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Abstract

BIJECTIVE DEFORMATIONS IN RN VIA INTEGRAL CURVE COORDINATES

Lisa Huynh, M.S.

George Mason University, 2013

Thesis Director: Dr. Yotam Gingold

Shape deformation is a widely studied problem in computer graphics, with applications

to animation, physical simulation, parameterization, interactive modeling, and image edit-

ing. In one instance of this problem, a “cage” (polygon in 2D and polyhedra in 3D) is

created around a shape or image region. As the vertices of the cage are moved, the interior

deforms. The cage may be identical to the shape’s boundary, which has one fewer dimen-

sion than the shape itself, and is typically more convenient, as the cage may be simpler

(fewer vertices) or be free of undesirable properties (such as a non-manifold mesh or high

topological genus).

We introduce Integral Curve Coordinates and use them to create shape deformations

that are bijective, given a bijective deformation of the shape’s boundary or an enclosing

cage. Our approach can be applied to shapes in any dimension, provided that the boundary

of the shape (or cage) is topologically equivalent to an n-sphere.

Integral Curve Coordinates identify each point in a domain with a point along an integral

curve of the gradient of a function f , where f has exactly one critical point, a maximum,

in the domain, and the gradient of f on the boundary points inward. By identifying every



point inside a domain (shape) with a point on its boundary, Integral Curve Coordinates

provide a natural mapping from one domain to another given a mapping of the boundary.

We evaluate our deformation approach in 2D. Our algorithm is based on the following

three steps: (i) choosing a maximum via a grassfire algorithm; (ii) computing a suitable

function f on a discrete grid via a construct called the cousin tree; (iii) tracing integral

curves. We conclude with a discussion of limitations arising from piecewise linear interpo-

lation and discretization to a grid.



Chapter 1: Introduction

Shape deformation is a widely studied problem in computer graphics. In shape deformation,

a geometric shape is given along with information suggesting a desired, non-rigid deforma-

tion; a pure translation and rotation of the shape will not suffice. The idea is to find new

locations for all points given new locations for some points. The deformation information

typically comes in the form of desired locations for a subset of points, line segments, or

faces. This is inherently an under-specified problem; without additional assumptions or

desirata, such as that the deformation should vary smoothly [1] or be as close to a rigid

deformation as possible [2].

This general problem statement has many applications [3]: in animation, an artist wishes

to have a character walk without manually specifying the motion of every vertex; in finite

element simulation, the motion of each element—such as the vertices of a polygon—must

be extrapolated to the interior of the element; in parameterization, the surface of a 3D

shape must be deformed to lie in a plane; in interactive modeling, an industrial designer or

digital sculptor wishes to adjust the shape; in image editing, an artist wishes to adjust the

shape of a region of a photograph. This is desirable for shapes in 2D and 3D, as well as

for higher-dimensional shapes. The animation of a volumetric 3D shape, such as the CT

scan of a human, is in fact a 4D problem, as the 3D volume must deform through time.

Interpolating parameterized modeling spaces, such as the space of human body shapes [4],

can be an arbitrary dimensional problem.

In the version of the problem that we study, a boundary or “cage” is created around

a shape. As this cage is manipulated, the interior is also deformed. The cage may be

identical to the shape’s boundary, which has one fewer dimension than the shape itself,

and is typically more convenient, as the cage may be simpler (fewer vertices) or be free of

undesirable properties (such as a non-manifold mesh or high topological genus).
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One important attribute for a deformation is bijectivity. A bijective function is a one-

to-one mapping such that every point in the undeformed figure is be mapped to a distinct

point in the deformed figure and vice-versa. Bijectivity is useful in that it ensures that no

part of the shape flips “inside-out” as a result of deformation. Bijective deformations are

notable due to the difficulty in achieving bijectivity in shape deformation. Few guaranteed

bijective deformations have been introduced in 2D [3, 5, 6] or 3D [7, 8], and only one in 3D

or higher dimensions [9].

The generalization of barycentric coordinates is related to the issue of cage deformation

[5, 10–15]. Traditionally defined, barycentric coordinates express coordinate in the interior

of a simplex (triangle in 2D, tetrahedron in 3D) in terms of the vertices of the simplex. The

simplex can be thought of as a simple cage around its interior; the deformations induced by

modifying vertices of the simplex are bijective. Generalized barycentric coordinates extend

this idea to more complex polygons or polyhedra than triangles and tetrahedra, but are not

bijective [16].

We propose a technique that creates a guaranteed bijective deformation of the shape

given a bijective deformation of its boundary or a cage in any dimension. To do so, we

introduce Integral Curve Coordinates that identify each point in the shape as a point along

an integral curve of the gradient of a function f . Given these coordinates and a bijective

deformation of the boundary points, it generates a mapping from the original shape to the

deformed shape.

Our contributions are:

• Integral Curve Coordinates that can be used to produce a guaranteed bijective de-

formation between two closed, simply connected domains in any dimension given a

bijective deformation of their boundaries.

• An algorithm to create a scalar function space on a regularly discretized simply con-

nected domain in any dimension; functions in this space have exactly one critical

point, a maximum.
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• A practical (simple, robust, and efficient) algorithm for tracing 2D integral curves on

a (piecewise linear) triangulated regular grid.

3



Chapter 2: Literature Review

2.1 Background

Before continuing discussion on this work with Integral Curve Coordinates, a few concepts

much be covered first. These concepts contain the foundation that this work and others

rely upon for a theoretical base.

2.1.1 Morse Theory

Several general theories have been formed for studying smooth manifolds, and one of the

most useful is Morse Theory. A manifold is a topological space where the surface around

every point locally resembles Euclidean space, or Rn.

Morse Theory extends the observation that the topology of smooth manifolds can be

correlated to the critical points of a smooth function on the manifold. The critical points

may be defined as the points in the function where the derivative is zero, or as either a

maximum, minimum, or saddle point. By examining the differentiably functions on the

shape, Morse Theory allows one to analyze information about the topology of manifold

shapes [17]. Of particular interest is creating a homeomorphism from one space to another,

which is a bijective mapping.

Definition 1. A homeomorphism f : X → Y is a 1-1 onto function, such that both f , f−1

are continuous. We say that X is homeomorphic to Y , X ∼= Y , and that X and Y have the

same topological type.

All of this is well for continuous spaces, but digital geometry is typically represented

using discrete (and often piecewise linear, as in the present work) functions. Fortunately,

Morse Theory has been extended to such discrete functions [18,19].

4



This is important as we use the topology in order to bijective shape deformations.

The Integral Curve Coordinates we use map every point in the domain to a point along

an integral curve of the gradient for some function f . This function f is required to be

differentiable with a single critical point, a maximum, within the domain. These integral

curves of the gradient of a function are also sometimes called integral lines [20]. We make

use of several concepts when formally defining the Integral Curve Coordinates, following

[20].

Definition 2. An integral line x : R → M is a maximal path whose tangent vectors agree

with the gradient of a function h, that is, d
dtx(t) = ∇h(x(t)) for all t ∈ R. We call

orgx = limt→∞x(t) the origin and destx = limt→+∞x(t) the destination of the path x.

Each integral line is open at both ends, and the limits at each end exist, as M is compact.

A critical point is an integral line by itself.

Theorem 1. Integral lines have the following properties:

(a) two integral lines are either disjoint or the same,

(b) the integral lines cover all of M ,

(c) and the limits orgx and destx are critical points of f .

2.1.2 Bijectivity

A bijective function f : X → Y , also known as a one-to-one correspondence, is one that

gives an exact matching of elements from two sets (X,Y ). It is both injective (into) and

surjective (onto). With an injective function, the mapping is one-to-one as every element

from the first set (X) is mapped to a distinct element in the second set (Y ). A surjective

function occurs when every element from the second set (Y ) has a corresponding element

in the first (X). Thus, every element is uniquely paired with an element from the other set.

As this mapping is one-to-one, of course there is an inverse function to map Y back to

X. Many definitions for mapping contain bijectivity as one of their prerequisites, and it is
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a useful property to have when performing deformations. For deformations, the one-to-one

property (injectivity) is the most difficult to achieve. A lack of injectivity manifests as

regions of X that collapse or invert (flip “inside-out”) when mapped via f . For piecewise

linear shapes, this corresponds to collapsed or inverted elements (triangles in 2D, tetrahedra

in 3D, etc). Expressed symbolically, a function f must have a Jacobian whose determinant

is everywhere positive to be injective:

det(Jf (x)) > 0 ∀x ∈ X (2.1)

Where the determinant is negative, f has locally flipped X inside out (inverted). Where

the determinant is zero, f has locally collapsed X, though not inverted it. (In 2D, a triangle

collapses to a line or point.)

For piecewise linear shapes, the Jacobian is piecewise constant within each element

and can be constructed as follows. Consider a k-dimensional simplex P (triangle in 2D or

tetrahedron in 3D). P has k + 1 vertices v0, v1, . . . , vk. Ignoring the overall translation of

f , the mapping f(P ) can be expressed via matrix multiplication. To ignore translation,

choose a vertex of P arbitrarily (v0, without loss of generality). The matrix we seek maps

vi−v0 to f(vi)−f(v0). Assuming that P is non-degenerate, v1−v0, . . . , vk−v0 are linearly

independent. The matrix M such that M(vi− v0) = f(vi)−f(v0) is, therefore, the product

of two matrices whose columns are vertices:

M = [f(v1)− f(v0)|f(v2)− f(v0)| · · · |f(vk)− f(v0)] [v1 − v0|v2 − v0| · · · |vk − v0]
−1 (2.2)

The determinant of M determines whether f is locally injective within P . If the determinant

is zero, f has locally collapsed P to a line segment or point. If the determinant is negative,

f has inverted P .

6



2.2 Related Work

One main distinction among deformation techniques is between deformations that warp a

shape intrinsically versus deformations that warp the ambient space (so-called space-warp

approaches). For example, in a space-warp approach a 2D shape is represented in terms of

its absolute coordinates. The deformation affects all of R2, so the absolute coordinates of

the shape also deform [1, 3, 21]. Intrinsic shape deformation approaches deform the shape

itself, by calculating a deformation in terms of relative coordinates and without regard for

the ambient space [2,22,23]. Techniques such as cage-based deformation fall somewhere in

between. Cage-based deformations enclose the ambient space around the shape in a sort of

structural boundary; this boundary, when deformed, induces a deformation of the interior

points [13, 24–27]. Several approaches take a more flexible hybrid approach by allowing

a flexible combination of cages, line segments, and sparse points while still computing an

intrinsic shape deformation [28,29].

A family of approaches for intrinsic deformation are physics-based, simulating the de-

formation of a shape as if made of a user-specified (typically elastic) material [30,31]. Due

to the potential computational intensity, such techniques often trade accuracy for real-time

interactivity.

A related problem is the generalization of barycentric coordinates beyond simplices, to

polytopes other than triangles in 2D and tetrahedra in 3D [5, 10–15, 32–34]. In barycen-

tric coordinates, the coordinates of a point are defined as the center of mass of weights

placed at the vertices of the simplex. Barycentric coordinates specify a scalar weight for

each vertex of the simplex; to convert a barycentric coordinate to a Euclidean coordi-

nate, one computes the weighted sum of the simplex’s vertices. So long as the simplex

is non-degenerate, barycentric coordinates are bijective with Euclidean coordinates. Gen-

eralizations of barycentric coordinates allow polytopes other than simplices to be used.
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Generalized barycentric coordinates are used in finite element analysis and shape deforma-

tion. Unfortunately, generalized barycentric coordinates have been shown to be not bijective

[16].

2.2.1 Bijectivity

Few deformation approaches guarantee bijectivity. Bijectivity guarantees that the defor-

mation does not invert (flip inside-out) or collapse any part of a shape. One application

of shape deformation is to map a texture (rectangular 2D image) onto the surface of a

shape, which is essentially a 2D-to-2D deformation problem. Several approaches have been

presented for creating bijective texture maps with positional constraints [35–37].

Few guaranteed bijective approaches have been introduced. In two-dimensions, Weber

et al. [5] introduced conformal mappings based on complex coordinates. Xu et al. [6]

introduced a solution to the challenging problem of finding 2D locations for the vertices of

a triangular graph given locations for vertices on its boundary such that no triangles end

up inverted. Their approach can be used to solve for a bijective cage-based deformation

with the additional constraint that the discretization remain unchanged, including detecting

inputs with no solution and suggesting input boundary vertex positions that are solvable.

While generalized barycentric coordinates have been shown by Jacobson [16] not to

yield bijective mappings, Schneider et al. [8] recently introduced a technique that splits a

deformation into a finite number of steps, each of which is implemented via generalized

barycentric coordinates. While the analysis provably guarantees bijectivity only for convex

cages, in practice the technique creates bijective mappings at pixel accuracy. An additional

limitation is that a continuous non-self-intersecting interpolation between the source and

target cages is required, which is an unsolved problem for dimensions greater than two.

This technique has not yet been shown to have any theoretical guarantees in 3D.

Lipman’s restricted functional space, introduced initially in 2D [38] and extended to

3D and higher by Aigerman and Lipman [9] can be used to find bijective deformations of

piecewise linear meshes similar to a desired one. The technique maps mesh elements with
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strict bounds by projecting an input simplicial map onto the space of bounded-distortion

simplicial maps. While they do not prove convergence for given bounds in general, the

technique is guaranteed given a bijective deformation of the mesh boundary.

The approaches of Weinkauf et al. [39] and Jacobson et al. [40] both create restricted

function spaces that prevent undesirable extrema (maxima and minima), but cannot control

the placement of saddles. Jacobson et al. applied their technique to shape deformation. Our

approach creates a restricted function space with exactly one extrema and no saddles, in

any dimension.

The approach of Schüller et al. [7] prevents inverted elements (i.e. guarantees local

injectivity) by augmenting any variational deformation approach with a non-linear penalty

term that goes to infinity as elements collapse. The approach therefore requires a continuous

deformation from an initial shape, and is incompatible with hard constraints (such as a

required target pose).

The goal of this work is to introduce a cage-based deformation technique that guarantees

bijectivity in any dimension, and provide a practical piecewise linear implementation for

the 2D problem.

9



Chapter 3: Overview

Our goal is to deform the interior of a shape given a deformation of its boundary or enclosing

cage. Formally, our approach takes as input

1. The boundary ∂D of a closed, simply connected domain D of Rn.

2. A homeomorphism h deforming ∂D.

3. A set S of points in D.

and outputs the deformed location of each point in S. In other words, our approach extends

h to the interior of D.

To accomplish this, we introduce Integral Curve Coordinates (formally defined below)

to identify a point p in the domain D with an integral curve x(t) and a parameter tp

such that x(tp) = p. The integral curves follow the gradient of a special function fD:

d
dtx(t) = ∇fD(x(t)). The function fD is constructed such that fD has exactly on critical

point in D, a maximum, and its gradient on the boundary points inward.1 Integral curves

of the gradient of a function are sometimes called integral lines [41]. The integral lines

of a C1 function are well-defined everywhere except critical points, and two integral lines

never meet unless they are identical. Because every integral curve of ∇fD traces a path

from a point on the boundary of the domain to the maximum, we can uniquely identify

every integral curve with its boundary point. We denote the integral curve passing through

boundary point bm as xbm(t). The Integral Curve Coordinate of a point p is

IfD(p) =

 (bm, t) if p 6= p0

∅ if p = p0

(3.1)

1Harmonic functions, which obey the strong maximum principle, are not suitable in dimensions greater
than two, as they may contain spurious saddle points.

10



where xbm(t) = p and p0 is the maximum point of fD.

Since distinct integral curves never meet, I is a bijection from points in the domain to

Integral Curve Coordinates. Moreover, given a bijective deformation h of the boundary of

D, h(∂D) = ∂D′, we can similarly construct a special function fD′ on D′ to create IfD′ .

Transforming from IfD to IfD′ can therefore be achieved by mapping the bm to h(bm).

To summarize, the steps to extend h to a point p in the interior of D are as follows

(Figure 3.1):

1. Create a function fD : D → R with a single critical point, a maximum, and whose

gradients on the boundary point inward.

2. Create a similar function f ′D for D′.

3. Compute the Integral Curve Coordinate Ip = IfD(p) by tracing the integral curve of

∇fD in both directions from p.

4. Transform Ip to I ′p′ by mapping the boundary point bm of the Integral Curve Coordi-

nate with h (or, if p = p0, identifying the unique maximum p0 of fD with the unique

maximum p′0 of f ′D).

5. Compute I−1fD′
(I ′p′) by tracing the integral curve of ∇fD′ from the boundary point to

the maximum.

(To warp points backwards from D′ to points in D, swap D with D′ and h with h−1 in the

above steps.)

Our implementation of this approach, described in the following chapters, creates func-

tions on a regular grid discretization of the the domain. We trace integral curves on a

piecewise linear interpolation of the function values. In the piecewise linear setting, gra-

dients are piecewise constant and discontinuous across piece boundaries. This guarantees

monotonic interpolation (no spurious critical points within an element) and greatly reduces

numerical issues in tracing integral lines. However, it violates the assumption that integral

lines never meet, and can result in regions of the shape collapsing (though not inverting).

11
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Figure 3.1: Overview of our approach: (a) Given a shape and a homeomorphism of its
boundary, (b) to find the position of an interior point within the deformed boundary (c)
we first create two functions, each with only a single critical point, a maximum. (d) We
then trace the function’s integral line passing through the point up to the maximum and
down to the boundary. (e) Following the homeomorphism of its boundary, (f) we trace the
integral line of the function from the boundary point in the deformed domain (g) to find
the position of the interior point within the deformed boundary. (h) Repeating this process
everywhere allows us to extend the boundary homeomorphism to the interior.
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Chapter 4: Function Creation

In order to trace integral lines, we need to create suitable functions in the interior of the

undeformed and deformed shape boundaries (or cages). Namely, we need to create functions

with a single critical point, a maximum, and whose gradients on the boundary point inward.

Our discrete implementation creates a function space satisfying the above requirements. The

function space takes the form of a set of inequality relationships on edges of a regular grid

enclosing the shape boundary or cage.

Our approach first chooses a grid vertex to be the maximum (Section 4.1) and then

generates inequality relationships and vertex values such that all other points are regular

(Section 4.2). We then trace integral lines on a piecewise linear interpolation of the function

values (Chapter 5).

4.1 Maximum Selection via the Grassfire Transform

Any grid vertex can be selected to be the maximum. However, because integral lines con-

verge at a maximum, we wish to choose a maximum vertex in the center of the shape.

We find such a point with the grassfire transform [42].1 The grassfire transform iteratively

“burns away” the boundary of a shape; we use it to find the farthest point from the bound-

ary. To do so, we construct a regular grid covering the mesh. The vertices of the grid are

placed in a list. We iteratively remove vertices from the list that are not completely sur-

rounded (along axis-aligned directions) by other vertices in the list, until none are left. Any

vertex from the final iteration can then be arbitrarily chosen. This algorithm’s pseudocode

is presented in Algorithm 1. Illustrations of this algorithm can be seen in Figures 4.1 and

4.2.
1A variation of the grassfire transform, the extended grassfire transform [43], could be used to generate

better centers of 2D shapes.
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Algorithm 1 grassF ireMaximum(vertexList)

candidateMaxima⇐ vertexList
while candidateMaxima is not empty do

keepV ertices⇐ vertices in candidateMaxima whose axis-aligned grid neighbors are
all also in candidateMaxima

if keepV ertices is empty then
break

else
candidateMaxima⇐ keepV ertices

end if
end while
return vertex from candidateMaxima

Figure 4.1: The grassfire farthest-point algorithm iteratively removes boundary cells.

Figure 4.2: The grassfire farthest-point algorithm resulting in a tie. Ties are broken arbi-
trarily.

4.2 Assigning Function Values

Once the maximum is chosen, we assign function values to all grid vertices inside and just

enclosing the shape boundary or cage. To do so, we build a function space containing

functions that have a single critical point, a maximum, and gradients on the boundary that

point inward. The function space takes the form of a cousin tree of inequality relationships

on edges of the regular grid.
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Definition 3. Let T be a tree defined on a subset of a regular grid. We call T a cousin tree

if every pair of axis-aligned neighbor vertices in the tree are related to each other as parent-

child or as tree cousins (Figure 4.3). Two vertices are tree cousins if they are neighbors in

the grid and their tree parents are also neighbors in the grid.

tree cousinstree child

tree parent

v uu

v

Figure 4.3: Cousin tree vertex relationships: Two vertices u, v that are axis-aligned neigh-
bors in the grid must be either parent-child (left) or tree cousins (right). Tree cousins’
parent vertices must also be axis-aligned neighbors in the grid.

Algorithm 2 createCousinTree(maximumV ertex, boundaryV ertices)

frontier ← {maximumV ertex}
functionV alue← empty dictionary
functionV alue(maximumV ertex) := 10
while frontier is not empty do

frontierNext← {}
for dimension in fixed dimension order do

for v in frontier do
if v or any axis-aligned neighbor of v is within boundary then

candidates← { unvisited neighbors of v along dimension direction }
// A vertex outside the boundary can’t have a child inside.
filtered← {n ∈ candidates unless n is within boundary and v is outside }
functionV alue(filtered) := functionV alue(v) ∗ 0.95
frontierNext← frontierNext ∪ filtered

end if
end for

end for
frontier ← frontierNext

end while
return functionV alue

Our algorithm for creating a cousin tree is provided in Algorithm 2 and illustrated in

Figure 4.4. The algorithm is a form of breadth-first search (BFS) that, for all vertices on

the frontier in a given iteration, always expands first along the first coordinate axis, second
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along the second coordinate axis, and so on. (The order of coordinate axes is not important

so long as it is consistent across all iterations.) When a vertex expands, it is the tree parent

of the vertices it expands into. In 2D, this means that all potential children along the x-axis

are connected to the tree in one round. The next round, all potential children along the

y-axis are connected to the tree, if they have not already been included. Vertices outside

of the boundary and whose neighbors are all outside of the boundary are not added to the

tree. See the Appendix for a proof that this algorithm indeed creates a cousin tree.

Figure 4.4: A cousin tree being built starting from the x direction.

The cousin tree represents our function space; the edge from a parent to a child vertex

represents the inequality f(parent) > f(child). Note that the Manhattan distance lies

within this function space, as breadth-first search can be used to directly compute the

graph distance to a given node. See the Appendix for a proof that this function space

contains no critical points other than the maximum.

One the cousin tree is created, we can assign values to grid vertices such that the tree

parent always has greater value than the tree child. In our experiments, we set the maximum

vertex’s value to 10 and use the following simple formula to assign values to the remaining

vertices:

f(child) := f(parent) ∗ .95 (4.1)

We ensure that the function has inward pointing gradients at the boundary by treating ver-

tices located outside the shape boundary or cage as having values smaller than its neighbors

inside. Figure 4.5 depicts an example function.
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Figure 4.5: A 3D visualization of an example of the function values created using Equa-
tion 4.1 and the cousin tree.
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Chapter 5: Tracing Integral Lines

With a suitable function fD in hand, we are ready to trace integral lines to convert a point p

in the interior of the shape to its Integral Curve Coordinate IfD(p) = (bm, t), where bm is

the point on the boundary reached by tracing the integral line through p in the decreasing

direction (gradient descent), and t is the fraction of arc-length along the integral line from

p to the maximum, reached by gradient ascent from either p or bm. (Note that given a

piecewise linear boundary or cage, we store bm in barycentric coordinates with respect to

the boundary piece it belongs to.)

In order to perform gradient ascent and descent, the function values defined at ver-

tices of the regular grid must be interpolated monotonically, so that spurious critical points

are not introduced by the interpolation. For our 2D implementation, we perform piece-

wise linear interpolation via a regular triangulation that divides each grid cell into two

triangles. Notably, piecewise linear interpolation is monotonic and has constant gradient,

which greatly reduces numerical issues when tracing integral lines and simplifies arc-length

parameterization.

Because the gradient is constant within each triangle, we can trace the integral line from

a given starting point by simply computing the intersection of the ray from the starting point

in the gradient direction with the boundary of the triangle. However, naive implementation

of these numerical calculations results in errors due to limitations in floating point precision.

Such imprecision can cause discrepancies and inconsistencies such as loops. In order to

obviate numerical precision issues, we separate the topological calculation (which edge of

the triangle the integral line passes through) from the geometric calculation (the coordinates

of the point on the edge).

Our algorithm traces an integral line by iteratively computing the sequence of triangle

edges it intersects (and points on those edges). As a special, initial case, the integral line
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may originate from a point inside a triangle, but thereafter will be tracked via the triangle

edges it intersects.

Our integral line tracing algorithm proceeds as follows. Pseudocode is provided in

Algorithms 3–5. A vector is created from the incoming point to the corner opposite the

incoming edge (the red line in Figure 5.1, right). The opposite corner is the triangle vertex

that the incoming edge is not incident to. The sign of the cross product of these two vectors

determines the outgoing edge of the integral line (Table 5.1 with edge labeling given by

Figure 5.2). This robustly and stably computes the outgoing edge. The outgoing point (p2

in Figure 5.1, right) is then computed via the intersection of the ray from the incoming

point along the gradient with the outgoing edge. Tracing proceeds in the triangle on the

other side of the outgoing edge.

In the special, initial case of an integral line originating at a point inside a triangle, the

cross product of the gradient is computed with each of the three vectors from the point to

the triangle’s vertices (Figure 5.1, left). The sign of the cross products determines which

vectors the gradient is to the left and right of, indicating the outgoing edge accordingly. The

point on the edge can then be computed numerically, and the general case of the algorithm

proceeds as usual.

p0

p1

A

eA1

eB2

eA2 eB3
eA3 eB1

B

p0

A

eA1

eB2

eA2 eB3
eA3 eB1

Bp1

p2

Figure 5.1: An integral line is traced (left) from p0 inside triangle A. The gradient direction
(the purple arrow) is compared to the red dotted lines, indicating which edge of A is
intersected. The line/line intersection gives us the next point p1 lying a triangle edge,
which is the general case. Tracing then proceeds inside the opposite triangle B (right), and
the gradient direction only needs to be compared to one dotted red line.

Finally, because our piecewise linear domain is not C1, integral lines may meet. This

manifests in our integral line tracing algorithm as a triangle whose gradient points backwards
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Algorithm 3 fetchNext(point, edge, triangle, gradient)

// If edge is NULL, point is inside triangle
if edge is NULL then

compute the cross product of gradient with each of the three vectors from point to
each of triangle’s corners

next edge is given by the sign of the cross products
next point is the intersection of the next edge and the ray from point along gradient

else
map triangle to base case triangle according to Figure 5.2
get outward normal to edge
if dot product of outwardnormal and gradient > 0 then

d← dot product of gradient and edge
next point is the endpoint of edge that gradient points towards according to d
next edge is the adjacent edge that contains next point

else
op← the opposite corner to edge
compute the cross product of the vector from point to op and gradient
next edge is given by the sign of the cross product according to Table 5.1
next point is the intersection of next edge and the ray from point along gradient

end if
end if
next triangle is the adjacent triangle that contains next edge
return next point, next edge, next triangle

Algorithm 4 traceUphill(point,maximum, functionvalues, triangles)

path← []
triangle← find starting triangle in triangles
edge← NULL
while point is not maximum do

gradient← triangle’s gradient based on functionvalues
point, edge, triangle = fetchNext(point, edge, triangle, gradient)
path.append(point)

end while
return path

Algorithm 5 traceDownhill(point, boundary, functionvalues, triangles)

path← []
triangle← find starting triangle in triangles
edge← NULL
while point inside boundary do

gradient← −1 ∗ triangle’s gradient based on functionmap
point, edge, triangle = fetchNext(point, edge, triangle, gradient)
path.append(point)

end while
return path
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Figure 5.2: An edge labeling for triangles in the regular grid, such that one lookup table
(Table 5.1) can be used to compute the outgoing edge.

Table 5.1: Edge Sign Mapping

Edge Sign Next Edge

1 + 3

1 - 2

2 + 1

2 - 3

3 + 2

3 - 1

against the incoming edge. We call such edges compression edges. Without special care,

the integral line would zig-zag or staircase between the two triangles. We detect this by

evaluating the sign of the dot product of the outward (from the triangle) normal vector to

the incoming edge with the triangle’s gradient. Because our triangles triangulate a regular

grid, these dot products reduce to simple sign comparisons between components of the

gradient (without arithmetic). If the dot product is positive, then we select as the next

point the end point of the edge pointed towards by the gradient. Which end point can

also be determined by a dot product that also reduces to a simple sign comparison between

components of the gradient. The next edge is the edge of the triangle sharing the next

point. The next triangle is the triangle opposite the next edge. This can be assumed to be

the end result of the bouncing between the two triangles as their gradients merge, and so

skipping the intermediate steps.

We note that computing the sign of a cross product or dot product is amenable to a

symbolic perturbation scheme [44–46] for robust, exact computation. We did not implement

such a scheme, as problems did not arise from our floating point implementation.
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5.1 Computing Deformations

Pseudocode combining all steps of our algorithm is presented in Algorithms 6–8.

Algorithm 6 preprocessing(boundary)

create grid based off of boundary
maximum← getMaximum(grid)
function values← createCousinTree(maximum, boundary)
triangulate cousin tree vertices
return maximum, function values, cousin tree, triangles

Algorithm 7 CartesianToICC(interior cartesian points, boundary)

maximum, function values, cousin tree, triangles← preprocessing(boundary)
// Integral Curve Coordinates store a boundary point and fraction along an integral line
integral curve coordinates← []
for point in interiorcartesianpoint do

ascentPath← traceUphill(point,maximum, function values, triangles)
descentPath← traceDownhill(point, boundary, function values, triangles)
path← ascentPath + descentPath
boundary relative location ← end of descentPath in boundary relative coordinates
integral curve coordinates.append(boundary relative location, fraction along path)

end for
return integral curve coordinates

Algorithm 8 ICCToCartesian(integral curve coordinates, boundary)

maximum, function values, cousin tree, triangles← preprocessing(boundary)
cartesian coordinates← []
for (boundary relative location, fraction along path) in integral curve coordinates do

point← boundary relative location as absolute point
path← traceUphill(point,maximum, function values, triangles)
calculate cartesian coordinate based on path and fraction along path
cartesian coordinates.append(cartesian coordinate)

end for
return cartesian coordinates
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Chapter 6: Results

In this section, we present deformations computed using our algorithm. Rather than com-

puting the per-pixel deformation, we compute the deformation at a sparse set of points and

then linearly interpolate this deformation inside the triangles of a Delaunay triangulation

created using the Triangle mesh generator [47].

6.1 Implementation

Our experiments were run on an Intel Core i5 CPU M 460 with 4 cores running at 2.53GHz.

Our (unoptimized) implementation has been written in Python with the following external

dependencies:

• NumPy for linear algebra

• PyCairo, bindings for the Cairo graphics library, for the general point-in-polygon test

(the in_fill function) to test whether a point is within the boundary of the figure.

• Triangle [47] for producing Delaunay triangulations given a 2D boundary polygon and

internal points.

6.2 Examples

Figures 6.1–6.8 demonstrate a variety of shapes deformed using Integral Curve Coordinates.

Identical deformations at 1x and 2x grid resolutions are shown for every shape, and one

shape is shown at 5x resolution as well (Figure 6.7 and 6.8). Our deformation never creates

inverted elements. Increasing the grid resolution does not have a discernable affect on the

integral lines or texture mapping.
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We experimented with the stability of Integral Curve Coordinates. Figure 6.6 con-

versions from Integral Curve Coordinates after applying 5◦, 45◦, and 90◦ rotations to the

undeformed bunny in Figure 6.5, left. The 90◦ rotation appears identical; this is also equiv-

alent to swapping the order of expansion in the cousin tree breadth-first search algorithm.

If our discrete algorithm were perfectly stable, the 5◦, 45◦ rotations would also appear in-

distinguishable. Figure 6.5, right, depicts an identical deformation to the boundary, but

the maximum selection algorithm was modified to return a point to the right of the one

computed by the grassfire transform. Our coordinate transform is somewhat sensitive to

the choice of maximum.

Running times at various grid resolutions are presented in Table 6.1. In our admittedly

unoptimized implementation, the performance bottleneck is the BFS cousin-tree generation

and the integral line tracing.

Figure 6.1: The cousin tree, points, and integral lines for an L shape deformed into a square,
at 1x and 2x resolution.
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Figure 6.2: A checkerboard pattern applied to the undeformed L shape (left) and its defor-
mation into a square (right).

6.3 Comparison

Figures 6.9–6.11 compare the results of our deformation approach to Complex Barycentric

Coordinates [5], Controllable Conformal Maps [26], Composite Mean Value Mappings [8],

and Locally Injective Mappings [7]. Our deformation, while less smooth than some of the

techniques, can be generalized to any dimension. Although some integral lines do flatten

out as a result of deformation, we can see that no inverted elements are created by our

approach.

We can clearly see in Figure 6.11 that when a shape becomes unevenly narrowed and

skewed, the maxima can shift relative location quite substantially. The integral lines near

such sharp, concave areas may lead to collapsed regions of the shape.

6.4 Expansion Edges

Compression edges (Chapter 5) occur when the gradients on either side of an edge point

towards the edge, resulting in multiple integral lines meeting. Similarly, we call an edge an

expansion edges when the gradients on either side point away from it (Figure 6.12, left).

More formally, an expansion edge is a shared edge where in both triangles:

ExpansionEdge : InwardNormal(currentedge) ·Gradient > 0 (6.1)
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Figure 6.3: The points and integral lines for the rabbit figure.

Figure 6.4: The cousin tree, points, and integral lines for a bunny shape undergoing defor-
mation, at 1x and 2x resolution.

Expansion edges are edges where, when tracing integral lines downhill, multiple integral

lines converge at an edge. More insidiously, the gradient causes integral lines on either

side of the edge to diverge, leading to an area whose interior cannot be reached by any

integral line from the boundary (Figure 6.12, right). Expansion edges are visualized in our

figures whenever they occur as cyan edges. When tracing an integral line, if such an edge

is reached, it is ambiguous as to which triangle / gradient to follow.

This is in contrast to compression edges, which are edges upon ascent where the integral

lines converge. In our setting, we have a single critical point, a maximum, and all integral

lines must converge towards it, resulting in inevitable compression. Expansion edges rarely

occur for our function value assignment, except near small concavities on the exterior of

26



Figure 6.5: A checkerboard pattern applied to the undeformed bunny shape (left) and its
deformation (center) according to the cousin tree, points, and integral lines from Figure 6.4.
At right, a deformation computed using the same boundary and interior points, but with a
different maximum location.

Figure 6.6: Converting from Integral Curve Coordinates after applying 5◦, 45◦, and 90◦ ro-
tations to the undeformed bunny in Figure 6.5, left. If our discrete algorithm were perfectly
stable, the images would be indistinguishable.

the boundary. To remove expansion edges, the granularity of the grid could be increased so

that the distance between any concave boundary faces of the figure is greater than the size

of the unit grid.

6.5 Preliminary Examinations

Preliminary research into creating C1 continuous bicubic bezier patches with continuity con-

straints shows they do create smoother integral lines. Numerical integration is inevitable,

however, due to integral lines being defined as a non-separable non-linear first order dif-

ferentiable system of equations. In our preliminary investigations, numerical issues arise,
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Table 6.1: Performance Times for the Tripus

Resolution Boundary Points Internal Points Grid Points Function Time (s)

1x 54 11 673 Maxima 0.00
BFS 0.02

Gradient 0.24
Other 0.09
Total 0.14

2x 54 11 2306 Maxima 0.01
BFS 0.12

Gradient 0.74
Other 0.24
Total 1.1

5x 54 11 11584 Maxima 0.00
BFS 2.53

Gradient 3.85
Other 1.5
Total 7.88

and extreme care must be taken to ensure a monotonic interpolation. Several approaches

to monotonic quadratic splines interpolation appear promising [49, 50]. If patches were

created so that they were C1 or G1 continuous across edges, expansion edges (and compres-

sion edges) would no longer occur. A looser requirement would even be that the gradients

on either side of an edge cannot point towards or away from each other and yet remain

discontinuous; a tangible solution for this relaxed condition is less clear.

We also experimented with harmonic and biharmonic functions, as well as harmonic

and biharmonic functions constrained to lie within the cousin tree’s function space. Un-

fortunately, harmonic and biharmonic functions created without cousin tree constraints

contain a greater number of expansion edges (Figure 6.13), possibly due to the boundary

= 0 constraints. In the absence of cousin tree constraints, biharmonic functions may not

be monotonic, and harmonic functions may contain spurious saddles in higher dimensions.
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Figure 6.7: The cousin tree, points, and integral lines for a tripus shape undergoing defor-
mation, at 1x, 2x, and 5x resolution.
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Figure 6.8: A checkerboard pattern applied to the undeformed tripus shape (left) and its
deformation (right).
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Figure 6.9: Deforming a square comparison

From left to right, top to bottom: the undeformed square shape, Integral Curve
Coordinates with a single interior point in the center, Harmonic coordinates [48], Cauchy
coordinates, Szego coordinates [5], Controllable Conformal Maps [26], Locally Injective
Mapping using Laplacian energy, Locally Injective Mapping using Dirichlet energy [7].
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Figure 6.10: Comparison to Complex Barycentric Coordinates

The original figure (upper-left), a deformation computed using Integral Curve Coordinates
(upper-right), and a deformation using Complex Barycentric Coordinates [5] (lower-right).
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Figure 6.11: Comparison to Composite Mean Value Mapping

From left to right: original figure, deformation using Integral Curve Coordinates,
deformation using Composite Mean Value Mapping [8].

Figure 6.12: Area not covered by integral lines due to an expansion edge.
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Figure 6.13: Solving the Laplace (left) and bi-Laplace (right) equation without cousin tree
constraints.
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Chapter 7: Discussion and Conclusion

We have described a new technique to address the problem of bijective shape deformation

based on Integral Curve Coordinates. Our current piecewise linear implementation, while

preventing inverted elements (det(M) < 0 in Equation 2.2), does not prevent collapsed

elements (det(M) = 0). We would like to address this in the future with C1 or G1 monotonic

interpolation of functions values or by simulating the infinitessimal separation of integral

curves [51] and then perturbing the resulting deformation to correct collapsed elements.

Our approach is restricted to cage-based or boundary deformations. In the future, we

would like to extend our approach to these other control structures, such as points and

bone skeletons, which are intuitive to manipulate and can have far fewer vertices than a

cage. One approach may be to trage integral lines of smoothed distance functions from the

control geometry [52], without arc-length reparameterization.

Our grid discretization of the boundary or cage may lead to problematic boundary

gradients near sharp angles (< 45◦). One solution would be to adjust the grid spacing

non-uniformly (a so-called “plaid deformation”) such that (a) grid vertices are positioned

exactly at boundary vertices and (b) sharp angles are non-uniformly scaled and eliminated

from the point of view of the grid cell.

In the future, we would like to explore modifications to the constraints computed by

the cousin tree. The constraints we compute, while correct, are not the only correct con-

straints. Thus, we envisage an iterative procedure that updates the constraints and re-runs

the function computation portion of our algorithm so as to generate fairer deformations.

Jacobson [16] explored such an iterative constraint modification scheme in an analogous

setting to good effect. A similar iterative scheme may also remove expansion edges.

35



Finally, we would like to implement our approach in higher dimensions, applying it to

problems such as the animation of volumetric models. As it stands, this work serves as a

discrete, 2D implementation of Integral Curve Coordinates for bijective shape deformation.
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Appendix A: Proof of Correctness

In the following, the domain is a regular n-dimensional grid with edges parallel to the

x, y, z, . . . axes. We call a subdomain ball-like if the area enclosed by its cells is locally

path-connected even with the addition of imaginary diagonal grid edges in the axis-aligned

planes.

Theorem 2. Let D be a subdomain that is ball-like. Let T be an associated cousin tree.

Assume all nodes on the boundary of the subdomain have value greater than all grid neighbors

outside the ball (including along imaginary diagonal grid edges). Then by rooting T at the

maximum and assigning monotonically decreasing (unique) values to internal nodes of T

along the path from the root (preserving the values at the root and the leaf), there can be no

grid maximum, minimum, or saddles at any tree node, even if the node has diagonal grid

edges.

Lemma 1. A node v of cousin tree T on subdomain D with parent in the +x grid direction

(−x,+y,−y,+z,−z, . . . respectively) has a child in the −x grid direction (+x,−y,+y,−z,+z, . . .

resp.), unless the neighbor in the −x grid direction (+x,−y,+y,−z,+z, . . . resp.) is outside

D.

Proof of Lemma 1. Without loss of generality, assume node v has its tree parent u in the

+y grid direction. Let w be the node in the −y grid direction. Assume v is not w’s tree

parent.

v

u

w
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The cousin rule tells us that v’s tree parent u and w’s tree parent must be grid neighbors.

Yet the only grid neighbor of w within 1 grid edge of v’s parent of u is v. Thus we have

reached a contradiction, and v must be w’s parent.

Lemma 2. For any non-boundary tree node v, its grid neighbors (even with the addition of

diagonal edges in the x, y, z, . . . planes) with greater value all belong to the same connected

component (partitioned according to greater/less than v’s value) and its grid neighbors (even

with the addition of diagonal edges in the x, y, z, . . . planes) with lesser value all belong to

a second connected component.

Proof of Lemma 2. Without loss of generality, assume v has parent u in the +y direction.

We now consider two cases, v is on the boundary of D and v is not on the boundary of D.

Case v is not on the boundary of D.

It follows from Lemma 1 that v has a child w in the −y direction. As paths are

monotonic, V alue(u) > V alue(v) > V alue(w). Since we wish to prove that v will have

exactly two connected components partitioned according to greater/less than v’s value, we

can restrict our examination to grid neighbors of u, v, w in the +x direction, again without

loss of generality; the greater value connected component will have to include u and the

lesser value connected component will have to include w. We now consider two subcases,

v is not the tree parent of its x-direction grid neighbor b and v is the tree parent of b. To

clarify, when determining connected components, neighbors along diagonal edges may be

considered; however, tree edges are always grid edges, and neighbors in any sense except

when computing connected components are only along grid edges.
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Because of the cousin rule, b’s parent must be a, since a is the only grid neighbor of b

within 1 grid edge of v’s parent of v. Lemma 1 tells us that c must be the tree child of b.

Due to the monotonicity of values along tree paths, V alue(u) > V alue(v) > V alue(w) and

V alue(a) > V alue(b) > V alue(c). The following diagram depicts all possible greater/less

than relationships between a, b, c and v.

v

u

w

b

a

c

As we can see, in all possibilities, there are exactly two connected components parti-

tioned according to greater/less than v’s value. The component with values greater obvi-

ously contains v’s tree parent u, and the component with values lesser obviously contains

v’s tree child w.

Subcase: v is the tree parent of b.

v

u

w

b

a

c

The cousin tree imposes the following restrictions on a and c. a cannot be the tree

child of b as u and a would not be tree cousins. Since b cannot be a’s tree parent or its

tree child, b and a must be tree cousins. Therefore a’s tree parent must be a grid neighbor

of v. The only possibility is u. Since c cannot be the tree parent of b (resp. w), it must

be the tree child or cousin of b (resp. w). Therefore c must be the tree child of one and
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the tree cousin of the other. In either case, the monotonicity of values along tree paths

implies V alue(v) > V alue(c) as well as V alue(v) > V alue(b), V alue(v) > V alue(w), and

V alue(u) > V alue(v). The value of a may be greater than or less than v, but in both cases

there are exactly two connected components (partitioned according to greater/less than v’s

value). As in the earlier subcase, the component with values greater obviously contains v’s

tree parent u, and the component with values lesser obviously contains v’s tree child w.

Case v is on the boundary of D

If v’s grid neighbor w in the −y direction is in D, then Lemma 1 applies and v must

be the tree parent of w and hence V alue(v) > V alue(w). Otherwise, w is not in D, but by

assumption V alue(v) > V alue(w). Thus v’s neighbor in the +y direction has value greater

than v, and v’s neighbor in the −y direction has value less than v. Following the same

argument as in Case v is not on the boundary of D, we can again restrict our examination

to grid neighbors of u, v, w in the +x direction (without loss of generality).

v

u

w

b

a

c

There are 33 valid cousin tree configurations among the 24 possible boundary conditions

given a, b, c, w can each be outside D. They are presented in Figure A.1.

In every case there are exactly two connected components partitioned according to

greater/less than v’s value. The component with values greater obviously contains v’s tree

parent u, and the component with values lesser obviously w.

Proof of Theorem 2. Lemma 2 tells us that any internal tree node v has one connected

component of nodes with value greater than v’s and another connected component with
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values lesser (0 “folds”). It follows directly then that v cannot be a minimum, maximum,

or saddle.

Theorem 3. A breadth-first search (BFS) in a ball-like domain D where at each BFS

generation all x then all y then all z ... grid edges are explored in order constructs a cousin

tree.

Proof of Theorem 3. By induction. Let n represent the number of BFS generations of

growth from the root node. After step n, nodes reached at BFS generation n − 1 have all

of their grid neighbors in the BFS tree or outside D; grid neighbors in the BFS tree will be

shown to satisfy the cousin tree definition.

After step n = 1, the root node has become the parent of all grid neighbors. The root

node satisfies the cousin tree constraints by being the BFS parent of all grid neighbors.

Assume true for n = k. Nodes reached at BFS generation k − 1 have all grid neighbors

also in the BFS tree with cousin tree definition satisfied or outside D for BFS generation

≤ k − 1 nodes.

We wish to show that after step n = k + 1 all nodes reached at BFS generation k now

also have all their grid neighbors in the BFS tree satisfying the cousin tree definition or

outside D.

Consider a grid node v reached at BFS generation k. Let u be the BFS parent of v. u

was thus reached at BFS generation k − 1. Consider the following arbitrary axis-aligned

figure of v:

vu w

a

c

kk-1 ?

?

?
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After step n = k + 1 nodes a, c, w are also in the BFS tree. We aim to show that a, c, w

are either the BFS children of v, tree cousins of v in the BFS tree, or outside D.

If w (or a, c) is outside D, then it is of no concern to us. If w (or a, c) is inside D, then

it must have been reached at step k − 1, k, or k + 1. w (or a, c) cannot have been reached

before step k− 1 since it would have been able to reach v at step k− 1. w (or a, c) must be

reached before step k + 2 since v can reach it at step k + 1.

Suppose node w was reached at generation k − 1.

vu w
kk-1 k-1

The inductive hypothesis tells us that w has cousin tree relationships to all its grid

neighbors, including v. Yet w is not the BFS parent, BFS child, or BFS cousin of v (since

the BFS parent of w cannot be a grid neighbor of u). This contradicts w having been

reached at BFS generation k − 1.

Suppose node w was reached at generation k.

vu w
kk-1 k

This too is impossible since v, w are neighbors and cannot have the same taxicab distance

to the BFS root in our ball-like domain D.

This leaves us with w reached at generation k + 1.

vu w
kk-1 k+1

p

q

r

a

We first consider p as the BFS parent of w. Then p must have been reached at BFS

generation k. Furthermore, if p, v were both reached at BFS generation k and w was reached

at BFS generation k+1, then a must be in D and have generation k−1, since D is ball-like
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and distance is taxicab. But p as the BFS parent of w contradicts the BFS x/y/z/ . . .

growth ordering implied by u as the BFS parent of v, since u is the BFS parent of v instead

of a. The same argument prevents r as the BFS parent of w. Consider q as the BFS parent

of w. Then q and v were reached at the same BFS generation while w between them was

reached at a later BFS generation. This is impossible in our ball-like domain D since BFS

generations correspond to minimal taxicab distance. The only remaining possibility is v as

the BFS parent of w. This is a valid cousin tree relationship.

Suppose node a was reached at generation k − 1.

vu w

a

kk-1

b p

c

k-1

The inductive hypothesis tells us that a has cousin tree relationships to all its grid

neighbors, including v.

Suppose node a was reached at generation k.

vu w

a

kk-1

b p

c

k

This too is impossible since v, a are neighbors and cannot have the same taxicab distance

to the BFS root in our ball-like domain D.

Suppose node a was reached at generation k + 1.
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vu w

a

kk-1

b p

c

k+1

If node p is the BFS parent of a, then p was reached at BFS generation k. We then

have the following diagram.

vu w

a

kk-1

b p

e

k+1 k

But nodes v and p cannot have the same taxicab distance (as evidenced by their BFS

generations) to the BFS root in ball-like D if nodes a and u differ in taxicab distance to the

BFS root by 2. The same argument prevents e from being the BFS parent of a. The only

remaining possibilities are v as the BFS parent of a and b as the BFS parent of a, both of

which have valid cousin tree relationships with v.

The analysis of the relationship between node v and node c follows exactly the same

argument as between nodes v and a.
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Figure A.1: Cousin tree configurations for a node on the boundary: a outside (2 cases);
a, b outside; a, c outside; a,w outside; a, b, c outside; a, b, w outside (violates assumption);
b outside; b, c outside (4 cases); b, c, w outside (4 cases); c outside (5 cases); c, w outside (5
cases); w outside (6 cases); a, b, c, w outside.
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