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ABSTRACT 

ON THE PERFORMANCE OF SATELLITE-BASED PRECIPITATION PRODUCTS 

FOR SIMULATING STREAM WATER QUALITY 

Jennifer Solakian, Ph.D. 

George Mason University, 2020 

Dissertation Director: Dr. Viviana Maggioni 

 

This dissertation presents an investigation on the use of satellite-based precipitation 

products (SPPs) in a hydrologic model to estimate water quality indicators in stream 

simulations. Three SPPs based on different retrieval algorithms are considered: the 

Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis, TMPA 3B42-

V7; the Climate Prediction Center’s CMORPH V1.0 product; and the Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud 

Classification System, PERSIANN-CCS. The three SPPs are compared to rain gauge-

based records over a 5-year period across the Occoquan Watershed, a 1500 square 

kilometer area, located in the suburban Washington, D.C. area. The three SPPs and the 

gauge-based dataset are then used as input to the Hydrologic Simulation Program 

FORTRAN (HSPF) hydrology and water quality model. Each SPP-forced simulation is 

compared to the reference model simulation forced with the gauge-based observations, in 

terms of streamflow and several water quality indicators including stream temperature 
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(TW) and concentrations of total suspended solids (TSS), dissolved oxygen (DO), 

biochemical oxygen demand (BOD), orthophosphate phosphorus (OP), total phosphorus 

(TP), ammonium-nitrate (NH4-N), and nitrate-nitrogen (NO3-N). First, the skill of each 

SPP is evaluated on a continuous basis over the 5-year study period. Second, the 

propagation of errors from input SPPs to simulated streamflow and water quality 

indicators are evaluated Third, the model is evaluated during eight extreme 

hydrometeorological events in terms of simulated streamflow and water quality 

indicators. Results indicate that the spatiotemporal variability of SPPs, along with their 

algorithms to estimate precipitation, have a quantifiable impact on SPP-simulated 

streamflow and water quality indicators during both continuous and event-based 

modeling of extreme hydrometeorological events. 
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CHAPTER 1. INTRODUCTION 

Precipitation is widely accepted as the most influential meteorological input in 

hydrological and water quality investigations. Reliable and consistent hydrologic 

predictions depend on the accurate measurement of precipitation including its intensity, 

duration, spatial patterns, and extent. It is well understood that these characteristics of 

precipitation have significant and direct impacts on runoff and streamflow. In turn, 

precipitation is also a major driver of water quality. Large scale hydrologic models often 

rely on remotely-sensed precipitation data from satellite sources in locations where 

ground-based monitoring systems and rain gauge networks are unavailable or unreliable. 

Satellite-based precipitation products (SPPs) offer a viable alternative to ground-based 

precipitation data through continuous monitoring of precipitation with greater spatial 

coverage.  

A plethora of research has been conducted over the past two decades on the use of 

remote sensing products, including SPPs, for hydrologic model simulation and 

predictions intended for flood forecasting, riverine modeling, and climate studies. 

Conversely, a number of studies evaluating and quantifying predictions of stream water 

quality from ground-based sources have demonstrated that spatial-temporal variations of 

water quality is strongly dependent on the spatial and temporal scales of analysis. Where 
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current research falls short is the application of SPP data in hydrologic models 

specifically aimed at simulating and forecasting water quality. 

It is the objective of this research to fill in this gap in the literature, by providing a 

proof-of-concept for evaluating the performance of a hydrologic model in estimating 

water quality indicators, forced with three SPPs based on different retrieval algorithms; 

the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis, TMPA 

3B42-V7; the Climate Prediction Center’s CMORPH V1.0 product; and the Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud 

Classification System, PERSIANN-CCS. This research is carried out in the Occoquan 

Watershed, located in the northern Virginia suburbs of Washington, D.C., United States. 

The overarching purpose of this study is to compare the skill of SPPs to the data collected 

by a dense rain gauge network to determine their capability to (1) accurately characterize 

the spatial and temporal variability of precipitation within the study region, (2) simulate 

streamflow and water quality on a continuous basis during a 5-year study period, and (3) 

simulate event-based streamflow and water quality during hydrometeorological extremes. 

This work represents a first attempt to utilize SPPs for water quality modeling which 

could be of critical importance in areas of the world where rain-gauge networks or 

monitoring stations are either sparse or not available altogether. 

Research Questions 

To address the aforementioned overarching research objective, this work presents 

a methodology to comprehensively assess uncertainties associated with SPPs and 
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investigate their ability to simulate stream water quality indicators using a hydrologic 

model. This research aims to answer the following scientific questions: 

1. How well do SPPs perform in estimating precipitation on a continuous basis and 

during extreme hydrometeorological events? 

2. How well do SPPs perform in simulating streamflow and water quality indicators on 

a continuous basis and during extreme hydrometeorological events?  

3. How does the performance of SPPs influence the propagation of error between input 

precipitation and simulated streamflow and water quality indicator output? 

Thesis Organization 

To accomplish this research, the following tasks have been identified:  

Task 1: Investigate the efficiency of SPPs for simulating stream water quality 

indicators. Three SPPs with different spatial resolutions and based on different retrieval 

algorithms (TMPA 3B42-V7, CMORPH V1.0, PERSIANN-CCS) are compared to 

gauge-based records over a 5-year period across the study region. The three SPPs and the 

gauge-based dataset are used as input to the Hydrologic Simulation Program FORTRAN 

(HSPF) hydrology and water quality model developed for the Occoquan Watershed. Each 

SPP-forced simulation in the HSPF model is compared to the reference model simulation 

forced with the gauge-based observations, in terms of streamflow and water quality 

indicators, i.e., stream temperature (TW), total suspended solids (TSS), dissolved oxygen 

(DO), and biological oxygen demand (BOD). Task 1 includes an uncertainty analysis in 

terms of correlation coefficients (CC), root-mean-square error (RMSE), and bias (B) for 
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streamflow, TW, and concentrations of TSS, DO, and BOD to evaluate the performance 

of each SPP.  

Task 2: Investigate the error propagation from input precipitation to output 

water quality indicators simulated by a hydrologic model. This task evaluates the 

propagation of error in the precipitation input to that of the simulated streamflow and 

water quality output from a hydrologic model. This work assesses error statistics and the 

performance of each SPP to gauge-based data for the entire watershed on a seasonal 

basis. A seasonal analysis is performed using CC, relative root-mean-square error 

(rRMSE), and B for daily precipitation input and model output of streamflow and water 

quality indicators to examine the error propagation from precipitation to model output 

(streamflow, TW, TSS, and DO). 

Task 3: Investigate the performance of SPPs in simulating streamflow and 

water quality indicators during extreme hydrometeorological events. The intent of 

this task is to investigate the performance of SPPs in simulating streamflow and water 

quality during eight extreme hydrometeorological events. The variability of stream 

response to extreme precipitation events is compared to base conditions as well as the 

ability of each SPP simulation to capture the timing and magnitude of peaks. The skill of 

each SPP is assessed using CC, rRMSE, and relative bias (rB) in simulating streamflow 

and the following water quality indicators: TW, TSS, DO, BOD, orthophosphate 

phosphorus (OP), total phosphorus (TP), ammonium-nitrate (NH4-N), and nitrate-

nitrogen (NO3-N).  
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The research undertaken to address the aforementioned tasks is presented in 

Chapters 2 through 5. Chapter 2 describes the study area, the hydrologic and water 

quality model, the precipitation data sets used in this study, and the methods used to 

process precipitation data for model simulations. Chapter 3 discusses Task 1, the 

methodology and results for investigating the efficiency of using SPPs for simulating 

water quality indicators on a continuous basis over a 5-year study period. Chapter 4 

presents Task 2, an analysis of the error propagation from satellite-based input 

precipitation to water quality indictor output on a seasonal basis. Chapter 5 describes 

Task 3, an investigation of the performance of SPPs in simulating stream water quality 

during hydrometeorological extremes. Lastly, concluding remarks associated with this 

research are provided in Chapter 6.  

Dissemination of Results  

A variation of the work described herein is presented in the following peer-

reviewed research articles:  

Chapter 2: Solakian, J., Maggioni, V., Lodhi, A., & Godrej, A. (2019). 

Investigating the use of satellite-based precipitation products for monitoring water quality 

in the Occoquan Watershed. Journal of Hydrology: Regional Studies, 26, 100630. 

https://doi.org/10.1016/j.ejrh.2019.100630 

Chapter 3: Solakian, J., Maggioni, V., & Godrej, A. (n.d.). Investigating the error 

propagation from satellite-based input precipitation to output water quality indicators 

simulated by a hydrologic model. Advances in Water Resources, under review.  

https://doi.org/10.1016/j.ejrh.2019.100630
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Chapter 4: Solakian, J., Maggioni, V., & Godrej, A. (n.d.). On the performance 

of satellite-based precipitation products in simulating stream water quality during 

hydrometeorological extremes. Frontiers in Environmental Science, in preparation.  
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CHAPTER 2. STUDY AREA, HYDROLOGIC MODEL, AND DATA SETS 

2.1 Study Area 

The focus of this study is the Occoquan Watershed, a 1500 square kilometer (sq. 

km) area located in in the northern portion of Virginia, within suburban Washington, 

D.C. (Figure 1). The watershed supplies water to two drinking water reservoirs: Lake 

Manassas and the run-of-the-river Occoquan Reservoir, which are part of the drinking 

water supply to approximately two million people. The area is urbanized with a mix of 

suburban and urban land use and has a mild topographic variation. The Occoquan 

Watershed is part of the Potomac River Watershed, ultimately discharging into the 

Chesapeake Bay, a waterbody that has been the focus of immense restoration efforts over 

the past several decades to improve the water quality in the contributing watershed.  

The Occoquan Watershed has also been a major focus of regulatory oversight for 

the past 40 years due to the unprecedented growth of the D.C. metropolitan area which 

resulted in a substantial increase in reclaimed domestic wastewater discharged to 

receiving waters in the watershed, the closure of eleven marginally-functioning water 

reclamation facilities (WRFs) and the construction of a single state-of-the-art WRF that 

currently receives wastewater from Prince William and Fairfax counties and the cities of 

Manassas and Manassas Park, and discharges to one of the main tributaries (Bull Run) of 

the Occoquan Reservoir. Since 1973 the Virginia Tech Occoquan Watershed Monitoring 
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Laboratory has monitored the watershed through data acquisition from a network of rain 

gauges, meteorological stations and stream monitoring stations. Precipitation is measured 

continuously throughout the watershed using automated rain gauges, whereas streamflow 

and several indicators of water quality are measured using automated stream monitoring 

stations. Figure 1 presents the study area, the Occoquan Watershed, including a 

delineation of seven catchments, topography, major streams, major waterbodies, and the 

locations of rain gauges and stream monitoring stations, shown as black triangles and 

grey squares, respectively. The locations of model evaluation points are also represented 

in Figure 1 as grey circles (S47, S86, and S79 coincide with stream monitoring stations). 

The watershed is formed by three main stream systems, Broad Run, Cedar Run, 

and Bull Run, and is divided into seven distinct catchments, which are then partitioned 

into 87 segments used in the Occoquan Watershed hydrologic model (Section 2.2). Three 

of the catchments (Upper Bull Run, Upper Broad Run, and Cedar Run), represented in 

Figure 1 in green, are the focus of this study. These three catchments are chosen since 

they represent the headwaters of the watershed prior to entering a major waterbody and 

are each monitored by a steam monitoring station near the confluence of the catchment. 

To investigate the uncertainty by basin scale, a cascade of sub-basins with different 

drainage areas is assessed at six evaluation points ranging from almost 18 to 500 sq. km 

in size. 
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Figure 1. Occoquan Watershed study area 

 

2.2 Hydrologic Model 

The Occoquan Watershed Monitoring Laboratory uses the U.S. Environmental 

Protection Agency’s (EPA) Hydrologic Simulation Program FORTRAN (HSPF) model 

to simulate the hydrology, nonpoint source runoff, and water quality of the watershed. 

This long-standing model with origins from the 1970s has been widely adopted in the 

U.S. for its ability to simulate complex watersheds within numerous land cover and 

climatic conditions along with various fate and transport processes (Albek et al., 2004; 

Duda et al., 2012; Li et al., 2015; Mishra et al., 2007). The Occoquan Watershed HSPF 

conceptional lumped hydrological model of the is designed to simulate various 

hydrological processes and associated water quality components in the Occoquan 
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Watershed (Xu et al., 2007). The model delineates 87 segments within the seven 

catchments of the Occoquan Watershed, as depicted in Figure 2. The two reservoirs—

Lake Manassas and Occoquan Reservoirs—are simulated using the U.S. Army Corps of 

Engineers’ developed two-dimensional hydrodynamic and water quality model CE-

QUAL-W2, but are not included in this study as they contribute very little to the water 

budget except for the rain that falls directly on the reservoir water surfaces. 

The period of 2008-2012 was chosen for analysis since at the start of this study 

the latest Occoquan Watershed model assesses that period. The model is updated every 

five years with current land use data and is modeled in 5-year increments with in-situ 

meteorological data: air temperature, cloud cover, dew point temperature, wind speed, 

solar radiation, potential evapotranspiration, and precipitation. Air temperature, cloud 

cover, dew point temperature, solar radiation, wind speed, and wind direction are all 

collected at the National Oceanic and Atmospheric Administration (NOAA) weather 

station located at the Washington Dulles International Airport approximately 27 km from 

the centroid of the Occoquan Watershed. Hourly readings from this station are applied to 

the entire watershed for those parameters. Since a direct measurement of potential 

evapotranspiration is not available from the Dulles station, potential evapotranspiration is 

calculated from the modified Penman Pan empirical method using air temperature, dew 

point temperature, wind movement, and solar radiation obtained from the Dulles station. 

The temporal and spatial resolution of the retrieved land use data and all meteorological 

data (i.e., air temperature, cloud cover, dew point temperature, wind speed, solar 

radiation, and potential evapotranspiration), aside from precipitation, are consistently 
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maintained and are not altered in any way during model simulations. An evaluation of the 

efficiency and a validation of the long-established HSPF hydrology model is not within 

this scope of study; however, a brief description of the model’s setup is described herein. 

For additional details of model setup and execution may be found in Xu et al. (2005, 

2007) and Maldonado and Moglen (2013). 

Precipitation input is retrieved on an hourly basis for each segment from the 

nearest-neighbor rain gauge, while all other meteorological data used in the model (air 

temperature, cloud cover, dew point temperature, solar radiation, wind speed, and wind 

direction) are applied consistently throughout all 87 segments. During certain periods of 

this 5-year study, rain gauge observations are not recorded at various gauges. Missing 

precipitation records are interpolated since the HSPF model requires continuous 

precipitation input. For missing gauge records, a standardized procedure is employed to 

estimate the discrete hourly values based on the spatial and temporal infilling strategy 

outlined by Xu (2005). A similar infilling strategy is applied to missing precipitation data 

for satellite-based precipitation product (SPPs) during the study period. Using similar 

procedures outlined in multiple metrological infilling studies (Hema & Kant, 2017; Kim 

& Ryu, 2015; Lee & Kang, 2015) and recommended by the U.S. EPA (2000), 

meteorological data gaps are classified into categories based on gap duration. For gaps up 

to four hours, temporal linear interpolation is applied. For gaps greater than four hours, a 

combination of temporal linear interpolation and nearest-neighbor pixel value is utilized. 

Precipitation input from each satellite product is then aggregated for each segment 

(described in Section 2.4).  
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The watershed is comprised of 87 segments within distinct seven catchments. 

Each of the seven catchments has a separate HSPF model that is linked to create the 

overall watershed model. The HSPF model used in this analysis is deterministically 

calibrated and validated between simulated gauge-based results and observed data over a 

5-year period from January 1, 2008 to December 31, 2012 (described in Section 2.2.2). 

While HSPF is able to produce output results as low as 15-minute increments, (which is 

the increment flow data are recorded and used for model input) the Occoquan HSPF 

model is set to output results using a daily scale. The daily scale is used to minimize the 

impacts of timing errors often found using lower increment outputs since HSPF is prone 

to timing errors, such as under- or over-predicting when an event starts and/or stops.  

 

Table 1. Occoquan Watershed characteristics 

Model 

Evaluation 

Point 

Catchment 

Drainage 

Area  

(sq. km) 

Number 

of 

Segment

s 

Contributing Rain 

Gauge(s) 

Stream 

Monitoring 

Station 

S27 Upper Bull Run 17.81 1 BLFD - 

S79 Upper Bull Run 63.83 5 EVGR ST60 

S26 Upper Bull Run 186.24 16 EVGR, BLVD - 

S47 Cedar Run 394.26 12 AIRL, RITC, CROK, CEDA ST25 

S34 Cedar Run 498.42 15 AIRL, RITC, CROK, CEDA - 

S86 Upper Broad Run 126.44 7 AIRL, EVGR, RITC ST70 

 

 2.2.1 Stream Monitoring Stations  

Streamflow, stream stage, and water quality are measured at eight stations across 

the watershed. Flow and stream stage are continuously measured by automated 

equipment including a Sutron datalogger and flow meter on an hourly basis provided 

there is no change. When there is a change in flow, such as during storm events, flow and 
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stage are recorded every 15 minutes until streamflow and stage are normalized (Xu et al., 

2007). Water quality samples for baseflow conditions are typically obtained once each 

week, and storm samples are composited in the field using an automated sampler paced 

to sample equal aliquots for equal volume of flow that passes the sampling point, and 

adding these to a compositing bottle. Water quality parameters including temperature 

(TW), and concentrations of total suspended solids (TSS), dissolved oxygen (DO), 

biochemical oxygen demand (BOD), orthophosphate phosphorus (OP), ammonium 

nitrogen (NH4-N), nitrate-nitrogen (NO3-N), and total organic carbon (TOC), are 

obtained for all samples. Observed information at the eight stations is used to calibrate 

and validate the hydrologic and water quality model analyzing the Occoquan Watershed. 

While data from eight stations are used for model calibration and validation, this study 

analyzes results from three monitoring stations (ST25, ST60, and ST70) specifically for 

streamflow, TW, TSS, DO, and BOD. 

By definition TSS are particles that are larger than 0.7 micrometers whereas 

anything smaller than 0.7 micrometers is typically considered a dissolved solid. Since 

TSS is a specific measurement of all suspended solids, organic and inorganic, by mass, it 

is a good representation of the total sedimentation rate of a watershed. TSS is both a 

visible and quantifiable indicator of overall water quality in a waterbody and therefore is 

selected for further evaluation in this study. DO is the measurement of gaseous oxygen 

dissolved in an aqueous solution which results from diffusion, by aeration, and as a 

product of photosynthesis. DO is an important indicator, determining the health and 
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quality of a waterbody for its ability to support life. Similarly, BOD is the amount of DO 

needed by aerobic organisms to break down organic matter. 

Nitrogen-based nutrients, NH4-N, and NO3-N, are good indicators of water 

quality and, like their phosphorous-based counterpart, play a role in eutrophication, 

oxygen depletion, and biomass production. NH4-N, or ammonium-nitrogen, is found in 

runoff from lawn care fertilizer or a result of industrial and wastewater discharge. NO3-N, 

is the concentration of nitrogen due to nitrates in waterbody. Phosphorus in aquatic 

systems is found in both soluble and insoluble forms. Insoluble phosphorous 

concentrations are related to the total sediment yield while the soluble nutrients account 

for the contribution from rainfall, land use, and anthropogenic impacts. TP is a 

measurement of all forms of phosphorus including OP, soluble phosphate-phosphorus 

and organic phosphorus. Phosphorous is a limiting nutrient in the Occoquan watershed, 

which can play a role in the eutrophication, oxygen depletion, and biomass production if 

concentrations exceed need. In the Occoquan Watershed HSPF model, empirical 

relationships are built in between TP and sediment loads to simulate phosphorus 

concentrations in reaches, however, the spatial and temporal distribution of phosphorous 

is a limitation, as with most water quality models. To overcome this limitation, the 

Occoquan Watershed model is modeled with 87 unique segments to represent the 

temporal and spatial conditions of the watershed.  

2.2.2 Model Calibration  

Each catchment HSPF model is deterministically calibrated and validated over a 

5-year period (January 1, 2008 to December 31, 2012) between simulated gauge-based 
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results and observed data prior to linking into the adjoining downstream model. Eight 

stream monitoring stations throughout the watershed that collect streamflow, stream 

stage, and water quality constituents are used to calibrate the HSPF model. The model is 

first calibrated on both daily and monthly streamflow by comparing simulated flows from 

gauge records with observed data from stream monitoring stations during the first two 

years of the study period (2008–2009). Results of the simulated model are then validated 

for an independent period (2010–2012). The model provides output for streamflow (Q), 

and water quality indicators including TW, TSS, OP, TP, NH4-N, NO3-N, TN, DO, BOD, 

and TOC. Next, the model is calibrated for TSS, TW, OP, NH4-N, and NO3-N based on 

monthly and yearly loads to that of observed in-stream data. 

The HSPF model is used to simulate streamflow and select water quality 

indicators at six designated evaluation points in the Occoquan Watershed. These six 

locations are located within three distinct catchments (Cedar Run, Upper Broad Run, and 

Upper Bull Run), which capture runoff from a number of segments of varying size, land 

use, and topography (Table 1). Of the six model evaluation points, three points (S47, S79, 

and S86) are equipped with stream monitoring stations, which are also used in the 

original model calibration/validation process. The streamflow error analysis performed 

with respect to in-stream observations reveal a well calibrated model at each of the three 

observation locations (S47, S79, and S86). Error analyses of TW and DO at a daily scale 

and TSS at a monthly scale also show good model skills at the three locations (Table 2) 

in terms of Nash-Sutcliffe Efficiency (NSE), relative bias (rB), and root-mean-square 
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error (RMSE) (eqs. 1-3). Optimal values of NSE, rB, and RMSE are 1, 0, and 0, 

respectively.  

 

Equation 1. Nash-Sutcliffe Efficiency  

𝑁𝑆𝐸 = 1 − [
∑ (𝑄𝑠𝑖

−𝑄𝑜𝑖
)2𝑛

𝑖=1

∑ (𝑄𝑜𝑖
𝑛
𝑖=1 −𝑄𝑠̅̅̅̅ )2

]       

 

Equation 2. Relative Bias 

𝑟𝐵 = [
∑ (𝑄𝑠𝑖

−𝑄𝑜𝑖
)𝑛

𝑖=1

∑ (𝑄𝑜𝑖
𝑛
𝑖=1 )

]  x 100%        

 

Equation 3. Root-Mean-Square Error 

𝑅𝑀𝑆𝐸 = √
∑ (𝑄𝑠𝑖−𝑄𝑜𝑖

)2𝑛
𝑖=1

𝑛
        

 

Where n is the total number of events, 𝑄𝑜𝑖
 is the ith observed streamflow or water 

quality indicator value, 𝑄𝑠𝑖
 is the ith simulated satellite-based streamflow or water quality 

indicator value, 𝑄̅ is the corresponding mean value and 𝑛 is the number of values. NSE is 

dimensionless whereas RMSE is in provided in respective units (m3/s, C, mg/l) and rB is 

a percentage.  

The model is next forced with precipitation data from each of the three SPPs to 

simulate streamflow and water quality at the six evaluation points. Table 2 presents the 

error statistics of calibrated individual catchment-based HSPF Models at three model 

evaluation points (S47, S86 and S79) equipped with stream monitoring stations for 

streamflow and select water quality indicators (TW, TSS, and DO). 
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Table 2. Error statistics of calibrated individual catchment-based HSPF models  

 S47/ST25 S79/ST60 S86/ST70 

 
NSE RMSE 

rB  

(%) 
NSE RMSE 

rB 

(%) 
NSE RMSE 

rB 

(%) 

Daily Q (m3/s) 0.70 0.55 -5.19 0.79 0.46 -6.14 0.77 0.48 -0.88 

Monthly Q (m3/s) 0.79 0.46 -4.94 0.84 0.40 -6.14 0.80 0.44 -3.31 

Daily TW (C) 0.92 0.28 -0.37 0.85 0.39 -0.73 - - - 

Daily DO (mg/l) -1.35 1.53 11.96 0.56 0.66 -2.03 0.61 0.63 2.26 

Monthly TSS (mg/l) 0.62 0.61 10.81 0.74 0.51 -2.17 0.75 0.50 -5.85 

 

HSPF has been widely accepted as a premier water quality model due to its ability 

to simulate complex watersheds within numerous land cover and climatic conditions 

along with various fate and transport processes (Albek et al., 2004; Duda et al., 2012; Li 

et al., 2015; Mishra et al., 2007). The HSPF model was proven to provide satisfactory 

performance both in terms of streamflow and water quality processes in several past 

studies (Hayashi et al., 2004, Huo et al., 2015; Li et al., 2015; Stern et al., 2016). 

Nevertheless, the accuracy of HSPF-modeled sediment transport predictions was shown 

to be i) limited by the inability of ground-based meteorological stations to adequately 

cover the spatial extents and density necessary to represent watershed precipitation (Stern 

et al., 2016); ii) influenced by storm magnitude and frequency (Stern et al., 2016); and iii) 

seasonally dependent (Hayashi et al., 2004). A few studies (Diaz-Ramirez et al., 2013; 

Wu et al., 2006; Young et al., 2000) evaluated the propagation of errors in an HSPF 

model from input to output. Diaz-Ramirez et al. (2013) suggested that streamflow 

uncertainty is significantly impacted by precipitation patterns and magnitude, but may 

also be impacted by several other parameters and variables (e.g., land use classification, 

slope, infiltration capacity, soil moisture, groundwater recharge, and interflow recession). 

Young et al. (2000) determined that the quality of precipitation input data has a 
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significant impact on the uncertainty associated not only with HSPF-simulated 

streamflow, but also with sediment transport loads and water quality constituents. 

2.3 Data Sets 

2.3.1 Ground-based Rain Gauge Network 

Ground-based precipitation observations are obtained from a network of 15 

tipping bucket rain gauges located within or approximate to the Occoquan Watershed 

(Figure 2). The quality-controlled gauges collect precipitation measurements in 

increments of 0.254 mm (0.01 inches) by recording the time of occurrence of successive 

tips logged hourly throughout the 5-year temporal span of this study (2008 – 2012). 

While ground-based gauge observations are widely accepted as providing the most 

accurate method for precipitation measurement, tipping buckets have been known to 

experience significant levels of error at low rainfall intensities (Habib et al., 2012b) and 

may be sensitive to ground vibrations, wind effects, and orifice opening size. The density 

of gauges is also important when capturing variability of rainfall at fine temporal scales, 

for extreme events, or the variability of rainfall over complex terrain (Kidd et al., 2017). 

Additionally, many gauges are typically not able to measure snowfall accurately and 

therefore may underestimate its liquid precipitation equivalent (Rasmussen et al., 2012). 
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Figure 2. Watershed segment delineations and 5-year cumulative precipitation measured by the rain 

gauges and interpolated to each segment 

 

Gauge observations are interpolated to each of the 87 segments in the watershed 

using the nearest neighbor method. Cumulative precipitation of the interpolated gauge 

data during the study period is shown in Figure 2 for each segment of the Occoquan 

Watershed. Fourteen of the 15 rain gauges across the study area provide hourly records; 

however, one gauge (LRTN 150), located at the downstream extents of the watershed, 

collects records at a daily scale. The observations from this gauge are used as 

precipitation input to 6 segments (S54, S60-S63, and S78) located in the Occoquan 

catchment. Daily records collected at gauge LRTN 150 are disaggregated to hourly 

values for input into the HSPF model. The percentage of missing records provided in 

Table 3 does not include missing hourly records for gauge LRTN 150.  
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2.3.2 Satellite-based Precipitation Products  

SPPs are used to estimate precipitation quasi-globally using a combination of 

remotely sensed microwave and infrared sensors. Three of the most widely used satellite-

based precipitation products: (1) the National Aeronautics and Space Administration 

(NASA) Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation 

Analysis (TMPA) (Huffman, et al., 2010); (2) the U.S. National Oceanic Atmospheric 

Administration (NOAA) Climate Prediction Center’s (CPC) morphing technique 

(CMORPH) (Joyce et al., 2004); and (3) the Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural Networks (PERSIANN)-Cloud Classification 

System (CCS) (Hsu et al., 2010) were adopted for this study. This study compares these 

three SPPs of varying spatial and temporal resolutions as forcing inputs of the hydrologic 

model to simulate water quality in the Occoquan Watershed. 

TMPA. The TRMM satellite mission was launched in 1997 and ceased in 2015. 

During that time TRMM-based products provided rainfall rates over the tropics and 

subtropics between 50ºN-50ºS (Huffman et al., 2007, 2010). Specifically, the TMPA 

algorithm combines both infrared and microwave sensor data to produce precipitation 

products with a spatial resolution of 0.25° and a temporal resolution of three hours in 

both real-time and latent calibrated versions (3B42-RT and 3B42-V7, respectively). This 

study uses the bias-adjusted 3B42-V7 product, which will be herein referred to as TMPA.  

CMORPH. The CMORPH algorithm produces global precipitation analyses at 

high-resolutions using precipitation estimates derived exclusively from low orbiter 

satellite microwave observations transported via spatial propagation information obtained 
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from geostationary satellite data (Joyce et al., 2004). CMORPH interpolates precipitation 

features between consecutive microwave sensor samples aboard multiple spacecrafts 

including TRMM. CMORPH V1.0, used in this study, is bias corrected by matching raw 

data with the CPC daily gauge analysis over land and is available at a spatial and 

temporal resolution of 0.07 at equator and 0.5 hours, respectively, between 60 N and 

60 S (Joyce et al., 2004). 

PERSIANN. PERSIANN-CCS, first released in 2003, is an algorithm based on 

infrared brightness temperature that extracts cloud features from a number of 

geostationary satellites operated by several agencies covering an area between 60ºN and 

60ºS (Hong et al., 2007; Hsu et al., 1997; Sorooshian et al., 2000). Precipitation estimates 

are assigned using infrared cloud images from segmented cloud features such as 

statistics, textures, and geometry at brightness temperature thresholds. This information is 

used to obtain a relationship between brightness temperature and rainfall rates. 

PERSIANN-CCS (hereafter called PERSIANN) is available at a spatial resolution of 

0.04° and a 30-minute temporal frequency.  

This study compares these three SPPs of varying spatial and temporal resolutions 

as forcing inputs of the hydrologic model to simulate water quality in the Occoquan 

Watershed. The main characteristics of precipitation products used in this study are 

summarized in Table 3 including the percentage of missing records during the study 

period (2008-2012). 
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Table 3. Characteristics of precipitation products used in study 

 

2.4 Processing of Satellite-based Precipitation Product Data 

The SPPs are processed by spatially averaging all pixels falling within the 

boundaries of each watershed segment. Since each SPP is provided in a different 

temporal resolution, all satellite data are matched to the hourly temporal scale. The 

spatially interpolated gauge data and spatially averaged satellite products at the 

temporally processed to the hourly scale are areal-weighted and segment-aggregated 

(AWSA) as input to the HSPF model. Since the Occoquan Watershed HSPF model 

output is set to output at a daily scale, precipitation data is subsequently aggregated to 

daily values for comparison of the SPPs (input data and output results) to the gauge-based 

data. Figure 3 presents the spatial distribution of cumulative precipitation over the 5-year 

study period for each SPP at their original pixel resolutions (left panels) and their 

corresponding AWSA value for each segment in the watershed (right panels) for (a) 

TMPA, (b) CMORPH, and (c) PERSIANN. Foremost, Figure 3 highlights the degree of 

detail for which each precipitation product is available (i.e., a total of 6, 48, and 133 

precipitation values for TMPA, CMORPH and PERSIANN, respectively). In terms of 

cumulative precipitation within the watershed during the 5-year study period, the gauges 

recorded 4909 mm on average, whereas TMPA, CMORPH, and PERSIANN resulted in 

 Spatial 

Resolution 

Temporal 

Resolution 

Domain 

Coverage 

Pixel/ Point 

Coverage 

Missing 

Records 

TMPA 3B42V7 0.25 3 hour 50N – 50S 6 0.01% 

CMORPH V1.0 0.07 30 min 60N – 60S 48 0.35% 

PERSIANN-CCS 0.04 30 min 60N – 60S 133 0.48% 

Rain Gauge Network Point-source 1 hour Watershed 15 <0.01% 
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5298 mm, 5267 mm, and 5834 mm, respectively, therefore PERSIANN showing the 

largest overestimation with respect to the reference dataset. TMPA shows the overall 

lowest variability of precipitation values, which can be attributed to its coarse spatial 

resolution and consequent low representativeness of the local precipitation distribution 

(only six pixels covering the entire watershed). 
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Figure 3. Five-year SPP (left panels) and aggregated segment (right panels) cumulative precipitation  
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CHAPTER 3. PERFORMANCE OF SATELLITE-BASED PRECIPITATION 

PRODUCTS IN SIMULATING WATER QUALITY INDICATORS 

3.1 Introduction 

The performance of both lumped and distributed hydrologic models is 

significantly influenced by a number of factors that contribute to uncertainty, e.g., 

observation errors, boundary or initial conditions errors, model or system errors, scale 

discrepancies, and unknown heterogeneity of parameters. Nevertheless, precipitation is 

widely accepted as the most influential meteorological input in hydrological and water 

quality investigations. Reliable and consistent hydrologic predictions for water quantity 

and quality depend on the accurate measurement of precipitation. The accuracy of 

precipitation data, including its intensity, duration, spatial patterns, and extent greatly 

influences the output of land surface and hydrologic models (Maggioni et al., 2013; 

Sorooshian et al., 2011; Zeng et al., 2018). 

Due to the lack of ground-based monitoring systems and rain gauge networks, 

large scale hydrologic models often rely on remotely-sensed precipitation data from 

satellite sensors (Maggioni & Massari, 2018). Precipitation, whether from rain gauges or 

satellites, is characterized by spatial and temporal variability as well as measurement 

errors. Although ground-based instrument networks, including rain gauges and radars, 

represent the most direct surface rainfall measurements and often provide measurements 

with high temporal frequency, there are many limitations with these systems. Not only 
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are gauges restricted by point-scale observations, but they are also subject to false 

readings due to wind effects and evaporation. In addition to measurement errors, spatial 

interpolation of point-based observations adds uncertainty to the resulting gridded 

precipitation datasets (Habib et al., 2012a; Li et al., 2008; Maggioni et al., 2016; 

McMillan et al., 2012). The spatial distribution and density of gauges play important 

roles in the adequacy of measurement. A number of studies found that hydrologic model 

uncertainty is greatly impacted by sparse and irregular rain gauge networks and that 

uncertainty is reduced by increasing gauge density, or by optimizing the distribution 

pattern (Bardossy & Das, 2008; Girons Lopez et al., 2015; Moulin et al., 2009; Maggioni 

et al., 2017; Zeng et al., 2018). Conversely, ground-based radar networks often provide 

continuous spatial coverage with high spatial and temporal resolution, but they are also 

limited in accuracy by attenuation and extinction of signal, surface backscatter, 

brightband effects, and uncertainty of the reflectivity-rain-rate relationship (Anagnostou 

et al., 2010; Habib et al., 2012a; Porcacchia et al., 2017). In addition to being limited in 

accuracy, both ground-based gauges and radars are often inadequate due to sparse 

availability, especially outside of the United States.  

Satellite-based precipitation products (SPPs) offer a viable alternative to ground-

based data through continuous monitoring of precipitation with greater spatial coverage. 

Over the past twenty years several studies have compared SPPs to in-situ ground 

observations, evaluating the use of SPPs as a resource in hydrologic modeling. Nijssen 

and Lettenmaier (2004) noted that major sources of SPP uncertainty arise from 

algorithmic miscalculations, as well as instrumentation and sampling errors. Hydrological 
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modeling using SPPs as forcing input, particularly for simulations in large, complex 

watersheds involving heterogeneous land use (influencing soil moisture fluctuations and 

evaporation) and significant terrain changes, is not always adequate (Mei et al., 2014a, 

2014b; Milewski et al., 2015; Seyyedi et al., 2014; Yang & Luo, 2014). For instance, 

SPPs often show an elevation-dependent bias with an underestimation of light 

precipitation at higher elevations (Maggioni et al., 2016). Mei et al. (2016a), Villarini et 

al. (2011), and Xu et al. (2014) found that the accuracy of hydrologic model simulations 

from SPPs is impacted not only by product resolution but also by storm severity and 

basin scale, where the most accurate simulation of hydrologic models using SPPs is when 

a combination of moderate precipitation magnitudes, finer product spatial resolutions, 

and larger basin scales are associated with the model. 

Aside from the three principal measurement sources used to determine 

precipitation (ground-based gauge observations, ground-based radars, and satellite remote 

sensing), precipitation estimates can be obtained from atmospheric retrospective-analysis 

models (Beck et al., 2017). Two of the most widely accepted atmospheric reanalysis 

datasets with long-term coverage are (i) the European Centre for Medium Range Weather 

Forecasts (ECMWF) ERA-Interim, a dataset that uses a four-dimensional variational 

analysis, a revised humidity analysis, and variational bias correction for satellite data 

(Berrisford et al., 2011) and (ii) NASA’s Modern Era Retrospective-analysis for 

Research and Applications (MERRA) (Rienecker et al., 2011). Moreover, there are 

products that combine a set of data from multiple methods (models and observations) 

and/or instruments (ground- and satellite-based). For instance, the Multi-Source 
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Weighted-Ensemble Precipitation (MSWEP) is a fully global dataset from 1979-2017 at 

3-hour and 0.1 temporal and spatial scales, respectively. This dataset uses various gauge, 

satellite, and reanalysis data to provide precipitation estimates globally (Beck et al., 

2019). Though re-analysis datasets and blended products have the potential for providing 

good quality precipitation estimates (Beck et al., 2017; Duque-Gardeazábal et al., 2018; 

Ma et al., 2018), these products were not considered in this study since the use of blended 

products would not allow for the differentiation of results among instruments and 

algorithms. 

A plethora of research has been conducted over the past two decades on the use of 

remote sensing products for hydrologic model simulation and predictions intended for 

flood forecasting, riverine modeling, and climate studies in complex terrains 

(Gebregiorgis & Hossain, 2012; Hussain et al., 2018; Mei et al., 2016; Sharifi et al., 

2018) and across various climatic regions (Bitew et al., 2012; Guo & Liu, 2016; Guo et 

al., 2015; Milewski et al., 2015; Verdin et al., 2016). Where current research falls short is 

the application of SPP data in hydrologic models specifically aimed at simulating and 

forecasting water quality.  

It is well understood that the intensity, frequency, and duration of precipitation 

have significant and direct impacts on runoff quantity and thus streamflow. In turn, 

precipitation is also a major driver of water quality. A number of studies evaluating and 

quantifying predictions of stream water quality has demonstrated that spatial-temporal 

variations of water quality is strongly dependent on the spatial and temporal scales of 

analysis (Barakat et al., 2016; Bengraine & Marhaba, 2003; Chang, 2008; Jeznach et al., 
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2017; Kang et al., 2010; Mei et al., 2014a, 2014b; Wang et al., 2011; Wunderlin et al., 

2001; Xu et al., 2012). The relationship between water quality indicators and streamflow 

has been investigated using both parametric (distribution-dependent) and non-parametric 

(distribution-free) methods (Azhar et al., 2015; Barakat et al., 2016; Bu et al., 2010; 

Chang, 2008; Fovet et al., 2018; Johnson et al., 2012; Jung et al., 2016; Kisi & Ay, 2014; 

Nóbrega et al., 2018; Noori et al., 2010; Soler, 2017; von Freberg et al., 2017). All of 

these past studies demonstrated a direct impact in water quality as it relates to 

streamflow. 

This study fills this gap in the literature, by evaluating the performance of a 

hydrologic model, forced with the SPPs, in estimating water quality indicators in the 

Occoquan Watershed, located in the northern Virginia suburbs of Washington D.C., 

United States. The overarching purpose of this study is to determine the suitability of 

SPPs as a substitute for rain gauge precipitation data for simulating selected water quality 

indicators. In this study, the satellite products are compared to the data collected by a 

dense rain gauge network to determine their capability of (1) accurately characterizing 

the spatial and temporal variability of precipitation within the study region, and (2) 

simulating water quantity and quality in the Occoquan Watershed. Section 3.2 introduces 

the methodology; Section 3.3 presents and discusses the results; and Section 3.4 

highlights the main conclusions and limitations of this study. 
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3.2 Methodology 

The first step in this study is to compare each SPP (TMPA, CMORPH, and 

PERSIANN) to the dense rain gauge network in the Occoquan Watershed in order to 

identify differences among the satellite products in the region. Then, the hydrologic 

model is forced with each satellite product and the traditional rain gauge dataset at the 

hourly scale to simulate streamflow and water quality indicators in the watershed during 

the 5-year study period (2008–2012). Model outputs are evaluated by comparing the 

results of daily simulated streamflow and selected water quality indicators from the three 

SPP simulations to that of the reference model simulation forced with rain gauge-based 

records. 

3.2.1 Precipitation Analysis 

As previously discussed, hourly precipitation data are areal-weighted and 

segment-aggregated (AWSA) for input into the model. The hourly data are then 

aggregated to the daily scale for comparison with the ground observations. Precipitation 

(P) is evaluated at the daily scale for consistency with the daily model output results. 

Several metrics are considered to quantify the performance of SPPs: root-mean-square 

error (RMSE), correlation coefficient (CC), standard deviation (σ), and bias (B). The 

RMSE, a measure of the differences between SPP and observed (gauge) values, combines 

the magnitude of errors in the estimation over time into a single measure of error. The CC 

is the average product of the deviation of variables from their respective means, divided 

by the standard deviation of those variables. Standard deviation is used to quantify the 

amount of variation in the data set. B measures the average tendency of satellite data to 
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either overestimate or underestimate the gauge measurements, whereas rB evaluates the 

relative difference in percentage between the estimated and the observed data. Optimum 

values of RMSE (eq. 3), CC, σ, and B are 1, 0, 0, and 0, respectively. The definitions of σ 

and B are provided in eqs. 4-6.  

 

Equation 4. Correlation Coefficient  

𝑪𝑪 =
∑ (𝑷𝒐𝒊

−𝑷𝒐̅̅ ̅̅𝒏
𝒊=𝟏 )(𝑷𝒔𝒊

−𝑷𝒔̅̅̅̅ )

√∑ (𝑷𝒐𝒊
−𝑷𝒐̅̅ ̅̅ )

𝟐
𝒏
𝒊=𝟏  √∑ (𝑷𝒔𝒊

−𝑷𝒔̅̅̅̅ )
𝟐

𝒏
𝒊=𝟏

   

 

Equation 5. Standard Deviation  

𝜎 = √
1

𝑛
∑ (𝑃𝑖 − 𝑃̅)𝑛

𝑖=1    

 

Equation 6. Bias       

𝐵 =  
∑ (𝑃𝑠𝑖

−𝑃𝑜𝑖
)𝑛

𝑖=1

𝑛
  

 

Where n is the total number of events, 𝑃𝑜𝑖
 is the ith observed rain gauge 

precipitation and 𝑃𝑠𝑖
 is the ith satellite-based precipitation value, 𝑃̅ is the corresponding 

mean value. CC is dimensionless whereas σ and B are in mm/d. The RMSE, CC, and σ 

are summarized using a Taylor diagram (Taylor, 2001), which shows the overall skill 

associated with each SPP in relation to the gauge-based dataset (Section 3.3.1).  

Probability of detection (POD), false alarm rate (FAR), and critical success index 

(CSI) are used to assess the detection capability of each SPP based on the AWSA daily 
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precipitation (P). POD corresponds to the ratio of correct detection of the SPP to the 

overall occurrence of P observed. Conversely, FAR indicates the number of cases when P 

is estimated by SPP; however, no P is observed. CSI is a measure of events successfully 

detected by the SPP to the total number of events observed that are either made or needed 

(Schaefer, 1990). These metrics all range from 0 to 1, with the accuracy of the SPP 

increasing as the FAR approaches 0 and the POD and CSI approach 1. Optimum values 

of POD, FAR, and CSI are 1, 0, and 1, respectively. For this study, the P threshold is set 

to 0.254 mm/day, which is the threshold of the rain gauges. POD, FAR, and CSI are 

calculated using eqs. 7-9, where hits, misses and false alarms represent the total number 

of SPP observations that either correctly detect an event, miss, an event, or incorrectly 

detect an event, respectively, in relation to the gauge observation (Table 4). 

 

Equation 7. Probability of Detection 

𝑃𝑂𝐷 =
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠+𝑀𝑖𝑠𝑠𝑒𝑠
    

 

Equation 8. False Alarm Ratio        

𝐹𝐴𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

𝐻𝑖𝑡𝑠+𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
   

 

Equation 9. Critical Success Index       

𝐶𝑆𝐼 =
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠+𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠+𝑀𝑖𝑠𝑠𝑒𝑠
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Table 4. Contingency table comparing hourly rain gauge observations and SPP values 

  

 Forecast (satellite) 

 ≥ 0.254 mm < 0.254mm 

O
b

se
r
v

ed
 

(g
a

u
g

e)
 ≥ 0.254mm Hits Misses 

< 0.254mm False alarms Correct negatives 

 

Detection metrics are summarized using a performance diagram (Roebber, 2009) 

that presents the POD, success ratio (1-FAR), CSI and B associated with each SPP in 

relation to gauge-based data for the 5-year study period (Section 3.3.1).  

3.2.2 Streamflow and Water Quality Indicator Analysis 

It is well understood that there is a direct relationship between precipitation and 

streamflow. Research has also shown a significant and quantifiable correlation between 

atmospheric conditions and water quality indicator response (Chang et al., 2015; Gelca et 

al., 2016; Jeznach et al., 2017; Johnson et al., 2012; Murdoch et al., 2000; Soler et al., 

2007; Thorne & Fenner, 2011).  

Three statistical metrics (CC, RMSE, and B) are used to evaluate the performance 

of the model in simulating streamflow and the four water quality indicators. The model 

simulation forced with rain gauge observations is used as a benchmark to assess the 

performance of the simulations forced with the three different SPPs. Uncertainties are 

quantified for simulated streamflow and selected water quality indicators at six 

evaluation points (S26, S27, S34, S47, S79, and S86) of varying drainage area within the 

watershed, discussed in detail in Section 3.3.2.  
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3.3 Results and Discussion 

3.3.1 Satellite-based Precipitation Products  

The SPPs are compared to gauge observations for all 87 segments of the 

watershed. This comparison is based on the interpolated and aggregated AWSAs rather 

than a pixel-to-point comparison, since the main focus of this study is to assess the 

impact of using different precipitation forcing datasets on simulating streamflow and 

water quality indicators in the watershed. AWSA satellite-based precipitation records 

aggregated to daily values (P) are compared to daily aggregated gauge-based records. 

RMSE, CC, and σ are calculated and plotted in a Taylor diagram to assess the 

performance of each SPP with respect to the gauged-based data (Figure 4a). For the three 

products, correlation coefficients are concentrated between 0.26 and 0.60 and RMSEs 

range from 7.25 to 9.17 mm/day. The standard deviations of both TMPA and CMORPH 

are 8.08 mm/day, which is most likely due to the fact that these products use very similar 

input retrieval data in their algorithms. The standard deviation of PERSIANN, however, 

is lower (6.90 mm/day), which may be due to the fact that PERSIANN only uses one 

source (infrared) of observation data, whereas TMPA and CMORPH use both passive 

microwave and infrared observations. The best overall performance is from the 

CMORPH product, followed closely by TMPA. PERSIANN shows overall relatively 

inferior performance with low correlation values against gauge-based records. While both 

TMPA and CMORPH show good agreement with gauge-based records, both products 

overestimate P magnitude (rB=20.6% and 13.0%, respectively). 
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The Performance diagram (Figure 4b) suggests that both TMPA and CMORPH 

have lower false alarm rates (0.30 and 0.33, respectively) compared to PERSIANN, 

which exhibits a false alarm rate of 0.46. However, PERSIANN presents a higher 

probability of detection at 0.71 compared to TMPA (0.57) and CMORPH (0.68), 

respectively. B is relatively low for both TMPA and CMORPH at 0.51 and 0.39 mm/d, 

respectively, while PERSIANN has a slightly higher bias of 0.70 mm/d. TMPA and 

CMORPH exhibit similar performances, whereas simulation results derived from 

PERSIANN are quite different and show larger error metrics. This is most likely due to 

the fact that CMORPH and TMPA merge observations from passive microwave and 

infrared sensors, whereas PERSIANN only uses infrared observations. 

 

Table 5. Statistical error and performance characteristics of AWSA SPPs compared to gauge-based 

observations  

Product 

PCC SD 

(mm/d) 

B        

(mm/d) 

rB 

(%) 

RMSE 

(mm/d) 

POD FAR CSI 

TMPA 3B42V7 0.54 8.08 0.51 20.60 8.20 0.57 0.30 0.46 

CMORPH 0.60 8.08 0.39 13.01 7.25 0.68 0.33 0.51 

PERSIANN-CCS 0.26 6.90 0.70 24.29 9.17 0.71 0.46 0.44 

 

Results corroborate what was previously observed in the scientific literature. As 

summarized by Maggioni et al. (2016), mean errors and detection capabilities of satellite-

based precipitation estimation vary across precipitation products and different regions of 

the world. A positive bias and season-dependent magnitude are reported over the 

contiguous United States for both CMORPH and PERSIANN-CSS. TMPA 3B42 is 

reported as having the lowest bias when compared to other satellite datasets. 
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Furthermore, TMPA 3B42 exhibits a low probability of detection and low false alarm 

rate, whereas CMORPH has a higher probability of detection and also a larger number of 

false alarms. PERSIANN has both the highest false alarm rate and highest probability of 

detection compared to other products (Ebert et al., 2007; Yang & Luo, 2014). Results of 

this study validate that PERSIANN has the highest false alarm rate and probability of 

detection compared to TMPA and CMORPH within this study region.  

 

 
Figure 4. (a) Taylor diagram and (b) Performance diagram of segment-aggregated daily 

precipitation  

 

3.3.2 Error Analysis of Simulated Streamflow and Water Quality Indicators 

This section assesses the skills (CC, RMSE, and B) of the complex-linked HSPF 

model of the Occoquan Watershed in terms of both Q and water quality indicators (TW, 

TSS, DO, and BOD). Specifically, simulations forced with the three different SPPs 
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(TMPA, CMORPH, and PERSIANN) are evaluated with respect to the reference run 

forced with gauge-based P data. Aside from altering precipitation input, no other inputs, 

parameters, or model boundary conditions are modified in this experiment. Each of the 

seven catchments that comprise the watershed are fairly uniform in topography, soil 

characteristics, and land use conditions; therefore, it is expected that these conditions will 

not have a significant impact to the uncertainty analysis based on drainage area size 

between SPPs and gauge-based simulations. The goal of this analysis is to quantify 

uncertainties in simulated Q and selected water quality variables at the six evaluation 

points (S26, S27, S34, S47, S79, and S86) in the watershed. These locations are chosen 

based on the representative basin scale ranging between 17.8 and 498.8 sq. km (refer to 

Table 1). 

Figure 5 shows that, for Q, CMORPH outperforms TMPA and PERSIANN in 

terms of all skill metrics. When compared to the gauge-forced simulation, CMORPH 

presents the highest correlation at all evaluation points with CCs ranging from 0.47 to 

0.75, nominally increasing as area increases, with a few exceptions. These exceptions are 

most likely due to differences in the hourly precipitation records of CMORPH, as well as 

TMPA and PERSIANN, in comparison to the rain gauge records in the Upper Broad Run 

catchment draining to S86/ST70. B and RMSE associated with Q also increase as area 

increases, with CMORPH marginally outperforming TMPA. PERSIANN shows the 

worst overall skill consistently for all basin scales. All three products overestimate daily 

Q in comparison to gauge-simulated Q, which is also observed in the precipitation 

analysis. The increase of B and RMSE based on basin scale is expected since the Q, both 
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simulated and observed at these points, increases and generates the potential for greater 

residuals. 

In HSPF, most water quality variables are highly dependent on precipitation and 

its associated sediment and water flows, i.e., sediment loading and overland runoff flow 

(Duda et al., 2012). Satellite-based simulations of TSS showed the lowest skill among the 

water quality indicators evaluated in this study. Again, CMORPH showed the best 

performance among the SPPs, outperforming both TMPA and PERSIANN. CC ranged 

from 0.20 to 0.66, 0.29 to 0.75, and 0.04 to 0.40 for TMPA, CMORPH, and PERSIANN, 

respectively. The lowest CCs for all three products are at point S86, which also 

corresponds to the lower skill detected in the simulated Q. Each SPP overestimates TSS, 

with the exception of TMPA at point S47, though both TMPA and CMORPH, with a B 

of -2.4 to 5.8 m3/s, and 0.46 to 4.9 m3/s, respectively, have a considerably lower B than 

PERSIANN, which ranges between 2.3 and 15.8 m3/s. For TSS, the basin extent seems to 

play a factor, showing generally decreasing CC and increasing B and RMSE trends, as 

the drainage area increases. HSPF predicts sediment loading rates based on channel 

processes of deposition, scour, and transport that in turn determine both the total 

sediment load and outflow sediment concentrations in streamflow (Duda et al., 2012). 

Land use and soil type in the model are the major drivers for sediment load, calculated as 

total sediment for simulation of in-stream processes. Since land use is constant between 

the gauge-based and satellite-based simulations, there is no uncertainty or error 

associated with that input parameter. Therefore, precipitation, and consequently Q, is the 

major driver for TSS concentration differences presented in this analysis.  
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Table 6. Statistical error characteristics of simulated output for streamflow  

Model 

Eval. 

Location Product PCC 

SD 

(m3/s) 

RMSE 

(m3/s) 

MSE 

(m3/s) 

rB 

(%) 

B 

(m3/s) 

S27 TMPA 0.41 0.82 0.90 0.81 22.98 0.05 

S27 CMORPH 0.47 0.75 0.77 0.60 9.29 0.02 

S27 PERSIANN 0.27 0.79 0.96 0.91 50.74 0.10 

S79 TMPA 0.55 2.68 2.65 7.00 35.22 0.23 

S79 CMORPH 0.67 2.52 2.13 4.52 18.98 0.13 

S790 PERSIANN 0.20 2.64 3.37 11.36 67.32 0.44 

S86 TMPA 0.51 4.22 4.45 19.79 37.93 0.49 

S86 CMORPH 0.63 3.91 3.58 12.83 25.41 0.33 

S86 PERSIANN 0.20 3.84 4.96 24.58 74.50 0.95 

S26 TMPA 0.58 7.27 6.93 48.03 32.06 0.65 

S26 CMORPH 0.71 6.81 5.42 29.33 16.77 0.34 

S26 PERSIANN 0.24 6.62 8.24 67.92 57.75 1.17 

S47 TMPA 0.72 10.78 8.75 76.51 33.57 1.30 

S47 CMORPH 0.75 10.35 7.72 59.63 22.11 0.86 

S47 PERSIANN 0.32 11.45 13.85 191.77 79.10 3.07 

S34 TMPA 0.69 13.81 11.35 128.81 28.47 1.45 

S34 CMORPH 0.74 13.17 9.79 95.80 17.03 0.87 

S34 PERSIANN 0.32 14.63 17.54 307.62 71.65 3.64 

 

Simulated in-stream TW is well captured by all three SPP simulations with high 

correlations, ranging from 0.97 to 1.0, low biases, ranging from -0.21 to 0.24 ºC, and low 

RMSEs, ranging from 3.3 to 9.9 ºC. While stream temperature is impacted by 

precipitation, and thus Q, it is most closely correlated to ambient air temperature and 
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therefore shows the lowest variation and highest skills among all output variables 

evaluated in this study. Generally, all three SPPs slightly underestimate TW, with a B of -

0.16 to -0.06 ºC for TMPA, 0.17 to 0.05 ºC for CMORPH, and -0.21 to 0.03 ºC for 

PERSIANN. Among all six evaluation points, only S86 overestimates TW consistently 

among all three products (0.00, 0.05 and 0.24 ºC, respectively for TMPA, CMORPH, and 

PERSIANN), though CMORPH also overestimates TW at S34 and PERSIANN at S47.  

Both DO and BOD show a large spatial variability among the three catchments 

having separate but interlinked HSPF models. CC for DO is relatively high, ranging from 

0.86 to 0.99, 0.83 to 0.99, and 0.78 to 0.98 for TMPA, CMORPH, and PERSIANN, 

respectively, in the Upper Bull Run and Upper Broad Run catchments. However, a 

decreasing skill for TMPA (0.60 and 0.78), CMORPH (0.62 and 0.75), and PERSIANN 

(0.63 and 0.74) in the Cedar Run catchment at locations (S47 and S34) is detected. Both 

B and RMSE show similar results of increased error with increasing drainage area in the 

Cedar Run catchment. B for all three products ranged from 0.02 to 0.68 mg/l, -0.01 to 

0.76 mg/l, and 0.02 to 1.16 mg/l, for TMPA, CMORPH, and PERSIANN, respectively, 

while RMSE ranges from 0.71 to 2.57 mg/l, 0.69 to 2.60 mg/l, and 0.73 to 3.03 mg/l, for 

TMPA, CMORPH, and PERSIANN, respectively. In comparison to Q and TSS, the 

variability in the DO metrics is notably smaller, indicating that precipitation has moderate 

impacts on DO compared to other water quality indicators evaluated in this analysis. 

Similar to DO, BOD has a satisfactory CC in the Upper Bull Run catchment, but low CC 

in the Cedar Run and Upper Board Run catchments, especially when PERSIANN is used 

as input precipitation. The model performs well in terms of B and RMSE in the Upper 
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Bull Run and Upper Board Run catchments, but has low skill in the Cedar Run catchment 

(S47 and S34), with the exception of TMPA, which outperforms both CMORPH and 

PERSIANN in this catchment. 
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Figure 5. Error plots by evaluation point drainage area between daily gauge- and SPP-simulations 

for (a) Q, (b) TSS, (c) TW, (d) DO, and (e) BOD 
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3.3.3 Temporal Analysis of Simulated Streamflow and Water Quality Indicators 

As shown in the previous section, the positive bias in the SPPs is propagated into 

simulated Q, but not in all the water quality indicators. As part of this study the temporal 

variability and seasonality of these variables is also analyzed. Figure 6 shows time series 

of daily P, Q, and water quality indicators (TSS, TW, DO, and BOD) at evaluation point 

S27 (the smallest drainage area among all areas considered in this study) for one year 

(2011) of the 5-year study. CMORPH and TMPA are able to decently capture the timing 

of the Q peaks, but tend to underestimate some peaks. While peaks in Q generally 

coincide with precipitation, it is evident that precipitation during the summer months 

(June through August) does not directly translate into Q. This may be due to a seasonal 

distribution within the model associated with an increased infiltration component. In 

HSPF, precipitation runoff is divided into surface runoff and infiltration. Infiltration then 

comprises of interflow, upper zone soil moisture storage, and percolation to lower zone 

soil moisture and groundwater storage. Within the HSPF model, increasing infiltration 

will reduce immediate surface runoff (including interflow) and increase the groundwater 

component, which is observed in Figure 6 during summer months. It is also evident from 

Figure 6 that PERSIANN overestimates precipitation in January and February, which is 

then rendered into an overestimation of both low and peak Q during cool months. 

Another factor impacting the observed decrease in Q during summer months may be due 

to the fact that higher evapotranspiration rates are typically seen in warmer months from 

increased ambient air temperature, which is sufficient to overcome the impact of 
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increased humidity since drier soil tends to have increased infiltration rates compared to 

moister soil.  

There is a direct relationship between Q and TSS concentrations (mg/l), with 

peaks well represented in both TMPA and CMORPH simulations. As with Q, TSS tends 

to be low throughout summer months aside from a few instances where intense P is 

captured and translated into stream peak flow. Because PERSIANN overestimates Q in 

winter months, it in turn overestimates TSS concentrations during these months, since 

TSS is a flow-dependent variable, highly interrelated with Q. In-stream temperature is 

naturally dependent on ambient air temperature conditions, showing higher values in 

summer months and lower values in winter months following the same TW trends as the 

gauge-based simulation.  

As expected, concentrations of DO follow an inverse pattern with respect to TW, 

lower during warmer seasons and higher during cooler seasons. Simulated DO 

concentrations for all SPPs are fairly consistent with gauge-based simulations. Similar to 

gauge-based simulations, a strong flux in concentrations of DO is seen in warmer months 

which overlaps with Q low-flow periods. Comparatively, as shown in Figure 6, it appears 

that PERSIANN displays the greatest number of daily fluctuations of BOD in comparison 

to TMPA and CMORPH. This fluctuation is especially true during January and February, 

which is likely due to the overestimation of precipitation during these months when 

compared to other products. Conversely, simulated BOD concentrations (mg/l) increase 

in warmer periods following patterns associated with TW, yet this indicator also appears 

to be influenced by TSS concentrations during peak events. 
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Figure 6. Example daily time series of AWSA P and simulated output for Q, TSS, TW, DO, and BOD  
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3.4 Conclusions 

This work investigated for the first time the potential of using SPPs for water 

quality monitoring and predictions. Three SPPs (TMPA, CMORPH, and PERSIANN) of 

different spatial resolutions are compared to gauge-based records over a 5-year period 

(January 2008 – December 2012) across the Occoquan Watershed. This study provides a 

comprehensive analysis of the errors associated with Q and four water quality indicators 

(TW, TSS, DO, and BOD) simulated by forcing a hydrological model (the complexly-

linked HSPF) with the three SPPs. These simulations are compared to a reference run, 

forced with gauge-based observations. The major findings of this research are 

summarized as follows:  

• All three SPPs show moderate skill with respect to the daily gauge-based dataset. 

CMORPH shows the best overall performance, followed closely by TMPA. 

PERSIANN shows overall relatively inferior performance with low correlation with 

the gauge-based records. While both TMPA and CMORPH have good agreement 

with reference dataset, both products overestimate P magnitude (rB=20.6% and 

13.0%, respectively). In terms of cumulative P during the 5-year study period, 

PERSIANN shows the largest overestimation with respect to the gauges. TMPA 

shows the overall lowest variability, which can be attributed to its coarse spatial 

resolution and consequent low representativeness of the local precipitation 

distribution (only six pixels covering the entire watershed). 
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• Both TMPA and CMORPH present lower false alarm rates compared to PERSIANN 

across the Occoquan Watershed. However, PERSIANN presents a higher probability 

of detection compared to the other two products, especially during winter months. 

• Satellite-based simulations of Q show that CMORPH outperforms both TMPA, and 

PERSIANN when compared to the reference simulation forced with gauge 

observations. CMORPH has the highest skill for daily Q across all evaluation points 

with a CC ranging from 0.47 to 0.75, nominally increasing as drainage area increases. 

CMORPH and TMPA are able to capture the timing of the Q peaks well, but tend to 

underestimate some peaks. While peaks in Q generally coincide with precipitation, it 

is evident that P during the summer months (June through August) do not directly 

translate to Q. 

• SPP simulations of TSS show the lowest skill among the water quality indicators 

evaluated in this study. CMORPH shows the best performance among the SPPs, 

which generally all overestimate TSS, with a few exceptions. The seasonal analysis 

confirms that peaks of TSS are fairly well represented for both TMPA and CMORPH 

simulations. 

• Simulated TW is well captured by all three SPP simulations with high correlations, 

low biases, and low RMSEs. While TW is impacted by precipitation, and thus Q, it is 

most closely correlated to ambient air temperature and therefore presents the lowest 

variation and highest skills among all output variables evaluated in this study.  

• Both DO and BOD show a large spatial variability among the three catchments in this 

study. Skills of all three SPPs are high for DO in the Upper Bull Run and Upper 
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Broad Run catchments. However, a decreasing skill for each product is detected in 

the Cedar Run catchment. In comparison to Q and TSS, the variability in the DO 

metrics is notably smaller, indicating that precipitation has moderate impact on DO 

than on other water quality indicators evaluated in this analysis. Simulated DO 

concentrations for all three SPPs are fairly consistent with gauge-based simulations. 

Similar to gauge-based simulations, a strong flux in concentrations is seen in warmer 

months, which also overlaps with Q low-flow periods. 

• The SPPs show satisfactory skills for BOD in the Upper Bull Run catchment, but low 

CC in the Cedar Run and Upper Board Run catchments, especially when PERSIANN 

is used as input precipitation. The model performs well in terms of B and RMSE in 

the Upper Bull Run and Upper Board Run catchments, but has low skill in the Cedar 

Run catchment. Simulated BOD concentrations (mg/l) increase in warmer periods 

and drop during cooler periods following patterns associated with TW, yet this 

indicator also appears to be influenced by TSS concentrations during peak events. 

Overall, results indicate that the spatiotemporal variability of the SPPs, along with 

the algorithms used by these products to estimate precipitation, have a quantifiable 

impact not only on streamflow, but also on water quality output from the hydrology 

model. However, it should be noted that there are limitations to this study. Foremost, this 

analysis was conducted in a single location, situated in the suburban Washington, D.C. 

area, characterized by a temperate climate and mild topographic variation. Additionally, 

this study only considered one hydrology/water quality model in this analysis, i.e., HSPF. 

While this model is well calibrated and has been validated to observation results, a 



49 

 

different model may respond differently to changes in streamflow and water quality 

constituents resulting from forcing precipitation inputs. Nevertheless, this work 

represents a first attempt to utilize SPPs for water quality modeling, which could be of 

critical importance in areas of the world where rain-gauge networks or monitoring 

stations are either sparse or not available altogether.  
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CHAPTER 4. ERROR PROPAGATION FROM SATELLITE-BASED 

PRECIPITATION TO SIMULATED WATER QUALITY INDICATORS  

4.1 Introduction 

It is well understood that precipitation is the most important forcing input in a 

hydrologic model, as it influences both watershed hydrology and water quality processes. 

Land surface and hydrologic models are greatly influenced by the accuracy of input 

precipitation data including its spatial and temporal distribution, intensity, and duration 

(Sorooshian et al., 2011; Zeng et al., 2018; Hazra et al., 2019). While the traditional 

approach has been to measure precipitation using ground-based rain gauges, the use of 

satellite-based precipitation products (SPPs) in hydrologic modeling has been gaining 

more popularity due to their continuous geographic coverage with high spatial and 

temporal resolution. Whilst these products offer a viable resource, seasonal precipitation 

patterns, storm type, resolution of measurement, and background surface all have an 

influence on the performance of SPPs and thus impact the output of hydrologic models 

(Maggioni & Massari, 2018). Major sources of uncertainty with SPPs emerge from 

inaccuracy of instrumentation, sampling errors, and algorithmic miscalculations (Nijssen 

& Lettenmaier, 2004). In addition to errors associated with precipitation input, 

uncertainty in hydrologic modeling may come from a number of other sources such as 

input parameter heterogeneity, model structure and algorithm errors, and boundary 

condition errors. 
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Understanding the uncertainty associated with individual SPPs is crucial when 

assessing their performance as input into a hydrologic model. SPPs combine information 

mainly from geostationary infrared (IR) and/or low orbiting passive microwave (PMW) 

satellites. Many studies have documented the performance of SPPs suggesting that 

seasonal patterns and types of precipitation can impact the quality of the retrieval. For 

instance, thermal IR algorithms may miss light stratiform precipitation events and snow 

cover (Hong et al., 2007; Maggioni & Massari, 2018). Ebert et al. (2007) reported that in 

temperate climates SPPs generally perform better with convective storms during the 

warm season and that IR-based SPPs decline in accuracy with stratiform precipitation. 

Conversely, PMW algorithms may underestimate heavy precipitation events often 

associated with convective storms.  

Numerous past studies have discussed how to quantify uncertainty of SPPs and 

the relationship between forcing precipitation estimated by SPPs and their simulated 

streamflow results through a hydrologic model (Hossain & Anagnostou, 2004; Flack et 

al., 2015; Gebremichael et al., 2011; Guo et al., 2016; Hong et al., 2006; Maggioni et al., 

2013; Mei et al., 2016b; Nikolopoulos et al., 2010, 2013; Seyyedi et al., 2015; Yu et al., 

2016). Results documented that output simulations derived from SPPs can be affected by 

event intensity, product resolution, and basin scale, noting that moderate precipitation 

magnitudes, larger domain scales, longer time integration and finer spatial and temporal 

resolutions of SPPs generally improve the accuracy in simulating streamflow (Maggioni 

& Massari, 2018). 
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Several studies have also examined the propagation of error from SPPs to 

streamflow, indicating that the output error is highly dependent on the uncertainty 

associated with the forcing precipitation dataset. Errors generated from SPP resolution, 

both spatial and temporal, are known to have a significant impact on the error in 

streamflow. Guetter and Georgakakos (1996), Nijssen and Lettenmaier (2004), Flack et 

al. (2015), Hossain and Anagnostou, (2004), Nikolopoulos et al. (2013), Maggioni et al. 

(2013), Mei et al. (2016), Seyyedi et al. (2015), Vivoni et al. (2007), Yu et al. (2016), and 

others all found that errors associated with precipitation input can have an amplifying 

transformation on simulated streamflow uncertainty with relative errors magnified up to 

three times greater than input errors. Maggioni et al. (2013) reported that error metrics of 

ensemble precipitation for three SPPs in the Tar-Pamlico basin in the southeast United 

States (U.S.) had no dependency on basin scale for relative bias, although relative root-

mean-square-error (RMSE) decreased as a function of scale. Their results also showed 

that biases doubled, while RMSE decreased as a function of basin scale between input 

and output simulations. Vergara et al. (2014) also reported an amplified bias and a 

dampened RMSE in the same basin. Another study investigated error corrections to SPPs 

in streamflow simulations through an ensemble error model in the Tocantins-Arguaia 

basin, Brazil (Falck et al., 2015). Results there indicated that mean errors and RMSEs 

decreased as a function of basin scale, but no scale dependence on the precipitation-to-

streamflow error propagation was observed. Yu et al. (2016) quantified uncertainty 

propagation of rainfall forecasts into streamflow through a distributed hydrologic model 

in the Kii Peninsula of Japan. Their results coincided with prior studies demonstrating a 
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decrease in uncertainty by basin scale. Ehsan Bhuiyan et al. (2019) investigated the 

propagation of precipitation uncertainty to simulated surface runoff, subsurface runoff, 

and evapotranspiration using five SPPs, showing that uncertainties in modeled surface 

runoff were strongly sensitive to precipitation uncertainty. In addition to basin scale, 

other factors have been cited to impact error propagation of streamflow including 

complex terrain and elevation (Nikolopoulos et al., 2010; Mei et al., 2016b), hydrologic 

model type and complexity (Hostache et al., 2011; Zhu et al., 2013), and seasonality 

(Gebregiorgis & Hossain, 2013; Mei et al., 2016b; Vivoni et al., 2007). 

Research associated with the use of satellite and reanalysis precipitation products 

for water quality modeling is very limited. Neal et al. (2012) found that soil-water 

chemistry has variability at the local scale, translating into a range of responses in the 

chemistry of localized runoff, and thus streamflow, further indicating that a high temporal 

frequency and spatial resolution is needed for modeling and simulating streamflow 

processes including sediment. Himanshu et al. (2017) evaluated the performance of 

TMPA 3B42V7 for predicting suspended sediment loads in two watersheds in south India 

using a machine learning technique and found moderate prediction efficiency. Stryker et 

al. (2017) used the North American Regional Reanalysis data for simulating suspended 

sediment loads and concentrations in the Mad River watershed located in Vermont, U.S.; 

however, the main objective of this study was to evaluate model performance for 

sediment simulations as opposed to uncertainty of precipitation inputs. A recent study by 

Ma et al. (2019) investigated the use of two SPPs and one reanalysis product in the 

Lancang River Basin in southwest China to assess their performance in simulating 
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streamflow and suspended sediment using the Soil and Water Assessment Tool (SWAT) 

model. They found that, at the monthly timestep, both SPPs were at better estimating 

precipitation than the reanalysis product and also both SPPs had a good capability of 

modeling monthly streamflow and sediment loads. While this study evaluated spatial and 

temporal sediment yield, it neither considered the spatial and temporal variability of SPPs 

nor evaluated the propagation of uncertainty between precipitation input and model 

output.  

While there is substantial research investigating the association between 

precipitation and water quality response (e.g., Bezak et al., 2017; Cheng et al., 2015; 

Gelca et al., 2016; Hayashi et al., 2004; Jeznach et al., 2017; Johnson et al., 2012; 

Murdoch et al., 2000; Neal et al., 2012; Soler et al., 2007; Thorne & Fenner, 2011), only 

a few studies investigated how the spatial and temporal differences of SPPs may impact 

the simulation and forecasting of water quality (Ma et al., 2019; Solakian et al., 2019). 

Furthermore, there is a gap in the literature assessing the propagation of errors in input 

SPP (at different resolutions) to simulated water quality indicators. Initial research 

conducted by Solakian et al. (2019) showed that spatial and temporal differences in SPP 

resolutions, along with the algorithms used to estimate precipitation magnitude, had an 

impact on modeled streamflow and water quality indicators in the Occoquan Watershed, 

Virginia, U.S. It was also noted that the seasonality dissimilarities observed in SPPs may 

translate into seasonal differences of simulated streamflow and water quality indicators. 

This study builds upon previous work, providing a comprehensive evaluation of 

the seasonal skill of three different SPPs, of varying native spatial and temporal 
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resolutions, compared against observations from a dense rain gauge network over the 

Occoquan Watershed. The three SPPs evaluated in this study are used as forcing input 

into a gauge-calibrated hydrologic and water quality model to simulate streamflow (Q) 

and three water quality indicators, i.e., total suspended solids (TSS), stream water 

temperature (TW), and dissolved oxygen (DO), at six locations within the watershed. The 

skill of the SPP-based model simulations is then compared to gauge-based simulations 

over a 5-year study period (2008-2012). The propagation of error from input precipitation 

to each of the three products is investigated by basin scale and on a seasonal basis. 

Section 4.2 discusses the methods employed in this analysis to assess the uncertainty of 

SPPs, simulated output, and the propagation of error. Section 4.3 presents, interprets and 

discusses the results of this study, while Section 4.4 provides conclusory remarks of 

notable findings. 

4.2 Methodology 

Firstly, the three SPPs are evaluated against reference precipitation measurements 

from the rain gauge network in the Occoquan Watershed. Secondly, the HSPF model is 

forced with the three SPPs to simulate output of Q, TSS, TW, and DO. Model output are 

evaluated at six evaluation points by comparing the three SPP-forced simulations to that 

forced with rain gauge-based records both temporally, by season, and spatially, by basin 

scale. Thirdly, the propagation of error from model input to simulated output is 

investigated. 

Hourly precipitation data from SPPs are areal-weighted and segment-aggregated 

(AWSA) for input into the hydrologic model. To process the SPPs as AWSA input, 
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pixels overlaying segment boundaries are spatially aggregated. Next, SPPs are temporally 

matched to the hourly temporal resolution which is the resolution of the rain gauge data. 

Figure 7 presents the spatial distribution of rain gauges (7a) including cumulative 

precipitation of each watershed segment over the 5-year study period recorded by the 

gauge network. Figure 7 (b-d) highlights the cumulative 5-year AWSA precipitation 

measured for each segment for (b) TMPA, (c) CMORPH, and (d) PERSIANN including 

the spatial resolution of SPP pixels at 0.25,0.07, and 0.04, respectively. The average 

cumulative AWSA precipitation estimated by the three SPPs over the watershed during 

the 5-year study period moderately overestimates the one recorded by the rain gauges 

(4909 mm) with values of 5298 mm, 5267 mm, and 5834 mm for TMPA, CMORPH, and 

PERSIANN, respectively. 

The hydrologic model developed for the Occoquan Watershed processes 

precipitation input at the hourly resolution and simulates output at the daily resolution. 

Thus, hourly precipitation data are aggregated to the daily scale for a uniform comparison 

with the model output. Specifically, error and performance metrics of AWSA daily 

precipitation (P) are computed on a seasonal basis for all the 87 watershed segments. 

Seasons are defined as follows: December-January-February (winter), March-April-May 

(spring), June-July-August (summer), and September-October-November (fall).  

 



57 

 

 
Figure 7. Cumulative 5-year AWSA precipitation for each segment in the Occoquan Watershed 

 

Aside from altering precipitation input, no other input, parameters, or model 

boundary conditions are modified in this experiment. The goal of this analysis is to 

quantify uncertainties in simulated streamflow and select water quality indicators by 

season, and by basin scale at the six evaluation points (S26, S27, S34, S47, S79, and S86) 

in the watershed. These locations are chosen based on the representative basin scale 

(drainage area size) and model output locations. Stream water quality is not only 

influenced by precipitation, but also by many other factors including atmospheric 

deposition, rainfall chemistry, vadose zone leaching, groundwater chemistry, stormwater 
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runoff, streambank sediment transport, and anthropogenic sources such as wastewater 

discharges (Bezak et al., 2017; Neal et al., 2012). This study only investigates how 

precipitation uncertainty affects output uncertainty; however, precipitation may have 

tangential impacts to other influencers (e.g., groundwater chemistry, etc.) that are not part 

of this evaluation.  

4.2.1 Precipitation Analysis 

To begin, probability density functions (PDFs) of gauge data and SPPs are 

evaluated both over the 5-year study period and on a seasonal basis. This comparison is 

based on the interpolated and aggregated daily AWSA values of SPPs for all 87 

watershed segments rather than a pixel-to-point comparison. PDFs reveal the 

inhomogeneity of the different products as well as the relationship between intensity and 

occurrence, as discussed in Section 4.3.1.  

Second, the detection capability of daily AWSA SPPs in comparison to rain 

gauge observations is assessed through the following statistics: probability of detection 

(POD), false alarm rate (FAR), and critical success index (CSI). POD measures the ratio 

of correct detection of the SPP to observed occurrence of precipitation from the rain 

gauge. FAR measures the number of events when precipitation is detected by a SPP but 

no precipitation is observed by the reference gauge. CSI is a measure of successfully 

detected events to the total number of events observed (i.e., hits, false alarms, and missed 

event) (Schaefer, 1990). The total number observations by the SPP with respect to the 

gauge observation that either correctly detect an event, miss an event, or incorrectly 

detect an event, are hits, misses, and false alarms, respectively. The rain/no-rain threshold 
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is set to 0.254 mm/day, which corresponds to the minimum precipitation detectable by 

the rain gauges. Definitions used to calculate the POD, FAR, and CSI are provided as 

eqs. 7-9, respectively. POD, success ratio (1-FAR), CSI, and performance bias (ratio of 

the POD to the success ratio) are summarized by season using a performance diagram 

(Roebber, 2009). 

Third, the skills of each SPP are quantified using four metrics: relative bias (rB), 

root mean square error (RMSE), correlation coefficient (CC), and standard deviation (σ) 

(eqs. 2-5, respectively). rB is a representation of the relative difference (in percentage) 

between estimated and observed data with positive and negative values indicating 

precipitation overestimation and underestimation, respectively. RMSE is a measure of the 

magnitude of errors between SPP and observed gauge values, whereas the CC provides a 

measure of the linear agreement between two variables. The amount of variation in the 

data set is quantified by the standard deviation. In this study, the overall skill associated 

with each of the three SPPs in relation to the gauge-based data is summarized on a 

seasonal basis using a Taylor diagram (Taylor, 2001).  

4.2.2 Streamflow and Water Quality Indicator Analysis 

The model performance in simulating Q and the three water quality indicators 

(i.e., TSS, TW, and DO) is evaluated through the absolute bias (B), the absolute value of 

B (eq. 6) and the relative RMSE (rRSME), provided as eq. 10. Absolute bias is the total 

measure of the systematic error of a dataset, whereas rRMSE is used to measure the 

random error between datasets. Error metrics are investigated as a function of spatial (i.e., 

basin size) and temporal scales (i.e., seasonality). 
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Equation 10. Relative Root-Mean-Square Error 

 

𝑟𝑅𝑀𝑆𝐸 =

√1
𝑛
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Where 𝑄𝑜𝑖
 is the ith reference streamflow/water quality indicator measurement 

and 𝑄𝑠𝑖
 is the ith simulated streamflow/water quality indicator value. 𝑄̅ is the 

corresponding mean value and 𝑛 is the number of values (i.e., Q, TSS, TW, and DO). 

To comprehensively evaluate and quantify the propagation of error from input 

precipitation to output streamflow and water quality indicators, two error metrics are 

adopted: bias propagation factor (bias) and rRMSE propagation factor (rRMSE), 

defined as the ratio of error metric of output (i.e., Q, TSS, TW, or DO) to their respective 

error metric of input (i.e., P). The propagation factor is an indication of either dampening 

(less than 1) or amplification (greater than 1) of error as it is translated from precipitation 

to model output simulations.  

 

Equation 11. Bias Propagation Factor 

 

𝑏𝑖𝑎𝑠 =
𝐵𝑜𝑢𝑡𝑝𝑢𝑡

𝐵𝑖𝑛𝑝𝑢𝑡
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Equation 12. Relative Root-Mean-Square Error Propagation Factor  

 

𝑟𝑅𝑀𝑆𝐸 =
𝑟𝑅𝑀𝑆𝐸𝑜𝑢𝑡𝑝𝑢𝑡

𝑟𝑅𝑀𝑆𝐸𝑖𝑛𝑝𝑢𝑡
 

 

4.3 Results and Discussion 

This section presents and discusses the results of (1) the error and performance 

analysis of SPPs, (2) the seasonal error analysis of simulated model output, and (3) the 

propagation of error from model input to simulated output. 

4.3.1 Seasonal Performance of Satellite-based Precipitation Products 

The three SPPs (TMPA, CMORPH, and PERSIANN) are compared to gauge-

based measurements by season for all 87 watershed segments based on the daily 

interpolated and aggregated AWSA values. AWSAs are compared rather than a pixel-to-

point comparison to assess the error propagation of different precipitation forcing 

datasets to simulated streamflow and water quality indicators on a seasonal basis and by 

basin scale. 

Over the 5-years, all three SPPs tend to under-detect the occurrence of low-

intensity precipitation (P ≤1 mm/day), over-detect moderate-intensity (1 < P < 20 

mm/day) events, but are more agreeable with heavy-intensity (P ≤ 20 mm/day) events 

(Figure 8). Overall, the PDF of CMORPH is closer to the one of rain gauge observations 

with respect to the other two products. This may be due to the fact that CMORPH (like 

TMPA) uses both PMW sensors, which tend to accurately detect heavy, convective 

precipitation events, as well as IR retrievals which better detect shallow, light 

precipitation events (Guo et al., 2016). The superiority of CMORPH over TMPA may be 
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related to the finer spatial resolutions and time-scales of CMORPH (0.07 and 30 

minutes), which may be able to better detect isolated, short duration, and low-intensity 

precipitation events.  

 

 
Figure 8. Probability density functions of daily AWSA precipitation from rain gauge observations 

and SPP estimates during (a) winter, (b) spring, (c) summer, (d) fall, and (e) 5-year period  

 

Although SPPs tend to perform differently during different seasons, all three SPPs 

under-detect the occurrence of low-intensity P in comparison to rain gauge observations 

in all seasons. Moreover, in the spring PERSIANN tends to largely overestimate 

moderate-intensity P, whereas TMPA has a significant overestimation of high-intensity P 
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events. During summer, CMORPH outperforms TMPA and PERSIANN in capturing P 

of all intensities with very similar results to that of the gauges. In the fall, CMORPH has 

the best performance for all intensities whereas, as in summer, TMPA tends to 

underestimate low-intensity and over-estimate moderate- and high-intensity events. 

During winter, significant differences are observed with moderate-intensity P events 

during winter, with large overestimations of TMPA and PERSIANN. On the other hand, 

SPP estimates for high-intensity events are well matched with PERSIANN with a 

significant overestimation by TMPA. While these results suggest that TMPA tends to 

overestimate the magnitude of P during winter, it has a low POD and therefore misses a 

number of low-intensity events. This is likely related to the fact that PMW-based 

algorithms have difficulty estimating winter precipitation since they are influenced by 

snow and ice and are degraded by the presence of snow cover. Additionally, the 

overestimation of PERSIANN in winter may be associated with the imperfect screening 

of cold surfaces by IR sensors (Guo et al., 2016). 

Over the 5-year study period, TMPA and CMORPH present lower FARs, but also 

lower PODs compared to PERSIANN (Figure 9a). On a seasonal basis, both TMPA and 

CMORPH exhibit comparable FARs, lowest in fall and winter (but when POD is lower) 

and highest in summer. On the other hand, PERSIANN demonstrates lowest FARs and 

highest POD in spring and winter. TMPA carries the lowest POD during all seasons, 

which may be attributed to the coarser spatial and temporal resolution of the product in 

comparison to CMORPH and PERSIANN. These results agree with Sun et al. (2018) 

indicating that TMPA has a lower POD and FAR than other products in both warm and 
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cold seasons over North America. The performance bias (the ratio of the POD to the 

success ratio) is relatively low in winter for both TMPA and CMORPH (Figure 9a). 

CMORPH and PERSIANN underestimate P during winter and fall, respectively. TMPA 

and CMORPH generally exhibit similar performances, whereas PERSIANN shows larger 

error metrics, particularly in winter, which is most likely due to the fact that PERSIANN 

only uses IR observations, affected by retrieval inaccuracy of stratiform precipitation and 

over snow during cooler months. Additionally, TMPA and CMORPH perform better 

during summer and fall since PWM/IR algorithms tend to better detect and estimate 

convective events common during warmer seasons, though they tend to overestimate P. 

For the three SPPs, the error metrics shown in the Taylor diagram (Figure 9b) 

present a seasonal variation. Correlation coefficients vary by product and by season with 

CMORPH slightly outperforming TMPA and significantly outperforming PERSIANN. 

While overall correlations are concentrated between 0.26 and 0.60, both TMPA and 

CMORPH have the highest correlation during the fall, followed by winter. While inferior 

performance with low correlation values is observed with PERSIANN, it appears to 

perform best in winter and summer. The lowest RMSEs for TMPA and CMORPH are in 

winter, whereas the lowest RMSE for PERSIANN is in summer. TMPA and CMORPH 

have the lowest standard deviations during winter and the highest in fall, while 

PERSIANN has a lower standard deviation in fall and higher in winter. The notable 

differences found between SPPs analyzed in this study, along with their seasonal 

dependency, such as larger positive biases of TMPA and CMORPH during warmer 
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seasons and an overestimation of PERSIANN during winter, may lead to a seasonal 

impact on the hydrologic model output.  

 

 
Figure 9. Seasonal (a) Performance diagram and (b) Taylor diagram of AWSA daily precipitation 

between gauge-based observations and SPPs 

 

4.3.2 Error Analysis of Simulated Streamflow and Water Quality Indicators  

Figure 10 shows density scatter plots (in the logarithmic scale) of daily SPPs 

against ground-based P observations and Q, TSS, TW, and DO simulated by the HSPF 

model forced with the SPPs against the corresponding output simulated by the model 

forced with gauge P observations. Overall statistics in terms of CC, B, and rRMSE are 

also shown on the scatterplots. As already concluded from the previous section, TMPA 

and CMORPH perform better than PERSIANN in terms of P with CMORPH showing an 

overall slightly better performance in reference to the gauge-based data. TMPA- and 

CMORPH-simulated Q have a moderate linear relationship to gauge-simulated Q values; 
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however, both SPPs tend to overpredict Q. PERSIANN underpredicts the reference Q and 

shows a large dispersion around the 1:1 line. Correlations of simulated Q are higher with 

respect to the P ones, although the B is also higher. Generally, the rRMSEs for the three 

SPPs are relatively close between Q and P. These results indicate that the HSPF model 

may have a dampening effect on the Q error for both TMPA and CMORPH; however, the 

poor quality of the PERSIANN product is actually amplified in the modeled Q.  

Correlations of water quality indicators vary considerably with high values for 

TW (0.98-0.99) and DO (0.81-0.85), but lower values for TSS (0.26-0.56). TW has the 

strongest positive linear relationship of all water quality indicators with little dispersion. 

The B and rRMSE of both TW and DO are very low for all three SPPs. In general, all 

SPP-simulated values have a positive linear relationship with gauge-simulated values for 

DO, though all SPPs tend to overpredict lower DO concentrations and underpredict 

higher concentrations.  

SPP-simulated TSS has the weakest relationship to gauge-simulated TSS for all 

water quality indicators. For TSS, TMPA and CMORPH tend to slightly underpredict 

TSS concentrations whereas PERSIANN significantly overpredict TSS concentrations. B 

and rRMSE are moderate for TMPA and CMORPH, but much higher for PERSIANN, 

which is expected since TSS is highly dependent on Q. These results corroborate the ones 

of Wu et al. (2006) that concluded that uncertainty in Q was the main source of variance 

in simulated TSS concentrations and nutrient loads. 
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Figure 10. Logarithmic density scatter plots between the gauge-based reference and SPP-simulated 

model output for TMPA, CMORPH, and PERSIANN 
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To better understand the model’s behavior between forced input and simulated 

output, error metrics are evaluated seasonally for P, Q, and the water quality indicators. 

Specifically, the simulations forced with the three different SPPs with respect to the one 

forced with gauge-based precipitation are evaluated in terms of both B and rRMSE 

(Figures 11 and 12). For Q, TMPA and CMORPH outperform PERSIANN, though the 

seasonal performance varies considerably by product. Generally, TMPA shows the 

lowest B during summer and the highest B in winter across all evaluation points. On the 

other hand, CMORPH-Q tends to have the lowest B during winter and highest during 

summer, with a few exceptions. B results between TMPA-Q and CMORPH-Q appear 

quite interesting considering that the B associated with their P counterpart does not vary 

much by season. Additionally, B tends to follow the same trends of P for CMORPH, with 

summer presenting the highest B for both TMPA and CMORPH and a similar skill 

amongst the other seasons. TMPA-Q and CMORPH-Q generally present similar rRMSE 

with the highest values during summer (when RMSEs of P are also high) and the lowest 

in spring for TMPA and winter for CMORPH. Low rRMSEs in winter may be due to less 

Q and thus lower residuals even though the B of P may be greater. Similar to TMPA, 

PERSIANN-Q is relatively inferior in the winter with similar Bs for other seasons. In 

general, a high FAR and B noted in the PERSIANN-P during the winter season leads to a 

notably larger B in PERSIANN-Q when compared to the TMPA and CMORPH products 

(i.e., almost ten times greater). It is also noteworthy to mention that all three SPPs 

overestimate daily Q in comparison to gauge-simulated Q, which may be attributed to the 

fact that Q increases with drainage area causing the potential for greater residuals. These 
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results coincide with other studies evaluating the performance of SPPs by basin scale 

(Maggioni et al., 2013; Falck et al., 2015; Nikolopoulos et al., 2010; Yu et al., 2016).  

For TSS simulations in this study, TMPA and CMORPH generally outperform 

PERSIANN during all seasons, which is expected since similar results are noted from Q, 

and simulated TSS concentrations are highly dependent on Q. A large seasonal variation 

in B is observed for PERSIANN, but significantly lower for TMPA and CMORPH. 

Interestingly, in summer and fall both P and Q are overestimated, whereas TSS is 

underestimated by TMPA simulations. CMORPH often underestimates TSS during the 

winter and spring seasons. TSS is also generally underestimated across basin scales by 

PERSIANN, which tends to overestimate low intensity P that may contribute very little to 

Q and increased sediment transport. During winter, B of PERSIANN-TSS is 

approximately four times larger than for TMPA and CMORPH. Basin scale does not 

appear to impact B for TSS; however, rRMSE tends to decrease by basin scale for all 

products during all seasons. Generally, seasonal rRMSE for all three SPPs follows the 

same trends as the error associated with Q – higher in the summer and lower during 

spring. Poor HSPF model performance is noted in simulated TSS, which may be 

attributed to misprediction of intensity and the spatial scale of SPPs that may impact 

simulations of sediment loads generated from land use runoff, and to a lesser degree, 

stream scour. 
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Figure 11. Seasonal analysis of absolute B as a function of basin scale for P, Q, TSS, TW, and DO 

between gauge-based records and SPPs  

 

TMPA and CMORPH also generally outperform PERSIANN in terms of TW 

during all seasons. Highest B is found in summer, as expected, since there is a larger 

fluctuation in ambient air temperature during this season. B associated with TMPA and 
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CMORPH for all other seasons is below 0.22C, but larger Bs are found during winter for 

PERSIANN. B for PERSIANN-TW presents a large variance among seasons, which is 

not as evident in the other two simulations. Winter presents significantly higher rRMSE 

for TW in comparison to other seasons. 

During warmer seasons, high water temperatures generally increase the rate of 

biological activity and chemical reactions, which in turn decrease the solubility and 

concentration of saturated DO in a waterbody (Cox and Whitehead, 2009; Irby et al., 

2018). Seasonal precipitation patterns also play a role in DO concentrations with higher 

moderate- and high-intensity events found in spring and fall: increasing streamflow 

allows for more aeration of the water, which also increases DO concentrations. Results of 

this study indicate a cyclical pattern with SPP-simulated DO concentrations higher in the 

cooler months and lower in the warmer months. Errors of simulated DO indicate more 

conformance among the three SPPs, with TMPA and CMORPH marginally 

outperforming PERSIANN and with all three SPPs underestimating DO, especially in the 

fall. The basin scale does not seem to play a factor and there does not appear to be a clear 

indication of how seasonality impacts B. The lowest rRMSEs are generally found in 

winter, followed closely by spring and fall, with the highest errors during summer. The 

seasonality trends of rRMSE are interesting since the DO concentrations are highest in 

winter, which would lend for greater residuals though this is not seen in the results of 

rRMSE indicating that other influencers built into the model may have an impact on 

random errors. A recent study by Moreno-Rodenas et al. (2019) evaluating the 

uncertainty and propagation of error between input variables and DO simulated output 
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found that precipitation uncertainty accounted for approximately 20% of the variance in 

DO. This same trend appears among all evaluation points and may coincide with the skill 

among SPPs presented for Q. 

 

 
Figure 12. Seasonal analysis of rRMSE as a function of basin scale for P, Q, TSS, TW, and DO 

between gauge-based records and SPPs  
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4.3.2 Error Propagation  

As shown in the previous section, the positive bias in SPPs is propagated into 

simulated Q, but not in all the water quality indicators. The bias and rRMSE of Q and 

water quality indicators are investigated on a seasonal basis and by basin scale (Figures 

13 and 14, respectively). No single product outperforms the others in terms of rRMSE.  

For Q, bias ranges between almost zero and 8.5, linearly increasing with basin 

scale. The largest error propagation is seen for CMORPH at evaluation point 86 during 

the winter season, which is caused by a very low absolute bias of P (0.01 mm/day). While 

the bias associated with Q and water quality indicators for CMORPH at evaluation point 

86 is not particularly high, bias is magnified due to the low B in P. There do not appear to 

be any distinct seasonal trends associated with the bias for Q, but when investigating 

rRMSE, basin scale has an impact across all seasons, similar to results discussed above for 

rRMSE. rRMSEs close to 1 are found in winter for all three SPPs, indicating a higher 

dampening effect when compared to other seasons. These results are consistent with 

those found by others (Guetter & Georgakakos, 1996; Flack et al.; 2015; Hossain & 

Anagnostou, 2004; Maggioni et al., 2013; Mei et al., 2016b; Nijssen & Lettenmaier, 

2004; Nikolopoulos et al., 2013; Seyyedi et al., 2015; Vivoni et al.; 2007; Yu et al., 

2016), indicating that error associated with precipitation input is often amplified when 

translated into streamflow error. 
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Figure 13. Seasonal analysis of B error propagation analysis as a function of basin scale for Q, TW, 

TSS, and DO between gauge-based records and SPPs 

 

There is no notable scale dependency on bias for TSS and there is no clear 

indication of seasonality either, although a lower bias is generally seen during summer 

for the three SPPs. It is worthwhile to mention that while larger TSS errors are generally 

found in summer, this seasonal difference is not propagated for TSS and in some cases a 

dampening affect (0.23- 0.91) is noted during the summer. Aside from a few instances, 

bias is significantly greater than 1 and TSS error is amplified up to almost 50 times 
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greater than that found in the input P. bias is much greater for TSS than for Q or other 

water quality indicators, indicating that TSS simulations in the HSPF model are highly 

impacted by forcing P. rRMSE does show a dependence on the basin scale though results 

also vary considerably by season. rRMSE is smaller during spring/winter for TMPA, 

spring for CMORPH (similarly to rRMSE), and winter for PERSIANN. Conversely, 

higher rRMSE values are found during fall for TMPA and CMORPH and summer for 

PERSIANN. In general, the majority of rRMSE values (0.3 to 1.8) are below one 

indicating a dampening effect of the P random error when translated onto TSS, especially 

in larger basins.  

Uncertainty propagation factors of TW is generally below 1 aside from a few 

instances. While larger B values of TW are found during summer in comparison to other 

seasons, there is no seasonal consistency for TW bias, reinforcing the conclusion that 

ambient air temperature is the greatest influencer on in-stream temperature. As expected, 

it does not appear that basin scale has any influence on TW bias or rRMSE. The rRMSE of 

TW appears to be rather consistent among all three SPPs, well below 1, with larger 

rRMSEs during the winter and lowest rRMSEs during the summer, which is in line with 

results of rRMSE for TW.  
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Figure 14. Seasonal analysis of rRMSE error propagation as a function of basin scale for Q, TW, 

TSS, and DO between gauge-based records and SPPs 

 

Propagation of uncertainty for DO varies by season with a comparatively lower 

bias during spring and summer, though most values are below 1 (as low as 0.0), 

indicating a dampening effect of the error in P. Larger bias values are found during fall 

and winter for TMPA and CMORPH, while there is no consistent seasonal dependence in 

PERSIANN. Propagation of rRMSE for DO is consistent with results found for rRMSE, 

with basin scale having some marginal impact on the results. All rRMSE values are below 
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one (0.0 to 0.1), showing a dampening of the random error of P (when translated into 

DO) as well. Typically, colder waters found in cooler seasons (winter) tend to have 

higher concentrations of DO than in warmer periods (summer). One explanation for the 

increased rRMSEs presented in fall and winter for TMPA and CMORPH may be due to 

the seasonal fluxes of DO concentrations since overall DO concentrations are typically 

higher during those seasons creating greater residuals.  

4.4 Conclusions 

This work investigates the potential of using SPPs as forcing input into a 

hydrologic model for simulating and predicting streamflow and water quality. Three 

SPPs of different spatial and temporal resolutions (TMPA, CMORPH, and PERSIANN) 

are compared to gauge-based records in the Occoquan Watershed over a 5-year study 

period. The seasonal error of simulated model output is investigated along with the 

propagation of error from the SPP-forced input to simulated output. The major findings 

of this study are summarized as follows:  

• SPPs show mixed performance skills with a seasonal dependence. Substantial 

differences are observed with moderate-intensity precipitation events, especially 

during winter, with both TMPA and PERSIANN grossly overestimating moderate-

intensity precipitation. On the other hand, SPP estimates for high-intensity events are 

well predicted by PERSIANN but overestimated by TMPA. In the spring, all three 

SPPs tend to under-detect low-intensity precipitation. TMPA tends to under-detect 

low-intensity events and over detect moderate- and high-intensity events; however, it 

is much better able to detect low intensity events in warmer seasons. 
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• Correlations between SPP-simulated Q and reference Q (simulated by forcing the 

model with rain gauge observations) are higher with respect to the precipitation ones, 

although biases are also higher. Generally, random errors for the three SPPs are 

relatively close between Q and precipitation. These results indicate that the HSPF 

model may have a dampening effect on the Q error for both TMPA and CMORPH; 

however, due to the poor quality of the PERSIANN product, its error is actually 

amplified through the model, with a positive dependency on basin scale.  

• For TSS, TMPA and CMORPH appear to generally outperform PERSIANN during 

all seasons, which is expected since similar results are noted from Q and simulated 

TSS concentrations are highly dependent on Q. Although the systematic error in P is 

amplified in TSS, the random error is not (and it is actually dampened by the model). 

It is worthy to mention that while larger TSS errors are generally found in summer for 

all three SPPs, this seasonal difference is not propagated for TSS.  

• The model shows good performance when simulating TW, with TMPA and 

CMORPH generally outperforming PERSIANN. The error in precipitation is 

dampened when translated into TW and, as expected, basin scale has no influence on 

the precipitation-to-TW error propagation. 

• Satisfactory model performance is also shown in simulated DO, with TMPA and 

CMORPH marginally outperforming PERSIANN. The propagation of systematic and 

random errors from precipitation to DO vary by season, with larger dampening 

effects in spring and summer for all three SPPs.  
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This study demonstrated that the spatiotemporal variability of SPPs, along with 

their different algorithms, have a quantifiable impact on water quality simulations. 

However, results shown here are limited by several factors. Firstly, this study was 

conducted using only one hydrologic model. While the HSPF model developed for the 

Occoquan Watershed is widely used and well calibrated and validated, other hydrologic 

models may propagate errors in input precipitation differently. Secondly, the model was 

calibrated based on rain gauge data, which may not reflect the actual distribution, extents, 

or magnitude of precipitation in the watershed. Thirdly, a single watershed, located in an 

area characterized by a temperate climate, mild topographic variation, and moderate 

precipitation intensity, was the focus of this study. Since it is well documented that 

different SPPs perform differently by climate, topography, and geographic regions, 

results of this study may not be translatable to other locations. Nonetheless, this work 

suggests that SPPs may be used to monitor and forecast water quality of a hydrologic 

network.  
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CHAPTER 5. PERFORMANCE OF SATELLITE-BASED PRECIPITATION 

PRODUCTS IN SIMULATING STREAM WATER QUALITY INDICATORS 

DURING HYDROMETEOROLOGICAL EXTREMES 

5.1 Introduction 

Understanding the spatiotemporal behavior of hydrometeorological events is of 

critical importance for water resource management including flood mitigation and 

response, ecosystem restoration, river and water supply reservoir recharge, and water 

quality impacts. Evaluating how hydrometeorological extremes have historically 

behaved, including variations in intensity, duration, and frequency is of upmost 

importance not only for current water resource management, but also to understand long-

term climate impacts and provide accurate predictions of future behavior (Alexander et 

al., 2019; Maggioni & Massari, 2019; Mahbod et al., 2018; Tongal, 2019). 

While there is no widely used definition for a hydrometeorological extreme, 

which is regionally specific, indices based on daily precipitation data are typically used, 

such as annual maxima or arbitrary thresholds (e.g., 95th, 99th and 99.9th percentiles). 

Extreme events are often also classified by localized intensity-duration-frequency curves 

of representative return periods (e.g., 100-year event) or as a named storm event (e.g., 

hurricanes, tropical storms, etc.). More recent research, especially with long-term and 

climate change studies, have shifted to the use of standardized indices to allow for 

consistency between studies. These indices include the Expert Team on Climate Change 
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Detection and Indices (ETCCDI), the Standardized Precipitation Index (SPI), the 

Standardized Precipitation and Evapotranspiration Index (SPEI), and the Palmer Drought 

Severity Index (PDSI) which measure aspects of frequency (e.g., days above fixed 

thresholds), intensity (e.g., wettest day, average daily intensity), and duration (e.g., 

consecutive wet and dry days) based on daily precipitation measurements from in situ, 

satellite, and/or reanalysis datasets (Alexander et al., 2019; Qin et al., 2019). 

Spatiotemporal variations of hydrometeorological extremes and the subsequent 

influence on land surface hydrology and streamflow have been extensively investigated 

using precipitation measurements from ground-based systems (i.e., rain gauges and 

radars). While the most accurate precipitation measurements are obtained from ground-

based observations, they typically lack the spatial representativeness often needed in 

large-scale studies. Thus, the use of satellite-based precipitation products (SPPs) in 

hydrologic modeling is a good alternative due to their continuous geographic coverage 

with high spatial and temporal resolution. A number of past studies have evaluated the 

uncertainty of SPPs specific to extreme precipitation events both regionally and globally. 

Previous studies have shown precipitation measurement uncertainty of SPPs is associated 

with intensity, duration, and scale, with a decrease in uncertainty during higher rainfall 

rates, larger domains, and longer time integration (Maggioni & Massari, 2018).  

Large scale studies by Bharti et al. (2016), Katiraie-Boroujerdy et al. (2017), 

Chen et al. (2020), Demirdjian et al. (2018), Li et al. (2013), Lockhoff et al. (2014), 

Meng et al. (2014), Mehran and AghaKouchak (2014), Nastos et al. (2013), and Pombo 

and de Oliveira (2015) all found that SPPs tend to underestimate extreme precipitation in 
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comparison to gauge-based observations. AghaKouchak et al. (2011) evaluated SPP 

precipitation rate retrieval during extreme events for three products across the central 

U.S. and concluded that the skill of all three products is reduced with higher intensity 

events. Habib et al. (2009) evaluated six extreme hydrometeorological events in 

Louisiana, U.S. and found that TMPA products tend to underestimate high intensity and 

overestimate low intensity observations. Derin et al. (2019) investigated the ability of six 

SPPs to estimate extreme precipitation at nine mountainous locations with dense gauge 

networks, globally. This study showed a constant underestimation of extreme 

precipitation values consistent with other studies (Derin et al., 2016, Kubota et al., 2009; 

Kwon et al., 2008, and Maggioni et al., 2017). Derin et al. (2019) attributed the 

underestimation of extreme precipitation to the warm rain process resulting in the 

occurrence of shallow, but high accumulation precipitation. Mehran and AghaKouchak 

(2014) investigated the capability of SPPs in detecting intense precipitation rates over 

different temporal resolutions (3-24 hours) and found that the detection and skill of the 

SPPs evaluated improve with increasing temporal resolution further suggesting that 

integrating finer (e.g., 3 hourly) temporal resolution data into hydrological models may 

lead to significantly biased results. 

Well-developed, physically-based distributed hydrological models are vital tools 

for simulating hydrological processes, in particular for forecasting and monitoring flood 

hydrographs. These models can characterize hydrological processes in watersheds by 

using spatialized variables and parameters (Su et al., 2017). However, the accuracy of 

input precipitation data including its spatial and temporal distribution, intensity, and 
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duration significantly impact hydrologic models (Hazra et al., 2019; Sorooshian et al., 

2011; Zeng et al., 2018). Maggioni and Massari (2018) suggest that a significant error 

shift may present in runoff prediction due to non-linearity of the hydrological processes. 

This error may rise since SPPs tend to better detect higher intensity and miss lower 

intensity observations which in turn may lead to a higher probability of underestimating 

or overestimating streamflow magnitude. This could be especially true since most 

hydrological models are calibrated on a continuous period of data rather than event-based 

calibration. Event-based modeling evaluates discrete rainfall-runoff events in isolation, as 

opposed to continuous modeling, which contains integrated responses by synthesizing 

hydrologic processes over a long period of hydroclimatic conditions. For instance, Xie et 

al. (2019a) showed that model performance decreased as precipitation intensity increased 

in event-based modeling, when compared to continuous modeling of streamflow, which 

they attributed to the fact that hydrologic models are often calibrated on continuous flow 

and one set of parameters that may not be appropriate for event-based modeling. 

There has been a number of studies that evaluate the performance of SPPs and 

their streamflow response during hydrometeorological extreme events (Chintalapudi et 

al., 2014; Gourley et al., 2011; Huang et al., 2013; Shanshan Jiang et al., 2017; Shanhu 

Jiang et al., 2018; Mehran & AghaKouchak, 2014; Maggioni et al., 2013; Mei et al., 

2016; Nikolopoulos et al. 2013, 2015; Seyyedi et al., 2015; Shah & Mishra, 2016; Su et 

al., 2017; Sun et al., 2016; Yang et al., 2017; Zhang et al., 2015; Q. Zhu et al., 2016; Y. 

Zhu et al., 2017; B. Zhu et al., 2019). Su et al. (2017) concluded that while four different 

SPPs generally captured the spatial distribution of precipitation over the Upper Yellow 
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River Basins in China, mixed results were found when simulating high peak discharges 

and flow events. Mei et al. (2016a) investigated the performance of eight SPPs in 

simulating 128 flood events in the Eastern Italian Alps and found that though timing of 

the precipitation event dispersion exhibited good agreement with the reference data, the 

resulting hydrograph had a dampening effect of both systematic and random error relative 

to the SPP hyetograph. Shanhu Jiang et al. (2018) evaluated six SPPs in capturing 13 

extreme precipitation events and simulating resulting streamflow over the Xixian Basin 

in China. They concluded that gauge-adjusted SPPs perform better than their real time 

counterparts in simulating daily streamflow extremes, although all six SPPs exhibited a 

deviation of peak magnitude and timing inconsistency when compared to observed data. 

Several studies have evaluated hydrometeorological extremes and resulting event-

based streamflow and water quality, though the majority of studies utilize ground-based 

observations (Ahn & Kim, 2016; Jeznach et al., 2017; de Oliveira et al., 2019; Rue et al., 

2017; Qiu et al., 2018; Xie et al., 2019b). Jeznach et al. (2017) investigated methods to 

quantify potential impacts of extreme precipitation on water quality and found that 

extreme events are a major driver for the export of terrigenous organic-bound nutrients 

directly linked to erosion and sediment transport during large events. Rue et al. (2017) 

investigated the relationship between water quality and streamflow during an extreme 

hydrometeorological event and found a consistent increase/decrease in solutes during 

flood/flood recession, yet noted a disproportionate decrease in concentrations due to a 

seasonal flushing of streams. Ma et al. (2019) assessed the performance of two SPPs in 

simulating streamflow and suspended sediment at the monthly timestep in the Lancang 
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River Basin in southwest China. They found both SPPs show good capability of 

estimating monthly sediment loads. Stern et al. (2016) found streamflow and sediment 

supply predictions using a hydrologic model of the Sacramento River Basin, California 

improved with better spatial representation of watershed precipitation. To date there are 

only a few studies that have evaluated the simulation and forecasting of water quality 

based on spatial and temporal differences of SPPs (Ma et al., 2019; Solakian et al., 2019). 

Moreover, while there has been much research assessing the impact of hydrogeological 

extremes captured by SPPs (at different resolutions) to simulated streamflow response, 

there is a notable gap in literature associated with simulating and forecasting water 

quality during extreme events using SPPs.  

This study provides a comprehensive evaluation of three different SPPs, of 

varying native spatial and temporal resolutions, during eight extreme 

hydrometeorological events with respect to observations from a dense rain gauge network 

over the Occoquan Watershed, located in Northern Virginia, US. The three SPPs 

evaluated are then used as forcing input into a hydrologic and water quality model to 

simulate streamflow and multiple water quality indicators at six locations within the 

watershed. The skill of the SPP-based model simulations is then compared to gauge-

based simulations for the eight extreme hydrogeological events occurring within a 5-year 

study period (2008-2012). Section 5.2 presents the methods used in this study, Section 

5.3 presents, interprets, and discusses the results, and Section 5.4 offers conclusory 

remarks. 
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5.2 Methodology 

5.2.1 Event Selection  

Eight extreme hydrometeorological events are evaluated in this study. These 

events are chosen according to the 95th percentile of daily precipitation recorded by rain 

gauges over the 5-year study period. To determine 95th percentile events, an empirical 

cumulative density function (CDF) of maximum daily intensity (mm/d) derived from rain 

gauge observations is evaluated over the 5-year study period (Figure 15). Precipitation 

events are then grouped according to the maximum daily intensity 95th percentile. Event 

durations span from 24 to 120 hours. Seven of the eight events in this study occur in 

spring (March – May) and fall (September – November), the other event, Event 8, is 

characterized as a convective storm during a period of unseasonably warm weather in 

December. 

 

 
Figure 15. Cumulative density plot of daily precipitation events at representative rain gauge EVGR 

over the 5-year study period 
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Table 7 presents the characteristics of selected hydrometeorological events. The 

total average accumulation is the average amount of rainfall accumulated (mm) at all six 

gauges over the duration of the event. Maximum daily intensity (mm/d) is the greatest 

daily rainfall amount accumulated over one day during the event. Events 4, 7, and 8 have 

a maximum daily intensity (mm/d) greater than the average accumulation over the 

duration of the event. Events 7 and 8 have a duration of 24 hours, therefore the maximum 

daily intensity represents the event duration. For Event 4, a 96-hour event, the maximum 

daily intensity is higher than the average event accumulation due to the disproportional 

spatial distribution of rainfall over the rain gauge network, where one gauge measured a 

higher value during a one-day period, comparatively. Maximum hourly intensity (mm/hr) 

is the largest rain rate over a one-hour period during the event recorded at a gauge. 

 

Table 7. Characteristics of selected hydrometeorological events  

Event 

No. 

Rainfall 

Duration 

(hr) 

Start Date Event Name 

Average Event 

Accumulation 

(mm) 

Maximum 

Daily 

Intensity 

(mm/d) 

Maximum 

Hourly 

Intensity 

(mm/hr) 

1 120 September 26, 2010 Event No. 1 122.47 97.28 15.24 

2 120 March 6, 2011 Event No. 2 99.57 69.85 24.13 

3 108 May 8, 2008 Event No. 3 159.55 90.93 49.78 

4 96 May 21, 2012 Tropical Storm Alberto 117.14 145.80 70.36 

5 84 September 5, 2011 Tropical Storm Lee 114.68 57.40 33.78 

6 60 October 28, 2012 Hurricane Sandy 105.58 103.89 11.68 

7 24 September 5, 2008 Hurricane Hanna 94.36 115.57 27.43 

8 24 December 7, 2011 Winter Rain Storm 61.51 75.44 10.41 

 

Since each of the six evaluation points have unique watershed conditions, there is 

no standard lag time or peak magnitude between locations, and therefore spatial 
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characteristic of the study area are also considered when evaluating performance. The 

eight hydrometeorological events are not only evaluated based on their precipitation 

intensity, but also based on their streamflow response. During three events, Events, 6-8, 

precipitation is continuous over the duration of the event hyetograph and the resulting 

event hydrograph are clearly visible. For multi-day intermittent precipitation, 

encountered with Events 1-5, streamflow hydrographs are examined to determine if flow 

returns to baseflow between precipitation periods since there is often a lag in watershed 

response between rainfall and runoff. To match the precipitation hyetograph and the 

resulting streamflow hydrograph, this study employs a linear regression baseflow 

separation method (Blume et al., 2007) to determine start and end times of events in the 

streamflow record. For these events, streamflow does not return to baseflow between 

precipitation periods, therefore the period is considered one event.  

5.2.2 Statistical Metrics  

First, to analyze the performance of SPPs in comparison to gauge precipitation 

observations during extreme events, each SPP pixel overlaying a representative rain 

gauge location (e.g., pixel-to-point) is compared. Precipitation performance is evaluated 

based on average event accumulation (mm), mean precipitation (mm), and maximum 

hourly intensity (mm/hr) for each of the eight extreme hydrometeorological events, as 

discussed in Section 3.1. The average accumulation is the amount of total rainfall 

accumulated (mm) over the duration of the event. This amount represents the average 

accumulation over the six rain gauge locations, with σ being the standard deviation of 

measurements from the six locations. Mean precipitation is defined as the total 
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accumulation divided by the duration in time of the event (mm/duration). Maximum 

hourly intensity (mm/hr) is the greatest rainfall experienced at a rain gauge during the 

event over a one-hour period.  

Second, the HSPF model is forced with the three SPPs to simulate output of 

streamflow and water quality indicators using processed AWSA precipitation input. 

Model output are evaluated at six evaluation points by comparing the three SPP-forced 

simulations to that forced with rain gauge-based records for each of the eight 

hydrometeorological events. The mean relative error of peak streamflow (p) is evaluated 

between SPP- and gauge-simulated streamflow (eq. 13) for each of the eight events. Ep is 

defined as:  

Equation 13. Mean Relative Error of Peak Streamflow  

  

𝑝 =
𝑄𝑠−𝑄𝑔

𝑄𝑔
          

 

Where 𝑄𝑔 is the peak gauge-simulated and 𝑄𝑠 is the peak SPP-simulated 

streamflow value (m3/s) over the duration of the event.  

The performance of simulated model output including Q and water quality 

indicators are then comparatively evaluated using the following verification metrics: 

correlation coefficient (CC), relative bias (rB), and relative root mean-square error 

(rRMSE) represented by eqs. 4, 2, and 10, respectively. CC is a measure of the linear 

argument between gauge-simulated and SPP-simulated output over the reference period 

with a perfect value of 1. rB is defined as the difference between the gauge-simulated and 
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SPP-simulated output, normalized by the gauge-simulated value (in %). Positive 

(negative) values indicate SPP-simulated output overestimation (underestimation), with a 

perfect value of 0%. rRMSE is a measure of random error, quantifying the error between 

the SPP-simulated output and the gauge-simulated output with a perfect value of 0%.  

5.3 Results and Discussion 

5.3.1 Extreme Hydrometeorological Events  

TMPA, CMORPH, and PERSIANN products are evaluated against gauge-based 

records for the eight extreme hydrometeorological events described in Table 7. These 

eight events range in duration from 24 to 120 hours. Figure 16 shows the average event 

accumulation (mm), mean precipitation (mm/duration), and maximum hourly intensity 

(mm/hr) measured from rain gauges, TMPA, CMORPH, and PERSIANN for the eight 

events. In general, longer events (i.e., 1, 2, and 3) present a higher accumulation than 

shorter events (Events 7 and 8). The variation around the mean accumulation (σ) at the 

six locations varies not only by product, but also by event. Gauge-based measurements 

have the greatest σ amongst all of the products, which is attributed to the nature (point) of 

the measurement. Interestingly, both TMPA and CMORPH tend to overestimate event-

based rainfall accumulation for longer events (Events 1 and 3) and underestimate 

accumulation during shorter-duration events, whereas PERSIANN consistently 

underestimates total event accumulation. This may be attributed to the fact that 

PERSIANN is based on a thermal infrared (IR) algorithm which has a tendency of 

missing light stratiform precipitation (Hong et al., 2007; Maggioni & Massari, 2018). 

Ebert et al. (2007) reported that in temperate climates IR-based SPPs generally are better 
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able to detect heavy precipitation during warm season convective storms and decline in 

accuracy with stratiform precipitation. On the other hand, low orbiting passive 

microwave (PMW) satellite-based algorithms, such as TMPA and CMORPH, are known 

to underestimate heavy precipitation events associated with convective storms.  

 

 
Figure 16. Average event accumulation, mean precipitation, and maximum hourly intensity for rain 

gauges, TMPA, CMORPH, and PERSIANN for eight extreme hydrometeorological events 

 

Mean precipitation is inversely proportional to the event duration (Figure 16, 

middle panel). This is due to the fact that longer duration events (Events 1-3) are 

characterized by a mix of intermittent heavy and stratiform precipitation, whereas shorter 

events are typically of higher intensity. The same trend is noted for event accumulation, 

with PERSIANN grossly underestimating values (which is expected since mean 

precipitation is based on event accumulation). Maximum hourly intensity illustrates the 

dissimilarity of each product in the ability to measure heavy precipitation.  

Aside from one event (Event 6), gauge measurements far exceed all SPPs. 

However, PERSIANN, with a few exceptions, tends to better detect heavy precipitation 
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in comparison to TMPA and CMORPH. Again, these results can be attributed to the 

ability of IR-based algorithms to better detect the temporal variability and intensity of 

heavy precipitation compared to PMW-based algorithms. The standard deviations of 

maximum hourly intensity (gray error bars), especially for Events 3 and 4, are 

significantly higher than other products indicating the variability of rainfall detected at 

different gauge locations. 

5.3.2 Simulated Streamflow Peak Magnitude and Timing  

The capability of SPPs to simulate streamflow during extreme 

hydrometeorological events is evaluated by investigating hyetographs and hydrographs 

for each event (Figure 17). Overall, in terms of observed precipitation and gauge-

simulated Q, TMPA and CMORPH simulations tend to well capture the magnitude and 

timing of the peak events, however, there are a few exceptions. For Event 1, both TMPA 

and CMORPH grossly overestimate peak Q but are able to appropriately predict the 

timing of the peak. PERSIANN completely misses the Q peak in magnitude and timing 

resulting from its inability to accurately capture the accumulation of rainfall from 

intermittent stratiform precipitation between heavy intensity measurements during Event 

1. For Event 2, TMPA and CMORPH capture both the timing and peak magnitude of Q, 

though gauge-based Q presented a second but smaller peak that is largely undetected by 

both TMPA and CMORPH. Based on precipitation estimates during Event 2, TMPA and 

CMORPH captured rainfall intensity at the beginning of the event, however, did not well 

capture rainfall during the second precipitation occurrence, thus leading to an 

underestimation of the second peak. Similar results are found with Events 3, 5, and 6 
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where TMPA and CMORPH are able to capture the peak magnitude of Q, though timing 

is delayed for Events 3 and 5.  

 

 
Figure 17. Hyetograph of the eight hydrological extreme events based on observations of daily 

precipitation intensity and corresponding hydrographs of simulated streamflow  

 

PERSIANN exhibited the best performance for Event 4, able to capture the peak 

magnitude and timing of Q. During Event 4, PERSIANN captures the intermittent intense 
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precipitation over the duration of the event, whereas TMPA, and to a lesser degree 

CMORPH, cannot match hourly intensities observed from gauges early on in the event, 

and overestimate precipitation in later stages of the event’s duration. All three SPPs are 

unable to capture precipitation intensity during Event 7 and thus significantly 

underpredict peak Q. Though Event 7 and Event 8 are classified as 24-hour events, and 

the average event accumulation (mm) and daily intensity (mm/d) are higher for Event 7, 

the peak Q simulated for Event 8 is greater. This is mostly likely due to the seasonal 

performance built into the HSPF model. Event 8 occurs in December whereas Event 7 

occurs in September. HSPF inherently generates greater runoff from the watershed from 

reduced infiltration rates during cooler months (December – March), thus produces 

higher simulated Q than in warmer seasons.  

To quantify the error associated with the peak magnitude of Q for each event, Ep 

is determined and averaged among all six evaluation points. Figure 18 displays the mean 

error of peak SPP-simulated Q in comparison to gauge-simulated Q. The most significant 

error in peak is associated with Event 1 where both TMPA and CMORPH significantly 

overestimate the peak magnitude at several evaluation points. The overestimation of the 

peak magnitude Q results from TMPA and CMORPH both estimating a higher 

precipitation accumulation during Event 1 than observed at the rain gauges. Except for 

Event 4, PERSIANN tends to underestimate peak magnitude of Q for all events. Aside 

from Event 6, results from TMPA and CMORPH are fairly consistent which is expected 

since they are based on similar input satellite retrievals to estimate precipitation. The 

inconsistency in peak magnitude of Q between TMPA and CMORPH for Event 6 is 
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attributed to the temporal resolution of the two products, 3-hour and 0.5 hour, 

respectively. In the three-hour window of TMPA, the duration of precipitation intensity is 

overestimated for TMPA when compared to CMORPH which then resulted in a higher 

simulated peak.  

 

 
Figure 18. Mean peak error between gauge-simulated and SPP-simulated streamflow 

 

5.3.3 Error Analysis of Simulated Streamflow and Water Quality Indicators  

To assess model performance in simulating Q and water quality indicators 

between gauge-simulated output and SPP-simulated output, three error metrics are used: 

CC, rB, and rRMSE (Figures 19-21, respectively). Error is measured at the daily timestep 

and evaluated at six evaluation points over the duration of the defined event for Q, TW, 

and concentrations of TSS, DO, BOD, and nutrients OP, TP, NH4-N, NO3-N. Results 

indicate fairly good agreement between gauge- and SPP-simulated Q for TMPA and 
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CMORPH (CCs between 0.8-1.0) aside from Event 4, which is missed by all SPPs. The 

CC of PERSIANN-simulated Q is generally lowest among SPPs, due to its inability to 

accurately measure stratiform precipitation between intense periods of precipitation 

during an event. rB varies significantly for Q indicating SPPs either under- (negative) or 

over- (positive) predict Q. Highest rB errors for TMPA and CMORPH are 225% and 

150%, respectively, and -100% for PERSIANN which all occur with Event 1. Events 2 

and 5 have good agreement between gauge- and SPP-simulated Q. rRMSEs are 

somewhat consistent between SPPs for each event, however, high rRMSEs for TMPA 

and CMORPH are noted for Event 1, whereas the rRMSE of PERSIANN is fairly 

consistent between events. The high rRMSE values associated with Event 1 for TMPA 

and CMORPH are likely due the SPP’s ability, as a gridded product with larger spatial 

resolution, to pick up localized precipitation, where some rain gauges did not record the 

same precipitation intensity during the event. 

Correlations of water quality indicators vary considerably, however, TW has the 

strongest positive linear relationship compared to other indicators evaluated in this study. 

Strong correlations are attributed to in-stream temperature being naturally dependent on 

ambient air temperature conditions with precipitation, and thus Q, having a lesser impact 

of TW. Correlations fall between 0.8 to 1.0 for TMPA and CMORPH for all events 

except for Event 4. PERSIANN-simulated TW shows weaker correlations, especially for 

Events 5, 6, and 7. PERSIANN shows poor skill with simulating Q during these three 

events which indirectly impacts TW. rB and rRMSE for TW are also lowest (better 
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agreement) among all simulated output indicating that TW is more impacted by ambient 

air temperature than precipitation. 

SPP-simulated TSS, a flow-dependent variable, has the weakest relationship to 

gauge-simulated TSS for all water quality indicators, with CMORPH performing slightly 

better than TMPA and PERSIANN. PERSIANN presents negative correlations during 

Events 1, 4, and 6 and generally performs worse than both TMPA and CMORPH, aside 

from two events (Events 5 and 7). Event 5 is characterized by a multi-day duration and 

lower-intensity precipitation than other events evaluated in this study. While PERSIANN 

misses the magnitude of peak TSS, CMORPH and TMPA both overpredict it. Event 8 

presents a high correlation, and low rB and rRMSE for SPP-simulated TSS indicating 

that all three SPPs well capture TSS concentrations, likely due to the short duration of the 

event (24 hours) and the high skill of SPP-simulated Q, which directly influences TSS, 

especially during early stages of a storm event. In a study across the same watershed, 

Solakian et al. (2019) found a direct relationship between simulated Q and TSS 

concentrations, with peaks well represented in both TMPA and CMORPH simulations; 

however, TSS concentrations tend to be low throughout warmer months aside from a few 

instances where intense precipitation is captured and translated into peak Q. 

Correlations of DO between SPP- and gauge-simulations during a 5-year 

continuous period are 0.81-0.85 (Solakian et al., 2019) indicating good agreement on a 

continuous basis. Correlations of event-based simulations suggest that model skill varies 

by event with majority of correlations above 0.8 for both TMPA and CMORPH, with a 

few exceptions. PERSIANN exhibits overall inferior performance for simulated DO 
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concentrations aside from Event 4. Both TMPA and CMORPH missed the peak Q for 

Event 4 whereas PERSIANN was able to well capture the timing and peak magnitude of 

Q, thus translating into a higher correlation of DO for Event 4 when compared to the 

other SPPs. Both rB and rRMSE for DO are much lower compared to other water quality 

indicators, with the exception of TW. This relatively small change in DO concentrations 

is not associated with precipitation, but rather DO is more temperature-dependent which 

is evident from seasonal fluctuations of DO concentrations. 

Correlations of BOD appear to mimic TSS, though rB and rRMSE of SPP-

simulated BOD vary considerably. CMORPH outperforms TMPA, and both CMORPH 

and TMPA significantly outperform PERSIANN aside from Event 5, where PERSIANN 

outperforms other SPPs. From a seasonal perspective, simulated BOD concentrations 

increase in warmer periods and drop during cooler periods following patterns associated 

with TW, yet this indicator also appears to be influenced by TSS concentrations during 

peak events.  

Nitrogen-based nutrients, NH4-N, and NO3-N, are investigated based on a 

comparison of SPP-simulated to gauge-simulated concentrations. SPP-simulated NH4-N 

and NO3-N present similar correlations to TSS, as well as consistent rB and rRMSE 

values, aside for rB values for NH4-N for Event 1 which present an inverse relationship. 

SPP-simulated NO3-N correlations, rBs, and rRMSEs present similar results among the 

three SPPs indicating that the spatial and temporal differences of SPPs have little impact 

on simulation skill. 
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Figure 19. Correlation coefficients of streamflow and water quality indicators between gauge-

simulated and SPP-simulated output  

 

Two phosphorus-based compartments are investigated in this study: TP and OP. 

The Occoquan Watershed model, built with precipitation input at 87 individual segments, 

is able to well capture changes of simulated nutrient loads due to changes in precipitation 

input from the four data sources: rain gauges, TMPA, CMORPH, and PERSIANN. The 

behavior of TP and OP concentrations follow similar agreement between SPP- and 
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gauge-simulations as with TSS, and have similar correlations. rB of TP and OP are 

inversely proportional to TSS which may be due to the influence of both insoluble 

(sediment-dependent) and soluble (precipitation-dependent) forms of phosphorous 

included in the model.  

 

 
Figure 20. rBs of streamflow and water quality indicators between gauge-simulated and SPP-

simulated output  
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Figure 21. rRMSEs of streamflow and water quality indicators between gauge-simulated and SPP-

simulated output  

 

Overall, all three SPP-simulated TP and OP outputs are fairly consistent with no 

clear indication of one outperforming another. The one exception to consistence in 

performance is PERSIANN-simulated TP and OP (rB = +140% and +160%, 

respectively) for Event 1. These results suggest that, while TP and OP may be sediment-

dependent indicators most likely tied to land use conditions in the watershed and the 
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spatial and temporal differences in precipitation have a low impact on simulated TP and 

OP concentrations. 

5.4 Conclusions 

This work investigates the performance of three SPPs of different spatial and 

temporal resolutions (TMPA, CMORPH, and PERSIANN) during extreme 

hydrometeorological events. First, the three SPPs are evaluated on their ability to 

estimate rainfall intensity and its temporal and spatial characteristics during eight extreme 

events. Next, a hydrological model, calibrated using a dense rain gauge network, is 

forced with the SPPs to simulate streamflow and water quality in the Occoquan 

Watershed during 5 years. Eight extreme events within the study period are identified 

according to the 95th percentile of daily precipitation recorded by rain gauges during the 

study period. Event durations span from 24 to 120 hours. Event-based error is measured 

at the daily timestep and evaluated at six evaluation points for Q, TW, and concentrations 

of TSS, DO, BOD, and nutrients OP, TP, NH4-N, NO3-N. 

Results indicate fairly good agreement between gauge- and SPP-simulated Q for 

TMPA, whereas PERSIANN-simulated Q is generally lowest among SPPs, due to its 

inability to accurately measure stratiform precipitation between intense periods of 

precipitation during an event. The skill of SPP- to gauge-simulated water quality 

indicators vary considerably. However, TW has the strongest agreement compared to 

other indicators evaluated in this study. SPP-simulated TSS, a flow-dependent variable, 

has the weakest relationship to gauge-simulated TSS among all water quality indicators, 

with CMORPH performing slightly better than TMPA and PERSIANN. Strong 
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agreement of TW simulations is attributed to in-stream temperature being naturally 

dependent on ambient air temperature conditions with precipitation, and thus Q, having a 

lesser impact. For both DO and BOD, event-based simulations suggest that model skill 

varies by event though SPP-simulated output shows overall good agreement to gauge-

simulated output, with a few exceptions. PERSIANN exhibits overall inferior 

performance for simulated DO and BOD concentrations. For phosphorus-based nutrient 

simulations of TP and OP, all three SPP-simulated TP and OP outputs are fairly 

consistent with no clear indication of one outperforming another suggesting that while TP 

and OP may be sediment-dependent indicators most likely tied to land use conditions in 

the watershed and the spatial and temporal differences in precipitation have a low impact 

on simulated TP and OP concentrations. Nitrogen-based nutrients, NH4-N, and NO3-N, 

present similar results among the three SPPs indicating that the spatial and temporal 

differences of SPPs have less of an impact on simulation skill that other water quality 

indicators. 

Overall, this study demonstrates that the spatiotemporal variability of SPPs, along 

with their different algorithms, are capable of predicting the characteristics of streamflow 

and water quality simulations during hydrometeorological extreme events. However, 

there are limitations to this study. Foremost, the study area, suburban Washington, D.C., 

is situated in a region characterized by a temperate climate and mild topographic 

variation with moderate precipitation intensity. Both climate and topography may have a 

significant impact on SPP performance. Secondly, this analysis was conducted in a single 

location utilizing only one hydrology/water quality model, i.e., HSPF. While this model 
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is well calibrated and has been validated to observation results, another model may 

respond in a different way to changes in streamflow and water quality indicators resulting 

from forcing precipitation inputs. Thirdly, the model was calibrated based on rain gauge 

data, which may not reflect the actual distribution, extents, or magnitude of precipitation 

in the watershed. Lastly, while this study provides a comprehensive evaluation of three of 

the most widely used SPPs, TMPA, CMORPH, and PERSIANN, it does not consider an 

exhaustive list of precipitation sources such as other SPPs, blended and reanalysis 

products, or radar data. Nonetheless, this work represents a novel approach to utilizing 

SPPs data for water quality modeling during extreme hydrometeorological events, which 

could be of critical importance in areas of the world where rain-gauge networks or 

monitoring stations are either sparse or not available altogether.  
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CHAPTER 6. CONCLUDING REMARKS 

This work presents a comprehensive framework for evaluating the performance of 

satellite-based precipitation products (SPPs) in a hydrologic model to simulate and 

estimate water quality indicators. This study investigates three SPPs based on different 

retrieval algorithms (the Tropical Rainfall Measuring Mission Multi-satellite 

Precipitation Analysis, TMPA 3B42-V7; the Climate Prediction Center’s CMORPH V1.0 

product; and the Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks Cloud Classification System, PERSIANN-CCS) using the 

Hydrologic Simulation Program FORTRAN (HSPF) hydrology and water quality model 

developed for the Occoquan Watershed, located in the northern Virginia suburbs of 

Washington, D.C., United States. This work represents a first attempt to utilize SPPs for 

water quality modeling, which could be of critical importance in areas of the world where 

rain-gauge networks or monitoring stations are unavailable. 

The research presented herein addresses the scientific questions posed at the onset 

of this study, as follows:  

1. How well do SPPs perform in estimating precipitation on a continuous basis and 

during extreme hydrometeorological events?  

The three SPPs, with different spatial resolutions and based on different retrieval 

algorithms are compared to gauge-based records over a 5-year period across the study 
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region. On a continuous basis, all three satellite products present moderate agreements 

with the reference precipitation; CMORPH presenting the best overall performance 

followed closely by TMPA, and PERSIANN presenting a comparatively inferior 

performance. SPPs show mixed performance skills with a seasonal dependence. 

Substantial differences are observed with moderate-intensity precipitation events, 

especially during winter, with both TMPA and PERSIANN grossly overestimating 

moderate-intensity precipitation. On the other hand, SPP estimates for high-intensity 

events are well predicted by PERSIANN but overestimated by TMPA. In the spring, all 

three SPPs tend to under-detect low-intensity precipitation. TMPA tends to under-detect 

low-intensity events and over detect moderate- and high-intensity events; however, it is 

much better able to detect low intensity events in warmer seasons. TMPA, CMORPH, 

and PERSIANN products are evaluated against gauge-based records for the eight extreme 

hydrometeorological events. Gauge-based measurements have the greatest measurement 

variation amongst all of the products, which is attributed to the nature (point) of the 

measurement. Interestingly, both TMPA and CMORPH tend to overestimate event-based 

rainfall accumulation for longer events and underestimate accumulation during shorter-

duration events, whereas PERSIANN consistently underestimates total event 

accumulation. In terms of maximum hourly intensity, gauge measurements far exceed all 

SPPs. However, PERSIANN, with a few exceptions, tends to better detect heavy 

precipitation in comparison to TMPA and CMORPH. 
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2. How well do SPPs perform in simulating streamflow and water quality indicators on 

a continuous basis and during extreme hydrometeorological events?  

The performance of SPPs in simulating streamflow and water quality is 

investigated on both a continuous basis and during eight extreme hydrometeorological 

events. SPP simulations of streamflow show that CMORPH outperforms both TMPA, 

and PERSIANN when compared to the reference simulation forced with gauge 

observations. CMORPH has the highest skill for daily streamflow across all evaluation 

points, nominally increasing as drainage area increases. SPP simulations of TSS show the 

lowest skill among the water quality indicators evaluated in this study. CMORPH shows 

the best performance among the SPPs, which generally all overestimate TSS, with a few 

exceptions. Simulated in-stream TW is well captured by all three SPP simulations with 

low error metrics. Both DO and BOD show a large spatial variability among the 

evaluation points of this study. Skills of all three SPPs are high for DO, however, a 

decreasing skill for each product is detected in the at some locations. In comparison to 

streamflow and TSS, the variability in the DO metrics is notably smaller, indicating that 

precipitation has moderate impact on DO than on other water quality indicators evaluated 

in this analysis. Similar to gauge-based simulations, a strong flux in concentrations is 

seen in warmer months, which also overlaps with streamflow low-flow periods. The SPPs 

show satisfactory skills for BOD. BOD concentrations increase in warmer periods and 

drop during cooler periods following patterns associated with TW, yet this indicator also 

appears to be influenced by TSS concentrations during peak events. Overall, all three 

SPP-simulated TP and OP outputs are fairly consistent with no clear indication of one 
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outperforming another. SPP-simulated NH4-N and NO3-N present similar correlations to 

TSS, indicating that the spatial and temporal differences of SPPs have impact on 

simulation skill. 

3. How does the performance of SPPs influence the propagation of error between input 

precipitation and simulated streamflow and water quality indicator output?  

This work evaluates the propagation of error in the precipitation input to that of 

the simulated water quality output from the Occoquan Watershed HSPF model. Results 

indicate that the HSPF model may have a dampening effect on the streamflow error for 

both TMPA and CMORPH; however, due to the poor quality of the PERSIANN product, 

its error is actually amplified through the model, with a positive dependency on basin 

scale. The model shows good performance when simulating TW, with TMPA and 

CMORPH generally outperforming PERSIANN. The error in precipitation is dampened 

when translated into TW and, as expected, basin scale has no influence on the 

precipitation-to-TW error propagation. Satisfactory model performance is also shown in 

simulated DO, with TMPA and CMORPH marginally outperforming PERSIANN. The 

propagation of systematic and random errors from precipitation to DO vary by season, 

with larger dampening effects in spring and summer for all three SPPs.  

This work, outlining a novel concept to utilize SPPs for water quality modeling, 

has the potential to be utilized in areas of the world where reference data is unavailable. 

Future research should evaluate the applicability of SPPs for simulating water quality in 

different regions, climates, and other hydrometeorological extremes such as droughts and 

long-term hydroclimatic changes. Additionally, different hydrologic and water quality 



109 

 

models may be used to simulate results, as well as using other precipitation products, 

such as re-analysis and blended products. 
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