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Multistrategy Task-Adaptive Learning

Ryszard S. Michalski
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Abstract

The development of multistrategy learning
systems should be based on a clear
understanding of the roles, and the applicability
conditons of different learning strategies. To
this end, the paper presents initial results on the
Inferential Learning Theory. that aims at
understanding the competence aspects of
learning processes. The theory views learning
as a goal-oriented process of modifying the
learner’s knowledge by exploring the learner’s
experience. Consequently, it analyzes learning
processes in terms of high-level patterns of
inference, called knowledge transmutations.
Several knowledge transmutations are
discussed in a novel way, specifically,
inductive and deductive generalization,
abstraction, concretion and abduction. A
methodology for rmultistrategy task-adaptive
learning (MTL), based on the theory, is briefly
discussed and illustrated by an example. A
MTL learner chooses a smategy dynamically,
according to the three factors: input
information, learner’s background knowledge
and the learning goal. The MTL aims at
integrating a range of leaming strategies, such
as abstraction, deductive generalization,
empirical and constructive induction, analogy,
abstraction and abducton.

Key words: learning theory, multistrategy
learning, induction, abduction, generalization,
abstraction, knowledge transmutaton.

1 Introduction

The last several years have marked a period of
great expansion and diversificaton of methods
and approaches to machine learning. Most of
the research has been oriented toward single-
strategy methods that apply one primary type
of inference and/or the computational
mechanism. Such methods include, for
example, learning decision trees or decision
rules from examples, explanation-based
generalization, deriving numerical equations
characterizing a set of data, neural net learning
from examples, genetic algorithm based
learning, empirical conceptual clustering, and
others. The research progress on these and
related topics have been reported by many
authors, among them Laird (1988), Touretzky,
Hinton and Sejnowski (1988), Goldberg
(1989), Schafer (1989), Segre (1989), Rivest,
Haussler and Warmuth (1989), Fulk and Case
(1990), Porter and Mooney (1990), Kodratoff
and Michalski - (1990), and Bimbaum and
Collins (1991).

With the growing understanding of the
capabilities and limitations of single-strategy
methods, there has been an increasing interest
in multistrategy learning systems that integrate
two or more inference types and/or
computational mechanisms. Such systems take
advantage of the strengths of different learming
strategies, and thus potentially can be applied to
a much wider range of practical problems than
single-strategy systems. Among well-known
multistrategy systems (often called "integrated
learning systems") are Unimem (Lebowitz,



1986), Odysseus (Wilkins, Clancey, and
Buchanan, 1936), Prodigy (Minton et al,
1987), DISCIPLE-1 (Kodratoff and Tecuci,
1987), GEMINI (Danyluk, 1987 and 1989),
OCCAM (Pazzani, 1988), IOE (Dietterich and
Flann, 1988), and KBL (Whitehall, 1990).
Most of these systems are concerned with
integrating an empirical inductive method with
an explanation-based learning method. Some,
like DISCIPLE, also include a simple method
for analogical learning. The integraton of these
methods is typically done in some predefined,
problem-independent way, and without any
clear theoretical justification.

An open and very challenging problem is to
integrate a whole spectrum of learning
strategies in a problem-dependent way, and
according to sound theoretcal foundations. By
a problem-dependent integration we mean an
integration in which leamning strategy, or a
combination thereof, is automatically adapted to
changing leaming situations.

Humans are clearly able to apply a great variety
of learning strategies in such a flexible fashion,
according to the demands of the situation.
Marching this ability emerges as a fundamental
long-term objective for machine learning
research. To this end, it is necessary to
understand the principles and trade-offs
characterizing different learning strategies, to
clarify their meaning and interrelationships, to
determine conditions for their most effective
applicability, and ultimately to develop a
unified theory of leaming strategies.

This paper reports some early results toward
such a goal. It outlines the Inferential Theory of
Learning (ITL) that analyzes and characterizes
learning processes in terms of high level
inference patterns that transform initial learner’s
knowledge to knowledge desired, that is,
knowledge satisfying a given learning goal.
These inference patterns, called knowledge
transmutations, represent different types of
knowledge transformation. The major goals of
the theory are to understand the properties of
different knowledge transmutations, as well as
their role and implementation techniques in
various learning methods and paradigms.

The theory strives to provide a conceptual basis
for analyzing diverse learning processes from
the viewpoint of their logical capabilities. Its

goals are 1o provide techniques for determining
the competence of leaming systems. These
goals differentiate the Inferential Learning
Theory from the Computational Learning
Theory that is concermned with computational
complexity of learning processes (e.g., Fulk ad
Case, 1990).

The competence aspects address such quesuons

‘as what types of knowledge the learner 1s able

to learn from what kinds of inputs, given
certain prior knowledge; what is the logical
relagonship berween the learned knowledge,
the input information and the learner's prior
knowledge; what types of inference and
knowledge transformations underlie different
learning processes, elc.

To present simply the proposed ideas, the
presentation consists of mainly conceptual
explanations and examples, rather than precise
definitions and formal expositions. The
presented work is an extension or a refinement
of previous ideas described in (Michalski,
1983, 1990a, & 1991).

2. Basic Tenets of the Inferential
Theory of Learning

Learning has been traditionally charactenzed as
a behavior change due to experience. While this
view 1s appealing due to its simplicity, it does
not provide many clues about how to actually
implement learning systems. To build a
learning system, one needs to understand, in
computational terms, what types of knowledge
changes occur in learning, and how they are
accomplished in response to different types of
experience.

To provide answers to such questions, the
Inferential Theory of Leaming (ITL) assumes
that learning is a goal-guided process of
modifying the learner’s knowledge by
exploring the learner's experience. Such a
process can employ any type of inference--
deduction, inducton or analogy. This process
always involves some “background
knowledge,” that is, the goal-relevant parts of
the learner’s prior knowledge. Consequently,
the informaton flow in a learning process can
be characterized by a general schema shown in

Figure 1.



Figure 1. An illustraton of a gcncz:al learning
process.

In each learning cycle, the learner analyzes the
input information in terms of its background
knowledge and its goals, and generates new
knowledge and/or a better form of knowledge
(depending on the learning goal). The results
are fed back to the learner’s “knowledge base,”
and may be used in subsequent learning
Processes.

The Inferential Learning Theory states that in
order to learn, an agent has to be able 10
perform inference, and has to possess memory
that supplies the BK needed for performing the
inference and records the results of the
inference for future use. Without either of the
two components—the ability to reason and the
ability to store and retrieve information from
memory—no learning can be accomplished.
Thus, one can write an “equation’:

Learning = Inference + Memory

It should be noted that the termn “inference™ 1s
used here in a very general sense, meaning any
type of reasoning or knowledge
transformation. The double role of memory, as
a supplier of background knowledge, and as a
storer of the results, is often reflected in the
organization of a learning system. For
example, in a neural net, background
knowiedge resides in the structure of the

network (in the type of units used and in the
way they are interconnected), and in the ininal
weights of the connections. The learned
knowledge usually resides only in the new
values of the weights. In a decision wee
learning system, the BK includes an atuzibute
evaluation procedure and knowledge about the
domains of the attributes. The knowledge
created is in the form of a decision tree. In 2

“self-contained” rule learning system, all

background knowledge and the learned
knowledge would be in the form of rules. A
learning process would involve modifying
prior rules and/or creating new ones. The
uitimate learning capabilities of a learning
system are determined by what it can or cannot
change in its knowledge base during a learning
Process.

The key idea of Inferential Leaning Theory 1s
that the processes involved in accomplishing a
learning goal can be characterized in terms of
high-level inference patterns, called knowledge
transmutations. A knowledge transmutation
takes as arguments the input and leamner’s
background knowledge, and generates another
piece of knowledge. This paper discusses
several basic knowledge transmutations,
specifically, generalization, abstraction,
similization, and thelr counterparts,
specializaton, concredon, and dissimilization.

Knowledge transmutations represent different
reasoning methods that transform the input
knowledge into derived knowledge using the
learner’s prior knowledge. For example, an

~empirical inductive generalization is a

transmutation that ransforms concept examples
and relevant domain knowledge 1nto a concept
description that is expressed in the same
description space as the initial examples. A
constructive generalization transfers concept
examples and relevant learner’s knowledge into
concept descriptions expressed in another
description space (Michalski, 1983; Wnek and
Michalski, 1991a). An explanation-based
generalization (Mitchell, Keller and Kedar-
Cabelli, 1986) can be viewed as a
transmutation (“constructive deductive
generalization™) that takes as arguments an
example in the “operational description space,”
a concept description in an “abstract”
description space, and relevant domain
knowledge, and derives from them a concept



description in the “operational” description
space. Sec. 3 discusses several basic
knowledge transmutations. The main topic of
the Inferenual Learning Theory is to analyze
and explain diverse learning processes in terms
of various knowledge transmutations.

Knowledge mansmutations represent classes of
transformations that can be implemented in
many different ways. Depending on the
knowledge representation. and the
computational mechanism, knowledge
transmutations are performed explicitly or
implicitly. In symbolic learning systems,
transmutations are typically implemented in a
more or less explicit way, and executed in steps
that are conceptually comprehensible. For
example, the INDUCE learning system,
performs inductve generalization according to
certain generalization rules---selective or
constructive, and each rule represents a
conceptually understandable transformation
(Michalskd, 1983).

In subsymbolic systems, e.g., neural
networks, transmutations are performed
implicidy, in steps dictated by the underlying
coroputational mechanism. These steps do not
correspond to any conceptual operations. For
example, a neural network may generalize an
input example by performing a sequence of
small modifications of weights of internode
connections. These weight modifications are
difficult to explain in terms of explicit inference
rules, nevertheless, they c¢an produce a global
effect equivalent to generalizing a set of
examples. Such an effect can be demonstrated
by a diagrammatic visualization employing a
planar representation of a multidimensional
space. For example, a diagrammatic
visualization of inductive generalization
performed by a neural network, genetic
algorithm, and symbolic learning systems is
described by Wnek and Michalski (19910 - this
volume).

The Inferential Leamning Theory postulates that
a learning process depends on the input
information (input), background knowledge
and the learning goal. The three components
constitute a learning task.

An input can be sensory observations, or
knowledge from some source, e.g., a teacher

or the previous leaming step. Such knowledge
can be in the form of stated facts, concept
instances, previously formed generalizations,
conceptual hierarchies, certainty measures, or

any combinations of such types.

In humans, declarative (“conceptual’)
knowledge and procedural knowledge
(“skills”) seem to reside in different neural
structures, and are acquired in different ways.
There is a “conscious” access to conceptual
knowledge, but there is no such access to the
skill knowledge. Therefore, acquiring
conceptual knowledge is based primarily on an
explicit reasoning and memorizing of the
results (“studying”). On the other hand,
acquiring skills is based primarily on practice
and exercise without much reasoning. A
computer system can store and access both
declarative and procedural knowledge in the
same way. Consequently, acquiring these two
forms of knowledge by a computer program
can be done by similar mechanisms.

Given an input, and some background
knowledge, a learner could potentally generate
an infinite number of inferences. To limit the
proliferation of choices, a learning process
needs to be guided by a learning goal. A
learning goal determines what parts of prior
knowledge are relevant, what knowledge is to
be acquired, and how the leamned knowledge 1s
evaluated.

There can be many different types of learning
goals, €.g., to solve a problem, to perform an
action, to “understand” observed facts, to
concisely describe given data, to discover a
regularity in a collection of observations, to
explain or express a regularity in terms of high
level concepts, to confirm a given piece of
knowledge, etc. A learner may have more than
one goal, and the goals may be conflicting. In
such situations, the relative importance of
different goals affects the decision about the
amount of effort to be extended in pursuing any
of them. A weakness of some machine leamning
research is that it considers learning processes
separately from the learning goal(s), and as a
result many developed systems are method-
oriented rather than problem-oriented. Studying
the role of goals in learning is an important
research topic for machine learning.



In sum, Inferential Learning Theory states that
learning is a process of transforming given
knowledge into desired knowledge by using
input information and background knowledge.
Such ransformations can be characterized in
terms of high-level inference patterns called
knowledge ansmutagons.

3. Types of inference

The central aspect of any knowledge
transmutation is the type of underlying
inference. This is so, because the type of
inference characterizes a transmutation along
the truth-falsity dimension, and thus determines
the validity of its conclusion. In a learning
process, any type of inference may be
involved. Consequently, a complete learning
theory has to include a complete theory of
inference. Such a theory of inference has to
account for all possible types of knowledge
ransformations. To this end, Figure 2 presents
an attempt to schematically illustrate all major
types of inference.

The first classification is to divide inferences
into two basic types: deductive and inductive.
In defining these forms, many conventional
approaches do not distinguish between the
input information and the reasoner’s
background knowledge. Such a distinction, is,
however, important for characterizing learning
processes, and leads to a more adequate
descriptions of them. To define these forms of
inference in a language-independent way, let us
consider an entailment:

PUBK I= C (1)

where P stands for a set of statements, called
premise, BK stands for the reasoner's
background knowledge, and C stands for a set
of statements, called consegquent.

Deductive inference is deriving consequent C,
given P and BK. Inductive inference 1is
hypothesizing premise P, given consequent C
and BK. Thus deduction can be viewed as
“tracing forward” the relationship (1), and
induction as “tracing backward” this
relationship. Because the relationship (1)
succinctly explains the relationship between
two basic forms of inference, it will be
subsequently characterized as the “fundamental
equation” for inference. |

According to the above formulatdon, deduction
is a truth-preserving inference, and inducton 1s
a falsity-preserving inference. The latter means
that if C is not true, then P cannot be true.

In a general view of deduction and induction
that captures also their approximate or
commonsense forms, the “strong” entalment |=
may be replaced by a “weak” entailment. A
weak entailment may be plausible, probabilistic
or partial. The difference between a “strong”
(valid) and “weak” entailment leads to another
major classification of types of inference.
Specifically, inferences can be universal
(strong) or contingent (weak). Universal
inferences assume the “strong” entailment, and
contingent inferences assume the “weak”
entailment. Consequently, universal deductive
inferences are “strongly” truth-preserving, and
universal inductive inferences are “stongly”
falsity-preserving. Contingent deductive
inferences are “weakly” truth-preserving, and
contingent inductive inferences are “weakly”
falsity-preserving.

To illustrate a universal inference, suppose that
BK is “If all elements of a set X have a
property g, then any specific element of X must
have the property q.” Such knowledge is
universal, because its truth stems from the
intrinsic meaning of the statements involved,
and does not depend on the specific domain. If
an input is “All elements of the set X have
property q and x is an element of X,” then
deriving a statement “x has property q” is a
universal deductve inference.

Suppose now that BK contains the same rule as

before plus a statement “x is an element of X.,”
and the input is “x has property q.”
Hypothesizing the statement (premise P) “All
elements of X have the property q” is a
universal (empirical) induction. If this
statement is true, then the input must be true in
the context of BK. The inference is falsity-
preserving, because if the input is not true (x
did not have the property q), then the
hypothetical premise must be false. As another
example, assume that BK is “All elements of X
have property q” and an input is “X has

property q.” Hypothesizing the statement “x is
a member of X is also a universal induction. If
the derived statement is true, then the input
must be true in the context of BK. Again, if the
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Figure 2. A classification of major types of inference.

Input is not true, then the conclusion could not
be true.

Contingent inferences use knowledge (in the
input or BK) that represents some world
knowledge that is not totally certain. It can be
in the form of probabilistic dependencies,
plausible implications, partial dependencies,
etc. The contingency of such reladonships is
usually due to the fact that they represent
incomplete, imprecise or only partially cormrect
information about all the relevant factors.
These relationships may hold with different
“degrees of strength.” The conclusions from
inferences based on contingent dependencies
(even using valid rules of inference) are
therefore uncernain, and may be characterized
by different “degrees of belief” (probabilites,
degrees of truth, likelihoods, etc.). They also
usually hold in both directions, although not
with the same strength in’each direction
(Collins and Michalskt, 1989). For example,
“If there is fire, then there is usually smoke” is
a (bidirectional) contingent dependency. If one
sees fire, then one may derive a conclusion that
there may be smoke. This is a contingent
deduction. The derived conclusion, however,
is not certain. Using a reverse direction of
reasoning (“tracing backward” the above
dependency), observing smoke, one may
hypothesize that there is fire. This is a
contingent induction or abduction. It is also an
uncertain inference. Notice that in the latter
case, if the input is false, the degree to which
the conclusion is false depends on the degree to
which the dependency is true. |

In the above example both conclusions are
uncertain, and this might suggest that there is

no principal difference between contingent
deduction and abduction. These two types of
inferences are different if one assumes that i=
in (1) indicates a causal ordering, i.e., P is
viewed as a cause, and C as a consequence.
Contingent deduction derives a plausible
consequent, C, of the causes represented by P.

-Abduction derives plausible causes, P, of the

consequent C. Contingent deduction can thus
be viewed as “tracing forward,” and abduction
as “tracing backward” such contingent,
causally-ordered dependencies.

In sum, both contingent deduction and
contingent induction are based on domain-
dependent relationships. Contingent deducton
produces likely consequences of given causes,
and contingent induction produces likely causes
of given consequences.

Universal deductive inference is strictly truth-
preserving, and universal induction is stricdy
falsity-preserving (if C is not true, then the
hypothesis P cannot be true either). A universal
deduction thus produces a provable (valid)
consequent from a given premise in the context
of BK. A universal induction produces a
hypothesis that logically entails the given
consequent in the context of BK (though the
hypothesis itself may be false). Contingent
deduction is truth-preserving, and contingent
induction is falsity-preserving only to the extent
to which contingent dependencies involved in
reasoning are true.

The intersection of deduction and induction

- {thatis a truth-preserving and falsity-preserving

inference) represents an equivalence-based
inference. Analogy can be viewed as an



extension of equivalence-based inference (a
“similarity-based’ inference). An analogy can
be characterized as a combination of induction
and deduction combined. This is why analogy
occupies the central area in the diagram.
Induction is involved in detecting an analogical
match (i.e., in determining the properties
and/or relations similar for the two analogs),
whereas deduction uses the hypothesized
analogical match to derive unknown properties
of the target analog.

4. Types of induction

As mentioned above, universal induction
produces a premise that together with BK)
tautologically (strongly) implies a given
consequent. The tautological implication stems
from the set-superset relationship. On the other
hand, contingent inducton produces a premise
that together with BK only weakly implies the
consequent. Such a case occurs when a
generalization only approximately describes the
facts.

Induction underlies two types of knowledge
transmutations: inductive generalization and
inductive specialization.

Inductive generalization is central 0 many
learning processes. It transfers knowledge of
properties of a subset into knowledge of
properties of a set. Such a transfer can be done
without changing the description space, or with
changing the description space (in the latter
case the generated knowledge may involve
terms not present in the input descriptions).

In the first case we have an empirical inductuve
generalization, and in the second—constructive
inductive generalization. For example,
transfering the input “bean I, bean 2, and bean
3 from bag B are white” into a hypothesis “All
beans in bag B are white” is an empirical
inductive generalization. Notice that if the
hypothesized premise “All beans in bag B are
white,” is true, then the given consequent (i.e.,
bean 1, bean 2, and bean 3 from bag B are
white) must necessarily be true. Thus, the
fundamental equation for inference (1) is
satisfied without having to involve BK. (For an
illustration of constructive generalization, see
Figure 3.) Inductive specialization is a less
known transmutation. Suppose, for example,
that we are told that

“There is a University in Virginia designed by
Jefferson.” (2)

Suppose that knowing (2), and that
Charlottesville is an academic town in Virgima,
an agent hypothesizes that

“There is a University in Charlottesvilie
designed by Jefferson.” (3)

This is a form of inducton because if (3) 1s
true, then (2) must also be true (assuming the
background knowledge is true).

In the presented approach, inducton is viewed
as an inference opposite to deduction. It
produces premises that entail consequents,
e.g., explanations for the given facts. These
explanations can be in the form of
generalizations (theories, rules, laws, etc.),
causal explanations, or both.

Given a consequent C and non-trivial BK, the
fundamental equation (1) could be sausfied by
an infinite number of premises, but only few of
them may be of any interest. We are usually
interested only in “justifiable,” “plausible”
and/or simple hypotheses. Therefore, we
define an admissible induction by adding
additional constraints. An admissible inducuon
is defined as follows.

Given a consequent C and BK, determine a
premise P, consistent with BK, that satisfies
the fundamental equation

PUBKI=C (4)
and satisfies hyporhesis selection criteria.

In different contexts, the selection criteria have
been called a bias (e.g., Utgoff, 1980),a -
comparator (Poole, 1989), or preference
criteria {(Michalski, 1983). The selection
criteria represent extra-logical constraints that
specify how to choose among a potentially
unlimited number of candidate hypotheses.
Ideally, these criteria should reflect the
properties of a hypothesis that are desirable
from the viewpoint of the learner's goals.
Sometimes these criteria (or bias) are hidden in .
the description language used. For example, an
inductive program may use a descripdon
language that is limited to only conjunctive
statements involving attributes from a
predefined set. The selection criteria also may
be dictated by the method performing
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inducuon. For example, the method based on
generaiing decision trees is automatically
lirmited to using only operations of conjunction
and disjunction in the hypothesis
representaton.

There are three generally desirable
characteristics of a hypothesis: plausibiliry,
utiliry, and generaliry. The plausibility
expresses a destre to find a “true” hypothesis.
Because the problem is logically
underconstrained, the “truth” of a hypothesis
cannot be guaranteed in principle. To sadsfy
the equation (4), a hypothesis has to be
complete and consistent with regard to the input
facts (Michalski, 1983). Experiments have
shown, however, that in some situatons an
inconsistent and/or incomplete hypothesis may
give a better overall predictive performance
than a complete and consistent one (e.g.,
Bergadano et al., 1990). The utility criterion
requires a hypothesis to be simple to express,
easily implementable or easy to apply to an
expected set of tasks. The generality criterion
seeks a hypothesis that can predict a large
scope of new cases.

While the view of induction described above is
not universally accepted in machine learning
literature, it is consistent with many long-
standing thoughts on this subject going back to
Aristotle (e.g., Adler and Gorman, 1987;
Aristotle). Aristotle, and many subsequent
thinkers, e.g., Bacon (1620), Whewell (1857),
Cohen (1970) and others viewed induction as a
fundamental inference that underlies all
processes of creating new knowledge. They
did not limit it--what is sometdmes done--to
only inductive empirical generalization.

Generalizing the earlier mentioned distinction
between empirical and coanstructive
generalization, one can classify any form of
inducton into empirical and constructive. The
difference between the two is usually
characterized in terms of the amount of domain
knowledge involved in the process of leaming
(here, domain knowlédge means a part of
background knowledge that concerns the
specific topic of application). Empirical
induction uses little domain knowledge, while
constructive induction uses more domain
knowledge. A more precise way to characterize
this distinction is that in empirical induction the
description space for examples and for the

hypotheses is the same, while in constructive
induction these spaces are different.

Inductive inference underlies several important
transmutations. Examples of them are
presented in Figure 3. (To test whether an
inference is inductive, one needs to determine if
the input is entailed by the union of the

‘hypothesis and BK.) As mentioned earlier, in

the general formulation of induction, the union
of the hypothesis and BK may only weakly
(e.g., plausibly) entail the consequent. In this
case we have a contingent inducton. In a weak
entailment the hypothesis may be logically
inconsistent and/or incomplete in relation to the
input. In Figure 3, such a case is illustrated in
the example of constructive inductive
generalization.

5. Knowledge transmutations:
abstraction vs. generalization

As stated earlier, transmutations (also called
derivations) are patterns of inference which
take an input and some background
knowledge, and produce new knowledge. The
previous section gave examples of
transrnutations employing inductive inference.
Here we will look at some other
transmutations.

In general, a ransmutation involves a specific
type of inference, and makes a certain type of
change in the input knowledge. To be more
precise, let us define a knowledge module as a
set of sentences (e.g., in the first order
predicate calculus) that describe a set of
entdes. The set of entities described or referred

‘to by a module is called the reference ser. A

transmutation derives an output knowledge
module from an input medule and a given BK.
Different transmutations change different
aspects of the input module. Due to space
limitation, we will limit our attention only to
two types of changes, and to the corresponding
pairs of mutually opposite transmutations:

A. A change in the amount of information
(detail) conveyed by a description of a
reference set:

abstraction vs. concretion
B. A change in the size of the reference set
generalizarion vs. specialization



« Empirical_inducnve generglization
(Background knowledge limited)

Input: The “A girl's face” and “Lvow.
cathedral” are beautiful painting
by Dawski.

BK: none _.

Hypothesis:  All paintings by Dawski are

beantful.

o Constructive_inductive generalization
(Background knowledge intensive)

Input: The “A girl's face” and the
“Lvow cathedral” are beautiful
paintdngs by Dawsld.

BX: Dawski is a known painter.
Paintings are pieces of art.
Beautiful pieces of art by a
known painter are expensive.

Hyporhesis:  All paintings by Dawski are
egxpensive.

Input: John lives is Virgina.

BK: Fairfax is a town in Virginia

Hypothesis:  John lives in Fairfax.

« Abduction

Input: There is smoke in the house.

BK: Fire usually causes smoke.

Hypothesis:  There is a fire in the house.

. r FUCLIV on.: (e.g.,

constructive generalization plus abduction)

[nput: Smoke is coming from John's
apartment.
BK: Fire usually causes smoke.
- John's apartment 1s in the
Golden Key building.
Hypothesis: The Golden Key building is on
fire.

Figure 3. Examples of different inductive
fransmutations.

Elements of these pairs of transmutations often
co-occur, and this is why they are sometmes
confused with each other. For example,
abstraction is sometimes confused with
generalization. Below is an attempt to describe
more precisely these two pairs of
ransmutations.

Abstraction and concretion

Abstraction creates a less detailed descripnon of
a set of entities (i.e., the reference set) from a
more detailed description. The usual purpose of
abstraction is to reduce the amount of
informadon about a set of entittes {the reference
set) so that information relevant to the learner's
goal is preserved, and other information 1s
discarded. For example, abstraction may
transfer a description from one language to
another language in which the properties
relevant to the reasoner’s goal are expressed,
and other properties are not. An opposite
operation to abstraction is concretion, which
generates additional details about a given entity.

A very simple form of abstraction is to replace
in the description of an entity a specific attribute
value (e.g., the length in a centimeter) by a less
specific value (e.g., the length stated in
linguistic terms, such as short, medium and
long). A complex abstraction would be to take
a description of a computer in terms of
electronic circuits and connections, and change
it into a description in terms of the functions of
the major components.

Abstraction can be characterized as a
transformation:

D1(S) ---> D2(S) (5)
such that

INFg(D1,BK) 2 INFg(D2,BK)  (3)

where D1(S) and D2(S) are different
descriptions of the set S (in the same or
different languages), and INFg(Dj;) and
INFG(D3) are sets of all deductive inferences,
relevant to the goal G, that can be drawn about
S from D) and D3, respecdvely, using BK. If
the goal G does not require to remove any parts
from the descripdons Dt and D, then (5%} is
equivalent to saying that D implies Dz,
meaning that if an entity has properties stated
by Di, then it has the properties stated by D2-
The goal defines what parts of the description
are relevant and cannot be removed, and what
parts of the description can be ignored. Often,
the goal of an abstraction process is only
implicit.

To illustrate the above, consider a source
statement “John is 6 feet tall, weighs 190
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pounds, has blue eyes, and lives in Fairfax.”
A wansformaton of this statement into a targer
statement.” John is a big man who lives in
Virginia” is an abstraction. To make this
abstraction one needs BK that “Being 6 feet tall
and weighing 190 pounds classifies one to be
called big,” and that “Fairfax is a town in
Yirginia.” The implied goal here is that
information about the height, weight and the
place where a person lives is relevant to the
reasoner's goal, while the eye color is not. The
abstracted statement clearly tells us less about
John, but whatever can be inferred from it
about John, can also be inferred from the
original statement (given the same BK). The
target statement does not introduce or
hypothesize any more information about John.
The goal is an important component in a
general formulation of abstraction, because an
abstraction process may introduce informaton
that is incidental, and should not be taken into
consideration while making inferences about
the entity under consideration. For example,
from an abstract drawing of a person one
should not infer that the person is made out of

paper.
Generalization and specialization

Generalization extends the set of entities
described by a descripdon, i.e., the reference
set, and specialization reduces the reference set.
In order to tell if a2 given transformation is a
generalization, one needs to identify the
reference set in the initial description, and see if
the set was extended in the derived descripton.
Generalization can be characterized as a
transformation:

D1(51) —> D2(S52) (7)
such that

S2 =2 81 (7

-where D1(81) and D3(S32) are descriptions of

sets of enuties, S1 and 82, respectively, and Dy
implies D3,

The reason for the condition “Dj implies D9” is
that generalizing a set of descriptions usually
involves also a removal of information that is
not shared by individual descriptions, and this
is a form of abstraction. Only in a purely
cmpirical generalization Dj and D3 are the
same. A constructive generalization typically
involves abstraction.

Generalization is typically inductve, which
means that the extended set is inductively
hypothesized. Generalization can aiso be
deductive, when the more general statement 1s a
logical consequence of the more specific one.
For example, transforming a statement “Mary
lives in France™ into “Mary lives in Europe” 13
a deductive generalization, assuming
background knowledge “France is a part of
Europe.”

In this example, the first sentence characterizes
the set of "land parcels” called France as a place
where Mary lives. The second statement
applies this description to a larger set of
parcels, called Europe. Given background
knowledge that France is in Europe, one can
deduce the second statement from the first one.
The opposite operation to generalization 1s
specialization that reduces the reference set. A
typical form of specializadon is deductve, but,
as shown in section 3, there can also be an
inductve specializaton.

Example

To illustrate the difference between the
abstraction and generalization, consider a
statement d(S,v), saying that attribute
(descriptor) d takes value v for the set of
entities S. Let us wnite such a statement in the
form:

d(S)=v (8)

Changing (8) to the statement d(S) = v/, In
which v' represents a2 more general concept
(e.g., a parent node in a generalization
hierarchy of values of the atmbute d), is an
abstraction operation. Changing (5) to a
statement d(S') = v, in which S’ is a superset
of §, is a generalization operation. For
example, transferring the statement “color{my-
pencil) = light-blue” into “color(my-
pencil)=blue” is an abstraction operation.

Transforming the original statement into
“color(all-my-pencils) = light-blue” 15 a
generalization operation. Finally, transferring
the original statement into “coler(ail-my-
pencils)=blue” is both generalization and
abstraction. In other words, associating the
same or less inforrmation with a larger setis a
generalization operation; associating less
information with the same set is an abstraction
operaton.



In sum, generalizatdon transforms descriptions
along the set-superset dimension, and is
typically falsity-preserving. In contrasi,
abstraction transforms descriptions along the
level-of-detail dimension, and is typically tmuth-
preserving. Generalization often uses the same
description space (or language), abstraction
often involves a change in the representation
space (or language). The reason why
generalization and abstraction are frequently
confused may be atiributed to the fact that many
reasoning acts involve both of them.

In addition to the transmutations described
here, there are other types of ansmutatons,
for example, similization, dissimilization,
replication, deletion, selection and generation
(Michalski, 1991).

6. Learning strategies

The concept of “learning strategy” has been
used somewhat loosely in machine learning
literature, often synonymously with a general
method or a computational mechanism
employed in a learning process. An attempt o
make it more precise was done by Carbonell,
Mitchell and Michalski (1983) who defined a
learning strategy by the type of pnimary
inference used in a learning process. We will
slightly modify this characterizaton, assuming
that a learning strategy is defined by the type of
primary knowledge transmutation employed.
We will also use the terrn “substrategy” to
subclassify a strategy on the basis of
knowledge representation and/or the underlying
computational mechanism employed in it.
Thus, an empirical inductive generalization of
examples is a learning strategy. An inductuve
generalization of examples done by a neural net
is a learning substrategy. Leaming strategies
can be ordered on the basis of the complexity
of the primary knowledge transmutation
involved in them.

" The lowest learning strategy is rote learning (or
direct knowledge implantation) in which the
information from a source is copied directly
into the learner’s knowledge base. The primary
knowledge transmutation involved in this
strategy is replicarion. The next level strategy,
learning from instruction, involves selecting
parts or the knowledge supplied by a source
that is relevant to the learner (a selection

transmutation), and performing truth-
preserving transformations of it to fit the
learner's conceptual stucture (a reformulation
transmutation). The above two strategies
change only the form of the information
obtained from a source, but not its meaning.

Higher learning strategies require a learner to
perform correspondingly more compiex
“knowledge transmutations. In explanation-
based generalization the underlying
wansmutation is deductive generalization. In
learning by analogy or case-based learning, the
underlying transmutation is similization. In
learning causal explanations, it is abductive
derivation. In learning from examples, and
learning from observation and discovery, it is
inductive generalization.

7. Multistrategy Task-adaptive
Learning

The presented ideas provide a conceptual
framework for the multistraregy task-adapuve
learning (MTL) methodology that aims at
integrating a range of learning strategies.
According to the Inferential Learning Theory,
three fundamental factors affect a leaming
process: what information is provided to the
learner (i.e., input to the learming process),
what learner already knows that is relevant to
the input (i.e.,.background knowledge, BK),
and what the learner wants to accomplish (the
goal of learning). These three factors constitute
what we call a learning task. |

The underlying idea of MTL is that a learning

strategy should be tailored to the learning task
(Michalski, 1990; Tecuci and Michalski,
1991a,b). Given an input information, an
MTL system analyzes its relationship to BK
and the learning goal, and on that basis
determines a learning strategy. If an impasse
occurs, a new learning task is assumed, and the
learning strategy is determined accordingly.

An input to the MTL learner is assumed to be in
the form of logic-style statements, and is either
supplied by an external source, or by a
previous learning step. It is also assumed that a
learning goal is supplied from a supervisory
control system. A specific learning goal could
be, for example, to create a rule generalizing
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given facts, to reformulate a part of BK into a
more efficient knowledge, to determine new
knowledge on the basis of an analogy between
the input and past knowledge, 10 develop a
conceptual classification of facts, etc. In the
absence of a specific goal, a general learning
goal (a defaulr goal) is assumed. The general
goal is to derive any plausible and useful
information from the input, and assimilate it
within the BK.

In the first step of a learning process, the input
activates segments of the learner's prior
knowledge that are relevant to the input and the
learning goal. This step thus determines the
background knowledge (BK) for the learning
process. This is done by exploring the
“relevance relationship” between the input and
different knowledge structures in the leamer’s
knowledge base (Hieb and Michalski, 1991).
The knowledge base is assumed to be in the
form of and part hierarchies interconnected
by “traces” that link nodes of different
hierarchies. This knowledge representation is
called DIH (“Dynamically Interconnected
Hierarchies™; see Hieb and Michalski, 1991),
and is based on the theory of plausibie
reasoning introduced by Collins and Michalski
(1989). Because of space limitations, DIH is
not be discussed here. To give a simple
illustration of it, consider a statement “Tulips
grow in the Spring.” Such a statement would
be represented in DIH as a “trace™ linking the
node “tulips” in the type hierarchy of “Plants”,
with the node “grow” in the type hierarchy of
“actions,” and with the node “Spring” in the
hierarchy of “Seasons.”

The next step of the process is to determine the
type relationship between the input information
and BK. The method distinguishes five
different types of such a relationship. Below is
a characterization of these relationships, and a
brief explanation of the functions performed by
the learner.

1. The inpws represents new information

An input is “new” to the learner, in the sense
that it has no “entailment relationship™ with
any part of BK (neither subsumes or is
subsumed by it, nor contradicts it). The leaner
tries to identify parts of BK that are siblings
under the same node in some hierarchy (e. g.,
other examples of the concept represented by

the input). If this effort succeeds, the related
parts are generalized, so that they account now
for this input and possibly other information
stored previously. The resulting generalizatons
and the input facts are evaluated for
“importance,”” and those that pass an
importance criterion, are stored. If the above
effort does not succeed, the input 1s stored, and
the control is passed to case 4. Generally, this

" case involves some form of synthetic learning

(empirical learning or constructve induction),
or learning by instruction. .

2. The input is implied by, or implies a part of
BKX

This case represents a situation when a part of
BK accounts for the input, or is a special case
of it. The learner creates a derivational
explanatory structure that links the input with
the involved part of BK. Depending on the
learning task, this structure can be used to
create 2 new {“operational”) knowledge that is
more adequate for future handling of such
cases. If the new knowledge passes an
“importance criterion,” it is stored for future
use. This mechanism is related to the ideas on
the utility of explanation based-learning
(Minton, 1988). If the input represents a
“useful” result of a problem solving acdvity,
e.g., given state X, it was found that a useful

action is y,” then storing such a fact as arule is
a form of chunking used in SOAR (Laird,
Rosenbloom, and Newell, 1986). If the input
information (e.g., 2 rule supplied by a teacher)
implies some part of BK, then an “importance
criterion” is applied to it If the criterion Is
satisfied, the input is stored, and an appropriate
link is made to the part of BK that is implied by
it. In general, this case handles situations
requiring some form of analytic learning.

3. The input contradicts some part of BK

The system identifies the part of BK that is
contradicted by the input information, and then
attempts to specialize this part. If the
specialization involves too much restructuring,
and/or the confidence in the input 1s low, no
change to this part of BK is made, but the input
is stored. When some part of BK has been
restructured to accommodate the input, the
input also is stored, but only if it passes an
“importance criterion.” If contradicted
knowledge is a specific fact, this is noted, and
any knowledge that was generated on the basis
of the contradicted fact is to be revised. In



general, this case handles situations requiring a
revision of BK through some form of synthetic
Jearning or managing inconsistency.

4. The input evokes an analogy to a part of BK

This case represents a situation when the input
does not match any background fact or rule
exactly, nor is related to any part of BK in the
sense of case 1, but there is a similanty
petween the fact and some part of BK at a
higher abstraction level. In this case, matching
is done at this level of abstraction, using
generalized atrributes or relations. If the factis
“sufficiently important” it is stored with an
indication of a similarity (analogy) to a
background knowledge component, and with
the specification of the aspects (abstract
attributes or relations) defining the analogy.
For example, an input describing a lamp may
evoke an analogy to the part of BK describing
the sun, because both lamp and sun match in
terms of an abstract attribute “produces light.”

5. The input is already known to the learner

This case occurs when the input matches
exactly some part of BK (a stored fact, a rule or
a segment). In such a situation, a measure of
confidence associated with this part is updated.

Summarizing, an MTL leamner may employ any
type of inference. A deductive inference is
employed when an input fact is consistent with,
implies, or is implied by the background
knowledge; analogical inference is employed
when the input is similar to some part of past
knowledge at some lever of abstraction; and
inductive inference is employed when thereis a
need to hypothesize a new and/or more general
knowledge. |

8. A simple example

To illustrate simply some of the ideas described
above, let us use the widely-known example of
learning the concept of “cup” (Mitchell, Keller
and Kedar-Cabelli, 1986). The example is
deliberately oversimplified, so that major ideas
can be presented in a very simple way. Figure
4 presents various learning strategies
corresponding to different the inputs, BK and
the desired output. The top part of the figure
presents

-« an abstract concept descripdon {abstract CD)

for the concept *“cup,”
« the domain rules,

+ a descriptdon of an example of a cup (specific
object description or specific OD),

« an abstract object description (abstract OD),

« an operational concept description
(operational CD).

An abstract CD describes the concept of "cup”
in abstract terms, while an abstract OD
Aescribes a specific object in such terms. The
bottom part of the figure specifies different
learning strategies and the tasks to which they

apply.
9. Summary

The goals of this research are to develop an
underlying theoretical framework and a general
methodology for integrating major learning
strategies. The proposed Inferential Learning
Theory provides a new viewpoint for
characterizing the “competence” of learning
processes (what kind of knowledge a learner
can acquire from what kind of inputs). It
proposes to analyze learning in terms of
patterns of inference called transmutations.
Transmutations are characterized by the type of
underlying inference (induction vs. deduction),
and the type of change they perform in
knowledge. The paper discussed
transmutations defined by the change in the
reference set (generalization vs. specialization),
and by the change in the level-of-detail
(abstraction vs. concretion).

The presented ideas were used to outine a
methodology for multistrategy task-adaptive
learning (MTL). An MTL system determines
by itself which strategy or combination thereof
is most suitable for a given learning task. The
current aim of MTL is to integrate such
strategies as empirical and constructive
induction, abduction, deductive generalization,
abstraction, and analogy.

‘Many ideas discussed here are at an early stage

of development, and many topics remain for
further research. For example, future research
should develop a more precise definiton of
various transmutations, identify new ones, and
investigate different approches to their
integration. Another interesting topic is 10
analyze existing learning algorithms and
paradigms in terms of knowledge
transmutations. There is also a need to
develop a clear understanding of the areas of
the most effective applicability of different
learning methods and paradigms.
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Cup(obj)
Open-vessel(obj) Stable{obj) Liftable(obj)
Open-vessel(obj) Stable(obj) Liftable{ob])
Domain rules: * ? ?
Up-concave(obj) Has-flat-bottom(obj) Is-light(obj) &

Has-handle{obj)

[ ——————— PP R L R A W e . . ---t--.I--—--—-I---————----------—-----------F I e e S el T

Example (Specific OD):
Up-concave(CUP1) & Has-flat-bottom(CUP1) & Is-light(CUP1) & Has-handle(CUP1)
& Color(CUP1) = red & Owner{CUP1) = RSM & Made-of( CUPI) = glass &...<—-> Cup{CUP1)

E;slract Spe T e
Open-vessel(CUP1) & Stable(CUP1) & Liftable(CUP) & ... <---> Cup(CUP1)

-----“-“-—_u‘-h—' - — - S W A Sy v M S S S - ke el S N i A

Operational CD: _
Up-concave(obj) & Has-flat-bottom(obj) & Is-light(obj) & Has-handle(obj) <---> Cup(obj}

----—-q---F--ﬂ-------ﬂ------------_ -l - -—'l-H-----------tl-Q--------—-_------d-ﬂu---- . i e e o W N Al o S e e - S e e

Input + BK; | Learning Goal:
Example
Abstraction Domal.:n rules ‘> Abstract OD
: Example
Deductive
L Abstract CD -
Generalization DAl riles P’ Operational CD
Empirical Induction g:;(a:mples l< Operational CD
Constructive Induction Example(s)
(Case of Generalization) Domain rules |-< Abstract CD
Constructive Induction Example(s) ' ,
(Case of Abduction) Abstract CD l'< Domain rules
Multistrategy An integration of all the above, and their application according
Task-adaptive Learning to the learning task, i.e., the combination of the input, BK an
the learning goal.

OD and CD stand for object description and concept description, respectively. CUP1 stands for a specific cup; ot
denotes a variable, BK' denotes some limited background knowledge, e.g.. 2 specification of the value sets of th
attributes and their types. <-—-> stands for mutual implication. Symbols B and I< denote deductive and induc
transmutation, respectively.

Figwre 4. An illustration of different leamning strategies as applied to different learning tasks.
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