

Task Name Proposition of correct 

response on item i 
Suggested Cognitive Attributes 

 Factor 1     
1 Science Based Task 

Editing 

.37 Parity Judgment Critical 

Reasoning 

Retrieval 

4 Completed Science 
Content Based Task 

.47 Visual Attention Critical 
Reasoning 

Inference 

5 Play Science Based 

Task Within Game 

.44 Peripheral 

Localization 

Attention 

Switching 

General Cognition 

7 Complete Science Task 

Development 

.34 Reading Inference Visual Motor 

Coordination 

12 Science Quiz Question 

Answered 

.40 Reading Inference Critical Reasoning 

23 Successfully Completed 

Science Quiz 

.41 Reading Inference Critical Reasoning 

26 Successfully Completed 

Science Tasks 

.49 Reading Inference Visual Motor 

Coordination 

27 End of Level Achieved .44 Magnitude 
Quantification 

Reading Variable 
Interaction 

29 End of Game Achieved .36 Spatial Ability Inference Reading 
34 Game Check Point 

Achieved 

.40 Reading General 

Cognition 

Visual Attention 

 Factor 2   
2 Game Play Mode .41 Visual Attention Retrieval Peripheral 

Localization 

3 Initiated Editing Mode .33 Parity Judgment Critical 
Reasoning 

Retrieval 

6 End Game Play Mode .51 Reading Retrieval Critical Reasoning 

8 Add Session Notes .23 Reading Verbal 
Production 

Variable 
Interaction 

10 Delete Objects from 

Game 

.27 Visual Motor 

Coordination 

Inference Reading 

24 Delete Text From the 

Game 

.43 Visual Motor 

Coordination 

Inference Reading 

25 End Editing Mode .32 Reading Retrieval Critical Reasoning 
28 Level Editing .53 Peripheral 

Localization 

Retrieval Variable 

Interaction 

30 Delete Session Notes .25 Visual Motor 
Coordination 

Inference Reading 

 Factor 3   

13 Quiz Questions Added .48 Reading Retrieval Inference 
14 Quiz Questions Deleted .31 Reading Retrieval Critical Reasoning 

19 Quiz Notes Added .24 Reading Retrieval Verbal Production 

35 Quiz Choices Added .48 Inference Estimation Calculation 
36 Quiz Saved .31 Visual Attention Reading Estimation 

 Factor 4   

15 Decision Point Added .42 Variable 
Interaction 

Estimation Magnitude 
Quantification 

16 Decision Point Deleted .40 Estimation Variable 

Interaction 

Critical Reasoning 

18 Edit Decision Point .35 Reading Inference Visual Attention 

37 Decision Point 

Triggered 

.42 Peripheral 

Localization 

Visual 

Attention 

Attention 

Switching 
40 Decision Point Mapped .35 Visual Motor 

Coordination 

Retrieval Spatial Ability 

Note. The positioning of the cognitive attributes is not meant to convey a hierarchical 

relationship between the attributes.  
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Table 8 illustrates the dichotomous coding for each of the cognitive attributes as 

related to tasks. Table 8 provides a listing of each cognitive attribute by number. A “1” 

indicates the presence of an attribute and a “0” indicates the absence of an attribute. Each 

task is limited to three cognitive attributes due to computational concerns in particular the 

lack of computing power within the context of this study. This seems to indicate that the 

lack of attributes is not a function of the methodology but a physical limitation imposed 

by a ceiling on computing power. Appendix C displays the cognitive attribute number 

and name.  
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Table 8  

 

Q-Matrix 

 
Number Task / Attribute 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1 Science Based Task 

Editing 

0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 

2 Initiated Game Play 

Mode 

0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 

3 Initiated Editing Mode 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 

4 Completed Science 

Content Based Task 

0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 

5 Play Science Based Task 

Within Game 

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

6 End Game Play Mode 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 

7 Complete Science Task 

Development 

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 

8 Add Session Notes 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 

10 Delete Objects from 

Game 

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 

12 Science Quiz Completed 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 

13 Quiz Questions Added 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 

14 Quiz Questions Deleted 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 

15 Decision Point Added 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 

16 Decision Point Deleted 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 

18 Edit Decision Point 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 

19 Quiz Notes Added 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 

23 Successfully Completed 

Science Quiz  

0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 

24 Delete Text From the 

Game 

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 

25 End Editing Mode 0 0 1 0 0  0 0 0 1 1 0 0 0 0 0 

26 Successfully Completed 

Science Tasks 

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 

27 End of Level Achieved 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 

28 Total Levels Edited 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 

29 End of Game Achieved 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 

30 Delete Session Notes 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 

34 Game Check Point 

Achieved 

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 

35 Quiz Choices Added 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

36 Quiz Saved 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 

37 Decision Point Triggered 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

40 Decision Point Mapped  0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 
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Artificial Neural Network 

  

The artificial neural network developed to describe the interconnection between 

the cognitive attributes and successful task completion arises from a series of 

interconnected nodes (neurons). The neurons develop the three district layers of the 

ANN- input, hidden, and output. The input layer provided no computational function but 

distribute stimulus into the neural network. For the purposes of this model, the tasks act 

as the input. The hidden layer represented by the cognitive attributes assigned to the tasks 

and the output layer consists of the success and failure probabilities. Figure 5 provides a 

generalized picture of the neural network used in this study.  

 

 

 

 
 

Figure 6. Overview of the Artificial Neural Network Topology. 

 

Input Layer 

29 Nodes 

Tasks 

 

Hidden Layer 

16 Nodes 

Cognitive Attributes 

 
Output Layer 

2 Nodes 

Correct or Incorrect 
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The ANN used within the portion of the study was designed by SAS as part of the 

JMP 10 statistical discovery package. Training of the artificial neural network used a 

random 1/2 n split data approach similar to the validation method for the factor structure. 

Link weights initially consist of randomly weighted values. The weights are limited to 

random values within the range of -2/Ω, 2/Ω for neurons with Ω inputs (Gallant, 1993; 

Dawson & Wilby, 1997). 

Post initialization of the network using the random weighting approach, the 

network was then trained by providing it (ANN) a number of examples from the 1/2 N 

data set (1/2 N = 77,120) illustrating how the ANN is to behave. Review of the results of 

the trained ANN with the calibrations set suggests an accurate behavioral predictor of 

subject success outcomes based on the cognitive attributes supplied. Table 10 and Table 

11 provide key statistics regarding model fit. The training set shows a .86 and .78 r
2
 for 

the prediction of correctly completing the tasks and incorrectly completing the task. 

These r
2

 values suggest that the ANN model accounts for 86% and 78% of the variance 

around the sigmoid function used to develop the outputs. The generalized r
2
 proves for 

the aggregation of the predictive ability of the network across the multiple outputs of 

correct and incorrect.  

Review of Table 9 and Table 10, the ANN output for the test set of data suggests 

that the ANN model used for the test set is less able to predict the output states, correct or 

incorrect task completion (Δ r
2
=-0.13). Despite some loss in predictive power associated 

with the model, there is not a statistically significant difference in the r
2
 values (t (2) 

=1.59, p=0.252, α=0.05). Given the lack of significance for chi-square, the model 
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adequately predicts subject outcomes using cognitive diagnostic approaches. When tested 

using the second set of data 1/2n the model is able to account for 77% of the variance for 

correct outcomes and 69% of the incorrect outcomes. Examination of the ΔRMSE 

(+0.02) term, there is a slight increase in the error term however this is not considered 

significant (t (2) =1.34, p=0.31, α=0.05). Review of the correlation coefficient r=0.85 

suggests there is a strong linear relationship between the models.  

 

Table 9  

 

Neural Network Output (Training Set, 0.5 Holdback Validations 

 

Neural Network Correct Incorrect 

R-square 0.86 0.78 

RMSE 0.19 0.21 

Mean Abs Error 0.10 0.07 

   

Generalized R-

Square 

0.82 

 

 

Table 10  

 

Neural Network Output (Test Set, 0.5 Holdback Validations) 

 
Neural Network Correct Incorrect Average Change from 

Training 

R-square 0.77 0.69 -0.02 

RMSE 0.21 0.22 +0.015 

Mean Abs Error 0.12 0.17 +0.06 

Generalized R-Square 0.73 

Correlation Coefficient: 0.85 
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An Artificial neural network derives propagation weights from random 

assignment to test set data (1/2n) for each of the proposed attributes. The weights 

represent the strength of signal propagation as the signal moves from node to node within 

the network. For clarity, the study has standardized ANN weights to 1.00, each 

subsequent weighting value developed from the standardized value. The attribute with the 

greatest weighting (largest likelihood to propagate) is perceptual binding (A13). Attribute 

2 (A2) mental calculation, is the least likely to propagate. Table 11 displays the cognitive 

attribute name to the artificial neural network weighting.  

Table 11  

 

Neural Network Propagation Weights 

 
Cognitive 

Attribute Number 

Cognitive Attribute Name Artificial Neural 

Network Weightings 

1 Attention Switching 0.46 

2 Mental Calculation (Arithmetic) 0.01 

3 Critical Reasoning 0.30 

4 Estimation (Numeral Sense) 1.00 

5 General Cognition  0.01 

6 Inference 0.20 

7  Quantification 0.11 

8 Parity Judgment 0.07 

9 Peripheral Stimulus Localization 0.05 

10 Reading 0.27 

11 Retrieval 0.01 

12 Spatial Ability 0.04 

13 Variable Interaction (Perceptual Binding) 0.68 

14 Verbal Production (Verbal Fluency) 0.14 

15 Visual Attention 0.41 

16 Visual Motor Coordination (Motor Control) 0.16 

 

By combining neural network propagation weighting with the 2PLM probability 

of item completion, one can merge the two models and create a means to measure the 
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contribution each attribute makes to the overall task completion. Equation 6 represents 

the 2PLM. 

Equation 6 2PLM 

Pi (Θ) =exp [Dai (Θ-bj)] / 1+ exp Dai (Θ-bj)      (6) 

 

By combining neural network propagation weighting Equation 7 with the 2PLM 

probability of item completion, one can merge the two models and create a means to 

calculate the propagation. Equation 7 represents the propagation weightings across the 

neural network.  

Equation 7 Neural Network Propagation Equation 

X
j
n=φ (∑       )        )    

   )       (7) 

 

Equation 8 represents the combination of the two equations to represents the calculation 

of the probabilities of task completion related to each cognitive attribute. 

  
Equation 8 Neural Network Model to Calculate Individual Attribute Probabilities 

exp [Dai (Θ-bj)]* φ (∑       )        )    
   ) / [1+ exp [Dai (Θ-bj))]  (8) 

 

Where D is the scaling factor equal to 1.70, (this approximates a normal ogive 

curve), ai is the item discrimination, Θ is the subjects ability for success on the particular 

item. Through manipulation of these variables, one can calculate Pi, the probability of 

correctly completing a task. When combined with the neural network model, φ is the 

non-linear activation function for the artificial neural network, w
il

n represents the gradient 

decent along the training function, and x
l
n-1 represents the input to the hidden layers via 
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the cognitive attributes. Substitution for the expressions within the equation results in the 

following summary Equation 9 representing the probability contribution each cognitive 

attribute makes to the overall probability of task completion. 

Equation 9 Probability Contribution of Each Attribute 

PAi= Pi (Θ)* φ (y
1

n)         (9) 

 

Table 11 illustrates a modified Q-matrix with the addition of the probabilities for 

each of the attributes. 



 

 

 

Table 11  

 

Q-Matrix with Calculated Probabilities 

 
Task Description Pi Attribute 1 Probability Attribute 2 Probability Attribute 3 Probability Residual 

Science Based Task Editing 0.38 Parity Judgment 0.03 Critical Reasoning 0.11 Retrieval 0.01 0.13 

Completed Science Content Based 

Task 

0.47 Visual Attention 0.19 Critical Reasoning 0.14 Inference 0.10 0.42 

Play Science Based Task Within 

Game 

0.44 Peripheral Localization 0.02 Attention Switching 0.21 General Cognition 0.01 0.23 

Complete Science Task Development 0.34 Reading 0.09 Inference 0.07 Visual Motor 
Coordination 

0.05 0.21 

Science Quiz Question Answered 0.40 Reading 0.11 Inference 0.08 Critical Reasoning 0.12 0.31 

Successfully Completed Science Quiz 0.41 Reading 0.11 Inference 0.08 Critical Reasoning 0.12 0.32 

Successfully Completed Science 

Tasks 

0.49 Reading 0.13 Inference 0.10 Visual Motor 

Coordination 

0.08 0.31 

End of Level Achieved 0.44 Magnitude Quantification 0.05 Reading 0.12 Variable Interaction 0.30 0.46 

End of Game Achieved 0.37 Spatial Ability 0.01 Inference 0.07 Reading 0.10 0.18 

Game Check Point Achieved 0.40 Reading 0.11 General Cognition 0.01 Visual Attention 0.17 0.28 

Game Play Mode 0.41 Visual Attention 0.17 Retrieval 0.01 Peripheral Localization 0.02 0.19 

Initiated Editing Mode 0.33 Parity Judgment 0.02 Critical Reasoning 0.10 Retrieval 0.01 0.12 

End Game Play Mode 0.51 Reading 0.13 Retrieval 0.01 Critical Reasoning 0.15 0.29 

Add Session Notes 0.23 Reading 0.06 Verbal Production 0.03 Variable Interaction 0.15 0.25 

Delete Objects from Game 0.27 Visual Motor Coordination 0.04 Inference 0.05 Reading 0.07 0.17 

Delete Text From the Game 0.43 Visual Motor Coordination 0.07 Inference 0.09 Reading 0.12 0.27 

End Editing Mode 0.32 Reading 0.09 Retrieval 0.01 Critical Reasoning 0.10 0.18 

Level Editing 0.53 Peripheral Localization 0.03 Retrieval 0.01 Variable Interaction 0.36 0.38 

Delete Session Notes 0.25 Visual Motor Coordination 0.04 Inference 0.05 Reading 0.07 0.15 

Quiz Questions Added 0.48 Reading 0.13 Retrieval 0.01 Inference 0.10 0.23 

Quiz Questions Deleted 0.31 Reading 0.08 Retrieval 0.01 Critical Reasoning 0.09 0.17 

Quiz Notes Added 0.24 Reading 0.07 Retrieval 0.01 Verbal Production 0.03 0.10 

Quiz Choices Added 0.48 Inference 0.10 Estimation 0.48 Calculation 0.01 0.59 

Quiz Saved 0.31 Visual Attention 0.13 Reading 0.08 Estimation 0.31 0.51 

Decision Point Added 0.43 Variable Interaction 0.29 Estimation 0.43 Magnitude 

Quantification 

0.05 0.51 

Decision Point Deleted 0.40 Estimation 0.40 Variable Interaction 0.27 Critical Reasoning 0.12 0.80 

Edit Decision Point 0.35 Reading 0.09 Inference 0.07 Visual Attention 0.14 0.31 

Decision Point Triggered 0.42 Peripheral Localization 0.02 Visual Attention 0.17 Attention Switching 0.20 0.39 

Decision Point Mapped 0.35 Visual Motor Coordination 0.06 Retrieval 0.01 Spatial Ability 0.01 0.07 

1
0
5
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CHAPTER FIVE 

Discussion 

 

The primary purpose of this dissertation was to design, validate, and establish a 

new methodological approach for the development of a cognitive diagnostic approach 

using large, derived data sets. The remainder of this chapter outlines the treatment and 

implications organized by research question.  

Research Question 1 

 

 The results above clearly illustrate that there is an underlying clustering to the 

tasks contained in the design of SEGs. The results suggest the rejection of the null 

hypothesis, Λi=0 is appropriate as the factor loading is significant and above 0.30 for 

each item assigned to a factor. Research question 1; what are the undying factors 

exhibited though the measurement of task items associated with subject development of 

science based Serious Educational Games? Emergent factors developed from the 

exploratory factor analysis provide a starting point for the dimensional reduction and 

organization of the analysis of the task items. EFA reveals four orthogonal factors. 

Factors related to task items are Factor 1, Science Processing, Factor 2, Game Control 

Actions, Factor 3, Evaluation and Assessment Development and Factor 4, Games Logic. 

Two of the four factors confirm previous results seen in the pilot study, specifically, 

Factor 1 and Factor 2. This is an expected result, as these two factors are consistent 
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across SEG based upon science content. Form a logical point of view, game control 

functions are the most fundamental interaction possible within any video game and, 

would certainly be present in an SEG. Along these lines, the science processing would be 

the most fundamental interaction possible with the science content of a game. Meaning, 

that a subject designing a science based game would be required to process science tasks 

or science concepts in order to drive the game forward. The remaining two factors 

Evaluation and Assessment and Game Logic, where not discovered within the pilot study. 

However, the factors seem specific to the game design process. CFA also provides a 

means to establish that the four factors are locally independent and, subsequently, it is 

possible to use IRT analysis to parameterize and model components. PCA provides a 

secondary confirmation of the hypothetical number of factors as analysis of eigenvalues 

reveals four factors using the root >1 criteria. Rotated solutions also reveal a simple 

structure with four linearly independent factors. Cross-validation of the EFA using 1/2n 

CFA suggests that the suggested data structure and factor loading is indicative of four 

latent traits or factors. Examples of task items loading on each factor is, Factor 1, Science 

Processing, to complete science task development and science quiz questions correctly 

answered. Initiated editing, and delete objects from the game, exemplify Factors 2, Game 

Control Actions. Quiz choices added, and quiz questions deleted exemplify Factor 3, 

Evaluation, and Assessment Development. Examples for the final factor, Factor 4, Game 

Logic, are Decision Point Triggered and Decision Point Mapped. It is important to 

understand that the factor analysis primarily serves as a means to organize the 

externalized actions of the subjects as they design SEGs. These factors serve as an 
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organizational structure for the underlying cognitive attributes as these attributes cross 

multiple factors. However, the factors do aid in the conceptualization of relationships and 

organization of the input nodes within the ANN.  

The factor analysis also provided a means to remove tasks that would degrade the 

data structure of the analysis. Poor factor loading resulted in the removal of eleven 

factors. These factors were primarily on tasks related to aggregation of task items across 

multiple tasks. Examples of some of these items are, total quiz questions added and total 

decision points added. The aggregate nature of the task items confounds the factor 

analysis due to their correlation across multiple items that are not necessarily related. As 

part of the confirmatory analysis, the study used the latent trait reliability method as a 

means to establish task internal reliability. Overall reliability results suggest that the task 

acts as an internally consistent measure of task competition related to each of the four 

factors. Thus, this internal consistency links the clustering of the factors to the tasks. The 

factors provide a logical means to develop task relationships as a function of complex 

task completion. Due to the aggregation of the simple tasks, analysis of the larger 

complex task is possible via the ANN. 

Research Question 2 

 

The 2PLM IRT model was tested for data fit using the computer program JMP 

10.0 (SAS, 2012). As a fit statistic, JMP reports a standardized residual that approximates 

a Gaussian distribution. Values that exceed 2.0 under parameter (b) indicated misfit at an 

alpha of .05. Within this study, item fit statistics range from 0.36 to 4.46 prior to the 

removal of items. Post removal of items, the range adjusts from 0.36 to 2.24. This 
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indicates that the 2PLM fits the data. The fit of the data to the 2PLM is of importance for 

development of the IRT-True score and parameterization of population level statistics. 

Estimated expected item scores, πj, develop through an approximate evaluation of the 

empirical estimate of item difficulty (b) and discrimination (a). True-score measures 

provide substantive information and allow for identification of the most difficult task and 

easiest tasks. The most difficult task of the study is the addition of game notes. One 

would expect this task (add session notes) to be the most difficult as the number of 

integrated attributes for this particular task would be greater given the complexity of the 

task. Add session notes, is the least difficult task. From a substantive point of view, this is 

keeping with the overall perceived difficulty of the tasks. Overall estimation of reliability 

of task measures at the population level is 0.95, which is considerably higher than the 

individual internal reliability calculated at the sample level (0.78). The difference in 

reliably estimates may be due to natural variance in the sample level statistic.  

The analysis of task items using IRT provided a means to select and order tasks 

within a statistical model. Educators and psychologists accomplished assignment of the 

cognitive attributes to each parameterized task via review. Category D represents task 

attribute alignments reviewers rated as strongly relevant. Items not placed into category 

D by the each of the reviewers showed mixed or weak relevance, i.e. one reviewer rated 

the task-attribute alignment as strongly relevant and one reviewer rated the same task-

attribute alignment as weakly relevant or both reviewers rated each task attribute 

alignment as weakly relevant. This is not to suggest that the task-attribute alignments 

were not relevant but rather that the task attributes alignment was not as strong as other 
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combinations. However, given the unaccounted residual probabilities (error) within the 

quantified Q-matrix, lack of alignment is an expected outcome. This outcome “residual” 

is due to missing cognitive attribute accounting within the current model. One of the 

expert reviewers obtained their Ph.D. in Educational Psychology and currently works for 

the Social Science Research Institute at Duke University, working on projects related to 

STEM education of at risk youth. The second expert reviewer obtained their Ph. D. in 

school psychology from the University of Illinois-Urbana-Champaign and currently 

works within a large urban school district in the Mid-Atlantic region of the United States.  

Attribute assignment is critical to the process. Given the exploratory nature of the 

study, assignment of attributes is tentative (hypothetical) and contingent upon literature, 

expert review, and emergent patterns via data mining. It is also important to note that this 

process is similar but not exactly, the same as cognitive diagnostics in the traditional 

psychology approach. The differences arise out of the way, in which the task-attribute 

combination is developed. Typically, within the development of cognitive diagnostic 

approaches the task-attribute relationship is far less complex and much more isolated than 

within the educational environment. However, given the need for more complete 

information regarding subject learning, a cognitive diagnostic approach embedded in an 

analytics approach. While this analysis occurs more quickly and with more tasks and 

fewer attributes, the information garnered from each individual attribute is less. However, 

overall attribute mastery patterns, including missing attributes that become visible, are 

thus viable targets for intervention and instruction. Monotonic behavior of the attributes 
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within the neural network suggests from a substance point of view the attributes are 

correctly assigned.  

Early on within the development of the cognitive diagnostic models, construct-

oriented designs suggest use in the assignment of attributes to tasks. Analysis of the 

literature suggests that there are several suggested attributes, which underlie tasks items. 

The outcomes of this process are the development of the Q-matrix. Several analyses 

quantify and parameterize the Q-matrix. Research question 2; what are the cognitive 

attributes that underlie the design of Serious Educational Games? Initial analysis 

centered on the development of task outcomes using dichotomous nominal quantifiers 

with 0 representing failure to complete the task and 1 representing successful completion 

of the task. Parameterization of the tasks post factor analysis occurred using a 2PLM. 

Review of parameter a (discrimination) and parameter b (difficulty) results suggests that 

several items should be removed for poor metrics. The items removed from the analysis 

are not contingent upon any specific attribute or task within the game design process. The 

removal of items aided in the development of ANN model fit and increased the predictive 

nature of the network. The weighting parameters also provide a means to establish 

individual attribute probabilities and the individual contribution of the attribute to the 

overall probability of task completion. This development of increased resolution via the 

addition of individual attribute probabilities use standardized ANN weightings. The 

strength of this least squared approach allows for examination of both general and local 

attribute maxima and minima. As with the pilot study, the use of the neural network 

allows for the analysis of the item attribute relationships with fewer items. 
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Research Question 3 

 

The computational cognitive model (ANN) obtained information related to the 

theoretical and mathematical / statistical model of cognition related to science based 

Serious Educational Game design (RQ3). Hypothesis 3 (H3), is thus rejected. More 

specifically, research question 3 and the associated hypothesis validate the model. The 

ANN model exhibits good fit, and approximates human learning related to the design of 

the SEGs using science content. The processing and design tasks are divided up via factor 

analysis and input into the network using 29 input vectors on task as a time in random 

order. The network receives each task in a factor before any input sets repeat. Each 

experimental run began with a new set of weights. Each weight was bound to ensure 

sustentative outcomes. In each examination of the tasks and attributes, the network was 

trained on some combination of problem examples for a fixed number of iterations 

(I=1000). Model fit dictated the number of iterations resulting in convergence. Good 

model fit is suggestive of a computational-cognitive model describing the underlying 

cognitive attributes activated while designing SEGs (H0, R
2
=0). Through the introduction 

of tasks as input nodes and attributes as the hidden nodes, it becomes possible to create a 

sophisticated model of cognition relating to science processing and the design process. 

Given that the development of science process and game design is very complex and 

poorly understood, an incremental approach such as this one produces high quality 

results. Attributes developed via the conjunctive cognitive diagnostic model provide a 

view of possible attributes. By imposing structure upon the order of attribute introduction 

during training, the network learner (simulated subject) focuses on the characters of a 
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smaller number of task types per attributes. As the number of attributes increases, the 

overall probability of task completion increases.  

Initially the network trained on data sets designed to complete the tasks associated 

with each factor. Subsequent runs of the model focused on the use of novel data sets to 

provide a test of the ANN ability to complete tasks. Due to the essential unidimensional 

nature of the factors, there was no overlapping of tasks; however, individual attributes did 

overlap across tasks. The overlap of the cognitive attributes helps to explain non-linear 

outcomes associated with the learning. The model correctly completed tasks a significant 

portion of the time thus validating the model and creating four predicative models of 

subject learning using Bayesian statistical models. Figures 7 through 10 provide an 

overview of each of the models. Each of the models illustrates the relationship between 

the tasks and attributes. Model outputs can be manipulated increasing and decreasing 

attributes as a function of interventions with task probabilities of task success as the 

outcome. The output node labeled 1 in each figure represents the cumulative probability 

of the task grouping success given the full complement of the cognitive attributes. An 

interesting point to note is when the ratio of attributes (hidden nodes) to tasks is relatively 

high, the odds of success increase. This may be due to the distribution of the cognitive 

load between various attributes. The weightings and the contribution of the attribute to 

the overall probabilities of success evidence the distribution of the cognitive load. 

However, with manipulation of the cognitive attribute distribution, one can experiment 

with the role each attribute plays in science process and the design of SEGs. As 
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identification of future task-attribute combinations increase, the model predictive power 

also increases.  

 

 
 

Figure 7. Factor 1 Neural Network Model. 

 

 

 
 

Figure 8. Factor 2 Neural Network Model. 
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Figure 9. Factor 3 Neural Network. 
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Figure 10. Factor 4 Neural Network. 
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Conclusion 

 

Video games pay a substantial role in our culture as almost 70% of Americans 

have played some sort of video game and do so regularly (Kenny & McDaniel, 2011). 

Studies of video games suggest they dramatically enhance and alter a wide range of 

cognitive traits to enhance hand-eye coordination, reaction times, and mental rotation. 

Given the ability of the cognitive diagnostics and this novel measurement, technique to 

identify and establish parameters for task-attribute combination allows for enhanced 

targeting of attributes. While it is difficult to predict the future of technology, video game 

development can take many possible directions. Some of these changes will result from 

increases in graphic processing, perspective, realism, and speed. The increased level of 

detail and speed offers a smoother and more realistic experience and in turn, more 

complete transference to the real world. In turn, this realistic experience develops the 

basis for a Serious Educational Game assessment system by allowing realistic task 

presentation for subjects. This study has developed a justification for combining and 

developing two distinct areas of research related to subject learning. The first is the use of 

cognitive diagnostic approaches to assess subject learning as it relates to the cognitive 

attributes used during science processing. The second area is an examination and 

modeling of the relationship between attributes as propagated in an artificial neural 

network. The literature presented in this dissertation work integrates work from multiple 

filed areas. Fields represented in this work range from science education, educational 

psychology, measurement, and computational psychology. 
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Implications for science education. Science education will benefit from the 

expansion in the measurement capabilities in the field by providing a novel means to 

assess subject understanding and modeling of subject learning via cognitive attributes. 

This also sets the conditions for the enhanced understanding of higher-order cognition 

with fewer attributes. These models can lead to more specific targeting of subject 

learning increasing the effective use of SEGs as a means for teaching and assessing 

subjects. The proposed study also gives cognitive psychology a new way to evaluate 

conceptual learning outcomes. 

Effective targeting of underlying cognitive attributes can result in reduction of the 

disjunction that exists between cognitive psychology and education and measurement. 

Analysis of the Attribute Mastery Patterns (AMP) and related factors yields far more 

information regarding potential areas of poor subject performance than traditional 

assessment analysis. The information garnered from this process can inform instructional 

approaches in the design process, which integrates cognitive psychology at the 

practitioner level of implementation. More specifically, it is possible to develop 

responsive SEGs using virtual environments. Measurement Environments using 

Responsive Cognitive Immersion (MERCI) would develop out of an IRT like computer 

adaptive testing model. Within a traditional IRT (simplified) testing model, subjects are 

presented with the items at various levels designed to measure a specific Θ. Based upon 

subject responses as a function of item difficultly questions are adjusted in an effort 

ascertain the subjects Θ. Within the MERCI model, Θ is a function of Ap or the 

probability estimate of someone with a particular cognitive attribute pattern successfully 
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solving a specific task as an identified problem set. This may provide a means to 

successfully measure - in real-time- subject outcomes not based on Θ but based upon 

individual attribute matrixes in Ap. 

Development of this particular mode of assessment would assist science educators 

in the placement and targeting of particular types of problems to assist in subject 

cognitive development and development of novice STEM participant profiles to be more 

like expert profiles. As the profiles develop, one would expect an increase in the number 

and selection of STEM based courses in addition to increase scientific literacy. More 

importantly revised science curricula can develop to target key attributes within the 

hierarchy of cognition and help to develop all attributes downstream from the key 

attribute. While science educators have not implemented these changes in science 

curriculum, other researchers have employed a similar version of curriculum design 

through ‘learning trajectories’ in mathematics with success (Confrey, Maloney, Nguyen, 

Mojica, & Myers, 2009). For example, when discerning how to teach rational number 

reasoning, it was determined that the concept upon which the other concepts rested (in 

our case the most propagated attribute) was the understanding of dividing and sharing, 

shared by many children naturally. Potential examples for science reasoning stems from 

the design process itself: specifically, subjects must first learn how to isolate potential 

variables through experimental methods. This would help to ensure that subjects at all 

levels would benefit. In particular, subjects at the upper- and lower-levels of the learning 

outcomes continuum would benefit most, as specific targeting of attributes would provide 

the greatest probability of gains in scientific processing skills. 
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Limitations. Research on human cognitions has taken place within many 

disciplines and levels from the biological to the behavioral observation. Many of the 

original studies establishing the connection between cognitive attributes and traits were 

performed in isolation. The isolation of the attributes and tasks provides a means to 

control for irrelevant data and increases the generalizability of results. This study does 

not allow for the isolation of attributes but rather the functioning of attributes within the 

natural ecology of the classroom providing a holistic view of learning. This ecology 

produces confounding variables, which interfere with the assignment of attributes to tasks 

and requires careful consideration prior to assignment. Further studies are required to 

develop the relationships between attributes and tasks and the effect of the natural 

ecology of cognitive attribute functioning.  

A second limitation of the study is the difficultly in differentiating subject play 

behaviors with design behaviors. Often the two (play and design) intertwine as subjects 

“test” their video game designs. In particular, the design process itself outlines this 

behavior (testing) as a key feature of the process. Play and development by subjects is a 

key consideration in as play and testing have a place in the design process. However, 

controlling for this behavior would result in a much less complicated data structure and a 

reduction in the dimensionality of the data. The connection between the two on the 

surface seems to be consequential and bears further study.  

The third limitation is the difficultly of model validation. Meaning that the quality 

of the model is only, as good as the variables and known used to generate the model. As 

with any model, there are several points within the development of the ANN model 
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where trait estimation is necessary because of this estimation of error terms and variance 

become a key consideration along with the means to measure them. Further to this point, 

the task-attribute relationship coefficient provides a relatively uncomplicated way to 

assign relevance for an exploratory study such as this one, future studies should include 

the use of interclass-correlation for analysis of the reliability task-attribute relationships.  

Future Work. Computational studies avoid many of the difficulties associated 

with traditional studies using live subjects. Computational models can bridge disciplinary 

boundaries and provide linkage to wider sets of knowledge and data. Combining 

computational models with larger computer generated data sets and data-mining 

techniques provide a means to examine transient trends more easily overlooked in 

conventional studies. Secondly, simulations and models can minimize the impacts of 

phenomena without controlling for it. Thirdly, simulation can appear to compress time 

making longitudinal investigation possible that otherwise would not be possible given 

material limitations. 

Much like the arguments above as they relate to computational models, SEGs 

assessments can provide many of the same benefits when combined with computational 

models of subject learning. Whereas the benefits of video games to assess cognition and 

other skills are undeniable, the work within this area is in its infancy. In particular, it is 

necessary to identify the wide variety of attributes used, linking the attributes to the 

overlying facets, learning trajectories, and identify the data mining techniques, which 

allow researchers to analyze the vast data generated from these techniques. There are 

multiple directions for the future research. First, this paper focuses on establishing and 
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“diagnosing’ particular cognitive attributes as they relate to science processing tasks. 

There is a need for further research to investigate how these diagnostic scores inform 

instruction at the individual subject level. The development of a cognitive attribute 

assessment using real-time SEG based assessments is possible using a variety of 

conventional techniques. Analysis of items can result in the development of a Q-matrix, 

which can play an important role in the creation of subject cognitive profiles and leads to 

more efficient presentation of tasks within the Serious Educational Game environment. 

From these profiles, subjects with the assistance of science teachers and curriculum 

designers can engage in cognitive process by selectively directing attention to different 

aspects of the Serious Education Game environments. More importantly, evidence for the 

development of cognitive skill sets is necessary for players to conduct complex cognitive 

processes such as reading explicit information, inductive reasoning, and problem solving 

in a flexible process.  
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APPENDIX A 

Software Coding for Statistical Analysis 

 

Mplus Code for Confirmatory Factor Analysis 

TITLE: CONFIRMATORY FACTOR ANALYSIS 

DATA:FILE IS "C:/COGDI.DAT”;  

VARIABLE: NAMES ARE Y1-Y45; 

 USEVARIABLES ARE Y1-Y45; 

 CATEGORICAL ARE Y1-Y45;  

MODEL: Factor 1 BY Y1 Y4 Y5 Y7 Y12 Y23 Y26 Y27 Y29 Y34; 

 Factor 2 BY Y2 Y3 Y6 Y8 Y9-Y11 Y24 Y25 Y28 Y30-33; 

 Factor 3 BY Y13 Y14 Y19 Y35 Y36; 

 Factor 4 BY Y15 Y16 Y18 Y37 Y40; 

 F1 WITH F2 @0; 

 F1 WITH F3 @0; 

 F1 WITH F4 @0; 

 F2 WITH F3 @0; 

 F2 WITH F4 @0; 

 F3 WITH F4 @0; 

OUTPUT: STANDARDIZED MODINDICES; 

 

Mplus Code for Latent Trait Reliability Estimation 

TITLE: LTRM 

DATA: FILE IS “C:/CODDI.DAT”; 

VARIABLE NAMES ARE X1-X45; 

USEVARIABLES ARE X1-X19 X23-37 X40; 

MODEL: ETA BY X1*(B1) 

 X2-X19(B2-B19) X23-X37(B23-B19) X40(B40); 

 ETA@1; 

 X1-X19 X23-37 X40 (EV1-EV19 EV23-EV37 EV40); 

MODEL CONSTRAINT: 

NEW(REL SEM TVAR VAR XVAR); 

TVAR = (B1+B2+B3+B4+B5+B6+B7+B8+B9+B10+B11+B12+B13+B14+B15+B16+ 

B17+B18+B19+B23+B24+B25+B26+B27+B28+B29+B30+B31+B32+B33+ 

B34+B35+B36+B37+B40)**2; 

EVAR = EV1+EV2+EV3+EV4+EV5+EV6+EV7+EV8+EV9+EV10+EV11+EV12+ 
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EV13+EV14+EV15+EV16+EV17+EV18+EV19+EV23+EV24+EV25+ 

EV26+EV27+EV28+EV29+EV30+EV31+EV32+EV33+EV34+EV35+ 

EV36+EV37+EV40; 

REL = TVAR / (TVAR+EVAR); 

XVAR = TVAR+EVAR; 

SEM=SQRT(XVAR*(1-REL)); 

ANALYSIS: BOOTSTRAP = 5000; 

OUTPUT: CINTERVAL(BCBOOTSTRAP); 
 

Note. The Mplus code presented here is originally modified from Mplus code presented 

by Dimitrov (2012) during Educational Research 827 Development and Validation of 

Assessment Scales at George Mason University 

 

SAS Code for Neural Network Analysis 

Neural(Y (: Name ("0"), Name ("1")), 

X (: Name ("1"), 

: Name ("2"), 

: Name ("3"), 

: Name ("4"), 

: Name ("5"), 

: Name ("6"), 

: Name ("7"), 

: Name ("8"), 

: Name ("9"), 

: Name ("10")), 

Missing Value Coding (0), 

Validation Method (Holdback, 0.5), 

Fit (NTanH (16))); 
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APPENDIX B 

Item and Assessment Characteristic Curves 

  

 

Item Characterize Curve Items 1 - 45 
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Test Infromation Function 
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APPENDIX C 

Attribute Number and Name List 

 
Attribute Listing 

Number Name 

1 Attention Switching 

2 Mental Calculation (Arithmetic) 

3 Critical Reasoning 

4 Estimation (Numeral Sense) 

5 General Cognition  

6 Inference 

7  Quantification 

8 Parity Judgment 

9 Peripheral Stimulus Localization 

10 Reading 

11 Retrieval 

12 Spatial Ability 

13 Variable Interaction (Perceptual Binding) 

14 Verbal Production (Verbal Fluency) 

15 Visual Attention 

16 Visual Motor Coordination (Motor Control) 
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APPENDIX D  

Confirmatory Factor Analysis Model 

 

 

Factor 1 Model 

 

 

 
 
  

Science 

Process 

1 

4 

12 

5 

7 

23 

26 

27 

29 

34 
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Factor 2 Model 

 

 

Factor 3 Model 

 

Game 

Control 

2 

3 

10 

6 

8 

24 

25 

28 

30 

Game 

Logic 

13 

14 

36 

19 

35 
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Factor 4 Model 

 

Quiz 

Develo

pment 

15 

18 

40 

18 

37 
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IRB Approval 
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