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Abstract

SECURITY AND INTELLIGENCE MEASURE IN ONLINE MACHINE LEARNING-
BASED DYNAMIC SPECTRUM SHARING NETWORKS

Monireh Dabaghchian, PhD

George Mason University, 2019

Dissertation Director: Dr. Kai Zeng

Cognitive radio (CR) as a spectrum sharing network is considered as a key enabling

technology for dynamic spectrum access to improve spectrum efficiency. This dissertation

studies the two aspects of spectrum sharing networks: Security and intelligence capabilities.

In the first part, we consider a primary user emulation (PUE) attacker that can send falsified

primary user signals and prevent the secondary user from utilizing the available channel.

The best attacking strategies that an attacker can apply have not been well studied. In this

thesis, for the first time, we study optimal PUE attack strategies by formulating an online

learning problem where the attacker needs to dynamically decide the attacking channel in

each time slot based on its attacking experience. The challenge in our problem is that

since the PUE attack happens in the spectrum sensing phase, the attacker cannot observe

the reward on the attacked channel. To address this challenge, we utilize the attacker’s

observation capability. We propose online learning-based attacking strategies based on the

attacker’s observation capabilities. Through our analysis, we show that with no observation

within the attacking slot, the attacker loses on the regret order, and with the observation

of at least one channel, there is a significant improvement on the attacking performance.



Observation of multiple channels does not give additional benefit to the attacker (only a

constant scaling) though it gives insight on the number of observations required to achieve

the minimum constant factor. Our proposed algorithms are optimal in the sense that their

regret upper bounds match their corresponding regret lower-bounds. We show consistency

between simulation and analytical results under various system parameters. In the second

part of the dissertation, we study the intelligence measure of these spectrum sharing devices.

Although the CR concept was invented with the core idea of realizing “cognition”, the re-

search on measuring CR cognition capabilities and intelligence is largely open. Deriving the

intelligence capabilities of CR not only can lead to the development of new CR technolo-

gies, but also makes it possible to better configure the networks by integrating CRs with

different intelligence capabilities in a more cost-efficient way. In this work, for the first time,

we propose a data-driven methodology to quantitatively analyze the intelligence factors of

the CR with learning capabilities. The basic idea of our methodology is to run various tests

on the CR in different spectrum environments under different settings and obtain various

performance results on different metrics. Then we apply factor analysis on the performance

results to identify and quantify the intelligence capabilities of the CR. More specifically, we

present a case study consisting of so many different types of CRs. CRs are different in terms

of learning-based dynamic spectrum access strategies, number of sensors, sensing accuracy,

and processing speed. Based on our methodology, we analyze the intelligence capabilities

of the CRs through extensive simulations. Four intelligence capabilities are identified for

the CRs through our analysis, which comply with the nature of the tested algorithms.



Chapter 1: Introduction to Security in Cognitive Radio

Networks

Spectrum sharing is a means to optimally and efficiently share the same wireless spectrum

bandwidth between multiple categories of users. Spectrum sharing has emerged to address

the growing demand to spectrum bandwidth among IoT devices such as Unmanned Aerial

Vehicles (UAVs) [1], connected cars [2], smart phones, with both industrial and military

applications.

There are two methods for spectrum sharing: tiered access and coexistance. The first

method, tiered access, has emerged to address the spectrum shortage problem by efficiently

utilizing the underutilized spectrum bandwidth assigned to licensed users. As we can see

in Fig. 1.1 the spectrum bandwidth assigned to licensed users is not busy all the time

and at some time intervals, some frequency bandwidths are idle. To address this problem,

Federal Communications Commission (FCC) has authorized opening spectrum bands (e.g.,

3550-3700 MHz and TV white space) owned by licensed primary users (PU) to unlicensed

secondary users (SU) when the primary users are inactive [3, 4].

Cognitive radio (CR) is a key technology that enables secondary users to learn the

spectrum environment and dynamically access the best available channel. Cognitive radios

are assumed to be smart, and are designed to identify the underutilized spectrum assigned to

the licensed users and conduct data transmission on those channels while their interference

to the licensed/primary users are controlled. This type of spectrum sharing is used in the

Citizens Broadband Radio Service (CBRS). According to the second method, coexistence,

several categories of users share the same frequency spectrum bandwidth, simultaneously.

An example of such spectrum sharing systems is Bluetooth and 2.4-GHz Wi-Fi.

In this work, we consider the tiered access based on which cognitive radios only access

1



Figure 1.1: Spectrum bandwidth assigned to licensed users is not all the time busy on all
the frequency channels.

the channel under controlled interference to primary users and tend to be more active when

primary users are idle. Meanwhile, an attacker can send signals emulating the primary users

to manipulate the spectrum environment, preventing a secondary user from utilizing the

available channel. This attack is called primary user emulation (PUE) attack [5, 6, 7, 8, 9].

Existing works on PUE attacks mainly focus on PUE attack detection [10, 11] and de-

fending strategies [7, 12]. However, there is a lack of study on the optimal PUE attacking

strategies. Better understanding of the optimal attacking strategies will enable us to quan-

tify the severeness or impact of a PUE attacker on the secondary user’s throughput. It will

also shed light on the design of defending strategies.

In practice, an attacker may not have any prior knowledge of the primary user activity

characteristics or the secondary user dynamic spectrum access strategies. Therefore, it

needs to learn the environment and attack at the same time. In this thesis, for the first

time, we study the optimal PUE attacking strategies without any assumption on the prior

knowledge of the primary user activity or secondary user accessing strategies. We formulate

this problem as an online learning problem. We use the words play, action taking, and attack

interchangeably throughout the manuscript.

2



Different from all the existing works on online learning based PUE attack defending

strategies [7, 12], in our problem, an attacker cannot observe the reward on the attacked

channel. Considering a time-slotted system, the PUE attack usually happens in the channel

sensing period, in which a secondary user attempting to access a channel conducts spectrum

sensing to decide the presence of a primary user. If a secondary user senses the attacked

channel, it will believe the primary user is active so that it will not transmit the data in order

to avoid interfering with the primary user. In this case, the PUE attack is effective since

it disrupts the secondary user’s communication and affects its knowledge of the spectrum

availability. In the other case, if there is no secondary user attempting to access the attacked

channel, the attacker makes no impact on the secondary user, so the attack is ineffective.

However, the attacker cannot differentiate between the two cases when it launches a PUE

attack on a channel because no secondary user will be observed on the attacked channel

whether a secondary user has ever attempted to access the channel or not.

The key for the attacker to launch effective PUE attacks is to learn which channel or

channels a secondary user is most likely to access. To do so, the attacker needs to make

observations on the channels. As a result, the attacker’s performance is dependent on its

observation capability. We define the observation capability of the attacker as the number

of the channels it can observe within the same time slot after launching the attack. We

propose two attacking schemes based on the attacker’s observation capability.

In the first scheme called Attack-OR-Observe (AORO), an attacker, if it attacks, cannot

make any observation in the same time slot due to the short slot duration in highly dynamic

systems [13] or when the channel switching time is long. We call this attacker an attacker

with no observation capability within the same time slot (since no observation is possible

if it attacks). To learn the most rewarding channel though, the attacker needs to dedicate

some time slots for observation only without launching any attacks. On the other hand, an

attacker could be able to attack a channel in the sensing phase and observe other channels

in the data transmission phase within the same time slot if it can switch between channels

fast enough. We call this attacking scheme, Attack-But-Observe-Another (ABOA).

3



For the AORO case, we propose an online learning algorithm called POLA -Play or

Observe Learning Algorithm- to dynamically decide between attack and observation and

then to choose a channel for the decided action, in a given time slot. Through theoretical

analysis, we prove that POLA achieves a regret in the order of Õ(
3
√
T 2) where T is the

number of slots the CR network operates. The Õ indicates there are some dependency on

logarithmic factors, too. Its higher slope regret is due to the fact that it cannot attack (gain

reward) and observe (learn) simultaneously in a given time slot. We show the optimality of

our algorithm by matching its regret upper bound with its lower bound.

For the ABOA case, we propose EXP3-DO -EXP3 with Deterministic Observation and

PROLA -Play and Random Observe Learning Algorithm- online learning algorithms to

be applied by the PUE attacker. EXP3-DO deterministically chooses the attacking and

observation channels dynamically and deterministically, respectively. EXP3-DO achieves a

regret in the order of Õ(
3
√
T 2). PROLA dynamically chooses the attacking and observing

channels in each time slot. The PROLA learning algorithm’s observation policy fits a

specific group of graphs called time-varying partially observable feedback graphs [14]. It is

derived in [14] that these feedback graphs lead to a regret in the order of Õ(
3
√
T 2). However,

our algorithm, PROLA, is based on a new theoretical framework and we prove its regret is

in the order of Õ(
√
T ). We then prove the regret lower bounds for the algorithms are in

the order of Ω̃(
3
√
T 2) and Ω̃(

√
T ), respectively which match their upper bound and shows

our algorithm’s optimality.

All algorithms proposed address the attacker’s observation capabilities and can be ap-

plied as optimal PUE attacking strategies without any prior knowledge of the primary user

activity and secondary user access strategies.

We further generalize PROLA to multi-channel observations where an attacker can

observe multiple channels within the same time slot. By analyzing its regret, we come to

the conclusion that increasing the observation capability from one to multiple channels does

not give additional benefit to the attacker in terms of regret order. It only improves the

4



constant factor of the regret.

Our main contributions are summarized as follows:

• We formulate the PUE attack as an online learning problem without any assumption

on the prior knowledge of either primary user activity characteristics or secondary

user dynamic channel access strategies.

• We propose two attacking schemes, AORO and ABOA, that model the behavior of a

PUE attacker. For the AORO case, a PUE attacker, in a given time slot, dynamically

decides either to attack or observe; then chooses a channel for the decision it made.

While in the ABOA case, the PUE attacker dynamically chooses one channel to

attack and chooses at least one other channel to observe both deterministically and

dynamically within the same time slot.

• We propose an online learning algorithm POLA for the AORO case. POLA achieves

an optimal learning regret in the order of Θ̃(
3
√
T 2). We show its optimality by matching

its regret lower and upper bounds.

• For the ABOA case, we propose two online learning algorithms: EXP3-DO to choose

the attacking and observing channels dynamically and deterministically respectively,

and it achieves an optimal regret in the order of Θ̃(
3
√
T 2). Another proposed algorithm,

PROLA, to dynamically decide the attacking and observing channels. We prove that

PROLA achieves an optimal regret order of Θ̃(
√
T ) by deriving its regret upper bound

and lower bound. This shows that:

1) with a carefully designed observation capability of at least one within the attacking

slot, there is a significant improvement on the performance of the attacker.

2) Theoretical contribution: For PROLA, despite observing the actions partially, it

achieves an optimal regret order of Θ̃(
√
T ) which is better than a known bound of

Θ̃(
3
√
T 2). We accomplish it by proposing randomized time-variable feedback graphs.

5



• The algorithm and the analysis of the PROLA are further generalized to multi-channel

observations.

• We conduct simulations to evaluate the performance of the proposed algorithms under

various system parameters.

Through theoretical analysis and simulations under various system parameters, we have

the following findings:

• With no observation at all within the attacking slot, the attacker loses on the regret

order. While with the observation of at least one channel if designed optimally, there

is a significant improvement on the attacking performance.

• Observation of multiple channels in the PROLA algorithm does not give additional

benefit to the attacker in terms of regret order. The regret is proportional to
√

1/m,

where m is the number of channels observed by the attacker. Based on this relation,

the regret is a monotonically decreasing and a convex function of the number of

observing channels. As more observing channels are added, the reduction in the

regret becomes marginal. Therefore, a relatively small number of observing channels

is sufficient to approach a small constant factor.

• The attacker’s regret is proportional to
√
K lnK, where K is the total number of

channels.

1.1 Related Work to CRN Security and Online Learning

1.1.1 PUE Attacks in Cognitive Radio Networks

Primary User Emulation (PUE) attack is one of the unique attacks against cognitive radio

networks. In a PUE attack, a secondary user tries to emulate the primary user’s signal

and pretend to be a primary user. The goal of such an attacker is either selfish to prevent

other secondary users from accessing the channel, so it can itself gain exclusive access to

the channels or to generate a Denial of Service (DoS) attack towards the secondary users.

6



Figure 1.2: A PUE attacker in a cognitive radio network trying to disrupt the communica-
tion between secondary users, Alice and Bob.

Figure 1.2 represents a PUE attacker in the cognitive radio system. In order to have an

effective PUE attack, the attacker has to have knowledge on the spectrum sensing technique

applied by the secondary users, so it can emulate those features of the primary signal. As

an example, if the SUs apply energy detectors, the attacker should create signals with the

same power of the PUs. However, if the SUs are applying a feature-based detectors, then

the attacker has to emulate the associated features to the PU.

Existing work on PUE attacks mainly focus on PUE attack detection [10, 11] and de-

fending strategies [7, 12]. There are few works discussing attacking strategies under dynamic

spectrum access scenarios. In [12], the attacker applies a partially observable Markov de-

cision process (POMDP) framework to find the attacking channel in each time slot. It is

assumed that the attacker can observe the reward on the attacking channel. That is, the

attacker knows if a secondary user is ever trying to access a channel or not. In [7], it is

assumed that the attacker is always aware of the best channel to attack. However, there is

no methodology proposed or proved on how the best attacking channel can be decided.

The optimal PUE attack strategy without any prior knowledge of the primary user

activity and secondary user access strategies is not well understood. In this thesis, we fill

this gap by formulating this problem as an online learning problem. Our problem is also

7



unique in that the attacker cannot observe the reward on the attacking channel due to the

nature of PUE attack.

1.1.2 Multi-armed Bandit Problems

There is a rich literature about online learning algorithms. The most related ones to our

work are multi-armed bandit (MAB) problems [15, 16, 17, 18, 19]. The MAB problems have

many applications in cognitive radio networks with learning capabilities [7, 20, 21, 22]. In

such problems, an agent plays a machine repeatedly and obtains a reward when it takes a

certain action at each time. Any time when choosing an action the agent faces a dilemma of

whether to take the best rewarding action known so far or to try other actions to find even

better ones. Trying to learn and optimize his actions, the agent needs to trade off between

exploration and exploitation. On one hand the agent needs to explore all the actions often

enough to learn which is the most rewarding one and on the other hand he needs to exploit

the believed best rewarding action to minimize his overall regret.

For most existing MAB frameworks as explained, the agent needs to observe the reward

on the taken action. Therefore, these frameworks cannot be directly applied to our problem

where a PUE attacker cannot observe the reward on the attacking channel. Most recently,

Alon et al. generalize the cases of MAB problems into feedback graphs [14]. In this frame-

work, they study the online learning with side observations. They show in their work that

if an agent takes an action without observing its reward, but observes the reward of all the

other actions, it can achieve an optimal regret in the order of Õ(
√
T ). However, the agent

can only achieve a regret of Õ(
3
√
T 2) if it cannot observe the rewards on all the other actions

simultaneously. In other words, even one missing edge in the feedback graph leads to the

regret of Õ(
3
√
T 2).

In this thesis, we propose two novel online learning policies. The first one, POLA, for

the case when only either observation or attack is possible within a time slot, is shown

to achieve a regret in the order of Õ(
3
√
T 2). We then advance this theoretical study by

proposing a strategy, PROLA, which is suitable for an attacker (learning agent) with higher

8



observation capabilities within the acting time step. We prove that PROLA achieves an

optimal regret in the order of Õ(
√
T ) without observing the rewards on all the channels

other than the attacking one simultaneously. In PROLA, the attacker uniformly randomly

selects at least one channel other than the attacking one to observe in each time slot. Our

framework is called randomized time-variable feedback graph.

1.1.3 Jamming Attacks

There are several works formulating jamming attacks and anti-jamming strategies as online

learning problems [21, 23, 24, 25]. In jamming attacks, an attacker can usually observe the

reward on the attacking channel where an ongoing communication between legitimate users

can be detected. Also it is possible for the defenders to learn whether they are defending

against a jammer or a PUE attacker by observing the reward on the accessed channel. PUE

attacks are different in that the attacker attacks the channel sensing phase and prevents

a secondary user from utilizing an available channel. As a result, a PUE attacker cannot

observe the instantaneous reward on the attacked channel. That is, it cannot decide if an

attack is effective or not.

1.1.4 Adaptive Opponents

Wang et al. study the outcome/performance of two adaptive opponents when each of the

agents applies a no regret learning-based access strategy [21] . One agent tries to catch the

other on a channel and the other one tries to evade it. Both learning algorithms applied

by the opponents are no regret algorithms and are designed for oblivious environments. In

other words, each of the learning algorithms is designed for benign environments and non

of them assumes an adaptive/learning-based opponent. It is shown in this work, that both

opponents applying a no-regret learning-based algorithm, reach an equilibrium which is in

fact a Nash equilibrium in that case. In other words, despite the fact that the learning-

based algorithms applied are originally proposed for oblivious environments, the two agents

applying these algorithms act reasonably well to achieve an equilibrium. Motivated by
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this work, in our simulations, we have considered a learning-based secondary user. More

specifically, even though we proposed learning-based algorithms for oblivious environments,

in the simulations, we evaluate its performance in an adaptive environment. The simulation

results show the rationality of the attacker that even against an adaptive opponent (learning-

based cognitive radio), it performs well and achieves a regret below the derived upper bound.
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Chapter 2: System Model and Problem Formulation

We consider a cognitive radio network consisting of several primary users, multiple sec-

ondary users, and one attacker. There are K (K > 1) channels in the network. We assume

the system is operated in a time-slotted fashion.

2.1 Primary User

In each time slot, each primary user is either active (on) or inactive (off). We assume the

on-off sequence of PUs on the channels is unknown to the attacker a priori. In other words,

the PU activity can follow any distribution or can even be arbitrary.

2.2 Secondary User

The secondary users may apply any dynamic spectrum access policy [26, 27, 28]. In each

time slot, each SU conducts spectrum sensing, data transmission, and learning in three

consecutive phases as shown in Fig. 2.1(a).

At the beginning of each time slot, each secondary user senses a channel it attempts

to access. If it finds the channel idle (i.e., the primary user is inactive), then accesses

this channel; otherwise, it remains silent till the end of the current slot in order to avoid

interference to the primary user. At the end of the slot, it applies a learning algorithm

to decide which channel it will attempt to access in the next time slot based on its past

channel access experiences.

We assume the secondary users cannot differentiate the attacking signal from the genuine

primary user signal. That is, in a time slot, when the attacker launches a PUE attack on

the channel a secondary user attempts to access, the secondary user will not transmit any

data on that channel.

11



Figure 2.1: Time slot structure of a) an SU and b,c,d) a PUE attacker.

2.3 Attacker

We assume a smart PUE attacker with learning capability. We do not consider attack on

the PUs. The attacker may have different observation capabilities. Observation capability

is defined as the number of channels the attacker can observe after the attack period within

the same time-slot. Observation capabilities of the attacker are impacted by the overall

number of it’s antennas, time slot duration, switching time, etc.

Within a time-slot, an attacker with at least one observation capability conducts three

different operations. First in the attacking phase, the attacker launches the PUE attack by

sending signals emulating the primary user’s signals [12] to attack the SUs. Note that, in

this phase, the attacker has no idea if its attack is effective or not. That is, it does not know

if a secondary user is ever trying to access the attacking channel or not. In the observation

phase, the attacker is supposed to observe the communication on at least one other channel.

The attacker can even observe the attacked channel in the observation phase, however, in

that case it will sense nothing since it has attacked the channel by emulating the PU signal

and scared away any potential SU attempting to access the channel. So from learning

point of view, observing the attacked channel does not provide any useful information on

the SUs’ activity. Therefore, it only gets useful information when observing channels other

than the attacked one. Observing a different channel, the attacker may detect a primary
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user signal, a secondary user signal, or nothing on the observing channel. The attacker

applies its past observations in the learning phase to optimize its future attacks. At the

end of the learning period, it decides which channels it attempts to attack and observe in

the next slot. Figure 2.1(b) shows the time slot structure for an attacker with at least one

observation capability.

If the attacker has no observation capability within the attacking time slot, at the end

of each time slot it still applies a learning strategy based on which, it decides whether to

dedicate the next time slot for attack or observation, then chooses a channel for either of

them. Figure 2.1(c,d) show the time slot structure for an attacker with no observation

capability in the attacking time slot. As shown in these two figures, the attacker conducts

either attack or observation at each time slot.

2.4 Problem Formulation

Since the attacker needs to learn and attack at the same time and it has no prior knowledge

of the primary user activity or secondary user access strategies, we formulate this problem

as an online learning problem.

We consider T as the total number of time slots the network operates. We define xt(j)

as the attacker’s reward on channel j at time slot t (1 ≤ j ≤ K, 1 ≤ t ≤ T ). Without loss

of generality, we normalize xt(j) ∈ [0, 1]. More specifically:

xt(j) =


1, SU is on channel j at time t

0, o.w.

. (2.1)

Suppose the attacker applies a learning policy ϕ to select the attacking and observing

channels. The aggregated expected reward of attacks by time slot T is equal to

Gϕ(T ) = Eϕ

[
T∑
t=1

xt(It)

]
, (2.2)

13



Table 2.1: Main Notation

T total number of time slots
K total number of channels
It index of the channel to be attacked at time t
Jt index of the channel to be observed at time t
R total regret of the attacker in Algorithm 1
γ exploration rate
η learning rate

pt (i) attack distribution on channels at time t
qt (i) observation distribution on channels at time t in Algorithm 1
ωt (i) weight assigned to channel i at time t
δt observation probability at time t in Algorithm 1

where It indicates the channel chosen at time t to be attacked. The attacker’s goal is

to maximize the expected value of the aggregated attacking reward, thus to minimize the

throughput of the secondary user,

maximize Gϕ(T ). (2.3)

For a learning algorithm, regret is commonly used to measure its performance. The

regret of the attacker can be defined as follows

Regret = Gmax −Gϕ (T ) , (2.4)

where

Gmax = max
j

T∑
t=1

xt (j) . (2.5)

The regret measures the gap between the accumulated reward achieved applying a learn-

ing algorithm and the maximum accumulated reward the attacker can obtain when it keeps

attacking the single best channel. Single best channel is the channel with highest accumu-

lated reward up to time T [17]. Then the problem can be transformed to minimize the
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regret

minimize Gmax −Gϕ (T ) . (2.6)

Table I summarizes the main notation used.
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Chapter 3: Online Learning-Based Attacking Strategy

In this section, we propose three novel online learning algorithms for the attacker. These

algorithms do not require the attacker to observe the reward on the attacked channel. More-

over, our algorithms can be applied in any other application with the same requirements.

The first algorithm proposed, POLA, is suitable for an attacker with no observation

capability in the attacking time slot . For this attacker, either attack or observation is

feasible within each time slot. Based on this learning strategy, the attacker decides at each

time slot whether to attack or observe and chooses a channel for either of them, dynamically.

The assumption here is that, any time the attacker decides to make observation, it observes

only one channel since time slot duration has been considered short or switching costs are

high compared to the time slot duration.

The second algorithm proposed is called EXP3-DO. EXP3-DO is a non-stochastic online

learning algorithm for the attacker to decide which channel to attack and observe in each

time slot. The algorithm does not require the attacker to observe the reward on the attacked

channel, but assuming the attacker can observe the reward on one other channel.

The third algorithm, PROLA, is proposed for an attacker with at least one observa-

tion capability. Based on this learning policy, at each time, the attacker chooses channels

dynamically for both attack and observation. In the following, we assume the attacker’s

observation capability is one. We generalize it to multiple channel observation capability in

Section 3.4.

All algorithms are considered as no-regret online learning algorithms in the sense that

the incremental regret between two consecutive time slots diminishes to zero as time goes to

infinity. The first one, POLA, achieves an optimal regret in the order of Õ(
3
√
T 2). This higher

slope arises from the fact that at each time slot, the attacker gains only some reward by

attacking a channel without updating its learning or it learns by making observation without
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Figure 3.1: Decision Making process based on the POLA strategy: First the agent decides
between play and observe, then for either of them chooses a channel dynamically.

being able to gain any reward. The EXP3-DO Algorithm, achieves a regret in the order of

O(T
2
3 ). PROLA, is also optimal with the regret proved in the order of Õ(

√
T ). Comparing

these algorithms and the generalization of the latter together shows that, changing from

no observation capability in the same time slot to one observation capability results in a

significant improvement in the regret order; this is in comparison to changing from one

observation capability to multiple observation capability which does not give any benefits

in terms of regret order. However, multiple channel observation capability, provides insight

to find the appropriate number of observations required to achieve the minimum constant

factor in the regret upper bound.

3.1 Attacking Strategy 1: POLA Learning Algorithm

POLA is an online learning algorithm for the learning of an agent with no observation

capability within the attacking time slot. In other words, the agent cannot play and observe

simultaneously. If modeled properly as a feedback graph as is shown in Appendix A, this

problem can be solved based on the EXP3.G algorithm presented in [14]. However, our
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proposed learning algorithm, POLA, leads to a smaller regret constant compared to the

one in [14] and it is much easier to understand. Based on the POLA attacking strategy,

the attacker at each time slot decides between attacking and observation, dynamically. If

it decides to attack, it applies an exponential weighting distribution based on the previous

observations it has made. It chooses a channel uniformly at random if it decides to make an

observation. Figure 3.1 represents the decision making structure of POLA. The proposed

algorithm is presented in Algorithm 1.

Since the attacker is not able to attack and observe within the same time slot simul-

taneously, it needs to trade off between attacking and observation cycles. From one side

the attacker needs to make observations to learn the most rewarding channel to attack.

From the other side, it needs to attack often enough to minimize his regret. So, δt which

represents the trade off between attack and observation needs to be chosen carefully.

In step 2 of Algorithm 1, x̂t(j) represents an unbiased estimate of the reward xt(j). In

order to derive x̂t(j), we divide the xt(j) by the probability this channel is chosen to be

observed which is equal to δt/K. The term δt/K indicates that in order for each channel

to be chosen to be observed, first the algorithm needs to decide to make observation with

probability δt and then to choose that channel for observation with probability 1/K.

For any agent that acts based on the Algorithm 1, the following theorem holds.

Theorem 1. For any K ≥ 2 and for any η ≤ 3

√
lnK
K2T

, the upper bound on the expected regret

of Algorithm 1

Gmax −E [GPOLA] ≤ (e− 2)ηK

3

4

3

√
(T + 1)4

K lnK
+
K lnK

4

+
lnK

η
+

3

2

3
√
KT 2 lnK (3.1)

holds for any assignment of rewards for any T > 0.
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Algorithm 1: POLA, Play or Observe Learning Algorithm

Parameter: η ∈
(

0, 3
√

lnK
K2T

]
.

Initialization: ω1(i) = 1, i = 1, ...,K.

For each t = 1, 2, ..., T

1. Set δt = min

{
1, 3
√

K lnK
t

}
.

Observe with probability δt and go to step 2.

Attack with probability 1− δt and go to step 3.

2. Set

qt(i) =
1

K
, i = 1, ...,K

Choose Jt ∼ qt and observe the reward xt(Jt).

For j = 1, 2, ...,K

x̂t(j) =


xt(j)

δt(1/K) , j = Jt

0, o.w.,

ωt+1(j) = ωt(j) exp(ηx̂t(j)),

Go back to step 1.

3. Set
pt(i) =

ωt(i)
K∑
j=1

ωt(j)

, i = 1, ...,K

Attack channel It ∼ pt and accumulate the unobservable reward xt(It).

For j = 1, 2, ...,K

x̂t(j) = 0, ωt+1(j) = ωt(j),

Go back to step 1.
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Proof of Theorem 1. The regret at time t is a random variable equal to,

r(t) =


xt(j

∗)−EPOLA,A [xt(It)] ,Attack

xt(j
∗)−EPOLA,O [xt(It)] = xt(j

∗) ,Observe

where j∗ is the index of the best channel. The expected value of regret at time t is equal to

E [r(t)] = (1− δt) (xt(j
∗)−EPOLA,A [xt(It)]) + δt xt(j

∗),

(3.2)

where the expectation is w.r.t. to the randomness in the attacker’s attack policy. Expected

value of accumulated regret, R, is

E [R] = E

[
T∑
t=1

r(t)

]
≤

T∑
t=1

xt(j
∗)−

T∑
t=1

EPOLA,A [xt(It)] +
T∑
t=1

δt.

(3.3)

The inequality results from the fact that δt ≥ 0 and xt(j
∗) ≤ 1. It is also assumed that

xt(i) ≤ xt(j
∗) for all i. The regret in equation (3.3) consists of two parts. The first one

consists of the first two terms in this equation and it arises as a result of the attacker not

attacking the most rewarding channel all the time but attacking some other low rewarding

channels. The second part which consists of the last term in the equation is due to the

observations made by the attacker in which it gains no reward. We derive an upper bound

on each part separately, then add them together.

δt plays the key role in minimizing the regret. First of all, δt needs to be decaying since

otherwise it leads to a linear growth of regret. So the key idea in designing a no-regret

algorithm is to choose an appropriate decaying function for δt.

From one side, slowly decaying δt is desired from learning point of view; however, it
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results in a larger value of regret since staying more in the observation phase precludes

the attacker from launching attacks and gaining rewards. On the other hand, if δt decays

too fast, the attacker is very likely to settle in a wrong channel since it does not have

enough time to learn the most rewarding channel. We choose δt = min

{
1, 3
√

K lnK
t

}
and

our analysis shows the optimality of this function in minimizing the regret.

Below is the derivation of the upper bound for the first term of regret in equation (3.3).

For a single t

Wt+1

Wt
=

K∑
i=1

ωt(i)

Wt
exp(ηx̂t(i))

≤
K∑
i=1

pt(i)[1 + ηx̂t(i) + (e− 2)η2x̂2t (i)]

≤ exp

η K∑
i=1

pt(i)x̂t(i) + (e− 2)η2
K∑
i=1

pt(i)x̂
2
t (i)

, (3.4)

where the equality follows from the definition of Wt+1 =
∑K

i=1 ωt+1 (i) and ωt+1 (i) in Al-

gorithm 1. Also the last inequality follows from the fact that ex ≥ 1 + x. Finally, the first

inequality holds by definition of pt(i) in Algorithm 1 and since ex ≤ 1 + x + (e − 2)x2 for

x ≤ 1. In this case, we need ηx̂t(i) ≤ 1. Based on our algorithm, ηx̂t(i) = 0 if i 6= Jt

and for i = Jt we have ηx̂t(i) = η xt(i)
δt

1
K

≤ ηK 3

√
T

K lnK , since xt(i) ≤ 1 and δt ≥ 3

√
K lnK
T for

T ≥ K lnK. This is equivalent to η ≤ 1

K 3
√

T
K lnK

= 3

√
lnK
K2T

.

By taking the ln and summing over t = 1 to T on both sides of equation (3.4), the left

hand side (LHS) of the equation will be equal to

21



T∑
t=1

ln
Wt+1

Wt
= ln

WT+1

W1
≥ lnωT+1(j)− lnK = η

T∑
t=1

x̂t(j)− lnK. (3.5)

By combining (3.5) with (3.4),

η
T∑
t=1

x̂t(j)− lnK ≤ η
T∑
t=1

K∑
i=1

pt(i)x̂t(i) + (e− 2)η2
T∑
t=1

K∑
i=1

pt(i)x̂
2
t (i). (3.6)

We take the expectation w.r.t. the randomness in x̂, substitute j by j∗ since j can be

any of the actions, use the definition of EPOLA,A[xt(It)], and with a little simplification and

rearranging the equation we get the following,

T∑
t=1

xt(j
∗)−

T∑
t=1

EPOLA,A [xt(It)] ≤ (e− 2)ηK
T∑
t=1

1

δt
+

lnK

η
. (3.7)

The upper bound on
T∑
t=1

1
δt

is equal to 3
4
3

√
(T+1)4

K lnK + K lnK
4 which gives us,

T∑
t=1

xt(j
∗)−

T∑
t=1

EPOLA,A [xt(It)]

≤ lnK

η
+ (e− 2)ηK

3

4

3

√
(T + 1)4

K lnK
+
K lnK

4

 . (3.8)

The upper bound on the second term of equation (3.3) is

T∑
t=1

δt =
T∑
t=1

min

{
1,

3

√
K lnK

t

}
≤ 3

2

3
√
KT 2 lnK. (3.9)

Summing up the equation (3.8) and equation (3.9) gives us the regret upper bound.
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By choosing appropriate values for η, the above upper bound on the regret can be

minimized.

Corollary 1. For any T > 2.577K lnK, we consider the input parameter

η =

√√√√√ lnK

(e− 2)K

(
3
4

3

√
(T+1)4

K lnK + K lnK
4

) .

Then

Gmax −E[GPOLA] ≤ (
√

3(e− 2) +
3

2
)
3
√
T 2K lnK

holds for any arbitrary assignment of rewards.

Proof of Corollary 1. We sketch the proof as follows. By getting the derivative from the

statement in Theorem 1 with respect to η, we find the optimal value for η. Since η ≤ 3

√
lnK
K2T

,

in order for the regret bound to hold, we need T ≥ 8

3
√

3(e−2)3
K lnK = 2.577K lnK. By

plugging in the value of η and some simplifications the regret bound in the corollary is

achieved.

Next is a theorem on the regret lower bound for this problem under which attacking

and observation are not possible simultaneously.

Theorem 2. For K ≥ 2 and for any player strategy A, the expected weak regret of algorithm

A is lower bounded by

Gmax −E [GA] ≥ v 3
√
KT 2

for some small constant v and it holds for some assignment of rewards for any T > 0.

Proof of Theorem 2. The proof follows from the lower bound analysis in [14]. The construc-

tion is given in the Appendix.
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Figure 3.2: Channel observation strategy Deterministic, K = 6.

Based on Theorems 1 and 2, the algorithm’s regret upper bound matches its regret lower

bound which indicates POLA is an optimal online learning algorithm.

3.2 Attacking Strategy 2: EXP3-DO Learning Algorithm

In this algorithm, the attacking channel selection is based on the accumulated reward dis-

tribution on all the channels. While the observing channel is deterministically dependent

on the attacking channel. The attacker always observes the channel next to the attacking

one. It rounds to channel 1 when it attacks channel K. So we call this algorithm EXP3-DO

(EXP3 with deterministic observation). This is in comparison to EXP3 [17] in which the

rewards are observed on the same chosen action. Fig. 3.2 shows the observation strategy

employed by the attacker when K = 6. The Algorithm shows the online learning-based

attack strategy employed by the attacker.

The design of the EXP3-DO is motivated by [14] in which the idea of bandit graphs is

presented. A bandit graph is a generalization of EXP3 algorithm in which the actions and

the following observations from the chosen action are presented by the nodes and the edges

of a graph, respectively.
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Algorithm 2: EXP3-DO, EXP3 with Deterministic Observation

Parameters: γ ∈ [0, e− 2] ,

η ∈ (0, γ/K]

Initialization: ω1(i) = 1, i = 1, ...,K

For each t = 1, 2, ...

1. Set pt(i) = (1− γ) ωt(i)
K∑

j=1
ωt(j)

+ γ
K , i = 1, ...,K

2. Attack channel It ∼ pt and accumulate the unobservable reward xt(It).

3. In the observation phase, choose channel Jt := 1 + (I(t) mod K), and observe its

reward xt(Jt) based on equation (2.1).

4. In the learning phase, for j = 1, 2, ...,K

x̂t(j) =


xt(j)
pt(It)

, j = Jt

0, o.w.

ωt+1(j) = ωt(j) exp(ηx̂t(j))
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Based on the theoretical analysis in [14], EXP3-DO is categorized as a weakly observable

feedback graph. and it is an attacking strategy as a baseline of applying current technologies

for the PUE attacker’s attack strategy. In other words, since the PUE attacker cannot scan

through all the channels in each time slot due to the limited duration of a time slot, achieving

an optimal regret order for the attacker is not possible by applying the current theoretical

frameworks. As a result, in this algorithm the observation strategy is designed such that

at least no action is left un-observed. The observation strategy stated here in not the only

observation structure and any permutation of channels that creates a partially observable

graph leads to the same regret bound.

We note that in Step 4 of Algorithm 2, only the weight of the observed channel is

updated. The estimated reward x̂t(j) is an unbiased estimate of the actual reward xt(j),

i.e., conditional on all previously chosen channels before t, we have E[x̂j(t)|I1, . . . , It−1] =

xt(j)
pt(j′)

pt(j
′) = xt(j) where j′ = (j − 2) mod K + 1, i.e., the neighboring channel chosen for

attack.

Theorem 3. For any K ≥ 2 and for any η ≤ γ
K , the upper bound on the expected regret of

Algorithm 2

Gmax − E[GEXP3−DO] ≤ (γ + (e− 2)
ηK

γ
)Gmax +

lnK

η
.

holds for any assignment of rewards for any T > 0.

By choosing appropriate values for γ and η, the above upper bound on the regret can

be minimized.

Proof of Theorem 3. Our proposed observing strategy can be categorized as a partially

observable graph in [14]. Because by choosing an action, the reward on only one other

channel is observed not on all the actions. Also no node is left un-observed. In [14] the

upper-bound of the regret of weakly observable graphs is proved.
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Corollary 2. For any T > 0 and the following values

η = γ2

K(e−2) , and γ = 3
√

(e− 2)K lnK/g

where g is an upper-bound on the Gmax. Then

Gmax − E[GEXP−DO] ≤ 3 3
√

(e− 2)
3
√
T 2K lnK

holds for any arbitrary assignment of rewards.

Proof. We sketch the proof as follows. Since γ ≤ (e−2), in order for the regret bound to be

non-trivial, we need g ≥ K lnK
(e−2)2 . Then by getting the derivative, we find the optimal values

for η and γ. Also T is an upper bound on the g since all the rewards are in [0, 1] and the

network runs for T time slots, which gives us the result.

Theorem 4. For any K ≥ 2 and for any player strategy A, the expected weak regret of

algorithm 2 is lower bounded by

Gmax −E[GA] ≥ c 3
√
KT 2

for some small constant c and it holds for some assignment of rewards for any T > 0.

Proof of Theorem 4. The proof of the lower bound analysis is provided in [14].

3.3 Attacking Strategy 3: PROLA Learning Algorithm

In this section, we propose another novel online learning algorithm that can be applied

by the PUE attacker with one observation capability within the attacking slot. The pro-

posed optimal online learning algorithm, called PROLA, at each time, chooses two actions

dynamically to play and observe, respectively. The action to play is chosen based on an

exponential weighting, while the other action for observation is chosen uniformly at random

excluding the played action. The proposed algorithm is presented in Algorithm 3.
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Algorithm 3 : PROLA, Play and Random Observe Learning Algorithm

Parameters: γ ∈ (0, 1), η ∈
(

0, γ
2(K−1)

]
.

Initialization: ω1(i) = 1, i = 1, ...,K.

For each t = 1, 2, ..., T

1. Set pt(i) = (1− γ) ωt(i)∑K
j=1 ωt(j)

+ γ
K , i = 1, ...,K.

2. Attack channel It ∼ pt and accumulate the unobservable reward xt(It).

3. Choose a channel Jt other than the attacked one uniformly at random and observe

its reward xt(Jt) based on equation (2.1).

4. For j = 1, ...,K

x̂t(j) =


xt(j)

(1/(K−1))(1−pt(j)) , j = Jt

0, o.w.,

ωt+1(j) = ωt(j) exp(ηx̂t(j)).

Figure 3.3 shows the observation policy governing the actions for K = 4 in a feedback

graph format. In this figure, Yij(t) is an observation indicator of channel j when channel i

is attacked at time t. We define Yij(t) ∈ {0, 1} such that at each time for the chosen action

i to be played,

K∑
j=1,j 6=i

Yij(t) = 1, i = 1, . . . ,K t = 1, . . . , T. (3.10)

In other words, there is a policy based on which for any channel i played, only one of the
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Figure 3.3: Channel observation strategy, K = 4

observation indicators takes a value of one and the rest take a value of zero. For example,

if channel 2 is attacked (i = 2), only one of the three outgoing edges from 2 will be equal

to one. This edge selection policy represents the channel selection process for observation.

We define it as a uniform random distribution equal to 1
K−1 . We call this feedback graph,

a time-variable random feedback graph. Our feedback graph fits into the time-variable

feedback graphs introduced in [14] and based on the results derived in that work, the regret

upper bound of our algorithm is Õ(
3
√
T 2). However, based on our analysis, the upper bound

on the attacker’s regret is in the order of Õ(
√
T ) which shows a significant improvement. In

other words, despite the fact that the agent makes only partial observation on the channels,

it achieves a significantly improved regret order compared to the no observation in the

attacking slot case. This has been possible due to the new property we considered in the

partially observable graphs which is adding randomness. In the long run, randomness makes

full observation possible to the agent.

In Step 4 of Algorithm 3, in order to create x̂t(j), an unbiased estimate of the actual

reward xt(j), we divide the observed reward, xt(Jt), by (1/(K − 1))(1− pt(Jt))which is the

probability of choosing channel Jt to be observed. In other words, channel Jt will be chosen

to be observed if it has not been chosen for attacking, with probability (1 − pt(Jt)), and
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second if it gets chosen uniformly at random from the rest of the channels, with probability

(1/(K − 1)).

Theorem 5. For any K ≥ 2 and for any η ≤ γ
2(K−1) , for the given randomized observation

structure for the attacker the upper bound on the expected regret of Algorithm 3,

Gmax −E[GPROLA] ≤ (e− 2)(K − 1)
η

1− γ
T +

lnK

η(1− γ)

holds for any assignment of rewards for any T > 0.

Proof of Theorem 5. By using the same definition for Wt = ωt(1) + · · ·+ ωt(K) =
K∑
i=1

ωt(i)

as in Algorithm 1, at each time t,

Wt+1

Wt
=

K∑
i=1

pt(i)− γ/K
1− γ

exp(ηx̂t(i))

≤ exp

 η

1− γ

K∑
i=1

pt(i)x̂t(i) +
(e− 2)η2

1− γ

K∑
i=1

pt(i)x̂
2
t (i)

. (3.11)

The equality follows from the definition of Wt+1, ωt+1 (i), and pt(i) respectively in

Algorithm 3. Also, the inequality follows from the fact that ex ≤ 1 +x+ (e−2)x2 for x ≤ 1

and ex ≥ 1 + x. When η ≤ γ
2(K−1) , the result, ηx̂t(i) ≤ 1, follows from the observation

that either ηx̂t(i) = 0 or ηx̂t(i) = η xt(i)
1

K−1
(1−pt(i))

≤ η(K − 1) 2γ ≤ 1, since xt(i) ≤ 1 and

pt(i) = (1− γ) ωt(i)∑K
j=1 ωt(j)

+ γ
K ≤ 1− γ + γ

2 ≤ 1− γ
2 .

By taking the logarithm of both sides of equation (3.11) and summing over t from 1 to

T , we derive the following inequality on the LHS of the equation,
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T∑
t=1

ln
Wt+1

Wt
= ln

WT+1

W1
≥ η

T∑
t=1

x̂t(j)− lnK. (3.12)

Combining (3.11) and (3.12), we can get

T∑
t=1

x̂t(j)−
T∑
t=1

K∑
i=1

pt(i)x̂t(i)

≤ γ
T∑
t=1

x̂t(j) + (e− 2)η
T∑
t=1

K∑
i=1

pt(i)x̂
2
t (i) +

lnK

η
. (3.13)

Let x́t(i) = x̂t(i) − ft where ft =
K∑
i=1

pt(i)x̂t(i). We make the pivotal observation that

(3.13) also holds for x́t(i) since ηx́t(i) ≤ 1, which is the only key to obtain (3.13).

We also note that,

K∑
i=1

pt(i)x́
2
t (i) =

K∑
i=1

pt(i)(x̂t(i)− ft)2

=

K∑
i=1

pt(i)x̂
2
t (i)− f2t

≤
K∑
i=1

pt(i)x̂
2
t (i)−

K∑
i=1

p2t (i)x̂
2
t (i)

=

K∑
i=1

pt(i)(1− pt(i))x̂2t (i). (3.14)

Substituting x́t(i) in equation (3.13) and combining with (3.14),

T∑
t=1

(x̂t(j)− ft)−
T∑
t=1

K∑
i=1

pt(i)(x̂t(i)− ft) =
T∑
t=1

x̂t(j)−
T∑
t=1

K∑
i=1

pt(i)x̂t(i)
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≤ γ
T∑
t=1

(
x̂t(j)−

K∑
i=1

pt(i)x̂t(i)

)
+ (e− 2)η

T∑
t=1

K∑
i=1

pt(i)(1− pt(i))x̂2t (i) +
lnK

η
. (3.15)

Observe that x̂t(j) is similarly designed as an unbiased estimate of xt(j). Then for the

expectation with respect to the sequence of channels attacked by the horizon T ,

E[x̂t(j)] = xt(j), E

[
K∑
i=1

pt(i)x̂t(i)

]
= E[xt(It)],

and

E

[
K∑
i=1

pt(i)(1− pt(i))x̂2t (i)

]
= E

[
K∑
i=1

pt(i)(K − 1)xt(i)x̂t(i)

]
≤ K − 1.

We now take the expectation with respect to the sequence of channels attacked by the

horizon T in both sides of the last inequality of (3.15). For the left hand side,

E

[
T∑
t=1

x̂t(j)

]
−E

[
T∑
t=1

K∑
i=1

pt(i)x̂t(i)

]
= Gmax −E[GPROLA]. (3.16)

and for the right hand side,

E[R.H.S] ≤ γ(Gmax −E[GPROLA]) + (e− 2)(K − 1)ηT +
lnK

η

Combining the last two equations we get,

(1− γ)(Gmax −E[GPROLA]) ≤ (e− 2)(K − 1)ηT +
lnK

η
,

and since Gmax can be substituted by T , by rearranging the relation above the regret upper

bound is achieved.
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Similarly, we can minimize the regret bound by choosing appropriate values for η and

γ.

Corollary 3. For any T ≥ 8(K−1) lnK
e−2 and γ = 1

2 , we consider the following value for η

η =
√

lnK
2(e−2)(K−1)T .

Then

Gmax −E[GPROLA] ≤ 2
√

2(e− 2)
√
T (K − 1) lnK

holds for any arbitrary assignment of rewards.

Proof of Corollary 3. We sketch the proof as follows. By getting the derivative from the

statement in Theorem 3 with respect to η, we find the optimal value for η. Since η ≤ γ
2(K−1) ,

in order for the regret bound to hold, we need T ≥ 8(K−1) lnK
e−2 . Replacing the value of η

gives us the result on the regret upper bound.

The important observation is that, based on [14] such an algorithm, Algorithm 3, is

expected to achieve a regret in the order of Õ
(

3
√
T 2
)

since it can be categorized as a partially

observable graph. However, our analysis gives a tighter bound and shows not only it is tighter

but also it achieves the regret order of fully observable graphs. This significant improvement

has been accomplished by introducing randomization into feedback graphs.

The following theorem provides the regret lower bound for this problem.

Theorem 6. For any K ≥ 2 and for any player strategy A, the expected weak regret of

algorithm A is lower bounded by

Gmax −E[GA] ≥ c
√
KT

for some small constant c and it holds for some assignment of rewards for any T > 0.
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Proof of Theorem 6. The proof follows closely the lower bound analysis in [17]. Details are

provided in the Appendix.

3.4 Extension to Multiple Action Observation Capability

We generalize Algorithm PROLA to the case of an agent with multiple observation capabil-

ity. This is suitable for an attacker with multiple observation capability when the attacker

after the attack phase is able to observe multiple other channels within the same time-slot.

At least one and at most K − 1 observations are possible by the agent (attacker). In this

case, m indicates the number of possible observations and 1 ≤ m ≤ K − 1. Then, for m

observations, we modify equation (3.10) as follows,

K∑
j=1,j 6=i

Yij(t) = m, i = 1, . . . ,K t = 1, . . . , T. (3.17)

The probability of a uniform choice of m observations at each time,
K∑

j=1,j 6=i
Yij(t) = m

is equal to 1

(K−1
m )

. Corollary 3 shows the result of the analysis for m observations.

Corollary 4. If the agent can observe m actions at each time, then the regret upper bound

is equal to

Gmax −E [GA] ≤ 4
√

(e− 2)

√
T
K − 1

m
lnK.

This regret upper bound shows a faster convergence rate when making more observations.

Proof of Corollary 4. We substitute 1/ (K − 1) bym/ (K − 1) in Step 4 of Algorithm PROLA

since at each time, m actions are being chosen uniformly at random. Then the regret upper

bound can be derived by similar analysis.

As our analysis shows, making multiple observations does not improve the regret in terms

of its order in T compared to the case of making only one observation. This means that only
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one observation and not more than that is sufficient to make a significant improvement in

terms of regret order reduction compared to the case of no observation within the attacking

slot. The advantage of making more observations however is in reducing the constant

coefficient in the regret. Making more observations leads to a smaller constant factor in the

regret upper bound. This relationship is non-linear though. i.e., the regret upper bound is

proportional to
√

1/m which means that in order to make a large reduction in the regret

in terms of its constant coefficient impact, only a few observations would suffice. Our

simulation results in Section 4.3 provide more details on this non-linear relationship.
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Chapter 4: Performance Evaluation

In this section, we present the simulation results to evaluate the validity of the proposed

online learning algorithms applied by the PUE attacker. All the simulations are conducted

in MATLAB and the results achieved are averaged over 10,000 independent random runs.

We evaluate the performance of the proposed learning algorithms, POLA and PROLA,

and compare them with their theoretical regret upper bounds Õ(
3
√
T 2) and Õ(

√
T ), respec-

tively. POLA and PROLA correspond to an attacker with no observation and one obser-

vation capability within the attacking time slot, respectively. We then examine the impact

of different system parameters on the attacker’s performance. The parameters include the

number of time slots, total number of channels in the network, and the distribution on the

PU activities. We also examine the performance of an attacker with multiple observation

capabilities. Finally we evaluate a secondary user’s accumulated traffic with and without

the presence of a PUE attacker.

K primary users are considered, each acting on one channel. The primary users’ on-off

activity follows a Markov chain or i.i.d. distribution in the network. Also, the PU activities

on different channels are independent from each other. K idle probabilities are generated

using MATLAB’s rand function, each denoting one PU activity on each channel if PUs follow

an i.i.d. Bernoulli distributions. pI = [0.85 0.85 0.38 0.51 0.21 0.13 0.87 0.7 0.32 0.95] is a

vector ofK elements each of which denotes the corresponding PU activity on theK channels.

If the channels follow Markov chains, for each channel, we generate three probabilities, p01,

p10, and p1 as the transition probabilities from state 0 (on) to 1 (off), from 1 to 0, and

the initial idle probability, respectively. The three vectors below, are examples considered

to represent PU activities. p01 = [0.76 0.06 0.3 0.24 0.1 0.1 0.01 0.95 0.94 0.55], p10 =

[0.14 0.43 0.23 0.69 0.22 0.59 0.21 0.58 0.34 0.73], and p1 = [0.53 0.18 0.88 0.66 0.23 0.87 0.48
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0.44 0.45 0.88].

The PUE attacker employs either of the proposed attacking strategies, POLA, or PROLA.

Throughout the simulations, when we talk about an attacker employing PROLA, we as-

sume the attacker’s observation capability is one within the attacking slot, unless otherwise

stated.

Since the goal here is to evaluate the PUE attacker’s performance, for simplicity we

consider one SU in the network. Throughout the simulations, we assume the SU employs

an online learning algorithm called Hedge [16]. The assumption on the Hedge algorithm is

that the secondary user is able to observe the rewards on all the channels in each time slot.

Hedge provides the minimum regret in terms of both order and the constant factor among

all optimal learning-based algorithms. As a result the performance of our proposed learning

algorithms can be evaluated in the worst case scenario for the attacker. As explained in

Section 1.1, even though in our analysis we considered an oblivious environment, in the sim-

ulations we can consider an SU that runs Hedge (an adaptive opponent). This experimental

setup adds value since it shows that our proposed online learning-based algorithms perform

reasonably even against adaptive opponents by keeping the occurred regret between the

theoretical upper and lower bounds derived.

4.1 Performance of POLA and the impact of the number of

channels

In this section, we evaluate the performance of the proposed algorithm, POLA and compare

it with the theoretical analysis. Figure 4.2(a) shows the overall performance of the attacker

for both cases of i.i.d. and Markovian chain distribution of PU activities on the channels

for K = 10. Regret upper bound and lower bound from the analysis in Corollary 1 and

Theorem 2, respectively are also plotted in this figure. Then we examine the impact of the

number of channels in the network on it’s performance. We consider K variable from 10

to 50. The attacker’s regret when PUs follow i.i.d. distribution and Markovian chain for
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different number of actions are shown in Fig. 4.2(b) and (c), respectively. Since POLA has

a regret with higher slope, in order to better observe the results, we have plotted the figures

for T from 1 to 20, 000. We can observe the following from the figures.

• Regardless of the PUs activity type, the occurred regret is below the regret upper

bound achieved from the theoretical analysis.

• The regret on all three figures has a higher slope compared to the results for PROLA

in Fig. 4.2(d)-(f) which also complies with our analysis. The higher slope in these

figures can be seen by comparing their x and y axises.

• As the number of channels increases the regret increases as is expected based on the

analysis from Corollary 1.

• As the number of channels increases, the regret does not increase linearly with it.

Instead, the increment in the regret becomes marginal which complies with the the-

oretical analysis. Based on Corollary 1 the regret is proportional to (3
√
K lnK). The

dependency on K can be represented by plotting the regret versus K as is shown in

the next subsection.

4.2 Performance of PROLA and the impact of the number

of channels

We compare the performance of the proposed learning algorithm, PROLA, with the theo-

retical analysis from section 3. We consider a network of K = 10 channels. Figure 4.2(d)

shows the simulation results as well as analytical results. From the simulations, we observe

that the actual regret occurred in the simulations, is between the bounds achieved from the

analysis regardless of the type of PU activity which complies with our analysis. We also

note that when we derived the theoretical upper bound we did not make any assumption

on the PU activity. The regret is only dependent on the K and T .
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Then, we examine the impact of the number of channels in the network on the attacker’s

performance when it applies PROLA. Figure 4.2(e) and (f) show the attacker’s regret when

PUs follow i.i.d. distribution and Markovian chain respectively for K variable from 10 to

50. The same discussion on the system parameters and the results hold as in subsection

4.1. In another representation, we plot the regret versus the number of channels, K, as the

x axis in Fig. 4.2(g).

Moreover, comparing regret values in Fig. 4.2(a) with those in Fig. 4.2(d), we observe

the huge difference in regret amount between no observation capability within the attacking

slot and one observation capability.

4.3 Impact of the number of observations in each time slot

We consider PROLA algorithm with K = 40 channels in the network. The number of

observing channels, m, varies from 1 to 35. Figure 4.2(h) and (i) show the performance of

the PROLA for m = 1, 3, 8, 18, 35 when the PUs follow i.i.d. distribution and Markovian

chain on the channels, respectively. We can observe the following from the simulation

results.

• As the observation capability of the attacker increases, it achieves a lower regret. This

observation complies with the Corollary 3 provided in Section 3.4 based on which we

expect smaller constant factor as the observation capability increases.

• In the beginning, even adding a couple of more observing channels (from m = 1 to

m = 3), the regret decreases dramatically. The decrement in the regret becomes

marginal as the number of observing channels becomes sufficiently large (e.g., from

m = 18 to m = 35). This observation implies that, in order to achieve a good

attacking performance (smaller constant factor in regret upper bound), the attacker

does not need to be equipped with high observation capability. In the simulation,

when the number of observing channels (m = 10) is 1
4 of the number of all channels

(K = 40), the regret is approaching to the optimal.
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Figure 4.1: Accumulated Traffic of an SU

4.4 Accumulated Traffic of SU with and without attacker

We set K = 10 and measure the accumulated traffic achieved by the SU with and without

the presence of the attacker. The attacker employs the PROLA algorithm. Figure 4.1 shows

that the accumulated traffic of the SU is largely decreased when there is a PUE attacker in

the network for both types of PU activities.
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(a) POLA Learning (b) POLA, channel impact, i.i.d.
PU

(c) POLA, channel impact, M.C.
PU

(d) PROLA Learning (e) PROLA, channel impact, i.i.d.
PU

(f) PROLA, channel impact, M.C.
PU

(g) PROLA, channel impact, i.i.d.
PU

(h) PROLA, observation impact,
i.i.d. PU

(i) PROLA, observation impact,
M.C. PU

Figure 4.2: Simulation results under different PU activity assumptions
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Chapter 5: Intelligence Measure of Cognitive Radios

In order to resolve the imminent spectrum shortage problem, sharing spectrum with legacy

systems has attracted intensive research during the past decade. Cognitive radio (CR),

which has the capability to sense, learn, and adapt to the spectrum environment [9, 29, 30],

can significantly improve spectrum efficiency and guarantee the unharmful coexistence with

the legacy systems [31, 32, 33, 34, 35]. Nevertheless, the complex and uncertain spectrum

environment makes spectrum sharing extremely challenging. The uncertainty may come

from the radio propagation environment, the legacy system activity, or the complex behavior

of the CR itself.

Just like human being, sophisticated cognitive capabilities are essential for the CR to

cope with the uncertainty of spectrum environment. The cognitive capabilities collectively

define the intelligence of CR. Although the CR concept was born with the core idea of

realizing “cognition” [36], the research on measuring CR cognitive capabilities or intelligence

is largely open.

Being able to quantitatively measure the intelligence of CR can bring us a lot of benefits.

1. With the intelligence model and measuring methodology, we will gain deeper insight

about the key factors that affect the intelligence of a CR which can be used to guide

the development of new CRs with high intelligence.

2. A CR vendor may advertise and price their CR products based on CR intelligence

as a metric. A CR with higher intelligence tends to achieve better performance in

practically uncertain spectrum environments, thus will be priced higher.

3. With the knowledge of the intelligence of individual CRs, a service provider or network

manager can better configure their networks by integrating CRs with different intel-

ligence levels in a more cost-efficient way. For example, a CR with higher intelligence
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leading a set of CRs with lower intelligence may achieve a desirable performance with

low network deployment cost.

4. Last but not the least, the investigation of CR intelligence will shed light on the

intelligence measure of other smart systems, such as connected cars [2, 37], unmanned

aerial vehicles [1, 38, 39], smart grid [40], smart cities [41], etc.

This work is an extension of our previous work [20], in which we proposed a data-driven

methodology to derive the intelligence measure. We construct a CR intelligence model

following human intelligence theory, specifically the widely accepted Cattell-Horn-Carroll

(CHC) intelligence model [42]. Based on this model, we develop psychometric techniques

to measure the CR intelligence. The basic idea of our methodology is to use simulations to

test different CRs in various spectrum environments under different settings. Based on the

obtained performance data, we apply the factor analysis (FA) technique [43] to extract and

measure the intelligence factors of CR.

More specifically, we present a case study consisting of 144 different types of CRs. We

provide each CR with different levels of capabilities including learning-based algorithms

[15, 17, 30, 44] for dynamic spectrum access, number of sensors, sensing accuracy, pro-

cessing speed, and algorithmic complexity. With our methodology, five intelligence factors

are identified for the CRs through our analysis, which are shown to comply with the na-

ture of the tested algorithms. This validates our proposed methodology of measuring CR

intelligence.

We summarize the contributions of this paper as follows:

• For the first time, we propose the idea of identifying the cognitive capabilities of CR

and introduce an intelligence model for the CR.

• We propose a methodology to extract the CR’s intelligence factors and apply factor

analysis as a theoretical framework for this purpose.

• The proposed methodology is verified through a case study where we identify the
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intelligence factors of learning-based CRs under dynamic spectrum access scenarios

and show these factors comply with the nature of the CRs.

In the rest of this work, first we propose our intelligence model for CR in Section

5.2. Section 5.3 presents our methodology of deriving CR intelligence factors. In section

6, we present a case study in which we measure the intelligence of learning based CRs

under a dynamic spectrum access scenarios. Section 5.1 discusses the related work and

compares them with our approach. In particular, work on human intelligence measure

and the difference between CR intelligence measure and human intelligence measure are

highlighted.

5.1 Related Work

5.1.1 Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning, designed for online learning.

Similar to MAB problems, the RL methods need to trade off between exploration and

exploitation. Q-Learning is a well studied topic and is categorized as a reinforcement

learning technique that can be used to find the optimal action selection policy [44, 45]. The

environment is usually assumed to follow Markov Chain Process.

5.1.2 CR Intelligence

Intelligence measure of CRs has not been well studied in the literature. However, there are

various studies on evaluating the performance of CRs. A cognitive radio test methodology

to test a CR system is presented in [46]. The effect of cognitive engine on both SU and PU

performance is measured and evaluated. It is suggested that the cognition may be measured

based on the SU’s capability to improve its throughput and at the same time to decrease PU

interference. The authors call their method behavior-based testing. In other words, their

goal is to measure SU cognition based on the evaluation of both SU and PU performances
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instead of evaluating the SU cognition itself. The testing scenarios are defined as narrow-

band or wide-band environments. The PU workloads and SU cognition considered in this

work are limited and the authors suggest more research as a required step to justify the

behavior-based cognition testing. Statistical tools and the psychometrics are not utilized

in contrast to our work that considers those methods. This indicates that our approach is

completely different from this work.

The performance of cognitive radios is studied in [47] which considers four cognitive

radio algorithms and intends to distinguish those that perform better than the others often

enough. They also study how sensitive different algorithms are to suboptimal parameters.

It is shown through simulations that, usually those algorithms that outperform others are

highly sensitive to sub-optimal parameters. While the others that show lower performance,

represent a more steady performance and are more resistant to sub-optimality in the pa-

rameters. The conclusion is that there is a trade-off between performance and consistency.

The difference of this work with ours is that their goal is to compare the performance of

different learning based algorithms and to distinguish those that show consistent perfor-

mance and have less dependency on the parameter values. However, we derive the cognitive

capabilities of CRs which is a totally different aspect of CR intelligence measurement.

5.1.3 Cognitive Capabilities of Humans

The cognitive capabilities and the intelligence model of human beings have been stud-

ied extensively in psychology [48]. Human cognition capabilities include sensing, learning,

memory, problem solving, etc. Intelligence is defined as the ability to learn and perform

cognitive tasks [48]. Cattel-Horn-Carrot [42] is the most widely accepted model of human

intelligence [35, 48].

At the top layer of the CHC model is the Stratum III, which defines a unique general

intelligence factor g. People with high loadings on the g factor are more intelligent in

general. The middle layer is the Stratum II in which eight broad cognitive capabilities are

defined. For example, in stratum II, there is a factor modeling knowledge acquired through
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education and memory. Older people intend to have higher loadings on this factor. In

contrast, the fluid intelligence is a factor that denotes the capability of solving problems

never seen before. People with higher loadings on this factor, usually have strong learning

and problem solving capabilities. Finally, at the bottom is Stratum I with more than eighty

narrow abilities. The narrow capabilities are more specific cognition capabilities such as

induction, or reduction.

The practical measurement of mental abilities has been considered as a pivotal devel-

opment in the behavioral sciences and the theories and techniques formed a field called

“psychometrics”. The first attempts of a mathematically more rigorous study of intelli-

gence measure occurred in the 1940s, with statistical techniques such as correlation and

FA. Overall, FA is used in multiple areas including psychology and economics.

Factor Analysis (FA) is an statistical method used in psychology. FA is able to extract

the cognitive capabilities of the test taker. It can also be used to test a theory on possible

cognitive capabilities. In other words, to determine whether the designed questions of the

test measure the same factors that the questions were designed for [43, 49] .

There have been some efforts trying to develop comprehensive benchmark frameworks

to evaluate the cognitive radio network performance [50], or to evaluate the performance

of more general wireless networks [51, 52, 53]. Since benchmarking wireless network is

challenging, simulation has been adopted widely as a tool in the literature. However, such

benchmark studies are proposed not to test CR intelligence, but to evaluate CR perfor-

mance. Our focus here is on the factor analysis and intelligence model construction, which

is different than the conventional benchmarking research.

It is helpful to identify the differences between human and CR intelligence capabilities.

One is that for human beings, the age of the test taker is an important factor that needs to

be considered when designing the test questions, such as at the childhood stages in which

the brain is still developing. However, with respect to the CRs, a testing scenario can be

tested by all types of CRs.

Another important difference is that a human being can get tired by the long duration
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Figure 5.1: Intelligence model for the cognitive radio

of the test or may not be able to focus on the test day. This can make the test results

unreliable. However, this is not a problem for CR and the test results can always be

correct, unbiased and reliable.

The other difference is that for human beings the answer to each test question is con-

sidered either as zero or one. However for CR the score for each test scenario can be any

real number not necessarily zero or one.

For human being we measure only one output as the score of the test taker when we

aim to measure the general intelligence factor. However, for cognitive radios we generalize

this notion to measure several kinds of output which in our case study include achieved

throughput, delay, and the violation ratio.

5.2 Quantitative Intelligence Model of CR

In this section, first we propose an intelligence model for the CR. Then, in the next section,

we propose a data-driven methodology to derive the intelligence capabilities of cognitive

radios.

Motivated by the CHC model [42] that is widely used to describe human intelligence,

we propose an intelligence model for the CR. Our model is structured with three strata (or
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stages) as shown in Fig. 5.1. At the top stage lies the stratum III, which defines a unique

general intelligence factor g. CRs with high values in the g factor are more intelligent in

general. That is, they tend to achieve better performance in various dynamic spectrum

environments.

The stratum II represents more broad abilities in terms of cognition capabilities con-

tributing to intelligence, which may be modeled as the following ones:

1. Comprehension-Knowledge (Gc): includes the breadth and depth of a CR’s acquired

knowledge and the ability to reason using previously learned experiences or proce-

dures.

2. Fluid reasoning (Gf ): includes the broad ability to reason, form concepts, and perform

dynamic spectrum access using unfamiliar information or novel procedures.

3. Short-Term Memory (Gsm): is the ability to apprehend and hold information in im-

mediate awareness and then use it within a short period (e.g., a few seconds or the

time the CR is on).

4. Long-Term Storage and Retrieval (Glr): is the ability to store information and retrieve

it later in the process of communication or dynamic spectrum access.

5. Spectrum Sensing (Gs): is the ability to sense the spectrum environment, e.g., sensing

the availability of white space or presence of primary users.

6. Processing Speed (Gp): measures the information processing time, which may include

channel sensing, accessing and switching delay, computing, reasoning, and information

retrieval delay, etc.

Within each stratum II broad ability, we can further define stratum I which is at the

bottom with more narrow abilities. These abilities are more specific cognition capabilities.

For example, fluid reasoning can include inductive reasoning, sequential reasoning, deductive

reasoning, and speed of reasoning. Spectrum sensing can include number of sensors and
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Figure 5.2: A data-driven methodology to measure the intelligence of CR.

accuracy of sensing capability. Processing speed can include the speed of processing on

the received data, the speed of reasoning and decision making, and the speed of switching

among channels.

5.3 Proposed Methodology to Measure the intelligence ca-

pabilities of CR

In this section, we propose a data-driven methodology to measure the intelligence of CRs.

The basic idea of this methodology is illustrated in Fig. 5.2.

For a pool of N different CRs called CR1, CR2, ..., CRN , we design a set of K test items

to evaluate their performance. CRs are different in terms of learning based spectrum access

strategy, number of sensors, processing speed, computational complexity, etc. Various test

environments arise from different primary user activity types or statistics, channel rates,

frame delivery ratio, etc. Through testing each CR in the testing scenarios, we obtain

a vector of performance data Yk(n) for each CRn (1 ≤ n ≤ N) at each test scenario k

(1 ≤ k ≤ K). The dimension of Yk(n) equals to the number of performance metrics used.

In our case study, Yk(n) is an array of length three for each cognitive radio performing in a

given test scenario since we measure three performance metrics for each CR. Then we apply
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the FA method [43] on the measured data to derive the intelligence factors as latent factors.

These factors are then matched to the broad cognitive capabilities described in Section 5.2

through analyzing the nature of the CR functions.

FA technique is applied on the data matrix Y = {Yk(n), 1 ≤ n ≤ N, 1 ≤ k ≤ K} ,

which identifies the latent factors as intelligence factors. The latent factors are then matched

to the right cognitive capabilities by analyzing the functions of the CRs.

There are two types of FA in the literature: exploratory FA and confirmatory FA [43, 49].

Exploratory FA is used to identify the potential latent factors when both the number and

the loading of the latent factors are unknown. Meanwhile, confirmatory FA is used when

the number of latent factors are known. Then by applying the confirmatory FA we can

decide whether the model and FA results match with each other or not. It can also be used

to test a theory on possible cognitive capabilities. In other words, it determines whether

or not the designed questions of the test measure the same factors that the questions were

designed for. In this thesis, we use confirmatory FA to test our theory on the possible

intelligence factors.

To describe the details about the intelligence model and the latent factors, consider the

performance of a test taker modeled as

yk(n) = akg(n) + zk(n), (5.1)

where yk(n) is the measured performance of the cognitive radio n on the testing scenario

k, g(n) is the general intelligence factor (see the stratum III of the intelligence model in

Fig. 5.1) of the cognitive radio n. The parameter g(n) is called the “common factor”,

whose value determines how smart the CR n is to achieve high performance value yk(n).

The weighting coefficient ak denotes the loading, i.e., the importance, of the intelligence

factor g(n) on achieving high score yk(n) on the testing scenario k. The value of zk(n)

summarizes performance deviation from the simplified model akg(n), which is unique to

the specific performance measurement and is thus called the “unique factor”. Equation
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(5.1) also shows how cognitive capabilities or intelligence factors can be modeled by the

common factor g(n) [43]. Having all the measured data yk(n), we can use FA to determine

whether the data fit the model ( Eq. (5.1) and if so to estimate the loading ak and the

intelligence factor g(n).

For more detailed cognitive capability analysis, we can consider the list of broad cognitive

capabilities in stratum II. Let xi(n) denote the ith intelligence factor (or latent factor),

where 1 ≤ i ≤ I. The performance data vector Yk(n) can be modeled as

Yk(n) = ak,1x1(n) + ak,2x2(n) + ...+ ak,IxI(n) + Zk(n), (5.2)

where ak,1, · · · ,ak,I and Zk(n) are the weights (loadings) and the unique factor, respec-

tively. Note that since it is possible to measure several metrics, the single value yk(n) in

(5.1) is substituted by the vector performance measurement Yk(n). In this case, with all

the measured data Yk(n), we can verify the validity of the model (5.2) and determine the

weighting coefficients ak,i as well as the latent factors xi(n). By analyzing the CR func-

tioning, we can match the latent factors xi(n) with the CR stratum II cognitive capabilities

listed Section 5.2.

The FA technique [43] is applied to extract the group of latent factors xi(n) and then

construct the CR intelligence model. To apply the FA method, we rewrite Eq. (5.2) into

the matrix form

Y = ΛX + Ψ, (5.3)

where X and Ψ are the matrices of common and the unique latent factors, respectively,

and Λ is the matrix of weights ak,i. Specifically,

Y =


Y1(1) · · · Y1(N)

...
...

YK(1) · · · YK(N)

 ,
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Λ =


a1(1) · · · a1(I)

...
...

aK(1) · · · aK(I)

 , (5.4)

and the other matrices can be obtained similarly.

From Eq. (5.3), we can obtain the correlation matrix of the observation Y as

Σ = E
(
Y Y ′

)
= ΛΦΛ′ + E

(
ΨΨ′) (5.5)

where Φ = E (XX′), and E(·) and (·)′ denotes expectation and transposition, respectively.

The Eq. (5.5) is derived based on the assumption that the common factor and unique factor

are uncorrelated which yields E (XΨ′) = 0. Similarly, based on the uncorrelation assump-

tion, E (ΨΨ′) can be substituted by a diagonal positive definite matrix Γ2. Therefore, Eq.

(5.5) can be rewritten as

Σ = ΛΦΛ′ + Γ2. (5.6)

Without loss of generality, it is assumed that the latent factors xi(n) are orthogonal in

the model. As a result Φ = I. Then we subtract Γ2 from both sides of Eq. (5.6) to derive

Σ− Γ2 = ΛΛ′. (5.7)

In this model, Σ− Γ2 is called “the reduced correlation matrix” [49].

The next step is to determine both Γ2 and Λ. Note that Γ2 is a diagonal matrix. If both

Σ and Γ2 are known, then Λ can be estimated as Λ = AD
1
2 , where A is the eigenvector

matrix and D is the diagonal eigenvalue matrix of the matrix Σ−Γ2. On the other hand,

if Λ has been estimated, then we can calculate Γ2 as

Γ2 = Σ−ΛΛ′. (5.8)
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Therefore, with an initial estimate of Γ2, the Eq. (5.7) can be solved iteratively where

each iteration involves the following three steps:

1. Find the eigenvector and eigenvalue matrices A and D of “the reduced correlation

matrix”: Σ− Γ2 = ADA′;

2. Find Λ = AD
1
2 ;

3. Find Γ2 = Σ−ΛΛ′.

This procedure runs iteratively until the maximum difference of the last two round of

Γ2 is less than certain small threshold [49].

Let S = Σ−D, then Σ−S2 will generate the unrotated factors matrix. Normally, we

will pick up as latent factors those entries in D that are large enough, e.g., greater than 1.

In practice, we may simply use principal component analysis [49] to estimate Λ, which just

considers the latent factors influencing the performance and ignores the unique factors.

53



Chapter 6: Case Study: Intelligence Measure of CR with

Learning Capabilities

In this section, we present a case study consisting of different types of CRs. By designing

a set of testing environments, we apply our methodology presented in Section 5.3 to derive

the latent factors and analyze them as intelligence factors as well as cognitive capabilities

contributing to the CR intelligence.

6.1 Settings

We consider a single hop scenario where there is only one CR and one PU. Therefore, we can

focus on each CR’s performance without considering channel contention. There are several

channels in the network. The PU can appear on some or all of the channels simultaneously.

We also assume a time slot based network. Figure 6.1 shows the time slot structure used

by the CR.

As shown in the figure, the first part of the time slot is assigned for channel sensing.

During this period, the CR senses the chosen channel and at the end of this period de-

cides whether the channel is idle or not. If the CR finds the channel idle, it begins data

transmission. Otherwise, it keeps silent to avoid interfering with the PU.

Figure 6.1: Time slot structure applied by the CR.
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Figure 6.2: CRs consist of combinations of different features and parameters

During the third part of the time slot, the CR learns from its observation. No matter the

channel was idle or busy, both of them provide useful information for the CR to learn and

optimize its decisions in the future. The last part is the switching period which indicates the

amount of time that it takes the CR to switch from one channel to another one. Switching

period is dependent on the hardware limitations of each CR.

We have conducted extensive simulations with 144 different types of CRs. 10 channels

are considered in the network. 18 testing scenarios are designed, such that each CR performs

on each of them one by one. We run the simulations in MATLAB. For each CR performing

in one single testing scenario we run the algorithm 10000 times and get the average.

55



6.2 Cognitive Radio Capabilities

Figure 6.2 shows the capabilities of CRs considered in this case study in terms of their

features and parameters. Combinations of all these features gives us 144 different types of

CRs as explained in the following. The CR features are described as follows.

• Channel access strategy (Access Policy) employed by the CR to learn and adapt to

the environment. It can be a learning-based method, deterministic or just a random

strategy. We consider five types of learning-based access strategies known as UCB1

[15], EXP3 [17], POLA[30], PROLA[30], and Q-Learning [44] and one random access

strategy. Details of the strategies will be described in the sequel.

• Number of sensors. Possessing more sensors, the CR observes more channels at each

time slot. Then depending on the reasoning it employs, the CR may adapt better to

the environment. This is probably equal to higher loads in cognitive capabilities. In

this case study, we consider the number of sensors (m) to be either 1, 2, or 6.

• Sensing accuracy which indicates the detecting probability when the PU is present.

There are several methods of channel sensing including energy detection and feature

extraction [54, 55, 56]. We consider three values of 1, 0.9, 0.8 as the probability of the

correct sensing. The values are relatively large because in practice, the CRs usually

have high sensing accuracy.

• Processing speed is another feature of a CR that occurs during sensing, learning,

and switching parts of the time slot. Learning delay occurs due to two reasons, the

hardware limitations and due to algorithmic complexity of the learning algorithm. We

add up the delay due to hardware limitations that happen in different parts of a time

slot as one single total delay. We assume this total delay to be either 0, 0.1ts, or 0.3ts

in which ts indicates the time slot duration.

• Algorithmic complexity. The delay occurred due to the time required by the compu-

tations in the algorithmic side is different than the delay due to hardware limitations.
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It depends on the efficiency of the learning algorithm and for this reason it is called al-

gorithmic complexity. This type of delay depends on how well the learning algorithm

has been designed algorithmic-wise and it is inherent to the learning technique.

As to the six channel access strategies we employ in this work, the random access

strategy does not utilize any learning-based algorithm. The other learning based algorithms

mentioned are described below.

Algorithm: UCB1 with multiple observations

Initialization: Play each machine once. Per each play make m observations including

the played one. The m observations are made on the m subsequent

actions beginning from the action played.

For each t = 2, ..., T : Play each machine that maximizes a given deterministic policy.

The decision criteria is based on the upper confidence bound con-

cept from statistics. Make m observations on the m subsequent

channels beginning from the taken action.

The UCB1 and EXP3 algorithms [15, 17] are slightly modified from their original version

for the case with m observations to address the more general case of observation of more

than one channel. The modified UCB1 and EXP3 algorithms are described in the following.

Note that UCB1 is a deterministic access policy designed for well behaved environments,

while EXP3 is designed for adversarial environments.
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Algorithm: EXP3 Algorithm with multiple observations

Initialization: Assign a uniform random distribution on action selection.

For each t = 1, ..., T

1. Update the distribution on action selection based on the observations made so far

plus adding some randomness. Randomness is added to make sure the agent makes

enough explorations.

2. Choose an action randomly based on the distribution defined above.

3. Observe the reward on m subsequent channels beginning from the taken action.

4. Update the observation history on all the channels. The observation history will be

utilized in step one to optimize the channel selection distribution.

Algorithms POLA and the PROLA are presented below for convenience [30]. Both

algorithms are designed for adversarial environments. PROLA as explained in Section 5.1

is similar to the EXP3 algorithm in the sense that at each time step, the agent is able to

both gain reward and also to make an observation utilized in its learning process. The

difference between PROLA and EXP3 is that in EXP3, the agent observes the reward on

the same action it takes and gains reward; however, in PROLA, the agent makes observation

on a channel other than the one it takes.

POLA is similar to the PROLA algorithm since both algorithms are designed to address

the case when agent does not have the capability to observe the reward on the action it

takes. However, POLA has a major difference from the PROLA and EXP3 based on which

at each time step, it can either take action or make observation. This scenario, happens

when the agent has limited capabilities and it cannot take action and switch to another

channel for observation, during the periot of the same time step [30].
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Algorithm: POLA with multiple Observations

Initialization: Assign uniform random distribution on the channels.

For each t = 1, 2, ..., T

1. With small probability ε decaying in time, choose an action uniformly at random to

observe its reward. Otherwise, take an action.

2. If it is decided to make observation, choose m channels to observe then update the

channel selection probability based on the channel observation history. Otherwise,

choose a channel to access (take action) and accumulate the unobservable reward.

Algorithm : PROLA with multiple Observations

Initialization: Assign random uniform distribution on channel selection.

For each t = 1, 2, ..., T

1. Assign a distribution on action selection based on the channel observation history.

2. Choose a channel based on the above distribution to play and accumulate the unob-

servable reward.

3. Choose m channels other than the played one uniformly at random to observe their

reward during the same time slot.

4. Update the channel observation history to optimize the distribution on channel

selection policy.

The last learning algorithm we apply is Q-Learning algorithm [45] as described in the

following Algorithm. Q-Learning is similar to the UCB1 algorithm in the sense that they
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both are designed for well behaved environments. More specifically, Q-learning algorithm is

usually applied in the environments that follow a Markovian Chain. One major difference

between the Q-learning Algorithm and the UCB1 is that, Q-learning algorithm solves an

optimization problem at each time step to optimize the action selection distribution.

In order to implement Q-Learning in MATLAB and to solve the optimization problems

of this algorithm, CVX toolbox [57, 58] is used. More specifically, CVX toolbox is designed

to solve convex optimization problems in MATLAB.

Considering all the combinations of the features as shown in Fig. (6.2), 162 different types

of CRs are generated. However, for random access strategy, no learning capability is utilized.

So the number of channels being observed makes no impact on the CR’s performance. By

removing eighteen redundant combinations, 144 CRs remain. Different features and their

assigned values are shown in Fig. 6.2.

Algorithm 5: Q-Learning with multiple observations

Initialization: Assign a random uniform distribution on channel selection.

For each t = 1, 2, ..., T

1. With an small probability choose an action uniformly at random to play.

Otherwise, choose an action with the distribution assigned based on the observation

history.

2. Receive the reward on the action. Make m− 1 more observations on the subsequent

channels other than the played one.

3. Use linear programming to optimize the action selection distribution.

6.3 Testing Scenarios

We consider several parameters to design the testing scenarios:
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Figure 6.3: Designing Test Scenarios

• Type of PU Activity. We consider three types of activities for the PU which consists of

i.i.d. distribution, Markovian Chain, and arbitrary where no well defined distribution

exists.

• PU Load which indicates the probability of the PU to be active on each channel.

PU may have a high load on all the channels or may have a light load on only one

channel and a heavy load on all other channels (large gap). This testing scenario

can discriminate among learning and nonlearning-based access strategies since by

utilizing the observations and learning one can discriminate the good channel from

low rewarding ones. We have considered several combinations of PU activity on the

channels.

• Channel Rate. Three different values are considered as channel rates as shown in

Fig. 6.3. If we assume all other characteristics of the channels to be identical, a

CR that learns the high rate channel may be considered as having high load in the
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corresponding cognitive capability.

• Frame Delivery Ratio (FDR) which includes the impact of channel quality and noise

on a given channel. Three possible values for FDR are considered in this case study.

Figure 6.3 shows a summary of the parameters considered. Combining these parameters,

we create 18 test scenarios. Each CR needs to perform on each testing scenario so that its

cognitive capabilities can be derived.

6.4 Performance Metrics

We measure the performance of the CRs based on three different metrics:

• Throughput which is stored as y1k(n) where k and n indicate the testing scenario and

the CR indices, respectively.

• Delay which indicates total delay occurred in the time slot and is stored as y2k(n).

• Violation ratio which represents the average number of times the CR interfered with

the PU due to wrong sensing result called miss detection. It is assumed if the CR

interferes with the PU, there will be a penalty for the CR and its data will be blocked,

so there will be no throughput for the CR. Violation ratio is stored in y3k(n).

The performance measure data vector Yk(n) is equal to Yk(n) = [y1k(n) y2k(n) y3k(n)]

for n = 1, . . . , 144 and k = 1, . . . , 18.

6.5 Simulation Results

In this section we represent the simulation results, and analyze the intelligence factors as

well as the cognitive capabilities of the CRs. We divide our simulations into several phases.

In the first phase, we consider the UCB1, EXP3, and Random access based CRs. Associated

with each of UCB1 and EXP3 policies, there are twenty-seven CRs according to Fig. 6.2.

There are nine CRs utilizing the random access strategy.
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Figure 6.4: Total throughput of each CR achieved from all testing scenarios when the UCB1,
EXP3, and Random access strategies are applied.

Figure 6.4 shows the simulation result of the first metric, throughput. This is the total

throughput obtained by aggregating the throughput achieved from all the testing scenarios

for each CR applying the mentioned access strategies.

From this figure, three clusters can be identified. The first cluster (for cognitive radio

index 1 to 27) represents CRs employing UCB1 learning-based access strategy. The second

cluster (for cognitive radio index 28 to 54) belongs to the CRs employing EXP3 learning-

based access strategy. The last cluster (for cognitive radio index 55 to 63) represents CRs

utilizing random access strategies.

One observation is that, within each cluster, as the number of sensors increases, the

overall throughput increases as well. Next, the total throughput of CRs employing UCB1

is higher than those employing EXP3 since most of the testing scenarios designed are well

behaved (stochastic) in which UCB1 performs better [15, 17]. The third cluster illustrates

those CRs employing random access methods. Since random strategy never utilizes the
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previous observations, it achieves the lowest throughput among others. The graphs also

show that for each three consecutive CRs (i.e., three consecutive bars in the graph), the

throughput is decreasing since the sensing accuracy is decreasing.

In the next step, we conduct data analysis via FA. From the simulations, three 63× 18

matrices are generated for three metrics we measure. They all together create the data

matrix Y with the dimension of 63 × 54. FA is applied on this matrix using the software

IBM SPSS [59].

The analysis identifies four latent factors as shown in Fig. 6.5. Only four factors are

distinguishable and the rest are negligible which are almost zero. Due to limited space we

skip the detailed output data corresponding to the FA results. Even though the number

of latent factors are identified, it is not yet clear which cognitive capabilities these factors

correspond to. We need to examine the data thoroughly and find out the corresponding

cognitive capabilities by matching them to the CR functions.

By examining the data, the four latent factors (cognitive capabilities) are found as

follows: Spectrum sensing capability, processing speed capability, environment recognition

capability, and environment adaptation capability. The results are summarized in the first

four rows of the Table 6.1.

As we study the results achieved by applying FA technique, the data of the first factor

provides information on the violation ratio which is impacted by the sensing accuracy and

the number of sensors. As a result we conclude that the first latent factor corresponds

to the spectrum sensing capability. The second latent factor addresses the delay, which

is associated with the processing speed capability due to the hardware limitations of the

CR. The third factor is related to the learning capability, or specifically the environment

recognition capability. The forth factor shows a better performance for EXP3 and random

access strategy than the UCB1 when the sensing accuracy decreases. The same thing

happens when the environment is not well behaved. This indicates that the EXP3 and

random access strategy adapt better to non-well behaved environments. The reason is

because they utilize randomness in their access strategy which makes them more resilient
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Figure 6.5: Latent factors identified for the UCB1, EXP3, and random-access based CRs
based on the three metrics of throughput, delay, and violation ratio.

to changes in the environment. Deterministic based approaches assume a stable environment

which makes them vulnerable to modifications in the environment. As a result this latent

factor addresses the environment adaptation capability.

Comparing to the intelligence model proposed in Section 5.2, the processing speed ca-

pability matches the broad cognitive capability Gp, the spectrum sensing matches Gs, and

the two others correspond to Gc or Gf as shown in Table 6.1. In addition, all the CRs used

in this case-study have high load on the Gsm factor.

Next, we plot the components obtained through the analysis. Component plot shows

how the scenarios in the case study belong to each of the four latent factors. Since it is not

possible to plot four dimensional figures, we plot the components for factors 1, 2 and 3 as

shown in Fig. 6.6. The whole data is divided into three clusters, each corresponding to one

latent factor.

In order to get a deeper insight from the results, we also apply the FA technique to
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Figure 6.6: Component plot of the latent factors achieved by applying FA on all the three
metrics.

Figure 6.7: Latent factors identified for the UCB1, EXP3, and random-access based CRs
based on only one metric, throughput.
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Figure 6.8: Component plot of the latent factors achieved by applying FA on the throughput
metric.

Table 6.1: Latent factors identified that contribute to intelligence

Factor I Sensing Capability, Gs

Factor II Processing Speed Capability, Gp

Factor III Environment Recognition Capability, Gc or Gf

Factor IV Environment Adaptation Capability, Gc or Gf

Factor V Algorithmic Processing Time, Ga

only one of the performance metrics called throughput. In this case which is a limited case

than the previous one, only two factors are identified as shown in Fig. 6.7. One of them

corresponds to the learning capability and the other one corresponds to the environment

adaptation capability. Figure 6.8 shows the components of the analyzed data in which the

whole data is divided into two clusters, each corresponding to one latent factor.

In the next phase of our simulation, we add the rest of the learning based CRs applying
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Figure 6.9: Total throughput of each CR achieved from all testing scenarios when the
PROLA, EXP3, and POLA access strategies are applied.

POLA, PROLA, and Q-Learning to the ones we considered earlier to make a comprehensive

list of CRs with different capabilities. Each of the 144 CRs performs in the testing scenarios

one by one. Three performance metrics are measured. This means that three matrices are

generated, each with a dimension of 144× 18. The combination of these matrices results in

the data matrix Y with dimension 144× 54.

As shown in Fig. 6.9, the performance of the PROLA is similar to the performance of

the EXP3. Algorithmic wise, the only difference between these two algorithms is that in

EXP3, the agent observes the reward on the same action it takes; while in the PROLA,

the agent makes an observation on one other action different than the one it takes. Our

analysis shows that the cognitive capabilities of the PROLA is almost the same as the ones

for EXP3. All the three algorithms are designed for the non-stochastic environments. As

shown in the figure the POLA algorithm achieves a lower throughput compared to the two

others. This is because the POLA algorithm is not able to take action and make observation

simultaneously at each time step. Instead, it decides at each time step to do either of
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Figure 6.10: Total throughput of each CR achieved from all testing scenarios when the
UCB1, Q-Learning access strategies are applied.

Figure 6.11: Latent factors identified considering all the CRs based on the three metrics of
throughput, delay, and violation ratio.
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(a) Latent factors one, two, and
three

(b) Latent factors one, two, and
four

(c) Latent factors one, two, and five

Figure 6.12: Component plot of all five latent factors achieved by applying FA on all the
three metrics.

them. This leads to a lower environment recognition capability and as a result POLA has a

lower load in this cognitive capability compared to others. In contrast, EXP3 and PROLA

demonstrate almost equal loads with respect to this cognitive capability. This indicates that

non-stochastic based online learning algorithms do not necessarily demonstrate the same

cognitive capabilities and should not be categorized into the same group.

Similarly, Fig. 6.10 shows the performance comparison of Q-learning and UCB1. These

two algorithms are both designed for stochastic environments. As deterministic algorithms,

they do not consider randomness in their policies. Our results indicate that both algorithms

show high loads in the cognitive capability of environment recognition. However, their

environment adaptability cognitive capability is low. Q-Learning demonstrates low load in

the cognitive capability of algorithmic processing. This is because at each time slot, in order

to update the action policy, the Q-learning algorithm solves an optimization problem. In

contrast, the UCB1 algorithm updates action policy at each time slot by a simple sum and

multiplication operations.

Finally, we derive the latent factors as shown in Fig. 6.11. Five cognitive factors are

identified with the fifth factor as the algorithmic processing time. Table 6.1 shows the whole

list of factors identified in our case study.

We also show the component plot for the whole data set used in this case study in
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Fig. 6.12. Since there are five latent factors, the component plot is five dimensional. In

order to represent the five dimensional data, we fix two of the latent factors, then plot three

figures considering third, fourth, and fifth latent factors, respectively.

71



Table 6.2: Cognitive Radios each with a different capability

Index Strategy Sensors Total Delay Accuracy Factor 1 Factor 2 Factor 3 Factor 4
1 UCB1 1 0 1 -0.99854 -1.06053 0.72124 -0.67929
2 UCB1 1 0 0.9 0.07582 -1.06053 0.42578 -1.09318
3 UCB1 1 0 0.8 1.19144 -1.06053 0.22652 -1.35620
4 UCB1 1 0.1 ts 1 -0.99854 -0.26513 0.72124 -0.67929
5 UCB1 1 0.1 ts 0.9 0.07582 -0.26513 0.42578 -1.09318
6 UCB1 1 0.1 ts 0.8 1.19144 -0.26513 0.22652 -1.35620
7 UCB1 1 0.3 ts 1 -0.99854 1.32566 0.72124 -0.67929
8 UCB1 1 0.3 ts 0.9 0.07582 1.32566 0.42578 -1.09318
9 UCB1 1 0.3 ts 0.8 1.19144 1.32566 0.22652 -1.35620
10 UCB1 2 0 1 -0.91662 -1.06053 1.30529 0.37787
11 UCB1 2 0 0.9 0.19451 -1.06053 0.91472 -0.51420
12 UCB1 2 0 0.8 1.35054 -1.06053 0.54353 -1.27140
13 UCB1 2 0.1 ts 1 -0.91662 -0.26513 1.30529 0.37787
14 UCB1 2 0.1 ts 0.9 0.19451 -0.26513 0.91472 -0.51420
15 UCB1 2 0.1 ts 0.8 1.35054 -0.26513 0.54353 -1.27140
16 UCB1 2 0.3 ts 1 -0.91662 1.32566 1.30529 0.37787
17 UCB1 2 0.3 ts 0.9 0.19451 1.32566 0.91472 -0.51420
18 UCB1 2 0.3 ts 0.8 1.35054 1.32566 0.54353 -1.27140
19 UCB1 6 0 1 -0.91619 -1.06053 1.98175 2.26214
20 UCB1 6 0 0.9 0.23026 -1.06053 1.54077 1.20849
21 UCB1 6 0 0.8 1.43294 -1.06053 1.11334 0.13636
22 UCB1 6 0.1 ts 1 -0.91619 -0.26513 1.98175 2.26214
23 UCB1 6 0.1 ts 0.9 0.23026 -0.26513 1.54077 1.20849
24 UCB1 6 0.1 ts 0.8 1.43294 -0.26513 1.11334 0.13636
25 UCB1 6 0.3 ts 1 -0.91619 1.32566 1.98175 2.26214
26 UCB1 6 0.3 ts 0.9 0.23026 1.32566 1.54077 1.20849
27 UCB1 6 0.3 ts 0.8 1.43294 1.32566 1.11334 0.13636
28 EXP3 1 0 1 -1.32402 -1.06053 -0.40954 -0.46258
29 EXP3 1 0 0.9 -0.12030 -1.06053 -0.59928 -0.16071
30 EXP3 1 0 0.8 1.11229 -1.06053 -0.73378 0.26967
31 EXP3 1 0.1 ts 1 -1.32402 -0.26513 -0.40954 -0.46258
32 EXP3 1 0.1 ts 0.9 -0.12030 -0.26513 -0.59928 -0.16071
33 EXP3 1 0.1 ts 0.8 1.11229 -0.26513 -0.73378 0.26967
34 EXP3 1 0.3 ts 1 -1.32402 1.32566 -0.40954 -0.46258
35 EXP3 1 0.3 ts 0.9 -0.12030 1.32566 -0.59928 -0.16071
36 EXP3 1 0.3 ts 0.8 1.11229 1.32566 -0.73378 0.26967
37 EXP3 2 0 1 -1.29286 -1.06053 -0.30537 -0.52965
38 EXP3 2 0 0.9 -0.09329 -1.06053 -0.44370 -0.30205
39 EXP3 2 0 0.8 1.12099 -1.06053 -0.57601 -0.03410
40 EXP3 2 0.1 ts 1 -1.29286 -0.26513 -0.30537 -0.52965
41 EXP3 2 0.1 ts 0.9 -0.09329 -0.26513 -0.44370 -0.30205
42 EXP3 2 0.1 ts 0.8 1.12099 -0.26513 -0.57601 -0.03410
43 EXP3 2 0.3 ts 1 -1.29286 1.32566 -0.30537 -0.52965
44 EXP3 2 0.3 ts 0.9 -0.09329 1.32566 -0.44370 -0.30205
45 EXP3 2 0.3 ts 0.8 1.12099 1.32566 -0.57601 -0.03410
46 EXP3 6 0 1 -1.26007 -1.06053 -0.18426 -0.52123
47 EXP3 6 0 0.9 -0.07156 -1.06053 -0.32114 -0.38695
48 EXP3 6 0 0.8 1.11776 -1.06053 -0.45533 -0.23831
49 EXP3 6 0.1 ts 1 -1.26007 -0.26513 -0.18426 -0.52123
50 EXP3 6 0.1 ts 0.9 -0.07156 -0.26513 -0.32114 -0.38695
51 EXP3 6 0.1 ts 0.8 1.11776 -0.26513 -0.45533 -0.23831
52 EXP3 6 0.3 ts 1 -1.26007 1.32566 -0.18426 -0.52123
53 EXP3 6 0.3 ts 0.9 -0.07156 1.32566 -0.32114 -0.38695
54 EXP3 6 0.3 ts 0.8 1.11776 1.32566 -0.45533 -0.23831
55 Random 1 0 1 -1.61363 -1.06053 -1.54870 -0.27258
56 Random 1 0 0.9 -0.28221 -1.06053 -1.58403 1.09547
57 Random 1 0 0.8 1.06272 -1.06053 -1.61180 2.47243
58 Random 1 0.1 ts 1 -1.61363 -0.26513 -1.54870 -0.27258
59 Random 1 0.1 ts 0.9 -0.28221 -0.26513 -1.58403 1.09547
60 Random 1 0.1 ts 0.8 1.06272 -0.26513 -1.61180 2.47243
61 Random 1 0.3 ts 1 -1.61363 1.32566 -1.54870 -0.27258
62 Random 1 0.3 ts 0.9 -0.28221 1.32566 -1.58403 1.09547
63 Random 1 0.3 ts 0.8 1.06272 1.32566 -1.61180 2.47243
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Chapter 7: Conclusions and Future Work

7.1 Security in CRN

In this thesis, we studied the optimal online learning algorithms that can be applied by

a PUE attacker without any prior knowledge of the primary user activity characteristics

and secondary user channel access policies. We formulated the PUE attack as an online

learning problem. We identified the uniqueness of PUE attack that a PUE attacker cannot

observe the reward on the attacking channel, but is able to observe the reward on another

channel. We proposed a novel online learning strategy called POLA for the attacker with

no observation capability in the attacking time slot. In other words, this algorithm is

suitable when simultaneous attack and observation is not possible within the same time

slot. POLA dynamically decides between attack and observation, then chooses a channel

for the decision made. POLA achieves a regret in the order of Θ̃(
3
√
T 2). We showed POLA’s

optimality by matching its regret upper and lower bounds. We then proposed another online

learning algorithm, EXP3-DO to dynamically choose attacking and observing channels for a

PUE attacker in order to minimize its regret. EXP3-DO is based on the existing theoretical

frameworks and it is regret in the order of O(T
2
3 ). We proposed a third novel online learning

algorithm called PROLA for an attacker with at least one observation capabilities. For such

an attacker, the attack period is followed by an observation period during the same time

slot. PROLA introduces a new theoretical framework under which the agent achieves an

optimal regret in the order of Θ̃(
√
T ).

One important conclusion of our study is that with no observation at all in the attacking

slot in the POLA case, the attacker loses on the regret order, and with the observation of at

least one channel in the PROLA case, there is a significant improvement on the performance
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of the attacker. This is in contrast to the case where increasing the number of observations

from one to m ≥ 2, does not make that much difference, only improving the constant factor.

Though, this observation can be utilized to study the approximate number of observations

required to get the minimum constant factor. The attacker’s regret upper bound has a

dependency on the number of observations m as
√

1/m. That is, the regret decreases

overall for an attacker with higher observation capability (larger m). However, when the

number of observing channels is small, the regret decreases more if we add a few more

observing channels. While, the decreased regret will become marginal when more observing

channels are added. This finding implies that an attacker may only need a small number

of observing channels to achieve a good constant factor. The regret upper bound also is

proportional to
√
K lnK which means the regret increases when there are more channels in

the network. The proposed optimal learning algorithm, PROLA, also advances the study

of online learning algorithms. It deals with the situation where a learning agent cannot

observe the reward on the action that is taken but can partially observe the reward of other

actions. Before our work, the regret upper bound is proved to be in the order of Õ(
3
√
T 2).

Our algorithm achieves a tighter regret bound of Õ(
√
T ) by randomizing the observing

actions which introduces the concept of time-variable random feedback graphs. We show

this algorithm’s optimality by deriving its regret lower bound which matches with its upper

bound.

As for future work, we believe that our work can serve as a stepping stone to study

many other problems. How to deal with multiple attackers will be interesting, especially

when the attackers perform in a distributed manner. One other interesting direction is to

study the equilibrium between the PUE attacker(s) and secondary user(s) when both of

them employ learning based algorithms. Integrating non-perfect spectrum sensing and the

ability of PUE attack detection into our model will also be interesting especially that the

PUE attacker may interfere with the PU during spectrum sensing period which can make

it detectable by the PU. From theoretical point of view, our result shows only one possible

case that the feedback graph despite being partially observable, achieves a tighter bound. A
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particular reward structure may allow for Õ(
√
T ) regret even in partially observable graphs.

7.2 Intelligence in CR

In the second part of this study, for the first time, we have proposed the idea of deriving

the intelligence measure and analyzing the cognitive capabilities of the CR. An intelligence

model is proposed for the CR, and a data-driven methodology is proposed which applies

FA techniques to identify CR intelligence factors and cognitive capabilities. A case study

is presented in which through extensive simulations, five latent factors are identified for the

CR that comply well with the nature of the tested CRs.

Our ongoing effort is focused on measuring the intelligence quotient (IQ) for each CR. IQ

can be considered as the general intelligence factor that indicates how well a CR performs

in uncertain environments. We will also expand our methods to measure CR intelligence

in multi-user and multi-hop networks. More specifically, the following can be considered as

future research directions to pursue.

7.2.1 Cognitive Capabilities of Routing Algorithms

Our current work is on the intelligence measure of CRs while they act in the MAC layer.

Intelligence measure of CRs in the routing layer is an interesting future research direction.

There has been some preliminary work done on the learning-based routing methods [60],

where the authors try to answer the question of whether machine learning including deep

reinforcement learning can replace the traditional network protocol design. It is shown

that data driven based routing methods that extract information from the traffic history

achieve better performance. For any learning based routing algorithm designed for cognitive

radio networks, we can measure their intelligence and cognitive capabilities, similarly. This

leads to designing better routing algorithms and better network configurations to maximize

network throughput while minimizing costs.
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7.2.2 Item Response Theory and IQ Measure

After extracting intelligence factors and identifying cognitive capabilities of CRs, the next

step would be to combine these capabilities and assign a quantitative value to it called

Intelligence Quotient (IQ). This is in fact the unique general intelligence factor g in Stratum

III shown in Fig. 5.1. In order to do so, one needs to first make sure that the test scenarios

are comprehensive and standardized. In other words, the testing items shown in Fig. 5.2

should include all types of test scenarios from easy to hard ones. Item Response Theory

(IRT) [61] which is a design, analysis, and scoring paradigm for tests, is the tool that needs

to be used to quantify the easy and difficult test scenarios. Using IRT to design the optimal

test scenarios and to develop the IQ measurement methods is another interesting future

research direction.

7.2.3 Configuring the Network with Combination of CRs with Different

Intelligence

As explained in the introduction, cognitive radio networks can be configured by integrating

CRs with different intelligence and cognitive capabilities. This may lead to the optimal use

of resources and would also be more cost efficient. More comprehensive research is needed

in order to quantitatively measure the performance of such networks and to rigorously show

how one or a few number of CRs with higher intelligence can lead and network with other

CRs with lower intelligence.
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Appendix A: POLA Algorithm’s Regret Lower Bound

Proof of Theorem 2. We sketch the proof as follows. The problem of the PUE attacker

with no observation capability within the attacking time slot can be modeled as a feedback

graph. Feedback graphs are introduced in [14] based on which the observations governing the

actions are modeled as graphs. More specifically, in a feedback graph, the nodes represent

the actions and the edges connecting them demonstrate the observations made associated

with taking a specific action. Figure A.1 shows how our problem can be modeled as a

feedback graph.

In this figure, nodes 1 to K represent the overall number of actions. There are K more

actions however in this figure. These K extra actions are required to be able to model our

problem with feedback graphs. Actions K+1 up to 2K represent the observations; i.e., any

time the agent decides to make an observation, it is modeled as an extra action. There are

K channels and we model any observation on each channel with a new action which adds

up to 2K actions overall. The agent gains a reward of zero if it chooses the observation

action since it is not a real action. Instead, it makes an observation on the potential reward

of its associated real action.

So, this problem can be modeled as a feedback graph and it in fact turns out to be a

partially observable graph [14]. In [14], it is proved that the regret lower bound for partially

observable graphs is Ω(ν
3
√
KT 2) which completes the proof.

Appendix B: PROLA Algorithm’s Regret Lower Bound

The proof here is similar to the lower bound analysis of EXP3 given in proof of Theorem

5.1, Appendix, in [17]. We mention the differences here. For this analysis the problem

setup is exactly the same as the one in [17]. The notations and definitions are also the same

as given in the first part of the analysis in [17]. Below we bring some of the important

notations and definitions used in the analysis here to keep the clarity of our analysis and
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Figure A.1: Modeling the Attacker with no observation capability within the attacking slot
with a feedback graph

to make our analysis self contained; however, the reader is referred to [17] for more details

on the definitions of notations.

The reward distribution on the actions are defined as follows. One action is chosen

uniformly at random to be the good action. Below is the reward distribution on the good

action, i for all t = 1, ..., T ,

xt(i) =


1, 1/2 + ε

0, o.w.,

(B.1)

where ε ∈ (0, 1/2]. The reward distribution on all other actions is defined to be one or zero

with equal probabilities. P∗ {·} is used to denote the probability w.r.t. this random choice

of rewards to play. Pi {·} represents the probability conditioned on i being the good action.

Also, Punif {·} shows the probability with respect to uniformly random choice of rewards on

all actions. O notation is also used to denote the probability w.r.t. observation. Analogous

observation probability O∗ {·}, Oi {·}, Ounif {·} and expectation notations, E∗[·], Ei[·],

Eunif [·] are used.

The agent’s access/attack policy is denoted by A. rt = xt(it) is a random variable which

its value shows the reward gained at time t. rt =< r1, . . . , rt > is a sequence of rewards
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received till t and r is the entire sequence of rewards. GA =
T∑
t=1

rt is the gain of the agent

and Gmax = max
j

T∑
t=1

xt(j). The number of times action i is chosen by A is a random variable

denoted by Ni.

Lemma 1 Letf : {0, 1}T −→ [0,M ] be any function defined on reward sequences r. Then

for any action i,

Ei[f(r)] ≤ Eunif [f(r)] + M
2

√
−Eunif [Oi] ln(1− 4ε2).

Proof.

Ei[f(r)]−Eunif [f(r)] =
∑
r

f(r)(Oi {r} −Ounif {r})

≤
∑

r:Oi{r}≥Ounif{r}

f(r)(Oi {r} −Ounif {r})

≤M
∑

r:Oi{r}≥Ounif{r}

(Oi {r} −Ounif {r})

=
M

2
‖Oi −Ounif‖1 . (B.2)

We also know from [17, 62] that,

‖Ounif −Oi‖21 ≤ (2 ln 2)KL(Ounif ||Oi). (B.3)

From chain rule for relative entropy we derive the following,

KL(Ounif ||Oi) =

T∑
t=1

KL(Ounif

{
rt|rt−1

}
||Oi

{
rt|rt−1

}
)

=

T∑
t=1

(Ounif {it 6= i}KL(
1

2
|| 1

2
))
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+ (Ounif {it = i}KL(
1

2
|| 1

2
+ ε))

=

T∑
t=1

Ounif {it = i} (−1

2
lg(1− 4ε2))

= Eunif [Oi](−
1

2
lg(1− 4ε2)). (B.4)

The lemma follows by combining (B.2),(B.3), and (B.4).

Proof of Theorem 4. The rest of the analysis in this part is similar to the analysis in Theo-

rem A.2 in [17], except that when we apply lemma 1 to Ni, we reach the following inequality,

Ei[Ni] ≤ Eunif [Ni] + T
2

√
−Eunif [Oi] ln(1− 4ε2).

where
K∑
i=1

√
Eunif [Oi] ≤

√
KT . By considering the observation probability and making a

little simplification the upper bound is achieved. Following similar steps as in Theorem A.2

in [17] for the rest of the analysis gives us the regret lower bound equal to ω(c
√
KT ) which

completes the proof.
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