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Abstract

OPTIMIZATION OF FLUID SOLVERS WITH RESPECT TO FAULT TOLERANCE
AND MEMORY LATENCY

Atis Degro, PhD

George Mason University, 2020

Dissertation Director: Dr. Rainald Löhner

Constant advancement of computational systems lifts the theoretical boundaries of what

is possible to achieve with numerical simulations. In order to fully utilize the capabilities

of advanced computational resources, codes must be adapted accordingly.

One major challenge that comes with petascale and exascale computing is fault tolerance.

The larger the number of nodes used for code execution the lower the expected time between

hardware failures. Based on available research data, several failures per day can occur when

running massively parallel applications. Several fault tolerance enabling techniques have

been analyzed and proposed in past years; however, currently there are no fault tolerant

computational fluid dynamics (CFD) solvers that can efficiently execute an application

at the Exascale or Petascale level. The aim of this PhD dissertation is to analyze and

implement available resilience techniques to develop a fault-tolerant CFD solver.

The second challenge addressed in this work is the memory latency problem for CFD

codes. Many CFD codes that exhibit low computational intensity (flops per RAM access)

‘saturate’ the memory bandwidth of modern chips after only a few cores; therefore, any

possible benefits of utilizing more of the available cores are minimized. While previously

the CPU speed determined how fast a certain code could be executed, currently, the memory



access speed sets the upper limit for the solver’s performance. That is the reason why

some fluid solvers can achieve only 10-15 percent of the peak performance of the floating

point pipelines on recent CPU cores. This has led to the development of minimal memory

access loop (MMAL) options for finite difference solvers. Several loops are described and

analyzed.

Finally another approach to address the memory latency problem for CFD codes is

investigated. Intrinsic instructions in C++ are used to code the subroutine that obtains

the right hand side (RHS) for the finite difference approximation. Intrinsic instructions

take advantage of the full vector length and maximize the number of operations that can

be done simultaneously.



Chapter 1: Introduction

1.1 Problem statement

In 2008, petascale supercomputing was achieved. The IBM-built supercomputer named

Roadrunner went online and exceeded 1 petaflops on the Linpack test [1]. The number

of Petascale computers on the Top500 supercomputer list grew steadily. Since June 2019,

all the top 500 supercomputers perform at petascale – at least 1.022 petaflops [2]. The

progress, however, does not stop at petascale. Planning for exascale began before the first

petascale computer went online. Furthermore, the first prognosis anticipated an exascale

supercomputer by the year 2015 [3]. The current prognosis anticipates the first exascale

supercomputer to go online in 2021 [4].

Exascale computing holds the potential to lift the current limits of scientific computing

and enable new possibilities. However, exascale computing comes with new challenges. In

order to fully utilize the exascale performance, several issues have to be addressed.

One main issue which has been repeatedly discussed regarding exascale computing, is

resilience [5]. Today’s supercomputers suffer daily from hardware failures. The mean time

between failures (MTBF), depending on the supercomputer, can be as frequent as every 7

hours [6]. Due to the increased number of components expected in an exascale computer,

the MTBF will likely reduce even further – potentially down to minutes. Applications that

follow a master/slave hierarchy of work assignment do not suffer significant computational

losses when a process fails. New replacement processes can be spawned at minimum expense

without loss of valuable data. Meanwhile, fault tolerance is a more serious issue in field

solvers where processors are working in a flat hierarchy. Each process works simultaneously

on a sub-domain of the problem and critical information between them is exchanged each

1



time-step. In this case, loss of a process implies loss of information that is necessary to

advance the execution.

Although work on fault tolerant computing has been ongoing for decades, currently

there are no production codes that can deal with node or core failures. Furthermore, most

of the advancements made in fault tolerant computing are not applicable when using For-

tran programming language. Due to the differences in programming language capabilities,

strategies suggested for C++ can not be used in Fortran. This work concentrates on in-

vestigating the available fault tolerant techniques and designing a fault tolerant field solver

written in Fortran.

Another issue addressed in this work is the increasing gap between memory and CPU

performance. Both CPU and memory transfer performances have been steadily increasing.

CPU performance, however, is increasing at a much higher rate. This has led to a situation

where data transfer from different levels of memory can not ’feed’ the CPU fast enough to

enable the theoretical computational performance. Applications where such a scenario is

observed are memory bound – peak performance is limited by the system bandwidth between

CPU and memory. One way of addressing this issue is to design algorithms that reduce

the necessary amount of data transfer. This work investigates two possible approaches to

reduce the memory latency:

• rearranging execution order so that the maximum amount of data could be reused

after it has been loaded in higher level memory (L1, L2 cache); and,

• using intrinsic instructions in order to utilize full vector length of the registers. This

way more operations can be executed simultaneously on larger data sets, thereby

increasing the performance.

2



1.2 FDFLO

Fault-tolerance strategies as well as memory latency reduction attempts were designed

and tested using FDFLO [7–10]. FDFLO is a finite difference code that solves the quasi-

incompressible (artificial compressibility) Navier-Stokes equations and is based on the fol-

lowing set of building blocks:

• Cartesian spatial discretization;

• Embedded or immersed boundaries for complex geometries;

• Explicit timestepping via low-storage Runge-Kutta schemes;

• Conservative formulation for advection and divergence;

• Easy extensions to high-order stencils;

• Ordered access to memory;

• Long 1-D loops (for optimal vector, OMP and GPU performance);

• Use of halo points to impose boundary conditions.

FDFLO has been in development for a number of years and has been used for both

fundamental research of turbulent phenomena as well as industrial large-eddy simulations

(LES) of complete car configurations.

1.3 Thesis outline

The body of this dissertation is organized around the issues highlighted in the above problem

statement.

Chapter 2 is dedicated to fault tolerant fluid solver development. First, a more thorough

motivation for necessity for a fault tolerant solver is provided followed by an overview of

currently available techniques and related work. Second, the developed and implemented

3



strategies are presented and discussed. Finally, the results of several test cases and overall

performance evaluation are reported.

The attempts to minimize memory access using minimal memory access loops (MMALs)

comprise chapter 3. This includes the motivation and detailed description of MMALs po-

tential advantage over traditional approach with respect to data transfer from memory. Six

different minimal memory access loop options are introduced and implemented in the finite

difference solver FDFLO. Test runs of the implemented loops are conducted on different

hardware systems and several problem sizes are tested. Chapter 3 concludes with the result

discussion and outlook.

Chapter 4 is dedicated to the use of intrinsic instructions as a tool for improving the per-

formance of fluid solver. Challenges and limitations of intrinsic instructions are discussed.

Intrinsic calls are used to implement an alternative subroutine that obtains the RHS values.

Both single precision and double precision options are explored. The subroutines are tested

and compared with the traditional version of RHS update. To conclude, the suggestions for

possible future work are given.

Finally, chapter 5 presents an overall summary of efforts towards optimization of fluid

solvers with respect to fault tolerance and memory latency. The main outcomes are evalu-

ated. Further directions of future work are identified.
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Chapter 2: Fault Tolerant Fluid Solver

2.1 Introduction

The current path to exascale computing foresees tens of thousands of heavily populated

nodes (i.e. millions of cores) working on the same time-critical problem. One of the emerging

issues with millions of cores is the time between failures. Random failures of cores or the

communication between cores - commonly referred to as ‘faults’ - that are expected to occur

every couple of minutes pose a serious problem for production runs that need hours or days

to complete. This problem has not emerged so far because:

• for most machines, the number of (high quality) cores allowed for a single run is still

in the range of tens of thousands [11,12], i.e. times between failures occur only every

few hours; and,

• due to their Message Passing Interface (MPI) implementations, most computing cen-

ters do not allow for fault-tolerant computing, i.e. if any MPI process/core fails, the

run terminates immediately.

It should come as no surprise then that none of the production codes currently in

place can deal with cores/nodes failing. To date, the approach has been to periodically

write all restart information to disk (e.g. every hour), so that if the machine experiences

a malfunction, only the last hour of computing is lost. This approach requires constant

human supervision or elaborate restart scripts, so that a considerable number of productive

hours are not be lost should a node or core fail.

By default, each error encountered when using MPI is fatal and the simulation is aborted.

Since the MPI-2 standard, it is possible to change the default behavior and allow the

5



execution of the application to continue even after an error has been encountered. This

feature has been used by many when trying to develop a fault-tolerant MPI implementation.

The new capabilities offered by fault-tolerant MPI implementations have motivated research

in resilience strategies and fault-tolerant application development.

From a fault-tolerant perspective, the simplest implementations are those that follow

a master/slave arrangement. Typical applications are distributed searches [13], or embar-

rassingly parallel problems such as parameter scoping or evolutionary optimization [14].

For these cases, the loss of a processor is immaterial, as a new process can be spawned to

replace it without any detriment to the overall application. Fault tolerance becomes much

more difficult for field solvers where processors are working simultaneously on different sub-

domains, and critical information is exchanged between them every iteration or time step.

In this case, the failure of one processor leads to an irrecoverable loss of information.

2.2 MTBF

Back in 1965 Moore’s law predicted that every 2 years the number of components per

integrated circuit will double [15]. One can see how correct this prediction has been in

Figure 2.1. This constant progress affects also the overall trend and performance of the

supercomputers. The list of the top 500 supercomputers is updated twice each year and

shows the statistics of the current computers with the highest peak performance [16]. Over

the time the supercomputers on this list have shown a steady increase in size with respect

to the number of compute nodes and CPUs (Figure 2.2). This progress towards ever bigger

computers is driven by the demand from science and industry. We are currently reaching

the level of exascale in terms of the floating point operations per second.

Increasing number of components on the computer lead to decreasing failure rates. Mean

time between failures (MTBF) is expected to go as low as several minutes. Researchers have

addressed the issue of hardware failures on supercomputers ever since the first talks about

petascale computing [18]. The predictions for petascale computing with respect to failure

rates turned out to be quite accurate, now predictions for exascale computing are being

6



Figure 2.1: Increase in numbers of transistors that fit onto a microprocessor over the years.
Data taken from [17].

Figure 2.2: Increase in the maximum number of cores in the top 500 supercomputers

7



Table 2.1: Supercomputer statistics regarding MTBF

Name of the supercomputer Number of nodes Number of cores MTBF [h]
Jaguar XT4 7832 31328 36.91
Jaguar XT5 18688 149504 22.67
Jaguar XK6 18688 298592 8.93

Eos 736 23553 189.04
Titan 18688 560640 14.51

CEA Tera100 4300 140000 20
IBM Blue Gene 40960 163840 180
Blue Waters 22640 724480 7

made. Several studies and surveys analyzing data from supercomputing centers have been

carried out over the past years to come up with a good prediction model to estimate the

MTBF on a given machine [6, 19–26]

Main issues addressed in these studies are:

• which components are more prone to failure;

• how does MTBF change with respect to the life cycle of machine’s components;

• does MTBF depend on system type;

• does new generation hardware increase or decrease the reliability;

Most common type of failure ( 45%) is failure of a single node or CPU [19]. There is

no clear agreement whether the MTBF correlates better with number of CPUs, number

of nodes or number of sockets. Most likely it is the combination of all. The overall trend

however is clear. Figure 2.3 shows the correlation between MTBF and the number of

CPUs. The data points used in this chart are taken from several sources [6, 20, 22, 27] and

are presented in Table 2.1.

In Figure 2.3 the red curve denotes an exponential trendline. The number of data points

is small due to the lack of available information of failure statistics of different supercom-

puters. The deviation of the data points from the trendline comes from the complexity of

the issue, as mentioned above, the MTBF depends on a combination of different factors.

8



Figure 2.3: Mean time between failure depending on the total number of cores

For example, the two supercomputers with high MTBF (Eos and IBM Blue Gene) clearly

stand out from the overall trend. IBM Blue Gene has only 4 CPUs per node, Eos has a

low overall number of nodes. Although these are not unique characteristics, they possibly

contribute to the high MTBF. The trendline is not perfect and there are data points that

seem to not follow it at all. The general pattern of the correlation between MTBF and the

number of CPUs however is clear. As the number of CPUs per supercomputer rises, the

MTBF is going to reduce.

Based on the findings of [26], supercomputers encounter failure temporal locality. That

means, if a failure occurs, it is very likely that the next failure will occur after a time that

is notably lower than the MTBF. Furthermore, if the expected runtime of a simulation is

larger than the MTBF, there is a very high chance that several and not just one failure will

be encountered.

According to [22] the MTBF varies significantly over time. The MTBF of the same

supercomputer can change as much as 4 times in the period of one year. This fact even

further adds to the unpredictability of failure occurrences.

The data shown in this section does not prove that a failure will occur during a specific
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application execution. It does show, however, how likely and unpredictable failures are and

illustrates the significance of fault-tolerant applications for high performance computing.

2.3 Current situation regarding fault tolerant applications

In this section the current situation regarding fault-tolerant applications is discussed. A

brief overview of available tools and applications is given.

2.3.1 MPI library functionality with respect to fault tolerance

Work on the MPI began in 1991 and the first MPI standard, the MPI 1.0 was released in

1994. Since then, MPI has been the state of the art shared memory communication library

for parallel programs.

By default each encountered error when using MPI is a fatal error and the simulation is

aborted. The reason for this is to ensure a correct calculation. With the hardware advance-

ment the supercomputers got bigger, more and more nodes(processors) were available for a

single simulation. With the increasing number of the processors decreased the average time

between element failure. This was the motivation for research on development of resilient

computational methods. However the MPI standard by default remains non-fault tolerant.

According to the MPI-3 standard: "An MPI implementation cannot or may choose not to

handle some errors that occur during MPI calls. These can include errors that generate

exceptions or traps, such as floating point errors or access violations. The set of errors

that are handled by MPI is implementation-dependent. Each such error generates an MPI

exception." [28]

The MPI standard does however provide some tools for possible fault handling. Several

predefined error handlers are available in MPI:

• MPI_errors_are_fatal The handler, when called, causes the program to abort on

all executing processes. This has the same effect as if MPI_abort was called by

the process that invoked the handler [28]. This is the default error handler that is
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assigned to every initialized MPI communicator.

• MPI_errors_return The handler has no effect other than returning the error code

to the user[28]. What happens after an error is encountered depends on the specific

implementation. There is no guarantee that the user will be able to keep using the

communicator once an error is encountered. This option does however give user a

chance to store any data or execute other non MPI calls before the simulation is

aborted.

Additionally to the pre-defined error handlers, the user has the option to write a custom

error handler function. The custom error handler can then be assigned to a MPI commu-

nicator. In this scenario the custom error handler function is going to be called by each

MPI process that encounters and error (MPI call does not return MPI_success). It will be

shown in the next chapter how this functionality is used for development of fault tolerant

MPI extensions.

2.3.2 MPI fault tolerant extensions

A lot of work has been done on development of MPI extensions to increase the fault tolerant

options provided by standard MPI. In this chapter introduction to some of the most known

MPI extensions is provided by giving a short summary of the methodology, functionality

and background.

MPI-FT

MPI-FT is a fault tolerant version of MPI [29]. The proposed methodology consists of a

mechanism to detect the failures and a recovery procedure. The detection and recovery is

done by a centralized process called Observer that monitors the application. Once a failure

is detected the Observer notifies the alive processes. That is followed by the recovery

procedure. There are two proposed solutions for the recovery procedure. For the first

method distributed buffering of the message process is performed on each process. After

the failure the Observer recovers all buffered the messages from the alive processes and
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resends them to the replacement processes that have substituted the dead processes. For

the second method the Observer receives and stores all the message traffic during runtime.

After a failure is detected the Observer, similarly to method one, resends all the messages

issued for the dead processes to the replacement processes.

FT-MPI

FT-MPI is a fault tolerant version of MPI [30]. The first significant difference from the MPI

standard is that the default error handler is MPI_errors_return. FT-MPI is built on the

HARNESS (Heterogeneous Adaptive Reconfigurable Networked SyStem), an experimental

meta-computing system [31]. FT-MPI is based on the MPI-1.2, includes some parts of the

MPI-2 and extends some of the semantics of MPI to make recovery from failed processes

possible [32]. FT-MPI provides four different error modes also called ’communicator modes’

that can be specified at the beginning of the application. The four modes are as follows

[33]:

• ABORT - corresponds to the standard MPI default and aborts on an error;

• BLANK - after a failure MPI_COMM_WORLD doesn’t change size, the failed

processes are neither removed or replaced, alive processes keep their original ranks as

assigned before the crash;

• SHRINK - similar to blank, the failed processes are not replaced, however, they are

removed, leaving no ’holes’ in the communicator. The communicator is shrunk to the

size of remaining alive processes. The remaining processes might have a new rank;

and,

• REBUILD - this is the default mode of the FT-MPI. After the failure the com-

municator is first shrunk and then new processes are spawned to replace the failed

processes. The size of the MPI_COMM_WORLD doesn’t change and neither do the

ranks of the processes.
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Although the FT-MPI provided good fault tolerant functionality it was never implemented

in the MPI standard and has been discontinued. Due to the lack of generality (tied to a

specific computing system) it was never widely adapted or implemented in any production

codes.

FA-MPI

FA-MPI is a Fault-Aware version of MPI [34]. It provides extensions to the MPI standard

thereby providing options for implementing fault tolerant methods in the applications. FA-

MPI is restricted to non-blocking MPI communication. This can be seen as a disadvantage

when considering implementing fault tolerance in legacy codes. FA-MPI uses TryBlock

API extensions to introduce transactional behavior. Series of operations are firstly "tried"

to execute and are "committed" only when all the operations have succeeded. The operations

are "rolled-backward" or "rolled-forward" if some of the operations fail. The advantage of

FA-MPI is that it doesn’t deal exclusively with process failure. FA-MPI also claims to

have smaller overhead since the failure is not detected/mitigated/isolated/recovered per

operation but per group of operations [34,35].

ULFM

User Level Failure Mitigation can be described as an attempt to introduce a standardized

fault tolerant extension of MPI that would be implemented in the MPI standard. It has

several similarities with the FT-MPI. The MPI Forum’s Fault Tolerance Working Group

has been working on implementing standard fault tolerant MPI by adding additional calls to

the existing MPI standard [36]. The main additions to the existing MPI consists of supple-

mentary error codes and five supplementary interfaces. The following is a brief description

of these supplementary MPI semantics. Supplementary error codes [37]:

• MPIX_ERR_PROC_FAILED – an MPI call will return this error if failure of a

process on the communicator is preventing the completion of the MPI operation.
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• MPIX_ERR_PROC_FAILED_PENDING – an MPI call will return this error when

a potential sender matching a non-blocking wildcard source receive has failed.

• MPIX_ERR_REVOKED – an MPI call will return this error if either of the ranks

in the application has initiated the revoke operation on the communicator.

Supplementary MPI functions [37]:

• MPIX_Comm_failure_ack – this is a local operation that acknowledges all locally

notified failures on the communicator. After this call unmatched receive operations

that would otherwise have raised an error will proceed without raising further errors

since the error is already acknowledged.

• MPIX_Comm_failure_get_acked – this is a local call that returns the group of ac-

knowledged failed processes on the communicator. This call should be called after

MPIX_Comm_failure_ack.

• MPIX_Comm_revoke – this function is used to revoke a communicator. It notifies

all the processes associated with this communicator that it is revoked. It is not a

collective function therefore there are no matching calls on remote processes. It is a

local call with global effect. After a communicator is revoked all non-local calls in this

communicator will invoke an error of class mpix_err_revoked.

• MPIX_Comm_shrink – this functions creates a new communicator. On the input is

the communicator with failed processes and on the output a new communicator that

excludes all the failed processes. It is a collective call and has to be called by all the

alive processes.

• MPIX_Comm_agree – this is a collective communication call ensuring that all the

alive processes agree on a bitwise ’AND’ operation. Using this call after

MPIX_Comm_failure_ack lets users synchronize the knowledge of failures across the

communicator.
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ULFM added functions provide tools to deal with overall process of encountering process

failure in following phases:

• notification phase – ensuring that all the processes are aware of the failure;

• propagation phase – stopping all the activity of the affected communicator by revoking

it; and,

• recovery phase – removing the failed processes from the application and getting con-

sensus between all the surviving processes about the state of the recovered (healthy)

communicator before proceeding with the execution of the application.

ULFM makes it possible to implement local or global recovery depending on the type

of the application. ULFM is currently one of the most widely used fault tolerant MPI

extensions.

MPICH

MPICH is a high-performance widely portable implementation of the MPI standard since

MPI-1 [38]. MPICH has added to the implementation the following fault tolerant calls from

ULFM:

• failure_ack, failure_get_acked;

• MPIX_Comm_shrink;

• MPIX_Comm_agree;

• MPIX_Comm_revoke.

In order to use these calls, however, MPICH has to be configured before installation with

the following flag:

• –enable-error-checking=all

In addition, users must enable a runtime flag each time they execute the application:
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• –disable-auto-cleanup

This flag prevents the process manager to kill processes if any of the processes experience

failure [39]. During the course of this work, it was found that the MPICH version of the

MPIX_Comm_shrink call is limited to 32 MPI processes. That is not the case when using

ULFM. MPICH is widely used which makes it a good and simple option for trying and

implementing basic fault tolerance methods. It seems, however, that the support for fault

tolerance in MPICH could be discontinued [40].

Fenix

Fenix is a fault tolerant application programming interface (API). It uses ULFM provided

MPI extension semantics. Fenix has two main functionalities - repairing communicators

and restoring state of the application from a checkpoint [41].

Fenix recovers resilient communicators that are initialized using Fenix_Init. The repair

process supports both shrinking and non-shrinking recovery of the failure affected commu-

nicator. In order to use the non-shrinking recovery option additional redundant resources

(spare ranks) have to be assigned at the beginning of execution of the application. Fenix

automatically captures errors that result from MPI operations on the "fenix" communica-

tors.

For data recovery Fenix provides a designated data storage API. The user, however, can

choose to use other data recovery options. The Fenix provided data recovery API relies on

storing application variables and arrays to redundant data storage [41].

The recovery process restores the application to a defined recovery point as opposed to the

caller which makes The Fenix API not compatible with Fortran codes [42].

Reinit

Reinit is a global-exception, roll-back recovery model. Reinit was developed as an attempt

to address the shortcomings of ULFM. Contrary to ULFM where broken communicators

are repaired, Reinit relies on reinitialization of the MPI. Once a fail-stop error is detected,
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MPI reinitializes and restarts the application at a previously defined restart point. In doing

so, MPI is also restarting any failed ranks. Reinit depends on very accurate (only failed

processes are reported as failed) and synchronized (all the alive processes are eventually

informed about the failed processes) fault detector in the MPI runtime [43].

2.3.3 Related work

A few of the efforts reported to date in this field are mentioned in what follows.

• A fault-tolerant implementation of an application solving 2D partial differential equa-

tions (PDEs) by means of a sparse grid combination technique has been reported

by Ali et al. [44]. It is capable of surviving multiple process failures caused by the

faults. This implementation uses the capabilities of the User Level Failure Mitigation

(ULFM) extension of MPI [44]. After a detection of a failure the communicator is

revoked, then shrunk to the remaining processes and lastly new processes are spawned

to replace the failed ones. Three different data recovery procedures including check-

point/restart have been tested. The faults are injected sending (SIGKILL) to the

processes at a certain point from within the code. Faults are being detected by calling

mpi_barrier on the Parent communicator. This application is developed using C++.

• The theory for fault tolerant multi-level Monte Carlo (FT-MLMC) for solving the

two-dimensional stochastic Euler equations of gas dynamics has been developed and

tested by Pauli et al. [45]. This is a work on developing a fault tolerant ALSVID-

UQ (Multilevel Monte Carlo Finite Volume solver for uncertainty quantification in

hyperbolic systems of conservation laws [46]. Fault tolerance is implemented using the

ULFM MPI extension. After encountering a failure the communicator is revoked and

shrunk to the remaining (alive) processes. The recovered communicator is of reduced

size. Faults are introduced by killing processes using the system exit call. Faults are

introduced at random times based on Weibull distribution model. Faults are being

detected by calling mpi_barrier on the parent communicator. This application is
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developed using C++.

• The Fenix MPI Fault Tolerance software library compatible with the Message Passing

Interface (MPI) to support fault recovery without application shutdown has been used

in conjunction with PDE solvers by van der Wijngaart et al. [47]. The developers

report the successful implementation of Fenix MPI (mentioned earlier in this chapter)

in the S3D code for the numerical simulation of combustion [48].

• A number of publications have reported on efforts to make basic matrix operations

and linear equations solvers fault-tolerant [49–51]. Contrary to the works mentioned

above these efforts discuss resilience to soft errors. The fault tolerance is achieved at

the algorithm level and does not use additional MPI calls.

It can be noticed here that none of the related works are using Fortran as the program-

ming language. A considerable number of production codes are still written in Fortran, and

given the large number of man-years that were required to write and debug them, probably

will not be rewritten. The challenges when using Fortran will be discussed in the following

chapter.

2.3.4 Fault tolerance when using Fortran

It can be seen in the previous section that fault tolerance has been considered an issue

already for several years. Significant amount of work has been done on MPI extensions to

achieve fault tolerance in advanced numerical computations. The currently available MPI

extensions have been implemented in numerical solvers and tested. The results so far look

promising. Today, there is no standard for developing fault tolerant applications, however,

the work is ongoing and the future seems promising. There is, however, an important fact

that should be addressed. All the related example applications from the previous section

are written in C++. Furthermore, most of the MPI fault-tolerant extensions described in

the previous section do not support Fortran as the programming language.

Fortran, being one of the oldest programming languages, is still also one of the most used
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ones. Especially for scientific applications, even though it has not seen much development

and change throughout it’s existence. And there is a reason for that: Fortran can generate

a very fast native code, one of the reasons why it is ideal for scientific computing. It is

also highly optimized for vectorization and therefore good for supercomputer applications.

Fortran is readable and understandable. But it is not just the fact that Fortran in many cases

is the preferable programming language for designing new scientific applications. There are

many legacy codes written in Fortran. These are large codes that have been used for a long

time and are capable of taking advantage of increasing performance of the supercomputers.

Porting such a code to C++ in order to ensure fault tolerance is not reasonable. This makes

a strong argument for the necessity of a fault tolerant option for Fortran codes.

Reasons why fault tolerance is harder to achieve in Fortran with the currently avail-

able options has been thoroughly discussed and analyzed [42].One of the main reasons is

described in more detail in what follows.

Many of the currently available fault tolerant solutions propose the following recovery

to ensure fault resilience, once a failure has been detected, the surviving processes automat-

ically return to a previously specified location in the code. This could be anywhere in the

code but usually in the main function and before beginning of the outermost loop. Once the

surviving processes arrive at this location, application can be repaired and then resumed.

C++ semantics provide a non-local control option to use during recovery. This option in

C++ is longjmp which can be seen as a non-local goto. The use of this call can simplify the

fault-tolerant functionality implementation. Longjmp synchronously and directly diverts

all the remaining processes to the repair instance of the code from wherever the fault has

been encountered. With this call the control is transferred to a "jump point" which is

previously defined in the code with a call to setjmp. As said before, this is a part of the

suggested recovery procedure. In case of a failure all MPI processes can resume execution

at a consistent location. In most cases that is after a successful roll-back recovery.

In Fortran there does not exist a setjmp/longjmp equivalent. GOTO statements in

Fortran are limited within the scope of the current subroutine (procedure). That means
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that other strategies and methods have to be developed to implement fault tolerance in a

Fortran code. ULFM was chosen as the main MPI fault tolerant extension to achieve a

fault resistant version of the FDFLO code. The developed methods are explained in detail

in the following sections of this work.

2.4 Levels of Fault Tolerance

Fault tolerance is the ability of the application to overcome errors encountered during the

execution. One application can be resilient to certain types of hardware failures while failing

if a software error occurs. Another application can resist both software and hardware errors.

Both applications can be considered fault tolerant but there is clearly a difference. When

talking about fault tolerance different levels and types of fault tolerance may be identified.

The two extremes being:

• aborting after each encountered error no matter the error type (no fault-tolerance);

and,

• ’surviving’ any type of faults and any number of faults (complete fault-tolerance).

While it might be impossible to achieve complete fault-tolerance, in between these two

extremes there are many possible scenarios. A code can be fault tolerant with a certain

level of confidence with respect to a certain type of error depending on how likely it is

for the computation to fail/abort in case such an error is encountered. There are several

factors that set the theoretically achievable upper limit of fault tolerance with respect to

such errors. To name a few:

• Failure of Rank 0. When using MPI, rank 0 is considered the master process. It carries

unique information about the MPI communicator. There are currently no procedures

in place to recover a communicator if the rank 0 fails. Considering the total amount

of processes being used, the chances that exactly rank 0 is going to fail are rather low.
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• Non-application related software error. For example, the system environment errors

of the supercomputer, workload manager or other tools.

This work only investigates and deals with hardware errors. More specifically, failures

of individual CPUs and nodes. Some of the factors that influence the level of fault tolerance

are:

• How many copies for rollback recovery are kept in memory during runtime. The

recovery information is used after a failure has occurred. If one copy of the rollback

information is kept in memory, the recovery is only possible if the failure has not

affected both, the process itself and it’s recovery information simultaneously. The

more copies of the rollback recovery are kept in memory the higher the chances that

recovery will be possible.

• How many spare resources are used for the simulation. Spare resources are used to

replace the failed processes. The number of assigned spare resources sets the limit on

how many process failures can be overcome.

• Whether a code is able to survive all failure scenarios including the worst cases or

only the most common ones. Failure can occur at any point of the execution process.

There might be parts of the application that are error resistant while others are not.

The ratio between the vulnerable parts of the application and the resilient parts of

the application is a strong indicator of the level of fault tolerance.

To find the most cost effective option, it is important to look at the likelihood of each of

the failure scenarios, and the associated overhead for fault tolerance involved. At present,

with few fault-tolerant codes in operation, the information available is insufficient in order

to know the optimal solution. This work focuses on investigating and addressing these

issues.
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2.5 Fault Tolerant Code Design

As stated previously, the focus of this work is to design a fault-tolerant code written in For-

tran. There are many legacy codes written in Fortran used in scientific computing. These

codes can take advantage of ever increasing performance of supercomputers. However, these

codes are not fault tolerant since at the time of their development MTBF was not a con-

cern. The aim of this work is to develop a methodology for implementing fault tolerance in

Fortran applications. Furthermore, how it can be achieved with simple modifications that

do not demand large changes made to the existing code.

In order to obtain fault-tolerant codes, methodologies need to be developed to:

• discern which nodes/cores have failed;

• store the information required to restore a previous state;

• restore the state of the run before failure; and,

• re-assign work to either the remaining working processors or a set of ‘reserve’ proces-

sors used to handle failing cores/nodes.

In the following, we treat each of these aspects in turn. The overall approach followed

here attempts to minimize the changes required to large-scale codes when enabling fault-

tolerant computing.

2.6 Detecting and discerning node/core failure

One of the most frustrating user-experiences is the ‘churning’ of runs where cores/nodes

have failed. The user thinks the code is running fine, any run-diagnostics such as qstat

or similar commands shows time being spent, but in fact the run has stopped, waiting for

information to come from or arrive at the node that has failed. Assuming the worst-case

scenario that a number of nodes may have failed, one needs to develop methods to discern
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which nodes have failed that do not need to have the consent or messaging from all nodes

(as, for example an all_reduce operation) in order to detect failure. As the aim was to

achieve fault-tolerant computing with the least amount of changes to existing production

codes, a simple call to:

mpi_barrier(MPI_COMM_WORLD,ierro)

was added to several locations in the code. If all processors are alive, ierro=0, otherwise

an error has occurred. Additionally the mpi_barrier calls add synchronization to the code

which, as was observed, increases the resilience to the failures. Since it is not possible in

Fortran to execute a global goto, it is important that all the processes obtain information

about a failure in a fairly synchronous manner (at the same location in the code). This is

important to ensure that all the alive processes go through the same call sequence during

recovery and do not get stuck at other parts of the code.

The addition of an mpi_barrier-call adds a CPU time of 5-25 µsec [52]. Given that for

large-scale runs a single time step or iteration requires at least 3 orders of magnitude more

time this is considered insignificant.

2.7 Storage of restart/recovery information

As any node may fail, the information that is needed in order to use either another (spare/re-

serve) node to continue the run or to be sent to the remaining working nodes must be stored

outside the node. The simplest (and often used) way is to write to disk and then continue.

This is extremely time-consuming: writing a 500 Mels restart file to disk may take as much

as 1-2 minutes (!). The reason is that most large-scale machines have separated compute

nodes and disk storage. When trying to store a complete restart all compute nodes are

writing simultaneously to disk, creating a bottleneck. Specialized hardware and software

have been reported considerable improvements [53], but an informal survey of colleagues

worldwide confirmed the figure reported above. Therefore, the idea is to store the restart

information in scratch arrays that are saved in other processors. At the very least, two
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copies of this restart information are required: one that stays on the processor (in case it

does not fail), and one that is stored on another processor (local and buddy checkpointing).

This other processor should be as far away as possible on the network in order to minimize

the probability of an unrecoverable state due to multiple simultaneous neighboring failures.

Clearly, more copies could be stored across the processors in order to prevent scenarios such

as failure while storing data or simultaneous failure of a node and the node that keeps its

recovery information, but two copies seem to be a very efficient way to proceed.

The amount of data required for recovery from failure depends heavily on the field solver,

the time-marching scheme employed, and the physics modeled. For computational fluid dy-

namics (CFD) codes on stationary grids, the main data items required are element connec-

tivity, boundary conditions, coordinates and unknowns at the points/elements. If grids are

moving, the mesh velocity may have to be stored as well. For rheologically complex fluids

material history variables are required. Furthermore, for time marching schemes that require

the information from several previous time steps (e.g. Adams-Bashforth, Adams-Moulton

or implicit Runge-Kutta schemes) this information needs to be stored for all required time

steps. Computational structural dynamics (CSD) codes may have to store additionally plas-

ticity, material or damage history data at Gauss-points, original strain deformation tensors,

and other quantities, i.e. a much larger amount of data for the same gridsize. Furthermore,

the usual memory vs. run-time tradeoffs are also encountered here: in some cases, the con-

struction of the additional information required to run a field solver (e.g. for CFD solvers

the edges of the mesh, geometry factors, distance to wall, overlapping grid information,

etc.) may take CPU time, so storing them for restart/recovery could be advantageous.

In order to reduce memory requirements only the minimum amount of restart/recovery

information required was kept. Furthermore, in order to improve the code’s transparency

and extendability, the restart/recovery information was stored in the same way as restart

files would be written to and read from disk. For the CFD codes used here, this implied

integer and real backup arrays for control, body, diagnostics, grid generation, domain and

field diagnostics data.
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2.8 Recovery from failure

After an error in the MPI communicator is encountered, the first thing is to ensure that all

the remaining processes are aware of the state of the communicator. Since in Fortran no

global goto is available, the next step is to make all the remaining processes return to the

main function without getting stuck somewhere in the code due to the failed communicator.

This is achieved by implementing additional checks in different levels of the code that skip

calculation steps if the MPI communicator has encountered an error. Once in the main loop,

all the processes from a damaged communicator are directed to the recovery call sequence.

The recovery sequence is responsible for identifying all nodes that have ceased to operate,

as well as the processors that have their backup information. If the information to restore a

pre-failure state is not available (either because many nodes have failed, a network outage

has occurred or any other catastrophic machine failure has taken place) the run stops and is

restarted with the last restart state written to disk. If, on the other hand, the information

to restore a pre-failure state is available, all nodes restart from the last saved state. After

the recovery a check is performed to ensure that all the processes have restarted to the same

time step.

2.9 Re-assignment of work

With the assumption that the information to continue the run from a given backup time

step is available, three options are viable:

1. Load rebalancing: in this option, one utilizes the remaining working nodes, rebalanc-

ing the load before continuing the run. This is more involved, as one needs to combine

information from nodes that have ceased to work with information of working nodes,

and load balancing for complex physics is a non-trivial task [11,54].

2. Spawn new processes to replace the processes of failed nodes: after the failure the
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application determines how many nodes (processes) have failed and spawns the cor-

responding number of new ranks to replace the failed entities. In this case when

submitting a job on a cluster one has to make sure that: a) The environment allows

to spawn new processes and b) There are extra nodes reserved for the execution.

3. Reserve nodes that were not used before: the key idea here is to allocate at the

beginning of the run a small number of so-called ‘reserve nodes’ that can be used to

replace the nodes that fail. Contrary to the spawning option, the job is started on all

the nodes from the beginning. However, the processes of the reserve nodes are left idle

until a failure occurs. If a failure occurs, one of the reserve nodes is assigned to the list

of ‘running’ or ‘active nodes’ and the MPI communication (or ‘MPI universe’) table

is modified to reflect this change. Note that at the code level, no change is needed for

the tables and indices of the information that is sent between processors.

We consider this a very elegant solution, as the information to restore a run and continue

is straightforward to implement with any production code. The number of reserve nodes

required will depend on the mean time to failure of the machine being employed. It is

estimated that this number is very small compared to the total number of nodes (and

remains at a relatively constant percentage of the number of nodes required for a run), so

that the extra burden in resources is insignificant.

The main subroutine used to renumber the processes and replace the communicators is

listed in Appendix A.1.

2.10 Methods to introduce failure

To test a fault-tolerant code under real life scenarios, one would have to test it under real

supercomputer hardware failures. Although failures on supercomputers are common and

frequent, they are also random. Causing a realistic failure on a supercomputer, however,

can be harmful for the system itself therefore cannot be used as a testing strategy. The aim

of any large-scale computing resource or computing center is to maximize utilization and
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operating time. Therefore, it is not easy to test fault-tolerant codes on typical production

systems.

Several methods for introducing failure were used in order to test the effectiveness of the

implemented fault-tolerant procedures. The methods explored can be listed in ascending

level of complexity as follows:

• Sending a kill signal from within the code (e.g. at the end of a randomly selected

time step). This method is the furthest away from a realistic node failure. It can,

however, be successfully used to check whether the implemented recovery strategies

are functional. The disadvantage of this method is that the failure occurs only at

specific places of the code (where it has been implemented) and cannot account for

the randomness of the realistic failure process.

• Killing processes externally from the terminal using ‘kill -9 PID’. This method ad-

dresses the disadvantage of the previous method. Since the processes are killed exter-

nally from the application, the failure can happen at any time during the execution, at

any part of the code. To ensure reliable testing results, high number of tests have to

be conducted. This was achieved by executing a script that repeatedly goes through

the following steps:

– starting the simulation;

– waiting for the problem to initialize and reach past the first checkpoint;

– obtain the IDs of the related processes;

– randomly selecting and killing one of the processes (either active or spare);

– waiting for the code to recover and recording the result; and,

– aborting the simulation and restarting the procedure.

Although this method does not represent a real node or core failure, it is a practical

way of doing numerous tests and observing the code’s ability to recover from random

core failures.
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• Logging into one of the active cluster nodes and killing all simulation related processes.

Unlike the first two methods where tests were done on a powerful workstation, this

method is used in a cluster environment. Since computing center resources are limited

as said above large-scale computing resource aim is to maximize the utilization, the

focus of this and the following method was qualitative - perform less but more realistic

tests. In this method all the processes related to the application are killed. Although

not representing an actual node failure, it does test the code against losing multiple

processes (all located on the same node). Test was repeated on several consecutive

nodes during the same application execution, replicating a consecutive node failure.

• Rebooting one of the active cluster nodes using ’sudo reboot’. This method is the most

realistic representation of an actual node failure. Not only all the processes related to

the application execution are killed, but so are all the other underlying software tools

responsible for the communication between the cluster nodes. Even though it is the

most realistic, it does not represent exactly the scenario of actual node failure. When

using the ’sudo reboot’ command in the cluster environment any IO operations that

are running at that point are actually gracefully terminated, any pending checkpoint

file write file will be written and only afterwards the machine will become unavailable.

One way to replicate a realistic node failure would be to physically ’unplug’ the node

during runtime. However, as mentioned above, such action could harm the hardware and

is not available. Already the last method described above demands certain administrator

privileges and was used as the final test.

2.11 Test cases

The fault-tolerant algorithms described above were implemented in FDFLO. For the cases

shown below, the restart/recovery information was stored every 10 time steps, which for

the cases run implies every 0.1 − 1.0 seconds. As this is a cartesian finite difference code

using explicit Runge-Kutta time integration, the main storage required is comprised by the
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field point arrays (5 unknowns for the flow, 16 for diagnostics), and the boundary, halo and

mpi-exchange information. For a case with 106 points (1 Mpts) this implies approximately

200 MBytes.

In order to test the performance of the fault tolerant implementation all previously

described methods to introduce failure were applied. In total several thousand runs were

performed over a period of several weeks. For the majority of tests a cluster environment

was used. This allowed to test the fault tolerance of the code in a ’close to realistic’ node

failure scenario when one of the computation nodes gets rebooted during runtime. Tests

were performed using 4 compute nodes with 8 CPUs on each. The nodes were rebooted at

random points in time after the beginning of the calculation and at different intervals. Some

of the tests were also conducted on larger machines with up to 32 nodes and 1,280 cores.

All tests were carried by using only the CPUs on these machines.

2.11.1 Taylor-Green Vortex

This is an example that is often used in the large eddy simulation (LES) and direct simu-

lation of Navier-Stokes (DNS) literature [55,56]. The domain spans [−1 ≤ x, y, z ≤ 1] with

periodic boundary conditions in each dimension. The initial conditions for the velocities

u, v, w in x, y, z were set to:

u = sin(φx)cos(φy)cos(φz) , v = −cos(φx)sin(φy)cos(φz) , w = 0 . (2.1)

The initial conditions quickly deteriorate into smaller vortices, leading to an increase in

the dissipation rate. At later times, the laminar viscosity leads to a decrease in velocities.

Figure 2.4 shows the distribution of the absolute value of the velocities in the three

principal planes going through the center of the domain (x, y, z = 0) at time T = 10.0 for

a grid of 10 Mpts using a 4th order finite difference scheme in space and time. The grid

had 64 domains, and was run on 8 MPI processes (i.e. 8 domains per MPI process). At
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Figure 2.4: Taylor-Green Vortex: Velocity Magnitude in Principal Planes at Time T = 10.0

the beginning of the run, an extra 4 MPI processes were allocated. During the runtime

at different instances of time processes were terminated by sending ’kill -9 PID’ signal.

The recovery rate of this setup was 98% (i.e. the code failed approximately 2 out of every

100 runs, with a sample size of several thousand). Note that as stated before the proposed

procedures are not completely fail-safe: if a node fails while restart information if being

stored (which in this case was in the range of 2%) a previous state can not be recovered

and the code stops.

The same test case was run on a cluster using 4 compute nodes with 8 CPUs on each

(16 active MPI processes and 16 spare processes). Nodes were rebooted at random points

in time after the beginning of the calculation and at different intervals. The simulation

successfully substituted the failed processes and terminated the run without problems.

2.11.2 Ahmed Body

The Ahmed body is a widely used testcase in the automotive industry [57,58]. The surface

mesh provided consisted of O(19 Ktria) and O(10 Kpts). It was run through the FECAD

pre-processor, which invoked the PRE-FDFLO grid generator. Two cases were run. The

first had ndomn=705 domains, with a minimum cell size of dx = 0.0060 m and a total
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point count of npoin=5.75 Mpts, of which nactp=4.53 Mpts were actually updated (some

points are not updated are they are in halo regions or within the car). The second had

ndomn=3,993 domains, with a minimum cell size of dx = 0.0026 m and a total point count

of npoin=36.9 Mpts, of which nactp=23.1 Mpts were updated. The following physical and

numerical settings were employed:

1. Density: ρ = 1.0 kg/m3

2. Velocity: |v| = 30 m/sec

3. Speed of sound: c = 150 m/sec

4. Laminar viscosity: µ = 0.7 · 10−5kg/m/sec

5. Smallest cell/element size: hmin = 0.0060 m (case 1), hmin = 0.0026 m (case 2)

6. Largest cell/element size: hmax = 0.0480 m

7. Spatial discretization: 4th order, central + artificial visosity

8. Temporal integration: explicit 4th order low-storage Runge-Kutta

Figures 2a-d show the overall geometry, the grid, and the instantaneous velocities and

Q-criterion for the symmetry plane (z = 0). This case was run using 32 MPI processes: 24

active processes and 8 reserve processes. During the runtime at different instances of time

processes were terminated by sending the ’kill -9 PID’ signal. The recovery rate of this

setup was 94% (i.e. the code failed to continue for approximately 6 out of every 100 runs).

The difference in failure rate between this and the previous set of runs is due to the difference

in the machines used and the times required for restart storage versus computations (recall

that if a node fails while restart information if being stored (which in this case was in the

range of 6%) a previous state can not be recovered and the code stops.

This test case was also run on a cluster using 4 compute nodes with 8 CPUs on each

(16 active MPI processes and 16 spare processes). Nodes were rebooted at random points
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Figure 2.5: Ahmed Body: Geometry and Grid System Employed (Cut Along z = 0.0)

Figure 2.6: Ahmed Body: Velocities and Q-Criterion in Plane z = 0
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in time after the beginning of calculation and at different intervals. The fault-tolerant

procedures developed successfully substituted the failed processes and terminated the runs

without problems.

A third series of test runs was conducted on a larger machine using 32 nodes with 40 cores

each, i.e. a total of 1,280 cores. As before, the fault-tolerant procedures developed success-

fully substituted the failed processes and terminated the runs without problems. With sev-

eral recoveries during the course of the run, the timings observed for these runs (ndomn=3,993,

nactp=23.1 Mpts) were of the order of Ts = 0.154 sec/step.

The results obtained may be summarized as follows:

• When a process is killed from within the code, the recovery rate is at 100%.

• When processes are killed externally from the terminal using ‘kill -9 PID’, the re-

covery rate is in the range of 94-98%.

• When nodes were rebooted externally, the recovery rate from 2 node (8 MPI processes

each) failure while using spare nodes for recovery was 100%. Due to the complexity

(manual, queue on the cluster) a smaller amount of tests was run with rebooting the

active cluster nodes. It is therefore realistic to assume that the true recovery rate for

node failure would approach the 94-98% rate of single process failures.

2.11.3 Fault Tolerance Overhead Estimation

Fault tolerance is important, but it is also necessary to know at what cost. In the previous

sections, the developed strategies and implementation in a finite difference solver has been

explained. The example test cases show good results with respect to fault tolerance – the

application is able to survive multiple core or node failures with a high success rate.

As the next step, an answer was sought to the question as to how much additional

computational time the fault tolerance implementation does cause. In other words: what

is the overhead compared to the non fault tolerant application. The main fault-tolerant

extensions made to the code are as follows:
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• Synchronization calls with global agree on the state of the "health" of the commu-

nicator. At the end of each time step a specific synchronization call sequence has

been added. Since some of these calls needs to have a global consensus over the

communicator, the execution time can be larger than that of a simple barrier call. It

was important to identify the magnitude of impact these synchronization calls have on

performance. The execution time for different number of MPI processes was recorded.

It was also tested if the number of used compute nodes change the execution time.

• mpi_allreduce can be a point of failure if not designed with additional calls. Oc-

casionally, if a process would fail while a mpi_allreduce call is being executed the

application would get stuck. Reason for this is that some of the processes would not

notice the error and continue with the execution while others go to the recovery. In

order to address this issue two things were changed. First, the mpi_allreduce call was

substituted with the non-blocking mpi_iallreduce call. Second, additional synchro-

nization calls with global agree on the state of the "health" of the communicator were

added. The detailed call sequence can be found in Appendix A.2. It is important to

note that the amount of these calls per application run depends on the frequency of

diagnostic data (point data, surface data, etc) dumps.

• Local and buddy checkpointing (described in section 2.7) between MPI processes is

one of the major additions to the code compared to the non fault tolerant application.

As mentioned previously it is not a time consuming process. It is, however, important

to record how long exactly it takes. The influence of problem size (number of used

cores and nodes) was tested as well.

• Recovery process is the combination of all the calls that are being executed from the

moment a failure has been detected until successfully resuming the execution of the

application with a fixed communicator.

Timings of the recovery process can not be directly compared with the non fault-tolerant

application since there is no such process. However the combination of all the three items
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can serve as a reference to illustrate the gain of a fault tolerant code. The amount of time

spent during the "manual" roll-back recovery (the most common recovery procedure after

aborted simulation in case of a hard error) is magnitudes higher.

The results of the above mentioned test have been presented in Table 2.2. Different

problem sizes have been tested.

2.12 Results

Figure 2.7 to Figure 2.9 show changes in the execution time of fault tolerant call sequences

depending on the number of MPI processes and the number of compute nodes. Figure 2.10

shows the comparison of total execution time between the fault tolerant version and non

fault tolerant version as a function of the number of MPI processes and the number of

compute nodes. These tests were performed using ARGO cluster (George Mason University

compute resource) [59].

The results clearly show that the lowest execution time of MPI call sequences is recorded

when the application is running on a single node. Also the average time spent on backup

and total execution time of the application is the lowest when running on one node. This

is an expected result since the communication between the processes is more local. The

execution time however is directly correlated with the number of compute nodes. The time

for backup for example is the highest when running on 32 MPI processes and 2 compute

nodes. Execution time for the mpi_iallreduce extended call sequence for the fault tolerant

version as well as the mpi_allreduce call for the standard version of the application stays

almost constant when running on 2 to 8 compute nodes and increases only when running

on 16 compute nodes.

One of the main fault tolerant application performance characteristics is the overall

overhead of the fault tolerant calls. How much more the total application execution time

is increased by the fault tolerant functionality compared to the standard non fault tolerant

version. Based on the test performed so far both versions perform at almost the same rate

when running on one compute node. For the largest case tested, 256 MPI processes on 16
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compute nodes, the overhead was 12%. The largest difference is recorded when running

the application with 128 MPI processes on 8 compute nodes - 41%. The results presented

here show the execution time only of the more complex MPI call sequences implemented to

achieve fault tolerance. In addition, a simple call to:

mpi_barrier(MPI_COMM_WORLD,ierro)

was added to several locations in the code as described in section 2.6. Some of these

calls are executed multiple times per time step. Although execution time of each single call

is insignificant, the sum of all the calls lead to the recorded fault-tolerance overhead.

The execution time of separate call sequences as well as the overall application time

clearly depends on the number of used compute nodes, however, it is not a linear correla-

tion. It depends also on the underlying compute resource, the type of compute nodes and

the connection between the nodes.

Table 2.2: Timings of Faut tolerant call sequences and implementations [Sec]

Number of MPI processes and used cluster nodes
256p/16n 128p/8n 64p/4n 32p/2n 8p/1n

End of time step 0.04 0.03 0.02 0.01 0.01
call sequence
Fault tolerant 0.08 0.06 0.05 0.05 0.02
iallreduce

Non fault tolerant 0.03 0.03 0.03 0.03 0.01
allreduce

Average time 0.47 0.91 1.59 3.03 0.08
for backup
Total time 202 210 196 126 157

(fault tolerant)
Total time 180 149 172 101 160

(non fault tolerant)
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Figure 2.7: Average execution time of the fault tolerant call sequence at the end of the time
step

2.13 Conclusions and outlook

Fault-tolerant computing options based on the use of restart information stored on and off

the compute node, and the use of reserve processes have been developed, implemented and

tested in a large-scale, production field solver taken from the CFD domain.

The tests conducted to date have shown good results, with recovery rates in excess of

90% after externally lost processes both on local machines and in cluster environments (i.e.

close to realistic node failures).

The proposed fault-tolerant scheme does not cover all possible scenarios. Some of the

scenarios not covered include: failure of nodes and/or communication during backup or

recovery of backup, failure of node 1 (the master node), and simultaneous failure of a node

and the node where its backup information is stored. The probability of these scenarios is

low, but should also be considered in the future.

The largest test case run to date was performed using 521 MPI processes. As of now,
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Figure 2.8: Comparison between the execution time of fault tolerant iallreduce call sequence
and regular allreduce call

Figure 2.9: Average execution time of information backup between "buddy" processes
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Figure 2.10: Comparison between the total execution time of fault tolerant version and non
fault tolerant version

no size limitations have been encountered when using the ULFM MPI library extension.

The computational overhead of the field solvers is very low (explicit time-marching and

finite differences). The fault tolerant implementation adds a run-time penalty that is in

the range of 6%-41% percent, depending on the spatial and temporal approximation used.

The run-time penalty strongly depends on the number of compute nodes that are used

for the simulation and the underlying compute resource itself. More compute nodes does

not, however, mean larger run-time penalty. The largest case tested (256 MPI processes

on 16 compute nodes) yield a run-time penalty of only 12%. Further investigations are

underway to reduce this overhead without influencing the very high recovery rate of the

code. We remark that this run-time penalty is incurred due to checking for faults, and

not for backing up restart/ recovery information. Backing up restart/recovery information

every 10 time steps (where in the case of FDFLO the bulk of the information consists of

the 4/5 unknowns and 16 diagnostics variables at each gripoint) adds a negligible amount
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of CPU requirements. Obviously, the amount of information required for restart/ recovery

may be higher for other codes, in which case, if necessary, one could adjust the backup

frequency.

Future work should be dedicated to address several issues. One of the main weak points

of the current implementation is the run-time penalty. The main runtime overhead comes

from the synchronization calls placed in the code in the form of mpi_barrier(MPI_COMM_WORLD,ierro).

The effect each of the barrier calls has on the overall recovery rate has to be further inves-

tigated in order to find a more optimal solution.

As reported above the run time penalty varies significantly depending on the number

of compute nodes used. More tests on different compute resources should be performed to

identify the source of the difference. Even larger test cases should be performed in order to

test the run-time penalty when running on hundreds of compute nodes.

The code could be further improved by implementing strategies for optimal backup fre-

quency. Several studies have investigated and reported methods for determining an optimal

checkpointing period [60–62]. Such strategies could be used to take into consideration the

type of the underlying problem when choosing the backup frequency. This could further

reduce the overall run-time penalty.

Performance of a fault-tolerant code will always be a trade-off between the run-time

penalty (extra computational costs) and recovery rate. By adding even more synchroniza-

tion calls, the recovery rate of the fault-tolerant fluid solver could be increased even further.

That in turn, however, would further increase the run-time penalty. It is a matter of op-

timization based on statistical investigation, what is the likelihood of each failure scenario

and how much run-time penalty does it add to make the code resilient to this failure.
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Chapter 3: Minimization of Memory Access

3.1 Introduction

When advancing in time either with explicit or implicit timestepping schemes that are

being solved iteratively, the resulting formation of a new residual or right hand side r

always follows a pattern of the form:

ri =
∑

Cijfij (3.1)

where fij denotes the flux between entities i, j and Cij the geometric factors that connect

the entities i, j. Term ‘entity’ is used to keep the notation general. Examples of entities

could be points, cells or elements. The geometric factors Cij could be associated with faces,

edges, or the entries in a matrix. Depending on the spatial discretization and the underlying

conservation laws, the fluxes f and the geometric factors Cij may depend nonlinearly on

the vector of unknowns ui.

One can see from equation 4.1 that the formation of a new residual or right hand side implies

at least one complete traversal of the database of points, cells, elements, edges or faces,

reflecting at least one pass over the complete mesh per time step. Considerable research

has been devoted to reducing the number operations required to form accurate fluxes fij -

e.g. via approximate Riemann solvers and limiters. This implies that the computational

intensity, given by the ratio of floating point operations per memory access, is rather low.

On the other hand, the speed of CPUs has advanced much faster than the speed of memory

access to RAM. This has led to a crisis in CFD: at present, field solvers are limited by the

access speed to RAM. Given the number of accesses to memory per time step, the speed

of a field solver can be estimated quite accurately. This observation has been documented
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repeatedly [7, 8], and can also be observed in the comparison of speeds achieved between

CPUs and GPUs [7, 63]. And given that RAM access speeds are not increasing as rapidly

as CPU speeds, most CFD codes ‘saturate’ the memory bandwidth of modern chips after

only a few cores, thus minimizing any benefits from going to a higher number of available

cores. It thus appears that the aim that was pursued for several decades: obtain the highest

accuracy while minimizing floating point operations may therefore have been replaced in

the future by the new aim: obtain the highest accuracy while minimizing memory

access.

3.2 CPU speed and memory access speed advancements over

time

CPU speed improvements have been following Moore’s law for the past 5 decades. In 1965

Gordon Moore predicted that the transistor count on integrated circuits will double every 2

years [15]. This prediction has been kept alive thanks to many technological advancements.

Following Moore’s law the CPU performance has been increasing just as steady Figure 3.1.

Meanwhile the performance of memory access has been increasing at a much lower rate. This

situation has led to a performance gap between the processor and memory Figure 3.2. As

the performance between the processor and memory grows, the limiting factor for the overall

peak performance changes. More and more applications are becoming memory bound - the

limiting factor of application performance is the memory access speed. Figure 3.3 shows how

the performance gap for different types of memory access has changed over the time. This

indicates that the problem persists at different scales. Creating memory aware algorithms

has the potential of significantly increasing the overall performance of an application.

3.3 Minimizing memory access

Let us consider ways of minimizing memory access for simple finite difference solvers. Start-

ing with the right-hand-side (RHS) for a Laplacian in 1-D, assuming a uniform mesh size.
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Figure 3.1: Increase in peak performance of supercomputers [16].

Figure 3.2: Increasing gap between Memory access and CPU performance [64].
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Figure 3.3: Increase in the gap between Memory access and peak performance [65].

The standard 2nd order discretization yields:

rhsi = 1
∆x2 (ui−1 − 2ui + ui+1) (3.2)

If coded in the usual way as:

Loop 1:

do ipoin=ipoi0,ipoi1

rhspo(ipoin)=const*(unkno(ipoin-1)-2.0*unkno(ipoin) +unkno(ipoin+1))

enddo

this requires, for each i, 3 fetches and 1 store, i.e. 4 accesses to memory. Alternatively, this

may be coded as:
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Loop 2:

unkn0=unkno(ipoi0-1)

unkp1=unkno(ipoi0 )

do ipoin=ipoi0,ipoi1

unkm1=unkn0

unkn0=unkp1

unkp1=unkno(ipoin+1)

rhspo(ipoin)=const*(unkm1-2.0*unkn0+unkp1)

enddo

While not vectorizable, this requires, for each i, 1 fetch and 1 store, i.e. only 2 accesses to

memory. The implicit assumption made here and in the following is that the temporary

values of unkm1, unkn0, unkp1 are stored in registers or cache, and thus do not have to be

retrieved from memory. In the sequel, loops written in this way will be denoted as minimal

memory access loops (MMALs).

The difference in the number of items fetched becomes more pronounced as the stencil

(and thus the accuracy of the spatial discretization) increases. The standard 4th order

discretization yields:

rhsi = 1
∆x2 (−ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+2) (3.3)

If coded as:

Loop 3:

do ipoin=ipoi0,ipoi1

rhspo(ipoin)=const*( -unkno(ipoin-2)+ 16.0*unkno(ipoin-1)

& -30.0*unkno(ipoin )+ 16.0*unkno(ipoin+1)

& -unkno(ipoin+2))

enddo
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this requires, for each i, 5 fetches and 1 store, i.e. 6 accesses to memory.

Alternatively, this may be coded as a MMAL:

Loop 4:

unkm1=unkno(ipoi0-2)

unkn0=unkno(ipoi0-1)

unkp1=unkno(ipoi0 )

unkp2=unkno(ipoi0+1)

do ipoin=ipoi0,ipoi1

unkm2=unkm1

unkm1=unkn0

unkn0=unkp1

unkp1=unkp2

unkp2=unkno(ipoin+2)

rhspo(ipoin)=const*(unkm2+16.0*unkm1-30.0*unkn0 +16.0*unkp1-unkp2)

enddo

While not vectorizable, this requires, as before, for each i, 1 fetch and 1 store, i.e. only 2

accesses to memory. Remarkably, coding in this way allows to form right-hand sides whose

memory access is independent of the approximation order. For every fetch there is one

store.

3.4 Extension to 2/3D

The situation outlined above is not as favorable in 2/3-D, as the data layout is only optimal

in one of the dimensions (usually the first). For the 2nd order stencil

rhsi = 1
∆x2 (ui−1,j,k + ui+1,j,k + ui,j−1,k − 6ui,j,k + ui,j+1,k + ui,j,k−1 + ui,j,k+1) (3.4)
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the traditional form results in:

Loop 5:

do ipoin=ipoi0,ipoi1

rhspo(ipoin)=const*( unkno(ipoin-npoxy)+unkno(ipoin-npoix)

& + unkno(ipoin- 1)

& -6.0*unkno(ipoin )

& + unkno(ipoin +1)+unkno(ipoin+npoix)

& + unkno(ipoin+npoxy))

enddo

requiring, for each i, 7 fetches and 1 store. If done (as is usually the case) in 3 1-D loops

this increases to

- do x: 3 fetches, 1 store

- do y: 4 fetches, 1 store

- do z: 4 fetches, 1 store

i.e. a total of 11 fetches and 3 stores.

In general, given a stencil of size 1+s in 1-D, the 3D counts result in 1+3s fetches and 1 store

for the unsplit scheme, and 3*(1+s)+2=5+3s fetches and 3 stores for the split scheme.

For MMALs, several alternatives are possible.

Alternative 1: Gather/Scatter With Inner MMALs:

The idea here is to reorder the arrays using gather/scatter operands and rewrite 3 MMALs

(one for each dimension) as before. This results in:

- reorient in y,z, storing in uy, uz : 2 fetch, 2 store

- do x with u : 1 fetch, 1 store

- reorient rhs : 1 fetch, 1 store

- do y with uy : 2 fetch, 1 store

47



- reorient rhs : 1 fetch, 1 store

- do z with uz : 2 fetch, 1 store

- reorient rhs : 1 fetch, 1 store

i.e. a total of 10 fetches and 8 stores.

Alternative 2: Inner MMALs With Indirect Addressing:

The idea here is to keep the arrays of unknowns and rhsides untouched, but form a different

rhside for each dimension using a pointer array ldimn(1:npoin) to locate the proper point

as the MMAL is tranversed. For a second order stencil, it would take the following form:

Loop 6:

do ipoin=ipoi0,ipoi1

unkm1=unkn0

unkn0=unkp1

jpoin=jpoi1

jpoi1=ldimn(ipoin+1)

unkp1=unkno(jpoi1)

rhspo(jpoin)=const*(unkm1-2.0*unkn0+unkp1)

enddo

While not vectorizable, this requires, for each i, 1 indirect fetch and 1 indirect store, i.e.

only 2 accesses to memory. For the complete set of 3-D loops the counts are as follows:

- do x with usual MMAL : 1 da/fetch, 1 da/store

- do y with i/a MMAL : 1 ia/fetch, 1 ia/store

- do z with i/a MMAL : 1 ia/fetch, 1 ia/store

- add rhside : 3 da/fetch, 1 da/store

i.e. a total of 6 fetches and 4 stores, regardless of the order of the approximation

or the stencil size. The required memory access figures have been compared in Table 1
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for stencils of different order. Note the MMAL2 is competitive even with stencils as low as 2.

Table 3.1: Memory Access Counts for FD Schemes of Different Order

stencil 3D Unsplit 3D Split MMAL1 MMAL2
2 7F/1S 11F/3S 10F/8S 6F/4S
4 13F/1S 17F/3S 10F/8S 6F/4S
6 19F/1S 23F/3S 10F/8S 6F/4S
8 25F/1S 29F/3S 10F/8S 6F/4S

Before going on, code Loop 6 is re-written in so-called flux form:

Loop 6:

do ipoin=ipoi0,ipoi1

unkm1=unkn0

unkn0=unkp1

flux1=flux2

jpoin=jpoi1

jpoi1=ldimn(ipoin+1)

unkp1=unkno(jpoi1)

flux2=const*(unkp1-unkn0)

rhspo(jpoin)=flux2-flux1

enddo

3.5 MMALS for systems of equations

As seen from Table 1, inner MMALs with indirect addressing as exemplified by Loop 6,

Loop 7 offer the lowest access rates to memory per residual formed. However, while it is

a simple matter to write a loop such as Loop 7 for a scalar Laplacian with a second order

stencil, systems of equations, such as those given by conservation laws, often have many
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variables per point, and may require stencils of higher order. This can lead to very long,

‘chunky’, and thus error-prone loops with many scalar temporaries that may exceed the

number of registers available. Three different ways to address this problem were pursued:

- Small vectors;

- Small matrix with indirect addressing;

- Scalar temporaries.

In addition to the three scalar loop options named above, three vectorizable loops were

implemented:

- Vectorized version of small vectors;

- Vectorized version of scalar temporaries;

- Vectorized 6-point flux stencil version.

3.5.1 Small Vectors

For systems of equations, code Loop 7 would result in a loop of the following form:

Loop 8:

do ipoin=ipoi0,ipoi1

unkm1(1:nunkp)=unkn0(1:nunkp)

unkn0(1:nunkp)=unkp1(1:nunkp)

flux1(1:neqns)=flux2(1:neqns)

jpoin=jpoi1

jpoi1=ldimn(ipoin+1)

unkp1(1:nunkp)=unkno(1:nunkp,jpoi1)

flux2(1:neqns)=flux(unkp1,unkn0)

rhspo(1:neqns,jpoin)=flux2(1:neqns)-flux1(1:neqns)

enddo
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Here nunkp,neqns denote the number of variables stored for the vector of unknowns and

the number of flux variables (i.e. the number of equations being solved). The code section

where the flux is computed, denoted here as flux(unkp1,unkn0), is identical to that of the

conventional loop (i.e. the original code).

3.5.2 Small Matrix With Indirect Addressing

The re-store of variables when stepping from ipoin to ipoin+1 (i.e. unkm1(1:nunkp)=unkn0(1:nunkp),

unkn0(1:nunkp)=unkp1(1:nunkp) and more of the same for higher order stencils) may be

avoided by using a small matrix of unknowns that is filled in a circular fashion of

Loop 8:

do ipoin=ipoi0,ipoi1

unkm1(1:nunkp)=unkn0(1:nunkp)

unkn0(1:nunkp)=unkp1(1:nunkp)

flux1(1:neqns)=flux2(1:neqns)

jpoin=jpoi1

jpop0=jpop1

jpoi1=ldimn(ipoin+1)

jpop1=1+mod(ipoin+1,2)

unknl(1:nunkp,jpop1)=unkno(1:nunkp,jpoi1)

flux2(1:neqns)=flux(unknl(jpop1),unknl(jpol0))

rhspo(1:neqns,jpoin)=flux2(1:neqns)-flux1(1:neqns)

enddo

3.5.3 Scalar Temporaries

In this case, all the scalar temporaries needed in a loop, together with all unknowns and

fluxes required, are written out explicitly and transferred from ipoin to ipoin+1. As stated
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before, this results in very lengthy and unreadable code. However, it was tried in order to

assess the relative merits of the three approaches outlined above.

3.6 Implementation in FDFLO

The different variants of minimal memory access loops were implemented into FDFLO, a

finite difference code that solves the weakly compressible Navier-Stokes equations given by:

1
c2 p,t + ρ∇ · v = 0 , (3.5)

ρv,t + ρv∇v +∇p = ∇µ∇v + sv , (3.6)

ρcpT,t + ρcpv∇T = ∇K∇T + sT , (3.7)

where ρ,v, p, c, T, µ, cp, k, sv, sT denote the density, velocity vector, pressure, speed of sound,

temperature, viscosity, conductivity and source terms. The code offers a variety of spatial

and temporal discretization options, and employs a conservative formulation for the fluxes

[7, 8].

3.7 Results

All the timings reported were carried out with a spatial discretization of 6th order, resulting

in stencils of size 7 per dimension. The temporal integration was performed using an explicit,

five-stage, low-storage Runge-Kutta integrator.

5.1 Flow Past Square Cylinder This case considers the flow past a square cylinder of dimen-

sions 0.45 ≤ x ≤ 0.55, 0.45 ≤ y ≤ 0.55, 0 ≤ z ≤ 0.41 immersed in the hexagonal

domain 0 ≤ x ≤ 2.5, 0 ≤ y ≤ 0.41, 0 ≤ z ≤ 0.41. The gridsize was δx = 0.005,

uniform throughout the domain, resulting in a mesh of approximately 4 Mcells. The inflow
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conditions were set as follows: p = 0, u = 2.25, v = w = 0, T = 0, c = 20, mu = k = 10−3.

The case was run repeatedly for 1000 time steps in order to obtain reliable timings. A

typical solution obtained is shown in figureveloc.

Figure 3.4: Flow Past Square Cylinder

The timings obtained on different machines have been compiled in Table 3.2 to Table 3.6.

The labels are as follows: nprol denotes the number of cores used in OpenMP mode; Orig

the original, dimensionally split, conventional 6th order stencil; ScalTemp the MMAL with

scalar temporaries; SmallMat the approach with a small matrix with indirect addressing

(Loop 8); SmallVec the small vectors option (Loop 7); MatVect a vectorized version of

SmallVec; VScal a vectorized version of scalar temporaries and FLXS6 a vectorized 6-point

flux stencil version.

Table 3.2: Timings on SGI Ice-X, Intel Xeon E5-2699v3, 32 C/N, 2.30GHz (thunder) [Sec]

nprol Orig ScalTemp SmallMat SmallVec MatVect VScal FLXS6 2FLXS2
4 923 1894 1403 2282 1618 1321 1709 3409
8 931 2094 1474 2384 1421 1022 1420 3343
16 561 1156 885 1620 862 619 858 1816
32 337 669 543 812 449 411 527 975
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Table 3.3: Timings on Laptop, Intel Xeon E31505Mv5, 2.80GHz (rossini) [Sec]

nprol Orig ScalTemp SmallMat SmallVec MatVect VScal FLXS6 2FLXS2
1 1756 3616 3892 4564 2524 1656 2368 9296
4 914 1252 1325 1508 1112 802 1048 2713

Table 3.4: Timings on Desktop, 8 Cores, Intel Xeon E5-2637v4, 3.50GHz (purcell) [Sec]

nprol Orig ScalTemp SmallMat SmallVec MatVect VScal FLXS6 2FLXS2
1 3472 7616 5704 8742 7312 5912 5416 6944
4 1062 2152 2018 2725 1742 1672 1698 1940
8 944 2029 1700 2549 1250 1155 1280 1817

Table 3.5: Timings on Cray XC40/50, 544 Intel Xeon Phi 7230 (Knights Landing), 1.30GHz
(onyx) [Sec]

nprol Orig ScalTemp SmallMat SmallVec MatVect VScal FLXS6 2FLXS2
16 613 1576 1591 1855 939 616 571 4230
32 404 1124 998 1174 593 406 401 2792
64 201 609 604 670 376 252 244 1479

Table 3.6: Timings on SGI ICE-XA, Xeon E5-2698v4, 40 C/N, 2.20GHz (centennial) [Sec]

nprol Orig ScalTemp SmallMat SmallVec MatVect VScal FLXS6 2FLXS2
4 832 1888 1726 2386 1556 1146 1439 3380
8 794 1870 1676 2361 1183 854 1091 3423
16 438 1057 967 1323 674 495 653 1791
32 257 581 546 725 382 306 385 941

Table 3.7: Timings on Desktop, 32 Cores, AMD Opteron 6238, 2.6GHz (loki) [Sec]

nprol Orig ScalTemp SmallMat SmallVec MatVect VScal FLXS6
1 162 246 182 232 249 175 185
4 233 378 375 393 344 299 271
8 397 674 584 645 658 566 442
16 362 546 519 630 454 445 414
32 437 471 456 497 430 428 479
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Table 3.8: Timings on Desktop, 16 Cores, Intel Xeon Silver 4208, 2.10GHz (tallis) [Sec]

nprol Orig ScalTemp SmallMat SmallVec MatVect VScal FLXS6
1 104 227 250 297 160 155 141
4 65 161 169 178 87 86 79
8 292 673 712 814 385 391 352
16 254 460 453 467 307 282 280

Table 3.2 - Table 3.6 show preliminary timings carried out in 2018. Table 3.7 and Ta-

ble 3.8 add timings on more modern computer architectures carried out recently. One can

see that none of the minimal memory access loops is faster than the original, dimension-

ally split, conventional loop. The only exceptions being MMAL with 6-point flux stencil

(FLXS6), carried out on 32 Intel Xeon Phi 7230 (Knights Landing) cores and Vectorized

small vector MMAL carried out on 32 AMD Opteron 6238 cores. But even in these cases

the difference with the conventional loop is insignificant. In general some MMAL options

approach the conventional loop for large number of cores, indicating that when memory

traffic becomes the bottleneck, the proposed MMAL options may become competitive.

One of the main reasons the MMALs are not outperforming the conventional loop as

predicted based on the reduced memory access is the work done by the compiler. The

conventional loop can be vectorized thereby increasing the performance. Table 3.9 and Ta-

ble 3.10 show a more detailed profiling test results. Table 3.9 shows the performance of the

main calculation loop of each MMAL subroutine. Table 3.10 shows the overall performance

of the MMAL subroutine including the necessary array and vector rearrangements. The

conventional loop is vectorized with a 51% efficiency and an estimated speedup gain of 2.06

due to vectorization. Meanwhile the Scalar temporaries, Small vectors and Small matrix

MMALs are scalar therefore not possible to vectorize. That can be clearly seen in the Self

GFLOPS column showing the performance of each loop in Giga floating point operations

per second. The scalar loops have more than 5 times lower operation count per second! The

low performance overshadows the possible gain of reduced memory access. Meanwhile, the

vectorized small vector main loop operates with the highest operation count 24.82 Gflops.
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However, the overall operation count for the whole subroutine is only 6.5 Gflops, due to the

necessary data rearrangements.

Table 3.9: Vectorization and performance of the main loops of MMAL subroutines

Loop Self Efficiency Gain Vector Self
time [s] Estimate length GFLOPS

Orig 15.9 51 2.06 4 16.31
ScalTemp 43.7 scalar loop 3.26
SmallMat 47.3 scalar loop 3.01
SmallVec 56.8 scalar loop 2.50
MatVect 5.4 47 1.86 4 24.82
VScal 8.1 41 1.65 4 20.89
FLXS6 5.8 57 2.27 4 23.07

Table 3.10: Vectorization and performance of the MMAL subroutines

Loop Self Self
time [s] GFLOPS

Orig 16.0 16.2
ScalTemp 43.7 3.3
SmallMat 47.3 3.0
SmallVec 56.8 2.5
MatVect 21.0 6.5
VScal 21.4 8.0
FLXS6 18.7 7.4

The columns in Table 3.9 and Table 3.10 denote the following quantities:

• Loop – name of the conventional or MMAL;

• Self time – total time spent in the corresponding subroutine or main loop in seconds;

• Efficiency – calculated performance estimated gain compared to maximum achievable

gain from vectorization;

• Gain Estimate – calculated estimate of relative loop performance speedup achieved

due to vectorization;
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• Vector length – the number of elements processed in a single iteration of vector loops,

or the number of elements processed in individual vector instructions. The maximum

possible vector length depends on the size of the register;

• Self GFLOPS – ratio of Giga floating-point operations to Self time;

3.8 Conclusions and outlook

A number of minimal memory access loop (MMAL) options for finite difference solvers

have been described and implemented. The best of these (MMAL2) yields one residual for

6 fetches and 4 stores, regardless of the size of the stencil (and therefore the discretization

order). This means that in terms of memory access MMAL2 is competitive even with

stencils as low as 2 (typical of CFD codes with 2nd order spatial discretization of fluxes

and 4th order damping). Timings for a low Mach number finite difference code using a 6th

order spatial discretization show that even though the conventional loops are faster, some

implementations approach the speed of the conventional loops for large number of cores.

In theory the MMALs have a clear advantage over the classical implementation with respect

to memory access (Table 3.1). That is however disregarding the speedup gained due to

vectorization and single instruction multiple data (SIMD) operations that are not available

for scalar loops. After taking a closer look at the performance of each proposed MMAL,

one can see that in most cases the advantage gained by the reduced memory access is less

significant than the performance gain due to vectorization.

Vectorized MMAL options show similar or even higher vectorization efficiency, leading to

even higher floating point operation count per second. Here however time is lost performing

the necessary data rearrangements to obtain optimal loop execution.

The MMALs perform better on a higher number of cores when the memory bandwidth

becomes more ’saturated’. Performance also varies with different hardware architectures.

The following chapter presents a method oriented towards targeting the exact underlying

CPU architecture.
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Chapter 4: Optimization using Intrinsics

In the previous chapter an optimization approach to minimize memory access has been dis-

cussed. One of the results was that the reduced memory access is overshadowed by the more

efficient vectorization of the classical loop implementation. However, the vectorization level

even in these loops is far from the maximally achievable. A new approach was investigated

to see if the full potential of CPU could be utilized. Register intrinsics can be seen as one

of the lowest level optimization approaches. It is a tedious and error prone work but if done

correctly can yield good results. The aim of this attempt is to maximize the utilization of

the registers and increase the peak performance of the subroutine that obtains the RHS for

the finite difference approximation of the weakly incompressible Navier-Stokes equations.

4.1 Intrinsics

4.1.1 SIMD

SIMD stands for Single Instruction Multiple Data. It originated along with the vector su-

percomputers in the early 70s. Now SIMD is part of almost any microprocessor. SIMD

exploits the data parallelism by performing the same operation on a set of data simulta-

neously as opposed to several times on single pairs of numerical values. The theoretical

performance gain when using SIMD depends on the size of the registers (vector size) which

directly correlates with the numbers of values that can be processed in parallel. The vector

length has been growing steadily with each generation of the SIMD and is currently at 512

bits. With a vector length of 512 bits it is possible to simultaneously execute the same

instruction on 8 double precision or 16 single precision numbers. Additionally to the in-

creasing of the length of the vector more SIMD instructions have been added as well. Also
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more advanced instructions making it possible to perform almost any operations solely by

using SIMD [66].

To take the advantage and use the SIMD features the code has to be vectorized. Vec-

torization has to fit the underlying hardware. There are several ways of vectorizing a code.

On one hand, there is auto-vectorization implemented in modern compilers, which can be

seen as the most effortless. On the other hand there is the option to use intrinsic functions,

an option that demands the most effort.

4.1.2 Auto-vectorization

Auto-vectorization has several advantages when it comes to gaining performance by using

SIMD instructions. Developers do not have to worry about portability since the compiler

automatically adapts the code to the underlying hardware architecture during the vector-

ization process. Meaning, it identifies the available vector length and the code is vectorized

using the appropriate generation of SIMD instructions. Developers can choose how much

effort is spent on improving vectorization by modifying the code where possible or neces-

sary by manual loop unrolling or memory alignment adjustment to provide more favorable

memory access for the vectorized execution.

4.1.3 Intrinsic functions

Intrinsic functions are functions that operate directly on the registers. These are low level

programming instructions. Using intrinsic functions demand a lot of effort, they are plat-

form and hardware specific and can have portability issues. Nonetheless, intrinsic program-

ming is considered the state-of-the-art approach for achieving maximum performance [66].

In most cases auto-vectorization done by the compiler can not achieve the full theoretical

SIMD gain. By using intrinsic functions the developer can explicitly ensure the usage of

maximum available vector length for SIMD instructions.

Using intrinsics is a complex task. Different sets of intrinsic functions have to be used for

different generations of SIMD extensions. If a new extension comes out, the code has to be
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re-written (repeat the difficult process) to take advantage of the newly improved technology

[67]. Furthermore, SIMD intrinsic instructions are C style functions and are not available

when coding in Fortran.

Before switching to intrinsic programming one has to decide if the possible gain out-

weighs the required work and possible complications.

4.2 Implementation

As mentioned before, using intrinsics can ensure the usage of the maximum available vector

length. The motivation for applying intrinsic programming to finite difference stencil calcu-

lation is the ability to obtain the RHS value of 8 or 16 points (depending on the precision)

simultaneously while accessing each of the necessary memory entries only once.

Due to the total number of unknowns and coefficients necessary for the 4th order stencil

calculation, only AVX-512 (Advanced vector extension for SIMD instructions) is consid-

ered. CPU’s supporting AVX-512 have 32 512 bit registers. Previous generations of SIMD

instructions had only up to 16 registers. The higher number of registers is necessary to

ensure that each value is only laded once from the memory.

In order to better illustrate the possible gains of intrinsic functions as opposed to the

usual way, let us look at the simplified RHS calculation. In the previous chapter examples

were given for the number of necessary memory accesses (fetches and stores) that are needed

to update a 4th order RHS value using a 5 point stencil. For 1D case 5 fetches and 1 store is

necessary if coded the usual way. For 3D case 17 fetches and 3 stores are necessary. If using

intrinsic operations one would still need the same amount of fetches and stores however that

would simultaneously update the value of RHS at 8 different points if using double precision

real numbers. If using single precision real numbers, RHS value at 16 points simultaneously

can be updated. To put this in other words, the access to the memory can be reduced 8 or

16 times! These are numbers that do not account for auto-vectorization of traditional loops

and necessity to rearrange the arrays of unknowns. However the possibility of real gain is

there.
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Figure 4.1: Intrinsic memory access to load unknown values in registers (double precision)

Figure 4.1 gives a visual overview of memory access when using AVX-512 SIMD in-

structions for double precision numbers. It is a schematic representation of the array of

unknowns for a domain with 16 points in x and y directions. Halo points are not shown.

Access to the array of RHS values and array of conductivity and viscosity values is done in

similar way. Figure 4.2 shows the same domain only considering single precision AVX-512

SIMD instructions. Comparison of the two figures shows clear advantage of single precision

performance, only one sweep in x direction is necessary to update all the points.

The steps to implement 4th order stencil calculation are described in the following

subsections.

4.2.1 C++ subroutine

Intel intrinsic instructions for AVX-512 SIMD are C type functions that can not be used in

Fortran. A C++ subroutine was written to implement intrinsic RHS value update in the
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Figure 4.2: Intrinsic memory access to load unknown values in registers (single precision)

finite difference solver. To maximize the efficiency of SIMD instructions all the arithmetic

operations have to be executed using intrinsics calls. Regular calls used in between intrinsic

instructions can lead to the loss of previously loaded or calculated values in the registers.

The overall structure of the C++ subroutine is as follows:

• Obtaining values from the Fortran code;

• Pre-calculating values of coefficients necessary for the RHS calculation;

• Main loop updating all the RHS values, each point is access only once;

• Returning to Fortran an updated RHS value array.

4.2.2 Array rearrangement

Possibly one of the main disadvantages of programming with intrinsic instructions is the

necessity of having the data arranged in a certain way. To achieve the theoretically max-

imum performance, each register load from the memory has to populate the register only

with usable values. Which means, loading 8 double precision values in a 512 bit register
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with one load operation. In order to achieve this certain things have to be fulfilled:

• data arrays have to be aligned so that the 512 bit chunk of data loaded into the

register matches exactly to the 512 bit memory space occupied by the corresponding

8 double precision numbers; and,

• the 8 or 16 values needed for the vectorization in the register, follow each other exactly

without any other data occupying the memory space in between. When executing the

load instruction, one can not choose to load every second or third double precision

number in the row. One only specifies the address to the beginning of the 512 bit

data chunk that will be loaded in the register.

In order to achieve the necessary data alignment and arrangement all the arrays needed

for the RHS update had to be rearranged from the initial Fortran arrangement. The most

common and simple way to send an array from Fortran to C++ is as a 1D array (vector).

Due to the properties of intrinsic instructions a different data arrangement is necessary for

each of the spatial directions. In other words, to update the RHS value using a 3D stencil,

three different arrangements of the necessary data is needed.

To minimize the cost of array rearrangement one multilevel-loop was used. Each value

in a Fortran array is accessed exactly once and placed in the proper location in the three

different direction arrays that are sent to the C++ subroutine.

Another stage of rearrangement is necessary to transfer the data into the original or-

der once the updated RHS arrays (one for each direction) are obtained from the C++

subroutine. A similar multistage loop is used for this purpose.

The cost of the array rearrangement process is discussed in the result section.

4.3 Results

In this section the performed tests are discussed. First a smaller test case was investigated

to determine the optimal domain size. Later the intrinsic RHS update subroutine was

implemented in the FEFLO finite difference code and tested on the TGV case.
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4.3.1 Test case

A small test case was designed to test the performance of the C++ subroutine using intrinsic

instructions. The subroutine obtains the RHS for the finite difference approximation of the

weakly incompressible Navier-Stokes equations. The performance of the C++ subroutine

was compared with the standard subroutine implemented in Fortran. Different size of

domains was tested to see the most favorable configuration. Due to the properties of

intrinsic functions all the test domains were of regular cube shape. The number of points

in each direction was a multiplication of 8 in case of double precision calculation and a

multiplication of 16 for the single precision calculation. In this way the total length of

registers can be fully utilized. The results are presented in Table 4.1 and Table 4.2 for

double precision and single precision accordingly.

The test case is set up in the following way:

• filling the arrays of the unknowns of the domain points with random numbers;

• running the case for a set number of time steps;

• each time step consists of 4 stages;

• in the case of the C++ subroutine each stage consists of the following operations:

– rearrangement of the arrays of the unknowns in 3 different arrays that are passed

on to the C++ subroutine;

– obtaining three arrays of the RHS values for the finite difference approximation

in C++ subroutine (one for each direction);

– summation and rearrangement of the arrays of the RHS values to fit the Fortran

array arrangement.

The columns in Table 4.1 and Table 4.2 denote the following quantities:

• Subroutine:
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Table 4.1: Intrinsic instruction finite difference approximation comparison with standard
Fortran subroutine (double precision numbers)

Sub- Problem Self Total Self Memory ntime Time per
routine size time [s] time [s] GFLOPS [GB] point
Fort 8 0.29 2.88 12.3 23 5000 1.1E-06
C++ 8 0.15 0.57 21.4 9 5000 2.2E-07
Fort 16 0.44 1.03 13.0 37 1000 2.5E-07
C++ 16 0.35 1.13 14.4 15 1000 2.8E-07
Fort 24 1.73 2.22 11.0 125 1000 1.6E-07
C++ 24 1.19 3.67 14.3 51 1000 2.7E-07
Fort 32 2.62 2.78 10.4 188 500 1.4E-07
C++ 32 1.83 4.38 11.1 58 500 2.8E-07
Fort 40 4.93 5.03 10.8 369 500 1.6E-07
C++ 40 3.20 9.69 12.4 113 500 3.0E-07
Fort 48 1.32 1.43 11.5 100 100 1.3E-07
C++ 48 1.07 6.67 12.8 41 100 6.0E-07

Table 4.2: Intrinsic instruction finite difference approximation comparison with standard
Fortran subroutine (single precision numbers)

Sub- Problem Self Total Self Memory ntime Time per
routine size time [s] time [s] GFLOPS [GB] point
Fort 16 1.54 3.63 20.7 81 5000 1.8E-07
C++ 16 0.73 2.34 34.8 37 5000 1.1E-07
Fort 32 2.46 2.90 20.8 130 1000 8.9E-08
C++ 32 1.50 4.27 26.9 60 1000 1.3E-07
Fort 48 8.60 9.58 20.1 630 1000 8.7E-08
C++ 48 2.36 17.10 57.8 195 1000 1.5E-07
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– Fort – standard subroutine that obtains the RHS for the finite difference approx-

imation in Fortran;

– C++ – subroutine that obtains the RHS for the finite difference approximation

using intrinsic instructions in C++;

• Problem size – number of points in each direction of a cubic domain;

• Self time – total time spent in the corresponding subroutine in seconds;

• Total time – total runtime of the application in seconds;

• Self GFLOPS – ratio of Giga floating-point operations to Self time;

• Memory – Data transfers between CPU and memory subsystem (total traffic, including

caches and DRAM) in gigabytes;

• ntime – number of time steps, each time step includes 4 stages;

• Time per point – time necessary to obtain the RHS of a single point per time step.

It can be seen in the tables that the execution time of the subroutine itself is always

shorter in the case of the C++ implementation. As much as two times shorter. Another

relation that is constant throughout the whole tests is the total memory transfer. When

using intrinsic instructions the amount of memory that needs to be transferred to the CPU

is significantly reduced. It is two to three times less than in the case of the standard

subroutine in Fortran. One disadvantage of the C++ implementation that clearly presents

itself is that the time spent on the arrangement of arrays grows with the problem size. The

increase in the overhead due to rearrangement is so high that it overshadows the gain of

the more efficient RHS calculation.

The 16x16x16 point domain is chosen for further investigation and implementation in

the FDFLO finite difference code. Single precision test of this problem size demonstrates

the highest performance (34.8 gflops). Additionally, the total execution time is more than
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50 percent shorter even considering the array rearrangement. Problem size of 16 is also

reasonable for practical applications.

Although the table shows an even higher performance (57.8 gflops) for the problem size

of 48, this result was inconclusive. The profiling tool used showed highly varying results.

Furthermore the total execution time with this problem size was almost two times longer

for the C++ implementation versus the Fortran.

4.3.2 TGV with FDFLO

The subroutine that obtains the RHS for the finite difference approximation using intrinsic

instructions in C++ was implemented in FDFLO finite difference code. The performance

of this subroutine was tested on a Tailor Green Vortex simulation. The problem set-up and

description is given in section 3.11.1. The difference in this test is the domain decomposition.

The domain is decomposed in 64 cube form sub-domains with 16 + 2 ∗ 2 = 20 points in

each direction (2 ∗ 2 accounts for the two halo points on each side of the domain necessary

for the 4th order approximation scheme). Three different versions of the application were

executed and compared:

• double precision calculation using Fortran subroutine for obtaining RHS;

• single precision calculation using Fortran subroutine for obtaining RHS;

• single precision calculation using C++ subroutine for obtaining RHS;

Qualitative comparison of the results is shown in Figure 4.3. The single and double

precision cases yield very similar results. There is also no significant difference between the

single precision calculation using the intrinsic instructions and the single precision calcula-

tion using the standard Fortran subroutine.

The timings and performance comparison of the simulations are shown in Table 4.3.

One can see that the C++ subroutine has a significant speedup compared to the Fortran

subroutine, the Self time is 50% shorter. The floating point operation count per second in

C++ subroutine is higher, and the much lower data transfers between CPU and memory
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subsystem ensures an overall reduction in execution time. One can also see that the total

execution time is still favorable to the standard Fortran implementation. This is explained

by the time spent rearranging the arrays of unknowns to fit the intrinsic instruction calcu-

lation. The total time spent on data rearrangement is 29s which is more than three times

higher than the subroutine execution time itself.

Table 4.3: Performance comparison between intrinsic instruction finite difference approxi-
mation and standard Fortran subroutine (single precision) for the TGV case

Loop Self Self Memory Total execution
time [s] GFLOPS [GB] time [s]

Fortran 10.7 31.9 504.7 36.3
C++ 4.8 34.4 337.5 62.2

4.4 Conclusions and outlook

Intrinsic instructions are the state of the art approach to achieve maximum performance on

a given computational system. It does involve, however, complex low level programming

and the final code has limited portability. The presented test case clearly shows the possible

gains of RHS update calculation using intrinsic instructions. It results in high floating point

operations as a result of maximizing the used vector length. It also reduces the total data

transfer from memory to CPU by more than a factor of 2.

The performance increase of a fully intrinsic subroutine comes with additional compu-

tational costs spent on the rearrangement of data. As shown in the Tailor Green vortex

case, time spent on data rearrangement can even exceed the time spent in the intrinsic

subroutine.

To further explore the possible gains of using intrinsic instructions it is necessary to

address the following questions and explore further implementation options.

The proposed further research steps are as follows:
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Figure 4.3: TGV: Velocity field at t = 5s (left column) and t = 10s (right column). Com-
parison of single and double precision results using different subroutines: Double precision
with Fortran subroutine (top), single precision with C++ subroutine (middle) and single
precision with Fortran subroutine (bottom)
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• Optimization of data rearrangement subroutines. Explore more efficient rearrange-

ment algorithms or ways how to reuse the already rearranged data. Minimize the

amount of the necessary rearrangements.

• Using the strategies of MMALs when implementing intrinsic instructions. The current

implementation reloads the registers with necessary unknowns at each iteration step.

Although it already has an advantage over the conventional method, using MMAL

method could even further increase the advantage. For the 4th order scheme, instead

of having to load 22 sets of unknowns from the memory at each iteration step, one

could load only 7 (replace the unknowns of the last point of stencil with the unknowns

of the next point). As there is a limited amount of registers per CPU, this is not so

straight forward. Having more than 20 registers filled with reusable unknowns at all

times does not leave enough free registers for the necessary operations and constants.

There are two options that could be explored, however:

– Reset the register values to the necessary constants multiple times during the

iteration. Although not optimal, the set operation only has to access one constant

value per call instead of the whole vector length worth of values. The amount of

constants necessary is small enough to let this information come from the higher

levels of memory - faster access.

– Less realistic and straight forward option is to expect development of the CPUs

with more than 32 registers.

• The rearrangement of arrays takes the major part of the execution time. It does not

however grow with the increase in the order of the scheme. Same rearrangement can be

used also for the 6th and 8th order schemes. Since the execution time of higher order

schemes is higher, intrinsic instruction subroutine could become more competitive.

• Finally one could explore using intrinsic instructions for larger portions of the code,

where same data arrangement is necessary. This way the rearranged data can be

reused multiple times while increasing the performance of other portions of the code.
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Even though the current results show no real advantage of using intrinsic instructions

over traditional program calls, the preliminary results show evidence of possible performance

increase. If the issues stated above are addressed and solved, intrinsic instructions could

lead to a more efficient fluid solver development.
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Chapter 5: Conclusions

The topic of this dissertation is the optimization of fluid solvers with respect to fault toler-

ance and memory latency. The first issue comes from the challenges associated with exascale

computing. As the number of cores and nodes in a supercomputer grows, the mean time

between hardware failures reduces. Many of the scientific codes used today are not able to

overcome such failures. Each encountered failure leads to an aborted simulation. Then, the

simulation needs to be restarted from the last checkpoint written to the disk. Depending

on the time of the occurrence, this results in the loss of several hours of productive work.

Furthermore, restarting a failed simulation involves the manual work of an engineer.

The first issue addressed in this work concentrates on the development of a fault tolerant

fluid solver. The aim is to develop strategies that can be generally applied to fluid solvers in

order to achieve fault tolerance. This work proposes simple implementations (extensions) to

existing code that do not demand extensive rewriting of the code. Current tests conducted

on local machines as well as on several cluster environments yield promising results:

• the suggested fault tolerant fluid solver implementation demonstrates recovery rates

above 90%; and,

• large simulationS running on 16 compute nodes and 256 MPI processes have a runtime

penalty as low as 12%.

The second issue addressed in this work is the widening gap between the performance of

CPUs and the performance of memory access speeds. Applications like finite difference

solvers that access large amounts of data at each iteration become memory bound. The

limiting factor of the execution speed is the access speed to the memory. Memory-aware

algorithms are needed to reach peak CPU performance.
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Several minimal memory access loop options are proposed in this work. Once loaded

in higher levels of memory, data is re-used. The current results do not show a clear ad-

vantage of the proposed loops since they cannot be vectorized with the same efficiency as

the conventional loops. At the same time, the tests prove the existence of the memory

latency problem. The MMAL loops become more competitive with conventional methods

when running on a higher number of cores–memory bandwidth becomes more ’saturated.’

In some test scenarios, the MMAL loops even outperform the conventional loops.

Finally, a subroutine that obtains the RHS for the finite difference approximation using

intrinsic instructions in C++ was implemented in FDFLO finite difference code. Intrinsic

instructions ensure usage of the maximum vector, meaning the maximum simultaneous

operations performed at a given CPU cycle. It also reduces the total memory traffic between

the CPU and different levels of memory. The intrinsic instruction subroutine outperforms

the conventional method, however, it loses its overall advantage due to necessary data

rearrangements. Although the current test results do not yield the expected speedup, they

show evidence of possible performance increase that could be achieved with future work.
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Appendix A: Fault-tolerant code extensions

A.1 Fault repair subroutine

The following subroutine is called by all active processes of the MPI communicator after a

process failure is encountered. As basis for this subroutine the suggested call sequence of

ULFM is used [68].

1

2 subrout ine mpp_comm_replace (MPI_COMM0,MPI_COMM_new, l c f d c , i e r r o )

3 c

4 use arrays_mpp

5 c

6 i m p l i c i t r e a l ∗8 ( a−h , o−z )

7 c

8 i n c lude ’mpp. h ’

9 c

10 c −−−−−mpp common

11 c

12 common /mpp_info/ nproc , iproc , i l ang , npro l

13 common /mpp_err/ MPI_ERR

14 common /mpp_comm/ MPI_COMM

15 c

16 i n t e g e r ∗4 in fo , i s i z e , i rank

17 i n t e g e r ∗4 i e r r o , isv_key , namelen

18 l o g i c a l f l a g

19 cha rac t e r ∗(MPI_MAX_PROCESSOR_NAME) pname

20 c

21 e x t e r n a l mpp_error_handler

22 c

23 i n t e g e r l c f d c (6 )
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24 c

25 c −−−−−t h i s sub f i x e s the communicator once p r o c e s s o r s have f a i l e d

26 c

27 c on input : MPI_COMM0 : o r i g i n a l world communicator

28 c l c f d c : 1 : c fd code i s a c t i v e (=1)

29 c 2 : nr . or ( mpi ) p r o c e s s o r s d e s i r e d : nproc

30 c 3 : new_group MPI_COMM

31 c 4 : new_numtasks

32 c 5 : new_rank ( i p r o c )

33 c 6 : o r i g i n a l /new i p r o c i n d i c a t o r

34 c 0 : o r i g i n a l

35 c 1 : new i p r o c

36 c

37 c on output : MPI_COMM0 : new world communicator

38 c l c f d c : 1 : c fd code i s a c t i v e (=1)

39 c 2 : nr . or ( mpi ) p r o c e s s o r s d e s i r e d : nproc

40 c 3 : new_group MPI_COMM

41 c 4 : new_numtasks

42 c 5 : new_rank ( i p r o c )

43 c 6 : o r i g i n a l /new i p r o c i n d i c a t o r

44 c 0 : o r i g i n a l

45 c 1 : new i p r o c

46 c

47 c −−−−−f o r f a u l t −t o l e r a n t t e s t s

48 c

49 wr i t e (6 ,∗ ) ’ in mpp_comm_replace : b e f o r e r e p a r t i t i o n ’

50 wr i t e ( 6 , 1 0 ) ( l c f d c ( i ) , i =1 ,6)

51 10 format ( ’ l c f d c (1)= ’ , i12 ,

52 & / , ’ l c f d c (2)= ’ , i12 ,

53 & / , ’ l c f d c (3)= ’ , i12 ,

54 & / , ’ l c f d c (4)= ’ , i12 ,
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55 & / , ’ l c f d c (5)= ’ , i12 ,

56 & / , ’ l c f d c (6)= ’ , i 12 )

57 c

58 nproc_needed=l c f d c (2 )

59 MPI_COMM_cfd=l c f d c (3 )

60 c

61 c −−−−−shr ink to a l i v e procs (new communicator )

62 c

63 c a l l mpix_comm_shrink (MPI_COMM0,MPI_COMM_new, i e r r )

64 c

65 c −−−−−s ee how many procs died

66 c

67 c a l l mpi_comm_size (MPI_COMM_new, nproc_new , i i n f o )

68 c a l l mpi_comm_size (MPI_COMM0 , nproc , i i n f o )

69 ndead=nproc−nproc_new

70 wr i t e (6 ,∗ ) ’ nr . o f dead p r o c e s s o r s : ndead= ’ , ndead

71 c

72 i f ( ndead . eq . 0 ) then

73 goto 9999

74 e n d i f

75 c

76 c −−−−−s ee i f we have s u f f i c i e n t spare p r o c e s s e s

77 c and abort i f nece s sa ry

78 c

79 i f ( nproc_new . l t . nproc_needed ) then

80 wr i t e (6 ,∗ ) ’ no more s u f f i c i e n t a c t i v e procs ==> stopped ’

81 wr i t e (6 ,∗ ) ’ nproc_new , nproc_needed= ’ , nproc_new , nproc_needed

82 c a l l mpi_abort (MPI_COMM_WORLD, i e r r o )

83 e n d i f

84 c

85 c −−−−−s e t the e r r o r handler f o r the new communicator
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86 c to MPI_ERRORS_RETURN

87 c

88 & ’ MPI_COMM_new= ’ ,MPI_COMM_new

89 c a l l mpi_comm_set_errhandler (MPI_COMM_new,MPI_ERRORS_RETURN, i e r r )

90 c

91 c −−−−−get the proper ranks in new world

92 c

93 c a l l mpi_comm_rank(MPI_COMM0 , irank0 , i i n f o )

94 i p roc0=irank0+1

95 c

96 c a l l mpi_comm_rank(MPI_COMM_new, irank1 , i i n f o )

97 i p roc1=irank1+1

98 c

99 wr i t e (6 ,∗ ) ’ iproc , iproc0 , ip roc1= ’ , iproc , iproc0 , i p roc1

100 wr i t e (6 ,∗ ) ’ i rank0 , i rank1= ’ , irank0 , i rank1

101 c

102 c a l l mpi_barrier (MPI_COMM_new, i e r r )

103 c

104 wr i t e (6 ,∗ ) ’ a f t e r mpp_barrier ( 1 ) : MPI_COMM_new= ’ ,MPI_COMM_new

105 c

106 c −−−−−the rank 0 in MPI_COMM0,MPI_COMM_new i s going to

107 c determine the ranks at which the r e s e r v e procs

108 c need to be i n s e r t e d

109 c

110 np=l c f d c (2 ) ! nr o f procs needed f o r running c fd code

111 c

112 wr i t e (6 ,∗ ) ’ nproc , np= ’ , nproc , np

113 c

114 i f ( i rank1 . eq . 0 ) then

115 c

116 c −−−−−get the group o f dead procs ==>
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117 c those in MPI_COMM0, but not in MPI_COMM_new are the dead ones

118 c

119 c a l l mpi_comm_group(MPI_COMM0 , igrp0 , i e r r )

120 wr i t e (6 ,∗ ) ’ i g rp0= ’ , i g rp0

121 c

122 & MPI_COMM_new

123 c a l l mpi_comm_group(MPI_COMM_new, igrp1 , i e r r )

124 wr i t e (6 ,∗ ) ’ i g rp1= ’ , i g rp1

125 c

126 c a l l mpi_group_dif ference ( igrp0 , igrp1 , igrp2 , i e r r )

127 c

128 c −−−−−compute the rank assignment f o r the newly i n s e r t e d spare s

129 c number o f dead a c t i v e c fd p r o c e s s e s

130 c

131 indw=0

132 c

133 do 1200 i =0,ndead−1

134 c a l l mpi_group_translate_ranks ( igrp2 , 1 , i , igrp0 , idrank , i e r r )

135 c

136 c −−− i f the dead proce s s was an a c t i v e c fd proce s s send the

137 c in fo rmat ion to the spare , e l s e i gnor e

138 c

139 wr i t e (6 ,∗ ) ’ idrank , np= ’ , idrank , np

140 c

141 i f ( idrank . l t . np ) then

142 wr i t e (6 ,∗ ) ’ in send do loop : ’ , idrank , nproc_new−( i +1)

143 c a l l mpi_send ( idrank , 1 ,MPI_INT, nproc_new−( i +1) ,1 ,

144 & MPI_COMM_new, i e r r )

145 indw=indw+1

146 e l s e

147 wr i t e (6 ,∗ ) ’ spare died , no ac t i on taken ’
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148 e n d i f

149 wr i t e (6 ,∗ ) ’ a f t e r sending the new ranks ’ , indw ,

150 & ’ procs r ep laced ’

151 1200 cont inue

152 c

153 c −−−−−f r e e the groups

154 c

155 c a l l mpi_group_free ( igrp0 , i e r r )

156 c a l l mpi_group_free ( igrp1 , i e r r )

157 c a l l mpi_group_free ( igrp2 , i e r r )

158 c

159 e n d i f

160 c

161 c −−−−−broadcast the number o f procs needed to be r ep laced

162 c

163 c a l l mpi_bcast ( indw , 1 ,MPI_INT, 0 ,MPI_COMM_new, i e r r )

164 c

165 wr i t e (6 ,∗ ) ’ c a l l i n g mpp_barrier ( 2 ) : MPI_COMM_new= ’ ,MPI_COMM_new

166 c a l l mpi_barrier (MPI_COMM_new, i e r r )

167 c

168 c −−−−−loop where the new workers r e c e i v e the ranks

169 c

170 inewp=0

171 c

172 do 1400 i =0,indw−1

173 i f ( i rank1 . eq . nproc_new−( i +1)) then

174 wr i t e (6 ,∗ ) ’ in r e c e i v e do loop : ’ , i rank

175 c a l l mpi_recv ( irank0 , 1 ,MPI_INT, 0 , 1 ,MPI_COMM_new,

176 & MPI_STATUS_IGNORE, i e r r )

177 inewp=1 ! new p r o c e s s o r

178 wr i t e (6 ,∗ ) ’ r e c e i v e d irank1 , i rank0 : ’ , i rank1 , i rank0
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179 e n d i f

180 np = np +1

181 1400 cont inue

182 c

183 c −−−−−f r e e the o ld communicator

184 c

185 c a l l mpi_comm_free (MPI_COMM_cfd, i e r r )

186 c

187 c a l l mpi_barrier (MPI_COMM_new, i e r r )

188 c

189 c −−−−−j u s t in case . . .

190 c

191 c a l l mpi_comm_rank(MPI_COMM_new, irank_new , i e r r )

192 c a l l mpi_comm_size (MPI_COMM_new, nproc , i e r r )

193 c

194 c −−−−−re−arrange ranks in the MPI_COMM_new

195 c

196 c a l l mpi_comm_split (MPI_COMM_new, 0 , irank0 ,MPI_COMM_tmp, i e r r )

197 c a l l mpi_comm_rank(MPI_COMM_tmp, irank_new , i e r r )

198 MPI_COMM_new=MPI_COMM_tmp

199 wr i t e (6 ,∗ ) ’ rank a f t e r re−arranging , irank_new ’ , irank_new

200 c

201 c −−−−−re−c r e a t e f i x e d workcomm using p r o c e s s e s from the proce s s pool

202 c

203 c −−−−−a s s i g n a c o l o r to the ranks / p r o c e s s e s we want

204 c to i n s u r e that we know which ranks f a i l e d in the o ld

205 c communicator f o r e a s i e r recovery s t r a t e g y

206 c

207 wr i t e (6 ,∗ ) ’ c a l l i n g mpp_comm_split : MPI_COMM_new= ’ ,MPI_COMM_new

208 c

209 i f ( i rank0 . ge . 0 . and . i rank0 . l e . nproc_needed −1) then
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210 i c o l o r =1

211 e l s e

212 i c o l o r=MPI_UNDEFINED

213 e n d i f

214 c

215 c a l l mpi_comm_split (MPI_COMM_new, i c o l o r , irank0 ,

216 & MPI_COMM_cfd, i e r r )

217 c

218 wr i t e (6 ,∗ ) ’ a f t e r mpp_comm_split : MPI_COMM_cfd= ’ ,MPI_COMM_cfd

219 c

220 i f ( i c o l o r . eq . 1 ) then

221 c a l l mpi_comm_rank(MPI_COMM_cfd, irank_cfd , i e r r )

222 c a l l mpi_comm_size (MPI_COMM_cfd, nproc_cfd , i e r r )

223 i p r o c=irank_cfd+1

224 e l s e

225 i rank_cfd=−1

226 nproc_cfd= 0

227 e n d i f

228 wr i t e (6 ,∗ ) ’ a f t e r s p l i t : irank_cfd , irank_new= ’ ,

229 & irank_cfd , irank_new

230 wr i t e (6 ,∗ ) ’ a f t e r s p l i t : nproc_cfd= ’ , nproc_cfd

231 c

232 i f ( i c o l o r . eq . 1 . and . nproc_cfd . ne . l c f d c ( 2 ) ) then

233 wr i t e (6 ,∗ ) ’ e r r o r : nproc_cfd , l c f d c (2)= ’ , nproc_cfd , l c f d c (2 )

234 wr i t e (6 ,∗ ) ’ ==> stopped ’

235 c a l l mpi_abort (MPI_COMM_WORLD, i e r r o )

236 e n d i f

237 c

238 l c f d c (3)=MPI_COMM_cfd

239 l c f d c (4)= nproc_cfd

240 l c f d c (5)= irank_cfd+1
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241 l c f d c (6)= inewp

242 c

243 wr i t e (6 ,∗ ) ’ a f t e r r e p a r t i t i o n ’

244 wr i t e ( 6 , 1 2 ) ( l c f d c ( i ) , i =1 ,6)

245 12 format ( ’ l c f d c (1)= ’ , i12 ,

246 & / , ’ l c f d c (2)= ’ , i12 ,

247 & / , ’ l c f d c (3)= ’ , i12 ,

248 & / , ’ l c f d c (4)= ’ , i12 ,

249 & / , ’ l c f d c (5)= ’ , i12 ,

250 & / , ’ l c f d c (6)= ’ , i 12 )

251 c

252 c −−−−−r e s t o r e the e r r o r hand le r s

253 c

254 c a l l mpi_comm_get_errhandler (MPI_COMM0 , i e r rh , i e r r )

255 c a l l mpi_comm_set_errhandler (MPI_COMM_new, i e r rh , i e r r )

256 c a l l mpi_comm_set_errhandler (MPI_COMM_cfd, i e r rh , i e r r )

257 c

258 wr i t e (6 ,∗ ) ’ e x i t i n g mpp_comm_replace ’

259 c

260 9999 cont inue

261 re turn

262 end

A.2 Extended fault tolerant MPI all reduce call sequence

MPI all reduce calls can be prone to stuck processes or processes leaving the call with

different status information. While some processes might be notified of a process failure on

the communicator, others might see no such error and proceed with the execution. In order

to avoid such situation and ensure consensus the following call sequence is implemented.
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1

2 #i f de f ined (WITHFAULTTOLERANCE)

3 c −−− non−b lock ing a l l reduce c a l l i s used

4 c a l l mpi_ia l l r educe ( sdata , rdata , ndata ,MPI_REAL8,

5 & i_mpp_op ,MPI_COMM, i req , ierrmpp )

6 c −−− mpi b a r r i e r to synchron i ze a l l p r o c e s s e s

7 c a l l mpi_barrier (MPI_COMM, ierrmpp )

8 c −−− check ing i f any proce s s has r e g i s t e r e d an e r r o r and g e t t i n g a consensus ’

9 i f l a g =(MPI_SUCCESS . eq . ierrmpp )

10 c a l l mpix_comm_failure_ack (MPI_COMM, ierrmpp )

11 c a l l mpix_comm_agree (MPI_COMM, i f l a g , ierrmpp )

12 c −−− i f e r r o r has been encountered a l l the p r o c e s s e s re turn with an e r r o r

13 code to the main program

14 i f ( . not . i f l a g . or . ierrmpp . ne . 0) then

15 wr i t e (6 ,∗ ) ’ s e t t i n g ierrmpp to 10 ’

16 ierrmpp=10

17 goto 9999

18 e n d i f

19 c −−− us ing mpi_wait to ensure synchronous f i n a l i z a t i o n o f the c a l l sequence

20 c between the p r o c e s s e s

21 c a l l mpi_wait ( i r eq , i s t a t , ierrmpp )

22 #e l s e

23 c −−− in case o f non f a u l t t o l e r a n t run , r e g u l a r b lock ing mpi a l l reduce

24 c c a l l i s used

25 c a l l mpi_al lreduce ( sdata , rdata , ndata ,MPI_REAL8,

26 & i_mpp_op ,MPI_COMM, ierrmpp )

27

28 #e n d i f
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Appendix B: Intrinsic instruction call sequence

B.1 Intrinsic instruction call sequence and register filling

When using intrinsic instructions it is important to keep track of what data is loaded

in which register as well as which registers are available to leading new data from the

memory without overwriting reusable data. The following flowchart demonstrates the usage

of registers and intrinsic calls throughout the RHS update subroutine.
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