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ABSTRACT 

MOBILE POSITIONING DYNAMICS IN AN IMAGE-BASED HYBRID 
GEOCROWDSOURCING SYSTEM 

Toby J Williams, M.S. 

George Mason University, 2018 

Thesis Director: Dr. Matthew Rice 

 

Geocrowdsourced data (GcD), also known as volunteered geographic 

information, has proven to be an invaluable resource to the geospatial science 

community. From a United States National Security perspective, GcD has become a 

force-multiplier for the Department of Defense aiding in nuclear counterproliferation 

efforts; at a humanitarian level it was used to aid first responders reaching earthquake 

victims in Haiti. Despite the potential benefits, research has shown GcD to be unreliable 

unless moderated with quality assessment methods applied to the data. However, 

circumstances may prevent moderation and new quality assessment methods must be 

designed. This research demonstrates a correlation between the number of GcD 

contributors and the level of positional accuracy of information contributed to the George 

Mason University Geocrowdsourcing Testbed (GMU-GcT). A mobile-phone, image-

based data contribution tool from the GMU-GcT was developed and distributed to 

student volunteers at GMU who provided information regarding pre-defined locations on 
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campus. Findings showed that the positional accuracy characteristics of the data 

contributions to the GMU-GcT improved with added contributors, reaching a level 

comparable to previously-studied accuracy threshholds reached with a significantly more 

detailed and heavily moderated data contribution workflow.  Undermoderated reports 

from single contributors averaged 8.55m in positional error.  With an increasing number 

of contributors, positional error of reports for the same item dropped to 3.89m (n=20).  

The most common positional error threshold for geocrowdsourced data, referred to in 

previous work as the Haklay distance (approximately 6.0 meters) was reached with two 

contributors, and after four contributors, the positional error rate stayed fairly constant.  

This research demonstrated that a fully moderated crowdsourced data contribution 

process, used in previous incarnations of the GMU-GcT, is unnecessary for producing 

data with adequate fitness-for-use, including common routing and obstacle avoidance 

algorithms.  
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CHAPTER 1 - GEOCROWDSOURCING AND ITS UBIQUITIOUS SOURCES 
AND USES 

In a 2006 Wired magazine piece discussing new sources of revenue for business, 

Jeffrey Howe coined the term “crowdsourcing” as a word play on the existing 

employment-related term outsourcing, which was responsible for thousands of jobs being 

sent to cheaper labor markets in countries such as China, India and Vietnam.  Howe’s 

concept of “crowdsourcing” was the generation of new ideas, new content, and new 

business intelligence from the public, who at the time were using the Internet and had just 

begun using social media platforms such as MySpace to generate content.  Just a year 

later, Goodchild (2007) noted the emergence of nascent map-based crowdsourcing 

activity, and described the concept as volunteered geographic information, and in a later 

publication (2009) outlined the costs, benefits, advantages, and possible future of this 

emerging activity.   A decade later, it is safe to conclude that this activity has truly had a 

dramatic impact on the way geographic data is captured, collected, curated, analyzed, and 

displayed.  Daniel Sui also underscores the significance of this phenomena.   He 

describes the emergence of a citizen-centric, web-based data collection paradigm as a 

“profound transformation on how geographic data, information, and knowledge are 

produced and circulated” (Sui et al. 2014, 1), and part of an emergence of vast volumes 

of geographic data from sensors, archives, media, text, and the public, which he 

characterized as an “exaflood of digital data growth” (ibid.).   

The term used in this thesis to describe the collective phenomena of citizen-

centric, web-based geographic data collection is geocrowdsourcing, which harkens back 
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to Howe (2006), with the acknowledgement to many other authors, such as Goodchild 

and Sui, who have provided useful commentary on the terminology for this phenomenon.  

While the various differences in meaning and nuances for the terminology are outside the 

scope of this thesis, the primary body of work and research focus remains consistent with 

interests expressed by the same researchers.   This thesis focuses on the way that the 

public contributes geographic information to a web-based data collection system.  

Specifically, this thesis explores the growth of mobile data collection for geographic 

information systems (GIS) and the individual and collective positioning dynamics of 

mobile geocrowdsourcing activities.   The primary conduit for public data collection for 

GIS is the mobile phone.   Understanding the limitations, dynamics, and positioning 

characteristics of mobile devices (discussed in detail by Rice et al. 2015) is paramount to 

understanding the critical quality and reliability facets of geocrowdsourced data, which 

are acknowledged by Goodchild and others as being the single largest weakness of this 

phenomena.   This thesis research adds critical information about this dynamic to the 

larger body or research, and helps answer the questions posed by Haklay (2010a, 2010b) 

and many others:   “How good is geocrowdsourced data?”, and “How many volunteers 

does it take to map an area well?”.   The answers to these questions are provided in this 

thesis.   This thesis is part of a larger body of work conducted by GMU Researchers in 

the Department of Geography and Geoinformation Science, where several ongoing 

research efforts are exploring the dynamics of geocrowdsourcing and methods for quality 

assessment, as discussed in Qin et al. (2016), Rice et al. (2012b, 2013b, 2014, 2015) and 

Aburizaiza et al. (2016).   
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This first chapter provides an introduction of geocrowdsourcing and various 

methods of application and areas of interest to the author and sets the stage for the 

remainder of the thesis.  Subsequent chapters review relevant literature, discuss the data 

and methodology used in this thesis, followed by results, conclusions, and suggestions for 

future work.   

 

1.1 Varying Methods of Application 

The applications of crowdsourced geospatial information are potentially limitless. 

Researchers at George Mason University are examining methods of utilizing a micro-

level campus geocrowdsourcing database to create an alert system for mobility and 

visually impaired students, informing them of areas along their routes that may be 

impassible or hazardous to traverse (Rice, et. al, 2013a). At a macro level, the 

Department of Defense (DOD) has examined applications of using crowdsourced data to 

supplement battlefield situational awareness systems and to aid in nuclear 

counterproliferation efforts (Leno and Miller, 2015). Furthermore, geocrowdsourced data 

was used to augment search as rescue operations after national disasters such as during 

the Haiti Earthquake recovery effort in 2010 (Yates & Paquette, 2011) and to discover 

the benefits of using geocrowdsourced information for wildfire evacuation planning 

during the California wildfires of 2007-2009 instead of waiting for official or 

authoritative information (Goodchild & Glennon, 2010). 
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1.1.1 Nuclear Counter-Proliferation 

As early as 1998 scientists began to realize that non-state actors and non-

governmental organizations (NGO) could play a vital role in the discovery, monitoring, 

and reporting of clandestine nuclear materials. Researchers found that when providing 

some type of incentives for contributions, or disincentives for those who did not 

contribute, governments were able to tap into a reporting stream far greater and with 

fewer restriction than those available to state actors alone (Mitchell, 1998). By 2010 

scientists had expanded upon that premise by allocating resources into scouring news 

media, social media and crowdsourced information for the purposes of discovering and 

tracking nuclear sites and materials allowing for stricter monitoring and enforcement of 

International Atomic Energy Agency (IAEA) safeguards (Pabian, 2010).  

1.1.2 Haiti Earthquake 

Many case studies have been conducted on the usability and efficacy of user 

generated content in response to disaster relief, recently and chiefly among those studies 

was the Haiti earthquake of 2010. Research led by Zook et al. (2010) displayed the 

benefits of Haitian citizens and others on the ground in Haiti providing local knowledge 

data from the savaged areas of Haiti as well as volunteers worldwide mapping previously 

uncharted areas of Haiti thanks in part to freely available commercial satellite imagery of 

Haiti provided by Google, Digital Globe and GeoEye (Zook et al., 2010). The updated 

imagery allowed the volunteer mappers to trace new roads and buildings into OpenStreet 

map with higher degrees of precision due to the higher spatial resolution of the imagery. 

The imagery also provided a means to map out areas where buildings collapsed or where 
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roads were impassible due to the earthquake. In Figure 1 below is a set of four side by 

side images showing the before and after earthquake commercial imagery for a portion of 

Haiti. One can clearly see the fineness of the spatial resolution of the imagery as well as 

the issues that first responders would have encountered when conducting search and 

rescue operations.  

 
 

 
Figure 1 Before and After Satellite Images in Haiti (Zook et al (2010), Source Google (2010). Screenshot of 

Google website, allowed use) 
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 The combination of freely available information, citizens on the ground in Haiti 

(who in-turn are local area experts) and hundreds of volunteers worldwide, allowed 

within two weeks of the earthquake over 10000 new contributions to be entered into 

OpenStreetMap for Haiti which provided first responders and disaster relief organizations 

a better understanding of the scope of the damage and how best to manage the emergency 

(Zook et al., 2010). Figure 2 shows a popular example of the amount of effort poured into 

OpenStreetMap immediately following the earthquake displaying the increase in richness 

of data available after volunteers began tracing the new routes and locations.  

 
 

 
Figure 2 OpenStreetmap screenshot of Port Au Prince before and after the earthquake (Zook et al (2010), 

Source Maron (2010). Screenshot of Brainoff website, allowed use) 
 
 
 
1.1.3 California Wildfires 

Goodchild and Glennon (2010) researched the benefit of using crowdsourced 

geospatial data instead of authoritative or official data in response to evacuation planning 

during the four massive California wildfires from 2007-2009. Just as with the “fire 
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alarm” approach over a decade earlier by Mitchell (1998) increased the number of 

reporting sources, the crowdsourcing approach for evacuation planning dramatically 

increased the number of reports regarding the size and speed of expansion of the 

wildfires. While authoritative information provided a high level of accuracy, the 

information could have taken days to complete the process of collection, exploitation, and 

dissemination back to the public. By this time, the size and speed of expansion of the 

wildfires could have drastically changed. Goodchild and Glennon found that with the 

expanded contributor base reporting on the boundaries of the fires, even if positional 

accuracy of the reporting was less accurate, the contributions were accurate enough to 

provide a level of understanding about the size and speed of expansion to assist officials 

in determining whether or not to commence evacuations in certain areas. Goodchild and 

Glennon also agreed that the costs of an unneeded evacuation due to less precise 

information (a false positive) were far less than those of waiting days to receive an 

evacuation order that could potentially had been provided sooner to move citizens to 

safety (Goodchild and Glennon, 2010).  
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Figure 3 Screenshot of webpage of amateur wildfire reporter (Goodchild and Glennon, 2010) 

 
 
 

1.2 A Brief History of GcD/VGI 

The following sections discusses the evolution of geocrowdsourced data (GcD) 

and volunteered geographic information (VGI) and their relationship to the rapid increase 

in unstructured and semi-structured digital data, referred to by Sui et al. (2014) as an 

exaflood of digital information. 

1.2.1 Evolution 

As previously stated, the emergence of citizens as sensors is not a new concept. 

Throughout history, human reporting has long been sought out by intelligence 

organizations as a valuable source of information about an adversary. Persons conducting 

corporate espionage, the stealing and sharing confidential research or methods of one 

institution with another, continues today. A recent evolution of the concept of citizen 

sensors however has been used to raise public awareness on social issues and affect 
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change in regards to public safety concerns. Until recently however, this was mostly 

accomplished through the use of email, web blogs, and social media platforms. These 

methods, while effective, required an individual to actively create information that was to 

be shared with others. With the advent of smart devices however, the evolution of citizen 

contributions became a revolution of new ideas and methods and resulted in exponential 

increases in publicly available information.   Goodchild et al. (2005) presaged this 

revolution, describing the emergence of a social-media driven, web-connected 

information sharing community, which they termed the Spatial Web.   

1.2.2 Revolution 

The emergence of smartphones and gps-enabled devices that allow user input and 

collection of locational data are now pervasive in society and can be used in virtually 

every aspect of our daily lives both personally and professionally. Unlike previous 

generations of citizen contributions which required some form of manual input, smart 

devices allow for passive collection and distribution of information, much of which is 

geospatially referenced, by almost anyone anywhere. This data, most of which is 

unstructured data stored in a myriad of databases, requires only that an interested party 

with access to the data conduct searches of the plethora of information to discover what 

he or she is looking for. It can be used for as benign a purpose as finding the fastest route 

to work to a more vital purpose such as assisting first responders in search and rescue 

operations. In the figure below, one can see the dramatic exponential increase in the 

amount of unstructured data, trillions of gigabytes worth, available on the web. Current 

research at George Mason University is using a combination of passive information 
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collection along with manual user input to accomplish a variety of scientific goals.  

Stefanidis et al. (2013a, 2013b, 2013c) use large volumes of passively collected geosocial 

data to study social protest movements, monitor earthquakes, and to look at the changing 

nature of political boundaries, as defined by members of online social communities.  

Gkountouna et al. used multiple data sources to study trajectories and movement (2017).  

Yang et al. (2017) are developing high-performance computing infrastructure to deal with 

the challenges of large volumes of data (2017), while Curtin et al. (2014) explore the 

quality of solutions to data-rich and combinatorily complex optimization problems. 

Camelli et al. (2012) use complex computational models and big data to study GIS-based 

dispersion modeling.   This explosion of data is a significant scientific opportunity, and 

an important part of the future geospatial landscape.  The development of scientific 

frameworks and geocomputational approaches is equaly important in making sense of 

this new, data-rich geospatial landscape.  This thesis hopes to extend research and 

illuminate certain issues wtihin this domain. 
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Figure 4 Big Data: Amount of available unstructured data on the web (N.D. Why NoSQL. Retrieved from 

www.couchbase.com) 
 
 

The following chapter reviews important research and concepts as a way of building a 

conceptual framework for this thesis.   This past research provides insight into quality 

assessment dynamics in geocrowdsourced data, and reviews ways that crowdsourcing 

techniques can be used in a simplified geocrowdsourcing testbed to accomplish specific 

data generation and data fitness-for-use goals.  
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CHAPTER 2 - LITERATURE REVIEW AND CONCEPTUAL FRAMEWORK 

2.1 Quality Assessments and Positional Accuracy 

This thesis looks closely as the issue of quality assessment in geocrowdsourced 

data – an issue frequently described as the principle weakness of geocrowdsourcing, and 

identified by researchers such as Goodchild (2007) and Girres et al. (2010) as a major 

priority.  Quality assessment has been a major theme within the GMU Geocrowdsourcing 

Testbed (GMU-GcT), and this thesis continues the recent work in this area (Rice et al. 

2018) by exploring a simplification of the GMU-GcT and an image-centric contribution 

workflow. 

2.1.1 Quality Assessment Criteria 

Many factors affect the reliability and accuracy of GcD.  To achieve higher levels 

of accuracy and reliability, crowdsourced data must undergo quality assessments (QA) 

for at least three important variables: positional accuracy, temporal accuracy and attribute 

accuracy (Rice et al. 2014).  These three quality assessment items are based on the 

“atomic element” view of geographic information espoused in chapter 3 of Longley et al. 

(2015), where all geographic information is described as an associated triple of [location 

(x,y), time and attribute]. The most thorough views of geospatial data accuracy contain 

additional factors (Guptill et al. 1995, Hunter et al. 1992, and Veregin 1999), such as 

lineage, completeness, logical consistency, and fitness-for-use (usage), but a predominate 
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focus of recent studies (e.g., Haklay 2010, and Girres et al., 2010) is positional accuracy.  

Positional accuracy is best described as the horizontal and vertical spatial accuracy of the 

collected data. The National Standard for Spatial Data Accuracy (NSSDA), developed by 

the Subcommittee for Base Cartographic Data is the most relevant accuracy measurement 

method for GcD (Rice, et al. 2014). This method uses root mean square error (RMSE) 

calculations (or the square root of the group of distances of points of collection) from a 

single point of interest. By using the NSSDA standards, one does not need to discard data 

because they do not meet a preset threshold, rather, the researcher can set the threshold, 

generally at the 95% confidence level, and then describe those characteristics in the 

accompanying research (FGDC, 1998). 

The second quality assessment element, temporal accuracy, is a composite 

measure of the consistency of the data collected with regard to the collection and 

observations times. Temporal accuracy suggests that the data collected and reported 

represent the time period asserted by the collector, and that the data are not out-of-date. 

Whether it be from a GPS-enabled device or a social media platform, a time stamp is 

generally associated with the submitted information, both during collection (and often 

saved as embedded meta-data) and during submission to a crowdsourcing system. 

Interestingly, with temporal accuracy, the currency of collection may, in some cases, 

become more important than a formal temporal accuracy measurement. As Goodchild 

describes in relation to the 2009 wildfires in Santa Barbara, California, having large 

amounts of data submitted quickly may be more valuable than awaiting formal, 

authoritative data that could take much longer to produce and disseminate (Goodchild 
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and Glennon 2010). On the Haitian earthquake, Zook et al. (2010) concurs the advantage 

of quickly-produced GcD.  However, without any means of verification for the data being 

produced, the substantial number of GcD contributions in a crisis event may not always 

be a positive situation. As Starbird et al. (2014) describe in relation to the Boston 

Marathon bombing in 2013, submissions of inaccurate or even false information resulted 

in delays in discovering the true identities of the perpetrators and false identification of 

innocent, uninvolved people. They also discovered that once the incorrect information 

was submitted, subsequent corrections did little to diminish people’s initial 

determinations (Starbird et al. 2014). While this particular example is not strictly 

geospatial in nature, it remains a cautionary example of the dangers of inaccurate 

information being used for public awareness purposes, particularly for time-sensitive 

events.  

The final measure in the quality assessment procedure described is one of 

attribute accuracy, which measures the agreement between the characteristics of an event 

reported by a contributor, and the true characteristics of the same object, as determined 

through ground-truth measurements or by some other more accurate process.  Attribute 

accuracy is often measured through techniques such as a confusion matrix and Kappa 

statistics.  Attribute accuracy addresses the subjective nature of feature naming in 

geospatial datasets and underscores the difficulties in having untrained, non-expert 

contributors, who may be unfamiliar with the data collection software or with scientific 

principles underlying the geospatial disciplines (Rice et al. 2014). The difficulty in 

achieving high accuracy in attribute data entry was especially apparent during the Haiti 
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earthquake emergency response effort where 73% of over 3400 reclassified messages 

from Haitians that were received and translated by GcD contributors failed to convey the 

message intent, and 50% of the messages were miscategorized altogether (Camponovo 

and Freundshuh 2014). 

 

2.1.2 Quality Assessment Approaches 

In addition to knowing what variables are needed for a quality assessment of 

GcD, one must also know how to conduct the quality assessment. Goodchild and Li 

(2012) divide geocrowdsourcing QA methods into three “approaches”: the 

crowdsourcing approach; the social approach; and the geographic approach. The 

crowdsourcing approach, describes methodological approaches from three interpretations 

of the term. In this first interpretation of the crowdsourcing approach, the authors discuss 

the dynamic where large volumes of people are used to problem solve a problem. This 

interpretation suggests if a problem exists and needs to be solved, the more people one 

has addressing the problem, the more likely it is to be solved. Secondly, the 

crowdsourcing approach refers to the strength of spatial clustering. As mentioned earlier 

with the Santa Barbara wildfires, many people reporting on a topic from an initial report 

lends credence to the event upon which is being reported. Goodchild and Li (2012) use 

the example of Wikipedia, on which a person contributes unmoderated information that is 

incorrect. The drive of people will be to correct information that they either know or 

perceive to be incorrect, therefore Wikipedia with its millions of contributors essentially 

becomes self-correcting and generally accurate because of its users (Goodchild and Li 



27 
 

2012). The third interpretation is based on the need for people to find the truth. This 

interpretation follows results based on Linus’s Law that if many eyes look at something 

then someone will find the error. The law states that people will strive to find truth and 

correct errors, therefore, the more people who look at something, the more likely it is that 

errors will be found (Goodchild and Li 2012). 

 The second method for conducting QA is known as the social approach. Rice et 

al. (2013b) describe this approach as one which uses experienced moderators as 

“gatekeepers” who work in a hierarchical structure to ensure that data that are being 

contributed is both accurate and relevant. As mentioned earlier, having a moderator for 

the contributions is a method to ensure a higher level of accuracy for the contributed data. 

GMU MS student Rebecca Rice explored the moderated quality assessment workflow of 

the GMU-GcT in her thesis from 2015, and in a subsequent publication (Rice et al. 2016).   

Rice discovered, in her thesis research, that moderated ground truth in the GMU-GcT has 

an absolute positional accuracy between 2.12 and 5.55 meters, depending on whether the 

item being measured is small (~1m square) or larger.   

In articulating the social approach for quality assessment, Goodchild again uses 

Wikipedia as an example. As moderators also tend to be contributors, about a tenth of a 

percent of total contributors are moderators of the information. This is why Wikipedia 

can fit into both categories since 1500 moderators cannot possibly moderate 15 million 

users efficiently. The moderators validate and assess the data they are able to assess, and 

then the crowd of users is expected to find the remaining errors (Goodchild and Li 2012).  

In her thesis research, Rice notes that this quality assessment approach is considered an 
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expensive, resource-intensive approach, and that it works well in small projects without 

the benefit of a large number of contributors that would make the crowdsourced quality 

assessment approach feasible and logical.  

The final method for quality assessment discussed by Goodchild and Li (2012) is 

the geographic approach. Rice et al. (2013) describe this approach as a comparison of 

contributions to known geographic facts and phenomena of an area. One would look for 

inconsistencies between the two which would lead to conflict resolution for the 

inconsistencies. For example, if one were interested in the location of all sidewalks on the 

GMU campus and one of the contributions was located in the Mason Pond (an actual 

example cited by Rice et al. 2013), then the comparison of known geographic facts and 

phenomena to contributed data would be a red flag that an error in collection or data entry 

has occurred.  This quality assessment approach is a law-seeking or nomothetic approach 

for data quality, and assumes that there are natural geographic laws and facts that can 

form a basis for comparison.  

While moderation is an effective way to mitigate inaccurate or incomplete 

geocrowdsourced data, what options are available if moderation is not available due to 

time, personnel, or monetary costs? The answer to this question is the crux of the 

research topic being discussed. In 2010, GMU researchers began exploring methods to 

aid mobility and vision impaired students in navigation of the GMU campus (Rice et al. 

2011. The initial research goals and project funding resulted in the development of a 

strictly-moderated geocrowdsourcing system where contributors would enter up to 15 

separate locations or attribution characteristics of anything the contributor perceived as 
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an impediment to safe movement along predefined pedestrian corridors. This was a 

cumbersome and time-consuming process both for the contributor and the moderator. 

Fewer than expected contributors used the system, with 12 active contributors out of the 

40-50 that were needed to maintain adequate temporal and spatial coverage (Rice, et al, 

2013). To alleviate the inconveniences of the desktop contribution tool, Rice et al (2014) 

developed a mobile version of the tool that had fewer categories of information for 

contributors to enter, however the data still required moderation to ensure accuracy of the 

entries. Additionally, the mobile version required the contributor to enter subjective 

categories such as “Describe the obstacle” and “Duration” as well as “Urgency”. As these 

categories could be and were answered differently by different contributors it again 

became a cumbersome chore for the moderator to sort through the data to attempt to 

discern why a contributor may have marked something as high urgency or what a 

contributor meant by “a hole in the sidewalk” (Qin et al., 2015, and Paez 2014). Again, 

between the requirement for moderation of the data and the amount of data required to be 

entered by the contributors, few students became regular contributors to the project. A 

general review of the developing project from the early phases is contained in Rice et al. 

(2012a) and Qin et al. (2015) 

2.1.3 Positional Accuracy without Moderation 

A focus of this research is to simplify the input mechanism for the contributor and 

forgoing strict moderation of the geospatial data being contributed. The goal is to greatly 

increase the number of contributors which can be done by creating an input platform 

similar to that of Instagram. Therefore, the only information the contributor would need 
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to provide is a picture and brief description of what they see. The three required atomic 

elements for geospatial data presented by Longley et al. (2015) -- location, time, and 

attribute, can be provided by a simplified system. Time and location are provided by the 

GPS and time metadata from the data collection tool itself, and attribute (image and 

description) is provided by the contributor. The benefit of increasing the number of 

contributors with such a tool is that it may do away with the need for strict moderation of 

the data. By coding the application to find location-relative clusters of entries from the 

many contributions, one may enable algorithms to relate the entries within these clusters 

to detect probable like objects, and then calculate a spatial mean from the clustered 

observations. This would lower the overall error of the reported location and thus achieve 

a desired accuracy level for obstacles that pose an impediment to mobility.   The research 

presented in subsequent chapters of this thesis did not approach the clustering in an 

automated or semi-automated fashion, but gathered intentionally tagged observations 

about specific pre-defined locations on the local college campus.  The automation of this 

clustering process is a matter for future work.  

With assistance from GMU faculty, research collaborators, volunteers, and new 

data collection tools, this research will show that an increased number of contributions to 

the simplified user interface as a phone application will result in increased accuracy when 

measuring the position of collection to the ground truth location of the target being 

collected upon 
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2.2 Threshold of Contributions to Reach Acceptable Positional Accuracy 

Foody et al (2015) understood the value of crowdsourced data but also understood 

the limitations of that data, namely positional accuracy. To address this concern, research 

was conducted to attempt to correlate the level of positional accuracy of contributions to 

the number of contributors and contributions. To obtain a measurable result, the study 

was conducted by selecting 299 satellite images along with an open call for volunteers to 

participate which resulted in 65 persons. The objective given to the volunteers was to 

review the satellite images and from a predefined set of choices, select the land cover of 

the image (Foody et al., 2015). As the participants were all volunteers, their levels of 

experience, motivation and completeness of the task were varied. This allowed for 

researches to not only calculate accuracy rates solely on the number of contributions 

versus the accuracy of contributions, but also to calculate at what threshold for the 

number of individual contributors was needed to achieve certain accuracy thresholds. 

Foody et al (2015) calculated the R-square value of overall accuracy of land cover 

classification as it related to increasing numbers of contributors but who contributed 

differing amounts of information. As shown clearly in Table 1, the more contributors 

who participated, the higher the overall accuracy. 

 
 

Number of Volunteers R2 

5 0.0009 

10 0.8194 
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15 0.8594 

25 0.8579 

35 0.7279 

65 0.9359 

Table 1 Correlation between number of contributors and R2 of accuracy (Foody et al., 2015) 
 
 
 
A second area of focus in the study was to determine if only using the “best 

volunteers” contributions would result in an increase in accuracy. However, as illustrated 

in Figure 3, in this particular instance, when evaluating the contributions of 14 volunteers 

who contributed the same amount (all 199 images) and their individual accuracy rates for 

classification, the research revealed that after 11 volunteers, no further significant 

increase in accuracy was gained, showing that a continuing increase volunteers does not 

always equal higher quality information (Foody et al., 2015). 
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Figure 5 Correlation between number volunteers and level of accuracy (Foody et al., 2015) 

 
 
 

Research conducted by Haklay, et al. (2010) provided more credence to the 

studies by Foody et al. (2015) by showing the correlation between Linus’ Law and GcD. 

Haklay et al. (2010) intended to prove that Linus’ Law – which states that as the number 

of contributors increases so does the quality of the contributions – was relevant when 

relating GcD contributions quality (by measurement of positional accuracy) to 

OpenStreetMap by testing the correlation with three studies conducted earlier by Zulfiqar 

(2008), Ather (2009) and Basiouka (2009).  Haklay determined that the earlier studies 

collectively demonstrated the validity of Linus’s Law, at least in regard to positional 

accuracy of features.  Haklay noted that the assumption of increased contributors leads to 

quality improvements is true in the areas analyzed. The study areas analyzed by Haklay 

were based on a 25km2 region. This study in this thesis will be a smaller, 
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approximately1km2 region, and follows up on future research suggestions from Haklay et 

al. advocating a similar research study on a smaller areas.  

Additional research was conducted by Rohrbach et al. (2015) which examined the 

effect sample size had on spatial data quality as it related to mapping areas for land use. 

The premise of the study is to enable to the concept of participatory mapping (PM) in the 

form of questionnaires on which the participants have a myriad of fields to complete to 

describe land use of an area over the previous 20 years. The form of PM implemented in 

this study was public participatory GIS (PPGIS) upon which Rohrbach explains that 

“sampling effects and data quality are key issues” and set forth answer to the following 

issues:  

• We assess the data quality of PM past land use based on the correctness 

and completeness of the data. .  

• We propose a procedure for estimating the correlation between sample 

size and data quality through a resampling approach. 

• We display and discuss the influence of participants’ individual 

performance on aggregated groups’ PM outcome. 

• We test the sensitivity of the suggested procedures to different mapping 

scales (Rohrbach et al., 2016, pp 682-683).  

The sampling in this study was not a random sampling but a carefully researched 

and specifically selected group of 23 local farmers (15-16 of whom ultimately provided 

completed responses to the survey) who had thorough knowledge of the landscape and 

history of their border town in Switzerland.  The data collection portion of the study 
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began with the researches providing the sample group with aerial images of three 

different scales: 1:500, 1:12,500, 1:25,000. The participants were directed to mark where 

they believed their land was located in the present day, followed by marking the areas 

they believed were arable lands in 1990. Researchers then scanned and georeferenced and 

the images to overlay the famers’ estimates to enable processing in GIS software. Three 

sources providing aerial imagery from 1986, federal statistical data from 1985-1995 and a 

study recording the state of the area were used as a ground-truth area of approximately 

117 hectares that would be used for comparison against the participants’ survey responses 

(Rohrbach et al., 2016). This ground-truth measurement would be used to compare to the 

present day measurements to determine the level of change in arable land. The resulting 

comparison from the data processing portion of the research is shown in Figure 6. 

 
 

 
Figure 6 Overview of data processing of participatory mapping data (Rohrback, Anderson, & Laube, 2016) 
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The findings, much as in the findings from Haklay et al. (2010), showed that after 

a certain number of contributors, no significant increase in accuracy was achieved. The 

results of this survey showed that the more areas an individual respondent mapped, the 

higher his or her individual accuracy became. However, as a group measurement, 

diminishing returns presented after 10 participants (Figure 7) and no significant increase 

in overall accuracy was achieved (Rohrbach et al., 2016). 

 
 

 
Figure 7 FI-values of different sample sizes, areas evaluation and scales (Rohrback, Anderson, & Laube, 2016) 
 
 
 

The relationship between the number of contributors to a particular issue and the 

level of positional accuracy and the diminishing returns of the increase in accuracy as the 
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number of contributors increases will be addressed in more detail specific to the issue of 

obstructions to mobility later in this research. 

 

2.3 Research Problem and Hypothesis 

Multiple research studies noted above have shown that repeated observation, 

through crowdsourcing, can reduce positional and attribute errors, whether the subject is 

road geometry in OpenStreetMap, or land cover mapping from imagery.  The GMU 

Geocrowdsourcing Testbed (GMU-GcT) has undergone a simplification.  This thesis 

tests the larger research idea noted above, through the vehicle of the GMU-GcT.  

Specifically, this thesis will test the hypothesis that an increase in the number of 

observations for a specific geographic object will lead to a lower positional error, and that 

this reduction will have some converging property, as shown in Figure 5 (from Foody 

2015).  The Rebecca Rice thesis from 2015 found the average positional error associated 

with moderated ground truth to be in the range 2.12m to 5.55m, depending on the size of 

the object being reported.  This earlier thesis work suggests that moderated 

geocrowdsourcing systems such as GMU-GcT can result in object positional accuracies 

in this range. This thesis hopes to prove that a hybrid geocrowdsourcing system built on 

simple image capture can result in similar accuracies, but without the cost and expense of 

the social moderation process used previously in the GMU-GcT.   
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CHAPTER 3 – METHODOLOGY AND DATA 

3.1 Methods of Collection 

 
Between 2011 and 2016, GMU researchers developed and maintained a 

geocrowdsourcing system called the GMU Geocrowdsourcing Testbed (GMU-GcT), 

which was a cumbersome desktop-centered system with a moderated quality assessment 

workflow built on the ‘social’ approach discussed by Goodchild and Li.  The evolution of 

the system is documented in research reports and papers, including Qin et al. (2016), Rice 

et al. (2012b, 2013b, 2014, 2015) and Aburizaiza et al. (2016).   In 2015 and 2016, this 

system adopted a mobile incarnation, and later, and experimental image-based 

contribution tool that will be the subject of this proposed research. 

 
 

 
Figure 8 Screenshot of desktop version of GMU-GcT application (retrieved from  http://geo.gmu.edu/vgi) 
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Figure 9 Screenshot of mobile version of GMU-GcT application (http://geo.gmu.edu/vgi/m) 

 
 
 
 

 

 

 

 

 

 

 

 

Figure 10 Screenshot of smartphone version of GMU-GCT application (retrieved from geo.gmu.edu/cgd2018) 
 
 
 

In an effort to explore the updated quality assessment dynamics discussed in 

section 2.1 of this thesis, a study comprised of two distinct phases was conducted to 
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compare the data collection workflow of the contributors to the GMU-GcT using the 

strictly moderated GMU-GcT, the mobile version of the GMU-GcT, and the image-based 

contribution tool.  Phase 1(P1) consisted of a cohort of volunteers comprised of 

undergraduate students from the Geography and Geoinformation Science Department at 

GMU who completed tasks assigned to them to determine accuracy and precision levels 

of contributions. The purpose of this initial phase was to explore the contribution 

dynamics and positional characteristics of a web-application revision of the GMU-GcT, 

to be used in fine-tuning the subsequent updates to the GMU-GcT contribution tools. 

The first step of P1 involved researchers pre-staging markers within a pre-defined 

bounding box on the GMU campus. Besides being placed along walkways and in the 

open, some markers were placed in environments with differing characteristics to provide 

a variety of measurement challenges such as: near tall buildings, on extremely sloped 

surfaces, and under tree canopy. Markers were also placed at locations to represent either 

a point or areal features. Area locations for instance were marked by being placed off of a 

main path in a grassy area in a configuration of multiple cones forming a polygon. Each 

of the point and area markers were labeled and the precise location of each marker 

recorded. Control coordinates for the area locations were determined by the center of the 

location shape. 
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Figure 11 Examples of markers for volunteers to locate in Phase 1 

 
 
 
To begin the second step of P1, the general locations of the marker positions were 

placed on maps of the bounding box area. The maps were distributed to student 

volunteers who were instructed to find the markers and record their locations using the 

above-mentioned image-based contribution tool. Example photographs taken from the 

image-based software were provided to the students to provide examples of marker 

appearance. Examples images were comprised of multiple images from various look-

angles and distances so as not to bias the students’ perceptions of how they should 

capture an image of the markers. Before beginning their search for the markers, students 

were given specific instructions on how to use the contribution tool and to what settings 
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(wi-fi and location services) to set their phones. An example of the student instructions 

can be found in Appendix A.  

 
 

 
Figure 12 Example photographs given to volunteers showing an object of interest from many viewing angles to 

prevent collection bias 
 
 
 

The student volunteers were sent out in small groups rather than en masse to 

prevent bias in the collection process, and more specifically in the standing or observing 

location in relation to the object of interest. While volunteers collected on the two targets, 

a researcher marked their position with chalk. Once all the volunteers had completed the 

task, the distance in meters from the chalk markings to the targets was measured to 
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provide insight into collection positions and variations in distance from the point of 

collection to point and area targets. Upon one group’s return, the next group of student 

volunteers completed the same task. Roughly 30 students comprised this study group and 

the task was be performed for three weeks.  

Phase 2 (P2) of the experiment occurred in the final two weeks of this study. The 

specific reasoning for P2 collection will be discussed in greater detail in Chapter 4. 

Similar to P1, P2 also began with using pre-defined locations throughout the GMU 

campus. However, instead of using markers, P2 locations were chosen from pre-existing 

landmarks and features on the campus. As was the case in P1, some locations were 

applicable as point targets and some were better suited as area targets. Following location 

selections, reference handouts were produced which included an overview map of the 

study area with the target locations alphabetically labeled on the map. Additionally, 

photographs were taken of each locations from various angles to mitigate any bias as to 

the angle from which the collection should be performed. The reference handouts were 

then distributed to volunteers for them to review and to ask questions should they have 

any. In contrast to P1, P2 volunteers comprised a combination of students, research 

assistants and non-academic volunteers. Prior to being released for the collection, specific 

instructions were given to the volunteers as to how to complete the task (see Appendix 

A). Each volunteer in this phase was randomly assigned an identification number which 

was included on his or her handout. Volunteers were instructed to include that number on 

each contribution. Also, they were instructed that there was no particular order in which 

they needed to collect the target locations; that the alphabetical designations of each 
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location were not representative of an order of collection, but only to provide reference as 

to the location of each target. In a similar fashion to P1, two researchers pre-staged at a 

point and an area target and recorded chalk markings for the positions from which the 

volunteers completed collection. Following the task completion by all volunteers, the 

distances in meters to the targets from the chalk markings were measured. 

 
 

 
Figure 13 Example of obstacles for Phase 2 collection 

 
 
 

 Along with user sentiment and user feedback, captured in surveys, this research 

project examined the quality assessment capabilities and possibilities of each phase. The 

quality assessment comparison showed workflows for each tool and provided comparison 

to see if a simplified, Instagram-style contribution system produced the same basic 

quality estimates for location, time, and attribute.  Additionally, project researchers were 

able to determine if a larger number of contributions and an increased rate of 
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contributions was possible with a simpler tool, as projected during future project planning 

in 2015 and 2016 (Rice et al. 2015).  The procedures in P2 were designed around the 

hypothesis of this research stated in Section 2.3: An increase in the number of 

observations for a specific geographic object will lead to a lower positional error, and that 

this reduction will have some converging property. 

3.2 Data 

3.2.1 Student and Volunteer Data Contributions  

The Phase1 collection period took place over two weeks and was comprised of 

undergraduate student volunteers from GMU who completed the assigned tasks in 

conjunction with current coursework requirements. Each volunteer was randomly 

assigned an identification number to keep track of individual observations and to alleviate 

any privacy concerns of collecting personal information from students in conjunction 

with their collected information. Week 1 of the P1 was comprised of 24 student 

volunteers and Week 2 was comprised of 14 student volunteers. Two locations were 

assigned for collection for a planned 38 individual observations. Information collected 

during P1 included: phone type and model, geolocational data, date and time, manually 

measured collected distance away from the assigned location, and a free text description 

submitted by volunteers at the time of collection, and various exif data from the 

volunteers’ phones. 

Phase 2 collection was completed over several days and volunteers were 

comprised of GMU students and non-academic volunteers from a wide range of ages and 

backgrounds. Each student was randomly assigned an identification number to keep track 
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of individual observations and ensure all volunteers collected all targets. Twenty-one 

volunteers provided contributions for 13 targets for a total of 273 distinct observations. 

Along with geolocations provided by the volunteers through the collection application; 

date and time, images taken by volunteers, and free-text descriptions written by the 

volunteers were collected, along with various exif data from the volunteers’ phones. 

Furthermore, two of the locations (one a point location and the other an area location) 

were observed by researchers during the collection period. As volunteers completed his 

or her submission, the researcher marked the collection location and measured the 

distance between the target location and collection location. 

Phone type. Phase1 was completed using a web application to which any 

volunteer could access to provide contributions. No restrictions for the type of phone for 

P1 were enforced, which led to various models of iPhones and Android devices being 

used for the phase.  

Phase 2 was designed as a mobile application and was implemented using 

constraints for applications which are to be approved by Apple AppStore for wide 

distribution. At the time of the study, the application had not been approved by the Apple 

thus the beta version of the application was still under development. Only iPhone models 

6, 7, 8, and X were used for collection during this phase.  

Location Information. Phase 1 was developed as a web application. Because of 

this, multiple issues negatively affected the collection and submission of data and 

inconsistent measures for locations resulted over the two weeks. The second week of 

collection, for example, with 14 volunteers participating, only seven of the collected and 
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submitted reports made it into the database. Of the seven reports that resulted, location 

error from the point of collection ranged from as accurate as 5 meters to as non-sensical 

as 600 meters away. The collection errors under the P1 development model could not be 

remedied in the time allotted. The errors possibly resulted from a combination of HTML5 

coding issues as well as google location privacy restrictions in conjunction with the 

locations being on the edge of wi-fi signal on campus and the location services moving 

from wi-fi to tower location calculations during the collection process.  
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Figure 14 Phase 1 Collection of two points with inconsistent locational returns 

 
 
 

As show in Figure 16, two example points are displayed on map of the GMU 

campus. Distance errors ranged between 10 meters and over 600 meters from the point of 

collection. Despite exhaustive editing of code and troubleshooting the errors could not be 

corrected. With no remedy being developed, the P1 collection plan was suspended and 

the P2 development of a smartphone-based application began. Phase 2 collection 
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provided accurate locational data for the testing period with 100 percent of the submitted 

collections being added to the database. The data gleaned from the study will be 

explained in further detail in Chapter 4. 

Data Collection/Submission Methods. For P1 the volunteers used their phones to 

directly log into the developed web application which was both slow and cumbersome 

sometimes requiring volunteers to wait several minutes for confirmation that their 

location report was submitted. Additionally, irrespective of what phone type or model 

was being used, some volunteers were unable to connect to the web application at all, 

therefore none of their attempts to provide contributions were successful. As a result, no 

usable results were to be gleaned from Phase 1 collection, other than general information 

about standing location/position and general feedback used to fine-tune the future updates 

to the GMU-GcT. 

The P2 smartphone application allowed volunteers direct access to the 

contribution system which provided an Instagram-style display. After permissions were 

granted and volunteers logged into the application, all submissions attempted by 

volunteers were successfully submitted to the GMU geocrowdsource database and 

provided nearly instant submission confirmation after a location was collected.  

Because of the software errors and contribution anomalies involved with Phase 1, 

Chapter 4 will only include results from the Phase 2 collection. 
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CHAPTER 4 - ANALYSIS OF RESULTS 

4.1 Results 

 
As discussed in Chapter 3.1, Phase 2 collection consisted of 21 volunteers who 

provided contributions for 13 pre-defined locations on the GMU campus for a total of 

273 distinct contributions to the GMU-GcT database. These locations were comprised of 

six point targets and seven targets with areal qualities. The average observation distance 

between the volunteer’s collection location and the target was 4.64 meters. The average 

distance of collection from point targets was 4.31 meters and from area targets was 4.98 

meters. Specific data on volunteer location during collection will be discussed later in this 

chapter.  

The 273 collection points were downloaded from the GMU-GcT database and 

imported into ArcGIS Pro where the data were converted from a Microsoft Excel CSV 

file into shapefiles to provide a visual interpretation of the data collected. Unlike Phase 1 

collection, most of the data collected in Phase 2 remained clustered in the appropriate 

areas near the targets upon which were being collected, as seen in Figure 15.  
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Figure 15 Depiction of all 273 points collected during Phase 2 

 
 
 
 Despite the marked improvement in the accuracy of data from Phase 1 to Phase 2, 

issues such as human error or software issues resulted in several observations not falling 

within their expected collection areas as seen in Figure 15. This issue was addressed by 

determining the need to assign upper and lower limits of distance from the objects of 

collection to the contributor. Any contributions outside of those limits would be 
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disregarded as outliers. To capture the most relevant data possible a three standard 

deviation upper and lower limit was implemented against the data. Three standard 

deviations, 27.23 meters, and a mean collection distance error across all contribuions of 

8.55 meters, meant that any contributions greater than 35.78 meters from the points of 

collection would be disregarded. As such, six observations were eliminated from 

consideration, resulting in 267 usable contributions. Removing these six outliers from the 

collection measurements, resulted in the reduction of the overall mean distance of all 

collection error to 7.17 meters.  The trimmed set of contributions is shown in Figure 16 

below.  
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Figure 16 All collected observations except outliers 

 
 
 
 To effectively measure the distance from the volunteer to the obstacle, an accurate 

location for the centerpoint of the obstacles was needed. Several measures of accuracy 

were examined to find the most precise measurement of a centerpoint to each obstacle. 

The first measurement used was the mean of contributions per each target to determine a 

centerpoint using the data from the application for this research. As that centerpoint 
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measurement was only as accurate as the medium from which it was collected, and the 

average error across all collection points was 7.17 meters, this method was not deemed 

the best choice for a centerpoint measurement.  Next, researchers utilized Google Maps 

using a combination of visual observations on the Google Maps application in addition to 

local knowledge of the study area to determine the centerpoints. The issue of accuracy of 

reporting even with moderators providing “ground truth” locations was addressed by 

Rice 2015 in which she calculated the average reporting errors of moderators who 

provided ground checking on obstacle reports submitted by volunteers. What she found 

was, even with three moderators and visual confirmation of where an obstacle was 

located, the three moderators’ average distance error from the obstacle was still 5.55 

meters if including areal targets and 2.12 if only considering point targets (Rice, 2015). 

Since the Google Maps imagery of the GMU campus was collecting during a leaf-on 

timeframe, many of the locations were obscured by tree canopy and researchers had to 

use relational methods to determine where some obstacles were located.  The 

combination of leaf-on photo-correlation along with the built in error of determining 

ground truth through visual observations even with moderators led to the decision that 

this method would not be the most accurate means of determining ground truth in this 

study. Lastly, the Virginia Base Mapping Program (VBMP) data was used. Image tiles 

were downloaded from the VBMP website and ingested to ArcGIS Pro. The image tiles 

represented high resolution aerial imagery (as fine as 1 foot) obtained during a leaf-off 

timeframe which allowed for an easier and more accurate interpretation of where the 

ground truth locations of obstacles were located through both local knowledge and photo-
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correlation of locations of interest relative to obstacles on which were being reported. 

This method proved to be the most reliable method for determining the ground truth 

locations and was used as the centerpoints for distance calculations and constraints.  This 

method also has the related benefit of being done with a reference base layer used by 

virtually all the municipal City, County, and state-level GIS offices.  This suggests that it 

is likely the most consistent with common infrastructure data produced by the same 

agencies. The use of VBMP base imagery in ArcGIS for locating ground truth locations 

is repeatable within the Commonwealth and will allow GMU-GcT project partners in the 

region to contribute data with consistent positional characteristics.  The VBMP-derived 

centerpoints and the trimmed set of contributions is shown in Figure 17, below. 

The distances from all observations to the VBMP centerpoints were entered into a 

spreadsheet. From this spreadsheet an average mean distance from observer to target 

across all observations was able be determined. Additionally, using computationally-

intensive python script, every possible permutation of 1 through 21 collections for each 

target was completed and summarized1. The results, shown in Figure 18 below, support a 

hypothesis that with more contributions for each target, the average mean error distance 

away from the target also decrease across all targets.  

 
 

                                                
1 The number of possible combinations of observations in a thorough analysis of 21 observations is 
enormous.  There are 21 possible sets of 1 observation, and 210 possible pair-wise combinations of 21 
observations.  The number of possible sets of 11 observations, from a population of 21, is a little more than 
51 quadrillion (5.1090942 x 1019.  In order to create a summary of all possible permutations, researchers 
from GMU’s Spatiotemporal Innovation Center assisted with the calculations, led by GMU postdoctoral 
researcher Dr. Manzhu Yu. 
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Figure 17 Collected observations along with VBMP centerpoints 
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Figure 18 An increase in contributions resulted in an increase in accuracy across all obstacles 

 
 
 

In Figure 19 below, one can see a line chart which has all the location means 

combined into one line which easily displays how the mean distance error from the 

target, which begins at 8.55 meters with only 1 contribution per target, decreases to 4.07 

meters with 21 contributors per target.  
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Figure 19 Mean of average distances from all targets decreased with increase number of contributions 

 
 
 

This correlation is easily seen when examining the effects of the number of 

contributions against a single target. Location I, a bench near a sidewalk on campus, 

shows the marked decrease in accuracy error. Using the permutations discussed earlier, 

averaging the error of all single contributions for the location, the mean distance error 

from the bench was 11.15 meters; by adding only two additional contributions and 

averaging all 3 contribution possibilities, the mean error distance was reduced to 5.24 

meters; and by averaging all 13 contribution possibilities, the error decreased even more 

to 3.90 meters.  This decreases in positional error, shown in Figure 18 as one of the 

descending lines on the chart, is alternatively shown with error ellipses in Figure 20.  The 

outermost error ellipse (“average error (n=1): 11.1m”) represents the mean error of each 

individual observation taken one at a time. Figure 21 shows the same location but with 
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concentric error ellipses shrinking as the number of contributions increases from n=1 to 

=13.   The inner error ellipse (“average error (n=12): 3.9m”) represents the positional 

error of all 21 observations as a group.  Similar diagrams for the complete set of locations 

for this study are contained in Appendix D. 
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Figure 20 Distribution of contributed points for Location I: Marie Curie Bench 
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Figure 21 Ellipses showing the decrease in distance error with increase of contributions for Location I: Marie 

Curie Bench 
 
 
 

In the table below, is a sample of additional examples of the decline in overall 

distance error from each location that was collected upon. Shown in the table are the 

resulting declines using 1, 3, 5, 10 and 19 contributions per location. The complete 

spreadsheet for all permutations and all locations can be found in Appendix B. 

 



62 
 

 

 
Table 2 Sample of decline in overall distance error as number of contributions increases 

 
 
 

Additional data obtained during collection through both phases included distance 

measurements of the volunteer from the object he or she was collecting. Both targets in 

Phase 1 were measured and two targets in Phase 2 were measured. A point and area 

representative point were measured in each phase. As seen in Figures 22-25 below, the 

mean error distance from the point of collection to the object of interest was farther away 

for area targets than for point targets. One would expect these means show a greater 

disparity the larger and/or higher the area targets being collected.  
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Figure 22 Phase 1, Week 1 Distance of Collection Statistics for Area Collection 
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Figure 23 Phase 1, Week 2 Distance of Collection Statistics for Point Collection 
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Figure 24  Phase 2 Distance of Collection Statistics for Area Collection 
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Figure 25 Phase 2 Distance of Collection Statistics for Point Collection 
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CHAPTER 5 - CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

As mentioned in Chapter 4.1, the mean distance error between the point of 

collection and the obstacle on which is being collected decreased from 8.55 meters to 

3.68 meters with 1 to 21 contributors respectively. This decrease represents a 56.91% 

decrease in overall error by increasing the number of contributions submitted against an 

individual object when including the outliers. With the outliers removed, the decrease is 

from 8.54 meters to 4.07 meters still represents an impressive decrease in overall distance 

collection error of 52.34%. These results support the hypothesis that more contributions 

to a geocrowdsourcing system will decrease the overall distance error in the reporting of 

obstacles. The number of contributors needed to meet an acceptable error threshold of 

less than five meters, or the previously mentioned “Haklay Distance” of six meters, 

depends on multiple factors, not the least of which is whether the obstacle being collected 

upon is a point target or area target. However, if only the average of all collected 

distances across all targets in this study are being used as the determining factor, then 

only 4 contributions per target were needed to result in attaining that threshold at 4.99 

meters. After only 4 contributions per target, the accuracy error decreased by 41.64 %. 

While modest decreases in overall error continued with further contributions, the fact that 

only 4 were needed to provide an error distance of under 5 meters, means that the goal of 

developing a real time reporting system for obstacle reporting and routing may be 

attained with only minimal participation by users of the system.  
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Another interesting measurement obtained in this study was that of the overall 

distance from the target that contributors collected observations. Using two examples 

from Chapter 4.1, in which researchers measured the ground distance from the point of 

collection to the object being collected upon, for the Sandwich Board point target, the 

mean distance of collection was 2.44 meters; while the Krug Hall area target had a mean 

collection distance of 4.98 meters. This represents an increase of 104.1%. Likely as the 

size or height of the area target increased, the distance of collection would also increase.  

 
 

5.2 Ideas for Future Work 

 While the methodologies introduced in this research were proven to be successful, 

there remain several avenues of improvements and continuations of this research to be 

pursued and applied.  

5.2.1 Utilization of Contributions for Routing and Obstacle Avoidance  

The methodologies developed in this research can be used to further improve the 

a system of mobility access awareness on the GMU campus. The Phase 2 application 

could be used in conjunction with real time reporting to provide obstacle avoidance 

notices to those with mobility impairments to assist them in determining the best 

alternative routes available to them.  

The GMU-GcT has been a focal point for much research involving pedestrian 

routing techniques and route optimization. Research conducted by Qin et al. (2018) was 

focused on the optimization of repairing pedestrian pathways through an area containing 
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obstacles to movement for persons with mobility impairments. Using cost maximization 

concepts incorporating variables including: budget, cost of repair, benefit and proximity 

of needed repairs to other needed repairs, models were developed displaying the most 

efficient methods to conduct repair based on which constraints (if any) were imposed. 

Another main consideration in the previous studies conducted by the GMU-GcT research 

team was how to quickly provide this information to GMU students in a near real time 

method so that persons with mobility impairments could be made aware of obstacles to 

movement as soon as possible. This real-time communication process would be a vast 

improvement over the GMU Accessibility Map which is updated about once a year. The 

research conducted by Qin, Curtin, Rice and others is the foundational research upon 

which current research using the GMU-GcT is based.  

 Rodgers, 2016 conducted research regarding slope also using the GMU-GcT. 

Rodgers compared various resolutions of elevation datasets using DEMs obtained from 

the USGS and Fairfax County as the elevation measurement function which were 

accurate to within 1/3 (approx. ten meters), five meters, 1/9 arc second (approx. three 

meters) and one meter. As Rodgers surmised and as one may suspect, a ten or five-meter 

positional accuracy may provide resolution fine enough for large linear features such as 

major highways and secondary roads; the 1/9 arc second DEMs may be of resolution fine 

enough to provide good fidelity on small roads and alleys; however, for features as 

narrow as sidewalks and walking paths, the resolution for all of the DEMS except the 1m 

DEM were too course to be useable for accurate measurements. In Rogers’ experiments 

then, the 1m DEM was chosen for use overlaying elevation data onto a pedestrian 
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network (Rodgers, 2016). Rodgers chose to use DEMs from the USGS because they was 

freely available and easily available and chose 1m DEMs because the LiDAR data, which  

can be used to conduct more precise measurements of elevation at GMU only became 

available after the research had begun; this was unfortunate because Rodgers states that 

per measurements conducted by NOAA, LiDAR met accuracy rates within tolerances set 

forth in the Geometric Geodetic Accuracy Standards and Specifications published by the 

Federal Geodetic Control Committee (Rodgers, 2016). Meeting this standard meant that 

LiDAR measurements could in fact be used as ground-truth measurements in the absence 

of known ground control points whereas the USGS DEMs used in the research were not 

precise enough to be used for accuracy assessments without using ground control points 

for validation (FGDC, 1998). 

Rodgers overlayed the DEMs onto the GMU Physical Accessibility Map from 

2014 and using vector shapefiles of the GMU pedestrian network, campus spot elevations 

and elevation contour intervals, As demonstrated in Figures 26 and 27, Rodgers was able 

to visualize both the network and elevations throughout campus using ArcGIS. In the 

research described later in this paper, the benefits of using high resolution LiDAR 

elevation data will be compared to those lower resolution DEMs to display the benefit of 

continuing to find higher resolution data sets to conduct research (Rodgers, 2016). 
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Figure 26 GMU network (Rodgers, 2016) 
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Figure 27 Accessibility route outputs at various DEM resolutions (Rodgers, 2016) 

 

 An example of how to improve upon both Rodgers’ research and the research 

discussed in this paper would be to develop a method to not only consider mobility routes 

based on slope, but to also have volunteer reports of obstacles along routes of interest to 

be automatically updated into a database that would provide alerts to anyone using the 

applications. Many software applications are available to determine routing options. In 

the figure below, with only minimal python coding and the use of Model Builder, a route 
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between two points was developed in ESRI’s ArcPro. An example of the code used and 

the model built can be found in Appendix C.  

 
 

  
Figure 28 Least cost path calculation using only DEM 

 
 
 

 In Figure 28 a least cost path model was constructed in ArcPro that only 

considered the DEM of the area when calculating the path between two points. As on can 

see, the path intersects buildings and does not follow walkways that persons with 

mobility impairments would likely be able to traverse. 
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 However, in Figure 29 the model was constrained by not only the DEM but also 

to only use walkways on the GMU campus. The result shows a route that closely follows 

a pathway between the two points.  

 

 
Figure 29 Constrained least cost path calculation using DEM and pedestrian walkways 

 
 
 

With further modifications to the code, notional obstacles could be added into the 

path that would result in the new route needing to be calculation but still follow the paths. 

A methodology that could combine the functionality of ArcPro with the handheld 
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applications developed in this research could provide a near real time version of route 

optimization and obstacle avoidance for students with mobility issues on the GMU 

campus. 

5.2.2 Spatio-temporal Clustering 

 As evidenced by Figure 30 below, some items of interest, or reports submitted to 

the GMU-GcT may be close in proximity to each other.   The items shown below have 

centerpoints that are 14.2m apart.  This usually results in an overlapping of contributed 

point locations. As seen in the figure some contribution points (e.g., green points) are 

closer in distance to the other reported obstacle (red obstacle) than to the (green) one they 

are associated with. Without some means of distinguishing one set of contributions from 

another, there would be little in the way of knowing which contributions were related to 

which targets.  

 
 



76 
 

 
Figure 30 Example of overlapping points with no clear distinguishing characteristics 
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Manual methods for creating a contrast between points is a straightforward way of 

separating one set of collection points from another, however this is will only assist a 

researcher who already knows which points were collected by whom and for what. 

Without that background knowledge on the collection points, manually color coding or 

separating observations would be a tedious or perhaps unattainable task. This could be 

addressed by developing a spatio-temporal clustering algorithm that could scan 

contributions by geo-location, free-text comments, and submitted images to determine if 

a group of collected contributions are related. Also, if orientation vectors could be 

derived from the contributions, those in conjunction with other spatio-temporal attributes 

could be used to decrease the error in defining the clusters.   

A significant amount of research has been undertaken to develop ways to use 

GcD in conjunction with other types of spatial data to discover new methods of using the 

positions and contributions of the GcD to find road networks, structures, 

etc…Specifically, Yang, Zhang, & Lu (2014) used GcD contributions to map road 

networks using clustering algorithms. This method would follow closely to the attribute 

entries by the participants in the GMU research when describing obstructions.  The 

process developed by Yang et at (2014) was comprised of several stages. The first 

involved finding clusters of linear contributions and constructing line segments between 

the clusters. The researchers used a linear clustering algorithm developed by Ester et al 

(1996) which “predefined a neighborhood radius Eps and the minimum points number 

MinPts to detect a set of core points (initial clusters) and then expands the initial clusters 

by searching Eps-neighborhood points” (Yang, Zhang, & Lu, 2014). Similarly to research 
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conducted by Yang, Zhang, & Lu (2014) in which a clustering mechanism was developed 

to relate point of interest contributions from volunteered geographic information to road 

networks mapped by official agencies, this study attempted to cluster GcD contributions 

regarding obstacles to mobility on a predefined and pedestrian sidewalk network on the 

George Mason University Campus. In addition to the algorithmic spatial relationship 

between point of interest contributions and road networks, the study also implemented 

the use of semantic alignment, whereby they attributional information such as the road 

name was used to determine the location of roads (Yang, Zhang, & Lu, 2014). 

While the methodology developed by Yang et al. touches upon the means to 

cluster points along linear features, much work would need to be done to find a way to 

adapt this clustering algorithm to account for image submissions into a Instagram-style 

contribution system.  

5.2.3 Dimensionality and its Effects on Collection Position 

 While some data were collected regarding contributor location when collecting on 

a target, no specific research into how the dimensionality in size or height of a target 

would affect the collection position of contributors. Two examples on a small scale in 

this research that would be a good starting point for this analysis would be comparing 

Points A (Clock Tower) and G (Sandwich Board). As shown in the figure below, the 

clock is a tall object, approximately 3m while the Sandwich Board is less than a meter. 

The resulting collection distances between the two show a stark contrast in the average 

distance of collection, with the sandwich board having a much lower collection distance 

and average error. 
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Figure 31 Comparison of Clock Tower and Sandwich Board 

 
 
 

 
Figure 32 Comparison of Collection Locations of Clock Tower and Sandwich Board 

 

0 5 102.5 Meters

Location A: Clock Tower

17.1m

5.9m

11.0m

7.9m

7.2m

6.4m

10.6m 11.7m

13.0m

3.6m

9.2m

13.1m

2.6m

8.1m

30.4m

average error (n=21): 3.9m

average error (n=1): 8.4m

0 5 102.5 Meters

average error (n=21): 2.2m

average error (n=1): 5.1m

Location G: Sandwich Board

13.0m

6.3m

8.2m

9.6m

7.4m

6.0m

8.7m

7.0m

4.4m

5.4m5.6m

2.4m

2.2m

2.7m



80 
 

5.3 Synopsis 

In conclusion, this thesis discussed the history of Geocrowdsourced data, and 

explained that while implementing GcD as a discipline is not new, emerging technologies 

and an an exponential increase in the amount of data that are available has led to a 

revolution in how GcD is and can be used. While GcD is generally incumbent upon 

quality assessment by moderators to ensure accuracy, this research demonstrated a 

correlation between the number of GcD contributors and the level of positional accuracy 

of information contributed to the GMU-GcT by using a mobile-phone, image-based data 

contribution tool. Findings showed that the positional accuracy characteristics of the data 

contributions to the GMU-GcT improved with added contributors, reaching a level 

comparable to previously-studied accuracy thresholds reached with a significantly more 

detailed and heavily moderated data contribution workflow and reducing the average 

positional error of contributions from 8.55m to 3.89m with 20 contributions. In fact, to 

exceed the most common positional error threshold for geocrowdsourced data, referred to 

in previous work as the Haklay distance (approximately 6.0 meters), only two 

contributors were required.  This research demonstrated that a fully moderated 

crowdsourced data contribution process, used in previous incarnations of the GMU-GcT, 

is unnecessary for producing data with adequate fitness-for-use, including common 

routing and obstacle avoidance algorithms.  
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 APPENDIX A  
 

Phase 1 Collection Instructions 

 



82 
 

Phase 2 Collection Instructions 
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APPENDIX B 

Table of Permutations for Distance Error 
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Table of Permutations for Distance Error (cont) 
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APPENDIX C 

ArcPro Model Builder for Least Cost Path 
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ArcPro Python Code for Least Cost Path 
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APPENDIX D 

Spider Diagrams 
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