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ABSTRACT

MOBILE POSITIONING DYNAMICS IN AN IMAGE-BASED HYBRID
GEOCROWDSOURCING SYSTEM

Toby J Williams, M.S.
George Mason University, 2018

Thesis Director: Dr. Matthew Rice

Geocrowdsourced data (GeD), also known as volunteered geographic
information, has proven to be an invaluable resource to the geospatial science
community. From a United States National Security perspective, GeD has become a
force-multiplier for the Department of Defense aiding in nuclear counterproliferation
efforts; at a humanitarian level it was used to aid first responders reaching earthquake
victims in Haiti. Despite the potential benefits, research has shown GcD to be unreliable
unless moderated with quality assessment methods applied to the data. However,
circumstances may prevent moderation and new quality assessment methods must be
designed. This research demonstrates a correlation between the number of GeD
contributors and the level of positional accuracy of information contributed to the George
Mason University Geocrowdsourcing Testbed (GMU-Gc¢T). A mobile-phone, image-
based data contribution tool from the GMU-Gc¢T was developed and distributed to

student volunteers at GMU who provided information regarding pre-defined locations on
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campus. Findings showed that the positional accuracy characteristics of the data
contributions to the GMU-Gc¢T improved with added contributors, reaching a level
comparable to previously-studied accuracy threshholds reached with a significantly more
detailed and heavily moderated data contribution workflow. Undermoderated reports
from single contributors averaged 8.55m in positional error. With an increasing number
of contributors, positional error of reports for the same item dropped to 3.89m (n=20).
The most common positional error threshold for geocrowdsourced data, referred to in
previous work as the Haklay distance (approximately 6.0 meters) was reached with two
contributors, and after four contributors, the positional error rate stayed fairly constant.
This research demonstrated that a fully moderated crowdsourced data contribution
process, used in previous incarnations of the GMU-GcT, is unnecessary for producing
data with adequate fitness-for-use, including common routing and obstacle avoidance

algorithms.
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CHAPTER 1 - GEOCROWDSOURCING AND ITS UBIQUITIOUS SOURCES
AND USES

In a 2006 Wired magazine piece discussing new sources of revenue for business,
Jeffrey Howe coined the term “crowdsourcing” as a word play on the existing
employment-related term outsourcing, which was responsible for thousands of jobs being
sent to cheaper labor markets in countries such as China, India and Vietnam. Howe’s
concept of “crowdsourcing” was the generation of new ideas, new content, and new
business intelligence from the public, who at the time were using the Internet and had just
begun using social media platforms such as MySpace to generate content. Just a year
later, Goodchild (2007) noted the emergence of nascent map-based crowdsourcing
activity, and described the concept as volunteered geographic information, and in a later
publication (2009) outlined the costs, benefits, advantages, and possible future of this
emerging activity. A decade later, it is safe to conclude that this activity has truly had a
dramatic impact on the way geographic data is captured, collected, curated, analyzed, and
displayed. Daniel Sui also underscores the significance of this phenomena. He
describes the emergence of a citizen-centric, web-based data collection paradigm as a
“profound transformation on how geographic data, information, and knowledge are
produced and circulated” (Sui et al. 2014, 1), and part of an emergence of vast volumes
of geographic data from sensors, archives, media, text, and the public, which he
characterized as an “exaflood of digital data growth” (ibid.).

The term used in this thesis to describe the collective phenomena of citizen-

centric, web-based geographic data collection is geocrowdsourcing, which harkens back
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to Howe (2006), with the acknowledgement to many other authors, such as Goodchild
and Sui, who have provided useful commentary on the terminology for this phenomenon.
While the various differences in meaning and nuances for the terminology are outside the
scope of this thesis, the primary body of work and research focus remains consistent with
interests expressed by the same researchers. This thesis focuses on the way that the
public contributes geographic information to a web-based data collection system.
Specifically, this thesis explores the growth of mobile data collection for geographic
information systems (GIS) and the individual and collective positioning dynamics of
mobile geocrowdsourcing activities. The primary conduit for public data collection for
GIS is the mobile phone. Understanding the limitations, dynamics, and positioning
characteristics of mobile devices (discussed in detail by Rice et al. 2015) is paramount to
understanding the critical quality and reliability facets of geocrowdsourced data, which
are acknowledged by Goodchild and others as being the single largest weakness of this
phenomena. This thesis research adds critical information about this dynamic to the
larger body or research, and helps answer the questions posed by Haklay (2010a, 2010b)
and many others: “How good is geocrowdsourced data?”, and “How many volunteers
does it take to map an area well?”. The answers to these questions are provided in this
thesis. This thesis is part of a larger body of work conducted by GMU Researchers in
the Department of Geography and Geoinformation Science, where several ongoing
research efforts are exploring the dynamics of geocrowdsourcing and methods for quality
assessment, as discussed in Qin et al. (2016), Rice et al. (2012b, 2013b, 2014, 2015) and

Aburizaiza et al. (2016).
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This first chapter provides an introduction of geocrowdsourcing and various
methods of application and areas of interest to the author and sets the stage for the
remainder of the thesis. Subsequent chapters review relevant literature, discuss the data
and methodology used in this thesis, followed by results, conclusions, and suggestions for

future work.

1.1 Varying Methods of Application

The applications of crowdsourced geospatial information are potentially limitless.
Researchers at George Mason University are examining methods of utilizing a micro-
level campus geocrowdsourcing database to create an alert system for mobility and
visually impaired students, informing them of areas along their routes that may be
impassible or hazardous to traverse (Rice, et. al, 2013a). At a macro level, the
Department of Defense (DOD) has examined applications of using crowdsourced data to
supplement battlefield situational awareness systems and to aid in nuclear
counterproliferation efforts (Leno and Miller, 2015). Furthermore, geocrowdsourced data
was used to augment search as rescue operations after national disasters such as during
the Haiti Earthquake recovery effort in 2010 (Yates & Paquette, 2011) and to discover
the benefits of using geocrowdsourced information for wildfire evacuation planning
during the California wildfires of 2007-2009 instead of waiting for official or

authoritative information (Goodchild & Glennon, 2010).
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1.1.1 Nuclear Counter-Proliferation

As early as 1998 scientists began to realize that non-state actors and non-
governmental organizations (NGO) could play a vital role in the discovery, monitoring,
and reporting of clandestine nuclear materials. Researchers found that when providing
some type of incentives for contributions, or disincentives for those who did not
contribute, governments were able to tap into a reporting stream far greater and with
fewer restriction than those available to state actors alone (Mitchell, 1998). By 2010
scientists had expanded upon that premise by allocating resources into scouring news
media, social media and crowdsourced information for the purposes of discovering and
tracking nuclear sites and materials allowing for stricter monitoring and enforcement of
International Atomic Energy Agency (IAEA) safeguards (Pabian, 2010).
1.1.2 Haiti Earthquake

Many case studies have been conducted on the usability and efficacy of user
generated content in response to disaster relief, recently and chiefly among those studies
was the Haiti earthquake of 2010. Research led by Zook et al. (2010) displayed the
benefits of Haitian citizens and others on the ground in Haiti providing local knowledge
data from the savaged areas of Haiti as well as volunteers worldwide mapping previously
uncharted areas of Haiti thanks in part to freely available commercial satellite imagery of
Haiti provided by Google, Digital Globe and GeoEye (Zook et al., 2010). The updated
imagery allowed the volunteer mappers to trace new roads and buildings into OpenStreet
map with higher degrees of precision due to the higher spatial resolution of the imagery.

The imagery also provided a means to map out areas where buildings collapsed or where
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roads were impassible due to the earthquake. In Figure 1 below is a set of four side by
side images showing the before and after earthquake commercial imagery for a portion of
Haiti. One can clearly see the fineness of the spatial resolution of the imagery as well as
the issues that first responders would have encountered when conducting search and

rescue operations.

LY 9
42010 DIgnaMh

Figure 1 Before and After Satellite Images in Haiti (Zook et al (2010), Source Google (2010) Screenshot of
Google website, allowed use)
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The combination of freely available information, citizens on the ground in Haiti
(who in-turn are local area experts) and hundreds of volunteers worldwide, allowed
within two weeks of the earthquake over 10000 new contributions to be entered into
OpenStreetMap for Haiti which provided first responders and disaster relief organizations
a better understanding of the scope of the damage and how best to manage the emergency
(Zook et al., 2010). Figure 2 shows a popular example of the amount of effort poured into
OpenStreetMap immediately following the earthquake displaying the increase in richness

of data available after volunteers began tracing the new routes and locations.
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Figure 2 OpenStreetmap screenshot of Port Au Prince before and after the earthquake (Zook et al (2010),
Source Maron (2010). Screenshot of Brainoff website, allowed use)

1.1.3 California Wildfires
Goodchild and Glennon (2010) researched the benefit of using crowdsourced
geospatial data instead of authoritative or official data in response to evacuation planning

during the four massive California wildfires from 2007-2009. Just as with the “fire

17



alarm” approach over a decade earlier by Mitchell (1998) increased the number of
reporting sources, the crowdsourcing approach for evacuation planning dramatically
increased the number of reports regarding the size and speed of expansion of the
wildfires. While authoritative information provided a high level of accuracy, the
information could have taken days to complete the process of collection, exploitation, and
dissemination back to the public. By this time, the size and speed of expansion of the
wildfires could have drastically changed. Goodchild and Glennon found that with the
expanded contributor base reporting on the boundaries of the fires, even if positional
accuracy of the reporting was less accurate, the contributions were accurate enough to
provide a level of understanding about the size and speed of expansion to assist officials
in determining whether or not to commence evacuations in certain areas. Goodchild and
Glennon also agreed that the costs of an unneeded evacuation due to less precise
information (a false positive) were far less than those of waiting days to receive an
evacuation order that could potentially had been provided sooner to move citizens to

safety (Goodchild and Glennon, 2010).
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1.2 A Brief History of GeD/VGI

The following sections discusses the evolution of geocrowdsourced data (GeD)
and volunteered geographic information (VGI) and their relationship to the rapid increase
in unstructured and semi-structured digital data, referred to by Sui et al. (2014) as an
exaflood of digital information.

1.2.1 Evolution

As previously stated, the emergence of citizens as sensors is not a new concept.
Throughout history, human reporting has long been sought out by intelligence
organizations as a valuable source of information about an adversary. Persons conducting
corporate espionage, the stealing and sharing confidential research or methods of one
institution with another, continues today. A recent evolution of the concept of citizen

sensors however has been used to raise public awareness on social issues and affect
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change in regards to public safety concerns. Until recently however, this was mostly
accomplished through the use of email, web blogs, and social media platforms. These
methods, while effective, required an individual to actively create information that was to
be shared with others. With the advent of smart devices however, the evolution of citizen
contributions became a revolution of new ideas and methods and resulted in exponential
increases in publicly available information. Goodchild et al. (2005) presaged this
revolution, describing the emergence of a social-media driven, web-connected
information sharing community, which they termed the Spatial Web.
1.2.2 Revolution

The emergence of smartphones and gps-enabled devices that allow user input and
collection of locational data are now pervasive in society and can be used in virtually
every aspect of our daily lives both personally and professionally. Unlike previous
generations of citizen contributions which required some form of manual input, smart
devices allow for passive collection and distribution of information, much of which is
geospatially referenced, by almost anyone anywhere. This data, most of which is
unstructured data stored in a myriad of databases, requires only that an interested party
with access to the data conduct searches of the plethora of information to discover what
he or she is looking for. It can be used for as benign a purpose as finding the fastest route
to work to a more vital purpose such as assisting first responders in search and rescue
operations. In the figure below, one can see the dramatic exponential increase in the
amount of unstructured data, trillions of gigabytes worth, available on the web. Current

research at George Mason University is using a combination of passive information
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collection along with manual user input to accomplish a variety of scientific goals.
Stefanidis et al. (2013a, 2013b, 2013c¢) use large volumes of passively collected geosocial
data to study social protest movements, monitor earthquakes, and to look at the changing
nature of political boundaries, as defined by members of online social communities.
Gkountouna et al. used multiple data sources to study trajectories and movement (2017).
Yang et al. (2017) are developing high-performance computing infrastructure to deal with
the challenges of large volumes of data (2017), while Curtin et al. (2014) explore the
quality of solutions to data-rich and combinatorily complex optimization problems.
Camelli et al. (2012) use complex computational models and big data to study GIS-based
dispersion modeling. This explosion of data is a significant scientific opportunity, and
an important part of the future geospatial landscape. The development of scientific
frameworks and geocomputational approaches is equaly important in making sense of
this new, data-rich geospatial landscape. This thesis hopes to extend research and

illuminate certain issues wtihin this domain.
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Figure 4 Big Data: Amount of available unstructured data on the web (N.D. Why NoSQL. Retrieved from
www.couchbase.com)

The following chapter reviews important research and concepts as a way of building a
conceptual framework for this thesis. This past research provides insight into quality
assessment dynamics in geocrowdsourced data, and reviews ways that crowdsourcing
techniques can be used in a simplified geocrowdsourcing testbed to accomplish specific

data generation and data fitness-for-use goals.
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CHAPTER 2 - LITERATURE REVIEW AND CONCEPTUAL FRAMEWORK

2.1 Quality Assessments and Positional Accuracy

This thesis looks closely as the issue of quality assessment in geocrowdsourced
data — an issue frequently described as the principle weakness of geocrowdsourcing, and
identified by researchers such as Goodchild (2007) and Girres et al. (2010) as a major
priority. Quality assessment has been a major theme within the GMU Geocrowdsourcing
Testbed (GMU-GcT), and this thesis continues the recent work in this area (Rice et al.
2018) by exploring a simplification of the GMU-Gc¢T and an image-centric contribution
workflow.

2.1.1 Quality Assessment Criteria

Many factors affect the reliability and accuracy of GeD. To achieve higher levels
of accuracy and reliability, crowdsourced data must undergo quality assessments (QA)
for at least three important variables: positional accuracy, temporal accuracy and attribute
accuracy (Rice et al. 2014). These three quality assessment items are based on the
“atomic element” view of geographic information espoused in chapter 3 of Longley et al.
(2015), where all geographic information is described as an associated triple of [location
(x,y), time and attribute]. The most thorough views of geospatial data accuracy contain
additional factors (Guptill et al. 1995, Hunter et al. 1992, and Veregin 1999), such as

lineage, completeness, logical consistency, and fitness-for-use (usage), but a predominate
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focus of recent studies (e.g., Haklay 2010, and Girres et al., 2010) is positional accuracy.
Positional accuracy is best described as the horizontal and vertical spatial accuracy of the
collected data. The National Standard for Spatial Data Accuracy (NSSDA), developed by
the Subcommittee for Base Cartographic Data is the most relevant accuracy measurement
method for GeD (Rice, et al. 2014). This method uses root mean square error (RMSE)
calculations (or the square root of the group of distances of points of collection) from a
single point of interest. By using the NSSDA standards, one does not need to discard data
because they do not meet a preset threshold, rather, the researcher can set the threshold,
generally at the 95% confidence level, and then describe those characteristics in the
accompanying research (FGDC, 1998).

The second quality assessment element, temporal accuracy, is a composite
measure of the consistency of the data collected with regard to the collection and
observations times. Temporal accuracy suggests that the data collected and reported
represent the time period asserted by the collector, and that the data are not out-of-date.
Whether it be from a GPS-enabled device or a social media platform, a time stamp is
generally associated with the submitted information, both during collection (and often
saved as embedded meta-data) and during submission to a crowdsourcing system.
Interestingly, with temporal accuracy, the currency of collection may, in some cases,
become more important than a formal temporal accuracy measurement. As Goodchild
describes in relation to the 2009 wildfires in Santa Barbara, California, having large
amounts of data submitted quickly may be more valuable than awaiting formal,

authoritative data that could take much longer to produce and disseminate (Goodchild
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and Glennon 2010). On the Haitian earthquake, Zook et al. (2010) concurs the advantage
of quickly-produced GeD. However, without any means of verification for the data being
produced, the substantial number of GeD contributions in a crisis event may not always
be a positive situation. As Starbird et al. (2014) describe in relation to the Boston
Marathon bombing in 2013, submissions of inaccurate or even false information resulted
in delays in discovering the true identities of the perpetrators and false identification of
innocent, uninvolved people. They also discovered that once the incorrect information
was submitted, subsequent corrections did little to diminish people’s initial
determinations (Starbird et al. 2014). While this particular example is not strictly
geospatial in nature, it remains a cautionary example of the dangers of inaccurate
information being used for public awareness purposes, particularly for time-sensitive
events.

The final measure in the quality assessment procedure described is one of
attribute accuracy, which measures the agreement between the characteristics of an event
reported by a contributor, and the true characteristics of the same object, as determined
through ground-truth measurements or by some other more accurate process. Attribute
accuracy is often measured through techniques such as a confusion matrix and Kappa
statistics. Attribute accuracy addresses the subjective nature of feature naming in
geospatial datasets and underscores the difficulties in having untrained, non-expert
contributors, who may be unfamiliar with the data collection software or with scientific
principles underlying the geospatial disciplines (Rice et al. 2014). The difficulty in

achieving high accuracy in attribute data entry was especially apparent during the Haiti
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earthquake emergency response effort where 73% of over 3400 reclassified messages
from Haitians that were received and translated by GeD contributors failed to convey the
message intent, and 50% of the messages were miscategorized altogether (Camponovo

and Freundshuh 2014).

2.1.2 Quality Assessment Approaches

In addition to knowing what variables are needed for a quality assessment of
GcD, one must also know how to conduct the quality assessment. Goodchild and Li
(2012) divide geocrowdsourcing QA methods into three “approaches”: the
crowdsourcing approach; the social approach; and the geographic approach. The
crowdsourcing approach, describes methodological approaches from three interpretations
of the term. In this first interpretation of the crowdsourcing approach, the authors discuss
the dynamic where large volumes of people are used to problem solve a problem. This
interpretation suggests if a problem exists and needs to be solved, the more people one
has addressing the problem, the more likely it is to be solved. Secondly, the
crowdsourcing approach refers to the strength of spatial clustering. As mentioned earlier
with the Santa Barbara wildfires, many people reporting on a topic from an initial report
lends credence to the event upon which is being reported. Goodchild and Li (2012) use
the example of Wikipedia, on which a person contributes unmoderated information that is
incorrect. The drive of people will be to correct information that they either know or
perceive to be incorrect, therefore Wikipedia with its millions of contributors essentially

becomes self-correcting and generally accurate because of its users (Goodchild and Li
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2012). The third interpretation is based on the need for people to find the truth. This
interpretation follows results based on Linus’s Law that if many eyes look at something
then someone will find the error. The law states that people will strive to find truth and
correct errors, therefore, the more people who look at something, the more likely it is that
errors will be found (Goodchild and Li 2012).

The second method for conducting QA is known as the social approach. Rice et
al. (2013Db) describe this approach as one which uses experienced moderators as
“gatekeepers” who work in a hierarchical structure to ensure that data that are being
contributed is both accurate and relevant. As mentioned earlier, having a moderator for
the contributions is a method to ensure a higher level of accuracy for the contributed data.
GMU MS student Rebecca Rice explored the moderated quality assessment workflow of
the GMU-GcT in her thesis from 2015, and in a subsequent publication (Rice et al. 2016).
Rice discovered, in her thesis research, that moderated ground truth in the GMU-Gc¢T has
an absolute positional accuracy between 2.12 and 5.55 meters, depending on whether the
item being measured is small (~1m square) or larger.

In articulating the social approach for quality assessment, Goodchild again uses
Wikipedia as an example. As moderators also tend to be contributors, about a tenth of a
percent of total contributors are moderators of the information. This is why Wikipedia
can fit into both categories since 1500 moderators cannot possibly moderate 15 million
users efficiently. The moderators validate and assess the data they are able to assess, and
then the crowd of users is expected to find the remaining errors (Goodchild and Li 2012).

In her thesis research, Rice notes that this quality assessment approach is considered an
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expensive, resource-intensive approach, and that it works well in small projects without
the benefit of a large number of contributors that would make the crowdsourced quality
assessment approach feasible and logical.

The final method for quality assessment discussed by Goodchild and Li (2012) is
the geographic approach. Rice et al. (2013) describe this approach as a comparison of
contributions to known geographic facts and phenomena of an area. One would look for
inconsistencies between the two which would lead to conflict resolution for the
inconsistencies. For example, if one were interested in the location of all sidewalks on the
GMU campus and one of the contributions was located in the Mason Pond (an actual
example cited by Rice et al. 2013), then the comparison of known geographic facts and
phenomena to contributed data would be a red flag that an error in collection or data entry
has occurred. This quality assessment approach is a law-seeking or nomothetic approach
for data quality, and assumes that there are natural geographic laws and facts that can
form a basis for comparison.

While moderation is an effective way to mitigate inaccurate or incomplete
geocrowdsourced data, what options are available if moderation is not available due to
time, personnel, or monetary costs? The answer to this question is the crux of the
research topic being discussed. In 2010, GMU researchers began exploring methods to
aid mobility and vision impaired students in navigation of the GMU campus (Rice et al.
2011. The initial research goals and project funding resulted in the development of a
strictly-moderated geocrowdsourcing system where contributors would enter up to 15

separate locations or attribution characteristics of anything the contributor perceived as
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an impediment to safe movement along predefined pedestrian corridors. This was a
cumbersome and time-consuming process both for the contributor and the moderator.
Fewer than expected contributors used the system, with 12 active contributors out of the
40-50 that were needed to maintain adequate temporal and spatial coverage (Rice, et al,
2013). To alleviate the inconveniences of the desktop contribution tool, Rice et al (2014)
developed a mobile version of the tool that had fewer categories of information for
contributors to enter, however the data still required moderation to ensure accuracy of the
entries. Additionally, the mobile version required the contributor to enter subjective
categories such as “Describe the obstacle” and “Duration” as well as “Urgency”. As these
categories could be and were answered differently by different contributors it again
became a cumbersome chore for the moderator to sort through the data to attempt to
discern why a contributor may have marked something as high urgency or what a
contributor meant by “a hole in the sidewalk” (Qin et al., 2015, and Paez 2014). Again,
between the requirement for moderation of the data and the amount of data required to be
entered by the contributors, few students became regular contributors to the project. A
general review of the developing project from the early phases is contained in Rice et al.
(2012a) and Qin et al. (2015)
2.1.3 Positional Accuracy without Moderation

A focus of this research is to simplify the input mechanism for the contributor and
forgoing strict moderation of the geospatial data being contributed. The goal is to greatly
increase the number of contributors which can be done by creating an input platform

similar to that of Instagram. Therefore, the only information the contributor would need
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to provide is a picture and brief description of what they see. The three required atomic
elements for geospatial data presented by Longley et al. (2015) -- location, time, and
attribute, can be provided by a simplified system. Time and location are provided by the
GPS and time metadata from the data collection tool itself, and attribute (image and
description) is provided by the contributor. The benefit of increasing the number of
contributors with such a tool is that it may do away with the need for strict moderation of
the data. By coding the application to find location-relative clusters of entries from the
many contributions, one may enable algorithms to relate the entries within these clusters
to detect probable like objects, and then calculate a spatial mean from the clustered
observations. This would lower the overall error of the reported location and thus achieve
a desired accuracy level for obstacles that pose an impediment to mobility. The research
presented in subsequent chapters of this thesis did not approach the clustering in an
automated or semi-automated fashion, but gathered intentionally tagged observations
about specific pre-defined locations on the local college campus. The automation of this
clustering process is a matter for future work.

With assistance from GMU faculty, research collaborators, volunteers, and new
data collection tools, this research will show that an increased number of contributions to
the simplified user interface as a phone application will result in increased accuracy when
measuring the position of collection to the ground truth location of the target being

collected upon
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2.2 Threshold of Contributions to Reach Acceptable Positional Accuracy

Foody et al (2015) understood the value of crowdsourced data but also understood
the limitations of that data, namely positional accuracy. To address this concern, research
was conducted to attempt to correlate the level of positional accuracy of contributions to
the number of contributors and contributions. To obtain a measurable result, the study
was conducted by selecting 299 satellite images along with an open call for volunteers to
participate which resulted in 65 persons. The objective given to the volunteers was to
review the satellite images and from a predefined set of choices, select the land cover of
the image (Foody et al., 2015). As the participants were all volunteers, their levels of
experience, motivation and completeness of the task were varied. This allowed for
researches to not only calculate accuracy rates solely on the number of contributions
versus the accuracy of contributions, but also to calculate at what threshold for the
number of individual contributors was needed to achieve certain accuracy thresholds.
Foody et al (2015) calculated the R-square value of overall accuracy of land cover
classification as it related to increasing numbers of contributors but who contributed
differing amounts of information. As shown clearly in Table 1, the more contributors

who participated, the higher the overall accuracy.

Number of Volunteers R?
5 0.0009
10 0.8194
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15 0.8594

25 0.8579
35 0.7279
65 0.9359

Table 1 Correlation between number of contributors and R? of accuracy (Foody et al., 2015)

A second area of focus in the study was to determine if only using the “best
volunteers” contributions would result in an increase in accuracy. However, as illustrated
in Figure 3, in this particular instance, when evaluating the contributions of 14 volunteers
who contributed the same amount (all 199 images) and their individual accuracy rates for
classification, the research revealed that after 11 volunteers, no further significant
increase in accuracy was gained, showing that a continuing increase volunteers does not

always equal higher quality information (Foody et al., 2015).
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Figure 5 Correlation between number volunteers and level of accuracy (Foody et al., 2015)

Research conducted by Haklay, et al. (2010) provided more credence to the
studies by Foody et al. (2015) by showing the correlation between Linus’ Law and GeD.
Haklay et al. (2010) intended to prove that Linus’ Law — which states that as the number
of contributors increases so does the quality of the contributions — was relevant when
relating GeD contributions quality (by measurement of positional accuracy) to
OpenStreetMap by testing the correlation with three studies conducted earlier by Zulfigar
(2008), Ather (2009) and Basiouka (2009). Haklay determined that the earlier studies
collectively demonstrated the validity of Linus’s Law, at least in regard to positional
accuracy of features. Haklay noted that the assumption of increased contributors leads to
quality improvements is true in the areas analyzed. The study areas analyzed by Haklay

were based on a 25km? region. This study in this thesis will be a smaller,
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approximately 1km? region, and follows up on future research suggestions from Haklay et
al. advocating a similar research study on a smaller areas.

Additional research was conducted by Rohrbach et al. (2015) which examined the
effect sample size had on spatial data quality as it related to mapping areas for land use.
The premise of the study is to enable to the concept of participatory mapping (PM) in the
form of questionnaires on which the participants have a myriad of fields to complete to
describe land use of an area over the previous 20 years. The form of PM implemented in
this study was public participatory GIS (PPGIS) upon which Rohrbach explains that
“sampling effects and data quality are key issues” and set forth answer to the following
issues:

e We assess the data quality of PM past land use based on the correctness
and completeness of the data. .

e We propose a procedure for estimating the correlation between sample
size and data quality through a resampling approach.

e We display and discuss the influence of participants’ individual
performance on aggregated groups’ PM outcome.

e We test the sensitivity of the suggested procedures to different mapping
scales (Rohrbach et al., 2016, pp 682-683).

The sampling in this study was not a random sampling but a carefully researched
and specifically selected group of 23 local farmers (15-16 of whom ultimately provided
completed responses to the survey) who had thorough knowledge of the landscape and

history of their border town in Switzerland. The data collection portion of the study
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began with the researches providing the sample group with aerial images of three
different scales: 1:500, 1:12,500, 1:25,000. The participants were directed to mark where
they believed their land was located in the present day, followed by marking the areas
they believed were arable lands in 1990. Researchers then scanned and georeferenced and
the images to overlay the famers’ estimates to enable processing in GIS software. Three
sources providing aerial imagery from 1986, federal statistical data from 1985-1995 and a
study recording the state of the area were used as a ground-truth area of approximately
117 hectares that would be used for comparison against the participants’ survey responses
(Rohrbach et al., 2016). This ground-truth measurement would be used to compare to the
present day measurements to determine the level of change in arable land. The resulting

comparison from the data processing portion of the research is shown in Figure 6.
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The findings, much as in the findings from Haklay et al. (2010), showed that after
a certain number of contributors, no significant increase in accuracy was achieved. The
results of this survey showed that the more areas an individual respondent mapped, the
higher his or her individual accuracy became. However, as a group measurement,
diminishing returns presented after 10 participants (Figure 7) and no significant increase

in overall accuracy was achieved (Rohrbach et al., 2016).
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Figure 7 FI-values of different sample sizes, areas evaluation and scales (Rohrback, Anderson, & Laube, 2016)

The relationship between the number of contributors to a particular issue and the

level of positional accuracy and the diminishing returns of the increase in accuracy as the
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number of contributors increases will be addressed in more detail specific to the issue of

obstructions to mobility later in this research.

2.3 Research Problem and Hypothesis

Multiple research studies noted above have shown that repeated observation,
through crowdsourcing, can reduce positional and attribute errors, whether the subject is
road geometry in OpenStreetMap, or land cover mapping from imagery. The GMU
Geocrowdsourcing Testbed (GMU-Gc¢T) has undergone a simplification. This thesis
tests the larger research idea noted above, through the vehicle of the GMU-GcT.
Specifically, this thesis will test the hypothesis that an increase in the number of
observations for a specific geographic object will lead to a lower positional error, and that
this reduction will have some converging property, as shown in Figure 5 (from Foody
2015). The Rebecca Rice thesis from 2015 found the average positional error associated
with moderated ground truth to be in the range 2.12m to 5.55m, depending on the size of
the object being reported. This earlier thesis work suggests that moderated
geocrowdsourcing systems such as GMU-GcT can result in object positional accuracies
in this range. This thesis hopes to prove that a hybrid geocrowdsourcing system built on
simple image capture can result in similar accuracies, but without the cost and expense of

the social moderation process used previously in the GMU-GcT.
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CHAPTER 3 - METHODOLOGY AND DATA

3.1 Methods of Collection

Between 2011 and 2016, GMU researchers developed and maintained a
geocrowdsourcing system called the GMU Geocrowdsourcing Testbed (GMU-Gc¢T),
which was a cumbersome desktop-centered system with a moderated quality assessment
workflow built on the ‘social” approach discussed by Goodchild and Li. The evolution of
the system is documented in research reports and papers, including Qin et al. (2016), Rice
et al. (2012b, 2013b, 2014, 2015) and Aburizaiza et al. (2016). In 2015 and 2016, this
system adopted a mobile incarnation, and later, and experimental image-based

contribution tool that will be the subject of this proposed research.
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Figure 10 Screenshot of smartphone version of GMU-GCT application (retrieved from geo.gmu.edu/cgd2018)

In an effort to explore the updated quality assessment dynamics discussed in

section 2.1 of this thesis, a study comprised of two distinct phases was conducted to
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compare the data collection workflow of the contributors to the GMU-Gc¢T using the
strictly moderated GMU-Gc¢T, the mobile version of the GMU-Gc¢T, and the image-based
contribution tool. Phase 1(P1) consisted of a cohort of volunteers comprised of
undergraduate students from the Geography and Geoinformation Science Department at
GMU who completed tasks assigned to them to determine accuracy and precision levels
of contributions. The purpose of this initial phase was to explore the contribution
dynamics and positional characteristics of a web-application revision of the GMU-GcT,
to be used in fine-tuning the subsequent updates to the GMU-Gc¢T contribution tools.

The first step of P1 involved researchers pre-staging markers within a pre-defined
bounding box on the GMU campus. Besides being placed along walkways and in the
open, some markers were placed in environments with differing characteristics to provide
a variety of measurement challenges such as: near tall buildings, on extremely sloped
surfaces, and under tree canopy. Markers were also placed at locations to represent either
a point or areal features. Area locations for instance were marked by being placed off of a
main path in a grassy area in a configuration of multiple cones forming a polygon. Each
of the point and area markers were labeled and the precise location of each marker
recorded. Control coordinates for the area locations were determined by the center of the

location shape.

40



v Figure 11 Examples of markers for volunteers to locate in Phase 1

To begin the second step of P1, the general locations of the marker positions were
placed on maps of the bounding box area. The maps were distributed to student
volunteers who were instructed to find the markers and record their locations using the
above-mentioned image-based contribution tool. Example photographs taken from the
image-based software were provided to the students to provide examples of marker
appearance. Examples images were comprised of multiple images from various look-
angles and distances so as not to bias the students’ perceptions of how they should
capture an image of the markers. Before beginning their search for the markers, students

were given specific instructions on how to use the contribution tool and to what settings
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(wi-fi and location services) to set their phones. An example of the student instructions

can be found in Appendix A.

N
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Figure 12 Example photographs given to volunteers showing an object of interest from many viewing angles to
prevent collection bias

The student volunteers were sent out in small groups rather than en masse to
prevent bias in the collection process, and more specifically in the standing or observing
location in relation to the object of interest. While volunteers collected on the two targets,
a researcher marked their position with chalk. Once all the volunteers had completed the

task, the distance in meters from the chalk markings to the targets was measured to
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provide insight into collection positions and variations in distance from the point of
collection to point and area targets. Upon one group’s return, the next group of student
volunteers completed the same task. Roughly 30 students comprised this study group and
the task was be performed for three weeks.

Phase 2 (P2) of the experiment occurred in the final two weeks of this study. The
specific reasoning for P2 collection will be discussed in greater detail in Chapter 4.
Similar to P1, P2 also began with using pre-defined locations throughout the GMU
campus. However, instead of using markers, P2 locations were chosen from pre-existing
landmarks and features on the campus. As was the case in P1, some locations were
applicable as point targets and some were better suited as area targets. Following location
selections, reference handouts were produced which included an overview map of the
study area with the target locations alphabetically labeled on the map. Additionally,
photographs were taken of each locations from various angles to mitigate any bias as to
the angle from which the collection should be performed. The reference handouts were
then distributed to volunteers for them to review and to ask questions should they have
any. In contrast to P1, P2 volunteers comprised a combination of students, research
assistants and non-academic volunteers. Prior to being released for the collection, specific
instructions were given to the volunteers as to how to complete the task (see Appendix
A). Each volunteer in this phase was randomly assigned an identification number which
was included on his or her handout. Volunteers were instructed to include that number on
each contribution. Also, they were instructed that there was no particular order in which

they needed to collect the target locations; that the alphabetical designations of each

43



location were not representative of an order of collection, but only to provide reference as
to the location of each target. In a similar fashion to P1, two researchers pre-staged at a
point and an area target and recorded chalk markings for the positions from which the
volunteers completed collection. Following the task completion by all volunteers, the

distances in meters to the targets from the chalk markings were measured.
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Figure 13 Example of obstacles for Phase 2 collection

Along with user sentiment and user feedback, captured in surveys, this research
project examined the quality assessment capabilities and possibilities of each phase. The
quality assessment comparison showed workflows for each tool and provided comparison
to see if a simplified, Instagram-style contribution system produced the same basic
quality estimates for location, time, and attribute. Additionally, project researchers were

able to determine if a larger number of contributions and an increased rate of
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contributions was possible with a simpler tool, as projected during future project planning
in 2015 and 2016 (Rice et al. 2015). The procedures in P2 were designed around the
hypothesis of this research stated in Section 2.3: An increase in the number of
observations for a specific geographic object will lead to a lower positional error, and that
this reduction will have some converging property.
3.2 Data

3.2.1 Student and Volunteer Data Contributions

The Phasel collection period took place over two weeks and was comprised of
undergraduate student volunteers from GMU who completed the assigned tasks in
conjunction with current coursework requirements. Each volunteer was randomly
assigned an identification number to keep track of individual observations and to alleviate
any privacy concerns of collecting personal information from students in conjunction
with their collected information. Week 1 of the P1 was comprised of 24 student
volunteers and Week 2 was comprised of 14 student volunteers. Two locations were
assigned for collection for a planned 38 individual observations. Information collected
during P1 included: phone type and model, geolocational data, date and time, manually
measured collected distance away from the assigned location, and a free text description
submitted by volunteers at the time of collection, and various exif data from the
volunteers’ phones.

Phase 2 collection was completed over several days and volunteers were
comprised of GMU students and non-academic volunteers from a wide range of ages and

backgrounds. Each student was randomly assigned an identification number to keep track
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of individual observations and ensure all volunteers collected all targets. Twenty-one
volunteers provided contributions for 13 targets for a total of 273 distinct observations.
Along with geolocations provided by the volunteers through the collection application;
date and time, images taken by volunteers, and free-text descriptions written by the
volunteers were collected, along with various exif data from the volunteers’ phones.
Furthermore, two of the locations (one a point location and the other an area location)
were observed by researchers during the collection period. As volunteers completed his
or her submission, the researcher marked the collection location and measured the
distance between the target location and collection location.

Phone type. Phasel was completed using a web application to which any
volunteer could access to provide contributions. No restrictions for the type of phone for
P1 were enforced, which led to various models of iPhones and Android devices being
used for the phase.

Phase 2 was designed as a mobile application and was implemented using
constraints for applications which are to be approved by Apple AppStore for wide
distribution. At the time of the study, the application had not been approved by the Apple
thus the beta version of the application was still under development. Only iPhone models
6, 7, 8, and X were used for collection during this phase.

Location Information. Phase 1 was developed as a web application. Because of
this, multiple issues negatively affected the collection and submission of data and
inconsistent measures for locations resulted over the two weeks. The second week of

collection, for example, with 14 volunteers participating, only seven of the collected and
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submitted reports made it into the database. Of the seven reports that resulted, location
error from the point of collection ranged from as accurate as 5 meters to as non-sensical
as 600 meters away. The collection errors under the P1 development model could not be
remedied in the time allotted. The errors possibly resulted from a combination of HTMLS
coding issues as well as google location privacy restrictions in conjunction with the
locations being on the edge of wi-fi signal on campus and the location services moving

from wi-fi to tower location calculations during the collection process.
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Figure 14 Phase 1 Collection of two points with inconsistent locational returns

As show in Figure 16, two example points are displayed on map of the GMU
campus. Distance errors ranged between 10 meters and over 600 meters from the point of
collection. Despite exhaustive editing of code and troubleshooting the errors could not be
corrected. With no remedy being developed, the P1 collection plan was suspended and

the P2 development of a smartphone-based application began. Phase 2 collection
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provided accurate locational data for the testing period with 100 percent of the submitted
collections being added to the database. The data gleaned from the study will be
explained in further detail in Chapter 4.

Data Collection/Submission Methods. For P1 the volunteers used their phones to
directly log into the developed web application which was both slow and cumbersome
sometimes requiring volunteers to wait several minutes for confirmation that their
location report was submitted. Additionally, irrespective of what phone type or model
was being used, some volunteers were unable to connect to the web application at all,
therefore none of their attempts to provide contributions were successful. As a result, no
usable results were to be gleaned from Phase 1 collection, other than general information
about standing location/position and general feedback used to fine-tune the future updates
to the GMU-GcT.

The P2 smartphone application allowed volunteers direct access to the
contribution system which provided an Instagram-style display. After permissions were
granted and volunteers logged into the application, all submissions attempted by
volunteers were successfully submitted to the GMU geocrowdsource database and
provided nearly instant submission confirmation after a location was collected.

Because of the software errors and contribution anomalies involved with Phase 1,

Chapter 4 will only include results from the Phase 2 collection.

49



CHAPTER 4 - ANALYSIS OF RESULTS

4.1 Results

As discussed in Chapter 3.1, Phase 2 collection consisted of 21 volunteers who
provided contributions for 13 pre-defined locations on the GMU campus for a total of
273 distinct contributions to the GMU-GcT database. These locations were comprised of
six point targets and seven targets with areal qualities. The average observation distance
between the volunteer’s collection location and the target was 4.64 meters. The average
distance of collection from point targets was 4.31 meters and from area targets was 4.98
meters. Specific data on volunteer location during collection will be discussed later in this
chapter.

The 273 collection points were downloaded from the GMU-Gc¢T database and
imported into ArcGIS Pro where the data were converted from a Microsoft Excel CSV
file into shapefiles to provide a visual interpretation of the data collected. Unlike Phase 1
collection, most of the data collected in Phase 2 remained clustered in the appropriate

areas near the targets upon which were being collected, as seen in Figure 15.
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Figure 15 Depiction of all 273 points collected during Phase 2

Despite the marked improvement in the accuracy of data from Phase 1 to Phase 2,
issues such as human error or software issues resulted in several observations not falling
within their expected collection areas as seen in Figure 15. This issue was addressed by
determining the need to assign upper and lower limits of distance from the objects of

collection to the contributor. Any contributions outside of those limits would be
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disregarded as outliers. To capture the most relevant data possible a three standard
deviation upper and lower limit was implemented against the data. Three standard
deviations, 27.23 meters, and a mean collection distance error across all contribuions of
8.55 meters, meant that any contributions greater than 35.78 meters from the points of
collection would be disregarded. As such, six observations were eliminated from
consideration, resulting in 267 usable contributions. Removing these six outliers from the
collection measurements, resulted in the reduction of the overall mean distance of all
collection error to 7.17 meters. The trimmed set of contributions is shown in Figure 16

below.
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Figure 16 All collected observations except outliers

To effectively measure the distance from the volunteer to the obstacle, an accurate
location for the centerpoint of the obstacles was needed. Several measures of accuracy
were examined to find the most precise measurement of a centerpoint to each obstacle.
The first measurement used was the mean of contributions per each target to determine a

centerpoint using the data from the application for this research. As that centerpoint
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measurement was only as accurate as the medium from which it was collected, and the
average error across all collection points was 7.17 meters, this method was not deemed
the best choice for a centerpoint measurement. Next, researchers utilized Google Maps
using a combination of visual observations on the Google Maps application in addition to
local knowledge of the study area to determine the centerpoints. The issue of accuracy of
reporting even with moderators providing “ground truth” locations was addressed by
Rice 2015 in which she calculated the average reporting errors of moderators who
provided ground checking on obstacle reports submitted by volunteers. What she found
was, even with three moderators and visual confirmation of where an obstacle was
located, the three moderators’ average distance error from the obstacle was still 5.55
meters if including areal targets and 2.12 if only considering point targets (Rice, 2015).
Since the Google Maps imagery of the GMU campus was collecting during a leaf-on
timeframe, many of the locations were obscured by tree canopy and researchers had to
use relational methods to determine where some obstacles were located. The
combination of leaf-on photo-correlation along with the built in error of determining
ground truth through visual observations even with moderators led to the decision that
this method would not be the most accurate means of determining ground truth in this
study. Lastly, the Virginia Base Mapping Program (VBMP) data was used. Image tiles
were downloaded from the VBMP website and ingested to ArcGIS Pro. The image tiles
represented high resolution aerial imagery (as fine as 1 foot) obtained during a leaf-off
timeframe which allowed for an easier and more accurate interpretation of where the

ground truth locations of obstacles were located through both local knowledge and photo-
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correlation of locations of interest relative to obstacles on which were being reported.
This method proved to be the most reliable method for determining the ground truth
locations and was used as the centerpoints for distance calculations and constraints. This
method also has the related benefit of being done with a reference base layer used by
virtually all the municipal City, County, and state-level GIS offices. This suggests that it
is likely the most consistent with common infrastructure data produced by the same
agencies. The use of VBMP base imagery in ArcGIS for locating ground truth locations
is repeatable within the Commonwealth and will allow GMU-Gc¢T project partners in the
region to contribute data with consistent positional characteristics. The VBMP-derived
centerpoints and the trimmed set of contributions is shown in Figure 17, below.

The distances from all observations to the VBMP centerpoints were entered into a
spreadsheet. From this spreadsheet an average mean distance from observer to target
across all observations was able be determined. Additionally, using computationally-
intensive python script, every possible permutation of 1 through 21 collections for each
target was completed and summarized'. The results, shown in Figure 18 below, support a
hypothesis that with more contributions for each target, the average mean error distance

away from the target also decrease across all targets.

! The number of possible combinations of observations in a thorough analysis of 21 observations is
enormous. There are 21 possible sets of 1 observation, and 210 possible pair-wise combinations of 21
observations. The number of possible sets of 11 observations, from a population of 21, is a little more than
51 quadrillion (5.1090942 x 10'°. In order to create a summary of all possible permutations, researchers
from GMU’s Spatiotemporal Innovation Center assisted with the calculations, led by GMU postdoctoral
researcher Dr. Manzhu Yu.
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Figure 17 Collected observations along with VBMP centerpoints
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Increased Accuracy with Increased Contributions for All Obstacles
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Figure 18 An increase in contributions resulted in an increase in accuracy across all obstacles

In Figure 19 below, one can see a line chart which has all the location means
combined into one line which easily displays how the mean distance error from the
target, which begins at 8.55 meters with only 1 contribution per target, decreases to 4.07

meters with 21 contributors per target.
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Increased Accuracy with Increased Contributions
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Figure 19 Mean of average distances from all targets decreased with increase number of contributions

This correlation is easily seen when examining the effects of the number of
contributions against a single target. Location I, a bench near a sidewalk on campus,
shows the marked decrease in accuracy error. Using the permutations discussed earlier,
averaging the error of all single contributions for the location, the mean distance error
from the bench was 11.15 meters; by adding only two additional contributions and
averaging all 3 contribution possibilities, the mean error distance was reduced to 5.24
meters; and by averaging all 13 contribution possibilities, the error decreased even more
to 3.90 meters. This decreases in positional error, shown in Figure 18 as one of the
descending lines on the chart, is alternatively shown with error ellipses in Figure 20. The
outermost error ellipse (“average error (n=1): 11.1m”) represents the mean error of each

individual observation taken one at a time. Figure 21 shows the same location but with
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concentric error ellipses shrinking as the number of contributions increases from n=1 to
=13. The inner error ellipse (“average error (n=12): 3.9m”) represents the positional
error of all 21 observations as a group. Similar diagrams for the complete set of locations

for this study are contained in Appendix D.
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Location I: Marie Curie Bench
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Figure 20 Distribution of contributed points for Location I: Marie Curie Bench
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Figure 21 Ellipses showing the decrease in distance error with increase of contributions for Location I: Marie
Curie Bench

In the table below, is a sample of additional examples of the decline in overall
distance error from each location that was collected upon. Shown in the table are the
resulting declines using 1, 3, 5, 10 and 19 contributions per location. The complete

spreadsheet for all permutations and all locations can be found in Appendix B.
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Number of Contributions Per Target
Target ID 1 ) 5 10 19
A 8.404878 5.624724 4.80367 4.150466 3.909318
B 12.43118 7.426769 7.113164 6.935107 6.86699
C 9.113295 6.437562 5.569164 4.892386 4.688177
D 5.044272 3.162249 2.57089 2.006842 1.741693
E 7.484104 3.750794 3.240984 2.865521 2.738884
IF 8.456489 3.761861 3.209103 2.771038 2.613505
G 5.050245 3.280812 2.800155 2.420288 2.259263
H 6.939243 4.129228 3.313699 2.572921 2.232124
I 11.1492 5.241142 4.512444 3.982599 3.82151
) 6.506087 4.480755 3.93358 3.479624 3.24966
K 10.74241 5.985105 5.477512 5.124576 4.965037
L 10.82337 9.937404 9.786422 9.678217 95.628248
M 8.997032 6.284767 5.643509 5.194343 5.011088

Table 2 Sample of decline in overall distance error as number of contributions increases

Additional data obtained during collection through both phases included distance
measurements of the volunteer from the object he or she was collecting. Both targets in
Phase 1 were measured and two targets in Phase 2 were measured. A point and area
representative point were measured in each phase. As seen in Figures 22-25 below, the
mean error distance from the point of collection to the object of interest was farther away
for area targets than for point targets. One would expect these means show a greater

disparity the larger and/or higher the area targets being collected.
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Stats

Mean

Standard Error
Median

Mode

Standard Deviation
Sample Variance
Kurtosis
Skewness

Range
Minimum
Maximum

Sum

Count

Conf. Lvl (95.0%)

2.5

Week 1 Measurement

1.7060333337
0.122117574
1.778
2.3622
0.598251492
0.357904848
-0.628804253
-0.141301835

0.25261945

Week 1 Distance from Marker (m)

15

Distance

N
w

»~ I———
1

6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Axis Title

mmm Individual Observation s \ean Distance 1.706 m

Figure 22 Phase 1, Week 1 Distance of Collection Statistics for Area Collection
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Week 2 Measurement Stats

Mean 1.17348

Standard Error 0.130064252
Median 1.0922
Mode 1.0922
Standard Deviation 0.503736682
Sample Variance 0.253750645
Kurtosis 3.554341333

Skewness 1.364524366

Range 2.1082
Minimum 0.4572
Maximum 2.5654
Sum 17.6022
Count 15

Confidence Level(95.0%) 0.278960076

Week 2 Distance from Marker (m)
25
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1
0.5 I I I
0
1 2 3 4 5 6 7 8 9 10 11

Axis Title

Distance

12 13 14 15

mmmm |ndividual Observation == \ean Distance 1.173

Figure 23 Phase 1, Week 2 Distance of Collection Statistics for Point Collection
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Krug Hall Collection Distance (meters)

Mean 4.985657143'
Standard Error
Median

Mode
Standard Deviation 2.175834969§
Sample Variance 4.734257813
Kurtosis ~
Skewness 0.733944362§
Range 7.4676
Minimum 3
Maximum
Sum

Count
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Level(95.0%)
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Figure 24 Phase 2 Distance of Collection Statistics for Area Collection
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Sandwich Board Distance (Meters)

Mean 2.442633333
Standard Error 0.348094459
Median 1.8288 -
Mode 1.0668
Standard Deviation 1.595169208
Sample Variance 2.544564803
Kurtosis -0.655378267
Skewness 0.736367803 ¢
Range 5.3086
Minimum 0.3048
Maximum 5.6134
Sum 51.2953
Count 2185
Confidence E
Level(95.0%) 0.726112318
"Sandwich Board" Collection Distances (m)
6
5

Collection Distance
w

[aey

mmm Collected Observation

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21

Mean Collection Distance (2.443 m)

Figure 25 Phase 2 Distance of Collection Statistics for Point Collection
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CHAPTER 5 - CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

As mentioned in Chapter 4.1, the mean distance error between the point of
collection and the obstacle on which is being collected decreased from 8.55 meters to
3.68 meters with 1 to 21 contributors respectively. This decrease represents a 56.91%
decrease in overall error by increasing the number of contributions submitted against an
individual object when including the outliers. With the outliers removed, the decrease is
from 8.54 meters to 4.07 meters still represents an impressive decrease in overall distance
collection error of 52.34%. These results support the hypothesis that more contributions
to a geocrowdsourcing system will decrease the overall distance error in the reporting of
obstacles. The number of contributors needed to meet an acceptable error threshold of
less than five meters, or the previously mentioned “Haklay Distance” of six meters,
depends on multiple factors, not the least of which is whether the obstacle being collected
upon is a point target or area target. However, if only the average of all collected
distances across all targets in this study are being used as the determining factor, then
only 4 contributions per target were needed to result in attaining that threshold at 4.99
meters. After only 4 contributions per target, the accuracy error decreased by 41.64 %.
While modest decreases in overall error continued with further contributions, the fact that
only 4 were needed to provide an error distance of under 5 meters, means that the goal of
developing a real time reporting system for obstacle reporting and routing may be

attained with only minimal participation by users of the system.
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Another interesting measurement obtained in this study was that of the overall
distance from the target that contributors collected observations. Using two examples
from Chapter 4.1, in which researchers measured the ground distance from the point of
collection to the object being collected upon, for the Sandwich Board point target, the
mean distance of collection was 2.44 meters; while the Krug Hall area target had a mean
collection distance of 4.98 meters. This represents an increase of 104.1%. Likely as the

size or height of the area target increased, the distance of collection would also increase.

5.2 Ideas for Future Work

While the methodologies introduced in this research were proven to be successful,
there remain several avenues of improvements and continuations of this research to be
pursued and applied.

5.2.1 Utilization of Contributions for Routing and Obstacle Avoidance

The methodologies developed in this research can be used to further improve the
a system of mobility access awareness on the GMU campus. The Phase 2 application
could be used in conjunction with real time reporting to provide obstacle avoidance
notices to those with mobility impairments to assist them in determining the best
alternative routes available to them.

The GMU-GcT has been a focal point for much research involving pedestrian
routing techniques and route optimization. Research conducted by Qin et al. (2018) was

focused on the optimization of repairing pedestrian pathways through an area containing
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obstacles to movement for persons with mobility impairments. Using cost maximization
concepts incorporating variables including: budget, cost of repair, benefit and proximity
of needed repairs to other needed repairs, models were developed displaying the most
efficient methods to conduct repair based on which constraints (if any) were imposed.
Another main consideration in the previous studies conducted by the GMU-Gc¢T research
team was how to quickly provide this information to GMU students in a near real time
method so that persons with mobility impairments could be made aware of obstacles to
movement as soon as possible. This real-time communication process would be a vast
improvement over the GMU Accessibility Map which is updated about once a year. The
research conducted by Qin, Curtin, Rice and others is the foundational research upon
which current research using the GMU-GcT is based.

Rodgers, 2016 conducted research regarding slope also using the GMU-GcT.
Rodgers compared various resolutions of elevation datasets using DEMs obtained from
the USGS and Fairfax County as the elevation measurement function which were
accurate to within 1/3 (approx. ten meters), five meters, 1/9 arc second (approx. three
meters) and one meter. As Rodgers surmised and as one may suspect, a ten or five-meter
positional accuracy may provide resolution fine enough for large linear features such as
major highways and secondary roads; the 1/9 arc second DEMs may be of resolution fine
enough to provide good fidelity on small roads and alleys; however, for features as
narrow as sidewalks and walking paths, the resolution for all of the DEMS except the 1m
DEM were too course to be useable for accurate measurements. In Rogers’ experiments

then, the 1m DEM was chosen for use overlaying elevation data onto a pedestrian
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network (Rodgers, 2016). Rodgers chose to use DEMs from the USGS because they was
freely available and easily available and chose 1m DEMs because the LiDAR data, which
can be used to conduct more precise measurements of elevation at GMU only became
available after the research had begun; this was unfortunate because Rodgers states that
per measurements conducted by NOAA, LiDAR met accuracy rates within tolerances set
forth in the Geometric Geodetic Accuracy Standards and Specifications published by the
Federal Geodetic Control Committee (Rodgers, 2016). Meeting this standard meant that
LiDAR measurements could in fact be used as ground-truth measurements in the absence
of known ground control points whereas the USGS DEMs used in the research were not
precise enough to be used for accuracy assessments without using ground control points
for validation (FGDC, 1998).

Rodgers overlayed the DEMs onto the GMU Physical Accessibility Map from
2014 and using vector shapefiles of the GMU pedestrian network, campus spot elevations
and elevation contour intervals, As demonstrated in Figures 26 and 27, Rodgers was able
to visualize both the network and elevations throughout campus using ArcGIS. In the
research described later in this paper, the benefits of using high resolution LiDAR
elevation data will be compared to those lower resolution DEMs to display the benefit of

continuing to find higher resolution data sets to conduct research (Rodgers, 2016).
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Figure 26 GMU network (Rodgers, 2016)
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Figure 27 Accessibility route outputs at various DEM resolutions (Rodgers, 2016)

An example of how to improve upon both Rodgers’ research and the research
discussed in this paper would be to develop a method to not only consider mobility routes
based on slope, but to also have volunteer reports of obstacles along routes of interest to
be automatically updated into a database that would provide alerts to anyone using the
applications. Many software applications are available to determine routing options. In

the figure below, with only minimal python coding and the use of Model Builder, a route
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between two points was developed in ESRI’s ArcPro. An example of the code used and

the model built can be found in Appendix C.

Figure 28 Least cost path calculation using only DEM

In Figure 28 a least cost path model was constructed in ArcPro that only
considered the DEM of the area when calculating the path between two points. As on can
see, the path intersects buildings and does not follow walkways that persons with

mobility impairments would likely be able to traverse.
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However, in Figure 29 the model was constrained by not only the DEM but also
to only use walkways on the GMU campus. The result shows a route that closely follows

a pathway between the two points.

Figure 29 Constrained least cost path calculation using DEM and pedestrian walkways

With further modifications to the code, notional obstacles could be added into the
path that would result in the new route needing to be calculation but still follow the paths.

A methodology that could combine the functionality of ArcPro with the handheld

74



applications developed in this research could provide a near real time version of route
optimization and obstacle avoidance for students with mobility issues on the GMU
campus.
5.2.2 Spatio-temporal Clustering

As evidenced by Figure 30 below, some items of interest, or reports submitted to
the GMU-Gc¢T may be close in proximity to each other. The items shown below have
centerpoints that are 14.2m apart. This usually results in an overlapping of contributed
point locations. As seen in the figure some contribution points (e.g., green points) are
closer in distance to the other reported obstacle (red obstacle) than to the (green) one they
are associated with. Without some means of distinguishing one set of contributions from
another, there would be little in the way of knowing which contributions were related to

which targets.
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Locations E and J: Overlap and Differentiability
inter-centerpoint distance: 14.2m

average error (n=1): 6.5m

-7 averaae\error (n=21):3.2m

average error (n=1): 7.5m

25 5 10 Meters
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+ + + + + +
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Figure 30 Example of overlapping points with no clear distinguishing characteristics
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Manual methods for creating a contrast between points is a straightforward way of
separating one set of collection points from another, however this is will only assist a
researcher who already knows which points were collected by whom and for what.
Without that background knowledge on the collection points, manually color coding or
separating observations would be a tedious or perhaps unattainable task. This could be
addressed by developing a spatio-temporal clustering algorithm that could scan
contributions by geo-location, free-text comments, and submitted images to determine if
a group of collected contributions are related. Also, if orientation vectors could be
derived from the contributions, those in conjunction with other spatio-temporal attributes
could be used to decrease the error in defining the clusters.

A significant amount of research has been undertaken to develop ways to use
GcD in conjunction with other types of spatial data to discover new methods of using the
positions and contributions of the GeD to find road networks, structures,
etc...Specifically, Yang, Zhang, & Lu (2014) used GeD contributions to map road
networks using clustering algorithms. This method would follow closely to the attribute
entries by the participants in the GMU research when describing obstructions. The
process developed by Yang et at (2014) was comprised of several stages. The first
involved finding clusters of linear contributions and constructing line segments between
the clusters. The researchers used a linear clustering algorithm developed by Ester et al
(1996) which “predefined a neighborhood radius Eps and the minimum points number
MinPts to detect a set of core points (initial clusters) and then expands the initial clusters

by searching Eps-neighborhood points” (Yang, Zhang, & Lu, 2014). Similarly to research
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conducted by Yang, Zhang, & Lu (2014) in which a clustering mechanism was developed
to relate point of interest contributions from volunteered geographic information to road
networks mapped by official agencies, this study attempted to cluster GeD contributions
regarding obstacles to mobility on a predefined and pedestrian sidewalk network on the
George Mason University Campus. In addition to the algorithmic spatial relationship
between point of interest contributions and road networks, the study also implemented
the use of semantic alignment, whereby they attributional information such as the road
name was used to determine the location of roads (Yang, Zhang, & Lu, 2014).

While the methodology developed by Yang et al. touches upon the means to
cluster points along linear features, much work would need to be done to find a way to
adapt this clustering algorithm to account for image submissions into a Instagram-style
contribution system.

5.2.3 Dimensionality and its Effects on Collection Position

While some data were collected regarding contributor location when collecting on
a target, no specific research into how the dimensionality in size or height of a target
would affect the collection position of contributors. Two examples on a small scale in
this research that would be a good starting point for this analysis would be comparing
Points A (Clock Tower) and G (Sandwich Board). As shown in the figure below, the
clock is a tall object, approximately 3m while the Sandwich Board is less than a meter.
The resulting collection distances between the two show a stark contrast in the average
distance of collection, with the sandwich board having a much lower collection distance

and average Crror.
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Figure 32 Comparison of Collection Locations of Clock Tower and Sandwich Board
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5.3 Synopsis

In conclusion, this thesis discussed the history of Geocrowdsourced data, and
explained that while implementing GeD as a discipline is not new, emerging technologies
and an an exponential increase in the amount of data that are available has led to a
revolution in how Gc¢D is and can be used. While GeD is generally incumbent upon
quality assessment by moderators to ensure accuracy, this research demonstrated a
correlation between the number of GeD contributors and the level of positional accuracy
of information contributed to the GMU-GcT by using a mobile-phone, image-based data
contribution tool. Findings showed that the positional accuracy characteristics of the data
contributions to the GMU-Gc¢T improved with added contributors, reaching a level
comparable to previously-studied accuracy thresholds reached with a significantly more
detailed and heavily moderated data contribution workflow and reducing the average
positional error of contributions from 8.55m to 3.89m with 20 contributions. In fact, to
exceed the most common positional error threshold for geocrowdsourced data, referred to
in previous work as the Haklay distance (approximately 6.0 meters), only two
contributors were required. This research demonstrated that a fully moderated
crowdsourced data contribution process, used in previous incarnations of the GMU-GcT,
is unnecessary for producing data with adequate fitness-for-use, including common

routing and obstacle avoidance algorithms.
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APPENDIX A

Phase 1 Collection Instructions

Break (+ Geocrowdsourcing) Break (+ Geocrowdsourcing)

i0OS
Android:

Settings
» 1. Home screen >"Menu" button > "Settings"

2. Privacy > Location Services > On
» 2. Scroll and tap "Location” or "Location and Securnity”

» 3.Tap "Use GPS Satellites"
» 4. Go to "Home” screen, tap camera icon

Camera > While using the App
i, Privacy > Camera > Chrome (or other browser)

= » 5. "Menu" > "Settings”( possibly a small cog icon).

NE=El =

6. "Store Location in Pictures," or "Geo-tag Photos," and tap "OK"

Geocrowdsourcing

» http://egeo.emu.edu/vei/cedvl

» Submit one report with a
photo of the missing paver/tile
outside of Planetary Hall
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Phase 2 Collection Instructions

GMU Geocrowdsourced Data Collection Instructions
Ineration 2: CGD Mobile Application

Parpone.  Colect 2l Thariesn sl on the MIARed paget wihh 3 sabde Sa13 Coled NN applaation
Cotlection comutrts of 1) an image or mages of & pre-defined pore of ntersst, snd 2} & (Wha? Whare”)
deacription of the 1amw poir of interest

L Fesd e e comy v before bageweng, arvd ash questenmn o sooded

2 Your sumvers particpent 10 for o ermeng enerce s 98

1 Udng the phase provided, apes the (6D applcation, 2nd ges parmiciion 10 uis DCaton ans
PN A s £ OF When v cempted

A snwy order of your choosing, viIR sach location shaown on the prnted mep snd sttached
demtfication images, and sae the following reporting procedures ot ssch ocsson.

S 00k on the “Wew™ regunt o The wppey £ Corrmy (see srages beios)

& Enter o [Whare’ What7) seet desonptaom i The Desorgition Fabd, for the Sem pow e
reporeg.
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APPENDIX B

Table of Permutations for Distance Error

Target ID

I 6 MmMMmMmoo . >

= - =X =

1
8.40487777
12.4311762
9.11329506
5.04427235
7.48410424
8.45648881
5.05024515
6.93924333

11.149198
6.50608678
10.742405
10.8233665
8.99703246

2
6.50748178
7.86338181
7.32824193
3.72633054
4.32337841
4.33889509
3.81073439
4.98360349
6.00099632
5.07381941
6.61508751
10.1403758
7.05668134

Number of Contributions Per Target

3 4 5 6 7 8
5.62472363 5.12408433 4.80367014 4.58339965 4.4251851 4.30790714
7.42676873 7.22320292 7.11316351 7.04741378 7.00461493 6.97460371
6.43756196 5.91089899 5.56916376 5.33472449 5.16843878 5.04782089
3.16224934 2.81209826 2.57089036 2.39407602 2.25979614  2.155414
3.75079378 3.43637585 3.24098415 3.11038074 3.01856608 2.95215267
3.76186098 3.42559163 3.20910325 3.06027757 2.95370928 2.87519535
3.28081196 2.98688443 2.80015468 2.67283045 2.58132264 2.51320809
4.12922823 3.63968051 3.31369858 3.0797378 2.90410303 2.7678147
5.24114212 4.79655904 4.51244431 4.32196497 4.19026081 4.09739825
4.48075465 4.14724477 3.93358042 3.7858613 3.67816538  3.596229

5.985105 5.66486293 5.47751163 5.3561891 5.27192139 5.20998779
9.93740399 9.84205109 9.78642204 9.74992359 9.72412239 9.7049128
6.28476734 5.88331921 5.64350854 5.48707989 5.37871681 5.30004329

9
4.21898362
6.95232418
4.95886103
2.07291736

2.9028019
2.81615525
2.46109251
2.65981638
4.03094996
3.53175195
5.16238868
9.69005363
5.24066553

10
4.1504663
6.93510687
4.89238587
2.0068424
2.86552133
2.77103829
2.42028793
2.57292147
3.9825994
3.47962441
5.12457635
9.67821684
5.1943426

1
4.09696163
6.9213944
4.84218316
1.95329376
2.83680458
2.73607229
2.38768786
2.50231407
3.94656969
3.43654987
5.0937768
9.66856523
5.15722957
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Table of Permutations for Distance Error (cont)

Target ID

T Ry (= oy 1S 1P TR TR (T e R P

Number of Contributions Per Target (cont.)

13 14 15 16 17 18 19
4.02071429 3.99313216 3.97036959 3.95132036 3.93517103 3.92132017 3.90931759
6.90091603 6.89306581 6.88634763 6.8805327 6.87545008 6.87096945 6.86698973
477442439  4.75146624  4.7333561 4.71880927 4.70685183 4.69680396 4.68817665
1.87303044 1.84246402 1.81642338 1.79391939 1.77428572 1.7570115 1.74169303
2.79648808 2.78203307 2.77017753 2.76032607 2.75203786  2.74497598 2.73888375
2.68663298 2.66878318 2.65398667 2.64150203 2.63081285 2.62156917 2.61350457

2.339171 2.32065906 2.30483678 2.29114559 2.279179 2.2686302 2.25926277
2.39699317 2.35753553 2.32439225 2.29619574 2.27188031 2.25071019 2.23212368
3.89681317 3.87872141 3.86357033 3.85068761 3.83960003 3.82996101 3.82150963

3.3694045 3.34269518 3.31937942 3.29884256 3.2806114  3.26431541 3.24966014
5.04657775 5.02808617 5.01208189 4.99809509 4.98576753 4.9748211 4.96503651
9.65377409 9.64798222 9.6429712 9.63859308 9.63473509 9.63130974 9.62824811
5.10170728 5.08050477 5.06244443 5.04689721 5.03338638  5.02154531 5.0110882

20
3.89882238

4.68063323
1.72801262
2.73356919
2.60640931
2.25089083
2.21568043
3.81404571
3.23640846
4.95623853

9.6254952
5.00178958

21
3.88957217

4.67395777

1.7157183

2.24336515

2.2010324

3.22436719

9.62300655
4.99346951
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APPENDIX C

ArcPro Model Builder for Least Cost Path
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ArcPro Python Code for Least Cost Path

#1 rt arcp

10 import arcpy

13 # L s:
14 Points_shp :\\Thesis\\Crowdsourcing Thesis\\Data\\Point Features\\Points.shp"

15 EndPointl_shp = "E:\\Thesis\\Crowdsourcing Thesis\\Data\\Point Features\\EndPointl.shp"

16 Merged_Data_dem_from_QT_Slope_tif = "Merged Data_dem_from_QT_Slope.tif"

17 Reclassed_DEM = "C:\\Users\\toby\\Documents\\ArcGIS\\Projects\\Least_Cost\\Least_Cost.gdb\\Reclass_tif3"

18 Costs = "C:\\Users\\toby\\Documents\\ArcGIS\\Projects\\Least_Cost\\Least_Cost.gdb\\Weighted_Recl_DEM"

19 Output_Cost_Distance = "C:\\Users\\toby\\Documents\\ArcGIS\\Projects\\Least_Cost\\Least_Cost.gdb\\CostDis_shp_testl"
20 Output_Backlink = "C:\\Users\\toby\\Documents\\ArcGIS\\Projects\\Least_Cost\\Least_Cost.gdb\\cst_dst_bcklnk_testl”

21 Least_Cost_Path = "C:\\Users\\toby\\Documents\\ArcGIS\\Projects\\Least_Cost\\Least_Cost.gdb\\CostPat_shpl to_1 testl"

23 # S p enviro

24 arcpy.env.scratchiWorkspace \\Users\\toby\\Documents\\ArcGIS\\Default.gdb"

25 arcpy. .snapRaster = "Merged Data_dem_from_QT.tif"

26 arcpy. .extent = "DEFAULT"

27 arcpy. .cellSize = "0.75"

28 arcpy. .mask = "QT_Ped_BB_Split_Join_Pro_Slo"

29 arcpy. .workspace = "C:\\Users\\toby\\Documents\\ArcGIS\\Default.gdb"

30

31 P Rec Lfy

32 arcpy.gp.Reclassify_sa(Merged_Data_dem_from_QT_Slope_tif, \

33 "VALUE", "@ 1.054621 1;1.054621 1.757702 2;1.757702 2.46P783 3;2.460733 3.163864 4;\
34 3.163864 3.866945 5;3.866945 4.921566 6;4.921566 6.327727 7;6.327727 8.085430 8;\
35 8.085430 11.249293 9;11.249293 89.994347 18", Reclassed_DEM, "DATA")

36

37 # Process: Weighted Overlay

38 arcpy.gp.WeightedOverlay_sa("('C:\\Users\\toby\\Documents\\ArcGIS\\Projects\\Least_Cost\\Least_Cost.gdb\\ \
39 Reclass_tif3" 1@ 'VALUE' (1 1; 2 2; 3 3; 4 4; 55; 6 6; 7 7; 8 8; 99; 10 10;\
40 NODATA NODATA));1 1@ 1", Costs)

41

42 # Proc Cost Di

43 arcpy.gp.CostDistance_sa(EndPointl_shp, Costs, Output_Cost_Distance, "", Output_Backlink, "", "", "", "", "")
45 # Pr ath

46 Iarcpy.gp.CostPath_sa(Points_shp, Output_Cost_Distance, Output_Backlink, Least_C‘ost_Path, "EACH_CELL", "Id")
47

43

86



APPENDIX D

Spider Diagrams
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Location B: East Building Access Ramp
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Location D: Japanese Maple
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Location E: Krug Hall Sign
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17.2m

Location F: Newspaper Box
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Location G: Sandwich Board
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Location H: Sandy Creek Bus Shelter
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Location J: Student Organization Benches
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Location L: Yellow Barricade
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Location M: Yellow Bike Pump
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