OPTIMIZATION OF FLUID SOLVERS WITH RESPECT TO
FAULT TOLERANCE AND MEMORY LATENCY

by

Atis Degro
A Dissertation
Submitted to the
Graduate Faculty
of
George Mason University
In Partial fulfillment of
The Requirements for the Degree
of
Doctor of Philosophy
Physics

Committee:

Dr. Rainald Léhner, Committee Chair

Dr. Fernando Camelli, Committee Member

Dr. Juan R. Cebral, Committee Member

Dr. Chi Yang, Committee Member

Dr. Paul So, Department Chair

Dr. Donna M. Fox, Associate Dean,
Office of Student Affairs & Special Programs,
College of Science

Dr. Ali Andalibi, Dean, College of Science

Date: Spring Semester 2020
George Mason University
Fairfax, VA

Optimization of Fluid Solvers with Respect to Fault Tolerance and Memory Latency

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Atis Degro
Master of Science
Technical University of Munich, 2012
Professional Master Degree
Riga Technical University, 2010

Director: Dr. Rainald Lohner, Distinguished Professor
Department of Physics and Astronomy

Spring Semester 2020
George Mason University
Fairfax, VA

Copyright © 2020 by Atis Degro
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my beloved parents and family.

iii

Acknowledgments

First, I would like to thank my dissertation advisor Dr. Rainald Lohner for giving me the
opportunity to pursue a doctoral degree while working under his guidance. His knowledge,
enthusiasm and dedication have helped and motivated me throughout my years at George
Mason University.

Additionally, T would like to thank Dr. Fernando Camelli for his passionate teaching,
for always finding time to give me advice and the frequent friendly conversations.

I would like to thank Dr. Chi Yang for her assistance throughout my doctoral studies.
Her attention to the details of this new program consistently guided me in the right direction.

I would like to thank Jayshree Sarma, Director of the Office of Research Computing at
George Mason, as well as her team for all the support I have received. Work done on the
ARGO cluster would not have been possible without their help.

I would like to thank my colleague and friend Alejandro Figueroa. From the beginning of
this program, he has provided advice and camaraderie, and without him this whole program
would have been very different.

Last but not least, I would like to express my deepest gratitude to my parents, my sisters,
the rest of my family and my friends. They have inspired me and shown me incredible
support throughout my doctoral studies.

iv

Table of Contents

List of Tables e
List of Figures
Abstract e
1 Imtroduction e e
1.1 Problem statement

1.2 FDFLO e

1.3 Thesisoutline

2 Fault Tolerant Fluid Solver
2.1 Introduction e

2.2 MTBF . . . e e

2.3 Current situation regarding fault tolerant applications
2.3.1 MPI library functionality with respect to fault tolerance

2.3.2 MPI fault tolerant extensions

2.3.3 Related work

2.3.4 Fault tolerance when using Fortran

2.4 Levels of Fault Tolerance

2.5 Fault Tolerant Code Design

2.6 Detecting and discerning node/core failure

2.7 Storage of restart/recovery information. Lo

2.8 Recovery from failure. o L o

2.9 Re-assignment of work
2.10 Methods to introduce failureo
2.11 Test cases o e e e e e e
2.11.1 Taylor-Green Vortex

2.11.2 Ahmed Body

2.11.3 Fault Tolerance Overhead Estimation

2.12 Results.
2.13 Conclusions and outlook

3 Minimization of Memory Access

Page
vii
viii

ix

S Ot Ot W W o~

3.1 Introductiono 41

3.2 CPU speed and memory access speed advancements over time 42
3.3 Minimizing memory accesso e e e e 42
3.4 Extension to 2/3D 46
3.5 MMALS for systems of equations, 49
3.5.1 Small Vectors L 50

3.5.2 Small Matrix With Indirect Addressing 51

3.5.3 Scalar Temporaries Lo 51

3.6 Implementation in FDFLO 52
3.7 Results. e 52
3.8 Conclusions and outlook o 57

4 Optimization using Intrinsics o oL 58
4.1 Intrinsics e e e e 58
4.1.1 SIMD 58

4.1.2 Auto-vectorization 59

4.1.3 Intrinsic functions o 59

4.2 Implementation 60
4.2.1 CH+ subroutine 61

4.2.2 Array rearrangement 62

4.3 Results. o 63
4.3.1 Testcase 64

432 TGV with FDFLO 67

4.4 Conclusions and outlook oo 68

5 Conclusions 72
A Fault-tolerant code extensions oo 74
A.1 Fault repair subroutine 74
A.2 Extended fault tolerant MPI all reduce call sequence 82

B Intrinsic instruction call sequence oL 84
B.1 Intrinsic instruction call sequence and register filling 84
Bibliography L 87

vi

Table
2.1
2.2
3.1
3.2

3.3
3.4
3.5

3.6
3.7
3.8
3.9
3.10
4.1

4.2

4.3

List of Tables

Page
Supercomputer statistics regarding MTBF 8
Timings of Faut tolerant call sequences and implementations [Sec] 36
Memory Access Counts for FD Schemes of Different Order 49
Timings on SGI Ice-X, Intel Xeon E5-2699v3, 32 C/N, 2.30GHz (thunder)
[Secl . . . 53
Timings on Laptop, Intel Xeon E31505Mv5, 2.80GHz (rossini) [Sec] 54

Timings on Desktop, 8 Cores, Intel Xeon E5-2637v4, 3.50GHz (purcell) [Sec] 54
Timings on Cray XC40/50, 544 Intel Xeon Phi 7230 (Knights Landing),

1.30GHz (onyx) [Sec| 54
Timings on SGI ICE-XA, Xeon E5-2698v4, 40 C/N, 2.20GHz (centennial) [Sec| 54
Timings on Desktop, 32 Cores, AMD Opteron 6238, 2.6GHz (loki) [Sec] . . 54
Timings on Desktop, 16 Cores, Intel Xeon Silver 4208, 2.10GHz (tallis) [Sec] 55
Vectorization and performance of the main loops of MMAL subroutines . . 56
Vectorization and performance of the MMAL subroutines 56

Intrinsic instruction finite difference approximation comparison with stan-
dard Fortran subroutine (double precision numbers) 65
Intrinsic instruction finite difference approximation comparison with stan-
dard Fortran subroutine (single precision numbers) 65
Performance comparison between intrinsic instruction finite difference ap-
proximation and standard Fortran subroutine (single precision) for the TGV

CASE v v v e e e e e e e 68

vii

Figure
2.1
2.2

2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
3.1
3.2
3.3
3.4
4.1
4.2
4.3

List of Figures

Page
Moore’s lawo 7
Increase in the maximum number of cores in the top 500 supercomputers . 7
MTBF dependency on number of cores 9
Taylor-Green Vortex: Velocity Magnitude 30
Ahmed Body: Geometry and Grid System Employed 32
Ahmed Body: Velocities and Q-Criterion 32
Fault-tolerant code timings 1 L L. 37
Fault-tolerant code timings 2 o oL 38
Fault-tolerant code timings 3 oL 38
Fault-tolerant code timings 4o 39
Increase in peak performance of supercomputers 43
Memory access vs CPU performance 43
Increase in the gap between Memory access and peak performance 44
Flow Past Square Cylinder 53
Intrinsic memory access patterns 1 Lo 61
Intrinsic memory access patterns 2 oo 62
TGV: Velocity field 69

viii

Abstract

OPTIMIZATION OF FLUID SOLVERS WITH RESPECT TO FAULT TOLERANCE
AND MEMORY LATENCY

Atis Degro, PhD
George Mason University, 2020

Dissertation Director: Dr. Rainald Lohner

Constant advancement of computational systems lifts the theoretical boundaries of what
is possible to achieve with numerical simulations. In order to fully utilize the capabilities
of advanced computational resources, codes must be adapted accordingly.

One major challenge that comes with petascale and exascale computing is fault tolerance.
The larger the number of nodes used for code execution the lower the expected time between
hardware failures. Based on available research data, several failures per day can occur when
running massively parallel applications. Several fault tolerance enabling techniques have
been analyzed and proposed in past years; however, currently there are no fault tolerant
computational fluid dynamics (CFD) solvers that can efficiently execute an application
at the Exascale or Petascale level. The aim of this PhD dissertation is to analyze and
implement available resilience techniques to develop a fault-tolerant CFD solver.

The second challenge addressed in this work is the memory latency problem for CFD
codes. Many CFD codes that exhibit low computational intensity (flops per RAM access)
‘saturate’ the memory bandwidth of modern chips after only a few cores; therefore, any
possible benefits of utilizing more of the available cores are minimized. While previously

the CPU speed determined how fast a certain code could be executed, currently, the memory

access speed sets the upper limit for the solver’s performance. That is the reason why
some fluid solvers can achieve only 10-15 percent of the peak performance of the floating
point pipelines on recent CPU cores. This has led to the development of minimal memory
access loop (MMAL) options for finite difference solvers. Several loops are described and
analyzed.

Finally another approach to address the memory latency problem for CFD codes is
investigated. Intrinsic instructions in C++ are used to code the subroutine that obtains
the right hand side (RHS) for the finite difference approximation. Intrinsic instructions
take advantage of the full vector length and maximize the number of operations that can

be done simultaneously.

Chapter 1: Introduction

1.1 Problem statement

In 2008, petascale supercomputing was achieved. The IBM-built supercomputer named
Roadrunner went online and exceeded 1 petaflops on the Linpack test [1]. The number
of Petascale computers on the Top500 supercomputer list grew steadily. Since June 2019,
all the top 500 supercomputers perform at petascale — at least 1.022 petaflops [2]. The
progress, however, does not stop at petascale. Planning for exascale began before the first
petascale computer went online. Furthermore, the first prognosis anticipated an exascale
supercomputer by the year 2015 [3]. The current prognosis anticipates the first exascale
supercomputer to go online in 2021 [4].

Exascale computing holds the potential to lift the current limits of scientific computing
and enable new possibilities. However, exascale computing comes with new challenges. In
order to fully utilize the exascale performance, several issues have to be addressed.

One main issue which has been repeatedly discussed regarding exascale computing, is
resilience [5]. Today’s supercomputers suffer daily from hardware failures. The mean time
between failures (MTBF), depending on the supercomputer, can be as frequent as every 7
hours [6]. Due to the increased number of components expected in an exascale computer,
the MTBF will likely reduce even further — potentially down to minutes. Applications that
follow a master/slave hierarchy of work assignment do not suffer significant computational
losses when a process fails. New replacement processes can be spawned at minimum expense
without loss of valuable data. Meanwhile, fault tolerance is a more serious issue in field
solvers where processors are working in a flat hierarchy. Each process works simultaneously

on a sub-domain of the problem and critical information between them is exchanged each

time-step. In this case, loss of a process implies loss of information that is necessary to
advance the execution.

Although work on fault tolerant computing has been ongoing for decades, currently
there are no production codes that can deal with node or core failures. Furthermore, most
of the advancements made in fault tolerant computing are not applicable when using For-
tran programming language. Due to the differences in programming language capabilities,
strategies suggested for C++ can not be used in Fortran. This work concentrates on in-
vestigating the available fault tolerant techniques and designing a fault tolerant field solver
written in Fortran.

Another issue addressed in this work is the increasing gap between memory and CPU
performance. Both CPU and memory transfer performances have been steadily increasing.
CPU performance, however, is increasing at a much higher rate. This has led to a situation
where data transfer from different levels of memory can not ’feed’ the CPU fast enough to
enable the theoretical computational performance. Applications where such a scenario is
observed are memory bound — peak performance is limited by the system bandwidth between
CPU and memory. One way of addressing this issue is to design algorithms that reduce
the necessary amount of data transfer. This work investigates two possible approaches to

reduce the memory latency:

e rearranging execution order so that the maximum amount of data could be reused

after it has been loaded in higher level memory (L1, L2 cache); and,

 using intrinsic instructions in order to utilize full vector length of the registers. This
way more operations can be executed simultaneously on larger data sets, thereby

increasing the performance.

1.2 FDFLO

Fault-tolerance strategies as well as memory latency reduction attempts were designed
and tested using FDFLO [7-10]. FDFLO is a finite difference code that solves the quasi-
incompressible (artificial compressibility) Navier-Stokes equations and is based on the fol-

lowing set of building blocks:

e Cartesian spatial discretization;

e Embedded or immersed boundaries for complex geometries;

o Explicit timestepping via low-storage Runge-Kutta schemes;

e Conservative formulation for advection and divergence;

o Easy extensions to high-order stencils;

e Ordered access to memory;

e Long 1-D loops (for optimal vector, OMP and GPU performance);

o Use of halo points to impose boundary conditions.

FDFLO has been in development for a number of years and has been used for both
fundamental research of turbulent phenomena as well as industrial large-eddy simulations

(LES) of complete car configurations.

1.3 Thesis outline

The body of this dissertation is organized around the issues highlighted in the above problem
statement.

Chapter 2 is dedicated to fault tolerant fluid solver development. First, a more thorough
motivation for necessity for a fault tolerant solver is provided followed by an overview of

currently available techniques and related work. Second, the developed and implemented

strategies are presented and discussed. Finally, the results of several test cases and overall
performance evaluation are reported.

The attempts to minimize memory access using minimal memory access loops (MMALS)
comprise chapter 3. This includes the motivation and detailed description of MMALS po-
tential advantage over traditional approach with respect to data transfer from memory. Six
different minimal memory access loop options are introduced and implemented in the finite
difference solver FDFLO. Test runs of the implemented loops are conducted on different
hardware systems and several problem sizes are tested. Chapter 3 concludes with the result
discussion and outlook.

Chapter 4 is dedicated to the use of intrinsic instructions as a tool for improving the per-
formance of fluid solver. Challenges and limitations of intrinsic instructions are discussed.
Intrinsic calls are used to implement an alternative subroutine that obtains the RHS values.
Both single precision and double precision options are explored. The subroutines are tested
and compared with the traditional version of RHS update. To conclude, the suggestions for
possible future work are given.

Finally, chapter 5 presents an overall summary of efforts towards optimization of fluid
solvers with respect to fault tolerance and memory latency. The main outcomes are evalu-

ated. Further directions of future work are identified.

Chapter 2: Fault Tolerant Fluid Solver

2.1 Introduction

The current path to exascale computing foresees tens of thousands of heavily populated
nodes (i.e. millions of cores) working on the same time-critical problem. One of the emerging
issues with millions of cores is the time between failures. Random failures of cores or the
communication between cores - commonly referred to as ‘faults’ - that are expected to occur
every couple of minutes pose a serious problem for production runs that need hours or days

to complete. This problem has not emerged so far because:

o for most machines, the number of (high quality) cores allowed for a single run is still
in the range of tens of thousands [11,12], i.e. times between failures occur only every

few hours; and,

o due to their Message Passing Interface (MPI) implementations, most computing cen-
ters do not allow for fault-tolerant computing, i.e. if any MPI process/core fails, the

run terminates immediately.

It should come as no surprise then that none of the production codes currently in
place can deal with cores/nodes failing. To date, the approach has been to periodically
write all restart information to disk (e.g. every hour), so that if the machine experiences
a malfunction, only the last hour of computing is lost. This approach requires constant
human supervision or elaborate restart scripts, so that a considerable number of productive
hours are not be lost should a node or core fail.

By default, each error encountered when using MPI is fatal and the simulation is aborted.

Since the MPI-2 standard, it is possible to change the default behavior and allow the

execution of the application to continue even after an error has been encountered. This
feature has been used by many when trying to develop a fault-tolerant MPI implementation.
The new capabilities offered by fault-tolerant MPI implementations have motivated research
in resilience strategies and fault-tolerant application development.

From a fault-tolerant perspective, the simplest implementations are those that follow
a master /slave arrangement. Typical applications are distributed searches [13], or embar-
rassingly parallel problems such as parameter scoping or evolutionary optimization [14].
For these cases, the loss of a processor is immaterial, as a new process can be spawned to
replace it without any detriment to the overall application. Fault tolerance becomes much
more difficult for field solvers where processors are working simultaneously on different sub-
domains, and critical information is exchanged between them every iteration or time step.

In this case, the failure of one processor leads to an irrecoverable loss of information.

2.2 MTBF

Back in 1965 Moore’s law predicted that every 2 years the number of components per
integrated circuit will double [15]. Omne can see how correct this prediction has been in
Figure 2.1. This constant progress affects also the overall trend and performance of the
supercomputers. The list of the top 500 supercomputers is updated twice each year and
shows the statistics of the current computers with the highest peak performance [16]. Over
the time the supercomputers on this list have shown a steady increase in size with respect
to the number of compute nodes and CPUs (Figure 2.2). This progress towards ever bigger
computers is driven by the demand from science and industry. We are currently reaching
the level of exascale in terms of the floating point operations per second.

Increasing number of components on the computer lead to decreasing failure rates. Mean
time between failures (MTBF) is expected to go as low as several minutes. Researchers have
addressed the issue of hardware failures on supercomputers ever since the first talks about
petascale computing [18]. The predictions for petascale computing with respect to failure

rates turned out to be quite accurate, now predictions for exascale computing are being

6

1.E+11

1.E+10

1.E+09

1.E+08

1.E+07

1.E+06

1.E+05

Number of transistors

1.E+04

1.E+03
1970 1980 1990 2000 2010 2020

Year

Figure 2.1: Increase in numbers of transistors that fit onto a microprocessor over the years.
Data taken from [17].

100000K
10000K
1000K

100K

Number of cores

10K

1K
1995 2000 2005 2010 2015 2020

Year

Figure 2.2: Increase in the maximum number of cores in the top 500 supercomputers

Table 2.1: Supercomputer statistics regarding MTBF

Name of the supercomputer | Number of nodes | Number of cores | MTBF [h]

Jaguar XT4 7832 31328 36.91
Jaguar XT5H 18688 149504 22.67

Jaguar XK6 18688 298592 8.93
Eos 736 23553 189.04

Titan 18688 560640 14.51

CEA Teral00 4300 140000 20

IBM Blue Gene 40960 163840 180

Blue Waters 22640 724480 7

made. Several studies and surveys analyzing data from supercomputing centers have been
carried out over the past years to come up with a good prediction model to estimate the
MTBEF on a given machine [6,19-26]

Main issues addressed in these studies are:

e which components are more prone to failure;

how does MTBF change with respect to the life cycle of machine’s components;
e does MTBF depend on system type;
e does new generation hardware increase or decrease the reliability;

Most common type of failure (45%) is failure of a single node or CPU [19]. There is
no clear agreement whether the MTBF correlates better with number of CPUs, number
of nodes or number of sockets. Most likely it is the combination of all. The overall trend
however is clear. Figure 2.3 shows the correlation between MTBF and the number of
CPUs. The data points used in this chart are taken from several sources [6,20,22,27] and
are presented in Table 2.1.

In Figure 2.3 the red curve denotes an exponential trendline. The number of data points
is small due to the lack of available information of failure statistics of different supercom-
puters. The deviation of the data points from the trendline comes from the complexity of

the issue, as mentioned above, the MTBF depends on a combination of different factors.

8

S N e e)

N B [[ole] o

o o o o o
[]

80

Mean time between failures [h]
=
o
o

0 200 400 600 800
Number of cores [in thousands]

Figure 2.3: Mean time between failure depending on the total number of cores

For example, the two supercomputers with high MTBF (Eos and IBM Blue Gene) clearly
stand out from the overall trend. IBM Blue Gene has only 4 CPUs per node, Eos has a
low overall number of nodes. Although these are not unique characteristics, they possibly
contribute to the high MTBF. The trendline is not perfect and there are data points that
seem to not follow it at all. The general pattern of the correlation between MTBF and the
number of CPUs however is clear. As the number of CPUs per supercomputer rises, the
MTBF is going to reduce.

Based on the findings of [26], supercomputers encounter failure temporal locality. That
means, if a failure occurs, it is very likely that the next failure will occur after a time that
is notably lower than the MTBF. Furthermore, if the expected runtime of a simulation is
larger than the MTBF, there is a very high chance that several and not just one failure will
be encountered.

According to [22] the MTBF varies significantly over time. The MTBF of the same
supercomputer can change as much as 4 times in the period of one year. This fact even
further adds to the unpredictability of failure occurrences.

The data shown in this section does not prove that a failure will occur during a specific

application execution. It does show, however, how likely and unpredictable failures are and

illustrates the significance of fault-tolerant applications for high performance computing.

2.3 Current situation regarding fault tolerant applications

In this section the current situation regarding fault-tolerant applications is discussed. A

brief overview of available tools and applications is given.

2.3.1 MPI library functionality with respect to fault tolerance

Work on the MPI began in 1991 and the first MPI standard, the MPI 1.0 was released in
1994. Since then, MPI has been the state of the art shared memory communication library
for parallel programs.

By default each encountered error when using MPI is a fatal error and the simulation is
aborted. The reason for this is to ensure a correct calculation. With the hardware advance-
ment the supercomputers got bigger, more and more nodes(processors) were available for a
single simulation. With the increasing number of the processors decreased the average time
between element failure. This was the motivation for research on development of resilient
computational methods. However the MPI standard by default remains non-fault tolerant.
According to the MPI-3 standard: "An MPI implementation cannot or may choose not to
handle some errors that occur during MPI calls. These can include errors that generate
exceptions or traps, such as floating point errors or access violations. The set of errors
that are handled by MPI is implementation-dependent. Each such error generates an MPI
exception." [28]

The MPI standard does however provide some tools for possible fault handling. Several

predefined error handlers are available in MPI:

e MPI__errors_ are_ fatal The handler, when called, causes the program to abort on
all executing processes. This has the same effect as if MPI__abort was called by

the process that invoked the handler [28]. This is the default error handler that is

10

assigned to every initialized MPI communicator.

e MPI_ errors_ return The handler has no effect other than returning the error code
to the user[28]. What happens after an error is encountered depends on the specific
implementation. There is no guarantee that the user will be able to keep using the
communicator once an error is encountered. This option does however give user a
chance to store any data or execute other non MPI calls before the simulation is

aborted.

Additionally to the pre-defined error handlers, the user has the option to write a custom
error handler function. The custom error handler can then be assigned to a MPI commu-
nicator. In this scenario the custom error handler function is going to be called by each
MPIT process that encounters and error (MPI call does not return MPI__success). It will be
shown in the next chapter how this functionality is used for development of fault tolerant

MPI extensions.

2.3.2 MPI fault tolerant extensions

A lot of work has been done on development of MPI extensions to increase the fault tolerant
options provided by standard MPI. In this chapter introduction to some of the most known
MPI extensions is provided by giving a short summary of the methodology, functionality

and background.

MPI-FT

MPI-FT is a fault tolerant version of MPI [29]. The proposed methodology consists of a
mechanism to detect the failures and a recovery procedure. The detection and recovery is
done by a centralized process called Observer that monitors the application. Once a failure
is detected the Observer notifies the alive processes. That is followed by the recovery
procedure. There are two proposed solutions for the recovery procedure. For the first
method distributed buffering of the message process is performed on each process. After

the failure the Observer recovers all buffered the messages from the alive processes and

11

resends them to the replacement processes that have substituted the dead processes. For
the second method the Observer receives and stores all the message traffic during runtime.
After a failure is detected the Observer, similarly to method one, resends all the messages

issued for the dead processes to the replacement processes.

FT-MPI

FT-MPI is a fault tolerant version of MPI [30]. The first significant difference from the MPI
standard is that the default error handler is MPI errors return. FT-MPI is built on the
HARNESS (Heterogeneous Adaptive Reconfigurable Networked SyStem), an experimental
meta-computing system [31]. FT-MPI is based on the MPI-1.2, includes some parts of the
MPI-2 and extends some of the semantics of MPI to make recovery from failed processes
possible [32]. FT-MPI provides four different error modes also called ’'communicator modes’
that can be specified at the beginning of the application. The four modes are as follows

[33]:

e ABORT - corresponds to the standard MPI default and aborts on an error;

e BLANK - after a failure MPI_COMM_ WORLD doesn’t change size, the failed
processes are neither removed or replaced, alive processes keep their original ranks as

assigned before the crash;

e« SHRINK - similar to blank, the failed processes are not replaced, however, they are
removed, leaving no ’holes’ in the communicator. The communicator is shrunk to the
size of remaining alive processes. The remaining processes might have a new rank;

and,

e REBUILD - this is the default mode of the FT-MPI. After the failure the com-
municator is first shrunk and then new processes are spawned to replace the failed
processes. The size of the MPI_COMM__WORLD doesn’t change and neither do the

ranks of the processes.

12

Although the FT-MPI provided good fault tolerant functionality it was never implemented
in the MPI standard and has been discontinued. Due to the lack of generality (tied to a
specific computing system) it was never widely adapted or implemented in any production

codes.

FA-MPI

FA-MPI is a Fault-Aware version of MPI [34]. It provides extensions to the MPI standard
thereby providing options for implementing fault tolerant methods in the applications. FA-
MPI is restricted to non-blocking MPI communication. This can be seen as a disadvantage
when considering implementing fault tolerance in legacy codes. FA-MPI uses TryBlock
API extensions to introduce transactional behavior. Series of operations are firstly "tried"
to execute and are "committed" only when all the operations have succeeded. The operations
are "rolled-backward" or 'rolled-forward" if some of the operations fail. The advantage of
FA-MPI is that it doesn’t deal exclusively with process failure. FA-MPI also claims to
have smaller overhead since the failure is not detected/mitigated/isolated/recovered per

operation but per group of operations [34, 35].

ULFM

User Level Failure Mitigation can be described as an attempt to introduce a standardized
fault tolerant extension of MPI that would be implemented in the MPI standard. It has
several similarities with the FT-MPI. The MPI Forum’s Fault Tolerance Working Group
has been working on implementing standard fault tolerant MPI by adding additional calls to
the existing MPI standard [36]. The main additions to the existing MPI consists of supple-
mentary error codes and five supplementary interfaces. The following is a brief description

of these supplementary MPI semantics. Supplementary error codes [37]:

« MPIX ERR PROC FAILED - an MPI call will return this error if failure of a

process on the communicator is preventing the completion of the MPI operation.

13

« MPIX ERR PROC FAILED PENDING — an MPI call will return this error when

a potential sender matching a non-blocking wildcard source receive has failed.

« MPIX ERR REVOKED — an MPI call will return this error if either of the ranks

in the application has initiated the revoke operation on the communicator.
Supplementary MPI functions [37]:

e MPIX_ Comm_ failure ack — this is a local operation that acknowledges all locally
notified failures on the communicator. After this call unmatched receive operations
that would otherwise have raised an error will proceed without raising further errors

since the error is already acknowledged.

e MPIX_ Comm_ failure get_acked — this is a local call that returns the group of ac-
knowledged failed processes on the communicator. This call should be called after

MPIX Comm_failure ack.

e MPIX Comm revoke — this function is used to revoke a communicator. It notifies
all the processes associated with this communicator that it is revoked. It is not a
collective function therefore there are no matching calls on remote processes. It is a
local call with global effect. After a communicator is revoked all non-local calls in this

communicator will invoke an error of class mpix_ err_revoked.

e MPIX_ Comm_ shrink — this functions creates a new communicator. On the input is
the communicator with failed processes and on the output a new communicator that
excludes all the failed processes. It is a collective call and has to be called by all the

alive processes.

o MPIX_ Comm_ agree — this is a collective communication call ensuring that all the
alive processes agree on a bitwise ’AND’ operation. Using this call after
MPIX__Comm__ failure_ ack lets users synchronize the knowledge of failures across the

communicator.

14

ULFM added functions provide tools to deal with overall process of encountering process

failure in following phases:
« notification phase — ensuring that all the processes are aware of the failure;

e propagation phase — stopping all the activity of the affected communicator by revoking

it; and,

e recovery phase — removing the failed processes from the application and getting con-
sensus between all the surviving processes about the state of the recovered (healthy)

communicator before proceeding with the execution of the application.

ULFM makes it possible to implement local or global recovery depending on the type
of the application. ULFM is currently one of the most widely used fault tolerant MPI

extensions.

MPICH

MPICH is a high-performance widely portable implementation of the MPI standard since
MPI-1 [38]. MPICH has added to the implementation the following fault tolerant calls from

ULFM:
o failure_ ack, failure_ get_ acked;
e MPIX Comm shrink;
e MPIX_ Comm_ agree;
e MPIX Comm revoke.

In order to use these calls, however, MPICH has to be configured before installation with

the following flag:
o —enable-error-checking=all

In addition, users must enable a runtime flag each time they execute the application:

15

e —disable-auto-cleanup

This flag prevents the process manager to kill processes if any of the processes experience
failure [39]. During the course of this work, it was found that the MPICH version of the
MPIX__Comm_ shrink call is limited to 32 MPI processes. That is not the case when using
ULFM. MPICH is widely used which makes it a good and simple option for trying and
implementing basic fault tolerance methods. It seems, however, that the support for fault

tolerance in MPICH could be discontinued [40].

Fenix

Fenix is a fault tolerant application programming interface (API). It uses ULFM provided
MPI extension semantics. Fenix has two main functionalities - repairing communicators
and restoring state of the application from a checkpoint [41].

Fenix recovers resilient communicators that are initialized using Fenix_Init. The repair
process supports both shrinking and non-shrinking recovery of the failure affected commu-
nicator. In order to use the non-shrinking recovery option additional redundant resources
(spare ranks) have to be assigned at the beginning of execution of the application. Fenix
automatically captures errors that result from MPI operations on the "fenix" communica-
tors.

For data recovery Fenix provides a designated data storage API. The user, however, can
choose to use other data recovery options. The Fenix provided data recovery API relies on
storing application variables and arrays to redundant data storage [41].

The recovery process restores the application to a defined recovery point as opposed to the

caller which makes The Fenix API not compatible with Fortran codes [42].

Reinit
Reinit is a global-exception, roll-back recovery model. Reinit was developed as an attempt
to address the shortcomings of ULFM. Contrary to ULFM where broken communicators

are repaired, Reinit relies on reinitialization of the MPI. Once a fail-stop error is detected,

16

MPI reinitializes and restarts the application at a previously defined restart point. In doing
so, MPI is also restarting any failed ranks. Reinit depends on very accurate (only failed
processes are reported as failed) and synchronized (all the alive processes are eventually

informed about the failed processes) fault detector in the MPI runtime [43].

2.3.3 Related work

A few of the efforts reported to date in this field are mentioned in what follows.

o A fault-tolerant implementation of an application solving 2D partial differential equa-
tions (PDEs) by means of a sparse grid combination technique has been reported
by Ali et al. [44]. It is capable of surviving multiple process failures caused by the
faults. This implementation uses the capabilities of the User Level Failure Mitigation
(ULFM) extension of MPI [44]. After a detection of a failure the communicator is
revoked, then shrunk to the remaining processes and lastly new processes are spawned
to replace the failed ones. Three different data recovery procedures including check-
point /restart have been tested. The faults are injected sending (SIGKILL) to the
processes at a certain point from within the code. Faults are being detected by calling

mpi_barrier on the Parent communicator. This application is developed using C++.

o The theory for fault tolerant multi-level Monte Carlo (FT-MLMC) for solving the
two-dimensional stochastic Euler equations of gas dynamics has been developed and
tested by Pauli et al. [45]. This is a work on developing a fault tolerant ALSVID-
UQ (Multilevel Monte Carlo Finite Volume solver for uncertainty quantification in
hyperbolic systems of conservation laws [46]. Fault tolerance is implemented using the
ULFM MPI extension. After encountering a failure the communicator is revoked and
shrunk to the remaining (alive) processes. The recovered communicator is of reduced
size. Faults are introduced by killing processes using the system exit call. Faults are
introduced at random times based on Weibull distribution model. Faults are being

detected by calling mpi_barrier on the parent communicator. This application is

17

developed using C++.

e The Fenix MPI Fault Tolerance software library compatible with the Message Passing
Interface (MPI) to support fault recovery without application shutdown has been used
in conjunction with PDE solvers by van der Wijngaart et al. [47]. The developers
report the successful implementation of Fenix MPI (mentioned earlier in this chapter)

in the S3D code for the numerical simulation of combustion [48].

e A number of publications have reported on efforts to make basic matrix operations
and linear equations solvers fault-tolerant [49-51]. Contrary to the works mentioned
above these efforts discuss resilience to soft errors. The fault tolerance is achieved at

the algorithm level and does not use additional MPI calls.

It can be noticed here that none of the related works are using Fortran as the program-
ming language. A considerable number of production codes are still written in Fortran, and
given the large number of man-years that were required to write and debug them, probably
will not be rewritten. The challenges when using Fortran will be discussed in the following

chapter.

2.3.4 Fault tolerance when using Fortran

It can be seen in the previous section that fault tolerance has been considered an issue
already for several years. Significant amount of work has been done on MPI extensions to
achieve fault tolerance in advanced numerical computations. The currently available MPI
extensions have been implemented in numerical solvers and tested. The results so far look
promising. Today, there is no standard for developing fault tolerant applications, however,
the work is ongoing and the future seems promising. There is, however, an important fact
that should be addressed. All the related example applications from the previous section
are written in C++. Furthermore, most of the MPI fault-tolerant extensions described in
the previous section do not support Fortran as the programming language.

Fortran, being one of the oldest programming languages, is still also one of the most used

18

ones. HEspecially for scientific applications, even though it has not seen much development
and change throughout it’s existence. And there is a reason for that: Fortran can generate
a very fast native code, one of the reasons why it is ideal for scientific computing. It is
also highly optimized for vectorization and therefore good for supercomputer applications.
Fortran is readable and understandable. But it is not just the fact that Fortran in many cases
is the preferable programming language for designing new scientific applications. There are
many legacy codes written in Fortran. These are large codes that have been used for a long
time and are capable of taking advantage of increasing performance of the supercomputers.
Porting such a code to C++4 in order to ensure fault tolerance is not reasonable. This makes
a strong argument for the necessity of a fault tolerant option for Fortran codes.

Reasons why fault tolerance is harder to achieve in Fortran with the currently avail-
able options has been thoroughly discussed and analyzed [42].One of the main reasons is
described in more detail in what follows.

Many of the currently available fault tolerant solutions propose the following recovery
to ensure fault resilience, once a failure has been detected, the surviving processes automat-
ically return to a previously specified location in the code. This could be anywhere in the
code but usually in the main function and before beginning of the outermost loop. Once the
surviving processes arrive at this location, application can be repaired and then resumed.

C++ semantics provide a non-local control option to use during recovery. This option in
C++ is longjmp which can be seen as a non-local goto. The use of this call can simplify the
fault-tolerant functionality implementation. Longjmp synchronously and directly diverts
all the remaining processes to the repair instance of the code from wherever the fault has
been encountered. With this call the control is transferred to a "jump point" which is
previously defined in the code with a call to setjmp. As said before, this is a part of the
suggested recovery procedure. In case of a failure all MPI processes can resume execution
at a consistent location. In most cases that is after a successful roll-back recovery.

In Fortran there does not exist a setjmp/longjmp equivalent. GOTO statements in

Fortran are limited within the scope of the current subroutine (procedure). That means

19

that other strategies and methods have to be developed to implement fault tolerance in a
Fortran code. ULFM was chosen as the main MPI fault tolerant extension to achieve a
fault resistant version of the FDFLO code. The developed methods are explained in detail

in the following sections of this work.

2.4 Levels of Fault Tolerance

Fault tolerance is the ability of the application to overcome errors encountered during the
execution. One application can be resilient to certain types of hardware failures while failing
if a software error occurs. Another application can resist both software and hardware errors.
Both applications can be considered fault tolerant but there is clearly a difference. When
talking about fault tolerance different levels and types of fault tolerance may be identified.

The two extremes being:

 aborting after each encountered error no matter the error type (no fault-tolerance);

and,
o ’surviving’ any type of faults and any number of faults (complete fault-tolerance).

While it might be impossible to achieve complete fault-tolerance, in between these two
extremes there are many possible scenarios. A code can be fault tolerant with a certain
level of confidence with respect to a certain type of error depending on how likely it is
for the computation to fail/abort in case such an error is encountered. There are several
factors that set the theoretically achievable upper limit of fault tolerance with respect to

such errors. To name a few:

o Failure of Rank 0. When using MPI, rank 0 is considered the master process. It carries
unique information about the MPI communicator. There are currently no procedures
in place to recover a communicator if the rank 0 fails. Considering the total amount

of processes being used, the chances that exactly rank 0 is going to fail are rather low.

20

e Non-application related software error. For example, the system environment errors

of the supercomputer, workload manager or other tools.

This work only investigates and deals with hardware errors. More specifically, failures
of individual CPUs and nodes. Some of the factors that influence the level of fault tolerance

are:

e« How many copies for rollback recovery are kept in memory during runtime. The
recovery information is used after a failure has occurred. If one copy of the rollback
information is kept in memory, the recovery is only possible if the failure has not
affected both, the process itself and it’s recovery information simultaneously. The
more copies of the rollback recovery are kept in memory the higher the chances that

recovery will be possible.

e How many spare resources are used for the simulation. Spare resources are used to
replace the failed processes. The number of assigned spare resources sets the limit on

how many process failures can be overcome.

e Whether a code is able to survive all failure scenarios including the worst cases or
only the most common ones. Failure can occur at any point of the execution process.
There might be parts of the application that are error resistant while others are not.
The ratio between the vulnerable parts of the application and the resilient parts of

the application is a strong indicator of the level of fault tolerance.

To find the most cost effective option, it is important to look at the likelihood of each of
the failure scenarios, and the associated overhead for fault tolerance involved. At present,
with few fault-tolerant codes in operation, the information available is insufficient in order
to know the optimal solution. This work focuses on investigating and addressing these

issues.

21

2.5 Fault Tolerant Code Design

As stated previously, the focus of this work is to design a fault-tolerant code written in For-
tran. There are many legacy codes written in Fortran used in scientific computing. These
codes can take advantage of ever increasing performance of supercomputers. However, these
codes are not fault tolerant since at the time of their development MTBF was not a con-
cern. The aim of this work is to develop a methodology for implementing fault tolerance in
Fortran applications. Furthermore, how it can be achieved with simple modifications that

do not demand large changes made to the existing code.

In order to obtain fault-tolerant codes, methodologies need to be developed to:
o discern which nodes/cores have failed;

e store the information required to restore a previous state;

e restore the state of the run before failure; and,

e re-assign work to either the remaining working processors or a set of ‘reserve’ proces-

sors used to handle failing cores/nodes.

In the following, we treat each of these aspects in turn. The overall approach followed
here attempts to minimize the changes required to large-scale codes when enabling fault-

tolerant computing.

2.6 Detecting and discerning node/core failure

One of the most frustrating user-experiences is the ‘churning’ of runs where cores/nodes
have failed. The user thinks the code is running fine, any run-diagnostics such as gstat
or similar commands shows time being spent, but in fact the run has stopped, waiting for
information to come from or arrive at the node that has failed. Assuming the worst-case

scenario that a number of nodes may have failed, one needs to develop methods to discern

22

which nodes have failed that do not need to have the consent or messaging from all nodes
(as, for example an all_reduce operation) in order to detect failure. As the aim was to
achieve fault-tolerant computing with the least amount of changes to existing production
codes, a simple call to:

mpi_barrier (MPI_COMM_WORLD,ierro)

was added to several locations in the code. If all processors are alive, ierro=0, otherwise
an error has occurred. Additionally the mpi_barrier calls add synchronization to the code
which, as was observed, increases the resilience to the failures. Since it is not possible in
Fortran to execute a global goto, it is important that all the processes obtain information
about a failure in a fairly synchronous manner (at the same location in the code). This is
important to ensure that all the alive processes go through the same call sequence during
recovery and do not get stuck at other parts of the code.

The addition of an mpi_barrier-call adds a CPU time of 5-25 usec [52]. Given that for
large-scale runs a single time step or iteration requires at least 3 orders of magnitude more

time this is considered insignificant.

2.7 Storage of restart/recovery information

As any node may fail, the information that is needed in order to use either another (spare/re-
serve) node to continue the run or to be sent to the remaining working nodes must be stored
outside the node. The simplest (and often used) way is to write to disk and then continue.
This is extremely time-consuming: writing a 500 Mels restart file to disk may take as much
as 1-2 minutes (!). The reason is that most large-scale machines have separated compute
nodes and disk storage. When trying to store a complete restart all compute nodes are
writing simultaneously to disk, creating a bottleneck. Specialized hardware and software
have been reported considerable improvements [53], but an informal survey of colleagues
worldwide confirmed the figure reported above. Therefore, the idea is to store the restart

information in scratch arrays that are saved in other processors. At the very least, two

23

copies of this restart information are required: one that stays on the processor (in case it
does not fail), and one that is stored on another processor (local and buddy checkpointing).
This other processor should be as far away as possible on the network in order to minimize
the probability of an unrecoverable state due to multiple simultaneous neighboring failures.
Clearly, more copies could be stored across the processors in order to prevent scenarios such
as failure while storing data or simultaneous failure of a node and the node that keeps its
recovery information, but two copies seem to be a very efficient way to proceed.

The amount of data required for recovery from failure depends heavily on the field solver,
the time-marching scheme employed, and the physics modeled. For computational fluid dy-
namics (CFD) codes on stationary grids, the main data items required are element connec-
tivity, boundary conditions, coordinates and unknowns at the points/elements. If grids are
moving, the mesh velocity may have to be stored as well. For rheologically complex fluids
material history variables are required. Furthermore, for time marching schemes that require
the information from several previous time steps (e.g. Adams-Bashforth, Adams-Moulton
or implicit Runge-Kutta schemes) this information needs to be stored for all required time
steps. Computational structural dynamics (CSD) codes may have to store additionally plas-
ticity, material or damage history data at Gauss-points, original strain deformation tensors,
and other quantities, i.e. a much larger amount of data for the same gridsize. Furthermore,
the usual memory vs. run-time tradeoffs are also encountered here: in some cases, the con-
struction of the additional information required to run a field solver (e.g. for CFD solvers
the edges of the mesh, geometry factors, distance to wall, overlapping grid information,
etc.) may take CPU time, so storing them for restart/recovery could be advantageous.

In order to reduce memory requirements only the minimum amount of restart/recovery
information required was kept. Furthermore, in order to improve the code’s transparency
and extendability, the restart/recovery information was stored in the same way as restart
files would be written to and read from disk. For the CFD codes used here, this implied
integer and real backup arrays for control, body, diagnostics, grid generation, domain and

field diagnostics data.

24

2.8 Recovery from failure

After an error in the MPI communicator is encountered, the first thing is to ensure that all
the remaining processes are aware of the state of the communicator. Since in Fortran no
global goto is available, the next step is to make all the remaining processes return to the
main function without getting stuck somewhere in the code due to the failed communicator.
This is achieved by implementing additional checks in different levels of the code that skip
calculation steps if the MPI communicator has encountered an error. Once in the main loop,
all the processes from a damaged communicator are directed to the recovery call sequence.
The recovery sequence is responsible for identifying all nodes that have ceased to operate,
as well as the processors that have their backup information. If the information to restore a
pre-failure state is not available (either because many nodes have failed, a network outage
has occurred or any other catastrophic machine failure has taken place) the run stops and is
restarted with the last restart state written to disk. If, on the other hand, the information
to restore a pre-failure state is available, all nodes restart from the last saved state. After
the recovery a check is performed to ensure that all the processes have restarted to the same

time step.

2.9 Re-assignment of work

With the assumption that the information to continue the run from a given backup time

step is available, three options are viable:

1. Load rebalancing: in this option, one utilizes the remaining working nodes, rebalanc-
ing the load before continuing the run. This is more involved, as one needs to combine
information from nodes that have ceased to work with information of working nodes,

and load balancing for complex physics is a non-trivial task [11,54].

2. Spawn new processes to replace the processes of failed nodes: after the failure the

25

application determines how many nodes (processes) have failed and spawns the cor-
responding number of new ranks to replace the failed entities. In this case when
submitting a job on a cluster one has to make sure that: a) The environment allows

to spawn new processes and b) There are extra nodes reserved for the execution.

3. Reserve nodes that were not used before: the key idea here is to allocate at the
beginning of the run a small number of so-called ‘reserve nodes’ that can be used to
replace the nodes that fail. Contrary to the spawning option, the job is started on all
the nodes from the beginning. However, the processes of the reserve nodes are left idle
until a failure occurs. If a failure occurs, one of the reserve nodes is assigned to the list
of ‘running’ or ‘active nodes’ and the MPI communication (or ‘MPI universe’) table
is modified to reflect this change. Note that at the code level, no change is needed for

the tables and indices of the information that is sent between processors.

We consider this a very elegant solution, as the information to restore a run and continue
is straightforward to implement with any production code. The number of reserve nodes
required will depend on the mean time to failure of the machine being employed. It is
estimated that this number is very small compared to the total number of nodes (and
remains at a relatively constant percentage of the number of nodes required for a run), so
that the extra burden in resources is insignificant.

The main subroutine used to renumber the processes and replace the communicators is

listed in Appendix A.1.

2.10 Methods to introduce failure

To test a fault-tolerant code under real life scenarios, one would have to test it under real
supercomputer hardware failures. Although failures on supercomputers are common and
frequent, they are also random. Causing a realistic failure on a supercomputer, however,
can be harmful for the system itself therefore cannot be used as a testing strategy. The aim

of any large-scale computing resource or computing center is to maximize utilization and

26

operating time. Therefore, it is not easy to test fault-tolerant codes on typical production
Systems.

Several methods for introducing failure were used in order to test the effectiveness of the
implemented fault-tolerant procedures. The methods explored can be listed in ascending

level of complexity as follows:

o Sending a kill signal from within the code (e.g. at the end of a randomly selected
time step). This method is the furthest away from a realistic node failure. It can,
however, be successfully used to check whether the implemented recovery strategies
are functional. The disadvantage of this method is that the failure occurs only at
specific places of the code (where it has been implemented) and cannot account for

the randomness of the realistic failure process.

e Killing processes externally from the terminal using ‘kill -9 PID’. This method ad-
dresses the disadvantage of the previous method. Since the processes are killed exter-
nally from the application, the failure can happen at any time during the execution, at
any part of the code. To ensure reliable testing results, high number of tests have to
be conducted. This was achieved by executing a script that repeatedly goes through
the following steps:

— starting the simulation;
— waiting for the problem to initialize and reach past the first checkpoint;
— obtain the IDs of the related processes;

— randomly selecting and killing one of the processes (either active or spare);

— waiting for the code to recover and recording the result; and,

aborting the simulation and restarting the procedure.

Although this method does not represent a real node or core failure, it is a practical
way of doing numerous tests and observing the code’s ability to recover from random
core failures.

27

o Logging into one of the active cluster nodes and killing all simulation related processes.
Unlike the first two methods where tests were done on a powerful workstation, this
method is used in a cluster environment. Since computing center resources are limited
as said above large-scale computing resource aim is to maximize the utilization, the
focus of this and the following method was qualitative - perform less but more realistic
tests. In this method all the processes related to the application are killed. Although
not representing an actual node failure, it does test the code against losing multiple
processes (all located on the same node). Test was repeated on several consecutive

nodes during the same application execution, replicating a consecutive node failure.

e Rebooting one of the active cluster nodes using 'sudo reboot’. This method is the most
realistic representation of an actual node failure. Not only all the processes related to
the application execution are killed, but so are all the other underlying software tools
responsible for the communication between the cluster nodes. Even though it is the
most realistic, it does not represent exactly the scenario of actual node failure. When
using the ’sudo reboot’ command in the cluster environment any IO operations that
are running at that point are actually gracefully terminated, any pending checkpoint

file write file will be written and only afterwards the machine will become unavailable.

One way to replicate a realistic node failure would be to physically 'unplug’ the node
during runtime. However, as mentioned above, such action could harm the hardware and
is not available. Already the last method described above demands certain administrator

privileges and was used as the final test.

2.11 Test cases

The fault-tolerant algorithms described above were implemented in FDFLO. For the cases
shown below, the restart/recovery information was stored every 10 time steps, which for
the cases run implies every 0.1 — 1.0 seconds. As this is a cartesian finite difference code

using explicit Runge-Kutta time integration, the main storage required is comprised by the

28

field point arrays (5 unknowns for the flow, 16 for diagnostics), and the boundary, halo and
mpi-exchange information. For a case with 10° points (1 Mpts) this implies approximately
200 MBytes.

In order to test the performance of the fault tolerant implementation all previously
described methods to introduce failure were applied. In total several thousand runs were
performed over a period of several weeks. For the majority of tests a cluster environment
was used. This allowed to test the fault tolerance of the code in a ’close to realistic’ node
failure scenario when one of the computation nodes gets rebooted during runtime. Tests
were performed using 4 compute nodes with 8 CPUs on each. The nodes were rebooted at
random points in time after the beginning of the calculation and at different intervals. Some
of the tests were also conducted on larger machines with up to 32 nodes and 1,280 cores.

All tests were carried by using only the CPUs on these machines.

2.11.1 Taylor-Green Vortex

This is an example that is often used in the large eddy simulation (LES) and direct simu-
lation of Navier-Stokes (DNS) literature [55,56]. The domain spans [—1 < z,y, z < 1] with
periodic boundary conditions in each dimension. The initial conditions for the velocities

u,v,w in x,y, 2 were set to:

u = sin(px)cos(dy)cos(pz) , v = —cos(pz)sin(py)cos(¢pz) , w=0 . (2.1)

The initial conditions quickly deteriorate into smaller vortices, leading to an increase in
the dissipation rate. At later times, the laminar viscosity leads to a decrease in velocities.
Figure 2.4 shows the distribution of the absolute value of the velocities in the three
principal planes going through the center of the domain (z,y,z = 0) at time 7" = 10.0 for
a grid of 10 Mpts using a 4th order finite difference scheme in space and time. The grid

had 64 domains, and was run on 8 MPI processes (i.e. 8 domains per MPI process). At

29

Figure 2.4: Taylor-Green Vortex: Velocity Magnitude in Principal Planes at Time T = 10.0

the beginning of the run, an extra 4 MPI processes were allocated. During the runtime
at different instances of time processes were terminated by sending 'kill -9 PID’ signal.
The recovery rate of this setup was 98% (i.e. the code failed approximately 2 out of every
100 runs, with a sample size of several thousand). Note that as stated before the proposed
procedures are not completely fail-safe: if a node fails while restart information if being
stored (which in this case was in the range of 2%) a previous state can not be recovered
and the code stops.

The same test case was run on a cluster using 4 compute nodes with 8 CPUs on each
(16 active MPI processes and 16 spare processes). Nodes were rebooted at random points
in time after the beginning of the calculation and at different intervals. The simulation

successfully substituted the failed processes and terminated the run without problems.

2.11.2 Ahmed Body

The Ahmed body is a widely used testcase in the automotive industry [57,58]. The surface
mesh provided consisted of 0(19 Ktria) and 0(10 Kpts). It was run through the FECAD
pre-processor, which invoked the PRE-FDFLO grid generator. Two cases were run. The

first had ndomn=705 domains, with a minimum cell size of dx = 0.0060 m and a total

30

point count of npoin=5.75 Mpts, of which nactp=4.53 Mpts were actually updated (some
points are not updated are they are in halo regions or within the car). The second had
ndomn=3,993 domains, with a minimum cell size of dx = 0.0026 m and a total point count
of npoin=36.9 Mpts, of which nactp=23.1 Mpts were updated. The following physical and

numerical settings were employed:
1. Density: p = 1.0 kg/m3
2. Velocity: |v| =30 m/sec
3. Speed of sound: ¢ = 150 m/sec
4. Laminar viscosity: u = 0.7-10"%kg/m/sec
5. Smallest cell/element size: hy,in = 0.0060 m (case 1), hpin = 0.0026 m (case 2)
6. Largest cell/element size: hy,qp = 0.0480 m

7. Spatial discretization: 4th order, central + artificial visosity

8. Temporal integration: explicit 4th order low-storage Runge-Kutta

Figures 2a-d show the overall geometry, the grid, and the instantaneous velocities and
Q-criterion for the symmetry plane (z = 0). This case was run using 32 MPI processes: 24
active processes and 8 reserve processes. During the runtime at different instances of time
processes were terminated by sending the ’kill -9 PID’ signal. The recovery rate of this
setup was 94% (i.e. the code failed to continue for approximately 6 out of every 100 runs).
The difference in failure rate between this and the previous set of runs is due to the difference
in the machines used and the times required for restart storage versus computations (recall
that if a node fails while restart information if being stored (which in this case was in the
range of 6%) a previous state can not be recovered and the code stops.

This test case was also run on a cluster using 4 compute nodes with 8 CPUs on each

(16 active MPI processes and 16 spare processes). Nodes were rebooted at random points

31

Figure 2.5: Ahmed Body: Geometry and Grid System Employed (Cut Along z = 0.0)

Figure 2.6: Ahmed Body: Velocities and Q-Criterion in Plane z = 0

32

in time after the beginning of calculation and at different intervals. The fault-tolerant
procedures developed successfully substituted the failed processes and terminated the runs
without problems.

A third series of test runs was conducted on a larger machine using 32 nodes with 40 cores
each, i.e. a total of 1,280 cores. As before, the fault-tolerant procedures developed success-
fully substituted the failed processes and terminated the runs without problems. With sev-
eral recoveries during the course of the run, the timings observed for these runs (ndomn=3,993,
nactp=23.1 Mpts) were of the order of Ts = 0.154 sec/step.

The results obtained may be summarized as follows:
o When a process is killed from within the code, the recovery rate is at 100%.

o When processes are killed externally from the terminal using ‘kill -9 PID’, the re-

covery rate is in the range of 94-98%.

o When nodes were rebooted externally, the recovery rate from 2 node (8 MPI processes
each) failure while using spare nodes for recovery was 100%. Due to the complexity
(manual, queue on the cluster) a smaller amount of tests was run with rebooting the
active cluster nodes. It is therefore realistic to assume that the true recovery rate for

node failure would approach the 94-98% rate of single process failures.

2.11.3 Fault Tolerance Overhead Estimation

Fault tolerance is important, but it is also necessary to know at what cost. In the previous
sections, the developed strategies and implementation in a finite difference solver has been
explained. The example test cases show good results with respect to fault tolerance — the
application is able to survive multiple core or node failures with a high success rate.

As the next step, an answer was sought to the question as to how much additional
computational time the fault tolerance implementation does cause. In other words: what
is the overhead compared to the non fault tolerant application. The main fault-tolerant

extensions made to the code are as follows:

33

e Synchronization calls with global agree on the state of the "health" of the commu-
nicator. At the end of each time step a specific synchronization call sequence has
been added. Since some of these calls needs to have a global consensus over the
communicator, the execution time can be larger than that of a simple barrier call. It
was important to identify the magnitude of impact these synchronization calls have on
performance. The execution time for different number of MPI processes was recorded.

It was also tested if the number of used compute nodes change the execution time.

e mpi_allreduce can be a point of failure if not designed with additional calls. Oc-
casionally, if a process would fail while a mpi_allreduce call is being executed the
application would get stuck. Reason for this is that some of the processes would not
notice the error and continue with the execution while others go to the recovery. In
order to address this issue two things were changed. First, the mpi_allreduce call was
substituted with the non-blocking mpi_iallreduce call. Second, additional synchro-
nization calls with global agree on the state of the "health" of the communicator were
added. The detailed call sequence can be found in Appendix A.2. It is important to
note that the amount of these calls per application run depends on the frequency of

diagnostic data (point data, surface data, etc) dumps.

e Local and buddy checkpointing (described in section 2.7) between MPI processes is
one of the major additions to the code compared to the non fault tolerant application.
As mentioned previously it is not a time consuming process. It is, however, important
to record how long exactly it takes. The influence of problem size (number of used

cores and nodes) was tested as well.

e Recovery process is the combination of all the calls that are being executed from the
moment a failure has been detected until successfully resuming the execution of the

application with a fixed communicator.

Timings of the recovery process can not be directly compared with the non fault-tolerant

application since there is no such process. However the combination of all the three items

34

can serve as a reference to illustrate the gain of a fault tolerant code. The amount of time
spent during the "manual" roll-back recovery (the most common recovery procedure after
aborted simulation in case of a hard error) is magnitudes higher.

The results of the above mentioned test have been presented in Table 2.2. Different

problem sizes have been tested.

2.12 Results

Figure 2.7 to Figure 2.9 show changes in the execution time of fault tolerant call sequences
depending on the number of MPI processes and the number of compute nodes. Figure 2.10
shows the comparison of total execution time between the fault tolerant version and non
fault tolerant version as a function of the number of MPI processes and the number of
compute nodes. These tests were performed using ARGO cluster (George Mason University
compute resource) [59].

The results clearly show that the lowest execution time of MPI call sequences is recorded
when the application is running on a single node. Also the average time spent on backup
and total execution time of the application is the lowest when running on one node. This
is an expected result since the communication between the processes is more local. The
execution time however is directly correlated with the number of compute nodes. The time
for backup for example is the highest when running on 32 MPI processes and 2 compute
nodes. Execution time for the mpi_iallreduce extended call sequence for the fault tolerant
version as well as the mpi_allreduce call for the standard version of the application stays
almost constant when running on 2 to 8 compute nodes and increases only when running
on 16 compute nodes.

One of the main fault tolerant application performance characteristics is the overall
overhead of the fault tolerant calls. How much more the total application execution time
is increased by the fault tolerant functionality compared to the standard non fault tolerant
version. Based on the test performed so far both versions perform at almost the same rate
when running on one compute node. For the largest case tested, 256 MPI processes on 16

35

compute nodes, the overhead was 12%. The largest difference is recorded when running
the application with 128 MPI processes on 8 compute nodes - 41%. The results presented
here show the execution time only of the more complex MPI call sequences implemented to
achieve fault tolerance. In addition, a simple call to:

mpi_barrier (MPI_COMM_WORLD,ierro)

was added to several locations in the code as described in section 2.6. Some of these
calls are executed multiple times per time step. Although execution time of each single call
is insignificant, the sum of all the calls lead to the recorded fault-tolerance overhead.

The execution time of separate call sequences as well as the overall application time
clearly depends on the number of used compute nodes, however, it is not a linear correla-
tion. It depends also on the underlying compute resource, the type of compute nodes and

the connection between the nodes.

Table 2.2: Timings of Faut tolerant call sequences and implementations [Sec]

Number of MPI processes and used cluster nodes
256p/16n | 128p/8n | 64p/4n | 32p/2n | 8p/ln
End of time step 0.04 0.03 0.02 0.01 0.01
call sequence
Fault tolerant 0.08 0.06 0.05 0.05 0.02
iallreduce
Non fault tolerant 0.03 0.03 0.03 0.03 0.01
allreduce
Average time 0.47 0.91 1.59 3.03 0.08
for backup
Total time 202 210 196 126 157
(fault tolerant)
Total time 180 149 172 101 160
(non fault tolerant)

36

0.040

0.035

0.030

0.025

0.020

0.015

Average execution time [s]

0.010
0.005

0.000
256_16 128 8 64 4 32.2 8 1

Number of MPI processes_Compute nodes

Figure 2.7: Average execution time of the fault tolerant call sequence at the end of the time
step

2.13 Conclusions and outlook

Fault-tolerant computing options based on the use of restart information stored on and off
the compute node, and the use of reserve processes have been developed, implemented and
tested in a large-scale, production field solver taken from the CFD domain.

The tests conducted to date have shown good results, with recovery rates in excess of
90% after externally lost processes both on local machines and in cluster environments (i.e.
close to realistic node failures).

The proposed fault-tolerant scheme does not cover all possible scenarios. Some of the
scenarios not covered include: failure of nodes and/or communication during backup or
recovery of backup, failure of node 1 (the master node), and simultaneous failure of a node
and the node where its backup information is stored. The probability of these scenarios is
low, but should also be considered in the future.

The largest test case run to date was performed using 521 MPI processes. As of now,

37

|

Average execution time [s]

256_16 128 8 64 4 322 81
Number of MPI processes_Compute nodes

=—ijallreduce call sequence ft ==allreduce

Figure 2.8: Comparison between the execution time of fault tolerant iallreduce call sequence
and regular allreduce call

3.50
3.00
2.50
2.00
1.50

1.00

Average backup time [s]

0.50

0.00
256_16 128 8 64 4 322 8 1

Number of MPI processes_Compute nodes

Figure 2.9: Average execution time of information backup between "buddy" processes

38

250

200

150

100

50

Total application execution time [s]

256_16 128 8 64 4 322 81
Number of MPI processes_Compute nodes

——fault tolerant version ——non fault tolerant version

Figure 2.10: Comparison between the total execution time of fault tolerant version and non
fault tolerant version

no size limitations have been encountered when using the ULFM MPI library extension.
The computational overhead of the field solvers is very low (explicit time-marching and
finite differences). The fault tolerant implementation adds a run-time penalty that is in
the range of 6%-41% percent, depending on the spatial and temporal approximation used.
The run-time penalty strongly depends on the number of compute nodes that are used
for the simulation and the underlying compute resource itself. More compute nodes does
not, however, mean larger run-time penalty. The largest case tested (256 MPI processes
on 16 compute nodes) yield a run-time penalty of only 12%. Further investigations are
underway to reduce this overhead without influencing the very high recovery rate of the
code. We remark that this run-time penalty is incurred due to checking for faults, and
not for backing up restart/ recovery information. Backing up restart/recovery information
every 10 time steps (where in the case of FDFLO the bulk of the information consists of

the 4/5 unknowns and 16 diagnostics variables at each gripoint) adds a negligible amount

39

of CPU requirements. Obviously, the amount of information required for restart/ recovery
may be higher for other codes, in which case, if necessary, one could adjust the backup
frequency.

Future work should be dedicated to address several issues. One of the main weak points
of the current implementation is the run-time penalty. The main runtime overhead comes
from the synchronization calls placed in the code in the form of mpi_barrier (MPI_COMM_WORLD, ierro).
The effect each of the barrier calls has on the overall recovery rate has to be further inves-
tigated in order to find a more optimal solution.

As reported above the run time penalty varies significantly depending on the number
of compute nodes used. More tests on different compute resources should be performed to
identify the source of the difference. Even larger test cases should be performed in order to
test the run-time penalty when running on hundreds of compute nodes.

The code could be further improved by implementing strategies for optimal backup fre-
quency. Several studies have investigated and reported methods for determining an optimal
checkpointing period [60-62]. Such strategies could be used to take into consideration the
type of the underlying problem when choosing the backup frequency. This could further
reduce the overall run-time penalty.

Performance of a fault-tolerant code will always be a trade-off between the run-time
penalty (extra computational costs) and recovery rate. By adding even more synchroniza-
tion calls, the recovery rate of the fault-tolerant fluid solver could be increased even further.
That in turn, however, would further increase the run-time penalty. It is a matter of op-
timization based on statistical investigation, what is the likelihood of each failure scenario

and how much run-time penalty does it add to make the code resilient to this failure.

40

Chapter 3: Minimization of Memory Access

3.1 Introduction

When advancing in time either with explicit or implicit timestepping schemes that are
being solved iteratively, the resulting formation of a new residual or right hand side r

always follows a pattern of the form:

I‘i = ZC”fm (31)

where f;; denotes the flux between entities ¢, j and C' the geometric factors that connect
the entities ¢, j. Term ‘entity’ is used to keep the notation general. Examples of entities
could be points, cells or elements. The geometric factors C* could be associated with faces,
edges, or the entries in a matrix. Depending on the spatial discretization and the underlying
conservation laws, the fluxes f and the geometric factors C may depend nonlinearly on
the vector of unknowns u;.
One can see from equation 4.1 that the formation of a new residual or right hand side implies
at least one complete traversal of the database of points, cells, elements, edges or faces,
reflecting at least one pass over the complete mesh per time step. Considerable research
has been devoted to reducing the number operations required to form accurate fluxes f;; -
e.g. via approximate Riemann solvers and limiters. This implies that the computational
intensity, given by the ratio of floating point operations per memory access, is rather low.
On the other hand, the speed of CPUs has advanced much faster than the speed of memory
access to RAM. This has led to a crisis in CFD: at present, field solvers are limited by the
access speed to RAM. Given the number of accesses to memory per time step, the speed
of a field solver can be estimated quite accurately. This observation has been documented

41

repeatedly [7,8], and can also be observed in the comparison of speeds achieved between
CPUs and GPUs [7,63]. And given that RAM access speeds are not increasing as rapidly
as CPU speeds, most CFD codes ‘saturate’ the memory bandwidth of modern chips after
only a few cores, thus minimizing any benefits from going to a higher number of available
cores. It thus appears that the aim that was pursued for several decades: obtain the highest
accuracy while minimizing floating point operations may therefore have been replaced in
the future by the new aim: obtain the highest accuracy while minimizing memory

access.

3.2 CPU speed and memory access speed advancements over
time

CPU speed improvements have been following Moore’s law for the past 5 decades. In 1965
Gordon Moore predicted that the transistor count on integrated circuits will double every 2
years [15]. This prediction has been kept alive thanks to many technological advancements.
Following Moore’s law the CPU performance has been increasing just as steady Figure 3.1.
Meanwhile the performance of memory access has been increasing at a much lower rate. This
situation has led to a performance gap between the processor and memory Figure 3.2. As
the performance between the processor and memory grows, the limiting factor for the overall
peak performance changes. More and more applications are becoming memory bound - the
limiting factor of application performance is the memory access speed. Figure 3.3 shows how
the performance gap for different types of memory access has changed over the time. This
indicates that the problem persists at different scales. Creating memory aware algorithms

has the potential of significantly increasing the overall performance of an application.

3.3 Minimizing memory access

Let us consider ways of minimizing memory access for simple finite difference solvers. Start-

ing with the right-hand-side (RHS) for a Laplacian in 1-D, assuming a uniform mesh size.

42

100000Tn

« £ 10000Tn
° 0
[}
O
c — 1000Tn
T wn
Eg
o5 100Tn
i
[«
< g 10m
BT
g o
=] 1Tn
(]
Tn
1990 1995 2000 2005 2010

Year

2015 2020

Figure 3.1: Increase in peak performance of supercomputers [16].

“Moore’s Law”

Performance

 CPU

// CPU 60%/year.

Processor-Memory
Performance Gap:
(grows 50% / year)

DRAM

T%/year.

O—Nmﬂ-m\ohwc\g—mmﬂ- ol

S0 S0 o0 00 o0 90 S0 90 8 0 [= = = =]

2222222222222 §
Year

Figure 3.2: Increasing gap between Memory access and CPU performance [64].

43

10,000,000

Sustained (streaming)
Memory Bandwidth is falling
behind Peak FLOPS rates,
but every other kind of

el memory access is falling
behind even faster....

1,000,000

10,000

1,000

100

10

1990 1995 2000 2005 2010 2015 2020

Figure 3.3: Increase in the gap between Memory access and peak performance [65].

The standard 2nd order discretization yields:

1
rhs; = A_x2 (ui—1 — 2u; + uiy1) (3.2)

If coded in the usual way as:
Loop 1:
do ipoin=ipoi0,ipoil
rhspo (ipoin)=const* (unkno(ipoin-1)-2.0*unkno(ipoin) +unkno (ipoin+1))

enddo

this requires, for each i, 3 fetches and 1 store, i.e. 4 accesses to memory. Alternatively, this

may be coded as:

44

Loop 2:

unknO=unkno (ipoi0-1)

unkpl=unkno (ipoi0)

do ipoin=ipoil,ipoil
unkml=unknO
unknO=unkp1
unkpl=unkno (ipoin+1)
rhspo (ipoin)=const* (unkm1-2.0*unknO+unkp1l)

enddo

While not vectorizable, this requires, for each 4, 1 fetch and 1 store, i.e. only 2 accesses to

memory. The implicit assumption made here and in the following is that the temporary

values of unkm1, unknO, unkpl are stored in registers or cache, and thus do not have to be

retrieved from memory. In the sequel, loops written in this way will be denoted as minimal

memory access loops (MMALS).

The difference in the number of items fetched becomes more pronounced as the stencil

(and thus the accuracy of the spatial discretization) increases. The standard 4th order

discretization yields:
1
rhs; = F (*U1;2 + 16u;—1 — 30u; + 16u;41 — ui+2)
x

If coded as:

Loop 3:

do ipoin=ipoi0O,ipoil

rhspo (ipoin)=constx*(-unkno (ipoin-2)+ 16.0*unkno(ipoin-1)
& -30.0*unkno(ipoin)+ 16.0*unkno(ipoin+1)
& —unkno (ipoin+2))
enddo

45

(3.3)

this requires, for each 4, 5 fetches and 1 store, i.e. 6 accesses to memory.

Alternatively, this may be coded as a MMAL:

Loop 4:

unkml=unkno (ipoi0-2)

unknO=unkno (ipoi0O-1)

unkpl=unkno (ipoi0)

unkp2=unkno (ipoiO+1)

do ipoin=ipoi0O,ipoil
unkm2=unkml
unkml=unknO
unknO=unkp1
unkpl=unkp2
unkp2=unkno (ipoin+2)
rhspo(ipoin)=const* (unkm2+16.0*unkm1-30.0%unkn0 +16.0*unkpl-unkp2)

enddo

While not vectorizable, this requires, as before, for each i, 1 fetch and 1 store, i.e. only 2

accesses to memory. Remarkably, coding in this way allows to form right-hand sides whose
memory access is independent of the approximation order. For every fetch there is one

store.

3.4 Extension to 2/3D

The situation outlined above is not as favorable in 2/3-D, as the data layout is only optimal

in one of the dimensions (usually the first). For the 2nd order stencil

1
rhs; = A2 (Wi1,j,k T Wit 15k + Uij—10 — OUi ik + Uigr1 ke + Uijr—1 + Uijke1) (3.4)

46

the traditional form results in:
Loop 5:

do ipoin=ipoi0,ipoil

rhspo(ipoin)=const*(unkno (ipoin-npoxy)+unkno (ipoin-npoix)
& + unkno (ipoin- 1)
& -6.0*unkno (ipoin)
& + unkno (ipoin +1)+unkno (ipoin+npoix)
& + unkno (ipoin+npoxy))
enddo

requiring, for each 4, 7 fetches and 1 store. If done (as is usually the case) in 3 1-D loops
this increases to

- do x: 3 fetches, 1 store

- do y: 4 fetches, 1 store

- do z: 4 fetches, 1 store

i.e. a total of 11 fetches and 3 stores.
In general, given a stencil of size 1+s in 1-D, the 3D counts result in 1+3s fetches and 1 store

for the unsplit scheme, and 3+ (1+s)+2=5+3s fetches and 3 stores for the split scheme.
For MMALSs, several alternatives are possible.

Alternative 1: Gather/Scatter With Inner MMALs:
The idea here is to reorder the arrays using gather/scatter operands and rewrite 3 MMALSs

(one for each dimension) as before. This results in:

reorient in y,z, storing in u,, u, : 2 fetch, 2 store

- do x with u : 1 fetch, 1 store
- reorient rhs : 1 fetch, 1 store
- do y with wu, : 2 fetch, 1 store

47

- reorient rhs : 1 fetch, 1 store
- do z with u, : 2 fetch, 1 store
- reorient rhs : 1 fetch, 1 store

i.e. a total of 10 fetches and 8 stores.

Alternative 2: Inner MMALs With Indirect Addressing:

The idea here is to keep the arrays of unknowns and rhsides untouched, but form a different
rhside for each dimension using a pointer array 1dimn(1:npoin) to locate the proper point

as the MMAL is tranversed. For a second order stencil, it would take the following form:

Loop 6:
do ipoin=ipoi0O,ipoil
unkml=unknO
unknO=unkp1
jpoin=jpoil
jpoil=ldimn(ipoin+1)
unkpl=unkno (jpoil)
rhspo(jpoin)=const* (unkm1-2.0*unknO+unkpl)
enddo

While not vectorizable, this requires, for each 4, 1 indirect fetch and 1 indirect store, i.e.

only 2 accesses to memory. For the complete set of 3-D loops the counts are as follows:

- do x with usual MMAL : 1 da/fetch, 1 da/store
- do y with i/a MMAL : 1 ia/fetch, 1 ia/store
- do z with i/a MMAL : 1 ia/fetch, 1 ia/store
- add rhside : 3 da/fetch, 1 da/store

i.e. a total of 6 fetches and 4 stores, regardless of the order of the approximation

or the stencil size. The required memory access figures have been compared in Table 1

48

for stencils of different order. Note the MMAL?2 is competitive even with stencils as low as 2.

Table 3.1: Memory Access Counts for FD Schemes of Different Order

stencil | 3D Unsplit | 3D Split | MMALI | MMAL2
2 TF/1S | 11F/3S | 10F/8S | 6F/4S
4 13F/1S | 17F/3S | 10F/8S | 6F/4S
6 19F/1S | 23F/3S | 10F/8S | 6F/4S
8 25F/1S | 29F/3S | 10F/8S | 6F/4S

Before going on, code Loop 6 is re-written in so-called flux form:

Loop 6:

do ipoin=ipoi0,ipoil
unkml=unknO
unknO=unkpl
fluxl=flux2
jpoin=jpoil
jpoil=ldimn(ipoin+1)
unkpl=unkno (jpoil)
flux2=const* (unkpl-unkn0)
rhspo (jpoin)=flux2-fluxl

enddo

3.5 MMALS for systems of equations

As seen from Table 1, inner MMALs with indirect addressing as exemplified by Loop 6,
Loop 7 offer the lowest access rates to memory per residual formed. However, while it is
a simple matter to write a loop such as Loop 7 for a scalar Laplacian with a second order

stencil, systems of equations, such as those given by conservation laws, often have many

49

variables per point, and may require stencils of higher order. This can lead to very long,
‘chunky’, and thus error-prone loops with many scalar temporaries that may exceed the

number of registers available. Three different ways to address this problem were pursued:
- Small vectors;
- Small matrix with indirect addressing;
- Scalar temporaries.

In addition to the three scalar loop options named above, three vectorizable loops were

implemented:

- Vectorized version of small vectors;
- Vectorized version of scalar temporaries;

- Vectorized 6-point flux stencil version.

3.5.1 Small Vectors

For systems of equations, code Loop 7 would result in a loop of the following form:

Loop 8:
do ipoin=ipoi0,ipoil
unkm1 (1 :nunkp)=unknO (1 :nunkp)
unknO (1 :nunkp)=unkp1 (1 :nunkp)
flux1(1:neqns)=f1lux2(1:neqns)
jpoin=jpoil
jpoil=ldimn(ipoin+1)
unkp1l (1 :nunkp)=unkno (1:nunkp, jpoil)
flux2(1:neqns)=flux (unkpl,unknO)
rhspo(1:neqns, jpoin)=flux2(l:neqns)-flux1(1l:neqns)

enddo

50

Here nunkp,neqns denote the number of variables stored for the vector of unknowns and
the number of flux variables (i.e. the number of equations being solved). The code section
where the flux is computed, denoted here as flux(unkpl,unkn0), is identical to that of the

conventional loop (i.e. the original code).

3.5.2 Small Matrix With Indirect Addressing

The re-store of variables when stepping from ipoin to ipoin+1 (i.e. unkmi(1:nunkp)=unknO(1:nunkp),
unknO (1:nunkp)=unkpl (1:nunkp) and more of the same for higher order stencils) may be

avoided by using a small matrix of unknowns that is filled in a circular fashion of

Loop 8:
do ipoin=ipoil,ipoil
unkm1 (1 :nunkp)=unknO (1 :nunkp)
unknO (1 :nunkp)=unkpl (1:nunkp)
flux1(1:neqns)=flux2(1:neqns)
jpoin=jpoil
jpop0=jpop1l
jpoil=ldimn(ipoin+1)
jpopl=1+mod(ipoin+1,2)
unknl (1 :nunkp, jpopl)=unkno (1:nunkp, jpoil)
flux2(1:neqns)=f1lux (unknl (jpop1l) ,unknl (jpol0))
rhspo(1:neqns, jpoin)=flux2(1:neqns)-fluxl(1l:neqns)

enddo

3.5.3 Scalar Temporaries

In this case, all the scalar temporaries needed in a loop, together with all unknowns and

fluxes required, are written out explicitly and transferred from ipoin to ipoin+1. As stated

o1

before, this results in very lengthy and unreadable code. However, it was tried in order to

assess the relative merits of the three approaches outlined above.

3.6 Implementation in FDFLO

The different variants of minimal memory access loops were implemented into FDFLO, a

finite difference code that solves the weakly compressible Navier-Stokes equations given by:

1

2Pt pV-v=0 , (3.5)
pvi+pvVv +Vp =VuVv+s, (3.6)
pcp T + pepvVT = VKVT + s, (3.7)

where p,v,p,c, T, u, cp, k, sv, sT denote the density, velocity vector, pressure, speed of sound,
temperature, viscosity, conductivity and source terms. The code offers a variety of spatial
and temporal discretization options, and employs a conservative formulation for the fluxes

[7,8].

3.7 Results

All the timings reported were carried out with a spatial discretization of 6th order, resulting
in stencils of size 7 per dimension. The temporal integration was performed using an explicit,

five-stage, low-storage Runge-Kutta integrator.

5.1 Flow Past Square Cylinder This case considers the flow past a square cylinder of dimen-

sions 0.45 < z < 0.55,0.45 < y < 0.55,0 < z < 0.41 immersed in the hexagonal
domain 0 < z < 25,0 < y < 041,0 < z < 0.41. The gridsize was dx = 0.005,

uniform throughout the domain, resulting in a mesh of approximately 4 Mcells. The inflow

52

conditions were set as follows: p = 0,u =225, v =w =0,7 =0,¢ = 20, mu = k = 1073.

The case was run repeatedly for 1000 time steps in order to obtain reliable timings. A

typical solution obtained is shown in figureveloc.

Figure 3.4: Flow Past Square Cylinder

The timings obtained on different machines have been compiled in Table 3.2 to Table 3.6.

The labels are as follows: nprol denotes the number of cores used in OpenMP mode; Orig

the original, dimensionally split, conventional 6th order stencil; ScalTemp the MMAL with

scalar temporaries; SmallMat the approach with a small matrix with indirect addressing

(Loop 8); SmallVec the small vectors option (Loop 7); MatVect a vectorized version of

SmallVec; VScal a vectorized version of scalar temporaries and FLXS6 a vectorized 6-point

flux stencil version.

Table 3.2: Timings on SGI Ice-X, Intel Xeon E5-2699v3, 32 C/N, 2.30GHz (thunder) [Sec]

nprol | Orig | ScalTemp | SmallMat | SmallVec | MatVect | VScal | FLXS6 | 2FLXS2
4 923 1894 1403 2282 1618 1321 1709 3409
8 931 2094 1474 2384 1421 1022 1420 3343
16 561 1156 885 1620 862 619 858 1816
32 337 669 543 812 449 411 527 975

53

Table 3.3: Timings on Laptop, Intel Xeon E31505Mv5, 2.80GHz (rossini) [Sec]

nprol
1
4

Orig
1756
914

ScalTemp
3616
1252

SmallMat
3892
1325

SmallVec
4564
1508

MatVect
2524
1112

VScal
1656
802

FLXS6
2368
1048

2FLXS2
9296
2713

Table 3.4: Timings on Desktop, 8 Cores, Intel Xeon E5-2637v4, 3.50GHz (purcell) [Sec]

nprol
1
4
8

Orig
3472
1062
944

ScalTemp
7616
2152
2029

SmallMat
5704
2018
1700

SmallVec
8742
2725
2549

MatVect
7312
1742
1250

VScal
5912
1672
1155

FLXS6
5416
1698
1280

2FLXS2
6944
1940
1817

Table 3.5: Timings on Cray XC40/50, 544 Intel Xeon Phi 7230 (Knights Landing), 1.30GHz

(onyx) [Sec]
nprol | Orig | ScalTemp | SmallMat | SmallVec | MatVect | VScal | FLXS6 | 2FLXS2
16 613 1576 1591 1855 939 616 571 4230
32 404 1124 998 1174 593 406 401 2792
64 201 609 604 670 376 252 244 1479

Table 3.6: Timings on SGI ICE-XA, Xeon E5-2698v4, 40 C/N, 2.20GHz (centennial) [Sec]

nprol
4
8
16
32

Orig
832
794
438
257

ScalTemp
1888
1870
1057

581

SmallMat
1726
1676

967
546

SmallVec
2386
2361
1323

725

MatVect
1556
1183

674
382

VScal
1146
854
495
306

FLXS6
1439
1091

653
385

2FLXS2
3380
3423
1791
941

Table 3.7: Timings on Desktop, 32 Cores, AMD Opteron 6238, 2.6GHz (loki) [Sec]

nprol
1
4
8
16
32

Orig | ScalTemp | SmallMat | SmallVec | MatVect | VScal | FLXS6
162 246 182 232 249 175 185
233 378 375 393 344 299 271
397 674 584 645 658 566 442
362 546 519 630 454 445 414
437 471 456 497 430 428 479

54

Table 3.8: Timings on Desktop, 16 Cores, Intel Xeon Silver 4208, 2.10GHz (tallis) [Sec]

nprol | Orig | ScalTemp | SmallMat | SmallVec | MatVect | VScal | FLXS6
1 104 227 250 297 160 155 141
4 65 161 169 178 87 86 79
8 292 673 712 814 385 391 352
16 254 460 453 467 307 282 280

Table 3.2 - Table 3.6 show preliminary timings carried out in 2018. Table 3.7 and Ta-
ble 3.8 add timings on more modern computer architectures carried out recently. One can
see that none of the minimal memory access loops is faster than the original, dimension-
ally split, conventional loop. The only exceptions being MMAL with 6-point flux stencil
(FLXS6), carried out on 32 Intel Xeon Phi 7230 (Knights Landing) cores and Vectorized
small vector MMAL carried out on 32 AMD Opteron 6238 cores. But even in these cases
the difference with the conventional loop is insignificant. In general some MMAL options
approach the conventional loop for large number of cores, indicating that when memory
traffic becomes the bottleneck, the proposed MMAL options may become competitive.

One of the main reasons the MMALSs are not outperforming the conventional loop as
predicted based on the reduced memory access is the work done by the compiler. The
conventional loop can be vectorized thereby increasing the performance. Table 3.9 and Ta-
ble 3.10 show a more detailed profiling test results. Table 3.9 shows the performance of the
main calculation loop of each MMAL subroutine. Table 3.10 shows the overall performance
of the MMAL subroutine including the necessary array and vector rearrangements. The
conventional loop is vectorized with a 51% efficiency and an estimated speedup gain of 2.06
due to vectorization. Meanwhile the Scalar temporaries, Small vectors and Small matrix
MMALSs are scalar therefore not possible to vectorize. That can be clearly seen in the Self
GFLOPS column showing the performance of each loop in Giga floating point operations
per second. The scalar loops have more than 5 times lower operation count per second! The
low performance overshadows the possible gain of reduced memory access. Meanwhile, the

vectorized small vector main loop operates with the highest operation count 24.82 Gflops.

55

However, the overall operation count for the whole subroutine is only 6.5 Gflops, due to the

necessary data rearrangements.

Table 3.9: Vectorization and performance of the main loops of MMAL subroutines

Loop Self Efficiency Gain Vector Self
time [s] Estimate | length | GFLOPS

Orig 15.9 51 2.06 4 16.31
ScalTemp 43.7 scalar loop 3.26
SmallMat 47.3 scalar loop 3.01
SmallVec 56.8 scalar loop 2.50
MatVect 5.4 47 1.86 4 24.82
VScal 8.1 41 1.65 4 20.89
FLXS6 5.8 57 2.27 4 23.07

Table 3.10: Vectorization and performance of the MMAL subroutines

Loop Self Self
time [s] | GFLOPS

Orig 16.0 16.2
ScalTemp 43.7 3.3
SmallMat 47.3 3.0
SmallVec 56.8 2.5
MatVect 21.0 6.5
VScal 21.4 8.0
FLXS6 18.7 7.4

The columns in Table 3.9 and Table 3.10 denote the following quantities:
e Loop — name of the conventional or MMAL;
e Self time — total time spent in the corresponding subroutine or main loop in seconds;

o Efficiency — calculated performance estimated gain compared to maximum achievable

gain from vectorization;

e Gain Estimate — calculated estimate of relative loop performance speedup achieved
due to vectorization;

56

e Vector length — the number of elements processed in a single iteration of vector loops,
or the number of elements processed in individual vector instructions. The maximum

possible vector length depends on the size of the register;

e Self GFLOPS — ratio of Giga floating-point operations to Self time;

3.8 Conclusions and outlook

A number of minimal memory access loop (MMAL) options for finite difference solvers
have been described and implemented. The best of these (MMALZ2) yields one residual for
6 fetches and 4 stores, regardless of the size of the stencil (and therefore the discretization
order). This means that in terms of memory access MMAL2 is competitive even with
stencils as low as 2 (typical of CFD codes with 2nd order spatial discretization of fluxes
and 4th order damping). Timings for a low Mach number finite difference code using a 6th
order spatial discretization show that even though the conventional loops are faster, some
implementations approach the speed of the conventional loops for large number of cores.
In theory the MMALS have a clear advantage over the classical implementation with respect
to memory access (Table 3.1). That is however disregarding the speedup gained due to
vectorization and single instruction multiple data (SIMD) operations that are not available
for scalar loops. After taking a closer look at the performance of each proposed MMAL,
one can see that in most cases the advantage gained by the reduced memory access is less
significant than the performance gain due to vectorization.

Vectorized MMAL options show similar or even higher vectorization efficiency, leading to
even higher floating point operation count per second. Here however time is lost performing
the necessary data rearrangements to obtain optimal loop execution.

The MMALSs perform better on a higher number of cores when the memory bandwidth
becomes more 'saturated’. Performance also varies with different hardware architectures.
The following chapter presents a method oriented towards targeting the exact underlying

CPU architecture.

o7

Chapter 4: Optimization using Intrinsics

In the previous chapter an optimization approach to minimize memory access has been dis-
cussed. One of the results was that the reduced memory access is overshadowed by the more
efficient vectorization of the classical loop implementation. However, the vectorization level
even in these loops is far from the maximally achievable. A new approach was investigated
to see if the full potential of CPU could be utilized. Register intrinsics can be seen as one
of the lowest level optimization approaches. It is a tedious and error prone work but if done
correctly can yield good results. The aim of this attempt is to maximize the utilization of
the registers and increase the peak performance of the subroutine that obtains the RHS for

the finite difference approximation of the weakly incompressible Navier-Stokes equations.

4.1 Intrinsics

4.1.1 SIMD

SIMD stands for Single Instruction Multiple Data. It originated along with the vector su-
percomputers in the early 70s. Now SIMD is part of almost any microprocessor. SIMD
exploits the data parallelism by performing the same operation on a set of data simulta-
neously as opposed to several times on single pairs of numerical values. The theoretical
performance gain when using SIMD depends on the size of the registers (vector size) which
directly correlates with the numbers of values that can be processed in parallel. The vector
length has been growing steadily with each generation of the SIMD and is currently at 512
bits. With a vector length of 512 bits it is possible to simultaneously execute the same
instruction on 8 double precision or 16 single precision numbers. Additionally to the in-

creasing of the length of the vector more SIMD instructions have been added as well. Also

58

more advanced instructions making it possible to perform almost any operations solely by
using SIMD [66].

To take the advantage and use the SIMD features the code has to be vectorized. Vec-
torization has to fit the underlying hardware. There are several ways of vectorizing a code.
On one hand, there is auto-vectorization implemented in modern compilers, which can be
seen as the most effortless. On the other hand there is the option to use intrinsic functions,

an option that demands the most effort.

4.1.2 Auto-vectorization

Auto-vectorization has several advantages when it comes to gaining performance by using
SIMD instructions. Developers do not have to worry about portability since the compiler
automatically adapts the code to the underlying hardware architecture during the vector-
ization process. Meaning, it identifies the available vector length and the code is vectorized
using the appropriate generation of SIMD instructions. Developers can choose how much
effort is spent on improving vectorization by modifying the code where possible or neces-
sary by manual loop unrolling or memory alignment adjustment to provide more favorable

memory access for the vectorized execution.

4.1.3 Intrinsic functions

Intrinsic functions are functions that operate directly on the registers. These are low level
programming instructions. Using intrinsic functions demand a lot of effort, they are plat-
form and hardware specific and can have portability issues. Nonetheless, intrinsic program-
ming is considered the state-of-the-art approach for achieving maximum performance [66].
In most cases auto-vectorization done by the compiler can not achieve the full theoretical
SIMD gain. By using intrinsic functions the developer can explicitly ensure the usage of
maximum available vector length for SIMD instructions.

Using intrinsics is a complex task. Different sets of intrinsic functions have to be used for

different generations of SIMD extensions. If a new extension comes out, the code has to be

99

re-written (repeat the difficult process) to take advantage of the newly improved technology
[67]. Furthermore, SIMD intrinsic instructions are C style functions and are not available
when coding in Fortran.

Before switching to intrinsic programming one has to decide if the possible gain out-

weighs the required work and possible complications.

4.2 Implementation

As mentioned before, using intrinsics can ensure the usage of the maximum available vector
length. The motivation for applying intrinsic programming to finite difference stencil calcu-
lation is the ability to obtain the RHS value of 8 or 16 points (depending on the precision)
simultaneously while accessing each of the necessary memory entries only once.

Due to the total number of unknowns and coefficients necessary for the 4th order stencil
calculation, only AVX-512 (Advanced vector extension for SIMD instructions) is consid-
ered. CPU’s supporting AVX-512 have 32 512 bit registers. Previous generations of SIMD
instructions had only up to 16 registers. The higher number of registers is necessary to
ensure that each value is only laded once from the memory.

In order to better illustrate the possible gains of intrinsic functions as opposed to the
usual way, let us look at the simplified RHS calculation. In the previous chapter examples
were given for the number of necessary memory accesses (fetches and stores) that are needed
to update a 4th order RHS value using a 5 point stencil. For 1D case 5 fetches and 1 store is
necessary if coded the usual way. For 3D case 17 fetches and 3 stores are necessary. If using
intrinsic operations one would still need the same amount of fetches and stores however that
would simultaneously update the value of RHS at 8 different points if using double precision
real numbers. If using single precision real numbers, RHS value at 16 points simultaneously
can be updated. To put this in other words, the access to the memory can be reduced 8 or
16 times! These are numbers that do not account for auto-vectorization of traditional loops
and necessity to rearrange the arrays of unknowns. However the possibility of real gain is
there.

60

Unknowns loaded in
one register.

Unknown values 8 values in double
loaded in precision (pressure
registers for i-2, value of 8 points at
i-1, i, i+1, i+2. i+2 location)

Unknowns for
point (i,,1,1)

\&\ puvwt

5-point stencil

Set of unknowns
necessary for 4t

Unknowns for

point (1,9,1) 1 order stencil
il calculation. Total

of 25 registers.

pou v, W, t

Unknowns for
Unknowns for | point (1,1,1)
point (1,1,2) p,u v, w,t
pou v, w,t

Figure 4.1: Intrinsic memory access to load unknown values in registers (double precision)

Figure 4.1 gives a visual overview of memory access when using AVX-512 SIMD in-
structions for double precision numbers. It is a schematic representation of the array of
unknowns for a domain with 16 points in z and y directions. Halo points are not shown.
Access to the array of RHS values and array of conductivity and viscosity values is done in
similar way. Figure 4.2 shows the same domain only considering single precision AVX-512
SIMD instructions. Comparison of the two figures shows clear advantage of single precision
performance, only one sweep in x direction is necessary to update all the points.

The steps to implement 4th order stencil calculation are described in the following

subsections.

4.2.1 C++4 subroutine

Intel intrinsic instructions for AVX-512 SIMD are C type functions that can not be used in

Fortran. A C++ subroutine was written to implement intrinsic RHS value update in the

61

KRR

R
Jg.l“’.lgl"’.l"’.lgl’
0“’090“’090"’0’

KAKKKX)

™/
(2
(XX
.’_’,‘I
%5

S

KARXR

(2

Y
GO0

0Oy

3
)
<
.‘:’ .’I‘J
Y
S
o b -J‘/

]
Ty

i
Y
¥

ly

A5

Figure 4.2: Intrinsic memory access to load unknown values in registers (single precision)

finite difference solver. To maximize the efficiency of SIMD instructions all the arithmetic
operations have to be executed using intrinsics calls. Regular calls used in between intrinsic
instructions can lead to the loss of previously loaded or calculated values in the registers.

The overall structure of the C++ subroutine is as follows:

Obtaining values from the Fortran code;

Pre-calculating values of coefficients necessary for the RHS calculation;

Main loop updating all the RHS values, each point is access only once;

Returning to Fortran an updated RHS value array.

4.2.2 Array rearrangement

Possibly one of the main disadvantages of programming with intrinsic instructions is the
necessity of having the data arranged in a certain way. To achieve the theoretically max-
imum performance, each register load from the memory has to populate the register only

with usable values. Which means, loading 8 double precision values in a 512 bit register

62

with one load operation. In order to achieve this certain things have to be fulfilled:

e data arrays have to be aligned so that the 512 bit chunk of data loaded into the
register matches exactly to the 512 bit memory space occupied by the corresponding

8 double precision numbers; and,

e the 8 or 16 values needed for the vectorization in the register, follow each other exactly
without any other data occupying the memory space in between. When executing the
load instruction, one can not choose to load every second or third double precision
number in the row. One only specifies the address to the beginning of the 512 bit

data chunk that will be loaded in the register.

In order to achieve the necessary data alignment and arrangement all the arrays needed
for the RHS update had to be rearranged from the initial Fortran arrangement. The most
common and simple way to send an array from Fortran to C++ is as a 1D array (vector).
Due to the properties of intrinsic instructions a different data arrangement is necessary for
each of the spatial directions. In other words, to update the RHS value using a 3D stencil,
three different arrangements of the necessary data is needed.

To minimize the cost of array rearrangement one multilevel-loop was used. Each value
in a Fortran array is accessed exactly once and placed in the proper location in the three
different direction arrays that are sent to the C++ subroutine.

Another stage of rearrangement is necessary to transfer the data into the original or-
der once the updated RHS arrays (one for each direction) are obtained from the C++
subroutine. A similar multistage loop is used for this purpose.

The cost of the array rearrangement process is discussed in the result section.

4.3 Results

In this section the performed tests are discussed. First a smaller test case was investigated
to determine the optimal domain size. Later the intrinsic RHS update subroutine was
implemented in the FEFLO finite difference code and tested on the TGV case.

63

4.3.1 Test case

A small test case was designed to test the performance of the C++ subroutine using intrinsic
instructions. The subroutine obtains the RHS for the finite difference approximation of the
weakly incompressible Navier-Stokes equations. The performance of the C++4 subroutine
was compared with the standard subroutine implemented in Fortran. Different size of
domains was tested to see the most favorable configuration. Due to the properties of
intrinsic functions all the test domains were of regular cube shape. The number of points
in each direction was a multiplication of 8 in case of double precision calculation and a
multiplication of 16 for the single precision calculation. In this way the total length of
registers can be fully utilized. The results are presented in Table 4.1 and Table 4.2 for
double precision and single precision accordingly.

The test case is set up in the following way:

« filling the arrays of the unknowns of the domain points with random numbers;

e running the case for a set number of time steps;

e each time step consists of 4 stages;

e in the case of the C++ subroutine each stage consists of the following operations:

— rearrangement of the arrays of the unknowns in 3 different arrays that are passed

on to the C++ subroutine;

— obtaining three arrays of the RHS values for the finite difference approximation

in C++ subroutine (one for each direction);

— summation and rearrangement of the arrays of the RHS values to fit the Fortran

array arrangement.
The columns in Table 4.1 and Table 4.2 denote the following quantities:

e Subroutine:

64

Table 4.1: Intrinsic instruction finite difference approximation comparison with standard

Fortran subroutine (double precision numbers)

Sub- | Problem Self Total Self Memory | ntime | Time per
routine size time [s] | time [s] | GFLOPS [GB] point
Fort 8 0.29 2.88 12.3 23 5000 | 1.1E-06
C++ 8 0.15 0.57 214 9 5000 | 2.2E-07
Fort 16 0.44 1.03 13.0 37 1000 | 2.5E-07
C++ 16 0.35 1.13 14.4 15 1000 2.8E-07
Fort 24 1.73 2.22 11.0 125 1000 1.6E-07
C++ 24 1.19 3.67 14.3 51 1000 | 2.7E-07
Fort 32 2.62 2.78 10.4 188 500 1.4E-07
C++ 32 1.83 4.38 11.1 58 500 2.8E-07
Fort 40 4.93 5.03 10.8 369 500 1.6E-07
CH++ 40 3.20 9.69 12.4 113 500 3.0E-07
Fort 48 1.32 1.43 11.5 100 100 1.3E-07
CH++ 48 1.07 6.67 12.8 41 100 6.0E-07

Table 4.2: Intrinsic instruction finite difference approximation comparison with standard

Fortran subroutine (single precision numbers)

Sub- | Problem Self Total Self Memory | ntime | Time per
routine size time [s] | time [s] | GFLOPS [GB] point
Fort 16 1.54 3.63 20.7 81 5000 1.8E-07
CH++ 16 0.73 2.34 34.8 37 5000 1.1E-07
Fort 32 2.46 2.90 20.8 130 1000 | 8.9E-08
CH++ 32 1.50 4.27 26.9 60 1000 1.3E-07
Fort 48 8.60 9.58 20.1 630 1000 | 8.7E-08
C++ 48 2.36 17.10 97.8 195 1000 1.5E-07

65

— Fort — standard subroutine that obtains the RHS for the finite difference approx-

imation in Fortran;

— C+4+ — subroutine that obtains the RHS for the finite difference approximation

using intrinsic instructions in C++;
e Problem size — number of points in each direction of a cubic domain;
e Self time — total time spent in the corresponding subroutine in seconds;
e Total time — total runtime of the application in seconds;
o Self GFLOPS - ratio of Giga floating-point operations to Self time;

o Memory — Data transfers between CPU and memory subsystem (total traffic, including

caches and DRAM) in gigabytes;
e ntime — number of time steps, each time step includes 4 stages;
e Time per point — time necessary to obtain the RHS of a single point per time step.

It can be seen in the tables that the execution time of the subroutine itself is always
shorter in the case of the C++ implementation. As much as two times shorter. Another
relation that is constant throughout the whole tests is the total memory transfer. When
using intrinsic instructions the amount of memory that needs to be transferred to the CPU
is significantly reduced. It is two to three times less than in the case of the standard
subroutine in Fortran. One disadvantage of the C++ implementation that clearly presents
itself is that the time spent on the arrangement of arrays grows with the problem size. The
increase in the overhead due to rearrangement is so high that it overshadows the gain of
the more efficient RHS calculation.

The 16x16x16 point domain is chosen for further investigation and implementation in
the FDFLO finite difference code. Single precision test of this problem size demonstrates

the highest performance (34.8 gflops). Additionally, the total execution time is more than

66

50 percent shorter even considering the array rearrangement. Problem size of 16 is also
reasonable for practical applications.

Although the table shows an even higher performance (57.8 gflops) for the problem size
of 48, this result was inconclusive. The profiling tool used showed highly varying results.
Furthermore the total execution time with this problem size was almost two times longer

for the C++ implementation versus the Fortran.

4.3.2 TGV with FDFLO

The subroutine that obtains the RHS for the finite difference approximation using intrinsic
instructions in C4++ was implemented in FDFLO finite difference code. The performance
of this subroutine was tested on a Tailor Green Vortex simulation. The problem set-up and
description is given in section 3.11.1. The difference in this test is the domain decomposition.
The domain is decomposed in 64 cube form sub-domains with 16 + 2 x 2 = 20 points in
each direction (2 * 2 accounts for the two halo points on each side of the domain necessary
for the 4th order approximation scheme). Three different versions of the application were

executed and compared:
e double precision calculation using Fortran subroutine for obtaining RHS;
 single precision calculation using Fortran subroutine for obtaining RHS;
 single precision calculation using C++ subroutine for obtaining RHS;

Qualitative comparison of the results is shown in Figure 4.3. The single and double
precision cases yield very similar results. There is also no significant difference between the
single precision calculation using the intrinsic instructions and the single precision calcula-
tion using the standard Fortran subroutine.

The timings and performance comparison of the simulations are shown in Table 4.3.
One can see that the C++ subroutine has a significant speedup compared to the Fortran
subroutine, the Self time is 50% shorter. The floating point operation count per second in

C++ subroutine is higher, and the much lower data transfers between CPU and memory

67

subsystem ensures an overall reduction in execution time. One can also see that the total
execution time is still favorable to the standard Fortran implementation. This is explained
by the time spent rearranging the arrays of unknowns to fit the intrinsic instruction calcu-
lation. The total time spent on data rearrangement is 29s which is more than three times

higher than the subroutine execution time itself.

Table 4.3: Performance comparison between intrinsic instruction finite difference approxi-
mation and standard Fortran subroutine (single precision) for the TGV case

Loop Self Self Memory | Total execution
time [s] | GFLOPS [GB] time [s]
Fortran 10.7 31.9 504.7 36.3
C++ 4.8 34.4 337.5 62.2

4.4 Conclusions and outlook

Intrinsic instructions are the state of the art approach to achieve maximum performance on
a given computational system. It does involve, however, complex low level programming
and the final code has limited portability. The presented test case clearly shows the possible
gains of RHS update calculation using intrinsic instructions. It results in high floating point
operations as a result of maximizing the used vector length. It also reduces the total data
transfer from memory to CPU by more than a factor of 2.

The performance increase of a fully intrinsic subroutine comes with additional compu-
tational costs spent on the rearrangement of data. As shown in the Tailor Green vortex
case, time spent on data rearrangement can even exceed the time spent in the intrinsic
subroutine.

To further explore the possible gains of using intrinsic instructions it is necessary to
address the following questions and explore further implementation options.

The proposed further research steps are as follows:

68

1.0e+00

— 0.9

08
0.7
0.6

= 0.5
= 04
IOJ
102

0.1

—2.8e-08

— 1.0e+00
—09

0.8
0.7
0.6

= 0.5
04
0.3
=02

—ol
2.8¢-08

Figure 4.3: TGV: Velocity field at t = 5s (left column) and ¢t = 10s (right column). Com-
parison of single and double precision results using different subroutines: Double precision
with Fortran subroutine (top), single precision with C++ subroutine (middle) and single
precision with Fortran subroutine (bottom)

69

e Optimization of data rearrangement subroutines. Explore more efficient rearrange-
ment algorithms or ways how to reuse the already rearranged data. Minimize the

amount of the necessary rearrangements.

o Using the strategies of MMALS when implementing intrinsic instructions. The current
implementation reloads the registers with necessary unknowns at each iteration step.
Although it already has an advantage over the conventional method, using MMAL
method could even further increase the advantage. For the 4th order scheme, instead
of having to load 22 sets of unknowns from the memory at each iteration step, one
could load only 7 (replace the unknowns of the last point of stencil with the unknowns
of the next point). As there is a limited amount of registers per CPU, this is not so
straight forward. Having more than 20 registers filled with reusable unknowns at all
times does not leave enough free registers for the necessary operations and constants.

There are two options that could be explored, however:

— Reset the register values to the necessary constants multiple times during the
iteration. Although not optimal, the set operation only has to access one constant
value per call instead of the whole vector length worth of values. The amount of
constants necessary is small enough to let this information come from the higher

levels of memory - faster access.

— Less realistic and straight forward option is to expect development of the CPUs

with more than 32 registers.

e The rearrangement of arrays takes the major part of the execution time. It does not
however grow with the increase in the order of the scheme. Same rearrangement can be
used also for the 6th and 8th order schemes. Since the execution time of higher order

schemes is higher, intrinsic instruction subroutine could become more competitive.

e Finally one could explore using intrinsic instructions for larger portions of the code,
where same data arrangement is necessary. This way the rearranged data can be

reused multiple times while increasing the performance of other portions of the code.

70

Even though the current results show no real advantage of using intrinsic instructions
over traditional program calls, the preliminary results show evidence of possible performance
increase. If the issues stated above are addressed and solved, intrinsic instructions could

lead to a more efficient fluid solver development.

71

Chapter 5: Conclusions

The topic of this dissertation is the optimization of fluid solvers with respect to fault toler-
ance and memory latency. The first issue comes from the challenges associated with exascale
computing. As the number of cores and nodes in a supercomputer grows, the mean time
between hardware failures reduces. Many of the scientific codes used today are not able to
overcome such failures. Each encountered failure leads to an aborted simulation. Then, the
simulation needs to be restarted from the last checkpoint written to the disk. Depending
on the time of the occurrence, this results in the loss of several hours of productive work.
Furthermore, restarting a failed simulation involves the manual work of an engineer.

The first issue addressed in this work concentrates on the development of a fault tolerant
fluid solver. The aim is to develop strategies that can be generally applied to fluid solvers in
order to achieve fault tolerance. This work proposes simple implementations (extensions) to
existing code that do not demand extensive rewriting of the code. Current tests conducted

on local machines as well as on several cluster environments yield promising results:

o the suggested fault tolerant fluid solver implementation demonstrates recovery rates

above 90%; and,

o large simulationS running on 16 compute nodes and 256 MPI processes have a runtime

penalty as low as 12%.

The second issue addressed in this work is the widening gap between the performance of
CPUs and the performance of memory access speeds. Applications like finite difference
solvers that access large amounts of data at each iteration become memory bound. The
limiting factor of the execution speed is the access speed to the memory. Memory-aware

algorithms are needed to reach peak CPU performance.

72

Several minimal memory access loop options are proposed in this work. Once loaded
in higher levels of memory, data is re-used. The current results do not show a clear ad-
vantage of the proposed loops since they cannot be vectorized with the same efficiency as
the conventional loops. At the same time, the tests prove the existence of the memory
latency problem. The MMAL loops become more competitive with conventional methods
when running on a higher number of cores-memory bandwidth becomes more ’saturated.
In some test scenarios, the MMAL loops even outperform the conventional loops.

Finally, a subroutine that obtains the RHS for the finite difference approximation using
intrinsic instructions in C+4 was implemented in FDFLO finite difference code. Intrinsic
instructions ensure usage of the maximum vector, meaning the maximum simultaneous
operations performed at a given CPU cycle. It also reduces the total memory traffic between
the CPU and different levels of memory. The intrinsic instruction subroutine outperforms
the conventional method, however, it loses its overall advantage due to necessary data
rearrangements. Although the current test results do not yield the expected speedup, they

show evidence of possible performance increase that could be achieved with future work.

73

V)

10

16

19

Appendix A: Fault-tolerant code extensions

A.1 Fault repair subroutine

The following subroutine is called by all active processes of the MPI communicator after a
process failure is encountered. As basis for this subroutine the suggested call sequence of

ULFM is used [68].

subroutine mpp_comm_ replace (MPL_ COMMO,MPL COMM new, lcfdc ,ierro)

C
use arrays_ mpp
c
implicit real*8 (a—h,o—z)
c
include ’mpp.h’
C
c mpp common
c
common /mpp_info/ nproc,iproc,ilang ,nprol
common /mpp_err/ MPI_ERR
common /mpp comm/ MPI COMM
c
integer*4 info ,isize ,irank
integer*4 ierro ,isv_key ,namelen
logical flag
character «(MPL_ MAX PROCESSOR,_ NAME) pname
c

external mpp_error__handler

integer lcfdc (6)

74

24

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

54

this sub fixes the communicator once processors have

on input : MPL COMMO : original world communicator

lefde: 1: c¢fd code is active (=1)

2: nr. or (mpi) processors desired:

3: new_ group MPL COMM

4: new_ numtasks

5: new_rank (iproc)

6: original/new iproc indicator
0: original

1: new iproc

on output: MPL COMMO : new world communicator

lefde: 1: cfd code is active (=1)

2: nr. or (mpi) processors desired:

3: new__group MPL COMM

4: new_ numtasks

5: new_rank (iproc)

6: original/new iproc indicator
0: original

1: new iproc

for fault—tolerant tests

write (6,%)’ in mpp_comm_replace: before repartition’

write (6,10)(lcfdc(i),i=1,6)

10 format (’ lcfdc(l)= ’,il2,
/.7 lefde(2)= 7,il2,

/, lefde(3)= 7,il12,

& /,’ lcfde(4)= 7,il12,

75

failed

nproc

nproc

60

61

62

63

64

68

69

80

81

82

83

84

/.’ lefde ()= 7,il2,

/.7 lefde(6)= 7,i12)

nproc_needed=lcfdc (2)

MPI_COMM_cfd=lcfdc (3)

shrink to alive procs (new communicator)

call mpix_comm_ shrink (MPL COMMO,MPI _COMM new, ierr)

see how many procs died

call mpi_ comm__size (MPL_COMM._new, nproc_new ,iinfo)
call mpi__comm__size (MPL COMMO ,Iproc ,iinfo)
ndead=nproc—nproc_ new

write (6,%)’ nr. of dead processors: ndead= ’,ndead

if (ndead.eq.0) then

goto 9999
endif
see if we have sufficient spare processes
and abort if necessary
if (nproc_new.lt .nproc_needed) then
write (6,%)’ no more sufficient active procs ==> stopped’

> ,nproc__new ,nproc_ needed

write (6,%)’ nproc_new,nproc_needed=
call mpi_abort (MPL COMM WORILD, ierro)

endif

set the error handler for the new communicator

76

86

88

89

90

91

92

93

94

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

113

114

116

to MPL ERRORS RETURN

» MPL COMM new= ’ ,MPI COMM. new

call mpi_comm_set_errhandler (MPL COMM new,MPI ERRORS RETURN, ierr)

get the proper ranks in new world

call mpi_comm_ rank (MPL COMMO ,irank0 , iinfo)

iprocO=irank0+1

call mpi_comm_rank (MPL COMM_new, irankl ,iinfo)

iprocl=irank1l+1

write (6 ,%)’ iproc ,iprocO ,iprocl= ’ iproc ,iprocO ,iprocl

write (6 ,%)’ irankO ,irankl= ’,irankO ,irankl

call mpi_barrier (MPL_ COMM_ new, ierr)

write (6,%)’ after mpp_ barrier (1): MPL COMM_new= ’ ,MPI_COMM._new

the rank 0 in MPL COMMO,MPL COMM_new is going to

determine the ranks at which the reserve procs

need to be inserted

np=lcfdc (2) ! nr of procs needed for running cfd code

)

write (6,%)’ nproc,np= ’,nproc,np

if (irankl.eq.0) then

get the group of dead procs =—>

77

117 C those in MPIL_COMMO, but not in MPL COMM new are the dead ones

118 €
119 call mpi_comm__group (MPL_COMMO ,igrp0, ierr)

120 write (6,%)’ igrp0= ’,igrp0

121 ¢

122 & MPI_COMM._ new

123 call mpi__comm__group (MPL_COMM_new, igrpl , ierr)

124 write (6,%)’ igrpl= ’,igrpl

125 C

126 call mpi_group_ difference(igrp0, igrpl, igrp2, ierr)

127 ¢

128 C compute the rank assignment for the newly inserted spares
129 ¢ number of dead active cfd processes

130 €

131 indw=0

132 ¢

133 do 1200 i=0,ndead—1

134 call mpi_group_translate_ranks(igrp2,1,i,igrp0,idrank ,ierr)
135 C

136 C if the dead process was an active cfd process send the

137 C information to the spare, else ignore

138 €

139 write (6,%)’ idrank ,np= ’,idrank ,np

140 C

141 if (idrank .1t .np) then

142 write (6,%)’ in send do loop: ’,idrank ,nproc_new—(i+1)
143 call mpi_send(idrank ,1 ,MPI INT, nproc_new—(i+1),1,

144 & MPL_COMM._new, ierr)

145 indw=indw+1

146 else

147 write (6,%)’ spare died, no action taken’

78

148 endif

149 write (6,%x) ’after sending the new ranks’,indw,
150 & ’procs replaced’

1511200 continue

152 ¢

153 C free the groups

154 ¢

155 call mpi_group_free(igrp0, ierr)

156 call mpi_group_free(igrpl, ierr)

157 call mpi_group_free(igrp2, ierr)

158 ¢

159 endif

160 ¢

161 C broadcast the number of procs needed to be replaced
162 C

163 call mpi_bcast(indw,1 ,MPI_INT,0 ,MPL COMM new, ierr)

164 ¢

165 write (6,%)’ calling mpp_barrier (2): MPL COMM new= ' ,MPL COMM new
166 call mpi_barrier (MPL COMM new, ierr)

167 ¢

168 C loop where the new workers receive the ranks

169 ¢

170 inewp=0

171 ¢

172 do 1400 i=0,indw—1

173 if (irankl.eq.nproc_new—(i+1)) then

174 write (6,%)’ in receive do loop: ’,irank

175 call mpi_recv(irank0 ,1 ,MPI_INT,0,1 ,MPL COMM._new,
176 & MPL_STATUS_IGNORE, ierr)

177 inewp=1 ! new processor

178 write (6 ,%) 'received irankl ,irank0O: ’ irankl ,irank0

79

179 endif
180 np = np +1

181 1400 continue

182 C
183 ¢ —free the old communicator

184 C

185 call mpi_comm_ free(MPL_COMM_cfd, ierr)

186 C

187 call mpi_barrier (MPIL COMM new, ierr)

188 C

189 € ——just in case...

190 C

191 call mpi_comm_rank(MPL COMM new, irank new, ierr)

192 call mpi_comm_size(MPL_ COMM_new, nproc , ierr)

193 C

194 C ——re—arrange ranks in the MPL COMM. new

195 €

196 call mpi_comm_ split (MPL COMM new,0 ,irank0 ,MPL COMM_tmp, ierr)

197 call mpi_comm_rank (MPL COMM tmp,irank new ,ierr)

198 MPIL_COMM_ new=MPI_COMM_tmp

199 write (6,%)’ rank after re—arranging, irank new ’, irank_ new

200 €

201 C —— re—create fixed workcomm using processes from the process pool
202 €

203 C ————assign a color to the ranks/processes we want

204 C to insure that we know which ranks failed in the old

205 C communicator for easier recovery strategy

206 €

207 write (6,%)’ calling mpp_comm_split: MPIL COMM new= ' ,MPL COMM_new
208 C

209 if (irank0.ge.0. and .irank0O.le.nproc_needed—1) then

80

210

216

N
—
-~

219

240

icolor=1
else
icolor=MPI_ UNDEFINED

endif

call mpi_comm_ split (MPL COMM. new, icolor ,irankO0 ,

MPI_COMM._cfd, ierr)

write (6,%) " after mpp_ comm__split: MPIL_COMM_ cfd= ' ,MPI_COMM_ cfd

if (icolor.eq.1l) then
call mpi_comm_ rank(MPL COMM_cfd, irank_cfd, ierr)
call mpi_comm_size(MPL_COMM_cfd, nproc_cfd, ierr)
iproc=irank_cfd+1

else
irank_cfd=—1
nproc_ cfd= 0

endif

write (6,%) ’after split: irank_ cfd,irank_ new= 7,

irank_ cfd ,irank_new

>, nproc__cfd

write (6,%) ’after split: nproc_cfd=
if (icolor.eq.1. and .nproc_cfd.ne.lcfdc(2)) then
write (6,%)’ error: nproc_cfd,lcfdc(2)= ’,nproc_cfd,lcfdc(2)
write (6 ,%)’ ==> stopped’
call mpi_abort (MPL COMM WORID, ierro)

endif

lefde (3)=MPL_COMM._cfd
lcfdc (4)=nproc_cfd

lefde (5)=irank_cfd+1

81

241 lefdc (6)=inewp

242 ¢
243 write (6,%)’ after repartition’

244 write (6,12)(lcfdc(i),i=1,6)

245 12 format(’ lcfdc(l)= 7,il2,

246 & /,’ lcfde(2)= 7,il2,

247 & /.7 lefde(3)= 7,il12,

248 & /.7 lefde(4)= 7,il12,

249 & /,’ lcfde ()= 7,il2,

250 & /.7 lefde(6)= 7,i12)

251 ¢

252 C restore the error handlers

253 C

254 call mpi_comm_ get_errhandler (MPL_COMMO ,ierrh jierr)
255 call mpi_comm_set_errhandler (MPL COMM new,ierrh ,ierr)
256 call mpi_comm_set_errhandler (MPL_COMM_cfd, ierrh ,ierr)
257 ¢

258 write (6,%)’ exiting mpp_comm_replace’

260 9999 continue
261 return

262 end

A.2 Extended fault tolerant MPI all reduce call sequence

MPI all reduce calls can be prone to stuck processes or processes leaving the call with
different status information. While some processes might be notified of a process failure on
the communicator, others might see no such error and proceed with the execution. In order

to avoid such situation and ensure consensus the following call sequence is implemented.

82

2 #if defined (WITHFAULTTOLERANCE)

3 C —— non—blocking all reduce call is used
4 call mpi_iallreduce (sdata,rdata ,ndata ,MPI_REALS,
5 & i_mpp_op,MPL COMM, ireq ,ierrmpp)

6 C —— mpi barrier to synchronize all processes

-~

call mpi_barrier (MPL COMM, ierrmpp)

8 ¢ —— checking if any process has registered an error and getting a consensus

9 iflag=(MPIL _SUCCESS .eq. ierrmpp)

10 call mpix_comm_ failure_ack (MPL COMM, ierrmpp)

11 call mpix_comm_ agree(MPL COMM, iflag , ierrmpp)

12 ¢ —— if error has been encountered all the processes return with an error
13 code to the main program

14 if (.not. iflag .or. ierrmpp .ne. 0) then

15 write (6 ,%)’ setting ierrmpp to 10’

16 ierrmpp=10

17 goto 9999

18 endif

19 ¢ using mpi_wait to ensure synchronous finalization of the call sequence
20 ¢ between the processes

21 call mpi_wait(ireq,istat ,ierrmpp)

22 #else

23 ¢ in case of non fault tolerant run, regular blocking mpi all reduce
24 ¢ call is used

25 call mpi_allreduce(sdata ,rdata ,ndata ,MPI_REALS,

26 & i_mpp_op,MPL COMM, ierrmpp)

27

28 #endif

83

Appendix B: Intrinsic instruction call sequence

B.1 Intrinsic instruction call sequence and register filling

When using intrinsic instructions it is important to keep track of what data is loaded
in which register as well as which registers are available to leading new data from the
memory without overwriting reusable data. The following flowchart demonstrates the usage

of registers and intrinsic calls throughout the RHS update subroutine.

84

012 3 45 012345 012345 012345 012345 012345 012345 012345 012345

6 7 8 91011 6 7 8 91011 6 7 8 91011 67 8 10 11 67 8 10 11 67 8 91011 67 8 91011 67 8 91011 67 8 91011
1213 14 15 16 17 1213 14 15 16 17 1213 14 15 16 17 1213 14 15 16 17 1213 14 15 16 17 1213 14 15 16 17 1213 14 15 16 17 1213 14 15 16 17 1213 14 15 16 17
1819 20 21 22 23 1819 20 21 22 23 1819 20 21 22 23 1819 20 21 22 23 1819 20 21 22 23 1819 20 21 22 23 1819 20 21 22 23 1819 20 21 22 23 1819 20 21 22 23
24 25 26 27 28 29 2425 26 27 28 29 2425 26 27 28 29 2425 26 27 28 29 2425 26 27 28 29 2425 26 27 28 29 2425 26 27 28 29 2425 26 27 28 29 2425 26 27 28 29
3031 3031 3031 3031 3031 3031 3031 3031 3031
zmm14 zmm15
zmm31 zmm21
cvelo/c16 | zmm19
2mma zmm17 zmmi9 add(14,19)
uadm1 mm16 zmm22 div(23,17)
(uvxm1) csoun dtelp
2mm2 zmm23 zmm20 3 ddZT4m2200
43000 zmm7 cpres add(14,20)
(wv000) max() zmmis mm21
zmml7 div(23,18] ~—
zmm3 / () zmm28 | zmm28
dte2p
uadp1 zmm9 zmm22)
uvxpl, max() zmm18
(uvxp1) maxt mmie | s
30 -cad43
zmm5 zmm10 zmm19
visco div(12,10) zmm19 zmm21 zmm4
sub(13,21) uvxml
zmml
eps zZmm20 zmm3
zmm22 uvxpl
Zmmo zmm25 sub(13,22) zmm8
c10 zmm20
clapl fnma(31,1,
zmm15 zmm24 Z2mml 21)coefl
zmm;i mul() y cm30 \ J— uvxm2 zmm9
em zmm25 |/ 2mmis mul() fma(31,6,
2mm26 / cadvi(c10vi) Zmm13 c10 - ""':i; / 22)coefs
. -ca /
c05di cm01 o 2mm13 // zmm;
uvxm:
zmm14 mul() /
/
mul() / zmm24
Zmmé6 /,’ vwxm2
zmml4
c16vi uvxp2 zmm27
wvxm2
zmm12 zZmmé
c43 uvxp2
zmm31 zZmm29
zmml c16 | wxp2
uvxm2
zmm1l zmm30
zmm4 sub(zmm1, Wvxp2
uvxmi zmme)
3
Zur\'/‘xml zZmm10
i sub(zmms, zmm11
zmmé zmm4)
uvxp2
zmm16 zmmll
c30 mul
Zmm5. zmm17
a sub(zmm27, | | dtelp
mm27 | - zmm30) zmm18 zmm18 zmm17
prxm2 zmms dte2p mul [% sub(18-17)
zZmm28 sub(zmm?29, |- mm17 |
prxm1 zmm28) 4 zmmg(but) | mul Z"":B
fma(16,8,5) cadvp
zmm29 zmm9
prooo sub(zmm30,
29,
Zzmm30 zmm29) zmm9(top)
prxpl zZmm7 K fma(zmm16
2mmo sub(zmm?28, ,Zmm9,
zmmO) zmm7)
prxp2
zmm25 zmm25
sub(zmmo,
sub
zmm27)
zmm23
\ zmm23 sub zmm25
¥ sub(zmm30, add
zZmm?28) zmmO0
cgréx
zmm27
cgrix
8reads 2 reads 3reads 1reads 1+7 reads 3reads 2 reads 0 reads
6 FPO 5FPO 7FPO 4FPO 2+8 FPO 3+4 FPO 5+5 FPO 5+3 FPO
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9

85

012345 012345 012345 012345 0123145 012345 012345

67 8 91011 67 8 91011 67 8 91011 67 891011 67 8 91011 67 8 91011 6 7 8 91011
121314 15 16 17 1213 14 15 16 17 1213 14 15 16 17 1213141516 17 1213141516 17 1213 14 15 16 17 1213 14 15 16 17
181920 21 22 23 1819 20 21 22 23 1819 20 21 22 23 181920212223 181920212223 181920212223 1819 20 21 22 23
242526 27 28 29 2425 26 27 28 29 2425 26 27 28 29 242526272829 242526272829 242526272829 2425 26 27 28 29
3031 3031 3031 3031 3031 3031 3031 * busy register
zmma * empty register
zmm15 uvxm1 * register with reusable
vioI3*cm30 2mm2 \ constant
zmm19 w000 |\ register with parameter that
add(14,19) zmm3 \\ will no longer be used on
i dtepv wxpl |\ i\ this iteration
A\ A * register with calculated
zmm20 blmmzs N B » zmmS va%iable that will no longer
% add(14,20) sub(28,15) |\~ mul mm25
dtemv dteov \ sum |\ be used
zmm13 zmm5 * register with variable for
zmml \ i
zmm28 fma(12,4, fma(13 mul \ RHS calculation
20)coef2 \ ma(13, . \
mul() \ 4,1) \ zmm5 \ zZmm25
zmm14 . . sub(1,5, A\
zmm12 fnma(12,3, zZmmé AN (19) fma(z’; — > zmrr;IZS
y = rhs2 R :
cada3 19)coef3 fma(14, zmm17 the2 « could this value be kept in
zmmé4 3,6) set N f h
uxm1 zZmml g register for the next
A mul(8,1) zmmo cadvv zZmmo iteration?
zmm3 fma(13, 4 mul(7,0) * read to write
uvxpl P " zZmm6 Y 0,24) Zmmo J rhs3 » ZmmO
mm8 7omul96) | T zmmi2 ¥ wb012) ' ths3
fama(31,1, zmm24 | X A mul ~ /
T - ~ zmm0 |
21)coefl i} mul » ——» common
. zmm10 zmm10 add RHS1
/ 3 >
/ zmm9 / zmm27 ~ fma(14, fma zmm15 zmm15 — » RHS2
/ fma(31,6, | mul / 10,29) I h: >
o mul(7, rhs4. RHS3
22)coet) Zmm15 15 15) rhs4
/ zmm1 4 Zmm29 fma(13, zmm.
/ A mul sub(15,18)
/ uvxm2 / 15,27) zmm15
J zmm24 zmm30 zmm18 zmm21 add
/ wxm2 | mul mul fma
zmm27 |/ zmmo0 zmm21
wxm2 | vvxmi fma(14,
— zmm12 21,30)
wxp2 w000
zmm10
zmm29 wxpl
wxp2
zmm15
zmm30 wvxm1
wyxp2 zmm18
wv000
zmm21
wvxpl
zmm1ll
zmm17
- zmm17 zmm17 o ad rhs1
N sub(18-17) fma(23,
/ g 17,11
/ zmm23 - 1)
cadvp
zmm25
add
5 reads 6 reads 1 store 0 reads 0 reads 0 reads 3 stores TOTAL:
42 reads
4 stores
5+3 FPO 10 FPO 10 FPO 3FPO 3FPO 3FPO 0 FPO 86 FPO
Step 9 Step 10 Step 11 Step 12 Step 13 Step 14 Step 15

86

Bibliography

87

[1]

8]

[9]

[10]

Bibliography

K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and J. C. Sancho,
“Entering the petaflop era: the architecture and performance of roadrunner,” in SC"08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing. ITEEE, 2008, pp.
1-11.

“Top500 becomes a petaflop club for supercomputers,” 2019. [Online]. Available:
https://www.top500.org/news/top500-becomes-a-petaflop-club-for-supercomputers/

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon,
W. Harrod, K. Hill, J. Hiller et al., “Exascale computing study: Technology challenges
in achieving exascale systems,” Defense Advanced Research Projects Agency Informa-
tion Processing Techniques Office (DARPA IPTO), Tech. Rep, vol. 15, 2008.

N. Romero, E. Jennings, A. Vazquez-Mayagoitia, V. Vishwanath, and T. Williams,
“Alcf data science and machine learning programs: From petascale to exascale,” Bul-
letin of the American Physical Society, vol. 63, 2018.

D. Dauwe, S. Pasricha, A. A. Maciejewski, and H. J. Siegel, “Resilience-aware resource
management for exascale computing systems,” IEEE Transactions on Sustainable Com-
puting, vol. 3, no. 4, pp. 332-345, 2018.

C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and W. Kramer,
“Lessons learned from the analysis of system failures at petascale: The case of blue
waters,” in 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 2014, pp. 610-621.

R. Lohner, A. T. Corrigan, K.-R. Wichmann, and W. Wall, “On the achievable speeds
of finite difference solvers on cpus and gpus,” in 21st AIAA Computational Fluid Dy-
namics Conference, 2013, p. 2852.

——, “Comparison of lattice-boltzmann and finite difference solvers,” in 52nd
Aerospace Sciences Meeting, 2014, p. 1439.

R. Lohner, A. Figueroa, and A. Degro, “Recent advances in a cartesian solver for
industrial les,” in AIAA Scitech 2019 Forum, 2019, p. 2328.

R. Lohner, C. Othmer, M. Mrosek, A. Figueroa, and A. Degro, “Overnight industrial
les for external aerodynamics,” in AIAA Scitech 2020 Forum, 2020, p. 2031.

88

[11]

=2

[21]

[22]

R. Lohner and J. D. Baum, “Handling tens of thousands of cores with industrial /legacy
codes: Approaches, implementation and timings,” Computers and Fluids, vol. 85, 10
2013.

R. Lohner and J. Baum, “On maximum achievable speeds for field solvers,” Interna-
tional Journal of Numerical Methods for Heat & Fluid Flow, vol. 24, 08 2014.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
in OSDI’04: Sixth Symposium on Operating System Design and Implementation, San
Francisco, CA, 2004, pp. 137-150.

R. Lohner, Applied Computational Fluid Dynamics Techniques: An Introduction Based
on Finite Element Methods. Wiley, 2008.

G. E. Moore et al., “Cramming more components onto integrated circuits,” 1965.
“Top500 list.” [Online]. Available: https://www.top500.org/

K. Rupp, “42 years of microprocessor trend data.” [Online]. Available:
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

B. Schroeder and G. A. Gibson, “Understanding failures in petascale computers,” in
Journal of Physics: Conference Series, vol. 78, no. 1. IOP Publishing, 2007, p. 012022.

R.-T. Liu and Z.-N. Chen, “A large-scale study of failures on petascale supercomput-
ers,” Journal of computer science and technology, vol. 33, no. 1, pp. 24-41, 2018.

M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji, J. Belak,
P. Bose, F. Cappello, B. Carlson et al., “Addressing failures in exascale computing,”
The International Journal of High Performance Computing Applications, vol. 28, no. 2,
pp. 120-173, 2014.

F. Petrini, K. Davis, and J. C. Sancho, “System-level fault-tolerance in large-scale
parallel machines with buffered coscheduling,” in 18th International Parallel and Dis-
tributed Processing Symposium, 2004. Proceedings. TEEE, 2004, p. 209.

S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in large scale systems:
long-term measurement, analysis, and implications,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, 2017,
pp. 1-12.

F. Cappello, “Fault tolerance in petascale/exascale systems: Current knowledge, chal-
lenges and research opportunities,” The International Journal of High Performance
Computing Applications, vol. 23, no. 3, pp. 212-226, 2009.

B. Schroeder and G. Gibson, “A large-scale study of failures in high-performance com-
puting systems,” IEEFE transactions on Dependable and Secure Computing, vol. 7, no. 4,
pp. 337-350, 2009.

J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre, D. Barkai,
J.-Y. Berthou, T. Boku, B. Braunschweig et al., “The international exascale software

project roadmap,” The international journal of high performance computing applica-
tions, vol. 25, no. 1, pp. 3—60, 2011.

89

[26]

D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy checkpointing: Exploiting temporal
locality in failures to mitigate checkpointing overheads on extreme-scale systems,” in
2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. 1EEE, 2014, pp. 25-36.

F. Cappello and G. Bosilca, “Application-driven fault-tolerance for high perfor-
mance distributed computing.” [Online]. Available: https://fault-tolerance.org/wp-
content/uploads/2018/08 /europarl8-Introduction.pdf

“MPI: A message-passing interface standard,” p. 852. [Online]. Available:
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

S. Louca, N. Neophytou, A. Lachanas, and P. Evripidou, “Mpi-ft: Portable fault tol-
erance scheme for mpi,” Parallel Processing Letters, vol. 10, no. 04, pp. 371-382, 2000.

G. E. Fagg and J. J. Dongarra, “Ft-mpi: Fault tolerant mpi, supporting dynamic appli-
cations in a dynamic world,” in Furopean Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting. Springer, 2000, pp. 346-353.

M. Beck, J. J. Dongarra, G. E. Fagg, G. Al Geist, P. Gray, J. Kohl, M. Migliardi,
K. Moore, T. Moore, P. Papadopoulous et al., “Harness: A next generation distributed
virtual machine,” Future Generation Computer Systems, vol. 15, no. 5-6, pp. 571-582,
1999.

G. E. Fagg, A. Bukovsky, and J. J. Dongarra, “Harness and fault tolerant mpi,” Parallel
Computing, vol. 27, no. 11, pp. 1479-1495, 2001.

“Ft-mpi.” [Online|. Available: https://icl.utk.edu/ftmpi/overview/index.html

A. Hassani, A. Skjellum, and R. Brightwell, “Design and evaluation of fa-mpi, a trans-
actional resilience scheme for non-blocking mpi,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. 1EEE, 2014, pp.
750-755.

A. Hassani, A. Skjellum, P. V. Bangalore, and R. Brightwell, “Practical resilient cases
for fa-mpi, a transactional fault-tolerant mpi,” in Proceedings of the 3rd Workshop on
Ezascale MPI, 2015, pp. 1-10.

W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra, “Post-failure recovery
of mpi communication capability: Design and rationale,” The International Journal of
High Performance Computing Applications, vol. 27, no. 3, pp. 244-254, 2013.

“Draft document for a standard message-passing interface” [Online]. Available:
https://fault-tolerance.org/ulfm /ulfm-specification/

“Mpich overview.” [Online]. Available: https://www.mpich.org/about/overview/

“Mpich wiki, fault tolerance.” [Online]. Available:
https://wiki.mpich.org/mpich/index.php/Fault_ Tolerance

“Mpich github issue forum.” [Online]. Available:
https://github.com/pmodels/mpich/issues/2198

90

[41]

[42]

[44]

[45]

[46]
[47]

[48]

[52]

[53]

M. Gamble, R. Van Der Wijngaart, K. Teranishi, and M. Parashar, “Specification of
fenix mpi fault tolerance library version 1.0.” Sandia National Lab.(SNL-NM), Albu-
querque, NM (United States), Tech. Rep., 2016.

N. Weeks, G. Luecke, P. Maris, and J. Vary, “Challenges in developing mpi fault-
tolerant fortran applications,” in 2018 IEEFE International Conference on Cluster Com-
puting (CLUSTER). 1EEE, 2018, pp. 524-531.

I. Laguna, T. Gamblin, K. Mohror, M. Schulz, H. Pritchard, and N. Davis, “A global
exception fault tolerance model for mpi,” in Workshop on Exascale MPI at Supercom-
puting Conference 2014, 2014.

M. M. Ali, J. Southern, P. Strazdins, and B. Harding, “Application level fault recovery:
Using fault-tolerant open mpi in a pde solver,” in 2014 IEEE International Parallel &
Distributed Processing Symposium Workshops. 1EEE, 2014, pp. 1169-1178.

S. Pauli, M. Kohler, and P. Arbenz, “A fault tolerant implementation of multi-level
monte carlo methods,” Parallel computing: Accelerating computational science and
engineering (CSE), vol. 25, pp. 471-480, 2014.

“Alsvid-uq.” [Online]. Available: http://www.sam.math.ethz.ch/alsvid-uq/

R. I. Van Der Wijngaart, M. R. U. Gamell, K. Teranishi, E. Valenzuela, M. A. Her-
oux, and M. R. U. Parashaar, “Fenix a portable flexible fault tolerance programming
framework for mpi applications.” Sandia National Lab.(SNL-NM), Albuquerque, NM
(United States), Tech. Rep., 2016.

M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar, “Explor-
ing automatic, online failure recovery for scientific applications at extreme scales,” in
SC’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1EEE, 2014, pp. 895-906.

K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for matrix opera-
tions,” IEEE transactions on computers, vol. 100, no. 6, pp. 518-528, 1984.

P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra, “Algorithm-based fault
tolerance for dense matrix factorizations,” Acm sigplan notices, vol. 47, no. 8, pp.
225-234, 2012.

P. Du, P. Luszczek, and J. Dongarra, “High performance dense linear system solver
with resilience to multiple soft errors,” Procedia Computer Science, vol. 9, pp. 216225,
2012.

I. Rabinovitz, P. Shamis, R. L. Graham, N. Bloch, and G. Shainer, “Network offloaded
hierarchical collectives using connectx-2’s core-direct capabilities,” in Furopean MPI
Users’ Group Meeting. Springer, 2010, pp. 102-112.

L. Wan, K. V. Mehta, S. A. Klasky, M. D. Wolf, H. Y. Wang, W. H. Wang, J. C.
Li, and Z. Lin, “Data management challenges of exascale scientific simulations: A case
study with the gyrokinetic toroidal code and adios,” Oak Ridge National Lab.(ORNL),
Oak Ridge, TN (United States), Tech. Rep., 2019.

91

[54]

[55]

[64]

[65]

[66]

R. Lohner and J. D. Baum, “Load balancing for multiphysics,” in 21st AIAA Compu-
tational Fluid Dynamics Conference, 2013, p. 2856.

G. J. Gassner and A. D. Beck, “On the accuracy of high-order discretizations for un-
derresolved turbulence simulations,” Theoretical and Computational Fluid Dynamics,
vol. 27, no. 3-4, pp. 221-237, 2013.

J. R. Bull and A. Jameson, “Simulation of the taylor—green vortex using high-order
flux reconstruction schemes,” AIAA Journal, vol. 53, no. 9, pp. 27502761, 2015.

S. R. Ahmed, G. Ramm, and G. Faltin, “Some salient features of the time-averaged
ground vehicle wake,” SAE Transactions, pp. 473-503, 1984.

M. Minguez, R. Pasquetti, and E. Serre, “High-order large-eddy simulation of flow over
the “ahmed body” car model,” Physics of fluids, vol. 20, no. 9, p. 095101, 2008.

“Argo cluster, computing resource at george mason university.” [Online]. Available:
http://wiki.orc.gmu.edu/index.php/About_ ARGO

J. T. Daly, “A higher order estimate of the optimum checkpoint interval for restart
dumps,” Future generation computer systems, vol. 22, no. 3, pp. 303-312, 2006.

A. Cavelan, J. Li, Y. Robert, and H. Sun, “When amdahl meets young/daly,” in 2016
IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2016, pp.
203-212.

J. W. Young, “A first order approximation to the optimum checkpoint interval,” Com-
munications of the ACM, vol. 17, no. 9, pp. 530-531, 1974.

A. Corrigan, F. Camelli, R. Lohner, and F. Mut, “Semi-automatic porting of a large-
scale fortran cfd code to gpus,” International Journal for Numerical Methods in Fluids,
vol. 69, no. 2, pp. 314-331, 2012.

M. Bahi and C. Eisenbeis, “High performance by exploiting information locality
through reverse computing,” in 2011 238rd International Symposium on Computer Ar-
chitecture and High Performance Computing. IEEE, 2011, pp. 25-32.

J. McCalpin, “Memory bandwidth and system balance in hpc systems,” 2016. [Online].
Available: http://scl6.supercomputing.org/2016,/10/07/sc16-invited-talk-spotlight-dr-
john-d-mccalpin-presents-memory-bandwidth-system-balance-hpc-systems/index.html

A. Pohl, B. Cosenza, M. A. Mesa, C. C. Chi, and B. Juurlink, “An evaluation of
current simd programming models for c++,” in Proceedings of the 3rd Workshop on
Programming Models for SIMD/Vector Processing, 2016, pp. 1-8.

P. Estérie, J. Falcou, M. Gaunard, and J.-T. Lapresté, “Boost. simd: generic program-
ming for portable simdization,” in Proceedings of the 2014 Workshop on Programming
models for SIMD/Vector processing, 2014, pp. 1-8.

N. Losada, P. Gonzalez, M. J. Martin, G. Bosilca, A. Bouteiller, and K. Teranishi,
“Fault tolerance of mpi applications in exascale systems: The ulfm solution,” Future
Generation Computer Systems, vol. 106, pp. 467481, 2020.

92

Biography

Atis Degro received his Professional Bachelor degree in Civil Engineering from Riga Techni-
cal University in 2009. A year later he received a Professional Master degree from the same
university. He went on to receive a Master of Science degree in Computational Mechanics at
Technical University of Munich in 2012. After working for four years as research engineer at
SL-Rash in Germany, he came to George Mason University for PhD studies. He graduated
with a PhD degree in Physics from George Mason University in 2020.

93

