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Abstract

DYNAMIC RGB-D MAPPING

Michael Paton, M.S.

George Mason University, 2011

Thesis Director: Dr. Jana Košecká

Localization and mapping has been an area of great importance and interest to the

robotics and computer vision community. Localization and mapping has traditionally been

accomplished with range sensors such as lasers and sonars. Recent improvements in pro-

cessing power coupled with advancements in image matching and motion estimation has

allowed development of vision based localization techniques. Despite much progress, there

are disadvantages to both range sensing and vision techniques making localization and map-

ping that is inexpensive and robust hard to attain. With the advent of RGB-D cameras

which provide synchronized range and video data, localization and mapping is now able

to exploit both range data as well as RGB features. This thesis exploits the strengths of

vision and range sensing localization and mapping strategies and proposes novel algorithms

using RGB-D cameras. We show how to combine existing strategies and present through

evaluation of the resulting algorithms against a dataset of RGB-D benchmarks. Lastly

we demonstrate the proposed algorithm on a challenging indoor dataset and demonstrate

improvements where either pure range sensing or vision techniques perform poorly.
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Chapter 1: Introduction

The ability for autonomus robots to localize in novel environments and generate accurate

3D maps has been of great interest, and heavily researched by the robotics community.

Traditional mapping was performed with sensors such as lasers and sonars. While successful

solutions have been attained [1] , they either required expensive laser range finders or they

were demonstrated with less expensive sonars in very simplistic environments [2]. The

increase in the processing speed as well as advancements in vision based motion estimation

and invariant feature based matching has fueled the progress in vision based localization.

Vision based mapping takes advantage of visual features, matching them frame by frame to

compute accurate relative poses between them. While vision based localization has made

great strides [3], with the exception of few [4] the focus on the large scale 3D reconstruction

has been limited and the models obtained are often characterized by a sparse set of features.

More recently, efforts have been made to combine range finding sensors with vision

sensors to overcome the weaknesses of both. Research in this area has been revived by

availability of RGB-D cameras, which provide video (RGB) data just the same as a normal

camera, along with per-pixel depth information.

The goal of this thesis is to exploit the strengths of previous strategies which use range

and vision sensing and to provide a robust solution for localization and mapping with an

RGB-D sensor. This will be accomplished by combining mapping algorithms using range

information and visual features to obtain a robust and accurate system, capable of coping

with environments where either pure visual or range sensors fail.

Overview Related work is detailed in Chapter II. Preliminaries for RGB-d mapping are

discussed in Chapter III. Chapter IV analyzes the proposed RGB-D mapping algorithms.

1



Testing and experimental process with the RGB-D data set as well as results of the exper-

iments are reviewed in Chapter V. Chapter VI provides closure on the results as well as

future work.

2



Chapter 2: Related Work

Existing simultaneous localization and mapping (SLAM) research has differed in sensor

modality, the types of maps they strive to create, and their use. Common systems use

modalities such as lasers, camera vision or both to acquire metric, topological or hybrid

maps. Metric mapping algorithms have ranged from on-line recursive update strategies,

pairwise non-linear motion estimation strategies, loop closure [5], and global optimization

methods [1].

In this work we focus on metric SLAM using RGB-D cameras, this problem can be

broken down into three sub-problems: data association and motion estimation from two

views, loop closure detection, and globally consistent motion estimation.

While the latter portion is often similar regardless of modality, data association and

motion estimation differ. An overview of the techniques for globally consistent motion

estimation can be found in [1]. Considering that RGB-D sensors have characteristics of range

finding devices and camera based vision systems, techniques for motion estimation between

two frames have been adopted from previous research on both modalities, as described in

the following sections.

Laser Mapping Until recently laser range finders were the sensor of choice for localiza-

tion and mapping. 3D laser range finders are able to provide accurate and fast 3D depth

information. Using registration techniques such as [6], robotic systems are able to quickly

compute transformations between corresponding laser scans. Laser based mapping work

done by [7] is thought to be the original work on globally consistent mapping with laser

range finders. This work involves collecting local pose information between laser scans,

either by scan matching or odometry. The poses and scans are kept in memory and are

3



globally aligned using a maximum likelihood criterion. These methods benefit from loop

constraints, which can greatly improve the local pose estimates.

More recently [8] uses scan matching and Rao-Blackwellized particle filtering. There has

been a large number of works published on problems of data associations in the context of

range sensing; ranging from data associations of raw scans to various feature based methods.

Some discussion of the topic can be found in [9]. One of the key components of the scan

matching stage is the so called Iterative Closest Point (ICP) algorithm originally proposed

by [10]. Our Proposed method will be based on a variation of an ICP algorithm and will

be described more in detail in Chapter III.

While laser range finders can create highly accurate metric maps, there are some draw-

backs. With laser range finders accuracy often decreases with the price of the sensor. Less

expensive sensors will often provide ambiguous motion estimates when displacements are

large. Another drawback is the lack of visual information in the outputted 3D map, which

is often not informative to the user.

Vision Mapping The need to robustly differentiate between scenes with similar geometry

and obtain richer models has spurred research in vision based mapping. With the advances

in scale invariant image feature matching such as [11] and [12], research in vision based frame

matching, loop closure detection, and 3D mapping led to several successful solutions to the

vision based localization problem. Vision mapping research has seen use of a large variety of

methods. The use of invariant features coupled with increases in computational power has

allowed efficient searches in large databases as well as accurate mapping of features between

frames. Using a single perspective camera, [13] creates a topological representation online

by adding images to a database ad creating a link graph. An image matching scheme then

allows for mapping and localization. Due to the compact representation, this method can

maintain a graph containing millions of images in real time. A SLAM technique developed

by [14] utilizes a stereo vision system to achive local pose estimation. This method relys

solely on input images from the stereo camera. In this method visual correspondences

4



are calculated using scale invariant features, and motion estimation is calculated via the

RANSAC algorithm.

Along with the vision sensing modality comes a list of unique drawbacks. Maps gener-

ated by vision based modalities are sparser then those generated by range finders. This is

attributed to a lower data rate, and the use of correspondences by means of visual features

which can be sparse in certain environments. Perhaps the most critical weakness of vision

based mapping is also its greatest strength, visual features. There are certain texture-less

environments where there are a distinct lack of the crucial visual features that are needed

to generate correspondences. An example of this is the common office hallway, white walls

and often featureless carpets. In this situation it is very difficult for a vision system to

match features between frames, especially in the precense of large motions.

Multi Sensor Mapping The common drawbacks of both range finder and vision based

modalities, spurred research into techniques that utilize both laser and vision sensors. A

recent example of this is [15], who uses both a laser scanner and a camera installed on a

mobile robot to incrementally build a 3D metric map of the environment. The map is built

from laser generated point clouds. Images taken from the camera are used for loop closure

detection. This method of loop closure is tolerant of repetitive visual structure and takes

advantage of the strengths of both laser and vision data. The combination of both sensors

allows for highly accurate odometry estimation from the laser data coupled with robust

and quick loop estimation from the camera, effectively making the fusion approach more

effective then either sensor alone.

These techniques may overcome some of the obstacles of range finding and vision sensors,

but they still rely on expensive laser sensors, additionally it can be difficult to associate 3D

range data with the collected vision data. Previous techniques which use both laser and

vision required calibration of the two sensors [16], in order to accurately register the two

sensing modalities and hence making the combined sensors less flexible.

5



Figure 2.1: Microsoft Kinect for XBOX-360

2.1 RGB-D Mapping

RGB-D sensors solve the problem of data correspondence found in multi sensor mapping by

providing RGB images synchronized with per-pixel depth information. RGB-D sensors are

able to provide both visual and 3D depth information, which allow us to exploit the direct

correspondence of range data to visual features. This allows for direct correspondence of

3D range data, by means of extracting and matching visual features between frames. Being

a relatively new sensor, research in RGB-D mapping is in its infancy. Current examples of

RGB-D mapping techniques are [17] and [18]. Details of both of these algorithms can be

found in Section 3.4.

2.1.1 RGB-D sensor details

For our experiments we used the Microsoft Kinect c©sensor, it is an RGB plus depth sensor

capable of providing both RGB images per-pixel depth information at a 30Hz rate. Due

to its relatively low price vs the quality of its output it is ideal for robotics research. A

disadvantage of the sensor is its limited field of view of 57 ◦ horizontally and 43 ◦ vertically.

This is in contrast to current laser range scanners which often provide scans of 180 ◦ or 360 ◦

scans. The Kinect also has a motor on its vertical axis capable of tilting the sensor with a

range of motion of 54 ◦.
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Figure 2.2: Example RGB-D Frames

The RGB camera

The RGB camera uses 8-bit VGA 640x480 resolution, along with a Bayer color filter to

provide 30 frames per second.

The Depth sensor

The Depth sensor is capable of supplying 11-bit per-pixel depth information corresponding

with the video stream. This is achieve by an infrared projector along with a CMOS (com-

plimentary metal-oxide semiconductor). A major benefit of this approach is the kinect’s

ability to calculate depth data regardless of the lighting conditions. The depth sensor has

a range of 1.2-3.9m.

7



Chapter 3: Preliminaries

In this chapter we will describe the component algorithms needed to perform data associa-

tion and motion estimation between two views. This chapter acts as a primer, describing in

detail the algorithms and techniques needed for RGB-D SLAM. The individual components

of the data association and motion estimation techniques are as follows:

1. Feature extraction and matching.

2. Coordinate conversion

3. Outlier rejection, correspondence registration.

4. 3D Point cloud Registration.

There are several alternatives of how to carry out the data association and motion es-

timation using two consecutive frames. In purely visual based approaches the two view

motion estimation is typically proceeded by extracting and matching features in the con-

secutive views, followed by robust motion estimation based on epipolar geometry [19]. This

technique enables estimation of the relative pose T = (R, t) between two views, using closed

form strategy followed by non-linear refinement. Due to the absence of 3D information the

translation component can only be estimated up to a scale. The first stage of the methods

is the process of extraction of robust scale invariant features (SIFT) and their associated

descriptors. Towards this end we choose commonly used SIFT features.

The SIFT algorithm [11] developed by David Lowe, extracts and matches visual features

and their associated descriptors between frames, it is described in section 3.1. The putative

matches are then converted from 2D image coordinates to 3D world coordinates. The

matching 3D point clouds are then refined by the robust RAndom SAmple Consensus

(RANSAC) algorithm. The RANSAC algorithm estimates an initial transformation as

well as outlier rejection based on initial feature matches obtained by SIFT matching, it is

8



Figure 3.1: SIFT Matching

described in Section 3.2. Depending on the environment, the RANSAC transformation

may contain a transformation with a great amount of error. If the RANSAC error is too

high the transformation is corrected by the generalized ICP algorithm, which is described

in section 3.3.1.

3.1 Feature Extraction and Matching

SIFT is an algorithm used to extract point features and their associated descriptors from

images. Features extracted from SIFT are invariant to changes in the image, such as scaling,

rotation, and translation. Once features are extracted from an image, they can be easily

matched up in subsequent frames. Once features are extracted from an image, they can

easily be matched in subsequent frames.

A common problem with matching frames with SIFT is a lack of features between

frames. Another problem is features that are mismatched. These problems depend to a

large extent on the type of environment, office hallways and areas with low lighting are

common examples of environments with limited features. In order to successfully estimate

motion between frames based off of visual features, mismatches must be ignored. In the

case of having a small amount of features, an entirely different method might be needed.

9



RANSAC[data,Model]

1: for itr = 0→ maxIterations do
2: sample← extractSamples(model)
3: for points ∈ data 6∈ sample do
4: p̂←{point in data transformed by T0}
5: p←{corresponding point in model}
6: err ← ||p̂− p||2
7: if err ≤ thresh then
8: {Add p to inliers}
9: end if

10: end for
11: {If there are enough candidate inliers, then this is a valid model}
12: if sizeof(candInliers) ≥ minSize then
13: T ← estimateModel(inliers)
14: (p̂, p)← {inlier elements in Model and Data}
15: estimateErr ←

∑m
i=0 |T · p̂i − pi|

2

16: if globalErr ≤ bestErr then
17: BestModel← proposedModel
18: BestErr ← globalErr
19: end if
20: end if
21: end for

Figure 3.2: Algorithm: RANSAC

3.2 RANSAC

RANdom SAmpling and Consensus (RANSAC) [20] is an iterative method for estimating

mathematical models in the presence of data which contains outliers. The general RANSAC

algorithm is detailed in figure 3.2. The inputs to RANSAC are a mathematical model and

data which the model is to be fitted to. The method works by iteratively selecting random

samples of the dataset and fitting the model to that subset of data. Fitting the model

generates a hypothesis model, which is then tested against the entire dataset. RANSAC is

often used to extract inliers from associated range scans, as well as generate an initial motion

estimate between the two scans. For our case we use RANSAC to estimate motion between

frames based off of corresponding 3D point clouds. The corresponding clouds are obtained

by matching SIFT features and converting the 2D matches from image coordinates to 3D

world coordinates with the Kinect’s depth data. RANSAC is able to estimate a motion

10



between the two point clouds while simultaneously removing likely mismatches.

For our purposes we use RANSAC to estimate motion corresponding 3D point clouds,

as well as eliminating outliers from the correspondences. The corresponding clouds are

obtained by matching SIFT features and converting the 2D matches from pixel coordinates

(i, j) to 3D world coordinates (x, y, z), using the following formula:

z ← depth(i, j)

y ← (j − cy) · (z/fx)

x← (i− cx) · (z/fy)

The RGB-D sensor provides per-pixel depth information, therefore given a set of pixel

coordinates (i, j) the z coordinate is simply extracted from the depth data. The (x,y)

coordinates can then be calculated based off of the camera’s intrinsic matrix, with (cx, cy)

being the optical center of the camera, and (fx, fy) being the focal length of the camera.

3.3 Iterative Closest Point

Iterative closest point (ICP) is a technique used to register point clouds, it was first devel-

oped by [10]. The ICP algorithm can be partitioned into the following steps...

1. given point clouds {ai} and {bi} from two scans, find the corresponding points between

the scans.

2. Compute a rigid body transformation between {ai} and {bi}.

3. Transform all bi’s with the estimated transformation to align the scans.

The existing techniques again differ in the means of finding the corresponding points,

in the choice of the objective function and the optimization techniques for computing the

estimates. Most commonly the corresponding points are found using the nearest neighbor

methods in 3D space, which works well when the displacements between the frames are

small. In the optimization stage one often chooses first order approximation of the trans-

form, which can be estimated using linear techniques and updates the correspondences in

11



an iterative manner [21]. Hence repeating these steps will either converge to the target

transformation, or fall when the maximum amount of iterations is reached. Alternatively

one could use closed form pose estimation [22] which works well providing the set of initial

correspondences is accurate.

There are a few variants of ICP, all containing the same basic structure but differing

in the objective function. The earliest variant is the so called point-to-point ICP method,

named after the simple Euclidian distance objective function.

T ← argmin
T

∑m
i=0 ‖ T · bi − ai ‖

2

Where T = (R, t) and ai is a point in cloud A = {ai}, and bi is a point in point cloud

B = {bi}. Improving upon the point to point method, point to plane ICP was developed

by [23]. This method takes advantage of surface normal information of point clouds and is

achieved by simply changing the objective function.

T ← argmin
T

∑m
i=0 ‖ ηi (T · bi − ai) ‖2

where ηi is the surface normal projection at point ai which is the nearest neighbor of bi,

thus computing the error between one point and the projection of a point onto it’s surface

normal. In order for this method to work, it must make the assumption that the point

clouds being compared are not just arbitrary points in space, but a collection of data from

a geometrically known environment. Which is always the case for range sensor data.

The advantages of any ICP variant is the simplicity of the algorithm, and quick perfor-

mance when the nearest neighbor calculations are optimized. This is typically accomplished

with KD trees. A drawback of the ICP algorithm include the assumption that there is a full

overlap between the two point clouds. This almost certainly never true when attempting to

register range scans. luckily this problem can be resolved by implementing a max distance

variable, which states that correspondences greater than the max distance are not consid-

ered. Another drawback the assumption that the the data is that of a known geometric

surface, this problem in part is solved by point-to-plane ICP. Yet point-to-plane only takes

12



surface normal information from one scan and knows nothing of the second. The gener-

alized ICP method is able to model a plane-to-plane method, which considers the surface

information of both scans. It can also be used to model the previous ICP variants.

3.3.1 Gen-ICP

Generalized ICP developed by [24], replaces the error metric of point-to-point and point-

to-plane with a probabilistic model. This approach can not only model both previous

algorithms but also a plane-to-plane approach as well. It achieves this by assuming that

both point clouds have uncertainty governed by an underlying Gaussian distribution. A set

of points Â = {ai} and B̂ = {bi} generate Â and B̂ given the following model.

ai ∼ N (âi, Ci
A) and bi ∼ N (b̂i, Ci

B)

with Ci
A and Ci

B being covariance matrices associated with measured points in each respec-

tive cloud. Assuming perfect correspondences, one can assume that a correct transformation

T ∗ will yield b̂i = T∗âi. Given an arbitrary transformation T, let di
(T) = bi −T · ai. The

distribution from which di
(T∗) is draw, can then be defined as:

d
(T∗)
i = N (0, Ci

B + (T∗)Ci
A(T∗)T )

Gen-ICP then uses Maximum likelihood estimation (MLE) to iteratively compute a trans-

formation T, yielding the following minimization problem.

T = argmin
T

∑n
i=0di

(T)T (Ci
B + (T∗)Ci

A(T∗)T )
−1
di

(T)

This formula replaces the Euclidian error metric of the previous ICP algorithms. Different

values of Ci
A and Ci

B will transform the algorithm from point-to-point, point-to-plane, and

plane-to-plane.

To model point-to-point ICP one may set Ci
B = I, and Ci

A = 0. This gives the formula

T = argmin
T

∑n
i=0d

(T)
i

T
di

(T), which is exactly the sum of the errors of the Euclidian distance
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Figure 3.3: Plane To Plane

between the points. Similarly, point-to-plane ICP can be modeled by setting Ci
B = Pi

−1

and Ci
A = 0, with Pi being the orthogonal projection matrix, projecting onto the span

of the surface normal at bi. This yields the error metric T = argmin
T

∑n
i=0d

(T)
i

T
Pi
−1di

(T).

This is exactly the error between a point in A, and the projected point in B.

While point-to-plane ICP only considers the surface normals of one point cloud, plane-

to-plane looks at both, assuming that the scans are made up of real world surfaces, and

not just random points in the environment. To take advantage of this, points have high

covariance along their surface planes and low covariance along their surface normals. This

effect is achieved by setting the covariances to:

C =


ε 0 0

0 1 0

0 0 1
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Where ε is a very small constant representing the covariance along the surface normal. The

Covariances of each model are then calculated by:

Ci
A = Rµi · C ·Rµi

T and Ci
B = Rνi · C ·RνiT

Where µ and ν are the normal vectors of points ai and bi respectively, and Rµ being the

rotation that transforms µi ← ai. This gives plane-to-plane a distinct advantage over

point-to-plane, since both surface are taken into account.

Generalized ICP

1: T ← T0

2: {ai ∈ A, bi ∈ B}
3: Ci

A ← {Covariance matrix associated with measured points in cloud A}
4: Ci

B ← {Covariance matrix associated with measured points in cloud B}
5: for i = 0→MaxIterations do

6: T← argmin
T

∑m
i=0 d

T
i
T

(Ci
B + T · CiA ·TT )

−1 · diT

7: end for

Figure 3.4: Algorithm: Generalized ICP

ICP algorithms are often used to reconstruct 2D and 3D models and localize robots by

computing motion between scans. There are however shortcomings depending on the sensor

modality. Range finders typically have trouble with data association. When displacements

in the scans are large, computing nearest neighbors can be difficult. If the displacement

is too large, ICP may not converge. Vision based cameras can perform data association

easily with visual features. There are times however when visual features are sparse. If data

association does not provide a sufficient amount of correspondences, ICP may not converge.

The other downside to motion estimation with cameras, is that they are just not as accurate

as range finders.

The RGB-D sensor has a distinct advantage over range finders and cameras when es-

timating motion with ICP. In areas where range finders have difficulty associating data,
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when displacements in the scans are too large, the RGB-D camera can rely on visual fea-

ture matching. In feature limited environments, where vision based systems would fail,

RGB-D sensors can rely on pure depth data. The later example can be seen in our GMU

hallway experiments.

3.4 RGB-D ICP

The RGB-D ICP method, developed by [18] is one of the first algorithms created for RGB-

D mapping. RGB-D images are first matched using SIFT features and a motion between

them is estimated with RANSAC. The RANSAC estimate is then used to initialize point-

to-plane ICP. The transformations from both RANSAC and point-to-plane ICP are both

considered in the objective function where a user parameter (α) gives weight to two sets of

correspondences. This allows one to bias the sensor towards a more visual or depth based

estimation. The Algorithm is coined RGBD-ICP and can be seen in Figure 3.4.

RGBD-ICP[A,B]

1: FA ← ExtractFeatures(A)
2: FB ← ExtractFeatures(B)
3: [t∗, Af ]← RANSAC(FA, FB)
4: while iterations ≤ maxIterations ∨ Converged == true do
5: Ad ← ComputeClosestPoints(A,B, t∗)

6: t∗ ← argmin
t

α( 1
|Af |

∑
i∈Af

wi‖t · bi − ai‖2 + (1− α)( 1
|Ad|

∑
j∈Ad

wj‖ηj(t · bj − aj)‖2

7: end while

Figure 3.5: Algorithm: RGBD-ICP

When α is set to zero, only the ICP features are considered and when α is set to one

only RANSAC transformations are taken into account. As transformations are calculated,

loop closure and global optimization is also being performed to keep an accurate map.
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3.5 RGB-D SLAM

The RGB-D SLAM method is very similar to [18], it can be summarized in the following

steps:

1. Input: RGB-D Images;

2. feature extraction and matching (SURF);

3. motion estimation (RANSAC);

4. motion refinement (ICP);

5. motion optimization (HOGMAN);

The first step is simply the acquisition of RGB-D frames from the sensor. Features are

extracted using the SURF method instead of SIFT. An initial motion is then estimated and

outliers are removed using the RANSAC method and the estimated motion is then refined by

generalized ICP. The final step is global optimization performed by the HOGMAN method.

In contrast to [18], features are extracted with the SURF method instead of SIFT, and

motion is refined using generalized ICP instead of point-to-plane ICP.

A downside of both [17] and [18] is the mandatory use of RANSAC. There are situations

where the initial motion estimated by RANSAC is wrong to a degree where initializing ICP

with this motion will cause the algorithm to not converge. In this situation it is far better to

ignore the RANSAC result and start generalized ICP from scratch. This can be performed

using the user given weights in [18], but there must be a method to switch between RANSAC

and ICP in order to successfully traverse dynamic environments. The main contribution of

our paper is the use of generalized plane-to-plane ICP, as well as a novel approach to using

both RANSAC and GICP together to solve for these situations that are difficult for RGB-D

sensors to overcome.
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Chapter 4: Dynamic RGB-D Mapping

In this section our approach to motion estimation between two views is described. Our

method combines matching and motion estimation strategies found in both visual and range

sensing modalities. The general outline of a common RGB-D mapping technique consists

of the following steps:

1. Feature detection and matching;

2. Initial rigid body motion estimation with RANSAC;

3. Estimation refinement with ICP registration;

This method however is not robust in situations when RANSAC fails. This can happen

for two reasons: there are not enough visual features in the environment, or there are

not enough common features between the two frames. The former case can be seen in

common indoor environments such as office hallways. The latter case can be attributed

to rapid movement, small overlap between consecutive views or possible data loss due to

communication and threading issues. An example of this can be seen in Figure 4.1, the only

overlap between the two frames is the corner wall which is essentially featureless. Range

sensor scans however would be able to easily associate the data points between the two

frames. In all of these scenarios the motion estimate derived from RANSAC may not be

representative of the true motion and initializing ICP with this motion can cause ICP to

not converge. We propose a method to overcome these weaknesses by using generalized

ICP not as a motion refinement tool but as a fallback method if RANSAC provides an

unsatisfactory result.
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Figure 4.1: Limited matching features.

4.1 Dynamic RGB-D Mapping

To overcome the problems of a feature limited environment, we have developed an algorithm

that is capable of dynamically alternating between motion estimation techniques. A general

flow of our algorithm is detailed in Figure 4.1.

There are three possible paths in our algorithm. The first two start with feature extrac-

tion and matching with SIFT features, motion estimation and outlier rejection based off of

the visual correspondences is then performed by RANSAC. After this step the performance

of RANSAC is analyzed, based off of the error returned from the estimation, as well as the

amount of visual correspondences that were found to be inliers. If the result is satisfactory

then the motion estimate is accepted. In the case of the estimate’s error being high gener-

alized ICP is used to refine the estimation. The third case estimates a motion solely from

generalized ICP and a random subset of the RGB-D depth data. This is triggered when

any of the following happens:

1. There are not enough visual correspondences to compute an estimate with

RANSAC.

2. The motion estimate generated by RANSAC has errors high enough to

hinder ICP refinement.

3. RANSAC failed to find a motion estimate.
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Figure 4.2: plane-to-plane algorithm flow

In any of these cases a motion estimate generated by RANSAC will only serve to hinder

ICP from converging to the correct solution, therefore it is far better for generalized ICP to

search for a motion estimate without the initialization of RANSAC. This path also throws

away the correspondences from the feature detection and matching stage in place of a ran-

dom subset of the entire 3D range data. Generalized ICP does not require correspondences

to converge to a correct motion estimation. This is in part due to the max distance value,

a variable which ignores corresponding points that are farther away in distance than the

max value. This allows for correct registration, even when there is a lack of full overlap of

point clouds. Full details of the algorithm are in 4.1.

The algorithm begins by extracting SIFT features from two consecutive RGB-D frames.

The extracted features are then used generate a set of correspondences between the two
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Dynamic RGB-D mapping[RGBDA,RGBDB]

1: [{FA}, {FB}]← ExtractSIFT (RGBDA, RGBDB)
2: [2DPA, 2DPB]←MatchFeatures(FA, FB)
3: [3DPA, 3DPB]← ConvertTo3DWorld(2DPA, 2DPB)
4: T0 ← I
5: [T, inliers, err]← RANSAC(3DPA, 3DPB, T0)
6: if (sizeof(inliers) ≤ µ) ∨ (err ≥ τ1) then
7: if err ≥ τ2 then
8: [3DPA, 3DPB]← GetCloudSubset(3DPA, 3DPB)
9: T ← GICP (3DPA, 3DPB, I)

10: else
11: T ← GICP (3DPA, 3DPB, T )
12: end if
13: end if

Figure 4.3: Algorithm: Dynamic RGB-D mapping

images. With the help of the per pixel depth information, the matched point clouds are

converted from 2D image coordinates to 3D world coordinates. An estimate of the motion

between the frames, as well as correspondence outlier rejection is then obtained via the

RANSAC algorithm. It is here at line six that the code branches into three separate

paths. Given the user provided thresholds τ1, τ2, and µ The decision of whether to run

generalized ICP is based off of the error and number of inliers returned from the RANSAC

motion estimation step. If the error of the estimated motion generated from the RANSAC

algorithm is less then or equal τ1 and the number of inliers is less then or equal to µ,

then the RANSAC estimate is deemed successful and is used as the final answer, otherwise

generalized ICP is used. If the RANSAC error is greater then the user provided threshold

τ2, than the motion estimate provided by RANSAC is deemed to0 unstable and generalized

ICP starts from scratch. In line 8 a randomized subset of the full 3D range data provided

from the RGB-D depth frames is extracted. In line 9 generalized ICP registers the new

point clouds using only the identity matrix as an initialization. If the error is less than

τ2 but greater than τ1, generalized ICP uses the motion estimate and inliers obtained by

RANSAC to enhance the transformation T.
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Chapter 5: Experiments

In order to test the validity of our algorithm, we ran two separate experiments. The goal

of the first experiment was to compare our results to similar RGB-D mapping algorithms of

the robotics community, specifically [18] and [17]. This was accomplished by utilizing the

public RGBD mapping benchmarks provided by Technische Universität München. While

the benchmark datasets provided sequences of various lengths and purposes, all of them

contain frames rich with visual features. So the second experiment was set up in order

to achieve the goal of testing our algorithm in a feature limited environment. This was

accomplished by collecting our own data to experiment with.

5.1 RGB-D Dataset and Benchmarks

The RGB-D dataset is provided by Sturm’s group [25], with the intent to provide the

computer vision and robotics community with a set of benchmarks to evaluate RGB-D

SLAM systems and 3D object reconstruction. The RGB-D data was taken with a Microsoft

Kinect sensor, providing 640 x 480 RGB and depth frames at a 30Hz rate. They have

also provided corresponding ground truth trajectories for evaluation purposes. The ground

truth motion data was taken with a highly accurate motion capture system, composed of

eight 100Hz cameras.

For our experiments we chose five of the benchmarks from the dataset to focus our study

on. The chosen benchmarks vary in length, difficulty, presence of loops, and even purpose.

We chose these five specific benchmarks because they span a range of difficulty. For example

the XYZ benchmark shown in figure 5.1 is rich with visual features, is of short duration and

has contains an extraordinarily large amount of loops allowing for almost constant global
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Figure 5.1: XYZ: This benchmark

is the smallest benchmark in the
group. It is composed of simple
translatory motion along the princi-
ple axes with little to no rotations.
The general purpose of this algo-
rithm is for debugging camera cali-

bration issues.

Figure 5.2: Floor: With a sim-

ple sweep over a wooden floor, this
benchmark contains a vast amount
of easy to track visual features mak-
ing it an Ideal environment for
RANSAC and visual based tracking
systems. The floor benchmarks is
almost entirely on a single planar

surface.

optimization. This benchmark is almost trivial to solve and serves mainly as a tool to debug

camera calibration errors. In contrast the SLAM3 benchmark, shown in Figure 5.5 is nearly

three times the length, and contains no loops. All benchmarks are described in Figures 5.1

to 5.5 and are ordered by their difficulty.

The main goal of these experiments was to provide an empirical comparison of our algo-

rithm vs current state of the art RGBD mapping methods. This was achieved by comparing

the benchmark results of our Dynamic RGB-D mapping method (described in Chapter 4)

Figure 5.3: Room: This benchmark

is a trajectory along an entire office
room. The trajectory ends at the ex-
act place it starts from, thus clos-
ing a single loop. This benchmark is
well suited to debug drift errors and

global optimization corrections.
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Figure 5.4: Pioneer: At 155.72 sec-

onds in length, the pioneer trajec-
tory is by far the longest tested in
these experiments, as well as the
first benchmark to have data col-
lected from a pioneer robot. The
pioneer was joysticked through a
maze of tables, containers, and other
walls. There are many loops and op-
portunities for loop closure in this
benchmark, well suited to debug full

SLAM systems.

Figure 5.5: SLAM3: The Slam3

is similar to the pioneer trajectory
both in length and means of data
capture. A pioneer robot was joy-
sticked through a large hall. The
trajectory contains no loops, prov-
ing to be a difficult data set for al-
gorithms that rely heavily on global

optimization.

to the RGBD-SLAM [17] algorithm (described in section 3.5). We also compare results

against our pure RANSAC method (section 3.2) in order to validate that generalized ICP

does improve motion estimation at times.

Name Duration (sec) trajectory Length (m)

XYZ 30.09 7.112

Floor 49.87 12.569

Room 48.90 15.989

Pioneer 155.72 21.73

Slam3 111.9 18.135

Table 5.1: rgbd benchmarks
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5.2 Pioneer Hallway Data

In order to test RGB-D mapping in feature limited environments, we took data of the

hallway of our University’s engineering building. This data consists mainly of white walls

and grey carpets, with only doorways and light fixtures providing reliable features. There

are sections of the trajectory that involve tight corners with large rotations between frames.

This causes some frames to have little to no features in common. These benchmarks causes

most algorithms to fail, and must not rely on visual features to compute a transformation.

This data was taken with a Microsoft Kinect attached to a Pioneer robot.

Table 5.2: GMU Hallway Sequence
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Name Description

sample size The amount of samples used per iteration to compute a transformation

max iterations The Maximum amount of iterations.

ε Error threshold for acceptable inlier

Min. Inlier Size Minimum amount of inliers for an acceptable transformation

Table 5.3: RANSAC Parameters

Name Description

max distance The maximum translation allowed before nearest neighbor
rejection.

depth cloud size The size of the 3D cloud created if generalized ICP creates
a new motion estimate.

τ1 Generalized ICP is used to refine the motion estimate, if the
error from RANSAC is greater than this threshold.

τ2 Generalized ICP is used to estimate a new motion with
depth data independent of visual correspondences, If the
error from RANSAC is greater than this threshold.

µ The minimum amount of inliers before additional points are
added.

Table 5.4: GICP Parameters

5.2.1 Adjustable Parameters

Both the RANSAC and generalized ICP algorithms have a variety of adjustable param-

eters that affect their performance. The values of these parameters can greatly affect the

performance of the mapping system. RANSAC parameters are detailed in Table 5.3 and

the GICP parameters are detailed in Table 5.4.
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5.3 Results

Presented in this section are the results from both the RGB-D benchmark experiments

and the GMU hallway sequence experiment. While both experiments are identical in terms

of how the algorithms are run and the format and nature of data collected, the results from

both are presented in very different formats. The reason being is that the TUM benchmarks

provide highly accurate ground truth data collected from a third party sensor. Due to time

constraints we were unable to collected similar data for our hallway collection. As a result

benchmark data is presented as relative errors with respect to truth data, while the hallway

data is merely comparison of end result plots between algorithms.

5.3.1 Benchmark Results

Results of the benchmark experiments were calculated using the CVPR provided evalu-

ation tools. Means for evaluation coupled with datasets allows for algorithms developed by

the community to be tested under a common process, ensuring accurate comparison results.

There are two means of evaluation: absolute trajectory error and relative pose error.

The absolute trajectory error (ATE) evaluation method directly compares the difference

between poses in the ground truth and measured trajectory. Measuring the absolute position

between poses, this error evaluation is especially useful for evaluating the performance of

visual SLAM systems. The end result of the ATE evaluation method is the root mean

squared error (rmse) of the per pose errors summed over the entire trajectory, it is calculated

in the following way:

ATErmse =
√

1
η (
∑η

i=0 ‖ t̂i − ti ‖
2
)

t̂i =


x̂

ŷ

ẑ

 ti =


x

y

z
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Figure 5.6: Benchmark evaluation Absolute Trajectory Error

Where t̂i is the measured pose at position i, and ti is the truth pose at position i. Results

of the ATE evaluation method on selected benchmarks can be seen in Figure 5.6.

The relative pose error (RPE) evaluation method directly compares the difference error

in relative motion between all timestamps in the trajectory. This method is very useful

for evaluating the effect of accumulated drift. For example the evaluation process can only

consider timestamps of a fixed delta apart, essentially allowing the user to calculate the drift

after a given amount of time. Results from this method are separated into translational

errors and rotational errors, this can be seen in Figure 5.7 which shows the RPE results of

a 1.0 second drift on all benchmarks for every algorithm.

Considering that measured data and truth data may lie in different orientations and

positions, the evaluation method must first rotate and translate the entire measured trajec-

tory to fit with the truth data. After the two trajectories are aligned, the method simply

calculates the motion between the given timestamps. As with the ATE method, results

from the REP method will be presented in terms of the root mean squared error over the

entire trajectory. The RPE method calculates both translational and rotational errors in
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Figure 5.7: Benchmark Evaluation relative pose error

the following way:

TransRPE

√
1
η (
∑η

i=0 ‖ t̂i − ti ‖
2
)

RotRPE =
√

1
η (
∑η

i=0 ‖ Ri
T R̂i ‖

2
)

Where (t̂i, R̂i) and (ti, Ri) are the relative translations and rotations between frames of

a specified time apart, for measured and truth data respectively.

This section will detail the results of comparing the dynamic RGB-D mapping method

against various algorithms for five separate benchmarks. Results have been calculated with

both the ATE and RPE methods.
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Short Duration Benchmarks

The first set of benchmarks to be tested were the so called short duration benchmarks.

These are the 3 benchmarks under fifty seconds long: xyz, floor and room. Overall results

are detailed in Figures 5.6 and 5.7, for absolute trajectory errors and relative pose errors

respectively.

Figure 5.8: short distance RANSAC errors

In these short duration benchmarks, both RANSAC alone and the dynamic RGB-D

mapping method produced nearly identical results, while Freiburg’s RGBD-SLAM algo-

rithm performed slightly better then either. The error gap between RGBD slam and our

algorithms could be perhaps attributed to the amount of loops in these bench marks and
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benchmark Data Size Max Distance µ τ1 τ2
xyz 500 25 25 .03 .06

floor 500 25 25 .03 .06

room 500 25 25 .07 .14

Table 5.6: Short duration GICP parameters

our lack of loop closure and global optimization in our algorithm.

benchmark Max Iterations Min Inlier Ratio Sample Size ε

xyz 2000 .75 5 1

floor 2000 .75 5 1

room 2000 .75 5 1

Table 5.5: Short duration RANSAC parameters

As stated in Chapter 5, there are a few configurable parameters for both the RANSAC

and generalized ICP algorithm, parameter choices for these short duration benchmarks are

detailed in Table 5.5 and 5.6. It can be seen that all parameters remain a constant value

for every benchmark, with the exception of GICP’s error threshold. This is the maximum

RANSAC error before generalized ICP used. These values differ between benchmarks,

due to RANSAC performing differently between benchmarks. The general strategy for the

hybrid mapping method was to use GICP when RANSAC fails, to do this we must set this

error threshold at a level above the normal RANSAC errors. A look at RANSAC errors in

Figure 5.8, shows that these error values correspond to a point when only error spikes are

above the threshold.
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XYZ

The XYZ benchmark being the most simple and shortest benchmarks expectedly pro-

duced the smallest error values for every case. A comparison of realitive pose errors with

a 1.0 second drift (Figure 5.9) shows that RGBD-SLAM consistently outperforms both

our RANSAC and dynamic RGB-D method in the first 15 seconds. All algorithms per-

form nearly identical for the remainder of the benchmark but for one exception: there

are occasional error spikes seen in both the RANSAC and Dynamic RGB-D methods. An

explanation for the spikes perhaps, is our lack of global optimization.

Figure 5.9: XYZ RPE 1.0 second drift

Along with the error spikes, there is little to no effect on the results when compared

with the pure RANSAC algorithm. This can be explained by how well RANSAC performs

in this benchmark, it can be seen in Figure 5.8 that the xyz benchmark has RANSAC errors

32



Figure 5.10: XYZ Absolute Trajectory Plots (RANSAC,Dynamic RGB-D,RGB-D SLAM)
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consistently less than .04 meters.
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Floor

With its environment rich with visual features, computing visual correspondences and gen-

erating a motion estimate with RANSAC was expected to be highly successful. Figure 5.8

shows that the floor benchmark had the lowest overall RANSAC errors. For the majority

of the run all of the algorithms performed much the same.

Figure 5.11: Floor RPE 1.0 second drift

Occasional errors are seen in the beginning and end of the trajectory for both our

RANSAC and dynamic RGB-D method as well as a drift in translational error from the

RGBD-SLAM implementation in the beginning of the trajectory. These might be caused

by our lack of global optimization as there are a number of opportunities for loop closure.
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Figure 5.12: Floor Absolute Trajectory Plots (RANSAC,Dynamic RGB-D,RGB-D SLAM)
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Figure 5.12 displays the absolute trajectory error plots of all three algorithms, it is interest-

ing to note that while the summed errors in Figure 5.6 are slightly lower for RGB-D SLAM

there are points in the trajectory where the dynamic method has smaller errors, especially

in the top right corner of the plot.
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Room

The room benchmark is a sweep through an office ending at the same point as the beginning,

causing the trajectory to be one large loop. Relative pose errors with a 1.0 second drift are

posted in Figure 5.13. All three algorithms have nearly identical rotational errors with the

exception of a couple of spikes from each algorithm in different locations.

Figure 5.13: Room RPE 1.0 second drift

Our RANSAC and dynamic RGB-D methods have relatively high translational errors

near the beginning of the trajectory, near the 30 second mark however, all algorithms nearly

the same translational error. There is one very large error spike near the 25 second mark

from RGB-D SLAM that our methods managed to avoid.

As with the other two short duration benchmarks, the dynamic RGB-D method did no
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Figure 5.14: Room Absolute Trajectory Plots (RANSAC,Dynamic RGB-D,RGB-D SLAM)
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better than standalone RANSAC. It is possible that the RANSAC errors are so low, being

on average approximately 0.5 centimeters or less, that generalized ICP could not improve

upon them.
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5.3.2 Medium Distance Benchmarks

In addition to the short duration benchmarks we also tested our algorithms on two longer

trajectories, between 100 and 160 seconds in length. Overall results are detailed in Fig-

ures 5.6 and 5.7, for absolute trajectory errors and relative pose errors respectively. Per

frame RANSAC errors for our algorithm can be found in figure ??. The purpose of testing

against these benchmarks was to get an idea of how our algorithms are performing with

respect to error due to accumulated drift.

Figure 5.15: Medium distance RANSAC errors

With the absence of loop closure and global optimization we expected to perform better

in short duration benchmarks and worse in longer trajectories, but just the opposite was
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found to be true. The results of these longer trajectories are strikingly different compared to

the short distance benchmarks. In both the pioneer and slam3 trajectories our standalone

RANSAC algorithm had lower errors than RGBD-SLAM, and our dynamic RGB-D method

had lower errors than our standalone RANSAC algorithm (Figures 5.6 and 5.7).

benchmark Max Iterations Min Inlier Ratio Sample Size ε

pioneer 2000 .75 5 1

slam3 2000 .75 5 1

Table 5.7: Medium duration RANSAC parameters

benchmark Data Size Max Distance µ τ1 τ2

pioneer 500 25 25 .2 .4

slam3 500 25 25 .2 .4

Table 5.8: Medium duration GICP parameters
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Pioneer

The pioneer benchmark was our first long distance test. Relative pose errors with a 1.0

second drift are detailed for every algorithm on this benchmark in Figure 5.16. Both the

RANSAC and dynamic RGB-D mapping algorithms show consistently lower errors through-

out the trajectory. There are frequently areas where the dynamic RGB-D method corrected

errors made in the RANSAC algorithm, examples of this can be seen in translational error

at 50, 120, and 150 seconds.

Figure 5.16: Pioneer RPE 1.0 second drift

These results are very curious and unexpected. The Pioneer SLAM benchmark con-

tains many loops, which should be a great candidate for loop closure / global optimization
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Figure 5.17: Pioneer Absolute Trajectory Plots (RANSAC,Dynamic RGB-D,RGB-D
SLAM)
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improvements yet our algorithm outperforms RGBD-SLAM which implements a global op-

timization method. A possible answer to this might be a possible introduction of false loops

into their loop closure algorithms. It is also possible that their algorithm suffered from

overuse of generalized ICP and/or the initialization of generalized ICP with an inferior

RANSAC estimate caused generalized ICP not to converge. The absolute trajectory plots

(Figure 5.17) affirms that the dynamic RGB-D method’s trajectory is the closest to ground

truth.
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Slam3

Slam3 results are similar to the pioneer benchmark. Details of the relative pose errors are

in Figure 5.18. It shows that there are times when the RGB-D SLAM’s translational error

is larger by a full meter. This can be seen near frame 50, frame 65, and frame 98. There

are also areas where the dynamic-RGB-D method has lower errors than RANSAC, proving

that generalized ICP correcting areas where RANSAC is returning poor estimations.

Figure 5.18: SLAM3 RPE 1.0 second drift

In both medium distance benchmarks, the dynamic RGB-D mapping algorithm pro-

duced the smallest relative pose errors and absolute trajectory errors. Our algorithm not

only outperforms a global optimization algorithm in a trajectory with many loops, but it

also does so in a no loop situation as well. There are two main differences between our
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Figure 5.19: SLAM3 Absolute Trajectory Plots (RANSAC, Dynamic RGB-D, RGB-D
SLAM)
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dynamic RGB-D mapping method and RGB-D SLAM:

1. RGB-D SLAM contains global pose estimation, dynamic RGB-D mapping does not.

2. RGB-D SLAM utilizes generalized ICP to refine a motion estimate based off of

RANSAC, dynamic RGB-D chooses which algorithm to use depending on the cir-

cumstances.

These facts point to a few conclusions; either global optimization is hindering the result by

false loops or generalized ICP should not be used in all circumstances, and when it is it

should not be initialized by a motion estimate with high errors.
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5.4 Hallway Results

The intent of the hallway experiments was to see how the dynamic RGB-D method per-

formed in a feature limited environment. This was accomplished by collecting data of some

simple trajectories in the hallways of our University’s engineering building. A summary

of the trajectory is shown in Figure 5.21. The sequence is approximately 600 frames and

features blank grey walls and solid carpets. it features a straight trajectory down a hallway,

one 90◦ turn to the right and a small distance down the next hallway.

Figure 5.20: Hallway Comparison

The format of our results for this experiment are quite different from the benchmark

data. We did not have the resources or time to collect detailed truth data as was provided

with the RGBD benchmarks. Therefore the results provided are comparison plots of the

calculated trajectories as can be seen in Figure 5.4. The Figure shows the pure RANSAC

algorithm on the left in red compared with the Dynamic RGB-D method on the right in

green. Comparing these trajectories to Table 5.2, it is evident that the pure RANSAC

algorithm does not perform very well. The first straight away starting from point (0,0)
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Figure 5.21: Hallway Sequence

veers to the right by at least five meters, while the 90◦ is all but ignored. The Dynaic RGB-

D trajectory shows an accurate approximation of the trajectory. While more work needs to

be done to quantify the errors between these algorithms, it is self evident that the plane-

to-plane method can cope with these environments where the RANSAC only algorithms

cannot.
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Chapter 6: Conclusions

The primary goals of our experiments have been met. We were able to benchmark our

dynamic RGB-D algorithm against against a current state of the art method with positive

results as well as prove that dynamic RGB-D ICP can cope with scenarios that is difficult

for RGB-D sensors.

While we only tested against a limited number of benchmarks we can hypothesize on

a couple of theories. The first is that in the face of many loops, global optimization can

improve local motion estimates. The observations made in the short duration benchmark

results (Section 5.3.1) showed that the RGB-D SLAM algorithm consistently outperformed

the dynamic RGB-D mapping in simple trajectories that are rich in visual features and

contain many loops. Since very low RANSAC errors in all of the short duration benchmarks

leads us to believe that generalized ICP would do little to refine these trajectories, leaving

only one real difference between RGB-D SLAM and dynamic RGB-D, global optimization.

The second hypothesis is that as trajectories grow longer in length and become increas-

ingly difficult the need for a method of dynamically alternating between both vision and

depth based algorithms increases. This was observed when comparing our dynamic RGB-D

method with RGB-D SLAM in our two medium distance benchmark experiments. Despite

our algorithm lacking loop closure we were able to drastically outperform RGB-D SLAM

in both a trajectory that contained many loops and one that contained none. Disregarding

global optimization the main difference between our algorithm and RGB-D SLAM is the

role Generalized ICP plays. In the RGB-D SLAM method, generalized ICP acted as a

mandatory refinement step, picking up where the RANSAC algorithm leaves off. In the

dynamic RGB-D method, generalized ICP and RANSAC are used according to observed

errors from the initial RANSAC motion estimate. This would allows to hypothesize that

there are certain conditions when the RANSAC motion estimate might be is off to a degree
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where it will hinder generalized ICP from converging, and may even cause further deviation

from the correct transformation. This makes it necessary at times to abandon the RANSAC

estimate and have generalized ICP start from scratch. Our RGB-D mapping algorithm does

this and has proven to outperform a state of the art RGB-D mapping algorithm, even in

absence of global optimization.

The benchmark results proved that our dynamic RGB-D mapping method was able

to successfully approximate our hallway trajectory dataset, compared to the standalone

RANSAC algorithm which did not. The initial results show that dynamic RGB-D mapping

has potential to solve the current problems of mapping with RGB-D sensors.

6.1 Future Work

Despite the successes of both the RGB-D benchmark experiments as well as the feature

limited hallway, there is still a great deal of work and improvement that can be done. This

section acts as a launch pad of ideas, and future goals for the dynamic RGB-D mapping

algorithm as well as the RGB-D mapping problem in general.

Global Optimization

In Section 5.3.1 our results showed that the dynamic RGB-D mapping algorithm could

outperform RGBD-SLAM in situations that highly favor algorithms with loop closure and

global optimization, as well as situations where loop closure had no effect. This would point

to the fact that the addition of loop closure and global optimization to our algorithm could

possibly improve are results even more. We present both a loop closure algorithm as well

as a global optimization method that could be added to our algorithm.

Loop Closure Given two images it is simple to calculate the likelihood that they are

images taken of the same space. The problem is that given a map with thousands of

images, it is too time consuming to compare a new image, with each image in the map.

Even if you disregard the past X images, the time of loop closure grows with the size of the
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map. This problem has been solved by [5]. Given a database of 50,000 images, they are able

to perform a loop query in 25ms. This is achieved by first building a hierarchical k-means

tree, consisting of images taken in the given environment. As new images are taken, their

features are extracted and pushed down the tree. Each feature will have a unique path

down the tree, this can be thought of as a features identification. An inverted file index

can be found at every leaf of the tree. If an image’s feature ID ends at the leaf, its image

index will be added to the inverted file index. For a given image, it can query the existing

database by computing IDs for each feature, and comparing it to the inverted file indices.

The hierarchical nature of the descriptor tree makes this query run very quickly.

Graph SLAM Graph SLAM (Simultaneous localization and mapping) is the the solution

to the SLAM problem using a graph structure with a probabilistic framework. The SLAM

problem is that there will always be errors in a robot’s odometry and sensors. There is

only so much the scan matching portion of the code can do about it. If the errors build up

too much it will cause the map to become inaccurate and fail. The Graph SLAM problem

can help to cope with some of the errors by incorporating loop constraints into the global

optimization framework.

Further Experiments

While the hallway experiments and results proved that using generalized ICP along with

RANSAC is a viable method for coping with feature limited environments, More experi-

ments with a better means of evaluating results needs to be performed. We propose collect-

ing data and performing experiments much in the same vein as the TUM RGB-D dataset,

with a focus on feature limited environments and difficult trajectories where current RGB-D

methods will fail. This will serve as a way to test the robustness of RGB-D mapping algo-

rithms and perhaps assist in the development of new algorithms to overcome these difficult

situations. In this thesis we tested our algorithm against five benchmarks comparing to two

separate algorithms. In order to fully grasp the performance of our algorithm, we need to

evaluate against trajectory in the benchmark dataset.
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