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Abstract

CYCLE BASES OF DIRECTED GRAPHS

Barbara A. Brown, M.S.

George Mason University, 2018

Thesis Director: Dr. Walter D. Morris, Jr.

Each cycle of a directed graph can be written as a linear combination of the circuits

of a cycle basis for that directed graph. We define two new classes of cycle bases and

show how each relates to the known classes of strictly fundamental cycle bases, zero-one

cycle bases and integral cycle bases. We provide examples showing the significance of the

Möbius band to constructing directed graphs, the bases of which are in some of these

classes and not in other classes.



Chapter 1: Introduction

The study of cycles and the characterization of cycle bases is a graph theory topic that

continues to grow and develop. Historically, graphs made an early appearance in puzzles

and games, yet today studying graphs is of interest to those in fields as varied as math-

ematics, computer science, management, engineering, economics, information technology

and biology. The circuits of a graph are easily recognized as the building blocks of cycles

so that cycle bases of directed graphs are important not only to graph drawing but also

to network analysis, chemical analysis and periodic scheduling.

1.1 Preliminary Definitions

Central to the study of cycle bases is the understanding of an undirected graph G which

is a pair of two types of objects denoted by G = (V,E) where V is a finite set and E is a

family of unordered pairs of elements of V . The set V contains vertices of the graph G,

sometimes called nodes or points of G. The unordered pairs of vertices are the edges of

the set E. The vertices v and w of an edge {v, w} can also be called the endpoints of the

edge. Notice that a pair of vertices {v, w} may occur more than once in E and is, in that

case, called a multiple edge. Thus distinct edges may be represented in E by the same

pair of vertices. A loop is an edge of the form {v, v} where v = w. A graph is simple

when E contains no multiple edges and no loops. We speak of the edge {v, w} being

incident to the vertices v and w. Likewise the vertices v and w are said to be incident

to the edge {v, w}. A vertex which is not incident to any edge is considered an isolated

vertex. The degree of a vertex v, denoted deg(v), is the number of edges that are incident

to the vertex v. Another way to define the degree of a vertex is the number of times the
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vertex occurs as an endpoint of an edge. Thus, the edge {v, w} is incident to the vertex

v so it contributes one to the deg(v) while the edge {v, v} is a loop joining v to itself and

contributes two to the degree of v. The set of edges which are incident to vertex v is

denoted by δ(v).

A graph is an abstract mathematical concept, however it can be given a geometric

representation as a diagram in the plane. We represent each vertex with a point or a dot,

and we represent each edge by a line segment or curved segment that joins a pair of dots.

A graph is called planar if it can be represented in the plane so that no two edges meet or

cross except at a vertex. Figure 1.1 is an example of an undirected graph that is planar.

s
v6

s
v5

s
v4

sv3sv2sv1

Figure 1.1: Undirected Graph

Suppose now that direction is assigned to the edges of an undirected graph G. A

directed graph D = (V,A) is a pair of two types of objects where V is a finite set and A

is a family of ordered pairs of elements of V . A directed graph is often called a digraph,

and the elements of V are called the vertices or nodes or points of the directed graph

D. The elements of A are called the arcs or directed edges of D. We think of the arc

(v, w) as leaving v and entering w. Consequently, we refer to the vertex v as the tail of

the arc and w as the head of the arc. It is often useful to denote an edge e by vw. We

will sometimes use the notation vw to abbreviate both {v, w} and (v, w). The notions

of multiple edge, simple graph and loop are the same for directed graphs as they are for

2



undirected graphs. A vertex v of a directed graph has two degrees. The indegree of a

vertex v denoted indeg(v) is the number of arcs that enter the vertex v or equivalently the

number of times the vertex v is the head of an arc. The outdegree of a vertex v denoted

outdeg(v) is the number of arcs that leave the vertex v or equivalently the number of

times the vertex v is the tail of an arc. The set of arcs entering v is denoted δ−(v) while

the set of arcs leaving v is denoted δ+(v). For a graph, whether undirected or directed,

we will use n to represent the number of vertices or nodes and m to represent the number

of edges or arcs. So we can write n = |V | and m = |E| or m = |A|.
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Figure 1.2: Directed Graph

It should be noted that given a directed graph D we can omit the direction of its

arcs and thus obtain an undirected graph G = G(D). This graph G(D) is called the

underlying graph of D, and every digraph has exactly one underlying graph. In contrast,

given an undirected graph G we can obtain a directed graph D by arbitrarily assigning

direction to each edge {v, w} of E and replacing it with either (v, w) or (w, v). If {v, w}

is a multiple edge then indeed some edges {v, w} can be replaced with (v, w) and some

can be replaced with (w, v). The resulting digraph D is considered an orientation of the

graph G. Given this orientation D should we reverse the direction of as few as one of its

arcs then the result is another orientation D′ of the graph G. An undirected graph can
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have many different orientations. Figure 1.2 shows an orientation of the complete graph

K4 on four vertices, a simple graph with all possible edges.

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) where V ′ ⊆ V , E′ ⊆ E

and the endpoints of an edge e ∈ E′ are the same as its endpoints in G. In a graph, a

sequence of edges

{x0, x1}, {x1, x2}, {x2, x3}, . . . , {xm−1, xm}

is called a walk from vertex x0 to vertex xm. If there is a walk from vertex x0 to vertex

xm then we say the two vertices are joined. We call x0 the initial vertex and xm the

final vertex. The edges of a walk may repeat, but if the edges of a walk are distinct then

the walk is called a trail. Furthermore, if a walk has distinct edges and distinct vertices

(except for the initial and final vertices), then the walk is called a path. If x0 6= xm then

the walk is considered open, and if x0 = xm the walk is closed. We define the length of a

walk to be the number of its edges. A walk that begins with initial vertex x0 and ends

with final vertex xm may also be denoted as follows

x0 − x1 − x2 − · · · − xm

which would be a walk of length m. The concepts of walk, trail and path as well as length,

initial vertex and final vertex are the same for a directed graph. This notation

x0 → x1 → x2 → · · · → xm

can be used to describe a walk in a directed graph with initial vertex x0 and final vertex

xm. Let i = 0, 1, . . . ,m − 1, and notice that while the sequence of vertices in the walk

of a digraph may be · · · → xi → xi+1 → · · · the arc may appear as either (xi, xi+1) or

(xi+1, xi) in the sequence of arcs. Thus, the arcs do not have to all be directed forward.

An undirected graph is connected if for each pair of vertices v and w there is a walk

joining v and w. A directed graph is connected if its underlying undirected graph is
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connected. A connected graph that contains no closed paths is called a tree. Thus, a tree

with n vertices has n − 1 edges. Given a subgraph G′ = (V ′, E′) of a connected graph

G = (V,E), G′ is a spanning tree of G if V ′ = V and G′ is a tree.

1.2 Cycle Bases Definitions

Precise definitions in our study as in all fields of mathematics are essential. The notion

of cycle for example can have a slightly different meaning in the study of graph theory

than in the study of matroids. We define a cycle in an undirected graph to be a subgraph

such that each vertex has even degree. Notice that the definition of cycle does not require

connectivity; however, each connected component of a cycle in an undirected graph can

be thought of as a closed trail. A circuit is a cycle that is connected and each of its

vertices has degree two. We might also think of a circuit in an undirected graph as a

closed path. Notice in [1] that the graph theorist may find these definitions of cycle and

circuit reversed.

We can represent a cycle of a directed graph with a vector where the entries of the

vector are indexed by the arcs of the digraph. Let k be a field. We represent the set of

cycles by a set of vectors in kA indicating that values from k are assigned to the arcs in

A. So kA contains |A|-tuples that are indexed by the arcs of the digraph. We will use the

convention that the arcs are ordered lexicographically. We define a k-cycle C in a digraph

D as a vector in kA such that for any vertex v in the cycle we have

∑
a∈δ+(v)

C(a) =
∑

a∈δ−(v)

C(a)

where C(a) denotes the component of cycle C indexed by arc a. This constraint, called

flow conservation, means that at any vertex in the cycle the total flow entering v is equal

to the total flow leaving v. The word flow provides a visual for the direction of the arcs of
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the directed graph together with the components of the cycle indexed by those arcs at the

vertices of the digraph. The constraint says that at each vertex of the digraph the sum

of the components of the cycle that are indexed by the arcs leaving the vertex is equal to

the sum of the components of the cycle that are indexed by the arcs entering the vertex.

For example, consider the cycle, using lexicographic order,

C = (C(v1v2), C(v1v3), C(v1v4), C(v2v3), C(v2v4), C(v3v4))

= (3,−1,−2, 2, 1, 1)

of the digraph D in Figure 1.2. Look at the vertex v3 of D. The set of arcs leaving

v3 is δ+(v3) = {v3v4}, and the set of arcs entering v3 is δ−(v3) = {v1v3, v2v3}. To

determine the flow leaving v3 we have
∑

a∈δ+(v3)
= C(v3v4) = 1. The flow entering v3 is∑

a∈δ−(v3) = C(v1v3) + C(v2v3) = −1 + 2 = 1 which satisfies the constraint. A similar

check can be made at each vertex in order to determine the desired flow conservation for

the cycle C.

The support of a cycle is the set of arcs a such that the component C(a) is nonzero.

We denote the support of a cycle C by C. Given a cycle C if C(a) ∈ {−1, 0,+1} for all

arcs a then C is a simple cycle. A simple cycle is a circuit if its support is connected and

non-empty, and for any vertex v ∈ V there are either two arcs in the support incident to

v or no arcs in the support incident to v. A circuit C of D uses arcs of A in the forward

and backward direction in that we think of traversing the arcs of the digraph with the

result being a directed circuit in which all arcs point in the same direction. Notice that

there are two ways to traverse any circuit. The incidence vector of a circuit C is a vector

in {−1, 0,+1}A with an entry +1 if the arc is used in the forward direction, an entry −1

if the arc is used in the backward direction and an entry 0 if the arc is not used in C

at all. As an example, the directed circuit C1 appearing in Figure 1.3 with sequence of

vertices v1 → v4 → v3 → v1 shows all arcs pointing in the same direction. The circuit
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C1 = (0,−1, 1, 0, 0,−1) of the digraph D of Figure 1.2 indicates the circuit uses arcs v1v3

and v3v4 in the backward direction and arc v1v4 in the forward direction and does not

use arcs (v1, v2), (v2, v3), (v2, v4) at all.
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Figure 1.3: Directed Circuit

We can form the node-arc incidence matrix for the digraph D = (V,A), a |V |x|A|

matrix with the nodes as labels for the rows and with the arcs as headers for the columns.

For each entry of the matrix (v, a) we place a 1 if the node is the tail of a, −1 if the node

is the head of a and 0 otherwise. So we can produce the node-arc incidence matrix



v1v2 v1v3 v1v4 v2v3 v2v4 v3v4

v1 1 1 1 0 0 0

v2 −1 0 0 1 1 0

v3 0 −1 0 −1 0 1

v4 0 0 −1 0 −1 −1



for the orientation of K4 in Figure 1.2. The null space of the node-arc incidence matrix

is the cycle space of D. In the example it is clear that the vector C2 = (1, 0,−1, 1, 0, 1)

is in the null space of the matrix. By inspection we see that the sequence of nodes
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v1 → v2 → v3 → v4 → v1 that the vector represents is a circuit of the digraph and thus is

in the cycle space of D. We denote the k-cycle space of a graph by Ck(D) where

Ck(D) = {C | C is a k-cycle of D}

which forms a vector space over k. We assume the field to be the rational numbers Q unless

stated otherwise. When the associated field is understood we may drop the decoration

from the notation and write simply cycle for k-cycle and C(D) for the cycle space.

Suppose all components of a cycle C are integral. Permitting a slight abuse of notation,

we call C a Z-cycle, thought of as C ∈ CQ(D) ∩ ZA. Now let D = (V,A) be a directed

graph, and let G = G(D) be the underlying undirected graph. For any Z-cycle C of D,

the projection of C to ZA2 is defined to be the Z2-cycle π(C) with π(C(a)) = (C(a) mod 2)

for a ∈ A. A cycle of an undirected graph G may be lifted from G to an orientation D of

G. Suppose C ′ is a cycle in G. We call C with C(a) ∈ {−1, 0,+1} for a ∈ A a lifting of

C ′ if C projects to C ′.

Notice that for any Q-cycle we can find a Z-cycle that is a scalar multiple of the Q-cycle.

Let C be a cycle in QA so that C =
(
a1
b1
, a2b2 , . . . ,

am
bm

)
for ai, bi ∈ Z, bi 6= 0, i ∈ {1, . . . ,m}.

Determine the least common multiple of {b1, b2, . . . , bm} and let LCM(b1, b2, . . . , bm) = l.

Then we can write the Z-cycle K here as K = lC = (α1, α2, . . . , αm) where αi = l · aibi ∈ Z.

Let C1 . . . Ck be cycles of an undirected graph G. The sum of the cycles, C1+ · · ·+Ck,

consists of all edges that are found in an odd number of Ci’s. The sum is again a cycle.

When we represent these cycles as vectors we notice that when summing the components

of the cycles an odd number of ones will sum to one while an even number of ones will

sum to zero since we are performing addition in Z2. As an example we look at the

graph in Figure 1.1. We order the edges lexicographically. It is easy to see for circuits

C1 = (1, 1, 0, 1, 0, 0, 1) and C2 = (0, 0, 1, 1, 1, 1, 0) of this undirected graph that their sum

C3 = (1, 1, 1, 0, 1, 1, 1) is again a cycle. While we work with linear dependences over Q for

8



directed graphs we work with linear dependences over Z2 for undirected graphs.

We define an undirected cycle basis as a minimal set of circuits such that any cycle

can be written as a sum of the circuits in the basis. A k-cycle basis is a set of circuits

forming a basis of the cycle space. For a connected digraph any cycle basis will consist of

ν := m− n+ 1 circuits as we will see in Theorem 1.1.

Unifying characteristics of cycle bases have led to the classification of at least seven

classes. Liebchen and Rizzi in [5] define a directed cycle basis of a directed graph D as a set

of circuits whose incidence vectors form a basis over Q of C(D). The definitions included

here of the other primary classes of cycle bases are based mainly on the definitions found

in [4].

Definition 1.1. A directed cycle basis B = {C1, C2, . . . , Cν} of a graph D is called a(n):

1. undirected cycle basis if the projections π(Ci) of the basic circuits Ci onto the un-

derlying undirected graph G(D) constitute a cycle basis of G(D);

2. integral cycle basis if each Z-cycle C of D can be written as an integer linear com-

bination of circuits in B, that is

∃λi ∈ Z : C = λ1C1 + λ2C2 + · · ·+ λνCν ;

3. zero-one cycle basis, if for every cycle C ′ of the undirected graph G(D) there exists

a simple cycle C of D that projects to C ′ and can be written as a linear combination

of the circuits in B with coefficients in {−1, 0,+1}, that is

∃C (π(C) = C ′ ∧ ∃λi ∈ {−1, 0,+1} : C = λ1C1 + λ2C2 + · · ·+ λνCν);

4. weakly fundamental cycle basis if there exists some permutation σ such that

Cσ(i) \ (Cσ(1) ∪ · · · ∪ Cσ(i−1)) 6= ∅,∀i = 2, . . . , ν;

9



5. strictly fundamental cycle basis if there exists some spanning forest T ⊆ A such

that B = {CT,a | a ∈ A \ T}, where CT,a denotes the unique circuit with support in

T ∪ {a} and with CT,a(a) = +1;

6. planar cycle basis if each arc is contained in at most two basic circuits and the basis

is undirected.

1.3 Preliminary Theorems

As noted earlier, the cycle space of a graph is the null space of the node-arc incidence

matrix. Its dimension then indicates the number of circuits in a cycle basis for a graph.

Theorem 1.1 which is proven in [4] gives the dimension of the cycle space.

Theorem 1.1. ([4]) The dimension of the k-cycle space of a graph G is given by

ν = m− n+K

where K denotes the number of connected components of G.

An important tool in the study of the cycle bases of a directed graph is the cycle

matrix. We define the cycle matrix that corresponds to a directed basis B of a directed

graph D as an m × ν matrix with columns that are the incidence vectors of the circuits

of the basis and rows that are indexed by the arcs of the graph. The cycle matrix is

determined uniquely up to the arrangement of the incidence vectors in the matrix and

the arrangement of the arcs in the matrix.

Let Γ be the cycle matrix corresponding to a directed cycle basis B of a directed graph.

Choose a spanning forest for the graph. Let Γ′ be the ν×ν submatrix of Γ formed by the

rows corresponding to the ν non-tree arcs. We will see that this ν × ν submatrix Γ′ plays

10



a role in the classification of B. Proofs of Lemma 1.1 and Lemma 1.2 can be found in [4].

These two lemmas lead to the definition of the determinant of a directed cycle basis.

Lemma 1.1. ([4]) Let B be a directed cycle basis of a directed graph and let Γ be the

corresponding cycle matrix. A ν × ν submatrix Γ′ of Γ is nonsingular if and only if the

rows of Γ′ correspond to the non-tree arcs of some spanning forest of D.

Lemma 1.2. ([4]) Let B be a directed cycle basis of a directed graph. Let Γ be the cycle

matrix corresponding to B. Let A1 and A2 be two nonsingular ν × ν submatrices of Γ.

Then det A1 = ± det A2.

Definition 1.2. ([4]) Let B be a directed cycle basis containing ν circuits for a directed

graph D. Consider the cycle matrix Γ. Let Γ′ be the ν × ν submatrix of Γ that arises

when deleting the arcs of some spanning forest of D. We define the determinant of the

basis to be:

det B = |det Γ′|.

Considerable work has been done to relate one class of cycle bases to another class.

Example 1.1 highlights the relationship between the class of directed cycle bases and

the class of undirected cycle bases. That is, not all directed cycle bases are undirected.

In this example we feature Wagner’s graph, Figure 1.4, a digraph that we will explore

again in Section 3.2. We present a set of Z-cycles for Wagner’s graph that are linearly

independent over Q but whose set of projections is linearly dependent over Z2. While we

don’t describe them all we have determined 21 circuits of Wagner’s graph which we’ve

numbered C1, . . . , C21.

Example 1.1.

By Theorem 1.1 we know there are ν = 12− 8 + 1 = 5 circuits in any cycle basis for

Wagner’s graph, V8. Let’s construct a cycle matrix Γ1 for the directed cycle basis B1 of

V8 which includes the four 4-gons, C1, C2, C3 and C4 plus the circuit which uses the eight

edges “around” the graph which we call C17. We form the ν × ν submatrix Γ′1 from rows

11
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Figure 1.4: Wagner’s Graph V8

(v1, v5), (v1, v8), (v2, v6), (v3, v7) and (v4, v8) of Γ1 to find the det B1 = |det Γ′1| = 2. The

circuits of Γ1 are linearly independent, however, the projections of the circuits are linearly

dependent. Notice that π(C1) + π(C2) + π(C3) + π(C4) = π(C17). Alternately, if we were

to display the matrix of the projections of the circuits of Γ1 we would see that each row of

that matrix contains exactly two entries equal to one with the remaining entries equal to

zero. This confirms again that the projections of the circuits of B1 are linearly dependent

over Z2. Thus, B1 is an example of a directed cycle basis which is not an undirected cycle

basis.
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Γ1 =



C1 C2 C3 C4 C17

(v1, v2) 0 0 0 −1 1

(v1, v5) 0 0 −1 1 0

(v1, v8) 0 0 1 0 −1

(v2, v3) 1 0 0 0 1

(v2, v6) −1 0 0 −1 0

(v3, v4) 0 1 0 0 1

(v3, v7) 1 −1 0 0 0

(v4, v5) 0 0 1 0 1

(v4, v8) 0 1 −1 0 0

(v5, v6) 0 0 0 1 1

(v6, v7) −1 0 0 0 1

(v7, v8) 0 −1 0 0 1



In Proposition 1.1 we show that when a set of linearly dependent Z-cycles projects to

ZE2 the result is a set of linearly dependent cycles.

Proposition 1.1. Linear dependence of a set of Z-cycles implies linear dependence of

the set of their projections.

Proof. Let {C1, C2, . . . , Ct} be a set of Z-cycles that are linearly dependent over Q. Then

there exist coefficients λi ∈ Q not all zero such that
∑t

i=1 λiCi = 0 where 0 is the zero

vector.

We want to show that the set of the projections {π(C1), π(C2), . . . , π(Ct)} is linearly

dependent over Z2. Let u be the least common multiple of the denominators of the

coefficients λi ∈ Q. Then u
∑t

i=1 λiCi = u0 will result in a linear combination of the

Z-cycles which we can write as
∑t

i=1 γiCi = 0 where γi = uλi for each i with γi ∈ Z not
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all zero. If the coefficients γi are even for all i ∈ {1, . . . , t} then we let v = 2s where s

is the smallest positive exponent of the powers of 2 in the prime factorization of each γi.

Then 1
v

∑t
i=1 γiCi = 1

v0 can be written as
∑t

i=1 αiCi = 0 where αi = 1
vγi for each i. Thus

we can assume there exist coefficients αi ∈ Z not all even such that
∑t

i=1 αiCi = 0.

Recall that π(Ci) + π(Ci) = 0. So a linear combination of Z2-cycles will have coeffi-

cients in Z2. Therefore the linear combination of the projections of the Z-cycles becomes

t∑
i=1

αi (mod 2) π(Ci) = 0 (mod 2)

where αi (mod 2) are not all zero. We conclude that the set {π(C1), π(C2), . . . , π(Ct)} of

Z2-cycles are linearly dependent.

Much can be said about the different classes of cycle bases by observing properties of

the corresponding cycle matrices. For example, the rows and columns of the cycle matrix

of a basis that is strictly fundamental can be permuted so that the last ν rows contain a

ν × ν identity matrix.

Throughout our study the conclusions made regarding the classification of a cycle

basis rely on Theorem 1.2 proven in [4].

Theorem 1.2. ([4]) Let B be a directed cycle basis with cycle matrix Γ. Then:

1. B is undirected if and only if det B is odd.

2. B is integral if and only if det B is one.

3. B is zero-one if and only if Γ is totally unimodular.

4. B is weakly fundamental if and only if Γ can be permuted so as to have an invertible

upper triangular ν x ν matrix in its last ν rows.
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5. B is strictly fundamental if and only if Γ can be permuted so as to have the ν x ν

identity matrix in its last ν rows.

6. B is a 2-basis if and only if B is an undirected cycle basis and Γ has at most two

non-zero entries per row.

Theorem 1.3 proven in [8] provides further characterization of a totally unimodular

matrix.

Theorem 1.3. ([8]) Let A be a matrix with entries 0, +1 or −1. Then the following are

equivalent:

1. A is totally unimodular, that is, each square submatrix of A has determinant

0 +1 or −1;

2. each collection of columns of A can be split into two parts so that the sum of the

columns in one part minus the sum of the columns in the other part is a vector with

entries only 0, +1 and −1.
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Chapter 2: Results

From a problem found in [4] we explore the class of zero-one cycle bases and how it relates

to two new classes of cycle bases. We extend this study so that we can relate the new

classes of cycle bases to the classes of strictly fundamental cycle bases and integral cycle

bases.

2.1 Zero-one Basis

Open Problem 3 in [4] states

The definition of zero-one bases may seem strange. It would be equally natural

to require that every circuit (every simple cycle) is a linear combination of the

basic circuits with coefficients in {−1, 0,+1}.

As we consider this relationship between the definition of a zero-one basis and the defini-

tions offered in Open Problem 3 we define two new classes of cycle bases. In these new

classes of cycle bases the coefficients for the basic circuits of the linear combinations can

be found in the box [−1, 1]ν so we will dub the new classifications circuit boxed and simple

cycle boxed.

Definition 2.1. A directed cycle basis B = {C1, . . . , Cν} of a graph D is called a circuit

boxed cycle basis if every circuit C of D can be written as a linear combination of the

circuits in B with coefficients in {−1, 0,+1}; that is,

∃λi ∈ {−1, 0,+1} : C = λ1C1 + λ2C2 + · · ·+ λνCν .
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Definition 2.2. A directed cycle basis B = {C1, . . . , Cν} of a graph D is called a simple

cycle boxed cycle basis if every simple cycle C of D can be written as a linear combination

of the circuits in B with coefficients in {−1, 0,+1}; that is,

∃λi ∈ {−1, 0,+1} : C = λ1C1 + λ2C2 + · · ·+ λνCν .

We will prove the sequence of implications for the classes of cycle bases that appear

in the statement below

strictly =⇒ simple cycle boxed =⇒ zero-one =⇒ circuit boxed =⇒ integral (2.1)

and decide which implications are certainly not equal. For example, we know that

zero-one 6=⇒ simple cycle boxed. We begin with the first implication and show that

given a cycle basis which is strictly fundamental we can be sure that it is a simple cycle

boxed cycle basis as well.

Theorem 2.1. Every strictly fundamental cycle basis is a simple cycle boxed basis.

Proof. Let B = {C1, . . . , Cν} be a directed cycle basis of a directed graph D, and let Γ be

the cycle matrix for B. Assume B is a strictly fundamental basis. We know by Theorem

1.2 since B is strictly fundamental we can permute the rows and columns of Γ so as to

have the ν × ν identity matrix in its last ν rows. We will call this permutation Γ∗.

Here the (m − ν) × ν submatrix that sits above the identity matrix in Γ∗ contains

entries c11 to c(m−ν)ν that are all from the set {−1, 0 + 1}.
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Γ∗ =



C1 C2 · · · Cν

e1 c11 c12 · · · c1ν

e2 c21 c22 · · · c2ν

...
...

...
. . .

...

em−ν c(m−ν)1 c(m−ν)2 · · · c(m−ν)ν

em−ν+1 1 0 · · · 0

em−ν+2 0 1 · · · 0

...
...

...
. . .

...

em 0 0 · · · 1


The matrix Γ∗ is again an m × ν matrix with m arcs and ν basic circuits of B. We

label the rows e1 to em for the m arcs and label the columns C1 to Cν for the ν circuits. It

is clear that every circuit in the basis contains an arc that is contained in no other circuit

of the basis.

Let C be a simple cycle of the directed graph D. By definition C(e) ∈ {−1, 0 + 1} for

all arcs e of C. Consider the mth entry of the m × 1 column vector representing simple

cycle C. If C(em) = −1 then the circuit Cν will be multiplied by a coefficient of −1 in

the linear combination of circuits of B to obtain −1 in the mth entry of the vector for

the simple cycle C. Similarly we see that if C(em) = 0 then the circuit Cν will carry a

coefficient of 0 in the combination of basic circuits to obtain a 0 in the mth entry of the

simple cycle C. Lastly, should C(em) = +1 then the circuit Cν will carry a coefficient of

+1 in the linear combination of circuits of B to obtain +1 in the mth entry of the vector

for the simple cycle C. Thus, the possible coefficients for the circuit Cν are in the set

{−1, 0,+1}.

Next, we consider the entry that precedes the mth entry (the entry m−1) of the m×1
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column vector representing C and apply the above strategy to determine the coefficient

of the circuit Cν−1 in the combination of basic circuits to represent the simple cycle C.

We continue in this way determining the coefficients of the basic circuits until we have

finally determined the coefficient of the circuit C1. We find that the simple cycle C which

is in the cycle space of D can be written as a linear combination of the basic circuits with

coefficients in {−1, 0,+1}. As C was an arbitrary simple cycle we can conclude that B is

a simple cycle boxed basis.

In regard to the second implication in statement (2.1) we show that every simple

cycle boxed cycle basis is a zero-one cycle basis. We provide, though, an example which

indicates that zero-one does not imply simple cycle boxed.

Theorem 2.2. Every simple cycle boxed cycle basis is a zero-one cycle basis.

Proof. Let D be a directed graph and B = {C1, C2, . . . , Cν} a directed cycle basis for D.

Let G = G(D) be the underlying undirected graph of D. Assume that B is a simple cycle

boxed cycle basis and let C ′ be a cycle of G.

Of course each simple cycle in D is a cycle, but we note that each cycle in G is the

projection of a simple cycle in D. For a cycle C ′ of an undirected graph is by definition

a subgraph in which every vertex has even degree. The cycle is a union of connected

components. By a well known combinatorics theorem found in [3] we know that each

connected component of the subgraph is Eulerian. Thus for each connected component of

the cycle there is a closed trail of the edges which uses each edge exactly once. The union

of the closed trails determines a simple cycle C of the directed graph D since C(e) = 0 if

C ′ does not include the edge e and C(e) = +1 if the trail follows edge e in the forward

direction and C(e) = −1 if the trail follows edge e in the backward direction. The simple

cycle C then projects to C ′ and we note that C ′(e) = +1 whenever C(e) ∈ {±1} for all

edges e in the cycle.

Since, by definition, a cycle in the directed graph is simple if C(e) ∈ {−1, 0,+1} for
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all e in C then each simple cycle C projects to a cycle C ′, and each cycle C ′ lifts to some

simple cycle C. Thus for each cycle C ′ of G there exists a simple cycle C of the directed

graph that projects to C ′. By definition of simple cycle boxed cycle basis then C can be

written as a linear combination of the basic circuits with coefficients in {−1, 0,+1}. So

we have for λi ∈ {−1, 0,+1}

C = λ1C1 + λ2C2 + · · ·+ λνCν .

Now the cycle C ′ of G was arbitrary, and we can conclude that for every cycle C ′ of

the undirected graph there exists a simple cycle C of D that projects to C ′ and is a

linear combination of the basic circuits with coefficients in {0,±1}. Thus the basis B is

a zero-one-basis.

Next, consider the question: is every zero-one cycle basis also a simple cycle boxed

cycle basis? We provide an example which shows that we do not have equality between

these two classes of bases. Consider the graph V5 in Figure 2.1 that we created from a

complete graph on four vertices K4, with an additional vertex and two additional edges

connecting the fifth vertex to two vertices of K4. We label the vertices of the graph a

through e and direct the edges from the letter in the pair that appears earlier in the

alphabet to the letter that appears later. The graph V5 is clearly planar.

We find ν = 8−5+1 = 4. We create the cycle matrix Γ for a basis consisting of all trian-

gles. We have the circuits C1 = a→ b→ e, C2 = a→ b→ c, C3 = a → c → e, C4 =

c → d → e. The columns of the matrix are the vectors representing circuits C1 through

C4 and the rows are labeled with the arcs (a, b) through (d, e) in lexicographic order. By

Definition 1.1 we know that the basis is planar, and we know from [4] that planar =⇒

zero-one. Take the simple cycle C represented as C = (0,−1, 1,−1, 1,−1,−1,−1) which

follows the vertices in this order a → e → d → c → b → e → c → a. To write the
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Figure 2.1: Orientation of Directed Graph on Five Vertices V5

simple cycle as a combination of the basic circuits we find that to obtain a −1 as the last

component of C, the coefficient of C4 must be a −1. Then to obtain a −1 as the seventh

component of C, the coefficient of C3 must be a −2. Thus, we find that the simple cycle

C in the cycle space of V5 can be written uniquely as a linear combination of the basic

circuits as follows: C = (0,−1, 1,−1, 1,−1,−1,−1) = C1 − C2 − 2C3 − C4. Since not all

simple cycles of V5 can be written as a linear combination with coefficients in {−1, 0,+1}

we know that the zero-one basis represented by Γ is not a simple cycle boxed basis. Thus,

we can conclude that

zero-one 6=⇒ simple cycle boxed.
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Γ =



C1 C2 C3 C4

(a, b) 1 1 0 0

(a, c) 0 −1 1 0

(a, e) −1 0 −1 0

(b, c) 0 1 0 0

(b, e) 1 0 0 0

(c, d) 0 0 0 1

(c, e) 0 0 1 −1

(d, e) 0 0 0 1



The next implication in the sequence of implications in statement (2.1) indicates that

every zero-one cycle basis is a circuit boxed cycle basis. The proof of Theorem 2.3 shows

this result.

Theorem 2.3. Every zero-one cycle basis is a circuit boxed cycle basis.

Proof. Let D be a directed graph and let G = G(D) be the underlying undirected graph.

Let B be a directed cycle basis of D and let Γ be the corresponding cycle matrix. Assume

B is a zero-one basis; B = {C1, . . . , Cν}.

By definition of zero-one basis for each circuit C ′ of G there exists a circuit C of D that

projects to C ′ and can be written as a linear combination with coefficients in {−1, 0, 1}

of circuits in B,

C = λ1C1 + · · ·+ λνCν

for λi ∈ {−1, 0, 1}.

Let D be a circuit in the directed graph D so that each non-zero component of D is a

non-zero component of C ′ and each zero component of D is a zero component of C ′. Thus,

the support of C ′ is the support of D and the components of D are in the set {−1, 0, 1}.
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We want to show that C = ±D.

Suppose to the contrary that C is such that it is neither D nor −D. Recall that since

D is a circuit (and −D as well) then ±D meet the flow conservation constraint

∑
e∈δ+(v)

D(e) =
∑

e∈δ−(v)

D(e).

We will find a vertex v such that

∑
e∈δ+(v)

C(e) 6=
∑

e∈δ−(v)

C(e)

for C.

We let C ′ be the undirected circuit of finitely many edges. Then for the k edges of

the circuit we have edges e0, . . . , ek−1 where ei = {vi, vi+1} for 0 ≤ i < k with v0 = vk;

that is for vertices v0, . . . , vk−1. Since we have assumed that C 6= ±D then C differs from

D in as few as one edge or as many as k− 1 edges. It is easy to see that if C differs from

D in k edges then C = −D.

We traverse the circuit and begin by comparing the directions of edges e1 and e2 of

circuit D with those of C. If the directions of e1 and e2 in C are the same as those of e1

and e2 of the circuit D or if the directions of e1 and e2 in C are both different from the

directions of e1 and e2 in the circuit D then we find

C(e1) = D(e1) and C(e2) = D(e2)

or

C(e1) 6= D(e1) and C(e2) 6= D(e2)

respectively. This indicates that the amount of flow entering v2 is equal to the amount of

flow leaving v2 in C. Thus, for this vertex the flow conservation constraint is met at that
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vertex in C. We continue in this way comparing the directions of pairs of edges incident

to a vertex in circuit D with the directions of pairs of edges incident to that vertex in C.

Since we know at least one edge (but not more than k− 1 edges) in C differs in direction

from that edge in D we will find a vertex vi incident to edges ei−1 and ei where

C(ei−1) 6= D(ei−1) and C(ei) = D(ei)

or where

C(ei−1) = D(ei−1) and C(ei) 6= D(ei).

In either of these cases we find that the amount of flow entering vi is not equal to the

amount of flow leaving vi in C. Thus for vertex vi in C we have

∑
e∈δ+(vi)

C(e) 6=
∑

e∈δ−(vi)

C(e)

and we have found a vertex in C which violates the flow conservation constraint. There-

fore we have a contradiction and we conclude C = ±D. So every circuit D of D is a

linear combination of the basic circuits with coefficients in {−1, 0,+1} and we can finally

conclude that every zero-one basis is a circuit boxed basis.

Lemma 2.1 introduces the concept of conformal circuits. The concept of conformal

composition of cycles can be found in [2], and we note some key terms here. Let s(C)

denote the signed support of a cycle C where the signed set may be written s(C) =

(s(C)+, s(C)−). For the m arcs of a directed graph the components of s(C) are defined

as follows: s(C)+ := {i : C(ei) > 0} - the positive elements of the signed set s(C), and

s(C)− := {i : C(ei) < 0} - the negative elements of the signed set s(C), for 1 ≤ i ≤ m. For

example, we can use the signed set notation for a cycle C = (1,−1, 0, 0, 1, 1) consisting

of six arcs and write s(C) = ({e1, e5, e6}, {e2}) which indicates arcs e1, e5 and e6 are the
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positive elements of the cycle, and arc e2 is the negative element. The same signed support

could be written using a signed incidence vector in which case the signed set of the cycle

C could be represented by the vector s(C) = (+,−, 0, 0,+,+). The composition of two

signed sets results in a signed set. The composition of two signed sets s(C1) and s(C2) is

by definition

s(C1) ◦ s(C2) = (s(C1)+ ∪ (s(C2)+ \ s(C1)−), s(C1)− ∪ (s(C2)− \ s(C1)+)).

In vector notation this becomes

(s(C1) ◦ s(C2))(e) =


s(C1)(e), if C1(e) 6= 0;

s(C2)(e), otherwise.

Repeated compositions of the signed sets for k circuits produces the signed set s(C):

s(C) = s(C1) ◦ s(C2) ◦ s(C3) ◦ · · · ◦ s(Ck)

a union of the supports of the circuits C1, . . . , Ck to give the support of C. If the composition

is conformal then for each edge e of C we have: Ch(e)Cj(e) ≥ 0 for all h, j. That is, the

sign of component Cj(e) is the same as the sign of component C(e) for each circuit Cj of

arc e or else the component Cj(e) is zero.

Lemma 2.1. For any cycle of a directed graph there exists a circuit of the digraph that

conforms to the cycle.

Proof. Let D be a directed graph, and let C be a cycle of D. As we have seen we can

assume that C is a Z-cycle. We want to show that we can always find a circuit that

conforms to C. Select a vertex v of the digraph that is a vertex of C. Assume v is not an

isolated vertex.
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Let v = x0, and construct a walk W from x0. Continue the walk by selecting an arc

of C incident to x0 which we call a0. Let x1 be the other endpoint of a0. Now either x0

is the head of a0 or x1 is the head of a0 and the component of C indexed by a0 is either

positive or negative. Thus we have the following cases for this arc a0 of W

1. (x0, x1) and C(a0) > 0;

2. (x0, x1) and C(a0) < 0;

3. (x1, x0) and C(a0) > 0;

4. (x1, x0) and C(a0) < 0.

Suppose Case 1 first, that is x0 is the tail of a0, the head is x1, and the component of

C indexed by a0 is positive. Since each vertex of C agrees with the flow conservation

constraint,
∑

a∈δ+(v)C(a) =
∑

a∈δ−(v)C(a), we know that there is an arc of C incident to

x1 that we will label a1 and another vertex incident to a1 that we will name x2 such that

either of the following is true

a. (x1, x2) and C(a1) > 0;

b. (x2, x1) and C(a1) < 0.

In either case we can continue the walk along such an arc a1. As we construct W in this

way the walk becomes a sequence of vertices and arcs

{x0, a0, x1, a1, x2, a2, . . . , xr}. (2.2)

Recall that each component of C is connected so we will conclude the walk once the

sequence (2.2) repeats a vertex. We use the resulting closed path to construct the circuit

C. For the arcs a of the closed path let C(a) = 1 if C(a) > 0, C(a) = −1 if C(a) < 0, and

let all other components of C be 0. Then the arcs of the closed path provide the support

of C. The flow conservation constraint is satisfied at each vertex of the circuit C, and
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the circuit conforms to the cycle C. As v was an arbitrary vertex of a cycle of D we can

conclude that we can always find a circuit that conforms to the given cycle.

Cases 2, 3 and 4 are shown in an analogous way. We highlight some details for those

proofs here. Suppose Case 2 next where x0 is the tail of a0, the head is x1, and the

component of C indexed by a0 is negative. We know there is an arc a1 with endpoints

x1 and x2 such that either of the following is true: (x1, x2) and C(a1) < 0 or (x2, x1) and

C(a1) > 0. Now suppose for Case 3 where x1 is the tail of a0, x0 is the head, and the

component of C indexed by a0 is positive. We know there is an arc a1 with endpoints

x1 and x2 such that either (x1, x2) and C(a1) < 0 is true or (x2, x1) and C(a1) > 0 is

true. Lastly, for Case 4 where x1 is the tail of a0, the head is x0 and the component of

C indexed by a0 is negative. We know there is an arc a1 with endpoints x1 and x2 such

that either of the following is true (x1, x2) and C(a1) > 0 or (x2, x1) and C(a1) < 0.

Theorem 2.4. Every circuit boxed cycle basis is an integral cycle basis.

Proof. Let B = {C1, . . . , Cν} be a directed basis for a directed graph D where G = G(D)

is the underlying undirected graph of D. Let C be a cycle of D and assume that B is a

circuit boxed cycle basis. We can assume that C is a Z-cycle, that is, all of the entries of

the vector C are integral. We want to show that C can be written as an integer linear

combination of circuits in B.

Denote the set of nonnegative integers by Z∗ = {0}∪Z+ where Z+ is the set of positive

integers. We will use the second principle of mathematical induction to show that C is a

linear combination of circuits C1, . . . , Ck, not necessarily basic circuits, with coefficients

in Z∗. We will induct on the `1 norm

‖C‖1 =

m∑
i=1

|C(ai)|

of the vector C where m is the number of arcs of D, and the components of the cycle
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are indexed by the arcs ai. Let ‖C‖1 = x for x ≥ 0. For the basic step, we note that if

‖C‖1 = 0 then C = 0 · Cj = 0 for any circuit Cj , 1 ≤ j ≤ k.

Let y be in the set of all possible values of the `1 norm such that y < x. For the

inductive step, we assume for a cycle C ′ with ‖C ′‖1 = y that C ′ can be written as a linear

combination of circuits with coefficients in Z∗ that is

∃λi ∈ Z∗ : C ′ = λ1C1 + · · ·+ λkCk

for circuits C1, . . . , Ck, not necessarily basic circuits. By Lemma 2.1 we know that there

is a circuit that conforms to cycle C. Let Ch be that circuit. Now let C∗ = C−Ch be the

cycle found when circuit Ch is subtracted from cycle C.. Recall that the nonzero entries

of each circuit C are from the set {±1} and are the support of each circuit. Thus, the

`1 norm of Ch is strictly greater than one so we can conclude that ‖C∗‖1 < x. Thus,

by the inductive assumption, C∗ can be written as a linear combination of circuits with

coefficients in Z∗.

Now, if we consider the combination C∗ + Ch this must be a linear combination of

circuits with coefficients in Z∗ since C∗ is such a cycle. It follows then that C can be

written as a linear combination of circuits C1, . . . , Ck, that is

∃λi ∈ Z∗ : C = λ1C1 + · · ·+ λkCk.

Since B is circuit boxed each circuit Ci for 1 ≤ i ≤ k can be written as a linear

combination with coefficients in {−1, 0,+1}. Therefore, cycle C can be written as an

integer linear combination of the circuits of B.

Here, we might ask if we have equality for the last two classes of cycle bases in

statement (2.1); that is: can we conclude circuit boxed ⇐⇒ integral? We return to

Wagner’s graph in Figure 1.4 for an answer. We choose another basis B2 and create a

cycle matrix Γ2. The ν = 5 circuits include the first four circuits in our previous cycle
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matrix Γ1 together with the circuit C5 = v6 → v5 → v4 → v3 → v2. We form the

ν × ν submatrix Γ′2 with rows (v1, v5), (v1, v8), (v2, v6), (v3, v7) and (v4, v8). We find that

det B2 = |det Γ′2| = | − 1| = 1. By Theorem 1.2 we know that B2 is an integral basis for

V8. Consider, again, the circuit C17 which uses the eight edges “around” the digraph. It

is written uniquely as a linear combination of the circuits of B2 as

C17 = −(C1 + C2 + C3 + C4 + 2C5).

Thus, we must conclude that the basis B2 is not circuit boxed. We assert then that not

every integral basis is circuit boxed; that is

integral 6=⇒ circuit boxed.

Γ2 =



C1 C2 C3 C4 C5

(v1, v2) 0 0 0 −1 0

(v1, v5) 0 0 −1 1 0

(v1, v8) 0 0 1 0 0

(v2, v3) 1 0 0 0 −1

(v2, v6) −1 0 0 −1 1

(v3, v4) 0 1 0 0 −1

(v3, v7) 1 −1 0 0 0

(v4, v5) 0 0 1 0 −1

(v4, v8) 0 1 −1 0 0

(v5, v6) 0 0 0 1 −1

(v6, v7) −1 0 0 0 0

(v7, v8) 0 −1 0 0 0


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2.2 Remarks

We close this chapter with suggested open problems. The first two questions follow

immediately from the work in Section 2.1. We want to know more about the equality or

inequality of the classes of cycle bases in the sequence of implications in statement 2.1.

The last three questions are considered when we extend this study of relationships among

the classes of cycle bases to include the class of weakly fundamental cycle bases.

1. Can every simple cycle boxed cycle basis be made strictly fundamental by multiply-

ing some of its vectors by -1?

2. Is every circuit boxed cycle basis a zero-one basis?

3. Is every simple cycle boxed cycle basis weakly fundamental?

4. Is every zero-one cycle basis weakly fundamental?

5. Is every circuit boxed cycle basis weakly fundamental?

Our search for instances where a cycle basis can be classified as circuit boxed but not

zero-one led to the discovery of a number of examples of cycle matrices that are not totally

unimodular. Section 3.1 includes results on the relationship of some of these non-totally

unimodular cycle matrices and their corresponding bases of circuits to the Möbius band.
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Chapter 3: Examples

3.1 Möbius Band

The Möbius band, a topological surface, can be obtained by taking a rectangular strip of

paper, giving one end of the paper a 180◦ twist and then gluing the ends of shorter length

together. This gluing is indicated in Figure 3.1 by the direction of the arrows on side e.

As a practicality the construction works more easily if the unlabeled side is about three

to four times the length of the labeled side.

p p
e e

p p
6 ?

Figure 3.1: Paper Strip for Möbius Band

We find that there exist bases of digraphs containing circuits which correspond to disks

that when glued together in a particular way form a Möbius band. Yet another circuit

of the basis corresponding to a disk turns out to be the boundary of the Möbius band.

We obtain the real projective plane with the gluing of this last disk along the boundary

of the Möbius band we constructed from the first disks. Example 3.1 demonstrates this

construction.
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Example 3.1. A directed graph appears in [6] with a basis whose cycle matrix is not

totally unimodular. This digraph on nine vertices V9 is included in Figure 3.2. The cycle

matrix for a basis ΓV9 is presented as well. We use the circuits of this basis to construct

a Möbius Band with boundary.

The dimension of the cycle space of the digraph V9 is ν = 12−9+1 = 4 so a cycle matrix

will include four circuits. Notice that the submatrix Γ′V9 in rows (v1, v2), (v2, v9), (v3, v4),

(v4, v5) has determinant -2. This is a submatrix that arises after deleting the arcs of a

spanning forest of V9. So the determinant of the basis is det BV9 = |det Γ′| = 2. Thus,

the matrix is not totally unimodular, and the basis is not zero-one. Additionally, this

directed basis is not an undirected basis.

The disks that correspond to the circuits of BV9 and which will form the band with

boundary appear in Figure 3.3. We glue disks C1 and C2 along the path v2 → v3 → v4.

When gluing arcs we respect the direction and identify the arcs to be glued according

to the direction of the arcs. Next, glue this union C1 ∪ C2 and this disk C3 along arc

(v1, v2). Finally, give a 180◦ twist to the end of the union of these three disks and

glue arc (v4, v5) in C3 to arc (v4, v5) in C2. The result is a Möbius band. By care-

fully following the arcs of C4 we see that it bounds this band. That is, the sequence

of arcs (v9, v5), (v2, v9), (v2, v6), (v6, v4), (v8, v4), (v1, v8), (v1, v7), (v7, v5) bounds the union

C1 ∪ C2 ∪ C3.
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Figure 3.2: Directed Graph on Nine Vertices V9

ΓV9 =



C1 C2 C3 C4

(v1, v2) 1 0 1 0

(v1, v7) 0 0 −1 1

(v1, v8) −1 0 0 −1

(v2, v3) 1 1 0 0

(v2, v6) 0 0 1 1

(v2, v9) 0 −1 0 −1

(v3, v4) 1 1 0 0

(v4, v5) 0 1 1 0

(v6, v4) 0 0 1 1

(v7, v5) 0 0 −1 1

(v8, v4) −1 0 0 −1

(v9, v5) 0 −1 0 −1


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Figure 3.3: Disks C1, C1, C3 and Boundary Disk C4 for Digraph V9

The Möbius band can be given a graph representation known as the Möbius Ladder.

In [7] Oxley describes this family of graphs. The usual form of the Möbius Ladder appears

in Figure 3.8 where we have given the arcs direction. Example 3.2 includes a description

of the smallest of these directed graphs.

Example 3.2. This Möbius Ladder on four vertices L4 is presented in Figure 3.4. The

dimension of the cycle space of the digraph L4 is ν = 6− 4 + 1 = 3, so a cycle matrix will

include three circuits. The cycle matrix ΓL4 corresponds to a basis of three 4-gons. We

will use the circuits of the basis to construct a Möbius Band with boundary.

The 3× 3 submatrix Γ′L4
in rows (u1, v1), (u2, v1), (u2, v2) has determinant −2. Thus,

the determinant of the basis is det BL4 = |det Γ′L4
| = 2. By definition the matrix is
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not totally unimodular, and by Theorem 1.2 the basis is not zero-one. Furthermore, the

directed basis is not an undirected basis.

Figure 3.5 shows the circuits of BL4 that correspond to the disks of the band and the

boundary. Disks C1 and C2 are glued along arc (u2, v2) according to the direction of the

arc. These two disks are also glued along arc (u1, v1) according to the direction of the

arc. Careful attention to the direction of the arcs when gluing will produce the desired

twist. The union of the disks form a Möbius band with C3 being the bound of the surface.

Observe that (u1, u2), (u2, v1), (v1, v2), (v2, u1) bounds the union C1 ∪ C2.

tv1

tv2

tu1

tu2

6 6

�

�
�����

���
���

���
��

HH
HHj
HHH

HHH
HHH

HH

Figure 3.4: Möbius Ladder L4, t = 3

ΓL4 =



C1 C2 C3

(u1, u2) 1 0 1

(u1, v1) −1 −1 0

(u2, v1) 0 1 1

(u2, v2) 1 −1 0

(v1, v2) −1 0 1

(v2, u1) 0 −1 1


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Figure 3.5: Disks C1, C2 and Boundary Disk C3 for Digraph L4

Example 3.3. We present an additional Möbius Ladder before we discuss the general

graph. The Möbius Ladder on six vertices L6 appears in Figure 3.6. The dimension of

the cycle space of digraph L6 is ν = 9 − 6 + 1 = 4 so a cycle matrix will contain four

circuits. The cycle matrix ΓL6 contains the circuits of the basis using three 4-gons plus a

circuit of six arcs.

The 4 × 4 submatrix, Γ′L6
, in rows (u1, v1), (u2, v2), (u3, v1), (u3, v3) has determinant

2. By definition the determinant of the basis is det BL6 = |det ΓL6 | = 2. Therefore the

matrix is not totally unimodular, and the basis is not zero-one. Additionally, the directed

basis BL6 is not an undirected basis.

Figure 3.7 displays the circuits of cycle matrix ΓL6 corresponding to the disks that form

the band and boundary of the band. We form the union of the first three disks by gluing

C1 and C2 along arc (u2, v2) then gluing C2 and C3 along arc (u3, v3). The Möbius Band

is completed by gluing C1 to C3 on arc (u1, v1) while paying attention to the direction

of the arc (u1, v1). The arcs (u1, u2), (u2, u3), (u3, v1), (v1, v2), (v2, v3), (v3, u1) bound the

union C1 ∪ C2 ∪ C3 so that C4 is the boundary of the band.
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Figure 3.6: Möbius Ladder L6, t = 4

ΓL6 =



C1 C2 C3 C4

(u1, u2) 1 0 0 1

(u1, v1) −1 0 −1 0

(u2, u3) 0 1 0 1

(u2, v2) 1 −1 0 0

(u3, v1) 0 0 1 1

(u3, v3) 0 1 −1 0

(v1, v2) −1 0 0 1

(v2, v3) 0 −1 0 1

(v3, u1) 0 0 −1 1


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Figure 3.7: Disks C1, C1, C3 and Boundary Disk C4 for Digraph L6

The directed graph of the Möbius Ladder is usually drawn as it is in Figure 3.8. The

arcs (ui, vi) are considered the rungs of the ladder and the arcs (ui, ui+1) and (vi, vi+1) as

well as arcs (ut−1, v1) and (vt−1, u1) make up the side rails. Notice that the arc (u1, v1)

is drawn twice. When these two copies of (u1, v1) are glued according the direction of

the arc then the desired twist is achieved and the Möbius Band is constructed. There are

t − 1 circuits that correspond to the t − 1 four-gons of the ladder. The digraph consists

of 3t − 3 arcs and 2t − 2 vertices. A basis consists of ν = (3t − 3) − (2t − 2) + 1 = t

circuits. Thus, one more circuit is needed to make a cycle basis with these t− 1 circuits.

38



The Möbius Band is bound by the circuit Ct that appears in (3.1)

u1 → u2 → u3 → · · · → ut−2 → ut−1 → v1 → v2 → v3 → · · · → vt−2 → vt−1 → u1, (3.1)

the tth circuit of the basis. We present a cycle matrix Γ1
L2t−2

for this basis of circuits

B1
L2t−2

just described.
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Figure 3.8: Möbius Ladder L2t−2
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Γ1
L2t−2

=



C1 C2 C3 C4 · · · Ct−1 Ct

(u1, u2) 1 0 0 0 · · · 0 1

(u1, v1) −1 0 0 0 · · · −1 0

(u2, u3) 0 1 0 0 · · · 0 1

(u2, v2) 1 −1 0 0 · · · 0 0

(u3, u4) 0 0 1 0 · · · 0 1

(u3, v3) 0 1 −1 0 · · · 0 0

(u4, u5) 0 0 0 1 · · · 0 1

(u4, v4) 0 0 1 −1 · · · 0 0

(u5, u6) 0 0 0 0 · · · 0 1

(u5, v5) 0 0 0 1 · · · 0 0

...
...

...
...

...
. . .

...
...

(ut−1, v1) 0 0 0 0 · · · 1 1

(ut−1, vt−1) 0 0 0 0 · · · −1 0

(v1, v2) −1 0 0 0 · · · 0 1

(v2, v3) 0 −1 0 0 · · · 0 1

(v3, v4) 0 0 −1 0 · · · 0 1

(v4, v5) 0 0 0 −1 · · · 0 1

...
...

...
...

...
. . .

...
...

(vt−1, u1) 0 0 0 0 · · · −1 1


Proposition 3.1. The basis B1

L2t−2
= {C1, C2, . . . , Ct} for the Möbius Ladder L2t−2 is

not zero-one.

Proof. Let L2t−2 be the usual directed graph of the Möbius Ladder with the orientation
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as it appears in Figure 3.8. Let B1
L2t−2

= {C1, C2, . . . , Ct} be the set of circuits of L2t−2

where each Ci for 1 ≤ i ≤ t−2 is the circuit ui → ui+1 → vi+1 → vi → ui, and Ct−1 is the

circuit ut−1 → v1 → u1 → vt−1 → ut−1, and the circuit Ct is as described in (3.1). Let

Γ1
L2t−2

be the cycle matrix containing the t circuits. Notice that the column vector for Ct

contains a 0 for each rung and a +1 for each arc of the side rails. Each column vector Ci

for 1 ≤ i ≤ t− 1 has entries Ci(a) ∈ {+1,−1} for exactly four arcs a and 0 otherwise.

We choose a spanning tree consisting of arcs (ui, ui+1) and (vi, vi+1) for 1 ≤ i ≤ t−2 of

the two side rails together with the side rail arc (vt−1, u1). Thus we have a spanning tree

of 2(t−2)+1 = 2t−3 arcs. Now the submatrix Γ1′
L2t−2

will be a (3t−3)−(2t−3)×t = t×t

matrix as desired. The non-tree arcs are the arcs which are the rungs of L2t−2; that is,

(ui, vi) for 1 ≤ i ≤ t− 1, plus the arc (ut−1, v1). These arcs index the rows of Γ1′
L2t−2

.

Γ1′
L2t−2

=



C1 C2 C3 C4 C5 · · · Ct−2 Ct−1 Ct

(u1, v1) −1 0 0 0 0 · · · 0 −1 0

(u2, v2) 1 −1 0 0 0 · · · 0 0 0

(u3, v3) 0 1 −1 0 0 · · · 0 0 0

(u4, v4) 0 0 1 −1 0 · · · 0 0 0

(u5, v5) 0 0 0 1 −1 · · · 0 0 0

...
...

...
...

...
...

. . .
...

...
...

(ut−2, vt−2) 0 0 0 0 0 · · · −1 0 0

(ut−1, vt−1) 0 0 0 0 0 · · · 1 −1 0

(ut−1, v1) 0 0 0 0 0 · · · 0 1 1



Notice that the (t− 1)× (t− 1) submatrix formed by removing the first column and the

first row of Γ1′
L2t−2

is lower triangular. Also notice that the (t − 1) × (t − 1) submatrix
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formed by removing the (t−1)st column and first row of Γ1′
L2t−2

is upper triangular. Then

when t is odd the determinant becomes

det(Γ′) = (−1)(−1)− (−1)(1) = 2

and when t is even the determinant becomes

det(Γ′) = (−1)(1) + (−1)(1) = −2.

Thus det B1′
L2t−2

= | ± 2| = 2 and we conclude by definition that the cycle matrix is not

totally unimodular. Consequently by Theorem 1.2 the basis is not zero-one.

We consider, next, the circuit of the Möbius Ladder L2t−2 that includes all of the arcs

of the left side rail; that is, arcs of the form (vi, vi+1) for 1 ≤ i ≤ t− 2 and arc (vt−1, u1)

together with the arc (u1, v1). Call this circuit Ct+1. Similar statements can be made

about the circuit that includes all of the arcs of the right side rail together with the arc

(u1, v1). Given the orientation of L2t−2 as in Figure 3.8 we will use the circuit Ct+1 with
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all nonzero components equal to +1.

Γ1
L2t−2

=



C1 C2 C3 C4 · · · Ct−1 Ct

(u1, u2) 1 0 0 0 · · · 0 1

(u1, v1) −1 0 0 0 · · · −1 0

(u2, u3) 0 1 0 0 · · · 0 1

(u2, v2) 1 −1 0 0 · · · 0 0

(u3, u4) 0 0 1 0 · · · 0 1

(u3, v3) 0 1 −1 0 · · · 0 0

(u4, u5) 0 0 0 1 · · · 0 1

(u4, v4) 0 0 1 −1 · · · 0 0

(u5, u6) 0 0 0 0 · · · 0 1

(u5, v5) 0 0 0 1 · · · 0 0

...
...

...
...

...
. . .

...
...

(ut−1, v1) 0 0 0 0 · · · 1 1

(ut−1, vt−1) 0 0 0 0 · · · −1 0

(v1, v2) −1 0 0 0 · · · 0 1

(v2, v3) 0 −1 0 0 · · · 0 1

(v3, v4) 0 0 −1 0 · · · 0 1

(v4, v5) 0 0 0 −1 · · · 0 1

...
...

...
...

...
. . .

...
...

(vt−1, u1) 0 0 0 0 · · · −1 1



,



Ct+1

0

1

0

0

0

0

0

0

0

0

...

0

0

1

1

1

1

...

1



Proposition 3.2. The basis B1
L2t−2

= {C1, C2, . . . , Ct} for the Möbius Ladder L2t−2 is

not circuit boxed.
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Proof. To show that the basis is not circuit boxed we will show that circuit Ct+1, described

above, can be uniquely expressed in terms of the basic circuits of cycle matrix Γ1
L2t−2

as

Ct+1 =
−1

2
· C1 +

−1

2
· C2 + · · ·+ −1

2
· Ct−1 +

1

2
· Ct (3.2)

that is, the coefficients of the circuits of the Möbius band equal −12 and the coefficient of

the circuit of the boundary is 1
2 .

Since Γ1
L2t−2

is a matrix of linearly independent circuits of the digraph L2t−2 we know

that the circuit Ct+1 of the cycle space of L2t−2 can be written uniquely as a linear

combination of the basic circuits. The circuit Ct+1 appears beside the cycle matrix for

reference. Notice that each rung appears in exactly two basic circuits and each basic

circuit contains exactly two rungs. The circuit corresponding to the boundary of the

Möbius Band contains a zero for each rung. The circuit Ct+1 includes only one rung

which is arc (u1, v1). For all rungs except (u1, v1) the two nonzero components are of

opposite sign. Thus the coefficients of the basic circuits Ci for 1 ≤ i ≤ t−1 must be equal

as seen in the following

λiCi(ui+1, vi+1) + λi+1Ci+1(ui+1, vi+1) = 0

λi · 1 + λi+1 · (−1) = 0

λi = λi+1

for 1 ≤ i ≤ t − 2. Now the component for the rung (u1, v1) in C1 equals the component

for that rung in Ct−1, and the component of (u1, v1) in Ct+1 is opposite in sign so that
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we find

λ1C1(u1, v1) + λt−1Ct−1(u1, v1) = Ct+1(u1, v1)

λ1 · (−1) + λ1 · (−1) = 1

λ1 =
−1

2
.

Thus the coefficients of the circuits C1, C2, . . . , Ct−1 are all equal to −12 .

Next, consider the arcs of the right side rail which are of the form (ui, ui+1) and

(ut−1, v1). Each of these arcs appear in exactly one basic circuit of the Möbius band,

circuits Ci for 1 ≤ i ≤ t− 1, and each of these basic circuits contain exactly one of these

arcs. Each arc of the right side rail appears in the circuit of the boundary of the Möbius

band, Ct, but not in the circuit Ct+1. The nonzero components indexed by these side rail

arcs are of equal sign. So we have the following

λiCi(ui, ui+1) + λtCt(ui, ui+1) = Ct+1(ui, ui+1)

−1

2
· (1) + λt · (1) = 0

λt =
1

2
.

Thus the coefficient of the circuit Ct is 1
2 . Therefore the expression for the circuit Ct+1

in terms of the basic circuits becomes

Ct+1 =
−1

2
· C1 +

−1

2
· C2 + · · ·+ −1

2
· Ct−1 +

1

2
· Ct

as desired. Since there exists a circuit of the cycle space that cannot be expressed as a

linear combination of basic circuits with coefficients only in {−1, 0,+1} then we know by
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definition that B1
L2t−2

is not a circuit boxed cycle basis.

Now we will create another basis for digraph L2t−2. Begin with the cycle matrix Γ1
L2t−2

and remove the circuit that corresponds to the boundary of the Möbius Band. Replace

Ct with circuit Ct+1. Call this cycle matrix for the new basis Γ2
L2t−2

. Let B2
L2t−2

be the

basis that includes the circuits C1, C2, . . . , Ct−1 together with the circuit Ct+1.

Proposition 3.3. The basis B2
L2t−2

= {C1, C2, . . . Ct−2, Ct−1, Ct+1} for the Möbius Lad-

der L2t−2 is weakly fundamental.

Proof. Use the spanning tree for the digraph L2t−2 just as in the proof for Proposition 3.1.

The submatrix Γ2′
L2t−2

found by using the non-tree arcs will be the desired t× t matrix.

Γ2′
L2t−2

=



C1 C2 C3 C4 C5 · · · Ct−2 Ct−1 Ct+1

(u1, v1) −1 0 0 0 0 · · · 0 −1 1

(u2, v2) 1 −1 0 0 0 · · · 0 0 0

(u3, v3) 0 1 −1 0 0 · · · 0 0 0

(u4, v4) 0 0 1 −1 0 · · · 0 0 0

(u5, v5) 0 0 0 1 −1 · · · 0 0 0

...
...

...
...

...
...

. . .
...

...
...

(ut−2, vt−2) 0 0 0 0 0 · · · −1 0 0

(ut−1, vt−1) 0 0 0 0 0 · · · 1 −1 0

(ut−1, v1) 0 0 0 0 0 · · · 0 1 0



A permutation of the columns of Γ2′
L2t−2

results in matrix σ1

(
Γ2′
L2t−2

)
which is an upper

triangular matrix with ones on its main diagonal. By Theorem 1.2 we know that the basis
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B2
L2t−2

is weakly fundamental.

σ1

(
Γ2′
L2t−2

)
=



Ct+1 C1 C2 C3 C4 C5 · · · Ct−2 Ct−1

(u1, v1) 1 −1 0 0 0 0 · · · 0 −1

(u2, v2) 0 1 −1 0 0 0 · · · 0 0

(u3, v3) 0 0 1 −1 0 0 · · · 0 0

(u4, v4) 0 0 0 1 −1 0 · · · 0 0

(u5, v5) 0 0 0 0 1 −1 · · · 0 0

...
...

...
...

...
...

...
. . .

...
...

(ut−2, vt−2) 0 0 0 0 0 0 · · · −1 0

(ut−1, vt−1) 0 0 0 0 0 0 · · · 1 −1

(ut−1, v1) 0 0 0 0 0 0 · · · 0 1



Proposition 3.4. The basis B2
L2t−2

= {C1, C2, . . . , Ct−2, Ct−1, Ct+1} for the Möbius Lad-

der L2t−2 is not circuit boxed.

Proof. To show that B2
L2t−2

is not circuit boxed we will show that the boundary of the

Möbius Band, the circuit Ct, can be uniquely expressed in terms of the basic circuits of

cycle matrix Γ2
L2t−2

as

Ct = C1 + C2 + · · ·+ Ct−1 + 2 · Ct+1 (3.3)

that is the coefficients of the 4-gon circuits of the Möbius Ladder equal 1 and the coefficient

of the circuit Ct+1 is 2. Begin with the expression for circuit Ct+1 found in the proof

of Proposition 3.2; that is, equation (3.2), and multiply the equation by 2 so that the
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coefficient of Ct becomes 1 as seen in the following

2 · Ct+1 = 2 ·
(
−1

2
· C1 +

−1

2
· C2 + · · ·+ −1

2
· Ct−1 +

1

2
· Ct
)
.

We solve for Ct to get the desired linear combination of basic circuits

Ct = C1 + C2 + · · ·+ Ct−1 + 2 · Ct+1

for Ct. Since there exists a circuit of the cycle space that cannot be expressed as a

linear combination of basic circuits with coefficients only in {−1, 0,+1} then we know by

definition that B2
L2t−2

is not a circuit boxed cycle basis.

Since we have zero-one =⇒ circuit boxed from Theorem 2.3 it follows immediately

from Proposition 3.4 that the basis B2
L2t−2

for the Möbius ladder is not a zero-one cycle

basis.

3.2 Wagner’s Graph

We consider Wagner’s Graph again, a graph containing eight vertices and twelve arcs

where each vertex of the underlying undirected graph has degree three. In Figure 3.9

we feature the Möbius ladder on eight vertices and Wagner’s graph. We have provided

a labeling of the vertices to show a one-to-one correspondence between the vertex sets

of each graph such that if two vertices are joined by an edge in one graph, then the

corresponding vertices are joined by an edge in the other graph. Thus, the Möbius ladder

L8 is isomorphic to Wagner’s graph V8. Notice that the four 4-gon circuits of the Möbius

ladder L8 appear in Wagner’s graph as the figure eight-like circuits that cross through the

center of the graph.
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Figure 3.9: Möbius Ladder L8 and Wagner’s Graph V8

We assign direction to the edges of Wagner’s graph in Figure 3.10. Recall that we

have ν = 5. The circuits C1 = v2 → v3 → v7 → v6, C2 = v3 → v4 → v8 → v7,

C3 = v4 → v5 → v1 → v8, C4 = v5 → v6 → v2 → v1, C5 = v6 → v5 → v4 → v3 → v2 form

a cycle basis B2 for V8. We let Γ2 be the cycle matrix associated with the basis B2. The

five circuits are clearly independent.
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Figure 3.10: Wagner’s Graph V8
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Γ2 =



C1 C2 C3 C4 C5

(v1, v2) 0 0 0 −1 0

(v1, v5) 0 0 −1 1 0

(v1, v8) 0 0 1 0 0

(v2, v3) 1 0 0 0 −1

(v2, v6) −1 0 0 −1 1

(v3, v4) 0 1 0 0 −1

(v3, v7) 1 −1 0 0 0

(v4, v5) 0 0 1 0 −1

(v4, v8) 0 1 −1 0 0

(v5, v6) 0 0 0 1 −1

(v6, v7) −1 0 0 0 0

(v7, v8) 0 −1 0 0 0



The permutation of the rows and columns of Γ2 produces a matrix ΓP2 where the last

five rows form a 5 x 5 upper triangular submatrix. Thus by Theorem 1.2 we know that

B2 is weakly fundamental.
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ΓP
2 =



C1 C2 C3 C5 C4

(v1, v5) 0 0 −1 0 1

(v2, v3) 1 0 0 −1 0

(v2, v6) −1 0 0 1 −1

(v3, v4) 0 1 0 −1 0

(v3, v7) 1 −1 0 0 0

(v4, v5) 0 0 1 −1 0

(v4, v8) 0 1 −1 0 0

(v6, v7) −1 0 0 0 0

(v7, v8) 0 −1 0 0 0

(v1, v8) 0 0 1 0 0

(v5, v6) 0 0 0 −1 1

(v1, v2) 0 0 0 0 −1



Liebchen and Rizzi take six copies of V8 to create a star-like graph as seen in [5].

They determine a basis for the star-like graph. They use the five circuits of basis B2 for

each one of the six copies of V8. They assert the independence of the 30 circuits and

note that this cycle basis is not weakly fundamental since each arc is contained in at

least two circuits. Furthermore they offer a proof to show that the cycle matrix of the

basis of the star-like graph is totally unimodular. However, we have just seen that B2 is

weakly fundamental, and we see in the following that the cycle matrix of the basis B2

for one copy of Wagner’s graph is not totally unimodular. It is not the case that each

collection of columns of Γ2 can be split into two parts so that the sum of the columns

in one part minus the sum of the columns in the other part is a vector with entries only

0,+1, and − 1. Take the collection of columns C1, C2, C3, C4. By inspection of Γ2 it is
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clear that there is no way to split this collection into two parts so that the sum of the

columns in one part minus the sum of the columns in the other part is a vector with entries

only 0,+1, and− 1. Notice that the entries in rows (v1, v5), (v3, v7) and (v4, v8) will force

columns C1, C2, C3, C4 to all be in one part. However, the sum of the entries in row (v2, v6)

for these four columns is −2. Thus, by Theorem 1.3 we can conclude that the matrix Γ2

is not totally unimodular. Alternatively, we can form the square submatrix using these

same four rows (v1, v5), (v2, v6), (v3, v7) and (v4, v8) from columns C1, C2, C3, C4, and we

find that the determinant of this square submatrix is two. Again, we are assured that Γ2

is not totally unimodular.
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