
UTILIZING MODEL fNTEROPERABlLITY AND SPATIAL CLOUD COMPUTING� 
TO ENABLE THE COMPUTABILITY OF DUST STORM FORECASTING� 

by 

Qunying Huang� 
A Dissertation� 

Submitted to the� 
Graduate Faculty� 

of� 
George Mason University� 

in Partial Fulfillment of� 
The Requirements for the Degree� 

of� 
Doctor of Philosophy� 

Earth Systems and Geoinfonnation Sciences� 

Committee: 

Dr. Chaowei Yang, Dissertation Director ~~ 
~-jw D.,. Jt,.-{~ Dr. George Taylor, Committee Member 

~ j J Dr. Donglian Sun, Committee Member 

~~Dr. Songqing Chen, Committee Member 

J.f\.n~ Dr. Peggy Agouris, Depmiment Chairperson 

-;2:J------Dr. Timothy Bom, Associate 

Dean for Academic and Student 
Affairs, College of Science 

rzJ) ~c..a.....~~Dr. Vikas Chandhoke~ Dean, College of Science 

Date: .J~~summer Semester 2011 
--~:J---- George Mason Ui1iversity 

Fairf2-x, VA 



2 
 

UTILIZING MODEL INTEROPERABILITY AND SPATIAL CLOUD COMPUTING 

TO ENABLE THE COMPUTABILITY OF DUST STORM FORECASTING 

 
A dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at George Mason University 

 
 
 

By 
 
 
 
 

Qunying Huang 
Earth Science and Geoinformaiton 
George Mason University, 2011 

 
 
 
 

Director: Chaowei Yang, Professor 
Geography and Geoinformation Science 

 
 
 
 
 

Summer Semester 2011 
George Mason University 

Fairfax, VA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 
 

 
 
 
 
 
 
 
 

Copyright: 2011 Qunying Huang 
All Rights Reserved  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



4 
 

 
DEDICATION  

 
 
 

This is dedicated to my wonderfully family. This thesis is dedicated to my mother, who 

inspires and encourages me to set high goals and gives me the confidence to achieve 

them, and who is always my spiritual support, especially during the hard time. It is also 

dedicated to my father, who gives me positive and optimistic personality to overcome the 

difficulties. It is also dedicated to my sisters and young brother, they help me take care of 

my parents while I was focus on my research and support me all those years. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



5 
 

 
 
 

ACKNOWLEDGEMENTS  
 
 

I wish to thank Dr. Chaowei Yang, who has been the thesis supervisor and my committee 

chairman. His wise advice, insightful criticisms, and patient encouragement aided the 

writing of this thesis in innumerable ways. I would also like to thank my committee 

members, Dr. George Talyor, Dr. Donglian Sun, and Dr. Songqing Chen, who were more 

than generous with their expertise and precious time in commenting, reading, 

encouraging, and most of all patience throughout the entire process. I would also like to 

thank Dr. Karl Benedict whose assists in this project was greatly needed and deeply 

appreciated. Special thanks to Dr. Abdelmounaam Rezgui for the many hours of 

proofreading and valuable advice. Finally, I would like to thank my dear friends, 

Yunfeng Jiang, Jing Li, Min Sun, Kai Liu, Jizhe Xia, Chen Xu, Zhipeng Gui, Peter 

Lostritto, who have supported me throughout the process. I will always appreciate all 

they have done. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6 
 

 
 
 
 
 

TABLE OF CONTENTS  
 

List of Tables……………………………………………………………………………..7 
List of Figures…………………………………………………………………………….8 
Abstract................................................................................................................……….10 
Chapter 1................................. ......................................................................................... 12 
Chapter 2…………………………………………………………………………………27 
Chapter 3…………………………………………………………………………….…...50 
Chapter 4 ………………………………………………………………………….….….55 
Chapter 5………………………………………………………………………….….…..86 
Chapter 6………………………………………………………………………..………103 
Chapter 7………………………………………………………………………..………116 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



7 
 

 
 
 
 
 

LIST OF TABLES  
 
 

Table 4.1 Geographic scope experiment…………………………………………… 70 
Table 4.2 Spatial resolution experiment……………………………………………73 
Table 4.3 Experimental results for better leveraging HPC………………………… 80 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



8 
 

 
 

LIST OF FIGURES  
 

 
Figure 4.1………………………………………………………………………………..57 
Figure 4.2………………………………………………………………………………..58 
Figure 4.3………………………………………………………………………………..60 
Figure 4.4………………………………………………………………………………..61 
Figure 4.5………………………………………………………………………………..62 
Figure 4.6………………………………………………………………………………..63 
Figure 4.7………………………………………………………………………………..64 
Figure 4.8………………………………………………………………………………..65 
Figure 4.9………………………………………………………………………………..66 
Figure 4.10……………………………………………………………………………....67 
Figure 4.11………………………………………………………………………………68 
Figure 4.12………………………………………………………………………………69 
Figure 4.13………………………………………………………………………………69 
Figure 4.14………………………………………………………………………………71 
Figure 4.15………………………………………………………………………………72 
Figure 4.16………………………………………………………………………………74 
Figure 4.17………………………………………………………………………………75 
Figure 4.18………………………………………………………………………………76 
Figure 4.19………………………………………………………………………………77 
Figure 4.20………………………………………………………………………………77 
Figure 4.21………………………………………………………………………………78 
Figure 4.22………………………………………………………………………………78 
Figure 5.1………………………………………………………………………………..86 
Figure 5.2………………………………………………………………………………..91 
Figure 5.3………………………………………………………………………………..92 
Figure 5.4………………………………………………………………………………..92 
Figure 5.5………………………………………………………………………………..93 
Figure 5.6………………………………………………………………………………..94 
Figure 5.7………………………………………………………………………………..95 
Figure 5.8………………………………………………………………………………..97 
Figure 5.9……………………………………………………………………………….100 
Figure 5.10……………………………………………………………………………...101 
Figure 6.1……………………………………………………………………………….106 
Figure 6.2…………………………………………………………………………….…108 
Figure 6.3…………………………………………………………………………….…112 
Figure 6.4…………………………………………………………………………….…112 
Figure 6.5…………………………………………………………………………….…113 
Figure 6.6…………………………………………………………………………….…113 
 
  



9 
 

 
 

 
ABSTRACT  

 
 
 

UTILIZING MODEL INTEROPERABILITY AND SPATIAL CLOUD COMPUTING 

TO ENABLE THE COMPUTABILITY OF DUST STORM FORECASTING 

 
Qunying Huang, MS 
 
George Mason University, 2011 
 
Dissertation Director: Chaowei Yang 
 
 

Both environmental and human challenges, such as deforestation and desertification, 

require scientifically sound simulations of physical phenomena to better understand the 

past and to better predict future trends for improved decision support. However, many 

scientific problems cannot be processed using a single computer and require computing 

capability from many distributed computers. The problems should be solved by 

interdisciplinary efforts instead of by a single science community. Using dust storm 

forecasting as a case study, I investigate how interoperability technologies can facilitate 

data access service, model input integration, model coupling, and output utilization and 

dissemination. Additionally, the research will explore how to utilize spatiotemporal 

patterns of phenomena, models and computing resources to improve the performance of 

dust storm forecasting. Finally, I adopt and optimize cloud computing platforms through 

spatiotemporal patterns to enable the computability of dust storm forecasting over a large 

area with high resolution to support geospatial decision-making. This research eventually 

reduce the execution time and communication for two heterogeneous models, Eta-8bin 
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and NMM- dust storm models by enabling the interoperable and loosely-coupling 

execution of the two models. 
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CHAPTER 1 
 

INTRODUCTION 
  

 Both environmental and human challenges, such as deforestation and 

desertification, require scientifically sound simulations of physical phenomena to better 

understand the past and to better predict future trends for improved decision support. 

Simulating geospatial phenomena is especially complex and time consuming when 

considering the dynamics of Earth system phenomena, for example, modeling and 

predicting cyclic processes (Donner et al., 2009) including ocean tides (Cartwright, 

2000), earthquakes (Schuster, 1897), and dust storms (Xie et al., 2010).  Such periodic 

phenomena simulation requires the iteration of the same set of intensive computations for 

many times. Therefore, they cannot be processed by a single computer and high-

performance computing is usually adopted to speed up the computing process. 

 Large amount of multi-dimensional data are available from multiple sources, such 

as satellites observations and model simulations. Ingesting widely available data 

resources for model initiation, instead of using restricted data resources, would greatly 

improve the model integration. The capability of disseminating model output would 

greatly facilitate the sharing of data and model results among science communities. In 

addition, enabling the communication of multiple heterogeneous models, developed by 

different organizations, has attracted a lot of interest and always been a great challenge 

(Nativi et al., 2004; Zhou, 2006; Hu and Bian, 2009). 

 This chapter will introduce dust storm generation and impact, challenges of dust 

storm modeling, computing, and interoperability from dust storm forecasting. We will 
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also discuss and present the potential computing and interoperability solutions that are 

needed to address the challenges and to enhance dust storm research and forecasting by 

facilitating data access, model input integration, model coupling, output utilization and 

dissemination, and enabling the computability of dust storm forecasting. We will 

conclude the chapter by discussing the proposed research area. 

1.1 Dust Storm  

Dust storms are the result of strong turbulent wind systems entraining particles of 

dust into the air, reducing visibility down to several meters (Goudie and Middleton, 

1992). Global climate change has driven up the frequency and intensity of dust storms in 

the past decades with negative impacts on the environment, human health, and assets. For 

example, dust storms 1) contain marine nutrients, such as active iron and phosphorus, 

which can result in algal blooms over the ocean surface when decomposing into the 

ocean water (Dulac et al., 1996), 2) act as a pollutant which reduces air quality and 

affects the public health by causing allergies, respiratory diseases, and eye 

infections(Nickling and Gillies, 1993); 3) impact both regional and global environment 

and climate (Gong et al., 2003; Sokolik and Toon, 1996; Tegen and Fung, 1994) in 

cooling the oceans by reflecting solar radiation back to space (Gong et al., 2003) and 

contributing to global aerosol mass load and optical thickness (Gong et al., 2003). A dust-

laden atmosphere with an average optical thickness of 0.5 would cause net radiative 

forcing of +20 to 40 W/m2 over arid regions and -5 ~-15 W/m2 over the ocean (Sokolik 

and Toon, 1996). 
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The severe impacts of dust storms on the environment have motivated scientists to 

better understand and predict the distribution and intensity of dust emission, deposition, 

and structure by developing dust models to 1) predict dust storms; 2) understand dust 

processes; 3) quantify the global dust cycle; and 4) re-construct past climates (Shao and 

Dong, 2006). Since the late 1980s, several research groups have developed dust models 

that can correctly predict spatiotemporal patterns, evolution, and order of magnitude of 

dust concentration, emissions and deposition (e.g., Westphal et al. 1988; Gong et al. 

2003; Shao et al. 2003; and Han et al. 2004). 

1.2 Dust Storm Forecasting and Computing Challenges 

1.2.1 Distributed Data Resources and Heterogonous Models 

 Geospatial datasets are characterized by 1) large amount, 2) multiple dimensions, 

3) geographically distributed over several servers and 4) various formats. They are, 

therefore, too complex to be easily browsed or combined with other information. Datasets 

from various research studies have become increasingly available because of the 

advancements in data collection technologies, data storage facilities, and data production, 

processing and retrieval algorithms and models. However, scientists still face the 

embarrassing situations that datasets may be available but not readily usable (Yang and 

Raskin, 2009).  Data interoperability has been seen as a solution for sharing and 

integrating geospatial datasets by solving the syntactic, schematic, and semantic as well 

as the spatial and temporal heterogeneities among various representations of real–world 

phenomena (Brodeur et al., 2003). 
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 Research on data interoperability to facilitate data discovery, access, and 

utilization is more focused on the aspects of integrating distributed heterogeneous 

datasets for geovisulization and performing some simple spatial analysis based on open 

standards (Cao et al., 2009).  However, the workflow of how to utilize those massive 

available datasets to facilitate model integration and interoperability is not fully 

researched (Argent, 2004).  Several aspects can be explored for model interoperability: 

 1) Utilizing distributed datasets as model input. Traditionally, in order to run a 

model, users need to access specific data centers to download the model input data with 

specific data formats as model input.  For regional dust storm simulation or weather 

forecasting models, model input should be obtained from the NCAR data center, 

produced from NCEP's NAM (http://stu-in-flag.net/nam.php) or GFS model 

(http://www.emc.ncep.noaa.gov/gmb/moorthi/gam.html) to extract meteorological 

parameter to initialize the model. At the same time, many other data centers also provide 

the meteorological datasets, which are ready for atmospheric model initialization; 

 2) Enabling the sharing of model outputs and intermediate products.  For a public 

oriented real time dust storm forecasting systems, users are expected to receive the results 

in a vivid fashion. A good strategy should be devised to enable users to easily access the 

temporarily predicted results during model execution and share the model output after 

forecasting is completed. The model usually produces temporary results in 3-hourly 

intervals.  The model outputs and intermediate products should be available through the 

automated exposure of those products through service interfaces that are broadly 

supported by client analytic and visualization applications. 
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 3) Communications of models. Most models have their own semantics, schemas, 

tools, and interfaces, which are usually not effectively interoperable (Nativi et al., 2004). 

Due to the development of Internet technology, the information, processing tools and 

application models for various disciplines and fields should be able to communicate and 

interact with each other via Internet. Non-experts should be able to utilize, through the 

Internet, the models without understanding their details. The solution to this problem is to 

unify or enable models to interoperate to provide a single information template across 

applications, thus, enabling the communication and reuse of the model components. 

1.2.2Computational Intensity 

 For forecasting purposes, the entire computing time is normally limited. For 

example, a 2 hour period is recommended for one day forecasting (Lenz et al., 1995). 

Reducing the geographic scope and resolutions is usually used to complete the 

simulations within the time limit (Wolters et al., 1995). However, a zip code level 

resolution is needed for dust storm forecasting to support public health decision making 

(Yang et al., 2008). This poses significant computational challenges for dust storm 

simulations to be enhanced by a) reducing computing time, b) supporting high resolution, 

and c) lengthening the prediction time period. 

 Simulating geospatial phenomena is especially complex and computing intensive 

when considering the full dynamics of Earth system phenomena, for example, modelling 

and predicting cyclic processes (Donner et al., 2009), including ocean tides (Cartwright, 

2000), earthquakes (Schuster, 1897), and dust storms ( Xie et al., 2010).  Such periodic 

phenomena simulation requires the iteration of the same set of intensive computations for 
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a series of equations for many times. In the past decades, the increasing need for 

computing power for such phenomena has been addressed by using either High 

Performance Computing (HPC) (Armstrong et al., 2005, Yang et al., 2008, Huang and 

Yang, 2010, Clematis et al., 2003, Baillie et al., 1997, Reed, 2008). 

While the parallelization approach is used to solve large scale complex computing 

problems in Geosciences, communication and synchronizations involved among 

computing units has limited the scalability of massively parallel computers(Drake and 

Foster, 1995).  While size and memory requirements are essential factors in parallel 

computing, communication overhead and load balancing substantially contribute to the 

overall system execution time. In general, the processing throughput decreases while 

communication overhead increases with the numbers of processes involved for a parallel 

task (Sterling et al., 1995). Both load balancing and communication may impact 

performance considerably. How to better leverage HPC to improve the performance of 

parallel systems, therefore enabling the computability of compute intensive geosciences 

problems, has always been a research issue (Yang et al., 2011). 

1.3 Potential Solutions with Spatial Cloud Computing 

 Computing intensive challenges drive the evolution of distributed computing 

paradigms from cluster computing, grid computing, to cloud computing, which can 

provide more powerful and scalable computing capabilities to enable the computability of 

geoscience applications. In addition, the performance of computing could be further 

improved and optimized through utilizing spatiotemporal patterns of phenomena, data, 

services, models and computing resources. 
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1.3.1 Optimization through spatiotemporal patterns 

 Spatiotemporal principles widely exist in all science domains, such as geographic 

sciences, biological sciences, and social sciences. It is very important for a parallel 

computing system to leverage the spatiotemporal principles, such as space and time 

constraints/drives, in computing arrangements, selection and utilization to enable the 

computability of science problems (Yang et al., 2011b). Spatiotemporal principles should 

be considered in algorithms, methodology and phenomena simulations. For example, in 

atmospheric sciences, the actual number of grid points selected for buffering would 

greatly impact both computation and forecasting accuracy (Nanjundiah, 1998; Xie et al., 

2010). In addition, when forecasting dust storm as a weather component, we will consider 

the time and space interaction, i.e., how time changes impact the space distribution of the 

dust in the atmosphere. A lot of studies have demonstrated that Geoscience and HPC can 

benefit from each other (Wang and Liu, 2009). Guided by the spatiotemporal principles, 

we can develop scheduling strategies more efficiently, and therefore the performance of 

the parallel system could be improved and optimized (Yang et al., 2011a). However, 

leveraging HPC to achieve better performance requires understanding and balancing 

spatiotemporal patterns and constraints (Yang et al., 2011a). 

1.3.2 Model Interoperability 

 The solution to fast access to science products, and appropriate represent the 

products using existing tools are in developing interoperable systems that can facilitate 

efficient use and reuse of model products (Argent 2004).A unify or interoperable model 

can also be used through open information template for data ingesting and output 
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dissemination cross applications, therefore, to enable the communication and reuse of the 

model components. One solution to achieve model interoperability is the integration of 

Geographic Information System (GIS) capabilities into model integration workflows, 

either as data management, mapping and analysis tools that are largely independent of the 

modeling systems, or as the primary system through which both data and model 

execution are controlled (Argent 2004). 

 In this dissertation, open interoperability standards for data access and 

dissemination will be explored to build an integrated and interoperable dust storm 

modeling system. Such an interoperable model could address the general issues of 

accessibility, compatibility, and timeliness for both researchers and decision makers.  

1.3.3 Nested Models 

 Model results are required with high resolution, larger domain size and longer 

duration for specific applications, such as public health decision supporting.  However, 

current constraints on computing power and the scalability of parallel systems preclude 

an immediate solution to satisfy the requirements. More strategies should be explored to 

resolve these problems (Kuligowski and Barros, 1999, Yang et al., 2010).  One approach 

is using adaptive multilevel modeling (AMM), in which different physical processes are 

resolved independently at the relevant spatial scales, thus leading to a suite of simple 

models operating on grids of different spatial resolutions (Barros, 1995; Kuligowski and 

Barros, 1999).  Another approach is to nest a finer-scale grid or succession of grids 

within a model to enhance the resolution over specific areas of interest while moderating 

the required computational cost (Anthes, 1983, Kuligowski and Barros et al., 1999).Such 
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an approach is called nested models, or more commonly named as high resolution 

limited-area models.  They have the capability to generate meaningful small-scale 

features from low-resolution information, provided as initial lateral boundary conditions 

(Ramón et al., 2002). In the last two decades, nested models have been gaining a wide 

acceptance in the scientific community and have been considered as powerful 

methodology for predicting and studying weather and climate patterns (White et al., 

1999). 

 The model nesting approach is especially useful because the dust storm has the 

characteristics of special spatial patterns and time variability which correlate with the soil 

type and geographic locations. For a large geographic area, dust storm occurs only in 

small local regions. Therefore, a nested dust storm model with the coarse results for the 

overall domain and higher resolution results for small regions with high dust 

concentration, would enable the predictions for a large area, with high resolution while 

complying with the two-hour time constraints for one-day predictions imposed on the 

model computation. 

1.3.3 Spatial Cloud Computing 

 Cloud Computing is a new computing paradigm in which dynamic and often 

virtualized resources are provided as a service over the Internet. Within such a platform, 

computing resources can be scaled up or down based on computing requirements in real 

time. As geospatial processing and analysis is often complex with the intensities of data, 

computing, concurrent access, and spatiotemporal patterns, a geospatial application may 

need only a single CPU at one time but may need hundreds of CPUs at other times. For 
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instance, dust storm simulation may need only one computing instance for low resolution 

and small area forecasting while a large computing pool is required for high resolution 

and large area forecasting. Therefore, such scalable cloud services would facilitate 

geospatial applications, elastically satisfying changes of computing requirements. 

 In addition, cloud computing users do not have to manage the computing 

infrastructure themselves(Vaquero et al., 2009).Therefore, cloud computing is able to 

provide a transparent platform for intensive processing so that users do not need to 

consider the underlying mechanism of data and service delivery and the correspondingly 

complex and time-consuming computational tasks required (Evangelinos and Hill, 2009). 

This is a pay as you go long held dream from distributed computing users (Yang et al., 

2011b). 

1.3.3.1 Cloud Computing Background 

 Technological advancements, such as multi-core processors and networked 

computing environments, drive computing platforms through several paradigms 

including cluster computing, Grid computing (Foster and Kesselman, 1998), P2P 

computing (Oram, 2001), and most recently, cloud computing (Armbrust et al., 2009). 

The basic concept of cloud computing is the use of the network, storage and computing 

power through the Internet. This computing model integrates Web 2.0, on-demand 

deployment, Internet delivery of services and open source software, and visualization, 

and visualization is considered as a key component to satisfy the computing needs of the 

users (Buyya, 2008). 
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 The National Institute of Standards and Technology (NIST) defines cloud 

computing as "...a model for enabling convenient, on-demand network access to a shared 

pool of configurable computing resources (e.g., networks, servers, storage, applications 

and services) that can be rapidly provisioned and released with minimal management 

effort or service provider interaction"(Mell and Grance, 2009). NIST also defines five 

essential characteristics that differentiate cloud computing from other distributed 

computing paradigm: 1) on-demand self-service, 2) multi-tenancy, 3) measured services, 

4) device and location independent resource pooling, and 5) rapid elasticity (Mell and 

Grance, 2009). 

 The forms of cloud service models include Infrastructure as a Service (IaaS), 

Platform as a service (PaaS), Software as a Service (SaaS) and Data as a Service (DaaS). 

The first three are defined by NIST and DaaS is essential to geospatial sciences. These 

four services are referred to collectively as XaaS. 

• IaaS is the most popular cloud service, which delivers computer infrastructure, 

including physical machines, networks, storage and system software, as 

virtualized computing resources over computer networks. IaaS enables users to 

configure, deploy, and run operating systems (OS) and applications based on the 

OS. IaaS users should have system administrative knowledge about the OS and 

they have full control over the virtualized machine. The most notable commercial 

product is the Amazon Elastic Compute Cloud (EC2, 

http://aws.amazon.com/ec2/). 
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• PaaS is a higher level service than IaaS and provides a platform service for 

software developers to develop applications. In addition to computing platforms, 

PaaS provides a layer of cloud-based software and APIs that can be used to build 

higher-level services. Microsoft Azure (www.microsoft.com/windowsazure) and 

Google App Engine are the most notable examples of PaaS. Users can develop or 

run existing applications on such a platform and do not need to consider 

maintaining the OS, server hardware, load balancing or computing capacity. PaaS 

provides all the facilities required to support the complete lifecycle of building 

and deploying applications and services entirely through the Internet. 

• SaaS is the most used type of cloud computing service and provides various 

capabilities of sophisticated applications that are traditionally provided through 

the Web browser to end users. Notable examples are Salesforce.com and Google's 

gmail and apps. The ArcGIS implementation on the cloud is another example of 

SaaS. 

• DaaS is the least well defined of the four types of cloud services. It supports data 

discovery, access, and utilization and delivers data and data processing on 

demand to end users regardless of geographic or organizational location of 

provider and consumer (Olson, 2010). Integrating a layer of middleware that 

collocates data and processing and optimizes cloud operations (Jiang 2011), DaaS 

is able to facilitate data discoverability, accessibility, and utilizability on the fly to 

support science on demand. We are currently developing a DaaS based on several 

cloud platforms. 
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 Based on the characteristics of different cloud models, each cloud model can be 

utilized for different geospatial sciences and applications including storing and acquiring 

Earth Observation data, extracting parameters, configuring and running models, obtaining 

knowledge, making decisions, and collecting users’ feedback. 

1.3.3.2 Spatial Cloud Computing for Earth Sciences 

 There is an urgent need to investigate how geospatial sciences and applications 

can leverage cloud computing to improve the performance and enable the computability 

of scientific problems, and hide the complexity of the computing infrastructure so 

scientists can focus on scientific problems. Earth science applications have special 

requirements that cannot be automatically supported by generic cloud computing 

platforms because most geospatial algorithms and applications are not designed to 

leverage multiple CPUs and be delivered through the Internet as a service. Most 

importantly, both the geospatial sciences and the cloud computing environment are 

spatiotemporal intensive. Earth science phenomena are complex processes and Earth 

science applications often take a variety of data as input with a long and complex 

workflow. It becomes then a critical challenge to deliver such complex applications to the 

cloud as a transparent service to support massive numbers of users. For example, the 

middleware used to schedule computing tasks on a cloud computing platform is mostly 

not developed for Earth science applications and does not take the spatiotemporal 

principles and patterns into consideration. Such middleware should be reengineered to 

support spatiotemporal processing. Also, spatiotemporal patterns of phenomena, data, 
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services, models and computing resources must be utilized to optimize the performance 

of geospatial processing and applications. 

1.4 Proposed Research  

This research reports on a proof-of-concept study of the characterization of dust 

storms in a near-real-time execution scenario, executed on spatial cloud computing 

platforms. The following research is proposed: 

1) Utilize spatiotemporal patterns and principles to improve the performance of 

dust storm simulations. 

2) Access and utilize distributed data resources, model communication, and open 

standards to enable the interoperability of heterogeneous models. 

3) Explore nested models to enable dust storm forecasting with finer resolution, 

larger domain, and longer time scales. 

4) Utilize cloud computing platforms optimized through spatiotemporal principles 

to support the execution of near real-time dust storm forecasting. 

1.5 Thesis Outline 

The thesis consists of seven chapters. This chapter introduces the study by 

analyzing challenges, potential solutions, and proposed research area. Chapter 2 reviews 

related work, including dust storm simulation, parallelization of atmospheric models, 

model interoperability, nested model, spatiotemporal patterns of physical phenomena, 

model, and computing resources, and spatial cloud computing. Based on the existing 

research efforts, Chapter 3 states the research objectives.  Chapter 4 presents how to 
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utilize spatiotemporal patterns in thinking and computing to improve the performance of 

dust storm simulation, through better parallelizing the dust storm model, arranging the 

computing resources and utilizing the spatiotemporal pattern of dust storm. In Chapter 5, 

we investigate more approaches to enable the computability of dust storm for large areas 

and high resolution through loosely-coupled interoperable models. Chapter 6 discusses 

the deployment of dust storm onto cloud computing platforms to enable the nested 

execution of dust storm models. Chapter 7 summarizes research and discusses future 

research. 
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CHAPTER 2  
LITERATURE REVIEW 

 
 For years, Earth scientists have been working on modelling and predicting the 

dust storm phenomena and improving the prediction accuracy to better understand and 

prepare for dust storm events(Westphal et al. 1988; Toon et al. 1988;). However, to 

support public health decision making, and enable the public to make quick responses to 

severe dust storm events, computing issues and challenges must be addressed to enable 

the computability of dust storm forecasting with large spatiotemporal scope and high 

resolution requirement, and to disseminate the model results in an easy-to-access manner 

(Benedict et al., 2011).  While scalability, communication, and synchronization issues 

prevent the parallel system to support such requirements, spatiotemporal principles and 

patterns are proposed to address those issues with optimized computing resources 

selection and arrangement strategies (Yang et al., 2011a; Yang et al., 2011b).  With the 

capability to run regional high-resolution simulations without the enormous 

computational cost of a global model at the same resolution, nested coupling models have 

been considered as powerful tools to predict and study weather and climate patterns 

(White et al., 1999). 

 This chapter will review related works that have been done in areas of dust storm 

simulation, parallelization of dust storm models, nested models, model interoperability to 

enable the loosely-coupled nested model and model result dissemination, and cloud 

computing. 

2.1 Dust Storm Simulation 
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 Usually, dust simulation models are developed by coupling dust process modules 

to atmospheric process models for global, regional and local dust problems (Shao et al., 

2007). Westphal et al. (1988) models dust storms using the limited area tropical model 

(KC) with horizontal grid spacing 220km and 13 vertical layers, coupled with the NASA 

Ames dust processes model (Toon et al. 1988) with 30 aerosol bins ranging from 0.1 to 

80 um in radius. The US Naval Research Laboratory (NRL) has a Navy Operational 

Global Atmospheric Prediction System (NOGAPS) (Rosmond et al., 2002), which 

includes a dust module modified from CARMA developed by Christensen (1997). Gong 

et al., (2003) developed NARCM (Northern Aerosol Regional Climate Model) to model 

and simulate atmospheric soil dust aerosol processes by coupling CAM (Canadian 

Aerosol Module, Gong et al., 2002) and Canadian Regional Climate Model (RCM). The 

United States Air Force Weather Agency (AFWA) supported the Community Aerosol 

and Radiation Model for Atmospheres (CARMA) (Barnum et al., 2004) for the daily 

forecasting of dust, and the model is modified to assimilate meteorological forecast data 

from the Penn State fifth generation Mesoscale Meteorology Model (MM5) (Anthes and 

Warner, 1978). Shao et al. (2007) developed the Computational Environmental 

Modelling System 5 (CEMSYS5,) to couple a limited area atmospheric model (Leslie 

and Wightwick, 1995), and Atmosphere and Land Surface Interaction Scheme (ALSIS) 

module (Irannejad and Shao, 1998). 

 The Dust Regional Atmospheric Model (DREAM, Nickovic et al., 2001) is one of 

the most used for dust cycle modeling and designed to simulate dust entrainment and 

transport on a regional scale by incorporating the effects of particle size distribution on 
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aerosol dispersion and all the major phases of the atmospheric dust life from dust 

production, diffusion and advection, to dust decomposition (Nickovic et al., 2001). 

DREAM can be easily configured and incorporated into many other atmosphere models, 

such as National Centers for Environmental Prediction (NCEP)’s Eta (the SKIRON 

weather forecasting system, Kallos et al. 1997; Nickovic et al., 1997) as Eta-4bin with 4 

classes of particle size and Eta-8bin with 8 classes of particle size.  Eta-4bin and Eta-8bin 

have been tested for various dust storm episodes in various places and resolutions and 

have been operational for three years to provide 72 hour forecasts for the Mediterranean 

region (http://www.icod.org.mt and http://forecast.uoa.gr). However, the Eta-8bin model 

has a coarse spatial resolution of 1/3 of a degree that cannot be used for many potential 

applications (Xie et al., 2010), and Numerical Weather Prediction (NWP) models run in 

sequence and reach validity limits for increasing resolution. Therefore, the Eta/NCEP 

model was replaced in NWS operations by a Non-hydrostatic Mesoscale Model (NMM), 

which could have high resolution up to one kilometer (KM) and runs in parallel (Janjic et 

al., 2001, Janjic, 2003). The coupling of DREAM and NMM (NMM-dust) is used in this 

dissertation for parallel processing and a higher resolution up to zip code level or about 

3KM. 

2.2 Parallelization of Models 

 Dust storm models are developed by adding dust solvers into the regional 

atmospheric models (Shao et al., 2007, Xie et al., 2010), and dust storm models 

parallelization is to parallelize the core atmospheric modules. Atmosphere is modeled by 

dividing the studied area into three-dimensional cells and atmospheric modeling is to 
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solve a system of coupled nonlinear partial differential equations on each cell with 

appropriate boundary conditions (Purohit et al., 1999). The calculations of the equations 

on each cell are repeated with a time step to model phenomena evolution. Therefore, the 

computational cost of an atmospheric model is a function of the number of cells in the 

domain and the number of time steps (Baillie et al., 1997). For a given domain size, the 

cost of explicit three-dimensional hydrodynamics codes behaves like a function of n4, 

where n is a grid dimension, including two horizontal dimension, one vertical dimension 

and time dimension (Baillie et al., 1997). Doubling the geographic scope on the 

horizontal direction would result in a four-fold increase. Halving the spatial resolution 

could result in an eight-fold increase in computational cost as halving the spatial 

resolution would require halving the time step. If the vertical resolution is also doubled, 

the computing complexity could increase sixteen-fold. 

 Parallel architectures are greatly used as an instrumental mechanism for the 

execution of computing intensive applications (Jin et al., 2003; Yang et al., 2005), such 

as Eta Models (Henderson et al., 1994), Rapid Update Cycle (RUC, Rodriguez et 

al.1995), QNH (Baillie et al., 1995), HIRLM (High Resolution Limited Area Model, 

Wolters et al.,1995 ), Fifth-generation Mesoscale Model (MM5, Davis et al. 1999), 

Advanced Regional Prediction System(ARPS, Xue et al., 2003) and RAMS(Cotton et al., 

2003). The advances in computing capacity in CPU frequency and HPC allow modern 

NWP models to reach the resolution of a town level (e.g., Davis et al. 1999).  For 

example, MM5 has been used for real-time weather prediction with grid spacing 

achieving 1 km by the U.S. Army Test and Evaluation Command (Davis et al. 1999).  
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Each cell in an atmospheric model performs essentially the same set of 

computations in, normally, a SPMD (single program, multiple data stream) domain 

decomposition approach and nearest neighbor communication in the physical domains is 

required (Nanjundiah, 1998). However, data dependencies between neighboring cells in 

the vertical directions are much larger than those in the horizontal directions. Horizontal 

decomposition in the model should also consider minimizing communication overhead 

(Wolters et al., 1995). The communication includes halo exchanges, periodic boundary 

updates, parallel transposes, and others. The halo region is the part of the local memory 

allocated around a cell for exchanging information with neighboring cells using message 

passing. The process of data decomposition should define the halo regions assigned to 

each processor and also define a virtual array of processors used to execute these regions 

and create neighboring relations between regions. 

 Optimizations have been conducted by improving the data structure, algorithm 

design, libraries for parallelization, and compiler for compiling the code (Rodriguez et 

al.1995, Rodriguez et al.1996). Rodriguez et al. (1995) studied and compared the issues 

of performance in the parallelization of weather prediction models using two different 

parallelization libraries. The authors also discussed the optimization strategies like the 

minimization of data exchanges through the use of redundant computations in another 

region (Rodriguez et al.1996). Baer and Zhang (1998) proposed to reconstruct the 

prediction equations in a format that will allow a larger time step without loss of 

accuracy. Since the total model run time is determined by the number of cells and time 

step, an increase of the time step can reduce the model simulation time linearly.  In this 
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dissertation, we will conduct a holistic study on how to improve the HPC performance 

for enabling computing capability of dust storm forecasting from the perspectives of 

discovering and employing the spatiotemporal patterns that exist in dust storm 

phenomena, models, and computing resources and through determining the 

parallelization degree, method, and how to select and arrange computing resources. 

2.3 Spatiotemporal Patterns of Dust Storm, Models And Computing 

Resources 

 Dust generation and the parameterization of dust deposition processes show high 

variability spatiotemporal scales and respond in a non-linear way to a variety of 

environmental factors, such as soil moisture, land cover, and surface atmospheric 

turbulence (Basart et al., 2009). Spatiotemporal patterns exist in atmosphere phenomena 

and dust storm process in several aspects (Yang et al., 2011): 1) atmospheric phenomena 

and dust storm process are heterogeneous so that there may be more activity in some 

physical regions than in other regions (Koziar et al., 2001). 2) Increasing the 

spatiotemporal resolution of the models would result in large memory requirements and 

longer execution time. The cost of explicit 3D hydrodynamics codes is in the order of n3, 

where n refers to the grid dimension. Doubling the resolution results in a minimum of an 

eight-fold increase in computational cost (Baillie et al, 1997). 3) For parallel processing, 

buffer or halo regions produced by neighboring processors are needed for local 

computation (Rodriguez et al., 1996).  However, the actual number of grid cells selected 

for overlap and communication depends on the order of the finite difference scheme, 
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which would greatly impact both computation and forecasting accuracy (Nanjundiah, 

1998). For example, Equation 2.1 (Rodriguez et al., 1996) indicates that the computation 

of df in any grid cell depends on the values of array f on the four neighboring points. 4) 

Different domain sizes along W-E and S-N directions require different numbers of grid 

cells along these two directions, and result in different amounts of grid cells to exchange 

boundary conditions along West-East (W-E) and South– North (S-N) directions. Thus, 

for the same degree of parallelization, different decompositions can result in different 

communication overheads (Yang et al., 2011a). 5) Increasing the forecasting period will 

increase the computation of the dust storm model. 6) Time changes impact the space 

distribution of the dust in the atmosphere. 

����, �� = 	



. ���� − 1, �� + ��� + 1, �� + ���, � − 1� + ���, � + 1�� − ���, ��          (2.1) 

For computing resources, spatiotemporal patterns are primarily present in three 

aspects: 1) the location of the computing nodes, 2) the network connection between 

computing nodes, and 3) the storage location and speed. 

 In this research, the spatiotemporal patterns of dust storm phenomena, models, 

and computing resources will be utilized to optimize the performance and therefore 

enable the computability of large area and high resolution dust storm forecasting.  
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2.4 Earth Science Model Interoperability 

 The heterogeneity of existing protocols and data models have gained wide 

acceptance among the Earth Science community (Nativi et al, 2006). Data 

interoperability are greatly discussed and resolved through the open standards, such as 

Open Geospatial Consortium (OGC)’s specifications, e.g., Web Feature Service (WFS), 

Web Map Service (WMS) and Web Coverage Service (WCS, Evans 2003), and a variety 

of tools and services, e.g., Mapserver, THREDDS (Thematic Real-time Environmental 

Distributed Data Services). These standards have greatly promoted data interoperability 

by enabling the Earth science community to share massive datasets. Section 2.1 

introduces several popular data models used within the Earth science communities, some 

protocols and standards (e.g., WFS, WMS, and WCS), and some popular tools used to 

disseminate the massive Earth science data. 

2.4.1 Data Formats 

 NetCDF is a very popular data format that is used within the Earth sciences 

community to store the output of weather and climate forecast models. The output of 

Earth science models is different from many other datasets currently used by the 

geospatial community. Generally, the data format supports several parameters (e.g., 

temperature, pressure, wind speed and direction) that vary in three spatial dimensions and 

involve two distinct time scales (model run time and forecast times) used in these model 

outputs (Nativi et al, 2006). Through several different client/server protocols, e.g., 

OPeNDAP (Open-source Project for a Network Data Access Protocol), ADDE (Abstract 
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Data Distribution Environment) and HTTP, which are already established in the 

atmospheric and ocean sciences data provider community, the netCDF interface is 

capable to supporting access to many different file formats , e.g. HDF5, GRIB, GINI, 

McIDAS AREA, NEXRAD, netCDF-3, netCDF-4, etc. 

 GRIB (GRIdded Binary) is a mathematically concise data format commonly 

used in meteorology to store historical and forecast weather data. It is standardized by the 

World Meteorological Organization's Commission for Basic Systems. Currently there are 

two versions of GRIB, the first edition (GRIB1) is used operationally world-wide by all 

meteorological centers for Numerical Weather Prediction(NWP) output. A newer version 

was introduced, known as GRIB second edition (GRIB2), but it is used only by a few 

centers and in many cases not for operational broadcast yet. GRIB is an efficient format 

for transmitting large volumes of gridded data over the Internet.  

2.4.2 Standards 

The geospatial community uses GIS tools for data analysis and visualization, and 

has adopted OGC standards extensively. The geoscience community (e.g., atmosphere, 

ocean, and modeling science) typically uses three main client/server protocols for remote 

data access: OPeNDAP, ADDE, and netCDF access via HTTP protocol.  The following 

sections introduce the standards and protocols used in both Geospatial and Geoscience 

communities. 

 OGC is one of the major geospatial standard organizations. In its one and half 

decade history, OGC has developed GML (Geograhpical Markup Language), Web Map 
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Server (WMS), Web Feature Server (WFS), Web Coverage Server (WCS), and many 

other geospatial standards. These standards define the interfaces or content for 

exchanging services among GIS web services.  

• WMS is an OGC standard that can return a map within a variety of formats based 

on a user request, including PNG, GIF, JPEG and other raster formats, as well as 

WEB CGM, or SVG vector forms. Through the HTTP network protocol, WMS 

supports many operations defined by the URL, such as GetCapabilities, GetMap, 

GetFeatureinfo, DescribeLayer, GetLegendGraphic, GetStyles, and SetSytles. 

• WFS supports insert, update, delete, search and discover services for geographical 

elements. According to a HTTP client request, WFS returns GML data. Basic 

WFS interfaces include GetCapabilities, DescribeFeatureType, GetFeature, 

DescribeFeatureType returning element structure, transaction and other 

operations.  

• WCS is another standard that can be used to dispatch datasets in a variety of 

formats via standard HTTP to client applications and used by a variety of user 

groups: the scientific digital library community, the GIS community, as well as 

the broader Earth science research and education community (Nativi et al, 2006).  

It provides raster layers that contain geographic information or spatial properties, 

rather than a static map of access like WMS. WCS has two important operations 

including GetCapabilities and GetCoverage.  
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• Web Processing Server (WPS) is collaboratively developed by the OGC and the 

Open Grid Forum (OGF) and adopted as a standard in 2008. It is a workflow 

methodology that processes raw data into more valuable information for decision 

support systems. Processing includes some fundamental GIS operations, such as 

Union and Intersect.   

• OPeNDAP is a data transport architecture and protocol widely used by Earth 

science governmental agencies, such as NASA and NOAA, to serve satellite, 

weather and other observed Earth science data. OPeNDAP includes standards for 

encapsulating structured data, annotating the data with attributes and adding 

semantics that describe the data. Usually, an OPeNDAP client is a graphics 

program (like GrADS, Ferret or ncBrowse) or a web application (like DChart) 

that is linked to an OPeNDAP library (http://en.wikipedia.org/wiki/OPeNDAP). 

An OPeNDAP server can serve an arbitrarily large collection of data. Data on the 

server is often in HDF or NetCDF format, but can be in any format including a 

user-defined format. Compared to ordinary file transfer protocols (e.g., FTP), a 

major advantage using OPeNDAP is the ability to retrieve subsets of files, and 

also the ability to aggregate data from several files in one transfer operation. 

• REST (Representational state transfer) is an approach for getting content from a 

Web site by reading a designated Web page that contains an XML (Extensible 

Markup Language) file that describes and includes the desired content. While the 

well-known SOAP (Simple Object Access Protocol) has proved to be a powerful 
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standard for web services, the REST model has seen rapid growth in adoption by 

web service developers.  

2.4.3 Tools 

 These OGC standards are utilized in many basic GIS platforms and open source 

GIS software to serve a variety of datasets in different formats. Intergraph has launched a 

WFS server and provided interoperability development kits.  ESRI supports WMS, WFS 

and other specifications by integrating related components in the ArcIMS. GeoServer and 

MapServer are popular open source software for providing mapping services. The map 

server can receive standard WMS and WFS requests, and responds with the requested 

geospatial data. OpenLayers, a web client supports the interoperable standards, can 

handle WMS requests, and provide map dragging, zooming, and vector data editing 

functions.  

 There are a variety of client/server protocols used by different data and metadata 

access systems. However, some client applications can access data via some protocols 

while others can only access data via other protocols. THREDDS (Thematic Real-time 

Environmental Distributed Data Services) catalogs provide virtual directories of available 

data and their associated metadata by supplying information about which datasets are 

available via which services/protocols (Domenico et al., 2002). Therefore, the data access 

capabilities are augmented and integrated with THREDDS catalog services, which 

provides inventory lists and metadata access. Thus client applications can find out first 

what is available on the site via the THREDDS interface, then access the datasets 
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themselves via the OPeNDAP, ADDE, WCS, WMS, or NetCDF/HTTP protocols 

(Nativi1 et al., 2006).  

2.4.4 Related work 

For decades, Earth scientists have continually investigated techniques to facilitate 

the accessibility and sharing of massive amounts of GeoInformation in a transparent 

manner through data interoperability (Yang and Raskin, 2009). For example, Cao et al. 

(2009) proposed an interoperable framework to disseminate Earth science data to 

different application domains through WMS. Within the framework, different Earth 

science data products and raster snapshots over time can be managed and handled 

efficiently through the use of relevant metadata information. In addition, a variety of 

international organizations, such as FGDC, ISO/TC211 and OGC, are also working to 

advance interoperability.  

 Efforts have also been made to bridge the gap between different science 

communities through interoperability, e.g., geospatial communities and geoscience 

communities. Hu et al (2008) developed a catalog middleware to mediate client/server 

interactions to share data between OGC catalog clients developed and used by geospatial 

communities and THREDDS servers greatly used by geosciences communities. Nativi et 

al. (2006) presented a solution, which develops a couple of data model crosswalks and 

protocol mediation middleware for THREDDS data servers, to facilitate the 

interoperability between Geoscience and Earth Science communities. 
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 As data interoperability problems are intensively studied and widely resolved, 

model interoperability problems are emerging among the Earth science communities. 

Currently, efforts are focusing on enabling interoperability in the IT field, which aims to 

advance the reuse and communication of software components. For example, Wiese and 

Huzita (2006) present IMART, an interoperability model that can be integrated into 

distributed software development environments, enabling cooperative work among 

developers and sharing of artifacts produced by different tools. By leveraging a 

generative programming approach, Damevski (2006) develops a programmable code 

generator that bridges heterogeneous component instances for component 

interoperability. Chen and Hogue (2008) presented an automatic method for enabling the 

interoperability of 3D models within different types of games. 

 In Earth science, a physical Earth system model typically consists of several 

model components, which are coupled through the exchange of data.  Less research has 

been done to facilitate coupling models or to make models interoperable among different 

communities. Currently, the Earth System Modeling Framework (ESMF, 

http://www.esmf.ucar.edu/) software includes a superstructure for coupling and 

exchanging data between component models (e.g., atmosphere, ocean) and model 

subcomponents (e.g., physics, dynamics), and an infrastructure consisting of (1) data 

structures for representing grids and fields and (2) an optimized, portable set of low-level 

utilities (Zhou 2006).  The CCA (Common Component Architecture) Forum 

(http://www.cca-forum.org/) was organized to define a minimal set of standard interfaces 

that a high-performance component framework has to provide to components in order to 
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promote interoperability between components developed by different teams across 

different institutions. ESMF is designed with specific component interface methods that 

are common to Earth system model components while CCA provides a more generic 

component interface that is not specific to any type of application.  Zhou et al. (2007) 

designed and developed an ESMF–CCA prototype to investigate how an Earth system 

model component that is ESMF compliant can be supported in CCA.  Hu and Bian 

(2009) discussed the identification of equation functions for interoperable hydrological 

models and built a customized surface runoff model using three components extracted 

from several existing hydrological models to predict surface runoff of a watershed. 

Within this approach, strong background knowledge about the environmental modeling 

and hydrological equations is required. 

 Based on the analysis above, interoperability enabled research has concentrated 

on data dissemination, data processing and sharing among different communities and 

disciplines, while some scientists from both IT and Earth science have worked on 

component software interoperability. For Earth science models, multiple inputs with strict 

format are required to execute the models (Xie et al., 2010). Although the required 

datasets for a model are actually provided online directly, or indirectly, conversion and 

transformation processes are required. For non expert users, it is very difficult and time-

consuming to obtain such datasets and greater effort has to be made on data processes 

before datasets can be assimilated by the models. However, no systemic study has been 

done on how to integrate widely distributed data resources to enable the executions of 

Earth Science models. Moreover, there are situations where different models must work 
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together to tackle complex problems. These problems cannot be resolved efficiently and 

accurately by only one model without major modifications to the original models (Zhou 

et al., 2007). This occurs because it is highly possible that a model was only designed and 

tailored to resolve specific issues and therefore is not interoperable. 

 In my research, I will investigate interoperability technologies that are needed to 

enhance dust storm forecasting by facilitating data access services, model input 

integration, model coupling, and output utilization and dissemination. This research aims 

to reduce the execution time for both Eta-8bin and NMM-dust and to introduce end-users 

to model products tailored, in this case, to satisfy the needs of public health services by 

enabling the interoperable and coupling execution of  Eta-8bin and NMM-dust models. 

2.5 Nested Models 

 Nested models are able to well simulate and predict spatial features and resolve 

processes with small scales on subregions which are subgrids of the coarse grid model. 

Therefore, through producing the regional high-resolution simulation results without the 

enormous computational cost of a global model at the same resolution, nested coupling 

models are used to enable a variety of research and operational applications (Ramón et 

al., 2002). For example, nested models are greatly used in the research of chemical 

transport and decomposing process over the atmosphere, and regional air pollution, 

regional and global weather and climate pattern (Ramón et al., 2002, Wang et al., 

2004).Examples of nested modeling atmospheric chemistry transport study are: 

• Wang et al.(2004) utilize a global three-dimensional chemical transport model 

(GEOS-CHEM) to conduct the research of chemical transport over Asia, using 
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CO as an example. GEOS-CHEM permits the treatment of a limited spatial 

regime with resolution as 1 x 1 degree, which is much higher than that adopted for 

the global background (4 x 5 degree). 

• A nested grid version of the Regional Acid Deposition Model (RADM) is 

successfully used to simulate wet deposition amounts of sulfate and nitrate (Pleim 

et al., 1991).  The horizontal grid interval size on the nested area of RADM is 

three times smaller than that of the coarse area of RADM (80/3 km = 26.7 km).  

       An example of a fully dynamic grid nested for air quality models is: 

• An adaptive resolution system for modeling regional air pollution is reported to be 

able to simulate the air pollutants with the solution in different subdomains being 

computed with different spatial resolutions (Constantinescu et al.,2008). The 

experiment results confirm that adaptive resolution, based on a well-chosen 

refinement criterion, leads to the decrease in spatial error with an acceptable 

increase in computational time. 

Examples of nested models in weather and climate pattern study are: 

• McGregor (1997) utilized components of large-scale atmospheric circulation 

nested with high-resolution regional dynamical models to predict regional 

climatic details that were indistinct or even erroneous in medium resolution 

models but could be more skillfully predicted by the high-resolution model. 

• A limited-area high-resolution atmospheric model (80 km as spatial resolution) 

was nested in the COLA global general circulations model (GCM) (Sela 1980) 

with 1.88x2.88 degrees as the grid size in longitude and latitude (spatial 
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resolution) for seasonal climate prediction over North America (Fennessy and 

Shukla, 2000).  

• The experimental results of 15 seasonal winter hindcasts and 15 seasonal summer 

hindcasts showed that the nested model reduced the systematic errors in seasonal 

precipitation compared to the global model alone (Fennessy and Shukla, 2000).  

• A nested regional climate model was employed to generate a scenario of climate 

change over the MINK region (Missouri, Iowa, Nebraska, and Kansas) due to a 

doubling of carbon dioxide concentration (CO2) in an agricultural impact 

assessment study (Giorgi et al., 1996).  

• Dynamic nesting of models was adapted to forecast regional to global plant 

migration in response to climate change. In this approach, a global simulation is 

performed on coarse grids while highly aggregated plant functional types and 

regional, species based models on finer spatial grids(Nellson et al., 2005). 

• Jasper et al. (2002) used numerical weather predictions (NWP) model output with 

grid cell sizes between 2 and 14km directly taken as input for the hydrological 

model with 500m×500m grid to advance flood forecasting. The NWP models 

provided hourly time series of the following meteorological parameter fields: total 

precipitation, air temperature, wind speed, air humidity, and surface short wave 

total incoming radiation or net radiation as the input for the grid-based 

hydrological catchment model WaSiM-ETH (Jasper et al., 2002). 

 Interoperable process-based models are without doubt the direction of a future 

generation of Earth science models that offer the flexibility and efficiency to enable a 
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wide range of users to “plug and play” without knowing details of models and 

modifications of the models (Zhou et al., 2007).  However,  

• Currently, most models are developed and nested in a “tightly-coupled” approach 

(McGregor 1997;Sela 1980; Fennessy and Shukla 2000;Giorgi et al., 

1996;Nellson et al., 2005). Within this “tightly-coupled” approach, a high 

resolution model could be one-way, two-way or even triple-way nested with a low 

resolution model and both are executed together. For instance, at DNMI, the non-

hydrostatic MM5 model is nested with HIRLAM, where a domain with 3 km 

resolution has been set up for the Oslo region in which MM5is one-way nested 

with HIRLAM (Baklanov et al., 2002). Extensive modifications of both models 

are required to enable them to be nested because of inconsistent subroutine 

interfaces, definition of physical constants, data structures etc. (Michalakes et al., 

1998).  

• Nesting of finer grids into coarser grids requires a priori knowledge of where to 

place the high-resolution subgrids inside the modeling domain (Constantinescu et 

al., 2008). For a real-time dust storm prediction system, users are not aware of 

where the dust storm will occur. Therefore, the traditionally static nesting 

approach is not suitable for real-time dust storm simulation. 

• In addition, specific data and data format are used for both model input and output 

as described in chapter 1.2.1interoperable models. In this situation, non-expert 

users are not able to utilize the available distributed data resources to execute an 
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Earth science model and are not able to integrate multiple models to tackle a 

complex issue efficiently.  

 This research will investigate how to integrate widely distributed data resources to 

enable the execution of Earth science models, as well as how to integrate multi-resolution 

models to tackle complex problems. Usually, they cannot be resolve efficiently and 

accurately using only one single model without or with only slight modification from the 

original model via standard protocols and service interfaces. This would greatly promote 

the communication and integration of different models in a “loosely-coupled” manner 

and contribute to flexible/extensible global framework.  

2.6 Spatial Cloud Computing 

 Cloud computing has become a key strategy for IT vendors, ISPs and telecom 

service providers and many cloud services are available. For example, the most famous 

and popular cloud services provider, Amazon, offers several kinds of cloud services from 

IaaS to PaaS.  RESERVOIR is an IBM and European Union joint research initiative for 

cloud computing that will enable massive scale deployment and management of complex 

IT services across different administrative domains, IT platforms and geographic regions. 

Verizon’s Computing as a Service (CaaS) allows customers to pay for data-center 

resources such as storage and application hosting dynamically based on the amount of 

resources they consume (http://www.verizonbusiness.com/products/itsolutions/caas/). 

Google published several research papers from 2003 to 2006, which outlined a type of 

PaaS cloud computing. The platform, which is called Google App Engine (GAE), was 
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released to the public as a service in 2008. Increasingly more cloud computing providers 

are cooperating with others to construct more powerful cloud services.  For example, 

NASA and RACKSPACE are joined by leaders from across technology industries like 

CITRIX, DELL, NTT DATA, RIGHTSCALE and others on the OpenStack project 

(http://openstack.org/), designed to create freely available code, badly needed standards, 

and common ground for the benefit of both cloud providers and cloud customers. 

 Up to now, several academic programs have put forth effort in investigating and 

developing technologies and infrastructure for cloud computing, for example, Nimbus 

(Nimbus, http://www.nimbusproject.org/), Stratus (http://www.acis.ufl.edu/vws/), 

OpenNebula (http://www.opennebula.org), and Virtual Workspaces (Keahey et al., 

2005).  Nimbus is an open source toolkit that allows the user to turn his/her cluster into 

an IaaS cloud (Nimbus, http://www.nimbusproject.org/). OpenNebula is an open-source 

toolkit used to easily build any type of cloud (private, public and hybrid). 

 A very important feature of cloud computing is the abstraction of the 

implementation, meaning that the client is unaware of application deployment details 

(e.g., where the hardware is located and how it is configured to run the application). This 

enables cloud computing to provide smart/broader discovery, enhanced access to data and 

services, on-the-fly integration of applications, and transparent platforms for model 

running process so that Earth scientists can focus on research without considering the 

underlying mechanism to implement the time-consuming computational task 

(Evangelinos and Hill, 2009).  
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 Many studies have been conducted to explore the feasibility of utilizing cloud 

computing to support Earth science applications and to learn how to best adapt to this 

new computing paradigm. Huang et al.(2010) test the utilization of cloud computing for 

geosciences and shows that the EC2 cloud computing platform could provide geospatial 

applications with good a) elasticity and b) reliability, and c) reduce duplicated efforts 

among Geosciences communities. 

 Undoubtedly, in comparison to the current supports for Earth science research and 

applications, such as parallel computing technology or grid computing technology which 

only deliver computing power, Earth scientists could benefit more from cloud computing 

since computing power is only one of the capabilities of cloud computing. However, 

earlier investigations found that not only could cloud computing help geospatial sciences, 

but it can also be optimized with spatiotemporal principles to best utilize available 

distributed computing resources (Yang et al., 2011). Geospatial science problems have 

intensive spatiotemporal constraints and principles and are best enabled by systematically 

considering the general spatiotemporal rules for geospatial domains (De Smith 2007; 

Goodchild 1990; Goodchild et al., 2007; Yang et al., 2011b): 

  1) Physical phenomena are continuous and digital representations are discrete for 

both space and time;  

 2) Physical phenomena are heterogeneous in space, time, and space-time scales;  

 3) Physical phenomena are semi-independent across localized geographic 

domains and can, therefore, be divided and conquered;  
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 4) Geospatial science and application problems include the spatiotemporal 

locations of the data storage, computing/processing resources, the physical phenomena, 

and the users. All four locations interact to complicate the spatial distributions of 

intensities; 

  5) Spatiotemporal phenomena that are closer are more related (Tobler' first law of 

geography).  

 Instead of constraining and reengineering the application architecture (Calstroka 

and Waston 2010), a cloud computing platform supporting geospatial sciences should 

leverage those spatiotemporal principles and constraints to better optimize and utilize 

cloud computing in a spatiotemporal fashion. 

“Spatial Cloud Computing refers to the computing paradigm that is driven by geospatial 

sciences, and optimized by spatiotemporal principles for enabling geospatial and other 

science discoveries within distributed computing environment”(Yang et al., 2011). 

 In this research, the Amazon EC2 cloud cluster instances will be optimized 

through the spatiotemporal patterns and principles to enable the computability of dust 

storm forecasting over a large area with high resolution.  
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CHAPTER 3 
OBJECTIVES 

 As discussed in chapter 2, many challenges exist for enabling the computability of 

dust storm forecasting with high spatiotemporal scale requirement, and effective sharing 

and disseminating of model results, and communicating among different models.  This 

dissertation will address the performance and computing issues of dust storm simulation 

through the following aspects:  

1) Improve the performance and optimize the parallel execution of dust storm 

simulation by spatiotemporal patterns and principles of phenomena, models and 

computing resources. 

 2) Solve the problem of data and configuration interoperability for model 

interoperability. Currently, most models are developed and tailored for specific 

applications and professional data and data format are used for both input and output. In 

this situation, non-expert users are not able to utilize the available distributed data 

resources to execute an Earth science model and are not able to integrate multi-data 

resources and multiple models to tackle a complex issue efficiently.  

 This research will investigate how to integrate widely distributed data resources to 

enable the execution of Earth Science models, as well as how to integrate multiple 

models to tackle complex problems which cannot be solved efficiently and accurately 

using only one single model without or with only slight modification from the original 

model via standard protocols and service interfaces. This would greatly promote the 



50 
 

 

communication and integration of different models and contribute to a flexible/extensible 

global framework.  

  3) Enable large area forecasting through dynamic loosely-coupled nested models. 

The nested model strategy is recommended to support the requirement for high resolution 

and larger geographical coverage forecasting while completing the model within the time 

restrictions (2-hour for one day forecasting). Currently, the research for nested models to 

produce high resolution results for specific area is focused on 1) coupling the high 

resolution modules into coarse models (Baklanov et al., 2002), and 2) enabling model 

execution with different scales at different subgrids(Constantinescu et al., 2008). The 

former approach require extensive modifications of the original models to enable the 

tightly coupling of two different models with different data structures (Michalakes et al., 

1998), while much modifications efforts are required for the later approach to enable a 

model to support multi-scale running. In addition, both approaches require knowing 

where the high resolution subregions are (Constantinescu et al., 2008). As dust storm has 

the features of different spatial distribution and evolutions, it is hard to predict the exact 

subregions where it will occur before analyzing the results. Therefore, such a static 

tightly coupled method is not suitable for dust storm forecasting.  

 This research will investigate a dynamic loosely-coupled method to enable real-

time dust storm predictions providing high resolution results for those areas having dust 

storm over a large geographic area. In this approach, two independent models are used. 

The coarse model identify the subregions with the requirement of high resolutions results 

and the high resolution model then runs those subregions in parallel.  
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 4) Enable the interoperable nesting models through spatial cloud computing.  

Currently both Eta-8bin and NMM-dust are actively involved in the forecast of PM2.5 for 

the continental United States. The former can produce low resolution results for a large 

area while the latter can produce results with high resolution results. However, high 

resolution results for a larger area and online real-time support for massive users are still 

at their infancy. Through nesting, the execution of the two models supported with spatial 

cloud computing optimized via spatiotemporal patterns and constraints, dust storm 

simulation and prediction can be delivered as a service with high resolution results and 

fast response in real-time fashion.  

 Loosely-coupled nested models require a large computing pool to run various 

hotspots identified by coarse model in parallel to achieve the best performance. This will 

cause computing spike requirements that can be best handled by elastic and on demand 

computing platform. Could computing provides a potential solution with a large, 

virtualized pool of computational resources (Armbrust et al., 2010).  Cloud computing 

technologies, e.g., virtualization, now become more and more mature,   and cloud 

infrastructure become more and more powerful. For example, Amazon EC2 offers cluster 

instances with 10 Gbps network connection. Each instance has 23Gbytes memory, a 

clock speed of 2.93 GHz,   and two quad-core processors. Such hardware and network 

configuration are far much better than grid computing environments with heterogeneous 

computing resources and World Wide network (WAN) connection, and even better than 

most of private homogenous HPC cluster configurations. This makes cloud computing a 

new, advantageous computing paradigm to resolve scientific problems traditionally 
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requiring leverage a special high-performance cluster (Rehr et al., 1020). The traditional 

cluster environment requires typically several months and usually hundreds of hours of 

labor to procure, install, configure new infrastructure.  Traditional processes will involve 

multiple personnel with different technical backgrounds to ensure the success of the 

configuration. Often, greater efforts and costs are required to maintain the infrastructure 

while the utilizing of the infrastructure was used only 10%-15% of its full capacity 

(Marston et al. 2011). Therefore, the cloud parallel system would have a great impact on 

parallel scientific HPC applications in the near future by facilitating the deployment 

process while increasing the rate of utilization of computing resources (Yang et al., 

2011b). 

  In addition, real-time dust storm simulation is a data intensive application, high 

memory and computing power are required when a large number of users are involved 

and each user may forecast different areas and harvest thousands of records.  There are 

different access amounts at different periods within one day, and different computing 

resources should be leased at different time slots during the day. This will cause 

computing spike requirements that can be best handled by elastic and on demand 

computing platform. Cloud computing provides a potential solution for pay as you go 

with a pooled large computing resource (Armbrust et al., 2010). This dissertation will test 

the feasibility of cloud computing to support the nested execution of two dust storm 

models on the Amazon EC2 cloud computing platform.  Within Amazon EC2, computing 

resources can be leased on demand, which can satisfy the computational requirements of 

dust storm forecasting at different times. The dissertation will introduce how to deploy 
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Earth science models, using NMM-dust as an example, on Amazon EC2 to provide 

guidance for utilizing cloud computing to support Geosciences applications for Earth 

scientists. The feasibility of Amazon EC2 to support the parallel execution of a large 

amount of small regions with scalable cloud resources will be tested. 
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CHAPTER 4 
SPATIOTEMPORAL THINKING & COMPUTING 

 
 This chapter will present and discuss the parallelization of NMM-dust model, and 

experiments how to utilize spatiotemporal patterns and thinking to improve the 

performance and enable the computability of dust storm simulation. The spatiotemporal 

patterns enlighten the direction of improving the HPC performance through the way of 1) 

parallelizing the model(Section 4.1 ), 2) selecting and arranging the computing 

resources(Section 4.2), 3) nesting models(Section 4.3), 4) building a spatial cloud 

computing platform(Section 4.4) and 5) finally, enabling the computability of dust storm 

models by an optimized solution (Section 4.5).  

4.1 Experiment Design 

 To enable the computability of dust storm forecasting (Koh et al., 2005) for 

higher resolutions, larger geographic scope, and longer time periods, we designed seven 

sets of experiments to understand and utilize various aspects of the spatiotemporal 

patterns of dust storm simulation: 1) Parallelization degree is the extent to which the 

system can effectively utilize an increasing number of processors (Natarajan et al., 1993). 

We conducted a benchmark for the scalability of the clusters used to support the NMM-

dust model for the geographic scope of Southeast U.S. The parallel system used for the 

experiments is hosted in two geographically distributed facilities. 2) Parallelization 

method is used to test how to properly decompose the same domain under the same 

parallelization degree to achieve the best performance by reducing the communication 

overhead while keeping spatial consistency when leveraging more CPU cores. 3) 
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Subdomain & processor mapping is used to test the performance difference of different 

methods of dispatching subdomains to processors. 4) Temporal scope is designed to 

exploit the capability of HPC to support long-term dust storm prediction. 3) Geographic 

scope is to explore the HPC capability to support simulations of a large geographic scope. 

5) Spatial resolution is to analyze the relationship between the spatial resolution and the 

number of processes and computing resources needed in the prediction. 6) Network is 

used to test the impact of network delay on the performance and to better configure the 

network connection and assign the computing resources so that we can minimize the 

network bottleneck and maximize performance. 7) Storage to analyze the impact of the 

file system and storage on the performance. 8) Dust spatiotemporal pattern is to utilize 

the dust spatial distribution and evolution patterns to obtain higher resolution results for 

areas with dust storms. 

 To investigate the improvement of performance and the increasing of the 

computing time as the parameter changes, such as spatial domain and resolution, we 

calculate the performance improvement factor (or computing time increasing factor) S 

(Equation 4.1):  

                                     s=∆t/T      (4.1) 

 Where ∆tm is the decrease in the computing time of dust-storm simulation, and T 

is the original computing time before parameter changes or parallel systems are 

optimized. 

4.2 Experimental Environment 
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 Two facilities (A & B) are used for this research: Facility A has 25 computing nodes 

and all nodes are connected through fast local area networks (LANs with 1Gbps). Each 

node has 24 Gbytes memory and two quad-core processors (8 physical cores) with a 

clock frequency of 2.33 GHz, a peak performance of 7.6 Gflops/core and a sustained 

performance of 1 Gflop/core. Facility B has a 10 Gbps network and 14 computing nodes, 

and each node has 96 Gbytes memory and dual 6-core processors (12 physical cores) 

with a clock frequency of 2.8 GHz. Most experiments are conducted on both facilities 

and we expect to obtain better results from facility B given its better configuration. 

Facilities A and B are connected through a Wide Area Network (WAN). 

4.3  Parallelization 

 In this section, we present the NMM-dust model parallelization and how to utilize 

spatiotemporal patterns to optimize the parallelization.  

4.3.1 Parallelization of the Model 

 Similar to other atmospheric model parallelization, a data decomposition 

approach is used for parallelization by decomposing the domain into multiple 

subdomains and distributing the computing load of each subdomain onto one processor as 

a process.  

 Figure 4.1 shows parallelizing a (4.5 x 7.1 degree) domain with a spatial 

resolution 0.02083 degree to 24 subdomains for one vertical layer. Based on the 

boundary size and spatial resolution, the grid cells of one vertical layer would be 215 x 

345 while there would be 54 x 57 grid cells for each subdomain except for suddomains 
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on the border. The processors processing the subdomains will need to communicate with 

their neighbor processors for local computation and synchronization. The processors 

being responsible for processing the subdomain within the inner of the entire domain 

such as subdoamin 5 will require communication among four neighbor processors. 

During the computation, the state and intermediate data representing the subdomain are 

produced in the local memory of a processor. Other processors need to access the data 

through file transfer across the computer network. The cost of data transfer due to the 

communication among neighbor subdomains is a key efficiency issue because it adds 

significant overhead (Baillie et al. 1997). 

 

Figure 4.1.  Parallelizing a (4.56 x 7.12 degree) domain with 0.02083 degree spatial 

resolution (about 3 km, 215 x 343 grid cells in total) to 24 subdomains (4 x 6) 

Figure 4.2 illustrates all the NMM-dust core subroutines in the computing 

sequence for each subdomain (the subroutines with blue color require communication 

and synchronization): 1) PDTE is the process to integrate mass flux divergence, compute 

vertical velocity and update the pressure field. This process requires the communication 

and synchronization of the hydrostatic surface pressure PD (Pa) among neighboring 
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processors. 2) ADVE is used for the horizontal advection of the variables of temperature 

T(K), u wind components U(m/s), v wind components V (m/s), and coriolis effect and 

curvature terms are applied. The communication among U, V, and geopotential height z 

is required for the subroutine ADVE. 3) VADZ is the process of vertical advection of 

geopotentional height and no communication is required as it happens in the vertical 

layers. 4) HADZ is used for the horizontal advection of height and the vertical wind 

speed W (dz/dt) is updated and the synchronization of W is required before the 

subroutine. 5) EPS is used for both vertical and horizontal advection of dz/dt and the 

vertical wave treatment is added in the subroutine. 

 

Figure 4.2.  Computing subroutines and communication & synchronization for NMM-

dust model 

6) The following subroutines are vertical advection of the variables of specific 

humidity q, total cloud water condensate CWM (kg/kg), turbulent kinetic energy (m/s), 7) 

eight classes of dust particle load (s8). 8) The horizontal advection of the variables of 

turbulent kinetic energy Q, total cloud water condensate CWM(kg/kg), 2* turbulent 
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kinetic energy Q2 (m2/s2), and 9) eight classes of dust particle load (s8), local halo data 

of q, CWM, Q2 and s8 are communicated with neighboring processes. The following 

subroutines are 10) RADTN for radiation and 11) RADTEMP for applying temperature 

tendency due to radiation. 12) TURBL is to perform vertical turbulence and store original 

temperature array (CLTEND) and the communication of pd, T, q, CWM, s8, UZ0 and 

UZ0 is conducted. 13) CUCNVC is convective precipitation. 14) GSMDRIVER is to grid 

scale microphysics and then store the original temperature array (CLTEND). 15) 

Following is the subroutine to update temperature tendency due to cloud processes. 16) 

HDIFF is used for horizontal diffusion and the communication of T, q, U, V, Q2 and S8 

needs to be exchanged. 17) BOCOH is to update boundary conditions for subdomains 

while the exchange of q, CWM, Q2, S8, pd, and T are required. 18) Every three hours in 

this case, the post profile data subroutine CHKOUT will be performed. 19) PFDHT is the 

subroutine to calculate pressure gradient force (PGF), update winds due to PGF, and 

compute divergence, and the variables pd, T, U, V, q, CWM(kg/kg), dw/dt, and non-

hydrostatic pressure PINT (Pa) are exchanged. 20) DDAMP is used for divergence 

damping and the variable div would be exchanged. The final subroutine 21) BOCOV is 

used to update boundary conditions at the wind points and the communication of U and V 

as required. 
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4.3.2 Parallelization Degree

 

Figure 4.3. Scalability experiment with different computing nodes and different 

subdomain numbers to run the NMM-dust model over a rectangular area of 4.5 x 7.1 

degree in the southwest US for 3 km resolution, and for 3-hour simulations 

 We parallelized the geographic scope of 4.5 * 7.1 degree along the longitude and 

latitude respectively into different sub-domains and utilized different CPU numbers and 

subdomain numbers to test the performance (Figure 4.3).The total execution time greatly 

decreases when increasing the process (subdomain) number from 8 to 16, and then to 24. 

After that, the execution time is still reduced but not significantly, especially when two 

computing nodes are used. The reason behind this, as shown in Figure 4.4, is the increase 

in communication and synchronization time that is observed to increase gradually until 

equal to the computing time when using 96 processes. The experiment result in Figure 

4.3 also shows that the execution times of the model with different domain sizes 

converge to roughly the same values when the number of CPUs increases. The cases 

where 7 and 14 computing nodes are used yield similar performance. Especially, when 
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more and more processes are utilized, seven computing nodes could have a little better 

performance than 14 computing nodes. 

 

Figure 4.4. Comparison of the total computing time and communication & 

Synchronization time with different numbers of subdomains/processes involved using 7 

computing nodes 

 In summary, this experiment demonstrates that the communication overhead 

could result in two scalability issues for the dust storm simulation: 1) no matter how 

many computing nodes are involved, there is always a peak performance point of the 

highest number of processes that can be leveraged for a specific problem size. The peak 

point is 128 processes for 14 computing nodes, 80 processes for 7 computing nodes, and 

32 for 2 computing nodes; and 2) a suitable number of computing nodes should be used 

to complete the simulation.  
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Figure 4.5. Percentage analysis for different subroutines and communication & 

synchronization 

To further investigate how the communication overhead impacts scalability, we 

experimented and analyzed the time spent on each subroutine and their communication & 

synchronization. Figure 4.5 shows the percentage of the time spent executing each 

subroutine and the time spent on communication & synchronization: 1) Generally, the 

higher the number of subdomains, the smaller the percentage of computing time and the 

greater the communication & synchronization time required for updating each 

subdomain’s boundary conditions except BOCOH. 2) The subroutine TURBL is the most 

time consuming and more subdomains will decrease the time percentage of TURBL. 3) 

HDIFF will spend more time on communication & synchronization when increasing the 
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subdomains up to 96. BOCOH’s communication and synchronization time is also very 

high and becomes an important performance factor when increasing the number of 

subdomains. 4) The subroutines GSMDRIVE and CUCNVC’s computing time decreases 

when increasing the number of subdomains and they do not require communication and 

synchronization. 

4.3.3 Parallelization Method 

 Different parallelization along the longitude and latitude could result in different 

communication overhead. For example, Figures4.6a and 4.6b show two types of 

decomposition method. Method 4.6b requires 6grid cells’ communication over the 

processors while method 4.6a requires only 4 grid cells’ communication over the 

processors.  Obviously, method 4.6b results in more data dependency and communication 

overhead.  

 

Figure 4.6.Diagrams of 2 X 1 and 1 X 2 at longitude and latitude decompositions for 4 x 

6 grid cells 

 Experiment of parallelization method tests the parallel implementation through 

different decompositions of 24 subdomains along S-N and W-E directions for the same 

a b 



64 
 

 

domain (Figure 4.7). It is observed that a one-dimensional decomposition in both 

longitude and latitude alone is a bad idea for parallel implementation as the 24*1 (24 

columns at the longitude and only 1 column at the latitude) has the worst performance 

followed by the 1*24 (1 column at the longitude and 24 columns at the latitude). In 

addition, less decomposition along the longitude direction is preferred as 3, 4 and 2 

decomposition along the longitude have higher performance. This is because the grid 

cells (215 x 345) along the longitude are less than the latitude. Therefore we can 

parallelize the whole region according to the length and width of the region to reduce the 

communication overhead and optimize the performance. 

 

Figure 4.7. Domain Decomposition experiment using different decomposition methods 

along the longitude and latitude to parallelize the domain into 24 subdomains to run the 

NMM-dust model over a rectangular area 4.5 x 7.1 degree in the southwest US with 3 km 

as spatial resolution. 

4.4 Computing Resources Arrangement 



65 
 

 

 This section will introduce how to select and arrange computing resources based 

on the simulation parameters, including spatial domain size, spatial resolution, and 

temporal scope. In addition, we will discuss how to select and allocate computing 

resources, including computing nodes and storage based on network connection and 

topology. 

4.4.1 Temporal Scope 

 

Figure 4.8. Execution time for running the NMM-dust storm model in facility A. 40 

process numbers are used for domain 4.5 x 7.1 degree with 3 km resolution for 3, 12, 18, 

24 and 36-hour simulations 

 Figure 4.8 shows the total computing time needed for the predictions of 3, 12, 18, 

24, and 36 hours executed on 24 computing nodes at facility A. The experiment results 

show that the computing time would increase linearly when increasing the temporal 

scope. This temporal pattern is very useful for designing and conducting experiments to 

test the computability of dust storm forecasting. This is because it enables us to estimate 

the computing time for a long-term forecasting through a short-term simulation.  Usually, 

one needs to do a one-day simulation to know if the computation can be successfully 
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completed within 2hours.Now, instead, we can do a 3-hour simulation to test if the one 

area forecasting is computable (Lenz, 2001). This means that we can test if a 3-hour 

simulation can be successfully completed in 0.25 hour (2 /8). 

4.4.2 Subdomain & Computing Resources Mapping  

 Different subdomain & processor mapping methods could result in different 

communication overheads. Figures 4.9a and 4.9b show two mapping methods for 

dispatching 12 subdomains to two computing nodes A and B.  Method 4.9b requires only 

six grid cells communications over two different computing nodes while method 4.9a 

requires 18 adjacent boundaries to exchange data over two computing nodes. Obviously, 

method 4.9b can reduce the communication overhead by making more communication 

occur within the same machine rather than over the Internet.  

 
Figure 4.9.Two mapping methods for dispatching 12 subdomains to two computing 

nodes A and B. 

 By default, the MPICH2 will dispatch the subdomains to the computing nodes 

sequentially. For instance, if we have two computing nodes and six subdomains, then the 

first, third and fifth subdomains will be dispatched to the first computing node and the 

second, fourth and sixth subdomains will be dispatched on the second computing node. 

Therefore, MPICH2 is the typical non-neighbor mapping method. In the subdomain & 

a. Non-neighbor mapping b. Neighbor Mapping 

A A 

A A 

A A 

B 

B 

B 

B 

B 

B 

A B 

A B 

A B 

B 

B 

B 

A 

A 

A 



67 
 

 

computing resources experiment, two computing nodes are utilized and the first half 

subdomains are dispatched on the first computing node and the rest are dispatched on the 

other computing node, which is the neighbor mapping. The experiment results of 

different mapping methods (Figure 4.10) also support that if we map the neighbor 

subdomain to the neighbor processor, much higher performance can be obtained. 

Therefore, this pattern indicates that we should dispatch neighbor subdomains to the 

same computing node as much as possible to reduce the communication over long 

distance Internets.  

 

Figure 4.10. Execution time for running the NMM-dust storm model on 2 cloud clusters 

with mapping and non-mapping methods. 

 

4.4.3 Spatial domain 

 Figure 4.11 shows the geographic scope experiment results using different 

process numbers initiated by 24 nodes from facility A to run the NMM-dust storm model 

over geographical scope 2.3 x 3.5, 4.5  x 7.1, and 9 x 14.2degree with 3 km spatial 
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resolution for 3-hour simulations. It is observed that increasing the geographic scope 

greatly increases the computing time.  

 

Figure 4.11. Geographic scope experiment using different process numbers with facility 

A nodes to run the NMM-dust storm model over domain 2.3 x 3.6, 4.5 x 7.1, and 9 x 14.2 

degree with 3 km spatial resolution for 3-hour simulations. 

 

Figure 4.12. Geographic scope limitation experiment for facility A 
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Figure 4.13. Geographic scope limitation experiment for facility B 

Table 4.1. Geographic scope experiment over 2.3 x 3.5, 4.5 x 7.1, and 9 x 14.2 degree in 

facility A with 1, 2 and 4 processes 

 

Spatial 

domain 

2.3 x 3.5 

degree 

4.5  x 7.1 degree 9 x 14.2 degree 

Grid 

numbers 

IRow = 107 , 

IColumn = 177 

IRow = 215 , 

IColumn = 343 

IRow = 431 , IColumn = 

683 

1 process  1.25 (Hours) 5.77(Hours) N/A (Model is not able to 

run) 

2 Processes 0.717(Hours) 3.1(Hours) N/A (Model is not able to 

run) 

4 Processes 0.367(Hours) 1.57 (Hours) 6.6 (Hours) 

8 Processes 0.202 (Hours) 0.757(Hours) 3.72(Hours) 
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 Figure 4.11 also shows the increasing factor after doubling the geographic scope 

from 2.3 x 3.5 to 4.5 x 7.1 and then to 9 x 14.2 degree with different process numbers 

from 1, 2, 4 , 8 , and to 128. It is observed that: 1) doubling the geographic scope from 

2.5 x 3.5 to 4.5 x 7.1 would result in approximately a four-fold increase in the model 

execution time compared to the cases when using one and two processes. Approximately, 

the model execution time increases 4.2 times when doubling the geographic coverage 

from 2.5 x 3.5 to 4.5 x 7.1 and from 4.5 x 7.1 to 9 x14.2 when using 4 processes; 2) 

Increasing the process number from 1 to 128 will reduce the increasing factor from 4.5 to 

1.5; and 3) after increasing the geographic coverage to 9 x 14.2, one or two processes are 

not able to run the model because of memory constraints. In addition, it is observed that 

the system requires at least 0.48 hours, which is more than the 0.25 hours needed to 

complete a 3-hour simulation for a region of 9 x 14.2 degree. The other two experiments 

are conducted to find that facility A can support a maximum geographic scope of 5.5 x 

9.1 degree (Figure 4.12) and facility B can support up to a geographic scope of 8.5 x 14.1 

degree (Figure 4.13).  

4.4.4 Spatial Resolution 

Figure 4.14 illustrates the computing time for 3 km and 2km resolution executed 

by 8 to 128 processes using facility A. In this experiment, the simulation area is 4.5 x 7.1 

degree and 37 vertical levels for the southwest U.S. with a 3-hour temporal scope and 3 

km and 1.5 km as spatial resolution. The time step is determined by using 2.25 x (x is 

grid spacing in km) or about 330 x (angular grid spacing) to obtain an integer number as 
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time step with second as the unit (WRF-NMM, 2011). Therefore, the time steps are set to 

6 s and 3 s respectively for the 3 km and 1.5 km resolutions.  

 

Figure 4.14. Spatial resolution experiment uses a simulation area of 4.5 x 7.1 degree x 37 

levels in the southwest US with grid points spaced with 3 km and 1.5 km on 8, 16,…, 128 

processes. The time steps are set as 6s and 3s respectively for the two resolutions. 

 Based on the result of the experiments, increasing the spatial resolution of the 

NMM-dust model, the computation time increases significantly. In addition, doubling the 

spatial resolution from 3 km to 1.5 km would result in about an 8-fold increase in the 

computing time. The experiment also indicates that, with an increase in the resolution to 

1.5 km in each dimension, it is not possible to complete the NMM-dust model simulation 

in the distributed system for the domain of 4.5 x 7.1 degree within the time constraint of 

completing a 3-hour simulation within 0.25 hours. Therefore, although the NMM-dust 

model is able to provide high resolution results, it is not practical for this model to 

conduct real-time predictions with such high resolutions. In addition, with one or two 

processes, the model cannot even be started (see Figure 4.14 and table 4.2), and the 

facility A can only support a resolution of up to 3 km with the forecasting time constraint 
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(Figure 4.15).  It would require redesigning the existing algorithms, code, and data 

structures of NMM-dust core modules.  

 

Figure 4.15. Spatial resolution limitation experiment for facility A 

Table 4.2. Spatial resolution experiment over 4.5 x 3.5 degree with 1.5 km and 3 km in 

facility A with 1, 2 and 4 processes 

Spatial Resolution 1.5 km 3 km 

Time step 3s 6s 

Grid numbers IRow =433, 

 IColumn =680 

IRow = 215, IColumn = 343 

1 process N/A (Model is not able to 

run) 

5.766667(Hours) 

 

2 Processes N/A (Model is not able to 

run) 

3.1(Hours) 

 

4 Processes 11.267 (Hours) 

 

1.57 (Hours) 

8 Processes 6.34(Hours) 0.751(Hours) 

 

4.4.5 Network  
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 To analyze the network impact, the execution time analysis is performed based on 

the result of a 3-hour dust storm simulation executed on four groups of different 

computing node numbers with three different network speeds at facility A and facility B. 

Figure 4.16 illustrates the execution time of different process numbers from these two 

computing nodes with an access rate to the local network of 10 Gbps, 1 Gbps and 

100Mbps over the WAN. Compared to the CPU and memory factors, the network 

connection is more important. The performance when using 2 nodes located at two 

different facilities A and B is much worse than when using 2 nodes both located in the 

same facility A.  

 

Figure 4.16.Compared to the CPU and memory factors, the network connection is more 

important. The performance when using 2 nodes located at two different data centers is 

much worse than when using 2 nodes both located in the same data center. 

 

 The result (see Figure 4.17) shows that the performance improvement from a 

1Gpbs LAN connection to a 10 Gpbs connection using 2 facility B nodes  is usually more 

than 10% and could reach 30% when using 40 and 56 processes. Although it may not be 



74 
 

 

important for long-term, fine resolution predictions that may take longer time, it can be 

very significant for real-time, short-term dust storm simulations when results are desired 

in less than one hour (Yang et al. 2011a). In addition, the improvement from using WAN 

to using LAN is even more significant with almost 60% gain in average based on the 

performance comparison analysis, which is conducted between nodes from both facilities 

connected with WAN and both two nodes from facility A connected with a 1 Gpbs 

network.  

 

Figure 4.17. Network speedup ratio 

4.4.6 Storage 

 During the simulation, each process will produce temporary files for its 

subdomains to integrate after simulation. The experiment results (Figure 4.18) 

demonstrate that it is possible to get much better performance if using local storage to 

store the temporary files and then transfer results to the master node after finishing the 

simulation than when using NFS to share remote storage. This is because all NFS 

processes will access the same remote storage and transfer data to master node in real-
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time. The patterns indicate that a good storage strategy is helpful in reducing the I/O cost 

and the network bottleneck for data intensive applications. 

 

Figure 4.18. File System experiment using different storage model to run the NMM-dust 

storm model over domain 4.5*5.5, 5.5* 4.5, and 6.5 *5.5 degree in the southwest US with 

3 km resolution, for 3-hour simulations and predictions. 

4.4.7 Computing Capability 

 As the problem size increases, such as the increase of the spatial domain, spatial 

resolution, and temporal scope, more and more computing resources are required based 

on the experiment results of temporal scope, spatial domain, and spatial resolution.  

However, for a certain number of computing resources, the best number of processes that 

should be started is predictable. To demonstrate this, we use different numbers of 

computing resources arrangement to perform a series of simulations with different 

domain sizes. Figures4.19, 4.20, 4.21, and 4.22showthe simulation time for different 

domain sizes running on facility A and facility B using different numbers of computing 

nodes. The results indicate that 80 domain decompositions for different domain sizes 

yield the best performance in facility A. Figure 4.19 shows facility B supports different 
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domain simulations using 14 computing nodes. Around 128 processes yield the best 

performance. 

 

Figure 4.19. Facility A supports different domain simulations using 24 computing nodes. 

Around 96 processes result in the best performance. 

 

Figure 4.20. Facility B supports different domain simulations using 14 computing nodes. 

Around 128 processes result in the best performance. 
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Figure 4.21. Facility B supports different domain simulations using 7 computing nodes. 

Around 80 processes result in the best performance. 

 

Figure 4.22. Facility B supports different domain simulations using 2 computing nodes. 

Around 40 processes result in the best performance. 

 Different computing resources with different configurations have different 

computing capability.  For example, facility A can support a maximum geographic scope 

of 5.5 x 9.1 degree (Figure4.12) and facility B can support up to a geographic scope of 

8.5 x 14.1 degree (Figure 4.13). Different numbers of computing nodes are used for the 
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same task to demonstrate the computing capability of different amounts of computing 

resources.  

 From the previous results, we can successfully assign suitable computing 

resources and process numbers to complete the simulation within the time criteria and 

achieving the best performance. 

4.5 Dust Spatiotemporal Pattern  

 The existence of dust spatiotemporal patterns is the reason that enables the 

implementation of loosely coupled nested models, which will be introduced in details in 

the chapter 5. In this approach, spatiotemporal correlation analysis is performed on low 

resolution results of dust storm model to identify high concentration but much smaller 

regions. The spatiotemporal pattern of dust storms indicates which and how many regions 

require computationally expensive simulations while reducing the computing time and 

satisfying the requirement for high resolution results.  

4.6 Experimental Result Analysis 

Table 4.3. Experimental results for better leveraging HPC with spatiotemporal patterns 

Experiment How to leverage distributed 

HPC systems 
Reason 

Parallelizati

on 

1.Parallelizatio

n degree 

A proper number of 

computing nodes and 

processes should be planned 

for higher performance 

As more processes 

participate, more 

communication is incurred, 

resulting into more 

synchronization and 

exchanges of boundary 
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information. More computing 

nodes cause more 

communication in the 

network. 

2.Parallelizatio

n method 

Proper decomposition 

method should be used to 

obtain higher performance 

For  the same degree of 

parallelization, different 

decomposition can result in 

different communication 

overhead 

Computing 

resource 

arrangement 

3. Subdomain 

& processor 

mapping 

Dispatching subdomains to 

computing resources based 

on the spatial relationships of 

subdomains, as well as 

computing resources 

Much higher performance 

can be obtained through 

mapping the neighbor 

subdomains to the neighbor 

processors 

4.Temporal 

scope 

More computing resources, 

faster CPUs, and better 

network connections are 

required when increasing the 

temporal scope to enable the 

simulations to be completed 

within a reasonable time 

period. 

A linear increase in the 

simulation period would 

result in a linear increase in 

the computing time. 

5.Geographic 

scope 

An increasing of the 

computing resources, faster 

CPUs and better network 

connections are required for 

larger domain simulations 

Around a four-fold increase 

of the computing time could 

be caused by doubling the 

geographic domain. 
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6.Spatial 

resolution 

An increasing of the 

computing resources, faster 

CPUs and better network 

connections are required for 

higher resolution simulations 

Around an eight-fold 

increase of the computing 

time could be caused by 

doubling the spatial 

resolution. 

7. Network  

Compared to CPU speed, the 

network bandwidth between 

the computing nodes and the 

geographical locations of the 

computing resources could 

be more important. 

The network is a bottleneck 

for data intensive 

applications. 

8. Storage 

Temporary files produced 

while the model is running 

should be stored on local 

storage rather than 

transferred to the master 

node in real-time. 

Keeping the temporary files 

on local storage helps in 

reducing the I/O and network 

bottlenecks. 

Dust storm 

spatiotempor

al pattern 
9. Dust storm 

spatiotemporal 

pattern 

Divide and run hotspots area, 

which is identified based on 

the spatial pattern and 

temporal evolution of dust 

storm, in parallel 

Dividing a large geographic 

scope into multiple small 

geographic coverage areas 

based on the spatiotemporal 

pattern of dust storm 

produces  small areas whose 

simulation takes much less 

time to complete. 

 

 The eight sets of experiment results reveal spatiotemporal patterns and provide 

guidance for configuring and scheduling the HPC facilities for better performance. Table 
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4.3 shows how to integrate the experiment results into practical applications: 1) 

Experiment 1 indicates that the scheduler should incorporate the ability of automatic 

calculation of how many nodes and processes should be utilized whenever dispatching 

the tasks to a distributed computing pool to increase both the CPU utilization and 

performance.2) The experiment result of parallelization (Experiment 2) demonstrates that 

the overhead due to communication and synchronization among sub domains can be 

reduced through proper decomposition of the same domain under the same parallelization 

degree. 3) Experiment 3 results also support that if we mapping the neighbor subdomain 

to the neighbor processors, much higher performance can be obtained. The neighbor 

domain assign to the same machine to reduce the communication overhead by making the 

communication occurring in the same machine without going through the network, 

therefore increasing the parallelization degree.4) Based on the results of experiment 4, 5 

and 6, the system should leverage more computing resources for different problem sizes 

with different temporal scopes, geographic coverage and spatial resolutions and. 5) 

Experiment 7 indicates that the spatial relationship of computing resources and network 

connections between computing resources is very significant to the performance, and its 

impact would be higher than CPU core numbers and speed. 6) Experiment 8 suggests that 

a good temporary file storage strategy would greatly improve the performance.7) Finally, 

Experiment9 indicates that the spatiotemporal pattern of a phenomenon can be utilized to 

enable the computability of a large geographic coverage simulation. 

 

  



82 
 

 

CHAPTER 5 
 

NESTED DUST-STORM MODELS AND INTEROPERABILITY  
 

 Scientific research and societal benefit applications in the 21st century require 

better understanding of the past and prediction of the future for better decision support by 

integrating model simulations from different domains for different regions. This urgent 

need poses grand challenge in model integration to meet the 1) scientific accuracy and 2) 

computability of integrated models for high resolution results. This chapter tries to 

address the 2nd problem and reports the investigations on using interoperability 

technologies and nested model approach to enable the computability of data intensive 

Earth Science applications, using dust storm forecasting as a case study. 

The approach adopting loosely-coupled interoperable nested models 1) enhances 

the model interoperability by enabling the utilization of multiples data resources  as the 

input for the two models, Eta-8bin and NMM-dust models,  communication between the 

two heterogeneous models,  and coupling runs of the two dust models, 2) reduces the 

execution time for both Eta-8bin and NMM-dust dust storm models to reasonable 

timeframe, and 3) produces acceptable resolution in a timely manner by considering the 

size and movement of dust storm to serve public health applications and the public for 

quick response and preparation for the severe dust storm events. The research provides 

potential solution for both achieving higher resolution and covering large geographic 

regions.  
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 In this chapter, the framework to enable the loosely-coupled interoperable models 

will be introduced, and case study and results achieved through this approach will be 

presented and discussed.  Further research on spatial cloud computing needed to utilize 

the interoperability and nested modeling approach to their full extent, will be introduced 

in the next chapter (Chapter 6). 

5.1 Framework 

 One model interoperability and loosely-coupled approach is to use a low spatial 

resolution model to identify regions of high predicted dust concentration and a 

computationally more expensive high-resolution model for only the previously identified 

high concentration areas (Benedict et al., 2011). This approach was employed in the 

research, in which two versions of the DREAM were used to perform low- and high-

resolution dust forecasts. This required access to both models, and entailed execution of 

the high resolution NMM-dust model based upon the output of the coarse resolution 

ETA-8bin model.  

 



 

 

Figure5.1 Framework of the loosely

 Figure 5.1 shows the framework of the loosely

simulation and the interaction or interoperability between the two models. Within this 

framework, standards-

place over available high speed network connections (i.e. National Lambda Rail, Internet 

2, or the standard Internet) in the sequence of: 

1) Initialization of the regional ETA

located at GMU through an OGC WCS call to the T

al., 2004) hosted at the University of New Mexico’s (UNM) Earth Data Analysis 

Center (EDAC),  

Framework of the loosely-coupled nested dust storm forecasting
 

Figure 5.1 shows the framework of the loosely-coupled nested dust storm 

simulation and the interaction or interoperability between the two models. Within this 

-based service interactions between the partner Universities take 

available high speed network connections (i.e. National Lambda Rail, Internet 

2, or the standard Internet) in the sequence of:  

1) Initialization of the regional ETA-8bin(Janjic, 2003; Xie et al., 2010) model 

located at GMU through an OGC WCS call to the Thredds data server (Nativi et 

al., 2004) hosted at the University of New Mexico’s (UNM) Earth Data Analysis 

Center (EDAC),   
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coupled nested dust storm forecasting 

coupled nested dust storm 

simulation and the interaction or interoperability between the two models. Within this 

based service interactions between the partner Universities take 

available high speed network connections (i.e. National Lambda Rail, Internet 

8bin(Janjic, 2003; Xie et al., 2010) model 

hredds data server (Nativi et 

al., 2004) hosted at the University of New Mexico’s (UNM) Earth Data Analysis 
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2) Initialization of the regional ETA-8binthrough an OGC WCS call to servers at 

EDAC that are acquiring and publishing current MOD12 land cover products via 

WCS from the LP DAAC,  

3) Execution of the ETA-8binmodel, and delivery of the model results to the 

servers at EDAC via a simple REST (Fielding, 2000) service interface that 

processes and republishes the outputs via WCS,   

4) Processing (at EDAC) of the delivered ETA-8binmodel outputs to identify 

regions (Areas Of Interest – AOIs) within the model domain that have dust 

concentration values that exceed a defined threshold,  

5) Retrieval of AOIs (at GMU) for a specific model run date, and initiation of a 

sub-regional NMM-dust model runs for each geographic area and time period via 

a REST service request to the server at EDAC,   

6) Execution of the NMM-dust model for each AOI at GMU,  

7) Delivery of NMM-dust model outputs for each AOI to the servers at EDAC, 

and 

8) Publication of the delivered NMM-dust model outputs via WCS and WMS by 

the data server hosted at EDAC. 

5.2 Nested models 

5.2.1 Loosely-coupled nesting strategy 
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 Currently, several numerical dust models have been proposed and developed. The 

Dust Regional Atmospheric Model (DREAM, Nickovic et al., 2001), designed to 

simulate dust entrainment and transport on a regional scale, is widely used for dust cycle 

modeling system. DREAM can be easily configured and incorporated to other 

atmospheric models. For instance, it has been successfully coupled with NCEP/eta as 

both the Eta-4bin (4 particle size classes) and the ETA-8bin (8 particle size classes) dust 

forecast models to simulate the dust cycle in the atmosphere.  The performance of the 

system has been tested for a variety of dust storm episodes, in a variety of locations and 

resolutions. In conjunction with several previous NASA-funded projects (Morain and 

Sprigg, 2008, 2009;  Yang et al., 2008; Zie et al., 2010; and the ENPHASyS project 

[http://enphasys.unm.edu/]) the Eta-4bin version was routinely run on servers at the Earth 

Data Analysis Center, generating an hourly collection starting in January 2006, and 

continuing through July of 2010. As part of an interoperability improvement and high-

performance computing project (Yang et al., 2008), the ETA-4bin andETA-8bin model 

cores used in this project were developed to run on the servers at George Mason 

University.  

 The ETA-8bin model has shown considerable skills in forecasting severe storms, 

but its spatial resolution is too coarse for many potential applications (Xie et al., 2010). 

The horizontal grid spacing of ETA-8bin is 1/3 of a degree. With current horizontal 

resolutions, models used for numerical weather prediction (NWP) are approaching limits 

of validity for the hydrostatic approximation. The Eta model was replaced in the US 

National Weather Service (NWS) operations by a Non-hydrostatic Mesoscale Model 
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(NMM), which has a higher resolution and greater computational efficiency (Janjic, 

2003). The coupling of DREAM dust forecasting algorithm and the NMM meteorological 

module (NMM-dust) forms a much higher resolution model, which enables an increase in 

the simulation horizontal grid spacing to the zip code level, or about 3KM by 3KM 

resolution. NMM-dust can produce higher resolution results for weather forecasting and 

is executable in parallel mode on distributed systems. Parallel processing is supported 

through the Message Passing Interface (MPI) programming model.   

 It would be ideal if the NMM-dust model could be run a large forecasting region 

(i.e. the western 2/3 of the continental United States), but NMM-dust is very 

computationally intensive and forecast run-times increase n3 with resolution increases  n 

times in 3D space and n4  if increase n times in both space and time dimension (Baillie et 

al., 1997). Therefore, it is not feasible to run the high resolution NMM-dust model for the 

entire continent or the world. Instead, the course resolution ETA-8bin may be run for a 

large geographic region, while the NMM-dust model may be run at a higher resolution 

for specific sub-regions based on the identification of high dust concentrations for those 

sub-regions. In this way, high-resolution model results for specific sub-regions of interest 

(with the areas of interest being defined in terms of high dust concentrations) may be 

obtained more rapidly than would be possible given the execution of a high-resolution 

model over the entire domain.   

In the context of this dissertation, model nesting and interoperability is achieved 

through the use of the low-resolution ETA-8bin model to identify regions of high 

predicted dust concentrations and run the higher-resolution NMM-dust model on only 
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those subregions with much small area in parallel. This approach requires access to both 

models, and entails the execution of the high resolution NMM-dust model based upon the 

output of the coarse resolution ETA-8bin model. By this way, two “loosely coupled” 

nested models are integrated to provide a large area dust storm forecasting with high 

resolution results on the high dust concentration areas, which cannot be performed by 

only one model, ETA-8bin or NMM-dust. 

5.2.2 Case Study 

 Specially, the dust event on July 1st, 2007 was used to test the feasibility of the 

loosely-coupled nested dust storm framework. When we utilize NMM-dust model only to 

simulate the entire domain (36 x 27 degree, Figure 5.2 ), NMM-dust model and 

computing power cannot support such a large domain size running with 3KM as spatial 

resolution due to high computing and memory consumption (Huang et al., 2011). To 

support the runs, we should either a) redesign the existing algorithms, codes, and data 

structures, or b) increase the speed of the CPU and the network connection. 

 Even though the model after reengineering the code can suppose such large area, 

the forecasting can not successfully complete within two hours for one-day forecasting.  

Forecasting an area with domain size at 10 x 10 degree would take about 12.7 hours with 

8 CPU cores. If the domain size is doubled, it will need around 4 times more computing 

time (Section 4.4.3). Therefore, the entire domain size forecasting by NMM-dust model 

would be expected to finish more than 101 hours, which make the results to be invalid as 

it takes more than 3 days to complete one-day forecasting.  Therefore, the proposed 
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approach nested models should be adopted to enable the forecasting for such a large area 

forecasting.  

 
Figure 5.2 Low-resolution model domain area and sub-regions (AOIs) identified for high-

resolution model execution 
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Figure 5.3. AOIs width and length distribution 

 

Figure 5.4.NMM-dust execution time for each AOI on facility A in parallel 

 



91 
 

 

Figure 5.5. NMM-dust execution time for each AOI on facility A in sequence 

 Figure 5.4 shows the execution time required for different AOIs when the facility 

A handling all AOIs in parallel. Therefore, it is expected to finish the entire AOIs 

between 2.7 hours if all of the AOIs are simulated by the NMM-dust in parallel on the 

facility A. Figure 5.5 shows the execution time for each AOI if the facility A handle the 

AOIs  in sequence. The results show that the AOI with the largest domain size (5.7 x 

3.5degree) can be completed within 1.4 hours. This means that with enough groups of 

computing resources (e.g., 18 times of computing resources in Facility A) to handle all of 

the AOIs in parallel, it would make the AOI with the largest domain size determine the 

total execution time (1.4 hours in this case).  

 

Figure 5.6. Execution steps for nested running of ETA-8bin and NMM-dust 

 During the feasibility study, the comparison between the nested running of ETA-

8bin and NMM-dust and only utilizing NMM-dust model to obtain the results for entire 

domain size (36*27 degree) have been conducted. Figure 5.6 shows all required steps and 
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time for each step to implement the proposed framework and enable the nested running of 

ETA-8bin and NMM-dust. To calculate the possibility of forecasting based on this 

approach, the time for the data transferring between the EDAC and GMU and the running 

of ETA-8binhave also been sampled and calculated as Figure 5.6. 

 Therefore, the total time for forecasting including data transferring and execution 

time for both ETA-8bin and NMM-dust is about 2 hours with enough computing 

resources to handle all AOIs concurrently. The simulation is done on 1Gbps and Quard 

Core, 16Gbytes machines in facility A. With the latest machines with 10Gbps 

connections and six core 64 Gbytes HPC computing nodes in facility B, the simulation 

can be done under one hour, therefore, the study found that the nested-model simulation 

is feasible to conduct dust forecasting for the Southwest U.S.   

Figure 5.7 shows one time-frame result at 03 AM, July 02, 2007, produced by 

ETA-8bin and NMM-dust models in different spatial resolution. The model results show 

similar pattern for dust storm area and NMM-dust with 3KM picked up much more 

detailed information about the dust concentrations. 



 

 

Figure 5.7 Comparison of the simulation results by ETA

5.3 Model Interoperability 

 This framework (Figure 5.1) makes extensive uses of open standards, including 

the OGC’s WMS(Beaujardiere, 2006) and WCS( Evans, 2006), and the World Wide Web 

Consortium’s (W3C) Simple Objects Access Protocol (SOAP, W3C, 2007). 

OGC standard service interfaces between models provides for future evolution of the 

system without having to work around model inter

tightly integrated sequential model execution scheme. As long as the service 

remain unchanged, the systems that operate those interfaces can be modified without any 

required changes to the components that interact with those systems. The expectation is 

that there will be little, if any, modification of the existing ETA

model cores, with the above described service interconnections being enabled through a 

Figure 5.7 Comparison of the simulation results by ETA-8binand NMM

11, 12 and 13 at 03 AM, July 02, 2007 

5.3 Model Interoperability  

This framework (Figure 5.1) makes extensive uses of open standards, including 

the OGC’s WMS(Beaujardiere, 2006) and WCS( Evans, 2006), and the World Wide Web 

Consortium’s (W3C) Simple Objects Access Protocol (SOAP, W3C, 2007). 

OGC standard service interfaces between models provides for future evolution of the 

system without having to work around model inter-dependencies that would exist in a 

tightly integrated sequential model execution scheme. As long as the service 

remain unchanged, the systems that operate those interfaces can be modified without any 

required changes to the components that interact with those systems. The expectation is 

that there will be little, if any, modification of the existing ETA-8bin and NMM

model cores, with the above described service interconnections being enabled through a 
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8binand NMM-dust on AOI 10, 

This framework (Figure 5.1) makes extensive uses of open standards, including 

the OGC’s WMS(Beaujardiere, 2006) and WCS( Evans, 2006), and the World Wide Web 

Consortium’s (W3C) Simple Objects Access Protocol (SOAP, W3C, 2007). The use of 

OGC standard service interfaces between models provides for future evolution of the 

dependencies that would exist in a 

tightly integrated sequential model execution scheme. As long as the service interfaces 

remain unchanged, the systems that operate those interfaces can be modified without any 

required changes to the components that interact with those systems. The expectation is 

bin and NMM-dusts 

model cores, with the above described service interconnections being enabled through a 
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modification of the model pre- and post-processor components associated with the 

models. 

 The system interoperability activities for this research have been related to the 

development of interoperable interfaces for dust storm models to acquire distributed data 

resources as model input and in the development of enhanced interoperable services for 

the delivery of products and data to users.  

5.3.1 Distributed data acquisition 

 OGC open standards are used to access and integrate data from different 

organizations, locations, and with different type of data, such as NetCDF, GRIB, HDF-

EOS, through WMS, WCS, and CSW,   as input for initialization of ETA-8bin model and 

support the running of nested models. The input of ETA-8bin model includes both static 

and dynamic meteorological and geospatial data sets. The static data sets consist of soil 

type, geographical information of the surface, e.g. digital elevation of the surface etc. The 

dynamic meteorological datasets for model input of ETA-8bin requires 5 time-varying 

meteorological fields which are the prognostic variables during the model simulations, 

including surface pressure p, geopotential height, specific humidity q, temperature T, and 

two horizontal wind components u and v (Wolters et al., 1995).   

 During the feasibility test, the real-time meteorological data is accessed and 

obtained from EDAC data center, which hosts an OGC Web Coverage Service (WCS) for 

the continuously growing collection of NOAA Global Forecast System (GFS) 

meteorological forecast products. EDAC has been acquiring GFS produces since 2006 in 

support of the multiple dust modeling related projects illustrated in Figure 5.8. 
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Figure 5.8. GFS THREDDS Catalog Hosted by EDAC (GFS data collections circled in 

the figure) 

 Traditionally, restricted data formats are required for the NWP models to extract 

these dynamic parameters and specific data centers are providing those data, such as 

NWP models should usually download the GRIB1 or GRIB2 data from NCAR websites.  

GRIB data, which are usually the data format for NWP models and can be produced from 

NCEP's NAM (http://stu-in-flag.net/nam.php) or 

GFS(http://www.emc.ncep.noaa.gov/gmb/moorthi/gam.html) model, typically contain 

more fields than needed to initialize ETA-8bin.  However, the five meteorological 

parameters to initialize ETA-8bin model are provided by many data centers via different 

models or tools. Therefore, as long as these five meteorological parameters can be 

integrated, the ETA-8bin model may be executed using meteorological parameters from a 

wide variety of sources, including the GFS model output. In this way, model 
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interoperability is facilitated in the aspects of preparing model input by developing the 

potential of integrating widely distributed data resources to enable the executions of Earth 

Science models. 

 The system currently accepts DataFed (2007) /AirNow inputs EPA observations 

through the WCS as dynamic geospatial data sets. Another data source, e.g., NASA LP 

DAAC’s soil moisture data, is available. The new LP DAAC service can be quickly into 

the existing workflow through WCS. These data can be accessed without developing a 

new interface, and therefore the return-on-investment-in-interoperability (Bambacus and 

Reichardt, 2006) is achieved.  

5.3.3 Across-site and model communication 

 Coupling the Eta-8binoutput and NMM-dust models are implemented to enable 

the communication of two different models. Modifications to the model pre- and post-

processor components associated with the Eta-8bin models are required to enable model 

interoperability. Specifically, the model pre-processor code has been modified to support 

the retrieval of initialization parameters from remote systems via WCS requests that 

return data files which are then subject to further processing to match the required input 

formats (Fortran binary grids) expected by each model core. The Post-Processor code 

requires the addition of functionality for automatically pushing the model output to the 

directory where a THREDDS Data Server hosts ETA-8bin model output at GMU to 

disseminate the model output in an interoperable way, as well as triggering the EDAC 

data center to harvest the model output through WCS.   
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 Standard input and output file formats should be implemented and utilized for 

both the Eta-8bin and NMM-dust models so that the outputs of one could be used as the 

input into the other. Specifically, it was decided to use the NetCDF as the file format for 

the outputs of both models, allowing standard meteorological data processing tools to 

access and process these products. Both models after modification of pre- and post-

processors are able to read NetCDF files for model initialization and boundary condition 

specifications. The use of a common, well supported, data format for both model 

initialization and output significantly enable the communication and streamlines the 

process of developing multi-model workflows. In this way, the output of one model can 

be used to initialize another, either for a model run for a subsequent time step, or for the 

execution of a higher resolution model for the same time period over which a low-

resolution model has already been run.  

5.3.3 Model output real-time dissemination 

The model output is served through WMS and SOAP, which enables easy access 

for all decision support systems (DSSs) supporting OGC, OpenDAP standards. The 

THREDDS Data Server running at EDAC and CISC will be expanded in its data 

collection to include the directories that host the generated ETA-8bin and NMM-dust  

model outputs that will be pushed to the servers at EDAC. This expanded THREDDS 

catalog will provide four access models for all of the project products: HTTP for direct 

download; WCS for data delivery with options for spatial, temporal, layer extraction, and 

coordinate transformation; WMS for visualization of model outputs as map images; and 

OpenDAP for delivery of multi-dimensional data suitable for use in a wide variety of 
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implementing analysis systems. Figure 5.9 and 5.10 shows the utilization of dust storm 

forecasting results of both ETA-8bin and NMM-dust models for 4D visualizations 

accessed through the THREDDS server hosted at EDAC . 

 
Figure 5.9  Utilize coarse resolution model ETA-8binoutputs 

 

Figure 5.10 Utilize high resolution model NMM-dust outputs 
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CHAPTER 6 

SPATIAL CLOUD COMPUTING 

Loosely-coupled nested models require a large computing pool to run various 

hotpots identified by coarse model in parallel to achieve the best performance. This will 

cause computing spike requirements that can be best handled by elastic and on demand 

computing platform. Could computing provides a pay-as-you-go potential solution with a 

large, virtualized pool of computational resources (Armbrust et al., 2010).  Cloud 

computing technologies, e.g., virtualization, now become more and more mature,   and 

cloud infrastructure become more and more powerful. For example, Amazon EC2 offers 

cluster instances with 10 Gbps network connection. Each instance has 23Gbytes memory, 

a clock speed of 2.93 GHz,   and two quad-core processors. Such hardware and network 

configuration are far much better than grid computing environments with heterogeneous 

computing resources and World Wide network (WAN) connection, and even better than 

most of private homogenous HPC cluster configurations. This makes cloud computing a 

new, advantageous computing paradigm to resolve scientific problems traditionally 

requiring leverage a special high-performance cluster (Rehr et al., 1020). The traditional 

cluster environment requires typically several months and usually hundreds of hours of 

labor to procure, install, configure new infrastructure.  Traditional processes will involve 

multiple personnel with different technical backgrounds to ensure the success of the 

configuration. Often, greater efforts and costs are required to maintain the infrastructure 

while the utilizing of the infrastructure were used only 10%-15% of its full capacity 

(Marston et al. 2011). Therefore, the cloud parallel system would have a great impact on 
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parallel scientific HPC applications in the near future by facilitating the deployment 

process while increasing the rate of utilization of computing resources (Yang et al., 

2011b). 

 In addition, real-time dust storm simulation is a data intensive application, high 

memory and computing power are required when a large number of users are involved 

and each user may forecast different areas and harvest thousands of records.  There are 

different access amounts at different periods within one day, and different computing 

resources should be leased at different time slots during the day. And, running high 

resolution models for a large geographic region will require a significant amount of 

computing resources and, often, the higher resolution will not be needed.  This will cause 

computing spike requirements that can be best handled by elastic and on demand cloud 

computing platform. 

This chapter will explore how to use spatial cloud computing to support dust 

storm simulation and predictions by enabling the nested running of dust storm models, 

which require spiking many computing instances to enable the AOIs to run in parallel. 

The Amazon EC2 cloud computing platform and the process to deploy the NMM-dust 

model on Amazon’s EC2 cloud computing platform will be introduced. The AOIs 

identified by the coarse dust storm model will be run and tested in parallel with the 

scalable Amazon EC2 instances which are optimized through the spatiotemporal patterns 

and strategies proposed in Chapter 4. 

6.1 Amazon Cloud Services 
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6.1.1 Amazon EC2 

 As a central part of Amazon’s cloud services, Amazon EC2 allows users to 

deploy scalable resources on demand. Amazon EC2 is a typical IaaS.  Based on 

Xen(Barham et al., 2003), EC2 enables users to boot an Amazon Machine Image (AMI) 

to create a virtual machine, which Amazon calls an "instance." AMI is a bootable virtual 

machine (VM) root image with various OS and any software desired to create a VM. At 

present, EC2 offers a number of different instance types to meet computing needs with 

each instance providing a predictable amount of dedicated compute capacity (CPU 

power, memory, disk etc.).  Amazon classifies these EC2 instances into five categories 

including Standard instances, Micro instances, High-Memory instances, High-CPU Linux 

instances, Cluster Compute instances and Cluster GPU instances, and different categories 

are suitable for different types of applications.  

 The Standard Linux instance has memory to CPU ratios suitable for most general 

purpose applications, and it has three types of instances with different virtual hardware 

configurations. For example, the small instance has only one EC2 computing unit (1 

virtual core with one EC2 computing unit).  The computing speed of one EC2 computing 

unit is approximately 1.0-1.2 GHZ. As the computing power and memory increase, the 

cost for the instances also increases. High-Memory Linux instance offers larger memory 

sizes for high throughput applications, including database and memory caching 

applications. High memory extra large, double extra large and Quadruple extra large 

instances have 2, 4, and 8 virtual cores respectively with each virtual core having 3.25 

EC2 compute unites.  Instances of this category are relatively expensive, at least $0.5 per 
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hour due to high computing power and memory hardware configuration. High-CPU 

Linux instance has proportionally more CPU resources than memory (RAM) and is well 

suited for computing intensive applications.  

 Cluster compute instances provide proportionally high CPU with increased 

network performance and are well suited for High Performance Compute (HPC) 

applications and other demanding network-bound applications. Cluster Compute 

Quadruple Extra Large instance has 23 GB memory, 33.5 EC2 Compute Units, 1690 GB 

of local instance storage, 64-bit platform, 10 Gigabit Ethernet. Unique to Cluster 

Compute and Cluster GPU instances is the ability to group them into clusters of instances 

with the high speed network connection for use with HPC applications. This is 

particularly valuable for those applications that rely on protocols like Message Passing 

Interface (MPI) for tightly coupled inter-node communication 

(http://aws.amazon.com/ec2/hpc-applications/). 

6.1.2 Deploying Applications Onto The Cloud  

 Through the AWS (Amazon Web Service) Management Console 

(http://aws.amazon.com), or Amazon EC2 AMI Tools (http://aws.amazon.com/ec2/), 

users can request to launch an instance based on a specified AMI. If the request is 

authorized, a VM is deployed. The VM image could already be available on a cloud, or 

created by users. Figure 6.1 shows the process of launching an Amazon EC2 instance.  

Amazon has two types of storage services, including EBS (Elastic Block Store) and 

Simple Storage Service (S3). EBS is a type of storage that enables you to create volumes 
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that can be mounted as devices by Amazon EC2 instances. Amazon EBS volumes behave 

like raw unformatted external block devices. S3 provides a simple web services interface 

that can be used to store and retrieve any amount of data over the Internet. Both storage 

types can store AMI volume and be used as the virtual storage device for an Amazon 

EC2 instance.  

 

Figure 6.1 Launch an Amazon EC2 instance (http://aws.amazon.com) 

In order to deploy applications on Amazon, an AMI should be prepared. In Linux, 

there are two common ways to prepare an AMI that offers a combination of user 

friendliness and detailed customization levels: 1) The easiest method involves starting 

from an existing public AMI and modifying it according to your requirements. This is 

applicable for both Amazon EBS-backed and Amazon S3-backed AMIs; 2) Another 

approach is to build a fresh installation either on a stand-alone machine or on an empty 

file system mounted by loopback. This is only applicable for AMIs backed by Amazon 

S3 and entails building an operating system installation from scratch. 

 The role of virtualization technology in the clouds is emphasized by identifying it 

as a key component as it provides cloud computing with the necessary level of 
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abstraction to represent a unique usage mode and a narrow interface with well-defined 

purposes (Buyya et al., 2008). With the technology of virtualization, a cloud computing 

infrastructure, such as Amazon’s Elastic Computing Cloud (EC2), provides computing 

capacity to end users on-demand from remote locations in the Internet (Liu and Orban, 

2008). 

A wide range of virtualization solutions have been proposed and three leading 

approaches are full virtualization, para-virtualization and hardware virtualization. Full 

virtualization is based on the host/guest paradigm and each guest runs on a virtual 

imitation of the hardware layer. Para-virtualization presents each virtual machine with an 

abstraction of the hardware that is similar, but not identical, to the underlying physical 

hardware. Para-virtualization attempts to provide most services directly from the 

underlying hardware instead of abstracting it. Hardware virtualization is when the 

hypervisor is embedded in the circuits of a hardware component instead of being called 

from a third-party software application.  

6.2. Deploying Dust Storm Model onto the Cloud  

 Figure 6.2 demonstrates how to deploy dust storm models onto Amazon EC2 high 

performance platform.  In this case, the first method of preparing the cluster instance 

AMI from an existing public AMI and modifying it is used.  Amazon provides for users 

to launch cluster instance from a special EBS-backed Amazon Machine Image (AMI) 

using Hardware Virtual Machine (HVM) virtualization. 1) One or more cluster instances 

can be launched based on the dust storm forecasting requirement for the computing 
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resources. After the instances that begin booting up with the AMI, users are able to 

interact with the cluster instances. 2) User can create an EBS volume to attach to the head 

node instance for keeping the dust storm model and required package suits to run the 

model, such as MPICH2 software, to schedule the dust storm simulation. Such a separate 

volume has two benefits: a) one is to restore the dust storm simulation system from the 

volume in case the current head node instance crashes, and b) another is that the volume 

could be any size from 1 GB to 1 TB in size. As the dust storm simulation is a data 

intensive application, hundreds or thousands of data could be produced.  Therefore, such 

an EBS volume would be perfect to resolve the storage capability problems. 

 

Figure 6.2. The process of deploying dust storm models onto Amazon EC2 

3) The next step is to set up the firewall for the group of instances and the system 

administrator should have full control over the instances and the instances should be able 



106 
 

 

to communicate with each other over a range of ports while performing the simulation to 

exchange the data. This can be set up through Amazon’s command line tools or AWS 

Management Console. 4) Therefore, users can login to the instance to get full root access 

through secure remote access SSH (Secure Shell) after authorizing the network access 

performed in the previous step. 

5) After logged in, the user can explore and play with the system however he/she 

likes: setup the required environment to host a web application or running a model. In 

this case, the database and the NFS service should be set up to enable all other computing 

instances to share the package suits. In this way, only the head node should set up the 

software environments and configure the model while other computing instances can 

share this environment without installing and configuring. After 6) mounting the EBS 

volume to the NFS export directory, 7) the package suits required to enable the model to 

run, including python and MPICH2 in this case, can be installed, and 8) NMM-dust dust 

storm model can be deployed on the NFS export directory. 

9) After successfully setting up the head node environment, the computing nodes 

can share this environment by mounting the NFS export directory to the local directory 

like using a local storage. 10) As long as the firewall between the head node and 

computing nodes are properly set up, and the middleware MPICH2 is properly 

configured, the group cluster instances should be able to communicate, and 11) the model 

NMM-dust should be able to run successfully. 

10) Finally, a new AMI can be created based on the running instance. In this way, 

the system can be restored in a very fast fashion if the head node crashes by launching an 
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Amazon EC2 cluster instance from this new AMI. In addition, geoscience communities 

can build their own dust storm forecasting system based on the current available system 

created from the new AMI.  This would greatly reduce the duplication of efforts among 

organizations as other organizations can run the model based on the work without putting 

forth great efforts into compiling, installing and configuring the NMM-dust on their own 

efforts, which is a very complex process taking several days or even several weeks for a 

new user of such a system. Traditionally, various researchers and scientists have used the 

available Earth science data to build a large number of complex algorithms, models and 

applications tailored to their specific studies (Votava et al., 2002). The goals achieved by 

these algorithms, models and applications are not always completely different despite the 

differences in research objectives. If we build the functions or applications as cloud 

services to share with others, duplications can be eliminated. Hence, cloud computing 

would greatly facilitate Geosciences by fostering the reuse and sharing of functionalities 

and knowledge across Geosciences communities. 

Amazon EC2 offers a highly reliable environment for dust storm models because 

the service runs within Amazon’s proven network infrastructure and datacenters. The 

Amazon EC2 Service Level Agreement (SLA) guarantees 99.95% availability for all 

Amazon EC2 regions, including US Standard, EU (Ireland), US West (Northern 

California) and Asia Pacific (Singapore). An additional EBS volume to keep dust storm 

models and running environment has been configured for added reliability. Since the 

EBS data volume can be attached to another instance, the dust storm simulation system is 
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therefore protected from instance termination or failure. Therefore, Amazon EC2 

improves the reliability of geospatial applications.   

6.3 Performance test 

Finally, we integrate all of the strategies to test the computability of a large area 

with high resolution forecasting requirements on a cloud platform.  Elastic Amazon EC2 

cluster instances are utilized to enable the nested modeling approach to its full extent. 

During the loosely-coupled nested model test discussed in Section 5.2, a large domain is 

narrowed down to 18small regions, which are identified by the coarse model ETA-8bin. 

As Section 4.3.2 experiment results indicate, a certain number of processes usually 

achieve the best performance for any problem size supported by a pool of computing 

resources. Therefore, before utilizing the Amazon EC2 cluster instance, the process 

number that can achieve the best performance should be identified by a set of 

experiments. Such identifying experiments only require to be conducted once, and all of 

other simulation tasks can use the identified process numbers. Figure 6.3 shows that the 

best performance achieved by one Amazon cluster instance is through 40 processes. 

Therefore, 18 Amazon cluster instances are launched, and each instance with 40 

subdomain/processes, to achieve better performance, is responsible to handle one 

subregion. 
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Figure 6.3. The scalability test of one Amazon cluster instance 

 

Figure 6.4. 18 Amazon cluster instances are launched to run 18 AOIs in parallel 

with each instance simulating one AOI region for 24-hour forecasting.  

Figure 6.4 shows the execution time for each instance. The results reveal that 

most of AOIs can be successfully completed within 1 hour for 24-hour forecasting. 

However, two AOIs cannot be successfully completed within 2 hours. Therefore, more 

computing resources should be integrated to enable the computing to achieve the 2 hour 
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for 24-hour simulation time constraint. Then, more computing resources should be 

integrated to improve the performance. 

 

Figure 6.5 Performance comparisons of Amazon cluster instances before and after 

optimizations 

 

Figure 6.6. 18 Subregions run on Amazon EC2 cloud platform after optimization. 

Both AOI 1 and 2 utilize two optimized cluster instances. 

Therefore, two and three cluster instances are used to test the computability of 

those two subregions. Figure 6.5 shows the performance of Amazon EC2 cloud platforms 

when utilizing two and three instances with and without optimizations for 3-hour 
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forecasting over the first subregion. It is observed that the system cannot achieve the 0.25 

hour time constraints even though three cluster instances are involved. Therefore, the two 

instances should be optimized through better parallelization and scheduling strategies, 

including neighbor-mapping and local storage strategies. Figure 6.5 shows that using 

more than 64 processes, the optimized two instances can successfully complete the 

forecasting within 0.25 hours.  Finally, with this two instances and starting 64 processes, 

it is observed that the two AOIs can be successfully completed within two hours (Figure 

6.6). 
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CHAPTER 7 
CONCLUSIONS AND FUTURE WORK 

 
  

 This thesis reviewed relevant problems and suggested new approaches to improve 

the performance of dust storm simulation through exploring and utilizing spatiotemporal 

patterns.  Model interoperability is achieved through integrating multiple distributed data 

resources as real-time model input, enabling two independent models to communicate 

and finally disseminating model results in a real-time fashion.  Loosely-coupled nested 

models are adopted in this study to enable the computability of dust storm forecasting 

with high resolution and large geographic coverage requirement, and nested models are 

supported through spatial cloud computing. 

7.1 Conclusion 

My dissertation reports improving the performance of parallel systems through 

understanding, discovering and utilizing spatiotemporal patterns. A dust storm simulation 

model NMM-dust was used as an example to illustrate several aspects of spatiotemporal 

patterns that can apply to better leverage HPC. A series of experiments are designed and 

conducted to research spatiotemporal characteristics and constraints of dust storm 

phenomena, computing resources and dust simulation models. The experimental results 

show that faster CPU speeds, suitable computing resources, better connections, and a 

good storage strategy will speed up the simulation and enable prediction. The results also 

give insight to divide the problems and arrange computing resources based on the 

prediction requirements, including required geographic coverage, spatial resolution, and 

temporal scope.  
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Based on our analysis of the results of the experiments, we conclude that 

spatiotemporal principles are critical in their ability to optimize computing infrastructures 

by helping arrange, select, and utilize high end computing for compute intensive 

problems. 

The research also improves model integration using nested modeling and 

interoperability approaches. Both the model results and performance comparison 

demonstrate that utilizing interoperable loosely-coupled nested models is capable to 

enhance dust storm forecasting by facilitating model integration, data discovery, data 

access, and data utilization for a) integrating widely distributed large amounts of 

geospatial datasets as model input, b) reducing the computing time, and c) increasing 

spatial resolution, domain size and lengthening the period of forecast. 

Finally, this dissertation explored the feasibility of utilizing cloud computing to 

support geospatial science application with computing intensity, data intensity, 

spatiotemporal intensity and user concurrent intensity. With the capability of scaling 

computing resources on demand, cloud computing platforms offer an efficient solution to 

enable real-time dust storm forecasting systems.  

7.2 Future Work 

 This dissertation addresses the computing demands of dust storm forecasting 

through utilizing spatiotemporal patterns and principles to improve the model 

performance.  This dissertation also adopts loosely-coupled interoperable nested models 

and cloud computing to support the nested models and enable the computability of dust 

storm forecasting with high resolution and large domain size requirements. The research 
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results demonstrate a great potential to solve computing problems that require conducting 

clustered high resolution phenomena prediction for a large geographic domain.  More 

research would be required to greatly enhance the applicability of the methodologies used 

in this dissertation in the next decade including the following research aspects: 

Domain integration: Model integration is eventually trying to interoperate multiple 

domains by sharing knowledge to best utilize data and information for the greatest 

societal impact. This domain interoperation will require scientists with different 

backgrounds to collaboratively address a complex problem such as dust storm impact to 

public health, by contributing their own domain knowledge and revise the knowledge 

structure to accept or output results to other domains. To achieve this objective, social 

studies to better capture and share domain knowledge would be required.  

Automatic model integration: once we have proper metadata and model configurations 

for existing domain models which have been running separately for different domains. A 

workflow chaining process is needed to recruit the needed models for a specific scientific 

application or task on the fly, ideally, in an automatic fashion (Granell, Diaz, and Gould 

2010). 

Broad bandwidth and CPU speed: After parallelization, the speed of the model’s 

execution depends on the numerical methods used and the implementation as well as the 

data involved. Thus, data communication speed and how fast a sequential computer 

process would become a generic computing science challenge (Yang et al., 2011). The 

latest advances from 2D CPU to 3D CPU will help improve the processing speed. 
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Together with the fast tens or hundreds of Gbps communication networks, faster CPUs 

will help enable many of such model integration efforts.  

Middleware:  In practice, the simulation of dust storms is very dynamic in 

spatiotemporal scales and, therefore, demands the dynamic allocation of computing 

resources. A middleware considering these spatiotemporal patterns would enable the 

allocation and use of computing resources for geospatial applications effectively and 

efficiently (Huang and Yang, 2010). In the future, it would be necessary to develop a 

middleware that can schedule the tasks in a way that improves the scalability and 

performance of networked computing nodes by fully considering the spatiotemporal 

patterns. Such an effort would also help to construct a better geospatial 

cyberinfrastructure (Yang et al. 2010a) and a spatial cloud computing platform (Yang et 

al. 2011b).  

Spatial Cloud Computing: SCC is expected to be the next generation platform to 

support Earth science applications, such as dust storm simulation (Yang et al., 2011).The 

success of spatial cloud computing depends on many factors, such as the outreach of 

spatial cloud computing to geospatial scientists who can employ cloud solutions and to 

computing scientists and engineers to adapt spatiotemporal principles in designing, 

constructing, and deploying cloud platforms. 
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