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ABSTRACT 

 

MACHINE LEARNING MODELS OF B-CELL AND T-CELL EPITOPES USING 

SEQUENCE AND STRUCTURE INFORMATION 

Kiran K. Sewsankar, Ph.D. 

George Mason University, 2022 

Dissertation Director: Dr. Iosif Vaisman 

 

Epitopes, the regions of antigens that are detected by the immune system, have 

garnered considerable scientific interest in recent years due to their potential for 

influencing the development of novel medical countermeasures, an example of which, are 

epitope-based vaccines that can be both safer and more efficacious than those currently 

available. Innovative vaccines are profoundly needed to keep pace with the ever-

changing landscape of global infectious disease. The drive towards creating new vaccines 

and treatments is critical to preserving world health and will be aided by studying 

epitopes. Epitopes of the antigen play an important role in immune response. For 

example, they are recognized by B-cells and T-cells and are the site of antibody binding. 

Therefore, identifying epitopes can help researchers better understand how foreign 

disease agents cause illness and how the host immune system reacts against it. Traditional 
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methods for the identification of epitopes centered around experimental structural studies 

including, X-ray crystallography and NMR techniques, which are time consuming and 

costly. Thus, bioinformatics and computational approaches have been explored to 

facilitate the epitope identification process. In this work, models of B-cell and T-cell 

epitopes were developed to assist in the prediction and classification of non-validated but 

potential epitope protein sequences. Specifically, machine learning algorithms were 

trained on a diverse set of epitope/non-epitope representative feature vectors, comprised 

of sequence derived features based on reduced amino acid alphabets and n-grams and 

structure derived features based on Delaunay tessellation and amino acid propensity 

scores to reliably predict epitope sequences and residues. Feature vectors were 

constructed based on the specific problem at hand, either linear or conformational epitope 

prediction. The epitope sequence and structure data were obtained from publicly 

available databases and several machine learning algorithms, including Random Forest, 

Gaussian Naïve Bayes, and Support Vector Machine were applied to the descriptor space. 

The best performing epitope prediction models trained here can be used to identify 

unknown epitope sequences or residues, consequently reducing the search space for 

candidate epitopes, epitopes that will be the basis for the development of new vaccines 

and other medical countermeasures. The models are incorporated into the TESSETOPE 

V1.0, which is a freely available web accessible API for epitope prediction available at 

http://omics.gmu.edu/tessetope/.

http://omics.gmu.edu/tessetope/
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CHAPTER ONE 

1.1 Epitopes: An Introduction   

The primary job of the immune system is to respond to and fight disease. To 

accomplish this, the immune system of the host must be able to distinguish between 

different types of threats and determine the optimal response that will aid in its 

destruction. Particularly, the adaptive immune system is the division of the immune 

system that is tasked with recognizing specific threats and is a key driver of long-lasting 

immunity and rapid immune response [1]. Two types of immune response, humoral 

immunity and cell-mediated immunity play major roles in the success of the immune 

system [1]. For the framework of this dissertation research, it will be important to focus 

on both of these types of immunity. Specifically, humoral immunity, and its relation to B-

cells and antibody production and, cell-mediated immunity, and its relation to T-cells and 

major histocompatibility complex (MHC) proteins.  

Epitopes are critical to the discussion of humoral and cell-mediated immunity. 

Epitopes are the regions of antigens that are detected by the immune system and are able 

to elicit the aforementioned immune responses, either humoral or cell-mediated [2]. 

Consequently, making them a key topic of interest for researchers around the world [3]. 

Epitopes are important because they can be implicated in vaccine design and in the 

prevention, diagnosis, and treatment of disease [3].    
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To better understand the importance of epitopes and how they relate to humoral 

and cell-mediated immunity, it will be imperative to discuss two of the major epitope 

types, B-cell and T-cell. B-cell epitopes are the regions of antigens that are recognized by 

B-cells. Specifically, B-cells recognize antigens using B-cell receptors, which initiates 

the secretion of antibodies that bind and destroy the antigens, all part of humoral 

immunity [1].  Antibodies are fundamental components of the acquired immune response 

in vertebrates [4], [5]. Furthermore, antibodies are critical proteins that are used to detect 

and fight foreign pathogens that invade the host, such as bacteria, parasites, and viruses 

[4], [5]. The antigen binding site of the antibody is of great importance for studies 

examining antibody-antigen (Ab-Ag) interactions. This site contains three hypervariable 

regions, composed of mainly complementarity-determining region (CDR) loops in both 

the heavy and light chains, which allows the antibody to detect a plethora of antigens [4]–

[6]. Thus, the Ab-Ag complex is extremely critical for the humoral immune response 

against pathogen invaders [7], [8]. B-cell epitopes, and their counterparts, paratopes, are 

quite important in the interactions of the antibody-antigen (Ab-Ag) complex [7]. Simply 

put, the Ab-Ag complex can be described by an interaction between the epitope and 

paratope, the antibody’s paratope binds to the antigen’s epitope [7]. The paratope owns a 

structural and chemical makeup that complements that of the B-cell epitope, allowing 

them to interact [9]. This knowledge itself gives extreme relevance to B-cell epitopes, as 

they are major players in the Ab-Ag complex, and it makes their identification significant 

for the development of vaccines and drugs and to the understanding of disease [7].  
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T-cell epitopes on the other hand, important for cell-mediated immunity, should 

be studied in the context of human leukocyte antigen (HLA) system genes and MHC 

proteins. T-cells are able to recognize antigens that are presented on HLA [1]. The HLA 

class I pathway can process intra-cellular antigens, while the HLA class II pathway can 

process extra-cellular antigens [1]. It has been well understood that T-cell epitopes are 

bound to MHCs linearly and that the epitopes, through R group side chain interactions, 

link together into the binding groove of both MHC Class I and Class II molecules [2]. 

Like antibodies, the structural and chemical makeup of the CDRs of T-cell receptors 

(TCRs) govern T-cell epitope binding [10]. T-cell epitopes are also quite important for 

the immunogenicity of certain foreign peptides that enter the host. T-cell epitopes enable 

the generation of MHC II-peptide-T cell receptor complexes, commencing a signaling 

cascade that stimulates helper T-cells, B-cells, and antibodies to eliminate foreign 

peptides [11]. Notably, the foreign peptides discussed here may be those that are a part of 

a biotherapeutic that is designed to treat a disease, but are unwantedly targeted by the 

immune system, producing undesired side effects and compromising drug efficacy [12]. 

Consequently, T-cell epitopes are the chief targets of protein deimmunization techniques, 

techniques which look to mutate the important residues in the epitopes of the 

biotherapeutics, in hopes of reducing immunogenicity [11]. An expanded discussion of 

this topic will be given in section 1.3.2.  

1.2 Epitope Identification and Prediction  

Because of the role epitopes play in immunogenicity and the fact that they are 

staple components of many disease-causing agents, their identification is critical to the 
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development of new and innovative ways to treat disease such as, epitope-based vaccines. 

Traditional methods for the identification of epitopes principally centered around 

experimental structural studies, such as X-ray crystallography and NMR [13]. These 

experimental approaches involve solving the 3D structure of antigen-antibody or antigen-

T-cell complexes and determining amino acids in contact with each other allowing for the 

determination of the epitope [9]. Though accurate, these techniques are rather expensive 

and tedious in their protocols [13]. Consequently, researchers have been searching for 

ways to make the process of epitope prediction much faster and cheaper [13]. 

Bioinformatics, the scientific field that can be best described as a melting pot of biology, 

computing, mathematics, and information technology [2] has risen up to take on this task, 

using the computational epitope prediction approach. Bioinformatics and its plethora of 

computational tools can be applied to the in silico prediction of epitopes, which 

dramatically reduce the time and money spent on the task of epitope identification [13]. 

The main goal of these efforts into predicting epitopes is to reduce the search space of 

candidate epitopes, epitopes that may be useful for developing therapies, making the 

development process more efficient.  

Epitope prediction via bioinformatics’ computational tools have been primarily 

focused on certain types of epitopes. To date, a majority of the epitope predictors have 

been developed to predict either MHC-I or MHC-II binders, T-cell binders, or B-cell 

binders [2]. Moreover, two main classes dominate epitope prediction, linear (continuous) 

and conformational (discontinuous) [3]. Linear epitopes are epitopes whose residues are 

continuous in the protein sequence and are typically amphipathic in nature and are 
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peptide fragments that are 9-12 mers [3]. Conformational epitopes are epitopes whose 

residues are not continuous in the protein sequence but are moved into structural 

proximity due to protein folding and are typically 15-22 mers [3].  

 

 
Figure 1 Linear vs. Conformational Epitopes A) Example of a Linear Epitope (LE) where the epitope (black) 

consists of a continuous residue segment (i and i + 1). B) Example of a Conformational Epitope (CE) where the 

epitope segment (black) is not continuous in the antigen sequence (j – i > 1).  

 

 

 

It has been noted that approximately more than 90% of epitopes are 

conformational in nature (mainly B-cell epitopes), leaving less than 10% in the linear 

category (B-cell and T-cell epitopes) [14]. However, as described above both epitope 

categories are important players in immune response and are worthy of further 

exploration. Moreover, given the growing amount of antigen sequence and antigen three-

dimensional structural data readily available today, there is increasing promise for the 

development of reliable in silico epitope prediction tools. Therefore, this dissertation will 
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explore state-of-the-art methods for epitope prediction and utilize novel approaches to 

generate well-performing, easy to use, and widely available prediction tools.    

1.2.1 State-of-the-Art Computational Tools for Epitope Prediction  

The computational experiments conducted in this dissertation will focus on two 

main types of epitopes, linear T-cell/B-cell epitopes and conformational B-cell epitopes. 

Tables 1 and 2 summarize the current state-of-the-art in bioinformatics-based epitope 

prediction tools. 

 

 

Table 1 State-of-the-Art in T-cell Epitope Prediction. List of T-cell epitope prediction tools, along with a 

description of the tool, approximate accuracy, AUC, or Pearson’s Correlation Coefficient, and reference. 

Tool Description Method Quality Reference 

EpiJen Multi-step algorithm 80% (accuracy) [15] 

BIMAS Published coefficient tables N/A [16] 

ProPred I Quantitative matrix 38-80% (accuracy) [17] 

ProPred Quantitative matrix N/A [18] 

MHCPred Additive method N/A [19] 

NetMHC ANN based method 0.761-0.912 (Pearson’s 

Correlation Coefficient) 

[20][21] 

RANKPEP PSSM 0.5-0.9 (AUC) [22] 

SVMHC SVM-based method N/A [23] 

NetCTL ANN-regression 0.9 (AUC) [24] 

nHLAPred Artificial Neural Networks 92.8% (accuracy) [25] 
 

 

 
Table 2 State-of-the-Art in B-cell Epitope Prediction. List of B-cell epitope prediction tools, along with a 

description of the tool, method quality (approximate accuracy, AUC, Pearson’s Correlation Coefficient, etc.) 

and reference. 

Tool Description Method Quality Reference 

ABCpred Recurrent artificial neural networks 65.93% 

(accuracy) 

[26] 

BCPRED Support vector machine with string 

kernels 

0.758 (AUC) 

 

[27] 

FBCPred Support vector machine with string 

kernels 

73.37% 

(accuracy) 

[28] 

BepiPred2.0 Hydrophilicity scale combined with 

hidden markov model 

0.62 (AUC) [29] 
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COBEpro SVM, prediction score 0.628-0.829 

(AUC) 

[30] 

LBtope Input FATSA 54-86% 

(accuracy) 

[31] 

Bcepred Continuous, Combines hydrophilicity, 

flexibility, polarity, and exposed surface 

58.7% 

(accuracy) 

[32] 

SVMTriP Employs support vector machine to 

combine tripeptide similarity and 

propensity scores 

0.702 (AUC) [33] 

DiscoTope Amino acid stats, spatial context, surface 

accessibility of aa 

0.711 (AUC) [34] 

BePro 

(PEPITO) 

 

Weighted linear combination of amino 

acid propensity scores and half sphere 

exposure values 

68.3-75.4 (AUC) 

 

[35] 

ElliPro Approximates a protein surface patch by 

an ellipsoid, Protrusion index 

0.732 (AUC) [36] 

SEPPA Unit patch of residue triangle 0.742 (AUC) [37] 

EPITOPIA Based on Naïve Bayes classifier with 

physiochemical and structural geometrical 

properties 

70–90% 

(accuracy) 

[38] 

CBTOPE SVM based predictor combines 

physiochemical profiles and sequence-

derived inputs, Antigen primary structure 

86.59% 

(accuracy) 

[39] 

EPCES Consensus score by six functions N/A [40] 

EPSVR Based on SVR and meta-analysis 0.597 (AUC) [41] 

PEASE Evaluates a pair score for all combinations 

of one residue from CDR of antibody and 

one form surface exposed region of 

antigen 

N/A 

 

[42] 

EpiPred Combines conformational matching of the 

Ab-Ag structures and knowledge based 

asymmetric Ab-Ag scoring 

44% (Recall) 

14% (Precision) 

[5] 

EpiSearch Mimotope-based prediction, An 

automated sequence analysis based on 

sequence and 3D profiles 

N/A [43] 

MIMOX Mimotope-based prediction, First free 

web tool for it 

N/A [44] 

PepSurf Mimotope analysis: surface graph N/A [45] 

CEP Accessibility of residues and spatial 

distance cut-off (surface accessible) 

75% (accuracy) [46] 

Rapberger Based on antibody info N/A [47] 

PEPOP Accessible and sequence contiguous 

amino acids segments 

N/A [7] 
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Shinji Soga Antibody-specific epitope propensity 

index 

N/A [48] 

EPMeta A meta server, which combines EPSVR, 

EPCES, EPITOPIA, SEPPA, PEPITO, 

and Discotope 1.2 

0.638 (AUC) [41] 

Zhang Based on random forests with a distance-

based feature 

65-70% 

(accuracy) 

0.633 (AUC) 

[49] 

 

 

 

Methods for the prediction of epitopes produce significant tools that can be used 

by scientific researchers around the world to accelerate the production of novel medical 

countermeasures. Computational approaches have made the development process faster 

and cheaper and easy to use computational tools can be ran by experienced scientists and 

novelists alike. Though great strides have been made in this field, many improvements 

can be made to increase performance and reliability. This is evidenced by the method 

quality values in Tables 1 and 2. Not only will improved epitope prediction techniques 

lead to a better understanding of how epitopes are implicated in immune response, but 

they can also be the basis for continued medical advancement. A few examples of real-

world applications of epitope prediction tools are discussed in section 1.3.   

1.3 Real-world Applications of Epitope Prediction Tools 

1.3.1 Vaccine Development    

 Vaccine development has been a tremendous success for the fight against disease 

over the years [2]. The most efficacious vaccines to date have been based on protein 

subunits or inactivated or attenuated whole microbes [50]. However, the process of 

vaccine development can take up to 15 years to complete and some vaccines can cause 

adverse effects to the patient such as, onset of the disease or death [2]. The need for new 
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vaccines is omnipresent, the need ascends from the rapidly evolving landscape of disease 

[51]. Bioinformatics has made it possible to generate new vaccines using computer in 

silico predictions that dramatically reduce the time spent on this task and produce safer 

and more efficacious vaccines [2]. One of the ways bioinformatics can achieve this type 

of success is through a deep understanding of epitopes, vital epitopes that induce immune 

responses [2]. Once again, epitopes are defined by their ability to bind to antibodies or 

other peptides sent in an immune response, therefore they are prime targets for vaccine 

development. In simple terms, the approach is to isolate epitopes that are known to elicit 

an immune response, such as antibody production, and replace the whole pathogen in a 

vaccine with these epitopes [2], the search for these epitopes can be simplified using 

computational methods. Therefore, epitope prediction and the identification of epitopes 

that induce immune responses can be used in the development of vaccines that can treat 

disease.        

 Recently, the coronavirus disease 2019 (COVID-19) pandemic caused by a 

single-stranded RNA virus, severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), has wreaked havoc across the globe causing severe illness and death [52], [53]. 

The spike protein of SARS-CoV-2 assists receptor binding and viral entry within the host 

making it a prime target for vaccine development [53]. Computational epitope prediction 

tools can be used in cases like this to identify potential immunogenic epitopes on the 

spike protein to develop multi-epitope vaccine constructs [53]. Epitope-based vaccines 

have many advantages over traditional vaccines, such as low-cost production, ease of 

modification, and safety [52]. These computational approaches can be used in the future 
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to continue to push the vaccine development process forward, allowing for faster 

development times and more efficacy.   

1.3.2 Protein Biotherapeutic Deimmunization     

One of the major drawbacks of current protein drugs or so called 

“biotherapeutics” is the immunogenicity that they often elicit [54]. The problem with this 

immunogenicity is that it can cause the body to produce anti-drug antibodies that may 

interfere with the efficacy of the administered drug and even cause harmful side effects 

for the patient [54]. Therefore, it is critical for the development of efficacious and safe 

protein-based drugs to understand why these drugs produce immunogenic responses that 

negatively impact their ability to treat disease and what can be done to counteract this 

immunogenicity. Methods developed to reduce immunogenicity but maintain the 

structure and function of the drug will be advantageous for researchers who are searching 

to create the most effective drugs that can treat common diseases impacting the world 

today. T-cell epitopes, which are major components of these biotherapeutics are chief 

determinants of their immune response [54]. Consequently, altering the sequences of 

these epitopes through sequence mutations will reduce their immunogenicity [54]. 

However, it is extremely vital that the sequence alterations are chosen, as such, to 

minimize any structural or functional impact on the protein biotherapeutic [54]. The 

scientific problem of protein biotherapeutic deimmunization is multi-phase in nature. 

First, the challenge is to deimmunize the biotherapeutic via alteration of T-cell epitopes 

through selected sequence point mutations. The second phase entails maintaining the 

structure and function of the protein drug after the sequence alterations. Computational 
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tools for the prediction of T-cell epitopes can help address this complex problem by 

finding these epitopes and helping to target the specific deimmunizing mutations.   

1.3.3 Immune Checkpoint Therapy    

Epitope prediction can be applied to another very important scientific/medical 

problem, that of cancer therapy. Specifically, epitope prediction can be implicated in 

Immune Checkpoint Therapy. In general, the immune system is a large determining 

factor for the fate of developing cancers [55]. The immune system can function as a 

tumor promoter, promoting tumor growth, and shape tumor cell immunogenicity [55]. 

Moreover, the immune system can function as a tumor suppressor, destroying tumor cells 

or slowing their growth [55]. This idea of the immune system functioning as a tumor 

suppressor can be probed to yield a very innovative form of cancer therapy. It is known 

that cancer induced immunosuppression can be mediated, in many individuals, by two 

immunomodulatory receptors that are expressed on T cells, Cytotoxic T-Lymphocyte 

Associated Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1) [55]. Monoclonal 

antibody (mAb) therapies that target and block CTLA-4 and/or PD-1 have shown to 

produce many benefits in the clinical setting, because of their ability to allow the immune 

system to function without fallen victim to these checkpoints [55]. Because individual 

cancers have been shown to contain many mutant genes compared to normal tissues, it 

will be well served to study the cancer epitope landscape [56]. In silico epitope prediction 

can be applied to the identification of candidate tumor antigens, in simple terms, if we 

know the epitopes of the tumor antigens then we may understand how the immune 

system can attack it. The ultimate goal of the epitope prediction approaches applied 
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towards cancer immune checkpoint therapy is to design cancer specific vaccines based on 

the predicted epitopes for the tumor antigens [55],[56].   

1.4 Motivation for this Dissertation Work    

It is clear that the topic of epitope prediction is a significant one, for not only the 

scientific community, but the general public as well. It carries the potential to 

revolutionize the design and production of medical treatments and therapeutics. Also, 

with the current advancements in technology and growing databases storing antigen 

information, the door is open to improve upon the current state-of-the-art in the epitope 

prediction field. Taken together, this is exactly the motivation for exploring this topic in 

this dissertation. Here, epitope prediction has been approached using novel strategies, in 

hopes of producing interesting and significant results. The results can be applied to 

several applications throughout the world of immunology and will be important for the 

advancement of scientific research as a whole.   

1.5 Summary of the Work Presented in this Dissertation  

 Chapter 2 describes methods for training machine learning models on strictly 

protein sequence-derived feature sets to predict B-cell and T-cell epitope sequences. The 

methods use linear B-cell and T-cell epitope sequences, non-epitope sequences, reduced 

amino acid alphabets (3-letter schemes), and n-grams (3-letter). Various machine learning 

algorithms are tested and model performance is evaluated to find the best performing 

model.   

 Chapter 3 describes methods for training machine learning models on strictly 

protein structure-derived feature sets to predict B-cell epitope residues. The methods use 
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conformational B-cell epitope sequences, non-epitope sequences, Delaunay tessellation, 

and amino acid propensity scores. Various machine learning algorithms are tested and 

model performance is evaluated to find the best performing model.   

 Chapter 4 describes methods for training machine learning models on protein 

sequence and structure-derived feature sets to predict B-cell epitope residues. The 

methods use conformational B-cell epitope sequences, non-epitope sequences, Delaunay 

tessellation, and amino acid propensity scores/identities. Various machine learning 

algorithms are tested and model performance is evaluated to find the best performing 

model.   

 Chapter 5 describes the TESSETOPE V1.0 web API. Directions for use along 

with examples are provided.  

Chapter 6 describes conclusions and future directions.  
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CHAPTER TWO 

2.1 Sequence-based Epitope Prediction: An Overview  

This chapter describes machine learning experiments that were performed to 

generate models of linear B-cell and linear T-cell epitopes using strictly sequence derived 

feature sets. Models trained on these particular feature sets are desired due to the wide 

availability of antigen amino acid sequence data. The computational approaches 

described herein, were used to train accurate and efficient models that can predict linear 

epitope sequences in any unseen test datasets.  

2.2 Introduction to the Sequence-based Approach for Linear Epitope Prediction (B-

cell/T-cell) 

A sequence-based method was employed to train machine learning models that 

have the ability to either predict linear B-cell or linear T-cell epitope sequences. These 

two types of epitopes were chosen as the basis of this chapter because tools falling into 

these prediction categories dominate the current literature on epitope prediction and are 

the focus of epitope-based vaccine design, protein deimmunization, and many other 

medical applications. The principal question investigated here was as follows, can a 

machine learning model trained solely on sequence derived features from experimentally 

determined epitopes and non-epitopes, using techniques such as reduced amino acid 

alphabets and n-grams, successfully predict linear B-cell or linear T-cell epitopes at 
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higher or comparable levels of performance than what is currently available today? 

Developing a totally sequence-based prediction tool is quite appropriate because epitope 

sequences are much more widely available than solved epitope three-dimensional 

structures. Consequently, more sequence data is accessible to researchers and more data 

will be produced in the future. This will allow for the continued rapid development of 

prediction tools which can be used in vaccine design and protein deimmunization, as 

mentioned previously. Additionally, these machine learning models are easier to apply to 

unseen data in practice, requiring only sequence information to run the model.  

The sequence-based approach uses the techniques of alphabet reduction and n-

grams to generate useful features needed by the machine learning algorithms to train the 

predictive models. Alphabet reduction is simply the clustering of the twenty amino acids 

into a smaller number of groups based on properties and/or similarities [57]. The goal of 

alphabet reduction is to reduce the compositional complexity of the sequence, without 

losing important biochemical information, for faster and more efficient machine learning 

[58]. An n-gram is a subsequence of “n” consecutive characters within a sequence, n-

gram sliding windows of size “n” can be used to determine the attributes of each 

sequence based on n-gram frequencies/probabilities (see section 2.3.1) [59]. Altogether, 

this approach looks to represent a linear epitope sequence as a string of reduced alphabet 

characters, where the sequence characteristics can be discovered by examining its n-gram 

probabilities and these probabilities can be used by machine learning algorithms to train 

the predictive models.   
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2.3 Linear B-cell Epitope Prediction (Sequence-based)  

2.3.1 Normalized n-gram Probability Approach  

The first step in generating the predictive models is to construct a training dataset. 

The training set must contain both positive (linear B-cell epitope) and negative (non-

epitope) instances to allow for proper training of machine learning models. The creation 

of the positive set (validated linear B-cell epitope sequences) was done by downloading 

the non-redundant B-cell epitope dataset from the Bcipep database [60], available from, 

http://crdd.osdd.net/raghava/bcipep/index.html. The Bcipep database contains 

information on experimentally verified linear B-cell epitopes having varying 

immunogenicity [60]. The database contains thousands of epitope entries, including 

immunodominant, immunogenic, and null-immunogenic epitopes and the epitopes 

originate from a variety of pathogens, such as viruses, bacteria, protozoa, and fungi [60]. 

Figure 2 and Table 3 examine the distribution of sequence lengths in the positive dataset. 

 

 

http://crdd.osdd.net/raghava/bcipep/index.html


17 

 

 
Figure 2 Length distribution of the experimentally validated linear B-cell epitopes from the Bcipep database in 

our positive dataset. 

 

 

 
Table 3 Frequency distribution of the lengths of the linear B-cell epitopes in the positive dataset  

Scores Frequency 

(0,5] 43 

(5,10] 344 

(10,15] 402 

(15,20] 260 

(20,25] 92 

(25,30] 41 

(30,35] 20 

(35,40] 5 

(40,45] 1 

(45,50] 1 

(50,55] 0 

(55,60] 1 

  

 

 

About 87% of the epitopes in the Bcipep set have a length ≤ 20 amino acid 

residues and about 65% of the epitopes have a length ≤ 15 amino acid residues. This data 

suggests linear B-cell epitope sequences tend to be shorter rather than longer peptides. A 
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more detailed look at epitope lengths and their impact on the predictive performance of 

trained machine learning models will follow in the next section.   

To complete the creation of the training set, a Python script was written to extract 

the epitope sequences from the Bcipep data file and insert them into a MySQL database 

table. The negative set (non-epitopes) was created using Python scripts that take in all 

protein sequences from the Protein Data Bank (PDB) [61], available from, 

http://www.rcsb.org/, inserts them into a MySQL database table, randomizes the 

sequences, and cuts out sequence fragments, starting at random points in the protein 

sequence, correlating to the size of its corresponding entry in the positive set. Therefore, 

the positive and negative sets within the overall training set had equivalent numbers of 

sequences of equal lengths. For example, if the first sequence in the positive set had a 

length of 12 amino acid residues, the code creating the negative set would cut out a 

sequence fragment of length 12 starting at a random point in one of the sequences from 

the PDB, this fragment would then be inserted into the first slot of the negative set. Table 

4 shows the size of both the positive and negative sets for four different training sets, 

with four different epitope length restrictions used for this approach.  

 

 
Table 4 Size (number of sequences) of the positive and negative sets used for this sequence-based linear B-cell 

epitope prediction approach.  

Training Set Epitope Size 

Restriction 

(residues) 

Number of 

Sequences in 

Positive Set 

Number of 

Sequences in 

Negative Set 

1 None 1210 1210 

2 12+ 774 774 

3 14+ 643 643 

4 19+ 328 328 

 

http://www.rcsb.org/
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Creating four separate training sets, each with differing sequence length cutoffs 

for the positive set, was done to find the optimal epitope length and training set size for 

this machine learning approach. For example, setting the length threshold to include 

shorter sequences, say of length less than 9, will dramatically increase the size of the 

positive set, but these short sequences may not provide enough information to the 

machine learning algorithms and simply complicate matters. On the other hand, setting 

the sequence length threshold too high will reduce the size of the set beyond usable 

levels. Therefore, the optimal balance was searched for to create the best possible 

positive set, yielding satisfying prediction results.    

After the construction of the training sets, including both positive and negative 

instances, data cleaning was performed to ensure non-redundancy in the sets and 

unambiguous amino acid declarations. Then, alphabet reduction was performed on all 

sequences. The alphabet reduction script was previously developed in the Python 

programming language by members of Dr. Vaisman’s group at George Mason University 

and was modified for use in this work. In total, five unique 3-letter (B, J, U) reduced 

amino acid alphabet schemes were implemented with this script [Table 5], and the 

sequences produced using the reduced alphabets were inserted into the tables denoted 

positive and negative set in the MySQL database.  
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Table 5 Reduced amino acid alphabet schemes used for feature extraction. Columns B, J, and U display the 

single letter amino acid codes for the amino acids grouped to that letter.  

Reduced 

Alphabet 

B J U Reference 

1 C, M, F, I, L, V, W, 

Y 

A, T, H, G, P, R D, E, S, N, Q, K [62] 

2 C, M, F, I, L, V, W, 

Y 

G, P, A, T, S E, K, R, D, N, Q, 

H 

[57] 

3 A, V, F, I, L, P, M, 

G 

D, E, K, R S, T, Y, C, N, Q, 

H, W 

 

[63] 

4 M, H, V, Y, N, D, I Q, L, E, K, F W, P, R, G, S, A, 

T, C 

 

[64] 

5 L, A, S, G, V, T, I, 

P, M, C 

E, K, R, D, N, Q, H F, Y, W 

 

[65] 

 

 

 

Subsequently, the n-gram procedure was ready to be applied to all reduced 

alphabet sequences to generate relevant sequence-based features to train machine 

learning algorithms. The n-gram Python script was also previously developed by 

members of Dr. Vaisman’s group and modified for use in this dissertation research. The 

script calculates the normalized n-gram probabilities for each of the 27-possible n-grams 

(n-gram of size 3/ alphabet of size 3) for each sequence created using the reduced 

alphabets and inserts the probabilities into the MySQL database tables storing the training 

sets. Equation 1 describes the ngram probability and Equation 2 describes the normalized 

ngram probability.    

 
  

𝑃 =
𝑓𝑛

𝑛
 (1) 
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𝑁𝑃 =  
𝑃

(𝑓𝑎 ∗  𝑓𝑏 ∗  𝑓𝑐)
 (2) 

 

 

P = ngram probability 

𝑓𝑛 = frequency of ngram in sequence 

n = total number of ngrams in sequence 

NP = normalized ngram probability 

𝑓𝑎 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 1𝑠𝑡 𝑙𝑒𝑡𝑡𝑒𝑟 𝑖𝑛 𝑛𝑔𝑟𝑎𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

𝑓𝑏 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 2𝑛𝑑 𝑙𝑒𝑡𝑡𝑒𝑟 𝑖𝑛 𝑛𝑔𝑟𝑎𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

𝑓𝑐 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 3𝑟𝑑 𝑙𝑒𝑡𝑡𝑒𝑟 𝑖𝑛 𝑛𝑔𝑟𝑎𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

 

 

 

For a traditional 20-letter amino acid alphabet, there are 20𝑛 distinct n-grams of size n. 

For this approach, an n-gram size of 3 was chosen because it has been previously proven 

to be optimal for work with short peptide-length sequences. Thus, if a 20-letter alphabet 

was to be used here there would be 8,000 distinct n-grams of size 3. Alphabet reduction 

reduces this space dramatically by creating a 3-letter amino acid alphabet instead of a 20-

letter alphabet, because 33 = 27 distinct n-grams of size 3. This reduction allows for 

patterns to be seen more clearly and machine learning to work more effectively. The 

normalized n-gram probabilities were used as features to represent the epitope and non-

epitope sequences and to train the machine learning algorithms. After the n-gram script 

was run and probabilities were determined, class labels, 1 = positive (epitope) and 0 = 
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negative (non-epitope), were added to the last ‘class’ column of the training sets for each 

sequence for binary classification purposes.   

Finally, the training sets for each alphabet was used to train several machine 

learning algorithms. Supervised machine learning was performed using the scikit-learn 

Python module [66]. Stratified 10-fold cross-validation results and model performance 

metrics are summarized in section 2.3.2. Stratified cross-validation was used to preserve 

class percentage in each fold.      

Figure 3 summarizes the entire sequence-based linear B-cell epitope prediction 

workflow.  
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Figure 3 Sequence-based linear epitope prediction workflow. The iterative workflow follows six sequential steps, 

with a return to either steps 1, 2, or 3 after model performance evaluation. Notation for step 4, i = instance, pos = 

positive, n = total number of instances for that particular subset, neg = negative, F = feature, x = total number of 

features in vector.   

 

 

 

2.3.2 Linear B-cell Epitope Prediction Results  

The supervised machine learning approach to develop models trained on protein 

sequence-derived feature sets, using reduced amino acid alphabets and n-grams, was used 

to classify B-cell epitope and non-B-cell epitope sequences. Tables 6-9 display model 

performance evaluations for several machine learning algorithms trained on different 

linear B-cell epitope datasets.  
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Table 6 Model performance evaluation for several machine learning algorithms trained on training set 1 

(described in Table 4) and five unique reduced amino acid alphabet schemes. 

Alphabet AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

1 0.65 0.58 0.62 0.55 0.55 0.63 0.61 0.56 0.59 0.55 0.53 0.59 

2 0.62 0.58 0.60 0.55 0.56 0.60 0.58 0.56 0.57 0.55 0.55 0.57 

3 0.60 0.53 0.57 0.53 0.50 0.58 0.57 0.53 0.54 0.54 0.50 0.57 

4 0.61 0.56 0.58 0.54 0.55 0.61 0.57 0.54 0.56 0.55 0.55 0.58 

5 0.60 0.55 0.57 0.54 0.53 0.57 0.57 0.54 0.56 0.54 0.52 0.55 

 

 

 
Table 7 Model performance evaluation for several machine learning algorithms trained on training set 2 

(described in Table 4) and five unique reduced amino acid alphabet schemes. 

Alphabet AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

1 0.66 0.59 0.60 0.56 0.57 0.64 0.61 0.56 0.57 0.56 0.55 0.59 

2 0.68 0.61 0.64 0.55 0.56 0.65 0.63 0.56 0.60 0.55 0.54 0.61 

3 0.62 0.56 0.59 0.55 0.52 0.60 0.58 0.53 0.54 0.55 0.51 0.57 

4 0.62 0.57 0.60 0.54 0.54 0.61 0.58 0.56 0.57 0.54 0.53 0.57 

5 0.63 0.56 0.60 0.56 0.52 0.60 0.58 0.54 0.57 0.56 0.53 0.57 
 

 

 
Table 8 Model performance evaluation for several machine learning algorithms trained on training set 3 

(described in Table 4) and five unique reduced amino acid alphabet schemes. 

Alphabet AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

1 0.65 0.57 0.61 0.54 0.57 0.62 0.61 0.55 0.58 0.56 0.54 0.60 

2 0.66 0.57 0.61 0.54 0.57 0.62 0.61 0.56 0.58 0.56 0.53 0.59 

3 0.63 0.57 0.59 0.55 0.53 0.60 0.60 0.56 0.55 0.55 0.52 0.55 

4 0.66 0.60 0.61 0.57 0.54 0.65 0.60 0.57 0.57 0.57 0.52 0.61 

5 0.60 0.55 0.56 0.54 0.53 0.53 0.56 0.52 0.52 0.54 0.52 0.53 

 

 

 
Table 9 Model performance evaluation for several machine learning algorithms trained on training set 4 

(described in Table 4) and five unique reduced amino acid alphabet schemes. 

Alphabet AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

1 0.64 0.53 0.59 0.51 0.56 0.62 0.60 0.53 0.56 0.53 0.55 0.58 

2 0.65 0.59 0.60 0.54 0.58 0.63 0.61 0.56 0.58 0.53 0.56 0.59 

3 0.63 0.59 0.60 0.50 0.57 0.62 0.58 0.56 0.57 0.51 0.55 0.58 

4 0.60 0.58 0.60 0.52 0.55 0.62 0.55 0.56 0.57 0.51 0.54 0.60 

5 0.65 0.61 0.65 0.56 0.57 0.65 0.60 0.57 0.61 0.56 0.54 0.62 

Control 

1* 

0.49 0.48 0.50 0.49 0.52 0.50 0.50 0.53 0.53 0.51 0.49 0.51 

Control 

2** 

0.48 0.50 0.51 0.54 0.50 0.51 0.51 0.54 0.53 0.51 0.50 0.55 
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*Control based on randomized class labels for alphabet 5  

**Control based on randomized n-gram probabilities for each sequence for alphabet 5  

 

A random forest model, trained on a feature set derived from normalized ngram 

probabilities for Bcipep sequences greater than or equal to 12 residues and corresponding 

non-epitope sequences, represented by reduced alphabet scheme 2, showed the best 

prediction performance [Table 7]. This model achieved an average AUC and accuracy 

value, for its 10 stratified-cross-validation folds, of 0.68 and 0.63, respectively. 

Moreover, machine learning experiments were performed on two control feature sets. 

The first, took feature set alphabet 5 from Table 9 and randomized its class labels. The 

second, took feature set alphabet 5 from Table 9 and randomized its ngram probabilities 

for each sequence. Controls were used to confirm the signal in our feature sets and 

specifically the signal in our best performing feature set. The controls produced AUC and 

accuracy values around the 0.50 random guessing mark. Control 1 gave AUC and 

accuracy values of 0.49 and 0.50, respectively for random forest. Control 2 gave AUC 

and accuracy values of 0.48 and 0.51, respectively for random forest. When directly 

compared to the random forest model trained on feature set alphabet 5 from Table 9, we 

see a significant difference in prediction performance. Our model does significantly 

better than random guessing, which gives credibility to the normalized ngram probability 

approach with reduced alphabet schemes for developing sequenced-based feature sets 

that can be used to train machine learning algorithms to predict epitope and non-epitope 

sequences.   
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 Figure 3 displays AUC results for several machine learning algorithms trained on 

each of the four different feature sets described in this section [Table 4], represented by 

reduced alphabet scheme 1. We see that the AUC values remain fairly consistent for each 

subset.  

 

 

 
Figure 4 Comparison of AUC values for several machine learning algorithms trained on four different feature 

sets. Features sets correspond to training sets 1-4 from Table 4 represented by reduced alphabet scheme 1.  

 

 

 

   Figure 4 displays AUC values for several machine learning algorithms trained on 

the same subset, all sequences from the Bcipep database with length greater than or equal 

to 12, however the subset is represented by five different reduced alphabet schemes. We 

see that the AUC values remain fairly consistent for each alphabet.  
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Figure 5 Comparison of AUC values for several machine learning algorithms trained on the same subset, all 

sequences from the Bcipep database with length greater than or equal to 12, with five different reduced alphabet 

schemes [Table 5].  

 

 

 

 Figure 6 is a confusion matrix that shows the breakdown of predictions for our 

best performing model.  
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Figure 6 Confusion matrix for random forest model, trained on a feature set derived from normalized ngram 

probabilities for Bcipep sequences greater than or equal to 12 residues and corresponding non-epitope 

sequences, represented by reduced alphabet scheme 2. 0 is non-epitope (negative) and 1 is epitope (positive).  

 

 

 

2.3.3 Tuning the Random Forest Model: Hyperparameter Optimization  

Hyperparameters, parameters used to configure and control how certain machine 

learning algorithms learn, must be set before any training takes place [67]. The choice of 

hyperparameter values can have dramatic effects on the performance of the machine 

learning model [67]. Therefore, it is important to perform hyperparameter optimization to 

ensure proper selection of hyperparameter values to maximize model performance. 

Hyperparameter optimization methods help to alleviate many of the issues surrounding 

typical manual methods for setting hyperparameter values, such as reproducibility and 

computational burden [67], [68]. Here, we employ a hybrid approach for hyperparameter 

optimization that includes both random and grid search. Both methods were used to find 

a hyperparameter set that optimize the performance of the random forest model measured 

by AUC using stratified 10-fold cross-validation. First, random search, designed to search 

a wide parameter space by choosing random hyperparameter configurations, was 
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conducted to narrow value ranges for each of the chosen random forest hyperparameters. 

Hyperparameters included, number of estimators (trees), minimum samples to split an 

internal node, minimum samples required to be at a leaf node, number of features to 

consider when looking to split, maximum depth of the tree, and bootstrapping samples to 

build trees. Then, a grid search, which tests every parameter configuration combination, 

was performed on the narrowed hyperparameter value ranges. The grid search produced 

optimal hyperparameter values of 2400 trees, 2 samples to split an internal node, 2 

samples to be at a leaf, ‘sqrt’ maximum features, 20 for maximum depth, and ‘true’ for 

bootstrap. The random forest model with these new hyperparameter values or “tuned 

random forest model” improved the performance of the best performing model from 0.68 

to 0.69 AUC.  

2.3.4 Linear B-cell Epitope Prediction Discussion 

Our initial explorations into training supervised machine learning models of linear 

B-cell epitopes, based exclusively on sequence-derived features and a normalized n-gram 

probability approach, produced several candidate models that can be used to predict 

linear B-cell epitope sequences. These models have great promise; not only do they 

perform better than random guessing when evaluated using stratified 10-fold cross-

validation but they own a very low computational burden. Training sets ranging from a 

low of 656 instances to a high of only 2420 instances coupled with fast training machine 

learning algorithms make this approach desirable.   

Moreover, the performance of some of the models generated here is quite 

analogous to that of those found in the current literature. For comparison we will consider 
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BcePred, a linear B-cell epitope prediction tool published in 2004 [32]. The authors of 

BcePred developed a prediction method based on a combination of physiochemical 

properties, such as hydrophilicity, flexibility, polarity, and exposed surface [2], [32]. 

Interestingly, the performance of their models was tested and evaluated on a dataset 

consisting of 1029 non-redundant B-cell epitopes from Bcipep, the same source as our 

positive set, and an equal number of non-epitopes acquired from the Swiss-Prot database 

randomly [2], [32]. Comparing the performance of the models generated in this 

dissertation to that of those generated in the BcePred published work is rather reasonable 

due to the stark similarities in the training sets. The BcePred authors reported 

performance in terms of accuracy percentages. For models based on single residue 

properties, accuracy ranged between about 52.9% and 57.5%, and for models based on a 

combination of four residue properties, accuracy is about 58.7% [32]. Using our 

approach, the best performing model (random forest) achieved an average prediction 

accuracy, over the 10 stratified cross-validation folds, of about 64% (0.69 AUC).      

 For comparison to a published linear B-cell epitope prediction tool that is based 

on machine learning techniques, ABCpred will be considered. ABCpred uses both feed-

forward neural network (FNN) and recurrent neural network (RNN) trained and tested on 

a dataset of 700 non-redundant B-cell epitopes from Bcipep and an equal number of 

random Swiss-Prot non-epitope sequences [26]. Their best prediction accuracy of about 

65.9%, when tested using 5-fold cross-validation, was reached when using a RNN with a 

single hidden layer of 35 hidden units for a window length of 16 [26]. Our best 

performing model performs quite comparably to ABCpred’s neural network-based model 
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when considering cross-validation prediction accuracy. This bodes well for the future of 

our approach given the often computationally intensive nature of neural network training. 

Future work may involve using a neural network/deep learning approach; however, these 

techniques typically perform better on much larger datasets, considerably larger than 

what has been used in this work. For a comprehensive look at other methods for B-cell 

epitope prediction refer to Table 2.  

Additionally, it must be noted that the results achieved here give relevance to the 

reduced amino acid alphabet, normalized n-gram probability, machine learning approach 

for generating models for the prediction of linear B-cell epitope sequences and warrants 

further investigation and optimization to yield possible better model performance. We 

believe that adopting such an approach will be beneficial for the future improvement of 

epitope prediction.  

2.4 Linear T-cell Epitope Prediction (Sequence-based)  

2.4.1 Normalized n-gram Probability Approach  

 The approach for linear T-cell epitope prediction was performed according to the 

methods described in section 2.3.1. Refer to the flowchart for a detailed overview of the 

approach [Figure 3]. However, the experimentally validated linear T-cell epitope data 

used for the positive training set was obtained from the AntiJen Database v2.0, available 

from: http://www.ddg-pharmfac.net/antijen/AntiJen/antijenhomepage.htm. This database 

is an advancement of the previously established JenPep [69], [70]. In total, the positive 

set consisted of 1731 experimentally determined linear T-cell epitope sequences (MHC 

class I-binders). 

http://www.ddg-pharmfac.net/antijen/AntiJen/antijenhomepage.htm
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Figure 7 Lengths (number of residues) of linear T-cell epitope sequences from the AntiJen v2.0 database.  

 

 

  

Table 10 Frequency distribution of the lengths of the linear T-cell epitope sequences used in the positive set. 

Scores Frequency 

(0,5] 0 

(5,10] 1417 

(10,15] 242 

(15,20] 62 

(20,25] 9 

(25,30] 1 

  

Most of the sequences in this dataset have lengths between 5 and 15 residues. 

Therefore, we chose to simply include all 1731 sequences in the positive set for these 

experiments.  
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2.4.2 Linear T-cell Epitope Prediction Results   

Supervised machine learning models of linear T-cell epitopes were trained using 

several algorithms and model performance was evaluated. Table 11 displays the results 

for linear T-cell epitope prediction.   

 

 
 

Table 11 Model performance evaluation for several machine learning algorithms trained on sequence-derived 

feature vectors from experimentally validated linear T-cell epitope sequences from the AntiJen Database v2.0 

and corresponding random non-epitope sequences. The five unique reduced amino acid alphabet schemes are 

described in Table 5. 

Alphabet AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

1 0.75 0.62 0.71 0.64 0.60 0.73 0.68 0.58 0.65 0.63 0.57 0.66 

2 0.74 0.63 0.68 0.62 0.61 0.72 0.68 0.59 0.64 0.62 0.58 0.65 

3 0.69 0.60 0.65 0.60 0.60 0.66 0.63 0.58 0.60 0.61 0.56 0.63 

4 0.67 0.56 0.62 0.58 0.55 0.64 0.62 0.54 0.59 0.58 0.53 0.59 

5 0.69 0.61 0.65 0.61 0.60 0.66 0.64 0.58 0.61 0.61 0.55 0.63 

Control 

1* 

0.49 0.51 0.49 0.50 0.51 0.48 0.48 0.51 0.49 0.49 0.51 0.50 

Control 

2** 

0.56 0.58 0.51 0.50 0.56 0.56 0.55 0.55 0.52 0.52 0.53 0.54 

*Control based on randomized class labels for alphabet 1 

**Control based on randomized n-gram probabilities for each sequence for alphabet 1 

 

 

 

 Figure 8 presents the model evaluation AUC scores for each of the machine 

learning models from table 11.  
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Figure 8 Comparison of AUC values for several machine learning algorithms trained on the sequences of the 

AntiJen Database v2.0, with five different reduced alphabet schemes [Table 5] and two random guessing 

controls. 

 

 

 

 
Figure 9 Confusion matrix for random forest model, trained on a feature set derived from normalized n-gram 

probabilities for AntiJen v2.0 sequences and corresponding random non-epitope sequences, represented by 

reduced alphabet scheme 1. 0 is non-epitope (negative) class and 1 is epitope (positive) class.  
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The best performing model, evaluated by average AUC and accuracy over 10 

stratified cross-validation folds, for linear T-cell epitope prediction was a random forest 

model trained on a feature vector derived from the sequences of the AntiJen Database 

v2.0 and corresponding random non-epitope sequences using reduced amino acid 

alphabet scheme 1 and the normalized n-gram probability approach. The model achieved 

an average AUC and accuracy of approximately 0.75 and 0.68, respectively. The control 

feature sets tested here helped to confirm the results, as they produced AUC and 

accuracies around the 0.5 random guessing mark. This indicates the presence of a signal 

within our created feature vector that when coupled with machine learning can be used to 

distinguish between linear T-cell epitope and non-linear T-cell epitope sequences.  

2.4.3 Tuning the Random Forest Model: Hyperparameter Optimization 

Hyperparameter optimization was performed according to the methods of section 

2.3.3. The grid search produced optimal hyperparameter values of 1700 trees, 5 samples 

to split an internal node, 2 samples to be at a leaf, ‘sqrt’ maximum features, 50 maximum 

depth, and ‘true’ bootstrap. The tuned model with optimized random forest 

hyperparameter values improved the highest achieved performance results from 0.75 to 

0.76 AUC.  

2.4.4 Linear T-cell Epitope Prediction Discussion  

The explorations into training supervised machine learning models of linear T-cell 

epitopes, based solely on sequence-derived feature sets and the alphabet 

reduction/normalized n-gram probability approach, produced several candidate models 

for use in linear T-cell epitope prediction. Just like some of the models produced for 
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linear B-cell epitope prediction, using the same methodology, the best performing models 

here perform better than random guessing when evaluated using stratified 10-fold cross-

validation and possess a very low computational burden; the training set contained only 

3462 examples.  

The focus of these experiments was the analysis of MHC class I binding peptides, 

a specific type of T-cell epitope. The justification for this stems from the knowledge that 

activated T-cells only recognize antigenic peptides that are bound to MHC molecules on 

cell surfaces [23]. MHC class I  is one of two major classes of MHC molecules that 

display antigenic peptides on the cell surface to allow elimination by cytotoxic T-cells 

(CD8+) [23]. Computational methods for the prediction of MHC class I-binding T-cell 

epitopes have shown wide ranging levels of performance with various tools having 

prediction accuracies between 60-99% [3]. In particular, we will highlight the work of 

Adams and Koziol (1995), which developed a neural network based approach for 

predicting MHC class I binders [71]. In this work, the neural networks, trained on 

sequence data from 552 nonamers and 486 decamers, achieved a predictive hit rate of 

0.78. These results compare favorably to our best performing random forest model that 

achieved an average AUC of 0.76 when evaluated using stratified 10-fold cross-

validation.     

2.4.5 Discussion of Random Forests  

 After our supervised machine learning experiments designed to train models of 

both linear B-cell and T-cell epitopes, using only sequence-derived feature sets, we 

observe that the best performing models were based on the random forest algorithm. The 
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random forest (RF) algorithm was first introduced in 2001 by Breiman [72]. RF is an 

ensemble learning method, meaning multiple models/classifiers are used to solve the 

problem at hand, used for both classification and regression tasks [73] and is a 

combination of Breiman’s bagging sampling approach [74] and the random selection of 

features [75]–[77].  

 Breiman defines a RF as “a classifier consisting of a collection of tree-structured 

classifiers {ℎ(𝒙,𝑘), 𝑘 = 1, … } where the {𝑘} are independent identically distributed 

random vectors and each tree casts a unit vote for the most popular class at input x” [72]. 

In other words, a RF is a collection of a number of single decision tree classifiers or 

“forest”, each tree is trained on a random sample with replacement of instances within the 

full training set, each node of the tree is split according to the best split of a random 

sample of features, the trees are maximally grown, and each tree determines its own 

classification or vote, the class with the highest vote total is chosen as the final 

classification.  

 Figure 10 illustrates a simple example of a decision tree classifier. In this 

example, our dataset contains seven instances and two classes, square and triangle. The 

decision tree is used to separate the two classes based on two features, color and number 

of sides. At the first node, we ask the question: Is it blue? This node splits the set into 

three blues and four reds. The non-blue split gives all triangles; therefore, no further splits 

are necessary. The blue split can be further split by asking the question: Does it have 4 

sides? This node splits the set into two squares and one triangle. After the second node it 

seems that both classes are perfectly separated, and the tree is completed. This may be a 
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rather simple decision tree example used on a completely separatable dataset, but 

nevertheless random forests are constructed using the same guiding principles but with a 

collection of these individual decision trees. As mentioned before, a sample of instances 

from the full training set is used for each decision tree and a sample of features is used to 

determine the best feature to use to split each node. Each tree gives its own classification 

vote and the class with the highest number of votes is taken as the final classification  

decision. Advantages of the RF include robustness to noise and overfitting [73].   

 

 

 
Figure 10 A simple example of a decision tree classifier used to separate two classes (square vs. triangle) using 

two features (color and number of sides) and two tree nodes.  

 

 

 

Figure 11 shows a visual representation of one decision tree from our best 

performing RF model for linear B-cell epitope prediction. The number of features and 

depth of the tree makes it uninterpretable. However, it is provided for illustrative 
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purposes. Figure 12 shows a visual depiction of the same model as figure 11, however the 

maximum depth of the tree is set to 2 for better interpretation.      

 

 

 

 

 
Figure 11 Visual representation of one decision tree from RF model of linear B-cell epitope.  

 

 

 

 

 
Figure 12 Visual representation of one decision tree from the same RF model of a linear B-cell epitope from the 

previous figure. However, the maximum depth of tree was restricted to 2 for better interpretation.   
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2.5 Exploring Additional 3-Letter Reduced Amino Acid Alphabet Schemes  

Supplementary machine learning experiments were performed for linear epitope 

prediction according to the methods described in sections 2.3 and 2.4 for linear B-cell and 

T-cell epitope prediction, respectively. Though, to assess the value of the previously 

chosen reduced amino acid alphabet schemes used in the feature extraction process, new 

reduced amino acid alphabet schemes were created and used to represent the data set.  

2.5.1 Novel 3-Letter Reduced Amino Acid Alphabet Scheme 

A novel 3-letter reduced amino acid alphabet scheme was created based on amino 

acid indices and several different amino acid scales. To do so, a review of the literature 

was first conducted and the amino acid properties that have been found to be successful 

for epitope prediction in the past were chosen and their amino acid scales were used to 

rank all the amino acids from 1 to 20. Then, the ranks for all properties on each amino 

acid were summed and the 20 amino acids were clustered into three distinct groups based 

on these ranks. The three groups were designated the letters B, J, and U, respectively. 

This novel alphabet scheme was then implemented in the feature extraction procedure for 

both linear B- and T-cell epitope prediction. It was hypothesized that tailoring a reduced 

amino acid alphabet scheme to linear epitope prediction would yield improved machine 

learning model performance over models trained using the previous alphabet schemes 

that were not epitope prediction specific. This hypothesis is tested in this section. Table 

12 displays the 8 amino acid properties chosen to create the alphabet scheme.  
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Table 12 List of properties and corresponding reference for the creation of the reduced 3-letter amino acid 

alphabet scheme.  

Property Reference 

Amino acid indices (Rk, Rc, Ro, Rb, Ph, Li) [78] 

Average flexibility index* [79] 

Polarity* [80] 

Hydrophilicity* [81] 

Antigenicity* [82] 

Solvent Accessibility [83] 

Charge (PI)** N/A 

Secondary structure (beta-turns)* [84] 
 *Obtained from https://web.expasy.org/protscale/ 

**Obtained from 

https://www.sigmaaldrich.com/life-science/metabolomics/learning-center/amino-acid-reference-chart.html 

 

 

 

The created amino acid alphabet scheme is presented below (B, J, U):  

B = [R, K, D, G, S, H, Q] 

J = [N, P, Y, E, T, A, C] 

U = [V, L, I, W, F, M] 

 

 

 

2.5.2 Results for Machine Learning Experiments using New Alphabet Scheme  

Table 13 Model performance evaluation for several machine learning algorithms trained on sequence-derived 

feature vectors from experimentally validated linear B-cell epitope sequences with length greater than or equal 

to 12 from the Bcipep database and corresponding random non-epitope sequences. The novel reduced amino 

acid alphabet described in section 2.5.1 was also used here.  

Alphabet AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

1 0.65 0.56 0.60 0.55 0.58 0.62 0.62 0.54 0.58 0.54 0.56 0.59 

Control 

1* 

0.49 0.52 0.50 0.50 0.50 0.49 0.50 0.48 0.49 0.50 0.49 0.51 

Control 

2** 

0.55 0.51 0.56 0.51 0.51 0.54 0.54 0.55 0.51 0.51 0.52 0.56 

*Control based on randomized class labels for alphabet 1 

**Control based on randomized n-gram probabilities for each sequence for alphabet 1 

 

https://web.expasy.org/protscale/
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Table 14 Model performance evaluation for several machine learning algorithms trained on sequence-derived 

feature vectors from experimentally validated linear T-cell epitope sequences from the AntiJen Database v2.0 

and corresponding random non-epitope sequences. The novel reduced amino acid alphabet described in section 

2.5.1 was also used here.  

Alphabet AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

1 0.73 0.62 0.67 0.62 0.61 0.72 0.67 0.58 0.62 0.62 0.57 0.66 

Control 

1* 

0.52 0.51 0.51 0.51 0.50 0.50 0.51 0.51 0.51 0.50 0.51 0.50 

Control 

2** 

0.51 0.51 0.52 0.49 0.48 0.52 0.49 0.51 0.50 0.49 0.50 0.52 

*Control based on randomized class labels for alphabet 1 

**Control based on randomized n-gram probabilities for each sequence for alphabet 1 

 

 

 

Table 13 and Table 14 display model performance evaluations for linear B- and 

T-cell epitope prediction, respectively. The evaluations revealed similar results to the 

previous machine learning experiments for linear B- and T-cell epitope prediction. The 

new alphabet scheme showed mixed performance for each of the machine learning 

algorithms used. While it outperformed some of the previous alphabet schemes, it did not 

perform as well as others. Each of the two controls ran for B-cell and T-cell epitope 

prediction, using the new created reduced amino acid alphabet, produced results around 

the 0.50 random guessing mark, confirming the signal in the approach. The best 

performing models were again random forest models, for linear B-cell epitope prediction 

this model achieved 0.65 AUC and 0.62 accuracy. For linear T-cell epitope prediction 

this model achieved 0.73 AUC and 0.67 accuracy. This result shows that the new 

alphabet scheme does improve prediction over random guessing. The new alphabet 

scheme did not improve performance dramatically as hypothesized. This may be due to 

the fact that the clustering or grouping of amino acids means more than the reduced 

alphabet itself. This will be further examined in the following section.  
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2.5.3 Random Reduced Amino Acid Alphabet Schemes  

Because each of the six reduced amino acid alphabet schemes used in the feature 

extraction process for linear epitope prediction produced similar model performance, 

further experimentation is warranted to understand the value of the specific reduced 

amino acid alphabet scheme used. Towards this goal, five random reduced amino acid 

alphabet schemes were used as controls to determine the impact of the reduced alphabet 

on the performance of the machine learning models. First, the 20 amino acids were 

randomized and grouped into three groups, the first seven were grouped to the letter B, 

the next seven were grouped to the letter J, and the final six were grouped to the letter U. 

This procedure was performed five times to produce the five schemes. These new random 

reduced amino acid alphabet schemes were implemented according to the methods 

described in sections 2.3 and 2.4 for linear B- and T-cell epitope prediction, respectively. 

Results are displayed in the section 2.5.4.  

 

 

 

2.5.4 Results  

Table 15 Model performance evaluation for several machine learning algorithms trained on sequence-derived 

feature vectors from experimentally validated linear B-cell epitope sequences with length greater than or equal 

to 12 from the Bcipep database and corresponding random non-epitope sequences. The five random reduced 

amino acid alphabets described in section 2.5.3 was also used here.  

Alphabet AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

1 0.61 0.55 0.59 0.53 0.51 0.60 0.57 0.54 0.57 0.54 0.50 0.56 

2 0.58 0.54 0.57 0.53 0.52 0.58 0.56 0.53 0.55 0.53 0.52 0.55 

3 0.59 0.52 0.57 0.53 0.48 0.59 0.57 0.52 0.55 0.52 0.50 0.56 

4 0.66 0.60 0.61 0.59 0.58 0.64 0.61 0.56 0.58 0.58 0.54 0.61 

5 0.59 0.52 0.56 0.53 0.51 0.54 0.55 0.51 0.54 0.53 0.50 0.51 

Average 0.61 0.55 0.58 0.54 0.52 0.59 0.57 0.53 0.56 0.54 0.51 0.56 
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Table 16 Model performance evaluation for several machine learning algorithms trained on sequence-derived 

feature vectors from experimentally validated linear T-cell epitope sequences from the AntiJen Database v2.0 

and corresponding random non-epitope sequences. The five random reduced amino acid alphabets described in 

section 2.5.3 was also used here.  

Alphabet AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

1 0.66 0.61 0.63 0.59 0.58 0.66 0.61 0.58 0.60 0.58 0.55 0.61 

2 0.68 0.59 0.64 0.58 0.57 0.65 0.63 0.56 0.60 0.58 0.56 0.61 

3 0.62 0.56 0.59 0.56 0.53 0.61 0.58 0.55 0.57 0.56 0.52 0.57 

4 0.69 0.61 0.65 0.60 0.60 0.67 0.63 0.57 0.61 0.59 0.57 0.62 

5 0.64 0.58 0.61 0.56 0.57 0.63 0.59 0.56 0.58 0.56 0.54 0.59 

Average 0.66 0.59 0.62 0.58 0.57 0.64 0.61 0.56 0.59 0.57 0.55 0.60 

 

 

 

The performance of the machine learning models trained on both linear B-cell and 

T-cell sequence-derived feature vectors are displayed in Table 15 and Table 16, 

respectively. The model performance using the random reduced amino acid alphabet 

schemes with the normalized ngram approach declined compared to the previous six 

alphabet schemes used. Though the performance declined, decreases were only slight. 

The best performing algorithm was again random forest. Random forest models achieved 

an average AUC and accuracy for the five random schemes of 0.61 and 0.57, respectively 

for linear B-cell epitope prediction. For linear T-cell epitope prediction random forest 

models achieved an average AUC and accuracy for the five random schemes of 0.66 and 

0.61, respectively. Once again, these models outperform the method of random guessing. 

This shows that there is still some signal in the approach regardless of the reduced 

alphabet scheme chosen. This leads to the idea that the amino acid alphabet scheme itself 

does not matter as much to the overall feature extraction process compared to the actual 

3-letter ngram groupings themselves.   
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2.6 n-gram “Counts” Method for Linear Epitope Prediction  

 To further explore the development of linear epitope predictive models, using 

sequence-derived feature sets, the n-gram “counts” method was implemented. For this 

method, each sequence in the dataset is represented as a 3𝑛 feature vector. Here, “3” 

represents the reduced three-letter amino acid alphabet that replaces the traditional 

twenty-letter amino acid alphabet and “n” represents the n-gram size, 3 in this case. Each 

component of the feature vector represents an individual n-gram type and the value 

placed in the vector represents the count or absolute frequency of that n-gram in the 

particular sequence. The counts method is previously described in [85].  

 The feature sets used to train the best performing linear B- and T-cell epitope 

prediction models, using the normalized n-gram probability method, were used to train 

the models using the counts method, Table 17 and Table 18 show results for these 

machine learning experiments.  

 

 
Table 17 Model performance evaluation for several machine learning algorithms trained on sequence-derived 

feature vectors from experimentally validated linear B-cell epitope sequences with length greater than or equal 

to 12 from the Bcipep database and corresponding random non-epitope sequences. (Alphabet 2)  

Feature 

Set 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

1 0.69 0.61 0.63 0.57 0.62 0.66 0.65 0.57 0.58 0.57 0.58 0.62 
 

 
 

 
Table 18 Model performance evaluation for several machine learning algorithms trained on sequence-derived 

feature vectors from experimentally validated linear T-cell epitope sequences from the AntiJen Database v2.0 

and corresponding random non-epitope sequences. (Alphabet 1) 

Feature 

Set 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

1 0.75 0.68 0.69 0.64 0.64 0.72 0.68 0.63 0.62 0.64 0.60 0.65 
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The counts method used in the feature extraction process yielded machine 

learning models that performed similar to the normalized n-gram probability models for 

both B- and T-cell epitope prediction. The best performing model for B-cell epitope 

prediction was once again a random forest model. This model achieved an AUC and 

accuracy of 0.69 and 0.65, respectively. The best performing model for T-cell epitope 

prediction was also a random forest model that achieved and AUC and accuracy of 0.75 

and 0.68, respectively. The counts method shows promise for deriving sequence-based 

features for the prediction of linear epitopes due to its simplicity and performance 

compared to other methods. This method can be key to developing even better predictive 

models in the future.  

2.7 Linear B-cell Epitope Model Prediction on Independent Test Set 

 The best performing linear B-cell epitope model from section 2.3.3 was used to 

make predictions on an independent test set. This was done to further evaluate the 

performance and utility of the model. The independent test set was based on 

experimentally validated B-cell epitopes collected by the authors of Lbtope [31] and 

random PDB sequence fragments. The experimentally validated epitope dataset 

(Lbtope_Variable) is made up of 14876 B-cell epitopes of varying lengths [31]. To 

ensure no overlap between the set used to train the predictive model, a global sequence 

alignment was performed pairwise between all sequences in the Lbtope set and all 

sequences in the original training set. Any sequence in the test set that shared greater than 

or equal to 95% sequence identity with any sequence in the training set was removed. 

This ensured no duplicate epitope sequences in the training and test sets. The scoring 
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system used for the global sequence alignments was match: +1, mismatch: -1, Gap open: 

-0.5, Gap extend: -0.1. The sequence identity was calculated according to the following: 

(alignment score / query sequence length) * 100. The final test set consisted of a subset of 

100 B-cell epitope sequences from the cleaned Lbtope set and 100 non epitope sequences 

(non-epitope sequences were generated using the methods described in section 2.3.1).  

 The prediction results for our model on the independent test set are displayed in a 

confusion matrix [Figure 13] and ROC curve [Figure 14].  

 

 
Figure 13 Confusion matrix for random forest model predictions on an independent test set. 0 is non-epitope 

(negative) and 1 is epitope (positive). 
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Figure 14 ROC curve for random forest model predictions on an independent test set. AUC = 0.64. 

 

 

 

 Our random forest model achieved an AUC of about 0.64 on the independent test 

set. This model performs better than random guessing which is a noteworthy result. 

However, future work can be done to improve the prediction performance of our linear 

B-cell epitope models. Improvements can be made to size and variability of the training 

set.  

2.8 Linear T-cell Epitope Model Prediction on Independent Test Set 

 The best performing linear T-cell epitope model from section 2.4.3 was used to 

make predictions on an independent test set. As in the previous section, this was done to 

further evaluate the performance and utility of the model. The independent test set was 

based on experimentally validated T-cell epitopes collected from The Immune Epitope 

Database (IEDB) (https://www.iedb.org/) and random PDB sequence fragments. To 

https://www.iedb.org/
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collect the T-cell epitope sequences, a search was performed on the IEDB. The search 

was conducted for linear epitopes, T-cell assays, and MHC class 1 binders. A total of 

1000 sequences were extracted for possible use in the independent test set. Once again, to 

ensure no overlap between the set used to train the predictive model, a global sequence 

alignment was performed pairwise between all sequences in the IEDB set and all 

sequences in the original training set. Any sequence in the test set that shared greater than 

or equal to 95% sequence identity with any sequence in the training set was removed. 

This ensured no duplicate epitope sequences in the training and test sets. The scoring 

system used for the global sequence alignments was match: +1, mismatch: -1, Gap open: 

-0.5, Gap extend: -0.1. The sequence identity was calculated according to the following: 

(alignment score / query sequence length) * 100. The final test set consisted of a subset of 

250 T-cell epitope sequences from the cleaned IEDB set and 250 non epitope sequences 

(non-epitope sequences were generated using the methods described in section 2.3.1).  

 The prediction results for our model on the test set are displayed in a confusion 

matrix [Figure 15] and ROC curve [Figure 16].  
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Figure 15 Confusion matrix for random forest model predictions on an independent test set. 0 is non-epitope 

(negative) and 1 is epitope (positive). 

 

 

 

 
Figure 16 ROC curve for random forest model predictions on an independent test set. AUC = 0.64. 

 

 

 

 

Our pre-trained random forest model achieved an AUC of about 0.64 on the 

independent test set. Just like for linear B-cell epitope prediction, this model outperforms 
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the method of random guessing. However, future work can be done to improve the 

prediction performance of our linear T-cell epitope models. Improvements can be made 

to size and variability of the training set. 
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CHAPTER THREE 

3.1 Structure-based Epitope Prediction: A Brief Overview  

The vast nature of readily available epitope sequence data has made sequence-

based methods for epitope prediction prominent in the scientific literature. However, as 

mentioned previously, most epitopes are conformational (discontinuous) in composition. 

Therefore, using solely epitope sequence-derived features to represent these epitopes may 

be inadequate for training reliable predictive models because conformational epitopes are 

not continuous in the protein sequence but are brought into proximity through protein 

folding. This aspect of conformational epitopes is the motivation for deriving machine 

learning features from the three-dimensional protein structure of the epitope. As before, 

the features can be the components of a feature vector that can be used in machine 

learning experiments to train models that predict epitopic residues. This chapter will 

introduce our approach for structure-based epitope prediction and the specific method of 

Delaunay tessellation which was used to probe bound antigen-antibody structures.  

3.2 Introduction to Delaunay tessellation  

 Early protein structure analysis methods relied on definitions of nearest neighbor 

residues that were based on arbitrary distance criteria [86]. Examples of nearest neighbor 

definitions include C atoms separated by no more than 5.5 Å [87] and at most 2.8 Å 

separating any pair of atoms belonging to different residues [88]. These arbitrary 
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definitions of residue contacts can dramatically bias the results of the protein structural 

analyses in which they are used. Consequently, unbiased and robust protein residue 

nearest neighbor definitions are necessary to address these issues in protein structure 

analysis [86]. The method of Delaunay tessellation has been introduced to provide these 

unbiased and robust definitions.   

Delaunay tessellation is used to explore the graph or network theoretic properties 

of protein structures, while they are being represented as a residue contact map [89]. As 

mentioned before, residue contact maps were typically studied using a definition of the 

contacts between the residues based on a pairwise residue separation in the 3D-space, 

relying on arbitrary distance cut-off values [89]. Delaunay tessellation counters this 

concept by defining the residue contact map in a more exhaustive manner [89]. Simply 

put, Delaunay tessellation is a method of describing the space between a set of points, 

points that represent the protein structure [89]. The points can either represent an atom, a 

group of atoms, or a residue, for this work the single point per residue method was 

chosen, where the points are set at the -carbon atom locations [89]. The points are 

connected by edges that form nonoverlapping tetrahedra and residues that are connected 

by an edge are considered nearest neighbors [89]. The Delaunay tessellation of a set of 3-

dimensional points can be found by lifting the points to a paraboloid and computing their 

4-dimensional convex hull [86]. 

The goal of using Delaunay tessellation in these initial explorations into structure-

based epitope prediction was to determine the nearest neighbors of the amino acid 

residues in the protein chain of an antigen interacting with an antibody. This would 



54 

 

replace the neighborhood definitions used by DiscoTope [34], [90], in hopes of 

improving epitope residue prediction. We were also interested in examining each simplex 

formed by each residue in the protein structure. Moreover, a four-body statistical contact 

pseudo-potential derived from Delaunay tessellation could be determined for each 

simplex and the sum of all potentials for each residue could be used as a component in 

the feature vector for the residue in machine learning experiments. 

3.2.1 Four-body statistical contact pseudo-potential 

Every amino acid residue in tessellated protein structures participate in a number 

of Delaunay simplices and each simplex is a quadruplet of amino acids. Singh, Tropsha, 

and Vaisman (1996) analyzed Delaunay simplices in their dataset to determine the 

statistical likelihood of four nearest neighbor amino acid residues occurring [86]. The 

log-likelihood factor, q, for each of the quadruplet defined simplices was computed 

according to Equation 3.  

 
 

𝒒𝒊𝒋𝒌𝒍 = 𝒍𝒐𝒈
𝒇𝒊𝒋𝒌𝒍

𝒑𝒊𝒋𝒌𝒍
 (𝟑)                                           

                                                

 

 

i, j, k, and l represent one of the 20 natural amino acid residues, fijkl is the normalized 

observed quadruplet frequency, and pijkl is the randomly expected quadruplet frequency. 

The likelihood of observing four specific residues in one simplex, qijkl, can be further 

described by Equation 4 and Equation 5.  
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𝑓𝑖𝑗𝑘𝑙 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑞𝑢𝑎𝑑𝑟𝑢𝑝𝑙𝑒𝑡 𝑡𝑦𝑝𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑞𝑢𝑎𝑑𝑟𝑢𝑝𝑙𝑒𝑡𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑦𝑝𝑒𝑠
 (4) 

          

 

 

𝑝𝑖𝑗𝑘𝑙 = 𝐶𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙 , 𝑎 (5) 

                                                      

 

ai, aj, ak, and al are the observed amino acid frequencies for a given amino acid and C is 

the permutation factor. 

 

 

𝐶 =
4!

∏ (𝑡𝑖!)𝑛
𝑖

 (6)                                  

 

 

n denotes the quantity of distinct residue types in a quadruplet and ti denotes the total 

number of amino acids of type i. We assume that there is order independence among 

residues that make up Delaunay simplices. Therefore, the maximum number of all 

possible combinations of quadruplets that form simplices is 8855. The values of q (four-

body potential energy function) found by these authors were used in this work to generate 

protein structure-based feature sets to describe epitope and non-epitope residues.  

3.3 Conformational B-cell Epitope Prediction (Structure-based) Methods  

3.3.1 Dataset 

Our final dataset was based on the DiscoTope dataset [34], [90]. The dataset 

consisted of 75 X-ray crystallography determined antigen-antibody complex structures. 

The three-dimensional protein structures were obtained from the PDB. After manual 
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inspection of the structures and the epitope annotations provided by the authors of 

DiscoTope, a final set of 68 antigen-antibody complex structures was used to ensure 

integrity between the epitope annotations and the structures pulled from the PDB. Python 

scripts were written to extract the -carbon atoms for all amino acid residues in the 

dataset, obtain the x, y, z, coordinates for the atoms, and perform Delaunay tessellation 

on the structures via the pyhull module. Pyhull is a python wrapper to qhull [91]. It must 

be noted that only the protein chain of the antigen that interacts with the antibody was 

used in the Delaunay tessellation. DiscoTope used the 4 Å rule to determine the epitope 

residues, where epitope residues were described as antigen amino acids having atoms 

within 4 Å of antibody atoms [90]. Delaunay tessellation was used to obtain the nearest 

neighbor definitions for each amino acid residue, instead of using arbitrary distance cut-

offs or functions, like those used in DiscoTope.  

Figure 17 shows the three-dimensional crystal structure of one protein complex 

obtained from the final dataset along with a visualization of the Delaunay tessellation of 

one of its protein chains. The crystal structure is of the von Willebrand factor (VWF) A1 

domain in complex with the function blocking NMC-4 antigen-binding fragment (Fab) 

(PDB ID: 1OAK). VWF is a large, multimeric glycoprotein that is predominantly found 

in blood plasma and performs two key functions in hemostasis, mediation of the adhesion 

of platelets to subendothelial connective tissue and binding to blood clotting factor VIII 

[92]. Patients with VWF deficiencies often suffer from severe bleeding disorders due to 

blood clot and platelet plug defects [92]. The A1 domain of VWF binds the platelet 

glycoprotein (GP) Ib to initiate hemostatic plugs in rapid blood flow wounds [93]. 



57 

 

Alternatively, pathological conditions, such as thrombotic occlusions can arise due to 

VWF and GP Ib interaction [93]. The Fab fragment of NMC-4, a mouse monoclonal 

antibody that binds to the A1 domain of VWF has been used to understand the 

interactions between VWF and GP Ib that cause certain pathologic conditions, like 

thrombus [94]. Delaunay tessellation was performed on the antigen-antibody interacting 

chain. This is an example of a “self” antigen, one derived from the host.   

 

 

 

(A) 
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(B)

 
Figure 17 (A) Crystal structure of the VON WILLEBRAND FACTOR (VWF) A1 domain in complex with the 

function blocking NMC-4 Fab. 3D structure created using PDB’s 3D View tool (PDB ID: 1OAK) [61], [93], [95]. 

(B) Delaunay tessellation of a 50-residue segment of protein chain A of PDB ID: 1OAK with an example of one 

tetrahedral simplex consisting of four -carbon atom vertices [A, B, C, D]. Vertex, tetrahedron, and edge are 

labelled. B) created using MATLAB script provided by Dr. Majid Masso.  

 

 

 

Figure 18 and Figure 19 provide visualizations of the residues making up the 

discontinuous epitope formed due to the interaction of the VWF’s A1 domain (chain A) 

and the function blocking NMC-4 Fab (chain H). The epitope consists of 13 residues.          
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Figure 18 Crystal structure of the VWF A1 domain in complex with the function blocking NMC-4 Fab. 3D 

structure created using PDB’s 3D View tool (PDB ID: 1OAK) [61], [93], [95]. The residues making up the 

discontinuous epitope are highlighted in light green on protein chain A and interact with chain H.  

 

 

 

 
Figure 19 Crystal structure of the VWF A1 domain in complex with the function blocking NMC-4 Fab. 3D 

structure created using PDB’s 3D View tool (PDB ID: 1OAK) [61], [93], [95]. The residues making up the 

discontinuous epitope and surrounding region in 3D space are highlighted in light green on protein chain A and 

interact with chain H.  
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3.3.2 Feature Vector 

A feature vector based on summed scores for all amino acid residues in the 

dataset was constructed to train machine learning algorithms to predict epitope and non-

epitope residues that appear in discontinuous B-cell epitopes. First, a list of nearest 

neighbors, determined by the Delaunay tessellation tetrahedra, for each amino acid 

residue in the antigen protein chain was obtained for all structures in the dataset. For each 

neighborhood (simplex), the log-odds ratios (values placed on the representation of a 

certain amino acid type in an epitope) obtained from, [90], for each amino acid were 

summed and used as a component in the machine learning feature vector. Second, the 

summed four-body statistical contact pseudo-potential for each of the simplices that the 

residue of interest participates was calculated and used as a component in the machine 

learning feature vector.  

3.4 Conformational B-cell Epitope Prediction (Structure-based) Results  

The results for machine learning experiments designed to train models to predict 

epitope and non-epitope residues in the antigen-antibody interacting chain of bound 

protein structures using the 2-component feature vector are displayed in Table 21.   

 

Table 19 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC). Models were trained using a 2-component feature vector with default parameters and tested using 5-fold 

stratified cross-validation.  

PDB ID Epitope 

Size 

(residues) 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors  

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

1OAK.A 13 0.75 0.85 0.69 0.56 0.79 0.79 

1TQC.A 19 0.50 0.38 0.50 0.51 0.44 0.46 

1H0D.C 17 0.54 0.46 0.67 0.54 0.46 0.63 

1GC1.G 11 0.54 0.71 0.48 0.48 0.55 0.56 

1RZK.G 12 0.47 0.58 0.41 0.48 0.52 0.53 
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1K4D.C 13 0.75 0.75 0.72 0.72 0.86 0.80 

1IC5.Y 16 0.56 0.59 0.41 0.50 0.61 0.51 

1YQV.Y 14 0.80 0.87 0.71 0.55 0.86 0.58 

1G7H.C 16 0.48 0.63 0.48 0.51 0.62 0.47 

1G9M.G 12 0.55 0.64 0.56 0.48 0.55 0.73 

1RZJ.G 11 0.51 0.71 0.64 0.49 0.62 0.73 

1QFU.A 20 0.44 0.52 0.44 0.47 0.55 0.33 

1IC4.Y 18 0.54 0.61 0.48 0.49 0.60 0.33 

1EGJ.A 12 0.54 0.80 0.64 0.56 0.79 0.69 

1A2Y.C 15 0.50 0.57 0.47 0.53 0.54 0.55 

1G7I.C 15 0.46 0.64 0.45 0.47 0.64 0.56 

1XIW.A 17 0.67 0.76 0.71 0.65 0.72 0.62 

1KYO.E 15 0.67 0.78 0.64 0.46 0.79 0.75 

1TQB.A 18 0.52 0.32 0.41 0.46 0.48 0.34 

1NDM.C 18 0.56 0.60 0.58 0.54 0.60 0.62 

1FE8.A 19 0.53 0.71 0.62 0.58 0.68 0.69 

1NBZ.C 19 0.50 0.67 0.59 0.56 0.68 0.64 

2JEL.P 15 0.69 0.64 0.72 0.57 0.67 0.55 

1BJ1.W 16 0.65 0.74 0.66 0.62 0.73 0.72 

1IQD.C 16 0.55 0.62 0.57 0.49 0.63 0.59 

1NBY.C 19 0.63 0.64 0.58 0.57 0.65 0.63 

1TZH.V 13 0.81 0.88 0.77 0.59 0.88 0.84 

1BQL.Y 13 0.73 0.85 0.72 0.59 0.81 0.65 

1G9N.G 12 0.53 0.64 0.53 0.48 0.57 0.61 

1G7J.C 15 0.55 0.69 0.57 0.46 0.69 0.47 

1IC7.Y 17 0.50 0.61 0.43 0.47 0.57 0.54 

1NDG.C 21 0.51 0.64 0.52 0.47 0.62 0.47 

1TPX.A 18 0.52 0.35 0.46 0.62 0.47 0.34 

1K4C.C 14 0.75 0.77 0.76 0.59 0.77 0.76 

1BVK.C 16 0.56 0.59 0.52 0.58 0.54 0.45 

1KIP.C 15 0.53 0.66 0.45 0.55 0.66 0.60 

1J1X.Y 19 0.55 0.65 0.51 0.54 0.62 0.51 

1ORS.C 10 0.54 0.55 0.64 0.50 0.70 0.66 

2HMI.B 9 0.73 0.83 0.65 0.49 0.80 0.79 

1TY6.A 

(2VDN.A) 

19 0.61 0.65 0.60 0.50 0.75 0.65 

1MHP.A 16 0.87 0.92 0.86 0.68 0.92 0.89 

1FNS.A 12 0.67 0.81 0.74 0.60 0.74 0.73 

1EZV.E 17 0.74 0.78 0.68 0.54 0.79 0.66 

1J1P.Y 20 0.62 0.63 0.50 0.52 0.63 0.48 

1KIQ.C 15 0.54 0.68 0.48 0.49 0.68 0.61 

1DZB.X 18 0.65 0.62 0.63 0.51 0.65 0.55 

1MEL.L 22 0.65 0.58 0.44 0.56 0.57 0.61 

1OSP.O 20 0.60 0.76 0.64 0.51 0.74 0.55 

1JPS.T 21 0.45 0.73 0.45 0.50 0.63 0.50 

1OAZ.A 16 0.65 0.67 0.66 0.56 0.57 0.61 

1C08.C 17 0.46 0.60 0.41 0.49 0.60 0.52 

1G7L.C 15 0.48 0.63 0.37 0.52 0.63 0.43 

1JHL.A 11 0.76 0.72 0.64 0.50 0.81 0.72 

1AR1.B 15 0.56 0.77 0.57 0.50 0.80 0.68 

1MLC.E 16 0.74 0.81 0.70 0.62 0.84 0.75 
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1CZ8.W 16 0.62 0.74 0.62 0.48 0.72 0.67 

1G7M.C 15 0.35 0.64 0.46 0.44 0.64 0.49 

1EO8.A 17 0.58 0.68 0.57 0.47 0.62 0.55 

1KIR.C 14 0.49 0.67 0.58 0.48 0.62 0.59 

1FJ1.F 17 0.53 0.63 0.60 0.47 0.71 0.80 

1OTS.A 9 0.67 0.72 0.66 0.59 0.76 0.66 

1DQJ.C 21 0.55 0.66 0.54 0.50 0.63 0.49 

1N8Z.C 17 0.58 0.80 0.61 0.52 0.69 0.55 

1J1O.Y 19 0.54 0.67 0.48 0.50 0.66 0.40 

1LK3.A 18 0.79 0.80 0.72 0.59 0.76 0.71 

1FDL.Y 14 0.58 0.69 0.41 0.51 0.65 0.53 

1JRH.I 15 0.63 0.77 0.69 0.50 0.68 0.61 

1FSK.A 17 0.71 0.81 0.59 0.54 0.74 0.47 
 

 

 

 The machine learning experiments involved training models using feature sets 

derived from only one protein complex. This approach severely limits the amount of 

training data available for the models. Therefore, to study the impact of increasing the 

size of the training set - the number of residues trained on, we trained models that 

combined information from multiple protein complexes. The same 2-component feature 

vector from above was used here but models were trained with 15, 30, 45, 60, and 68 

protein structure complexes, respectively. Results for these machine learning experiments 

are displayed in Table 22.  

 

 
Table 20 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using a 2-component feature vector with default parameters and 

tested using 10-fold stratified cross-validation. 

Number 

of 

Structures 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

15 0.65 0.61 0.59 0.57 0.60 0.54 0.92 0.92 0.91 0.87 0.92 0.92 

30 0.73 0.64 0.67 0.61 0.64 0.52 0.91 0.91 0.89 0.87 0.91 0.91 

45 0.77 0.64 0.70 0.66 0.64 0.54 0.92 0.91 0.90 0.89 0.91 0.91 

60 0.77 0.65 0.70 0.67 0.64 0.54 0.92 0.91 0.90 0.88 0.91 0.91 

68 0.77 0.67 0.69 0.66 0.65 0.58 0.92 0.91 0.91 0.88 0.91 0.91 
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 The performance results for these machine learning models were further 

examined to understand their utility. Therefore, a confusion matrix was generated for one 

of the models. This is shown in Figure 20 below.  

 

 

 

 

 
Figure 20 Confusion matrix for random forest model, trained on a 2-component feature set with structure 

information from 68 protein complexes. 0 is non-epitope (negative) and 1 is epitope (positive). 

 

 

  

 Figure 20 shows that the random forest model produces 10649 true negatives, 773 

false negatives, 304 true positives, and 147 false positives. Therefore, in this full dataset 

there are 1077 epitope residues and 10796 non-epitope residues. This dataset suffers from 

class imbalance, to address this issue we will train models on balanced training sets with 

an equal number of epitope and non-epitope residues.  
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3.4.1 Conformational B-cell Epitope Prediction (Structure-based) Results for 

Balanced Training Sets  

 The five subsets listed in Table 22 were transformed from unbalanced to balanced 

training sets. This was done by randomizing all of the non-epitope residues (the dominant 

class) in the full dataset and taking samples with sizes equivalent to the number of 

epitope residues in each of the five subsets. Thus, the five subsets contained 438, 918, 

1394, 1894, and 2154 residues respectively, each containing an equal number of epitope 

and non-epitope residues. Results for these machine learning experiments are displayed 

in Table 23.  

 

 
Table 21 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using a 2-component feature vector on balanced sets with default 

parameters and tested using 10-fold stratified cross-validation. 

Number 

of 

Residues 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

438 0.64 0.65 0.62 0.56 0.64 0.64 0.60 0.59 0.61 0.55 0.59 0.58 

918 0.69 0.64 0.62 0.60 0.64 0.64 0.61 0.61 0.59 0.61 0.59 0.58 

1394 0.73 0.66 0.69 0.63 0.66 0.65 0.66 0.62 0.64 0.63 0.59 0.61 

1894 0.75 0.67 0.69 0.66 0.66 0.67 0.67 0.63 0.63 0.65 0.61 0.62 

2154 0.75 0.68 0.70 0.65 0.66 0.67 0.68 0.63 0.64 0.66 0.61 0.63 
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Figure 21 Confusion matrix for random forest model, trained on a 2-component feature set with structure 

information from 2154 amino acid residues. 0 is non-epitope (negative) and 1 is epitope (positive). 

 

 

 

 The results obtained for the models trained on the balanced sets are more 

reasonable than that for the unbalanced sets and they show the true performance of the 

models. The best performing model for these experiments was a random forest model that 

was trained on 2154 residues from the interacting chain of various bound antigen-

antibody protein structures. The 2154 residues were balanced with an equal number of 

epitope and non-epitope residues. The model achieved 0.75 and 0.68 AUC and accuracy, 

respectively.  

3.4.2 Conformational B-cell Epitope Prediction (Structure-based) using Strictly 

Delaunay tessellation-based Feature Sets 

 The summed four-body statistical contact pseudo-potential derived from 

Delaunay tessellation described in section 3.2.1 was used to derive new structure-based 

feature sets to train machine learning models to predict epitope and non-epitope residues 

in the antigen-antibody interacting chain of bound protein structures. A seven-component 

feature vector was created for each of the residues in the dataset. This feature set 

consisted of the potential score for the central residue (residue of interest) and its six-
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nearest neighbors. Nearest neighbor lists were determined by Delaunay tessellation and 

the closest six in terms of Euclidean distance were chosen for these experiments. Three 

protein complexes, 1EZV, 1K4C, and 1KYO, were removed from the dataset because 

they had at least one residue that did not have the minimum six nearest neighbors to 

generate this feature set. Therefore, these experiments were performed on a dataset with a 

total of 65 antigen-antibody protein structures. Results for these machine learning 

experiments are given in section 3.4.3.  

 

 

 
 

3.4.3 Prediction Results for Delaunay-derived Feature Vectors  

 

 

Table 22 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC). Models were trained using a 7-component feature vector with default parameters and tested using 5-fold 

stratified cross-validation. 

PDB ID Epitope 

Size 

(residues) 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors  

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

1OAK.A 13 0.77 0.77 0.59 0.45 0.73 0.59 

1TQC.A 19 0.62 0.51 0.72 0.40 0.63 0.63 

1H0D.C 17 0.69 0.37 0.46 0.59 0.48 0.64 

1GC1.G 11 0.70 0.57 0.57 0.53 0.55 0.52 

1RZK.G 12 0.44 0.45 0.66 0.56 0.57 0.49 

1K4D.C 13 0.77 0.77 0.70 0.63 0.86 0.73 

1IC5.Y 16 0.46 0.49 0.60 0.46 0.40 0.47 

1YQV.Y 14 0.67 0.44 0.79 0.50 0.77 0.78 

1G7H.C 16 0.76 0.72 0.70 0.63 0.78 0.75 

1G9M.G 12 0.59 0.62 0.48 0.52 0.66 0.43 

1RZJ.G 11 0.46 0.52 0.67 0.53 0.60 0.49 

1QFU.A 20 0.58 0.38 0.56 0.52 0.40 0.51 

1IC4.Y 18 0.58 0.54 0.55 0.54 0.44 0.51 

1EGJ.A 12 0.64 0.63 0.55 0.58 0.65 0.59 

1A2Y.C 15 0.77 0.68 0.55 0.62 0.76 0.63 

1G7I.C 15 0.67 0.79 0.69 0.54 0.81 0.66 

1XIW.A 17 0.60 0.52 0.63 0.61 0.69 0.60 

1TQB.A 18 0.70 0.43 0.69 0.70 0.59 0.66 

1NDM.C 18 0.65 0.59 0.61 0.54 0.46 0.60 
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1FE8.A 19 0.67 0.63 0.69 0.57 0.69 0.72 

1NBZ.C 19 0.62 0.63 0.61 0.58 0.60 0.48 

2JEL.P 15 0.60 0.55 0.63 0.57 0.59 0.65 

1BJ1.W 16 0.72 0.71 0.60 0.59 0.77 0.59 

1IQD.C 16 0.82 0.74 0.69 0.56 0.84 0.70 

1NBY.C 19 0.68 0.56 0.48 0.50 0.52 0.51 

1TZH.V 13 0.73 0.71 0.75 0.67 0.88 0.81 

1BQL.Y 13 0.53 0.59 0.68 0.50 0.74 0.72 

1G9N.G 12 0.63 0.51 0.71 0.51 0.68 0.65 

1G7J.C 15 0.64 0.74 0.57 0.56 0.75 0.55 

1IC7.Y 17 0.59 0.38 0.50 0.55 0.31 0.48 

1NDG.C 21 0.61 0.63 0.66 0.46 0.57 0.66 

1TPX.A 18 0.65 0.43 0.67 0.58 0.53 0.51 

1BVK.C 16 0.63 0.72 0.67 0.57 0.73 0.66 

1KIP.C 15 0.58 0.72 0.58 0.53 0.77 0.62 

1J1X.Y 19 0.60 0.57 0.56 0.46 0.41 0.48 

1ORS.C 10 0.81 0.75 0.69 0.62 0.71 0.62 

2HMI.B 9 0.91 0.73 0.61 0.64 0.56 0.62 

1TY6.A 

(2VDN.A) 

19 0.73 0.60 0.64 0.53 0.77 0.61 

1MHP.A 16 0.75 0.53 0.72 0.54 0.83 0.80 

1FNS.A 12 0.71 0.70 0.43 0.55 0.69 0.64 

1J1P.Y 20 0.55 0.44 0.48 0.51 0.35 0.35 

1KIQ.C 15 0.73 0.79 0.72 0.56 0.84 0.75 

1DZB.X 18 0.69 0.45 0.49 0.53 0.39 0.47 

1MEL.L 22 0.53 0.47 0.51 0.47 0.41 0.35 

1OSP.O 20 0.58 0.56 0.60 0.54 0.65 0.54 

1JPS.T 21 0.63 0.48 0.52 0.52 0.51 0.70 

1OAZ.A 16 0.73 0.81 0.59 0.58 0.76 0.72 

1C08.C 17 0.65 0.50 0.43 0.50 0.40 0.43 

1G7L.C 15 0.77 0.80 0.69 0.58 0.84 0.69 

1JHL.A 11 0.74 0.82 0.73 0.57 0.87 0.65 

1AR1.B 15 0.62 0.66 0.59 0.45 0.75 0.72 

1MLC.E 16 0.74 0.50 0.72 0.54 0.75 0.69 

1CZ8.W 16 0.55 0.57 0.59 0.64 0.70 0.62 

1G7M.C 15 0.61 0.72 0.66 0.60 0.80 0.73 

1EO8.A 17 0.73 0.59 0.63 0.64 0.57 0.65 

1KIR.C 14 0.69 0.77 0.68 0.59 0.81 0.63 

1FJ1.F 17 0.69 0.62 0.47 0.45 0.76 0.60 

1OTS.A 9 0.86 0.57 0.44 0.54 0.68 0.46 

1DQJ.C 21 0.52 0.55 0.51 0.48 0.43 0.56 

1N8Z.C 17 0.80 0.80 0.61 0.54 0.71 0.70 

1J1O.Y 19 0.55 0.59 0.60 0.48 0.42 0.50 

1LK3.A 18 0.53 0.44 0.68 0.44 0.67 0.58 

1FDL.Y 14 0.75 0.77 0.67 0.67 0.83 0.63 

1JRH.I 15 0.76 0.55 0.60 0.57 0.61 0.67 

1FSK.A 17 0.47 0.52 0.46 0.52 0.50 0.41 
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Once again, in this section we have shown the prediction performance of machine 

learning models trained and tested on feature sets derived from single protein structures. 

As mentioned previously, this methodology limits the amount of training data available 

for the models. Thus, to study the impact of increasing the size of the training set - the 

number of residues trained on, we trained models that combined information from 

multiple protein complexes. The same 7-component feature vector from above was used 

here but models were trained with 15, 30, 45, 60, and 65 protein structure complexes, 

respectively. Results for these machine learning experiments are displayed in Table 25.  

 

Table 23 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using a 7-component feature vector with default parameters and 

tested using 10-fold stratified cross-validation. 

Number 

of 

Structures 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

15 0.74 0.60 0.64 0.55 0.64 0.64 0.92 0.92 0.91 0.86 0.85 0.92 

30 0.80 0.60 0.71 0.59 0.65 0.67 0.91 0.90 0.90 0.85 0.75 0.90 

45 0.80 0.59 0.73 0.60 0.62 0.66 0.92 0.91 0.90 0.86 0.86 0.91 

60 0.80 0.62 0.72 0.60 0.63 0.67 0.92 0.91 0.91 0.86 0.78 0.91 

65 0.80 0.62 0.73 0.61 0.63 0.67 0.92 0.91 0.91 0.86 0.79 0.91 

  

 

 

The model evaluation for these machine learning experiments were further 

examined to understand the performance of these models. Therefore, a confusion matrix 

was generated for one of the models. This is shown in Figure 22 below. 
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Figure 22 Confusion matrix for random forest model, trained on a 7-component feature set with structure 

information from 65 protein complexes. 0 is non-epitope (negative) and 1 is epitope (positive). 

 

 

 

 

Figure 22 shows that the random forest model produces 10362 true negatives, 866 

false negatives, 165 true positives, and 7 false positives. Therefore, in this full dataset 

there are 1031 epitope residues and 10369 non-epitope residues. This dataset also suffers 

from class imbalance, to address this issue we will train models on balanced training sets 

with an equal number of epitope and non-epitope residues. 

3.4.4 Prediction Results for Balanced Delaunay-derived Feature Vectors 

Feature sets described in section 3.4.2 were balanced according to the methods of 

section 3.4.1. This yielded five feature sets with 438, 922, 1422, 1896, and 2062 residues, 

respectively each with an equal number of epitope and non-epitope residues. The results 

for these machine learning experiments are shown in Table 26.  
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Table 24 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using a 7-component feature vector on balanced sets with default 

parameters and tested using 10-fold stratified cross-validation. 

Number 

of 

Residues 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

438 0.73 0.61 0.67 0.60 0.64 0.65 0.68 0.57 0.63 0.60 0.59 0.61 

922 0.76 0.61 0.64 0.63 0.66 0.70 0.69 0.60 0.62 0.64 0.60 0.63 

1422 0.77 0.60 0.70 0.63 0.63 0.67 0.69 0.58 0.64 0.63 0.59 0.63 

1896 0.77 0.62 0.68 0.62 0.63 0.67 0.68 0.59 0.63 0.62 0.58 0.63 

2062 0.78 0.62 0.70 0.62 0.63 0.69 0.70 0.60 0.64 0.62 0.59 0.64 
 

 

 

 

 
Figure 23 Confusion matrix for random forest model, trained on a 7-component feature set with structure 

information from 2062 amino acid residues. 0 is non-epitope (negative) and 1 is epitope (positive). 

 

 

 

The results obtained for the models trained on the balanced sets are more 

reasonable than that for the unbalanced sets and they show the true performance of the 

models. The best performing model for these experiments was a random forest model that 

was trained on 2062 residues from the interacting chain of various bound antigen-

antibody protein structures. The 2062 residues were balanced with an equal number of 

epitope and non-epitope residues. The model achieved 0.78 and 0.70 AUC and accuracy, 

respectively. This model produced 698 true negatives, 293 false negatives, 738 true 

positives, and 333 false positives.  
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3.5 Conformational B-cell Epitope Prediction (Structure-based) Discussion  

 The initial findings of this chapter provide some promise for the future of this 

structure-based approach for training machine learning models of conformational B-cell 

epitopes because some of the models achieved AUC values that compare quite favorably 

with the results from the original DiscoTope paper. For example, the AUC value for 

complex 1MHP.A for DiscoTope is about 0.76 and for our approach is about 0.79. 

DiscoTope produces an average AUC, for prediction on the evaluation sets of about 0.6, 

when only predicting based on the raw epitope log-odds. Our approach produces an 

average AUC of about 0.6 under these same conditions. However, DiscoTope2.0 

produces an average AUC of about 0.7, when only predicting based on the raw epitope 

log-odds scores. These results show that our approach to conformational epitope 

prediction is comparable to the original DiscoTope but is lacking in performance 

compared to DiscoTope2.0. However, we do define residue neighbors/contacts in a more 

robust manner than using an arbitrary distance cut-off or function, which is favorable 

over DiscoTope.  
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CHAPTER FOUR 

4.1 Combined Sequence and Structure Approach for Epitope Prediction  

 Thus far, we have focused on deriving feature sets to train epitope machine 

learning models using either protein sequence or structure information. The next logical 

step will be to assess the performance of machine learning models trained on feature sets 

composed of a combination of sequence and structure-derived features. For the initial 

explorations into a combined sequence and structure approach for epitope prediction, the 

use of the identity of the central residue was added to the feature set. In addition to the 

seven Delaunay tessellation derived structural features (summed four-body statistical 

contact pseudo-potentials) used to represent each residue in the dataset, the identity of the 

central residue using the traditional twenty letter amino acid alphabet was added as a 

component. Machine learning experiments were performed according to the methods 

described in chapters 2 and 3 and results are presented in section 4.1.1.  

4.1.1 Results for the 8-component Feature Vector (unbalanced training sets) 

Models containing residue feature set information from 15, 30, 45, 60, and 65 

proteins respectively were used in these machine learning experiments. The results for 

these machine learning experiments are displayed in table 27.  
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Table 25 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using an 8-component feature vector with default parameters and 

tested using 10-fold stratified cross-validation. 

Number 

of 

Structures 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

15 0.78 0.64 0.61 0.54 0.66 0.63 0.92 0.92 0.91 0.86 0.61 0.92 

30 0.82 0.66 0.73 0.60 0.67 0.71 0.91 0.90 0.90 0.86 0.60 0.90 

45 0.83 0.66 0.74 0.62 0.65 0.72 0.92 0.91 0.91 0.86 0.56 0.91 

60 0.83 0.68 0.74 0.62 0.67 0.72 0.93 0.91 0.91 0.87 0.58 0.91 

65 0.83 0.68 0.75 0.63 0.67 0.73 0.93 0.91 0.91 0.87 0.57 0.91 

 

 

 

This set of machine learning experiments, utilizing an 8-component feature 

vector, including both sequence and structure information produced models that achieved 

consistently high AUC values. The models consisting of 45, 60, and 65 protein structures 

achieved AUC values of about 0.83 with the random forest algorithm.  

 For the next set of machine learning experiments the central residue was 

represented, not by the twenty-letter amino acid alphabet, but by a 3-letter reduced 

alphabet scheme. The reduced alphabet scheme used here is reduced alphabet 5 from the 

sequence-based epitope prediction approach from chapter 2. Reduced alphabet 5 was 

arbitrarily chosen as a representative reduced amino acid alphabet scheme. The three-

letter (B, J, and U) reduced alphabet scheme is shown below.  

B = [L, A, S, G, V, T, I, P, M, C] 

J = [E, K, R, D, N, Q, H] 

U = [F, Y, W] 
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Once again, machine learning models of 15, 30, 45, 60, and 65 protein structures 

were trained. The results for these machine learning experiments are displayed in table 

28.  

 

 
Table 26 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using an 8-component feature vector with default parameters and 

tested using 10-fold stratified cross-validation. 

Number 

of 

Structures 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

15 0.74 0.60 0.64 0.55 0.63 0.63 0.92 0.92 0.91 0.86 0.84 0.92 

30 0.80 0.62 0.72 0.60 0.65 0.68 0.92 0.90 0.89 0.86 0.76 0.90 

45 0.81 0.62 0.73 0.62 0.63 0.68 0.92 0.91 0.90 0.86 0.81 0.91 

60 0.81 0.64 0.73 0.62 0.65 0.69 0.92 0.91 0.91 0.87 0.79 0.91 

65 0.81 0.64 0.74 0.62 0.65 0.69 0.93 0.91 0.92 0.87 0.79 0.91 

 

 

 

 The model performance of machine learning models trained on the feature set 

containing the central residue represented by a twenty-letter amino acid alphabet versus 

the reduced 3-letter alphabet are overall quite similar. However, models trained on the 

feature set containing the central residue represented by a twenty-letter amino acid 

alphabet performed either better or equal to the second feature set for all algorithms 

tested, in terms of an average AUC for all 5 subsets. Subsequent analyses will test the 

viability of including a reduced amino acid alphabet representation of residue identities in 

our feature vector.  

4.1.2 Results for the 14-component feature vector (unbalanced training sets) 

Additional experiments were performed to evaluate the performance of machine 

learning models trained on a 14-component feature vector. The feature vector 

components consisted of the summed four-body statistical contact pseudo-potential for 
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the central residue and its six nearest neighbors as well as the identity of the central 

residue and its six nearest neighbors, using a twenty-letter alphabet. The results for these 

machine learning experiments are displayed in table 29. 

 

 
 Table 27 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using a 14-component feature vector with default parameters and 

tested using 10-fold stratified cross-validation. 

Number 

of 

Structures 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

15 0.81 0.71 0.68 0.60 0.69 0.71 0.92 0.92 0.91 0.88 0.70 0.92 

30 0.86 0.72 0.77 0.63 0.70 0.78 0.92 0.90 0.91 0.87 0.69 0.90 

45 0.86 0.72 0.78 0.66 0.70 0.77 0.93 0.90 0.91 0.88 0.67 0.91 

60 0.85 0.73 0.77 0.66 0.71 0.77 0.93 0.91 0.92 0.88 0.67 0.91 

65 0.85 0.74 0.78 0.67 0.71 0.78 0.93 0.91 0.91 0.89 0.66 0.91 

 

 

 

 The 14-component feature vector has trained our best performing discontinuous 

B-cell epitope prediction models thus far. The models trained on 30 and 45 structures, 

using the random forest algorithm, both achieved AUC values of about 0.86. Additional 

experiments and analyses will be performed to further improve this feature vector to train 

even better performing models.   

Next, models trained on 15, 30, 45, 60, and 65 protein structures were trained 

once again. The feature set consisted of the summed four-body statistical contact pseudo-

potential for the central residue and its six nearest neighbors as well as the identity of the 

central residue and its six nearest neighbors. However, for this feature set a reduced 

three-letter amino acid alphabet was used to represent the residue identities. The reduced 

amino acid alphabet scheme used is described in section 4.1.1. Results for these machine 

learning experiments are displayed in table 30.  
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Table 28 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using a 14-component feature vector with default parameters and 

tested using 10-fold stratified cross-validation. 

Number 

of 

Structures 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

15 0.72 0.57 0.67 0.54 0.61 0.62 0.92 0.92 0.91 0.86 0.79 0.92 

30 0.82 0.60 0.76 0.59 0.64 0.71 0.91 0.90 0.90 0.85 0.74 0.90 

45 0.83 0.61 0.75 0.63 0.63 0.73 0.92 0.91 0.90 0.86 0.78 0.91 

60 0.83 0.63 0.76 0.62 0.64 0.74 0.93 0.91 0.91 0.87 0.76 0.91 

65 0.83 0.64 0.76 0.63 0.64 0.74 0.93 0.91 0.92 0.87 0.76 0.91 

 

 
 

 The prediction performance of these machine learning models compared to the 

previous set that used the full twenty-letter amino acid alphabet to represent the residue 

identities instead of the reduced three-letter amino acid alphabet, decreased, in terms of 

average AUC for all five subsets for all algorithms tested. This points to the conclusion 

that representing the residue identities using the traditional twenty-letter amino acid 

alphabet is better suited for this feature vector and this prediction task. 

4.2 Adding a Surface Measure Component to the Feature Vector 

 For several years it has been known that the antigenicity of certain polypeptide-

chain segments is directly related to their surface exposure, these segments that display 

tremendous surface exposure or protrusion are readily available for contact with antigen-

combining sites [90][96][97]. Therefore, it was hypothesized that adding a definition of 

surface exposure to the feature vector for each residue in the dataset would improve the 

performance of the predictive models.   

The next set of machine learning experiments involved the addition of a surface 

measure to the feature set. The relative solvent accessibility (RSA) was calculated for 

each of the residues in the antibody-antigen interacting chain for all of the protein 
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complexes in our dataset. To do this, the DSSP files for each of the PDB structures was 

downloaded using the DSSP website tool available from, http://www.cmbi.ru.nl/xssp/. 

Next, a Python script was written to parse the DSSP output and extract the ACC value for 

each of the residues. DSSP defines the ACC value as the number of water molecules in 

contact with the residue *10 or as the residue water exposed surface in Angstrom **2.  

 Next, the ACC value was converted to RSA by dividing the ACC value by the 

total surface area of each amino acid residue (TSA). The TSA values were taken from 

[98].  

 

 
Table 29 Total surface area (TSA) for each amino acid calculated for the residue X in the tripeptide G-X-G. The 

value is calculated in Å𝟐. The values were obtained from the paper, The Nature of the Accessible and Buried 

Surfaces in Proteins by: C. Chotia [98]. 

Amino Acid Total Surface Area (TSA) 

A 115 

R 225 

D 150 

N 160 

C 135 

E 190 

Q 180 

G 75 

H 195 

I 175 

L 170 

K 200 

M 185 

F 210 

P 145 

S 115 

T 140 

W 225 

Y 230 

V 155 

 

 

 

The calculated RSA values for each of the residues in the dataset were added as a 

component of the feature vector containing the summed four-body statistical contact 

http://www.cmbi.ru.nl/xssp/
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pseudo-potential for the central residue and its six nearest neighbors and the identity of 

the central residue and its six nearest neighbors represented by either a 20-letter or 3-

letter alphabet (B, J, U). Note that two of the residues in the full dataset had an RSA 

value of NAN. For these two residues the mean RSA value for all of the residues in the 

subset was used to replace the NAN value for use in the machine learning algorithms. 

Models were trained on subsets containing 15, 30, 45, 60, and 65 proteins and feature 

vectors containing 15 components. The results for these machine learning experiments 

are displayed in tables 32 and 33.  

 

 

 
Table 30 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using a 15-component feature vector with default parameters and 

tested using 10-fold stratified cross-validation. Residue identities were represented with a 20-letter amino acid 

alphabet.  

Number 

of 

Structures 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

15 0.84 0.77 0.69 0.62 0.70 0.78 0.93 0.92 0.92 0.89 0.71 0.92 

30 0.90 0.78 0.77 0.67 0.72 0.85 0.93 0.90 0.91 0.89 0.71 0.90 

45 0.91 0.78 0.79 0.69 0.72 0.84 0.93 0.91 0.91 0.90 0.68 0.91 

60 0.90 0.79 0.78 0.71 0.72 0.83 0.94 0.91 0.92 0.90 0.68 0.91 

65 0.90 0.80 0.78 0.72 0.73 0.84 0.94 0.91 0.92 0.90 0.68 0.91 

 

 The addition of the RSA value surface measure component to the feature vector 

improved the results. We achieved our highest AUC value, 0.91, thus far with the random 

forest model trained on the 45-protein structure subset.  
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Table 31 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using a 15-component feature vector with default parameters and 

tested using 10-fold stratified cross-validation. Residue identities were represented with a 3-letter amino acid 

alphabet. 

Number 

of 

Structures 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

15 0.79 0.68 0.66 0.59 0.68 0.66 0.92 0.92 0.91 0.87 0.81 0.92 

30 0.87 0.72 0.76 0.65 0.72 0.79 0.92 0.90 0.90 0.87 0.78 0.90 

45 0.88 0.72 0.76 0.67 0.71 0.80 0.93 0.91 0.91 0.88 0.81 0.91 

60 0.88 0.73 0.77 0.67 0.71 0.80 0.94 0.91 0.92 0.89 0.80 0.91 

65 0.89 0.74 0.77 0.66 0.72 0.82 0.94 0.91 0.92 0.88 0.79 0.91 

 

 

 Overall, the model performance has improved with the addition of the surface 

measure component. A random forest model trained on the 45-protein structure subset 

with the 20-letter alphabet representing the residue identities achieved our highest AUC 

value, 0.91, thus far.  

4.3 Implications of several cut-off values for RSA to define surface/buried residues  

   The determination of buried/exposed (surface) residues can come down to an 

arbitrary threshold definition. RSA values are compared to the chosen threshold and the 

classification of buried or exposed can be made for the given residue in the protein 

structure. If the RSA value for the residue is below the threshold then it is classified as 

buried, otherwise it is classified as exposed. Chen and Zhou 2005 [99] defined their 

threshold as 20%. Wu et al. 2017 [100] defined their threshold as 25%. Zhang et al. 2009 

[101] avoided the arbitrary threshold definition problem by using a range of thresholds 

from 0-95% with a 5% step. Miller et al. 1987 [102] used a threshold of just 5%. For this 

work, several thresholds were chosen and used to determine a binary classification of 

buried or exposed residues. We will use thresholds from 5-50% with a step of 5%. The 
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binary classification was used to replace the calculated RSA value in the feature vectors 

from section 4.2. We chose to test this approach using the 20-letter amino acid alphabet 

to represent the residue identities and the random forest algorithm, a configuration that 

has been proven to produce optimal prediction performance in previous experiments. 

Note the NANs were filled with the mode for the column. Results for this approach are 

displayed in table 34.  

 

Table 32 AUC values for machine learning models trained on a 15-component feature vector (with a 20-letter 

alphabet representing the residue identities). Results are shown for the subsets that contain 15, 30, 45, 60, and 65 

proteins, respectively. The new feature added here is a binary classification of either buried or exposed residue 

determined by a step-wise threshold definition. Random forest with default parameters and 10-fold stratified 

cross-validation was used to perform the machine learning experiments.   

 RSA Threshold 

Number 

of 

Structures 

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 

 AUC 

15 0.82 0.83 0.83 0.82 0.84 0.85 0.84 0.84 0.85 0.83 

30 0.88 0.88 0.89 0.89 0.90 0.89 0.90 0.90 0.90 0.89 

45 0.87 0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.88 

60 0.87 0.87 0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.88 

65 0.87 0.87 0.88 0.89 0.88 0.89 0.89 0.89 0.88 0.88 

 

 After these experiments, it seems as though the particular threshold chosen to 

define buried/surface residues does not influence the predictive performance of the 

machine learning models dramatically. Each threshold from 5% to 50% produced similar 

prediction results for each subset, evaluated in terms of AUC. Using the threshold with 

binary classification of buried/exposed residues did not outperform the machine learning 

models trained with the raw RSA values, though they were quite similar.   
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4.4 Discontinuous B-cell epitope prediction (balanced training sets) 

 Our discontinuous B-cell epitope dataset consists of annotated epitope and non-

epitope residues. In the full dataset (65 antigen-antibody bound structures) there are a 

total of 1031 epitope residues and 10369 non-epitope residues. Thus far, all of the 

machine learning experiments for discontinuous B-cell epitope prediction with a 

combined sequence and structure feature set have been conducted on unbalanced datasets 

of epitope/non-epitope residue feature sets. This poses a class imbalance problem that 

may bias the performance evaluation of our models. Consequently, it will be important to 

study models that have been trained on balanced datasets, which is the focus of this 

section.  

For each of the five subsets of our dataset, the number of epitope residues was 

calculated. Then, all of the non-epitope residues in the full set were randomized and 

samples were taken to create balanced sets of equal numbers of epitope and non-epitope 

sequences. Therefore, each of the negative sets were unique and randomized. The 

resulting subsets consisted of 438, 922, 1422, 1896, and 2062 residues, respectively. 

Section 4.4.1 presents the results of the balanced set experiments.  

4.4.1 Discontinuous B-cell epitope prediction (balanced training sets) Results 
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Table 33 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using an 8-component feature vector (summed four-body statistical 

contact pseudo-potential for the central residue and its 6 nearest neighbors and the identity of the central 

residue using a 20-letter alphabet) with default parameters and 10-fold stratified cross-validation.  

Number 

of 

Residues 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

438 0.76 0.65 0.66 0.60 0.66 0.66 0.68 0.62 0.61 0.60 0.61 0.61 

922 0.78 0.65 0.65 0.62 0.67 0.71 0.71 0.61 0.62 0.63 0.62 0.64 

1422 0.79 0.64 0.72 0.63 0.64 0.70 0.71 0.62 0.65 0.64 0.60 0.65 

1896 0.80 0.67 0.70 0.63 0.66 0.71 0.72 0.62 0.64 0.64 0.63 0.65 

2062 0.80 0.68 0.72 0.64 0.67 0.73 0.72 0.64 0.65 0.64 0.63 0.67 

 

 

Table 34 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using an 8-component feature vector (summed four-body statistical 

contact pseudo-potential for the central residue and its 6 nearest neighbors and the identity of the central 

residue using a 3-letter alphabet) with default parameters and 10-fold stratified cross-validation. 

Number 

of 

Residues 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

438 0.73 0.61 0.65 0.59 0.64 0.65 0.65 0.59 0.62 0.60 0.60 0.60 

922 0.77 0.61 0.66 0.63 0.66 0.70 0.70 0.58 0.62 0.64 0.59 0.63 

1422 0.78 0.62 0.70 0.63 0.64 0.68 0.71 0.59 0.64 0.62 0.59 0.64 

1896 0.78 0.64 0.69 0.63 0.64 0.68 0.69 0.60 0.62 0.63 0.60 0.63 

2062 0.79 0.65 0.71 0.64 0.65 0.70 0.71 0.60 0.65 0.64 0.60 0.65 

 

 

 

 The best performing models, in terms of AUC and accuracy, for the 8-component 

feature vector experiments were random forest models trained on 1896 and 2062 

residues. The feature vector with the 20-letter amino acid alphabet residue identity 

slightly outperformed the one with the 3-letter alphabet. The best AUC value for the 20-

letter set was 0.80 and 0.79 for the 3-letter set.  
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Table 35 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using a 14-component feature vector (summed four-body statistical 

contact pseudo-potential for the central residue and its 6 nearest neighbors and the identity of the central 

residue and its 6 nearest neighbors using a 20-letter alphabet) with default parameters and 10-fold stratified 

cross-validation. 

Number 

of 

Residues 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

438 0.80 0.69 0.70 0.66 0.66 0.71 0.72 0.63 0.65 0.66 0.60 0.63 

922 0.81 0.70 0.68 0.64 0.67 0.76 0.73 0.66 0.64 0.66 0.64 0.66 

1422 0.82 0.71 0.73 0.63 0.69 0.77 0.74 0.66 0.67 0.64 0.65 0.68 

1896 0.82 0.72 0.73 0.65 0.71 0.77 0.73 0.67 0.66 0.65 0.65 0.69 

2062 0.83 0.73 0.75 0.67 0.71 0.79 0.74 0.68 0.68 0.67 0.66 0.71 

 

 

Table 36 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using a 14-component feature vector (summed four-body statistical 

contact pseudo-potential for the central residue and its 6 nearest neighbors and the identity of the central 

residue and its 6 nearest neighbors using a 3-letter alphabet) with default parameters and 10-fold stratified 

cross-validation. 

Number 

of 

Residues 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

438 0.76 0.58 0.65 0.63 0.61 0.66 0.70 0.56 0.62 0.65 0.58 0.61 

922 0.78 0.60 0.68 0.63 0.64 0.70 0.68 0.57 0.64 0.64 0.59 0.64 

1422 0.77 0.61 0.73 0.63 0.62 0.70 0.71 0.58 0.67 0.63 0.60 0.65 

1896 0.79 0.64 0.72 0.62 0.64 0.70 0.71 0.60 0.66 0.63 0.60 0.65 

2062 0.81 0.64 0.74 0.65 0.64 0.74 0.73 0.61 0.67 0.66 0.60 0.67 

 

 

 

The best performing model, in terms of AUC and accuracy, for the 14-component 

feature vector experiments was a random forest model trained on 2062 residues. The 

feature vector with the 20-letter amino acid alphabet residue identities outperformed the 

one with the 3-letter alphabet. The best AUC value for the 20-letter set was 0.83 and 0.81 

for the 3-letter set. Moreover, the addition of the new components did improve the 

performance of the models and we improved the performance of our best performing 

model by 0.03 AUC. 
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Table 37 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using a 15-component feature vector (summed four-body statistical 

contact pseudo-potential for the central residue and its 6 nearest neighbors, identity of the central residue and 

its 6 nearest neighbors using a 20-letter alphabet, and raw RSA values) with default parameters and 10-fold 

stratified cross-validation. 

Number 

of 

Residues 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

438 0.84 0.74 0.70 0.63 0.67 0.75 0.75 0.68 0.65 0.67 0.61 0.65 

922 0.86 0.77 0.68 0.67 0.68 0.80 0.77 0.70 0.64 0.67 0.65 0.70 

1422 0.88 0.78 0.74 0.70 0.70 0.82 0.79 0.72 0.67 0.70 0.66 0.73 

1896 0.87 0.78 0.74 0.68 0.72 0.81 0.78 0.71 0.66 0.68 0.66 0.74 

2062 0.88 0.80 0.75 0.71 0.72 0.84 0.79 0.73 0.68 0.71 0.68 0.75 

 

 

 

 

Figure 24 Confusion matrix heatmap for Random Forest predictions on balanced dataset consisting of 2062 

residues. 0 represents the negative class (non-epitope residues) and 1 represents the positive class (epitope 

residues).   
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Table 38 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using a 15-component feature vector (summed four-body statistical 

contact pseudo-potential for the central residue and its 6 nearest neighbors, identity of the central residue and 

its 6 nearest neighbors using a 3-letter alphabet, and raw RSA values) with default parameters and 10-fold 

stratified cross-validation. 

Number 

of 

Residues 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

438 0.81 0.69 0.64 0.62 0.70 0.69 0.72 0.64 0.61 0.61 0.64 0.63 

922 0.85 0.72 0.69 0.66 0.71 0.76 0.76 0.66 0.64 0.68 0.65 0.67 

1422 0.86 0.73 0.73 0.69 0.71 0.77 0.76 0.67 0.67 0.69 0.65 0.69 

1896 0.85 0.73 0.73 0.68 0.71 0.77 0.76 0.66 0.67 0.67 0.64 0.69 

2062 0.88 0.74 0.75 0.72 0.73 0.80 0.78 0.68 0.68 0.71 0.66 0.72 

 

 

Figure 25 Confusion matrix heatmap for Random Forest predictions on balanced dataset consisting of 2062 

residues. 0 represents the negative class (non-epitope residues) and 1 represents the positive class (epitope 

residues).   

 

The best performing models, in terms of AUC and accuracy, for the machine 

learning experiments conducted on the 15-component feature vector that consisted of the 

summed four-body statistical contact pseudo-potential for the central residue and its 6 

nearest neighbors, the identity of the central residue and its 6 nearest neighbors using a 

20-letter alphabet, and raw RSA values, were random forest models trained on the 1422 

and 2062 residue subsets. These models both achieved an AUC value and accuracy of 
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0.88 and 0.79, respectively. These models also achieved the best performance of all 

models to date. These results point to the value of our 15-component feature vector for 

predicting residues in a discontinuous B-cell epitope. Also, the balanced sets provide a 

fair estimate of the model performance, seen in both the AUC and accuracy scores.   

4.4.2 15-component Feature Vector (Balanced) Control Set 

To help confirm the results observed for discontinuous B-cell epitope prediction, 

a control feature set was created. This control was generated by randomizing the class 

labels of the best performing feature set (15-component with 20-letter alphabet). The goal 

of this experiment is to test the performance of the machine learning models on a feature 

set the randomly assigns the vectors to a class label. The hypothesis is that this would 

yield performance equal to random guessing.   

 

 
Table 39 Discontinuous B-cell epitope prediction model evaluation quantified as area under the ROC curve 

(AUC) and accuracy. Models were trained using a 15-component feature vector (summed four-body statistical 

contact pseudo-potential for the central residue and its 6 nearest neighbors, identity of the central residue and 

its 6 nearest neighbors using a 20-letter alphabet, and raw RSA values) with default parameters and 10-fold 

stratified cross-validation. The original class labels assigned in this feature set were randomized to produce the 

control set.  

Number 

of 

Residues 

AUC Accuracy 

 Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

Random 

Forest 

Logistic 

Regression 

K 

Neighbors 

Decision 

Tree 

Gaussian 

Naïve 

Bayes 

Support 

Vector 

Machine 

438 0.51 0.46 0.53 0.50 0.48 0.45 0.45 0.50 0.48 0.45 0.49 0.36 

922 0.47 0.52 0.50 0.47 0.52 0.47 0.48 0.51 0.51 0.49 0.49 0.49 

1422 0.50 0.50 0.50 0.48 0.48 0.46 0.51 0.52 0.51 0.48 0.52 0.51 

1896 0.51 0.49 0.51 0.51 0.49 0.50 0.50 0.51 0.50 0.51 0.52 0.51 

2062 0.52 0.54 0.51 0.52 0.53 0.51 0.49 0.50 0.50 0.50 0.50 0.49 
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Figure 26 Confusion matrix heatmap for Random Forest predictions on balanced dataset control consisting of 

2062 residues. 0 represents the negative class (non-epitope residues) and 1 represents the positive class (epitope 

residues).   

 

  

  

Randomized class labels are used as a control to determine if the signal in the 

feature set is in fact due to the nature of the feature set, not by chance. Randomized class 

labels associate feature vectors with class labels that are not true, this will hopefully 

interfere with the machine learning algorithm. Therefore, about 50% accuracy is 

expected, equivalent to random guessing. The results of the control experiments are 

around the 0.50 AUC and accuracy random guessing mark. This confirms that machine 

learning models trained on a randomized version of our best performing feature vector 

cannot perform better than random guessing when trying to predict epitopic resides. 

However, our feature vector when not randomized can produce results far better than 

random guessing. Giving validity to our models.  
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4.4.3 Balanced sets with binary surface/buried classification  

 

 

Table 40 AUC values for machine learning models trained on a 15-component feature vector (with a 20-letter 

alphabet representing the residue identities). Results are shown for the subsets that contain 15, 30, 45, 60, and 65 

proteins, respectively. The new feature added here is a binary classification of either buried or exposed residue 

determined by a step-wise threshold definition. Random forest with default parameters and 10-fold stratified 

cross-validation was used to perform the machine learning experiments.   

 RSA Threshold 

Number 

of 

Residues 

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 

 AUC 

438 0.82 0.82 0.79 0.81 0.82 0.82 0.82 0.83 0.84 0.83 

922 0.84 0.83 0.85 0.83 0.85 0.85 0.84 0.85 0.85 0.85 

1422 0.84 0.84 0.85 0.85 0.86 0.86 0.87 0.87 0.86 0.86 

1896 0.84 0.84 0.85 0.85 0.85 0.85 0.85 0.86 0.86 0.85 

2062 0.84 0.86 0.85 0.86 0.86 0.87 0.87 0.87 0.87 0.86 

 

 

 

 Overall, the RSA threshold value did not seem to dramatically affect the 

performance of the machine learning models. Thresholds from 5 to 50% all appeared to 

be associated with models that achieved similar AUC values using the random forest 

algorithm. The best performing models using this feature vector achieved AUC values of 

0.87, this was achieved using a 30, 35, 40, and 45% threshold value.  

4.4.4 Discontinuous B-cell Epitope Prediction (balanced training sets) Discussion 

The results of our machine learning experiments, conducted on several feature 

sets and several subsets of the final dataset, are displayed in this section. The components 

of the eight feature vectors are listed below.   

Feature Set 1: Seven components, summed four-body statistical contact pseudo-potential 

for every simplex in which the central residue participates and the summed four-body 
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statistical contact pseudo-potential for every simplex in which the central residue’s six 

nearest-neighbors participate. 

Feature Set 2: Feature Set 1 + identity of the central amino acid residue (20-letter 

alphabet). 

Feature Set 3: Feature Set 1 + identity of the central amino acid residue (3-letter 

alphabet). 

Feature Set 4: Feature Set 2 + identities of the central amino acids 6-nearest neighbors’ 

residues (20-letter alphabet). 

Feature Set 5: Feature Set 3 + identities of the central amino acids 6-nearest neighbors’ 

residues (3-letter alphabet). 

Feature Set 6: Feature Set 4 + RSA value of the residue  

Feature Set 7: Feature Set 5 + RSA value of the residue  

Feature Set 8: Control, Feature Set 6 with randomized class labels.  

Subsets: S1 = 438, S2 = 922, S3 = 1422, S4 = 1896, S5 = 2062 residues 

Our feature sets leverage both protein structural and sequence information and 

amino acid surface measures. This information is some of the most readily available for 

protein residues and make them a practical choice for training our machine learning 

models.     
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Figure 27 Comparison of AUC for several machine learning algorithms trained on different feature sets (FS1-

FS8) and the entire final dataset of 2062 residues (subset 5).   

 

 

 
Figure 28 Comparison of AUC values for several machine learning algorithms trained on different subsets of the 

final dataset and feature set 6. Subsets S1, S2, S3, S4, and S5 are composed of 438, 922, 1422, 1896, and 2062 

residues, respectively. 
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4.5 Tuning the Random Forest Model: Hyperparameter Optimization  

We looked to boost the performance of our best performing model by conducting 

hyperparameter optimization. A default Random Forest classifier achieved an AUC of 

about 0.88 when trained on feature set 6, subset 5. A grid of value ranges was established 

for several Random Forest hyperparameters, random samples were taken for each 

hyperparameter and combined to define new Random Forest classifiers, stratified 10-fold 

cross-validation was used to determine the performance of each model based on AUC, 

and the best model, with its corresponding hyperparameter values, was determined. The 

optimal hyperparameters found by the random search was used to narrow the ranges of 

hyperparameter values for a more exhaustive grid search, which tries every combination 

of hyperparameters within the search space. When trained on the same training data, the 

new optimized model achieved an AUC of about 0.89, a minimal increase over the 

previous model, but may be significant.  

4.6 Discontinuous B-cell Epitope Prediction on Independent Test Set  

An independent test set was manually compiled from entries of the Immune 

Epitope Database (IEDB), available at https://www.iedb.org/. This dataset consisted of 10 

experimentally determined discontinuous epitopes with available 3D structures. The 

tuned model from above was used to predict epitope and non-epitope residues in the test 

set. The test set was balanced to better evaluate performance. The model achieved an 

AUC of about 0.73.  
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Figure 29 Confusion matrix heatmap for Random Forest predictions on balanced independent test set. 0 

represents the negative class (non-epitope residues) and 1 represents the positive class (epitope residues).   

 

 

 

 
Figure 30 ROC curve for our tuned best performing Random Forest model on the independent test set.  
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 The performance of our model on the independent test set is promising. Future 

testing will be needed on a larger test set to evaluate the performance of our model.  

4.6.1 SARS-CoV-2 Independent Test Set 

As another form of validation for the conformational B-cell epitope model 

discussed in this section, classification performance of the model on unseen SARS-CoV-

2 conformational B-cell epitope data was evaluated. First, the testing set was manually 

compiled from entries of the IEDB. A search was performed for positive discontinuous 

B-cell epitopes found on the spike proteins of SARS-CoV-2. A total of 24 antigen-

antibody bound structures with epitope annotations were collected to form the testing set. 

After class balancing, the dataset contained 428 epitope-participating and 428 non-

epitope-participating residues (856 total). The model achieved an AUC of about 0.71. 
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Figure 31 ROC curve for model predictions on the independent SARS-CoV-2 test set. 
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CHAPTER FIVE 

5.1 TESSETOPE V1.0: A Web API for Linear and Conformational Epitope 

Prediction  

5.1.1 Brief Introduction   

Delaunay tessellation-based epitope prediction or TESSETOPE is a freely 

available web accessible application programming interface (API) that allows the client 

to upload protein data and returns a response in the form of an epitope prediction. For 

example, TESSETOPE’s conformational B-cell epitope prediction tool accepts requests 

comprised of PDB, DSSP, and protein chain data, processes the input data, applies a 

trained Random Forest model to classify the residues in the protein chain as either 

epitopic or non-epitopic, and displays the prediction to the client as a hypertext transfer 

protocol (HTTP) response. TESSETOPE also includes tools for linear B-cell and linear 

T-cell epitope prediction which simply accept requests in the form of text files that hold 

protein primary structure (sequence) information.    

The relatively simple user-interface and public availability of TESSETOPE 

makes it a convenient choice for researchers around the world. It allows for fast and 

efficient epitope prediction that can ultimately complement computational and 

experimental studies for vaccine and biotherapeutic design. The machine learning models 

within TESSETOPE, trained for prediction of linear B-cell epitope sequences, linear T-
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cell epitope sequences, and residues in conformational B-cell epitopes, are those 

described in sections 2.3.3, 2.4.3, and 4.5, respectively.  

5.1.2 Implementation  

TESSETOPE was developed using Django (https://www.djangoproject.com/) and 

the Django REST framework (https://www.django-rest-framework.org/) in the Python 

programming language. It is freely available at http://omics.gmu.edu/tessetope/.  

 

 

 
Figure 32 Screenshot of the TESSETOPE V1.0 home page. The home page is equipped with links to each of the 

three epitope prediction tools at the top of the page and through the blue “Run” buttons.   

 

https://www.django-rest-framework.org/
http://omics.gmu.edu/tessetope/
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5.1.3 Conformational B-cell Epitope Prediction Example  

 To access the conformational B-cell epitope prediction tool, simply click on the 

“Conformational B-cell Epitope Prediction” links on the home page or go to the 

following URL: http://45.33.117.49/conf_ep_pred/run/conf_ep_pred/. To run the tool, the 

client must obtain the PDB and DSSP files for the antigen of interest, henceforth referred 

to as the query (TESSETOPE’s Random Forest model for predicting conformational B-

cell epitopes was trained on bound antigen-antibody structures). Copy and paste the data 

from both the query’s PDB and DSSP files into one blank text file with the information 

from the PDB file preceding the DSSP information (note: all data from both files should 

be copied over), the client must be sure to save the created file with the .txt extension. 

Next, scroll to the bottom of the web page and upload the created file using the “Choose 

File” button of the “Pdb dssp” field. In the “Chain” field, type the query’s protein chain 

of interest (note: only one protein chain can be sent as a request at this time). Finally, the 

client can click “POST” to send the request to the server to run the tool and output 

predictions.   

To illustrate this implementation, the PDB and DSSP files for a SARS-CoV-2 

spike protein in complex with the S2E12 neutralizing antibody Fab fragment (PDB ID 

7K4N) were copied into a single text file according to the specifications described above, 

saved as 7k4n.txt, uploaded, and chain “A” was chosen as the query’s protein chain of 

interest.    

http://45.33.117.49/conf_ep_pred/run/conf_ep_pred/
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Figure 33 Screenshot of the request to TESSETOPE’s conformational B-cell epitope prediction tool, 7k4n.txt 

and chain A (red box). The “POST” button is used to send the request to the server, run the tool, and obtain the 

predictions (green box).  

 

 

 

 

Figure 34 shows the HTTP response sent to the client after the predictions are 

made. Each residue in the query’s chain is listed, identified by the residue number and 

three-letter amino acid abbreviation, along with its predicted classification, either “non-

epitope” or “epitope”.  
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Figure 34 Screenshot of TESSETOPE’s conformational B-cell epitope prediction tool’s HTTP response to the 

client; the prediction output. Each residue in the query’s protein chain of interest has a prediction of “epitope 

residue” or “non-epitope residue”.  

  

 

 

5.1.4 Linear B-cell Epitope Prediction Example  

For both implementations of linear epitope prediction, TESSETOPE accepts 

requests in the form of text files that must only contain the complete primary structure 

(sequence of amino acids) of the query. Once the input text file is uploaded to the API 

using the “Choose File” button of the “File” field, click “POST” to submit the request, 

run the linear epitope prediction tools, and display the results.  

To illustrate this implementation, a known linear B-cell epitope sequence was 

obtained from the IEDB, epitope ID 103097, and saved to the text file 

protein_sequence.txt. The 40 amino acid residue sequence 

(DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV) is studied as part of 
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Amyloid-beta precursor protein from humans. Figure 35 shows the request made to the 

server and Figure 36 shows the HTTP response sent back to the client.  

 

 

 
Figure 35 Screenshot of the request to TESSETOPE’s linear B-cell epitope prediction tool, protein_sequence.txt 

(red box). The “POST” button is used to send the request to the server, run the tool, and obtain the predictions 

(green box).  

 

  

 

 
Figure 36 Screenshot of TESSETOPE’s linear B-cell epitope prediction tool’s HTTP response to the client; the 

prediction output. The query sequence is correctly classified as an “epitope sequence”. 

 

 

 

5.1.4 Conclusion and Future Directions 

 TESSETOPE was created with the goals of scientific researchers in mind. 

Ultimately, TESSETOPE provides easy to use, free, web accessible tools for epitope 

prediction. The tools can be leveraged to complement not only experimental studies but 

also additional computational studies for vaccine, biotherapeutic, and immunotherapy 

development. For example, in epitope-based vaccine design the candidate epitope search 
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space that forms the potential immune response targets is often enormous, therefore the 

epitope predictions made by TESSETOPE can narrow this search space, facilitating the 

completion of the development process.   

 Future versions of TESSETOPE will look to improve the web user interface, 

making it even easier to navigate and improving input and output displays, as well as, 

updating the machine learning models under the hood for better prediction performance.  
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CHAPTER SIX 

6.1 Conclusion and Future Directions   

The goal of this dissertation research was to develop models of B-cell and T-cell 

epitopes to assist in the classification of non-validated but potential epitope protein 

sequences. The models generated were rooted in machine learning algorithms and trained 

using protein sequence data, protein three-dimensional structure data, or a combination of 

both. Several experiments were conducted to determine appropriate feature vectors to 

represent conformational B-cell epitopes, linear B-cell epitopes, and linear T-cell 

epitopes and to choose and tune the best machine learning model based on stratified 

cross-validation performance. Models were then validated based on prediction 

performance on unseen test data. The best performing models were deployed to a server 

and used as the models under the hood of the TESSETOPE web API.  

The tools of the TESSETOPE V1.0 web API can be leveraged to complement 

experimental and computational studies for vaccine, biotherapeutic, and immunotherapy 

development as the epitope predictions made by TESSETOPE can narrow the search 

space of candidate epitopes, expediting the development process.   

Future directions, include larger training datasets to incorporate more data into the 

machine learning model training process, obtaining datasets where more than one epitope 

in a conformational epitope is identified to account for the reality of multiple epitopes of 
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the same antigen, and training other machine learning algorithms, such as the deep 

learning neural network. Future steps can be taken to continue to improve the models to 

account for updating epitope knowledge.   
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