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Abstract
Quantum spinmodels with spatially dependent interactions, known as compassmodels, play an
important role in the study of frustrated quantummagnetism.One example is theKitaevmodel on the
honeycomb lattice with spin-liquid (SL) ground states and anyonic excitations. Another example is
the geometrically frustrated quantum120°model on the same lattice whose ground state has not been
unambiguously established. To generalize the Kitaevmodel beyond the exactly solvable limit and
connect it with other compassmodels, we propose a newmodel, dubbed ‘the tripodmodel’, which
contains a continuumof compass-typemodels. It smoothly interpolates the Isingmodel, the Kitaev
model, and the quantum120°model by tuning a single parameter q¢, the angle between the three legs
of a tripod in the spin space.Hence it not only unifies three paradigmatic spinmodels, but also enables
the study of their quantumphase transitions.We obtain the phase diagramof the tripodmodel
numerically by tensor networks in the thermodynamic limit.We show that the ground state of the
quantum120°model has long-range dimer order.Moreover, wefind an extended spin-disordered
(SL) phase between the dimer phase and an antiferromagnetic phase. The unification and solution of a
continuumof frustrated spinmodels as outline heremay be useful to exploring newdomains of other
quantum spin or orbitalmodels.

1. Introduction

ModelHamiltonians describing interacting spins localized on lattice sites are at the central stage in the field of
quantummagnetism. A class of spinmodels, collectively known as the compassmodels [1], stand out owing to a
unique feature they share in common: the spin exchange interactions differ for different lattice bond
orientations. This is in contrast to the familiarHeisenbergmodel or the Isingmodel, where the exchange has the
same form for all bonds connecting the nearest neighboring sites. The compassmodels arise naturally as low
energy effectiveHamiltonians inMott insulators with orbital degrees of freedom [2–7] aswell as interacting
systemswith spin–orbit coupling. These highly nontrivialmodels are also very appealing from a pure theoretical
point of view because they offer a natural arena to study frustrated quantummagnetism [8, 9]. Exactly solvable
compassmodels, the Kitaevmodel in particular, have played a pivotal role in stimulating the field of topological
quantum computing [10, 11]. The rich physics contained in compassmodels has been reviewed recently in [1].

Ourwork is directlymotivated by twowell known compassmodels defined on the honeycomb lattice. The
first example is theKitaevmodel [11], where the exchange interactions between two neighboring sites are given
by s s s s,i

x
j
x

i
y

j
y, and s si

z
j
z respectively. As shown byKitaev, thismodel is exactly solvable and has anyonic

excitations obeying fractional statistics [11]. The spatially dependent exchange interactions suppress long-range
spin order and support a quantum spin liquid (SL) ground state, one of themost sought after exoticmany-body
states in condensedmatter physics [12]. TheKitaevmodel, despite its theoretical appeal, is neither readily
realized inmaterials nor easily simulatedwith synthetical quantummatter such as cold atoms on optical lattices.
Recently, the hybrid Kitaev–Heisenbergmodel, a linear superposition of aKitaev term and aHeisenberg term,
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was proposed for iridiumoxides and solved numerically [13]. Besides the SL phase, the hybridmodel contains
other interesting phases such as the stripe and the zigzag phase due to the competition between the two terms
[13]. The phase diagrambecomes even richerwhen off-diagonal spin exchange interactions are added [14–16].

The second example of compassmodels is the quantum120◦model [6, 7]. It is very analogous to theKitaev
model but the spin operators s s,x y, and sz for the three bond directions are replaced by three (pseudo)spin 1/2
operatorsT T,1 2, andT3 respectively. They form an angle of 120°with each other on the xz plane in spin space,
hence the name ‘the 120◦model’. It was introduced to described the low energy physics of transitionmetal
oxides [17]with doubly degenerate orbitals, e.g. orbital-onlymodels of eg orbitals on cubic lattice [3]. Later, two
of us, andWu independently, found that the 120◦model can be naturally realized in strongly interacting spinless
p-orbital fermions on the honeycomb optical lattice [6, 7]. Although it is geometrically frustrated, spinwave
analysis indicates that long-range order is stabilized by quantum fluctuations through the order by disorder
mechanism [6, 7].While the semiclassical spin-wave analysis is suggestive, the ground state of the 120◦model on
honeycomb lattice remains to be identified unambiguously.

Given the apparent similarities between theKitaevmodel and the 120◦model, it is natural to seek the
conceptual and quantitative link between them. Indeed, these twomodels can be viewed as two instances of a
more general class of compassmodels [18]. In this paper, we provide a concrete construction and propose a
‘supermodel’which contains three paradigmmodels, the Ising, the Kitaev and the 120◦model, as special limits.
It only has a single tuning parameter q¢ and a simple, intuitive picture for the three (pseudo)spin operators: they
form a tripod in spin space as shown infigure 1. Analogous to tuning the tripod to raise or low amounted camera
in photography, dialing the angle q¢ between the three legs takes the Isingmodel (tripod fully closed) smoothly to
theKitaevmodel (tripod openwith three legs orthogonal to each other) and then to the 120◦model (tripod fully
openwith three legs in the same plane). Immediately, one conjectures that the phase diagramof this continuum
compassmodel is highly nontrivial containing drastically different long-range ordered states as well as SLs.

We obtain the phase diagramof this ‘supermodel’ using tensor network states which have gained
considerable success recently in the study of frustratedmagnetism [19–22]. The results are summarized in
figures 1 and 2. The order parameters are calculated using the tensor renormalization group (TRG)method
formulated in thermodynamic limit [23, 24].We show that the ground state of the quantum120◦model is a
long-range ordered dimer phase, and a SL phase exists in an extended region in our phase diagram5. The
numerical results of TRG are further confirmed and crosscheckedwith projected entangled pair states (PEPS)
calculations [25, 26] forfinite systems, exact diagonalization (ED), and spinwave analysis.We discuss the
qualitative features of the quantumphase transitions between the SL phase and the dimer phase by introducing a
topological charge (spin vortex) for the dimer configuration.We further show that the proposed tripodmodel
can in principle be simulatedwithHubbardmodel in theMott insulating regime, e.g., using cold atoms on
optical lattice with artificial gaugefields.

2. The tripodmodel

Wegeneralize theKitaev and the ◦120 model to the following continuumcompassmodel defined on the two-
dimensional honeycomb lattice

( ) ( ) ( ) ( )åq q q=
g

g g
+ g

H J T T 1
r

r r e
,

where >J 0, and for each lattice site r the spin 1/2 operators are defined as

( ) ( ) ( )q t f t f q t q= + +g
g gT

1

2
cos sin cos

1

2
sin 2z x y

with the Paulimatrices t t t, ,x y z . Each site r is coupled to its neighbors + gr e , where g =ge , 1, 2, 3, denotes
the three bond vectors of the honeycomb lattice. Geometrically, the three gT form a tripod in the spin space as
shown infigure 1: they are tilted from the xz plane by angle θ and, when projected onto the xz plane, are
orientated along the corresponding bond direction ge , i.e. at azimuthal angle f p p=g 0, 2 3, 4 3 respectively.
While gT ismost naturally defined through the tilting angle θ, it ismuchmore convenient to introduce another
angle, q¢, to discuss the various limits of ( )qH . q¢ is the angle betweenT1 andT2, i.e., the two adjacent legs of the
tripod. And it is related to θ by trigonometry

5
In this paper, we use the term ‘spin liquid’ to denote a phase that shows no long-range spin order according to our tensor network

algorithms. At the special point, q¢ = 90 the tripodmodel reduces to the Kitaevmodel and its ground state is well established to be a gapless
spin liquid.Our numerical results offer evidence that the same spin-liquid state will survive away from theKitaev point. The nature of the
excitations (e.g. their fractional statistics) remains to be checked in order tofirmly establish that it is a quantum spin liquid.
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Figure 1.The tripodmodel on the honeycomb lattice, equation (1). (a)The nearest neighbor spin exchange along bond direction
g =ge , 1, 2, 3, is defined through the spin 1/2 operator gT , represented by an arrow in spin space spanned by t t t, ,x y z . The three

gT can be thought as the three legs of a tripod, being tilted out of the xz plane by angle θ, and forming an angle q¢with each other.
When projected onto the xz plane, gT is along the ge direction. (b)The schematic phase diagramof the tripodmodel. As the tripod is
opened by increasing q¢, themodel starts as the Isingmodel at q¢ = 0, becomes theKitaevmodel at q¢ = 90 , and then the quantum
120°model at q¢ = 120 . Three phases are identified: a ́Neel ordered antiferromagnet, a spin liquid (SL), and a long-range ordered
dimer phase.

Figure 2. Identifying the phases of the tripodmodel. The plot shows the order parametersO1 (filled squares) andO2 (empty circles) as
a function of q¢ calculated from the infinite tensor network algorithmswith bond dimensionD=8 and 6-sites unit cell. The insets
illustrate the schematic spin configurations in theNéel ordered phase (left) and the dimer phase (right) for a hexagon. For

[ ]q¢ Î  87 , 94 , the spin averages are zero, and the ground state is identified as a spin liquid.

3
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( )q q¢ = -cos 1
3

2
cos . 32

Wewill take q¢ as the only tuning parameter in the tripodmodel.
Three special limits of thismodel can nowbe identified. First of all, when q¢ = gT0, all collapse to ty. The

tripod is closed, and ( )qH is nothing but the Isingmodel

( )åt t=
g

+ g
H

J

4
. 4y y

r
r r eI

,

Note that we choose ty as the vertical axis in spin space instead of the usual convention of tz so that ( )qH
reduces exactly to the ◦120 model defined in our earlier work [6]. Secondly, when ( )q q¢ =  H90 , reduces to the
Kitaevmodel since the operators gT are nowperpendicular to each other in the spin space.We can simply
identify them as s s,x y and sz (apart from a factor 1/2) in a rotated coordinate system as illustrated in
figure 1(b). Thirdly, for ( )q q¢ =  H120 , becomes the quantum120◦withT T T, ,1 2 3 all confinedwithin the xz
plane. It can be visualized as a fully open tripod.

Aswell known, the Isingmodel has antiferromangetic (AF) order with the order parameter

∣ ∣ ( )t= á ñO 2. 5y
1

On the other hand side, the quantum120◦model is conjectured to be long-range ordered despite the geometric
frustration.We introduce the following ‘order parameter’ tomeasure the in-planemagnetization

( )t t= á ñ + á ñO 2. 6x z
2

2 2

By solving ( )qH using tensor network algorithms, we compute the average spin tá ñx y z
r

, , in the ground state.
Themain results are summarized in the schematic phase diagram infigure 1(b). Figure 2 shows the variation of
the two order parameters introduced above as q¢ is changed. The region at small q¢ corresponds to the familiar
Néel order which is characteristic of the classical Isingmodel and illustrated in the left inset offigure 2.Despite
the increased quantum fluctuations as q¢ is increased, theNéel ordered phase persists up to q¢ ~ 87 . At the
opposite end of large q¢, wefind that the long-range spin order consists of a set of ‘dimers,’ i.e. opposite spins on
neighboring sites, arranged into a periodic pattern of triangular lattice (figure 5(a)). The triangular lattice and its
enlarged unit cell becomes transparent if we introduce a topological charge (red dot infigure 5(a)) for each
hexagonwith spins all pointing outwards. If we focus on one individual hexagon, e.g. the one shown in the right
inset offigure 2, the orientations of the dimers happen to be also 60° (or equivalently 120°) apart.Wewill refer to
this phase simply as the ‘dimer phase.’ In particular, it is the ground state of the quantum ◦120 model on
honeycomb lattice. This point will be further discussed in section 5.

Sandwiched between theNéel ordered phase and the dimer phase, a quantumSL phase is stabilized for
[ ]q¢ Î  87 , 94 . The conclusion ismainly based on the observation from figure 2 that the order parameters O1,2

in this region are nearly zero compared to those in other two phases. This conclusion is also consistent with the
exactly solution of Kitaevmodel for q¢ = 90 . The order parameters as functions of q¢ infigure 2 also suggest
that the two quantumphase transitions in the tripodmodelmay be qualitatively different. The gradual drop of
O2 at q¢ > 90 indicates a continuous phase transition between the dimer phase and the SL phase. In contrast,
the drop of the order parameterO1 at q¢ < 90 is rather sharp, pointing to a likely first-order phase transition.
The details of the calculations leading to these results will be discussed below in section 3.

3. Tensor network algorithms

Recent developments of entanglement-based tensor network algorithms provide a novel, accurate approach to
strongly correlated electron systems [25–29]. Particularly, they have been successfully applied to frustrated
quantummagnets [19–22] and the t− Jmodel [30, 31] to yield insights previously unattainable from
conventionalmethods. Tofind the phase diagramof the proposed tripodmodel, we employ two
complementary tensor networks algorithms, one forfinite-size systems and the other for infinite systems in the
thermodynamic limit, tofind the ground state and the order parameters. In both algorithms, the ground state
wave function is constructed as a network of local tensors defined on lattice sites. Each tensor has one physical
index representing the spin degree of freedom and three virtual indices, eachwith bond dimensionD, describing
the quantum entanglement with its three neighboring sites.

Wefirst apply the finite PEPS algorithm [25–27] to solve ( )qH for a six-site systemwith periodic boundary
conditions. The ground state energies obtained coincidewith those fromED. This suggests that PEPS is
intrinsically superior compared tomeanfield theories when applied to frustrated spinHamiltonians such as

( )qH . The order parameters decay to zero as the ground state is approached for a finite system.Nonetheless,
their decay behaviors are quite disparate for q¢ values in the Ising, Kitaev, and ◦120 regions, suggesting three
different phases. The details of the calculation are presented in appendix A.

4
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To study the tripodmodel in the thermodynamic limit, wefirst find the converged ground state using
imaginary time evolution and following the simple update scheme as described in [32]which generalizes the
time-evolving block decimation (TEBD) [33] technique to two-dimensions. For a n-site unit cell, e.g. a six-site
unit cell shown infigure 3(a), we need n3 2 different bond vectors that represent, roughly speaking, amean-
field approximation of the environment. Using these bond vectors, the simple update starts with n random
tensors and iterates until convergence is achieved. At the end of the calculation, the ground state ∣Yñ is
characterize by n tensors [ ]ÎT j n, 1,j .We then evaluate the expectation value of operator

∣ ∣ ∣á ñ = áY Yñ áY YñO O O, which involves the (infinite) product of tensorsTj, using a real space coarse graining
procedure known as higher-order TRG (HOTRG) [24] schematically shown infigure 3.We outline themain
steps here. At the ith step ofHOTRG, a local tensor, sayT i

1, is regroupedwith its three nearest neighbor tensors

(T T T, ,2 4 6) to form a new tensor ˜ +
T

i
1

1
.More generally, for odd or even sites

˜ ( )å=+
T T T T T , 7o

i
o
i i i i1

s.l.
2 4 6

˜ ( )å=+
T T T T T , 8i i i

e
i 1

s.l.
e
i

1 3 5

where the summation is over the shared legs (abbreviated as s.l., the solid lines infigure 3(b)) of the neighboring
tensors, i.e. tensor contractions. The new tensors, each of which contains four old tensors, are of higher
dimensions and truncated to have the same dimension asTi via

˜ ( )å=+ +
T T U U U , 9o e

i
o e
i

x y z
1

s.l.

1

Figure 3.TheHOTRGprocedure used to calculate the expectation value á ñO after the convergence of the ground state. (a)The unit
cell (the center hexagon) consists of six sites. Associatedwith each site is a local tensorT i

j at the ith RG step. (b)The coarse graining
procedure to construct the new tensor +T i

1
1 from the old tensors Ti

1 and its neighbors T T T, ,i i i
2 4 6. The other five tensors are updated in

the similar way. (c)The new tensors +Tj
i 1 again form a honeycomb lattice.
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where the three projection tensorsUx y z, , , shown infigure 3(b), are obtained as follows. TakeUx as an example.
First, T̃j is reshaped intomatrix  j with the row corresponding to the leg along the x-direction. Then, amatrix 
is obtained by singular value decomposition

( )† †   å = L
=

. 10
j

j j
1

6

Finally,Ux is obtained by truncating  to a given truncation dimensionχ and reshaping it back to the tensor
form. The new tensors +T i 1now form exactly the same honeycomb lattice structure as the old tensorsT i but
represent a larger system, seefigure 3(c). This constitutes a single RG step. By iterating the RG stepsmany times,
the converged result of á ñO well approximates the expectation value in the thermodynamic limit.

By following these procedures, we have calculated the ground state energy and the ground state expectation
values of the order parameters O O,1 2 for different unit cell sizes, =n 2, 4, 6, 8.We found that the six-site unit
cell gives the lowest energy. The two-site unit cell yields results in agreementwith the six-site unit cell within the
parameter region q¢ < 90 . The four-site and eight-site unit cells, however, lead to excited states with
significantly higher energy. Thus, we conclude that the six-site unit cell is themost reasonable choices for all the
q¢ values in the ground state calculation. In practice, one can safely use the two-site unit cell for q¢ < 90 since it
is significantly cheaper. The phase diagram and the spin configurations in the ordered phases shown infigure 2
are obtained by using the two-site unit cell for q¢ 90 and the six-site unit cell for q¢ > 90 .

4. Spinwave analysis

To cross-check the TRG results, we perform the standard spinwave analysis of the tripodmodel. It is important
to keep inmind that the validity of the spinwave theory, which can be viewed as expansion in series of S1 ,
becomes questionable in the limit of =S 1 2. Yet the analysis offers a rough picture of the role played by
geometric frustration and how theNéel order and dimer order get destroyed by the increased quantum
fluctuations. Aswewill show below, the estimations of the two quantum critical points from the spinwave
theory turn out to be in broad agreement with the phase digrampredicted by the tensor network algorithms.

The analysis starts by partitioning the honeycomb lattice into the A andB sublattice and introducing
= S Tr r for all sites on the A (B) sublattice. Then the tripodHamiltonian acquires a suggestive form

( ) [ ( ) ( )] ( )åq q q= - +
g

g g

Î
+ g

H
J

S S
2

const. 11
Ar

r r e
,

2

Herewe have promoted the spin 1/2 operator t 2 to general spin operator S with spin quantumnumber S. It
follows that classical ground states aremassively degenerate (except for the Ising limit). Any spin configurations
with ( ) ( )q q=g g

+ g
S Sr r e , i.e., the projection of S along the bond direction being the same for any twoneighboring

sites, willminimize the classical energy. This is a well known feature of compassmodels, see the review [1]. The
special case of the classical ◦120 model on honeycomb lattice was previously discussed in [7, 34].Wewill confine
our spinwave analysis to the simple case of spatially homogeneous spin configurations =S Sr 0 as done in [34].
The direction of S0 is characterized by its polar anglejmeasured from ty and its azimuthal angleα of S0

measured from tz in tx–tz plane. The corresponding classical ground state energy per unit cell is

( ) ( )q j q j= - +
E

S J

3

2
2 sin cos cos sin . 120

2
2 2 2 2

It is interesting to note that, coincidently, at the Kitaev point, q¢ = 90 which corresponds to
q = - Ecos 2 3 ,1

0 is completely flat and does not depend onj. For q¢ <  E90 , 0 isminimizedwhenj = 0 or
π, corresponding to the two degenerate states with spin up or down in theNéel ordered phase. In contrast, for
q¢ >  E90 , 0 isminimizedwhenj p= 2, i.e., S0 lies within the tx–tz plane. Therefore, themeanfield theory
above predicts that the tripodmodel has a phase transition exactly at the Kitaev point.

Applying theHolstein–Primakoff transformation [35] to ( )qH and expanding the resultingHamiltonian of
bosons to order S1 , we compute the quantum fluctuation correction to the ground state energy for the two
long-ranged ordered states respectively and find

∣ ( )∣ ( )å w= - D
l

l
E

SJ N
k

1
, 13

k

1

,

whereD = -E S J N,0
2 is the number of sites within the A sublattice, the k summation is over thefirst

Brillouin zone of the A sublattice, and ( )wl k describe the spinwave dispersion for branch l = 1, 2 and they are
given by the eigenvalues of thematrix
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( )

* *

*

*

b b
b b

b b
b b

D

D

- - D -
- - - D

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

1

4

2 0

2 0

0 2

0 2

. 14

3 1

3 2

2 3

1 3

The expressions for b b,1 2 and b3 are lengthy and tabulated in appendix B. Inwhat follows, wewill discuss the
energy ( )j a = +E E E, 0 1 separately for the two distinct cases: q¢ < 90 and q¢ > 90 .

The results for ( )jE from the spinwave analysis are plotted in the upper panel offigure 4 for several values
of q¢ corresponding to theNéel ordered phase.One notices that the fluctuations do not change qualitatively the
meanfield ground state. ( )jE reachesminima still atj = 0 orπ for small q¢. However, as q¢ is increased, the
energy ( )jE becomes flatter. Eventually, as q q¢ = ¢ ~ 75.0c (the top curve offigure 4), the energies for
j p p= 4, 3 4with proper choice ofα become degenerate with those forj p= 0, . This signals the
destabilization of theNéel order by quantumfluctuations. This occurs around q¢c, before theKitaev point is
approached.Note that infigure 4, only the region [ ] [ ]Èj p p pÎ 0, 4 3 4, is shown.Outside this region (and
also for q q¢ > ¢c), the lowest order spinwave theory based on the Ising-like antiferromagnetic order becomes ill
defined.

For q¢ > 90 , the classical ground state is continuously degenerate withj p= 2 but arbitrary [ ]a pÎ 0, 2 .
Quantumfluctuations lift the degeneracy and select a long-range ordered ground state via the ‘order by disorder
mechanism’. Suchmechanism for the special case of q¢ = 120 , i.e. the quantum120◦model, has been
discussed before in [6, 7, 34]. As shown in the lower panel offigure 4, the same physical picture continues to hold
for the tripodmodel for q¢ 120 : the energyE isminimized at a p= n 3n with integer n. However, ( )aE
becomes increasingly flat as q¢ is decreased. At the critical point q q¢ = ¢ ~ 94.6d , additionalminima ofE appear

Figure 4.The energy per unit cell from leading order spinwave theory for the tripodmodel. Upper panel: ( )fE for theNéel ordered
phase. At q¢ ~ 75.0 , the location and number ofminima ofE change, indicating the transition to a different phase. Lower panel:

( )f p a=E 2, for the dimer phasewithminima occurring at a p= n 3n . At the critical point ( )q a¢ ~  E94.6 , changes
qualitatively, signals another phase transition.

7
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at a a p= + 6n . This indicates that the long-range order gets destroyed and replaced by a new phase
for q q¢ ¢d.

We emphasize that the simple version of spinwave theory outlined above is only intended to estimate the
lower and upper critical points for the SL phase, q¢c and q¢d. It can be further improved to properly treat general
classical spin configurations.Wewill not do it here because the large S expansion by itself cannot unambiguously
determine the order for ourmodel of =S 1 2 in the region q¢ > 90 .

5. The dimer phase

Previous theoretical studies of the quantum ◦120 model on the honeycomb lattice gave conflicted results. The
spinwave analysis of [6] assumed a homogenous ground state =S Sr 0 and found quantumfluctuations prefer
a p= n 3n . This led the authors to suggest that the ground statemay be a simple ferromagnet of S with any
choice of an (i.e. antiferromagnetic order in terms of the original spin T or t ). Reference [7] consideredmore
general (inhomogeneous) classical ground states and discovered that, within spinwave theory, the
ferromagnetic state is energetically less competitive than a ‘fully packed unoriented loop configuration’with the
same an values. The reason is quite subtle but argued to be physically robust: the loop configuration hosts
maximumnumber of zeromodes. This result obtained from semiclassical large-S expansionwas conjectured to
survive in the limit of =S 1 2, i.e. the quantum ◦120 model has a ground state with the six-site plaquette order
[7]. However, no evidence of long-range orderwas found in ED studies where the spin correlation functions
were computed forfinite size clusters with periodic boundary conditions [34]. Instead, the ED results supported
a trial wave function similar in spirit to the short-range resonating valence bond state, i.e., a liquid state with
linear superposition of dimer covering of the lattice. Therefore, the true ground state of the quantum ◦120 model
was not settled.

Compared to these previousworks, the numerical tensor network algorithmused here takes into account
quantumfluctuations beyond the lowest order spinwave theory, works directly in the thermodynamic limit, and
starts with unbiased (random) choice of tensors as variational parameters. It is capable of describing both the
long-range ordered and the spin-disordered ground states.Wefind the ground state of the quantum ◦120 model
is the dimer phase illustrated infigure 5(a)where the arrows denote the direction n̂ of spin average tá ñon each
site, and the numbers indicate the bond energies in unit of J. The long-range spin order we observed agrees with
the conjecture based on physical insights in [7].

We prefer the shorter,more descriptive name of ‘dimer phase’ adopted here because it indicates a solid
(crystal) order of ‘dimers’, i.e. antiferromagnetically aligned spins along the bond direction, on a subset of the
bonds.We propose to describe the long-range order using the vorticity or thewinding number of the spin
configuration around each hexagon

ˆ · ˆ ( )ån =
=

+n n
1

3
, 15

j
j j

1

6

1

where j labels the six sites of the hexagon. For example, hexagonsmarked by a dot in the center infigure 5(a)
correspond to n = 1where all spins on the vertices point radially outwards (corresponding to the ‘loop’ in [7]).
The rest of the hexagons, eachmarked by a cross at the center, have n = -1 2. It then becomes apparent that
the hexagonsmarked by dots form a triangular lattice of spin vortices. Andwithin one unit cell of the triangular
lattice, the total vorticity is zero.Note that the state shown infigure 5(a) is energetically degenerate with a state
where all the spins areflipped.

By embedding the quantum ◦120 model into themore general tripodmodel, we are able tomonitor the
suppression of the dimer order and its eventual transition into the gapless SL phase (phase B) of theKitaev
model. The results are summarized in figure 6.We observe that the in-planemagnetizationO2 decreases
continuously to zero as q¢ is reduced.Meanwhile, the ground state energy E steadily rises, indicating an increased
degree of frustration as theKitaev point is approached.One canmeasure the dimer order by introducing the
energy difference dE between the averages of two types of bonds: the ‘happy’ bonds (dimers)with antiparallel
spins and the frustrated bondswhere the two spins form an angle of 60°. Therefore, the dimensionless parameter

( )h d= E E 16

can also serve as the order parameter for the dimer phase. As plotted infigure 6, η continuously drops to zero as
q¢ is reduced from ◦120 to 95°. Once inside the SL phase, bothO2 and η vanish, and the bond energies become
approximately the same (see figure 5(b)). One can view the transition from the SL to the dimer phase as
condensation of spin vortices. Equivalently, when q¢ is reduced, one can view the demise of the dimer order as
themelting of the spin vortex lattice. Note the bond energy shown infigure 5 features smallfluctuations and does
not strictly obeyC6 rotation symmetry. In our tensor network calculations, no spatially symmetry is enforced on
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the tensors, and the expectation values of operators are computed approximately. Thefluctuations are expected
to decrease as the bond dimension is increased.

6. Potential realization

The tripodmodel can be realized from the followingHubbardmodel at halffilling in theMott limit

( )†å å= - +
g ss

ss
g

s s
¢

¢ + ¢  g
H t f f U n n , 17

i
i i e

i
i ihub

, ,
, , , ,

Figure 5.Configurations for (a) the dimer phase (q¢ = 120 ) and (b) the spin liquid phase (q¢ = 90 ) of the tripodmodel. The
number associatedwith each bond is á ñg g

+ gT Tr r e , i.e. the bond energy in unit of J, fromHOTRG calculation. The arrows in (a) depict
the spin direction on each site.
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where sfi, annihilates a fermionwith spinσ at site i. The direction and spin dependent hoppingmatrix is related
to gT defined in equation (2) simply by

[ ( )] ( )q= +ss
g g

ss¢ ¢t t T1 2 . 18

Explicitly, they are given by

( ) ( )

( ) ( )

= - = +

= - = +

 

 

t
t

c c t
t

c c

t
t

c s s t
t

c s s

2
1 ,

2
1 ,

2
i ,

2
i ,

1 2 1 2

1 2 1 1 2 1

wherewe have suppressed the superscript γ for brevity, and

q q f f= = = =g gs c s csin , cos , sin , cos .1 1 2 2

In the limit of U t , using second-order perturbation theory, we obtain the following effectiveHamiltonian
for Hhub

( ) ( ) ( )å q q= -
g

g g
+ g

H J T T
J

4
, 19

r
r r eeff

,

which is nothing but the tripodmodel ( )qH , up to a constant term, with the superexchange =J t U2 2 . Note
that the derivation of the effective compassHamiltonian above does not depend on the details of the
parameterization of gT in terms of θ and fg . It follows that a large class of compassmodels, not limited to the
tripodmodel proposed here, can be engineered on honeycomb lattice following the recipe above.

Duan et al previously showed that theKitaevmodel can be realized using cold atoms on a hexagonal optical
lattice with extra laser beams [36]. Generalization of their idea to the case of the tripodmodel (and other
compassmodels) requires spin-dependent hopping ss¢t controlled by a non-Abelian gauge field or generalized
spin–orbit coupling. Schemes to realize spin–orbit couplingwas proposed in various approaches [37–40]. The
realization ofmany have been demonstrated successfully in cold atoms experiments [41–44]. For example, spin-
dependent optical lattices have been engineered usingmagnetic gradientmodulation [44–46]. It seems possible,
but challenging, tomake ss¢t spatially dependent. Alternatively, the tripodmodel proposed heremay be
emulated using other artificial quantum systems such as superconducting quantum circuits [47].

7.Outlook

The tripodmodel introduced in this paper encompasses threewell knownmodels of quantummagnetism: the
Isingmodel, theKitaevmodel and the 120°model.We established its (zero temperature) phase diagramusing
tensor network algorithms. This amounts to solving a continuumof frustrated spinmodels with spatially
dependent exchange interactions. In particular, we found an extended SL phase around theKitaev point, and a
dimer phase for large values of angle q¢ including the quantum120°model. The two quantum critical points
obtained from tensor network states agree roughlywith estimations from spinwave theory.

Ourwork only scratches the surface of the rich physics contained in the tripodmodel. Herewemention just
a few open questions to be addressed in futurework. First of all, it is desirable to develop afieldtheoretical
description of the continuous phase transition between the SL phase and the long-range ordered dimer phase,

Figure 6.The order parameters of the dimer phase,O2 and η (defined in themain text), and the ground state energyE as functions of
q¢. The vanishing ofO2 and ηmarks the transition from the dimer phase to the spin liquid phase.
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based on the intuitive picture of spin vortices introduced in section 5. Secondly, the tripodmodel, like other
compassmodels, has very interesting emergent symmetry properties including intermediate symmetries
midway between the global and local symmetries [1]. Consequently, the excitation spectrum is expected to
contain zeromodes and/orflat bands. It is therefore valuable to understand the excitation spectra of the long-
range order phases by going beyond the ground state analysis here. Thirdly, the finite temperature properties of
the tripodmodel deserve a separate study. The classical limit of the tripodmodel is known to be highly
nontrivial. The effects of thermalfluctuations and the ‘order by disorder’mechanismhave been investigated in
[34] for the classical 120°model. Finally, we have only focused on the case of =gJ J here. From theKitaev
model, we know that a gapped SL phase (phase A) takes over when the asymmetry in Jγ grows large. Thus one
expects that further generalization of the tripodmodel to general values of Jγmay uncover new interesting
phases.

To conclude, we hope our results can stimulate further application of tensor network algorithms to
frustrated spinmodels as well as spin–orbitalmodels describing transitionmetal oxides.We also hope our
introduction of the tripodmodel can inspire alternative proposals to extend theKitaevmodel or realize compass
models in artificial quantum systems such as cold atoms on optical lattices or superconducting circuits.
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AppendixA. Tensor network algorithms

Thefinite PEPS algorithm is a powerful numerical approach for two-dimensional quantum spin systems [25–
27]. For the tripodmodel, we construct the usual PEPSwave function starting from six random rank-four
tensors with virtual bond dimensionD=3. The tensors are then optimized through recursive imaginary-time
evolutionwith time step t = 0.01on all the links. Once thewave function is converged, we calculate the ground

state energy and the expectation value of the combined order parameter = +O O O1
2

2
2 . The results are

shown infigure 7 for three typical values of q¢ (corresponding to the three different phases found in the
thermodynamic limit). For the small system size considered here (six sites with periodic boundary conditions),
O vanishes as thewave function converges to the ground state. Nonetheless, a noticeable peak ofO during the
time evolution can serve as the indication for spin order. For all the three cases, the energies converge to the ED
result up to a relative error of 10−3 (the upper panel offigure 7). The peaks ofO in the lower panel offigure 7 for
the cases q¢ = 70 and q¢ = 120 point to theNéel order phase and the dimer phase respectively, while the
monotonic decay ofO for the case q¢ = 90 suggests a SL state.

Within themany variants of tensor network algorithms, a typical way tofind the phase diagramof quantum
spinmodels is the infinite PEPS (iPEPS)method [28, 29]. The iPEPS ansatz on the honeycomb lattice usually
proceeds bymapping the lattice to a square lattice and evaluating the effective environment by contraction
schemes such as infinitematrix product states [28] or corner transfermatrices [48, 49]. For instance, the phases
of Kitaev–Heisenbergmodel [50] and the SU(4) symmetric Kugel–Khomskiimodel [51]have been studied via
the iPEPS ansatz with a 2×2 or 4×4 unit cell. However, the contraction scheme for a six-site (hexagonal)unit
cell on the honeycomb lattice is tedious and expensive, especially for the corner transfermatrices scheme.

For this reason, we adopt the simple tensor update scheme and evaluate the contraction using theHOTRG
method as explained in themain text. The simple update [32] generalizes the TEBD [33] technique to two-
dimensional quantum systems by introducing the bond vectors to represent themean-field environment for
local tensors.We set the imaginary time step t = 0.01 and the number of iterations is generally around 105

(smaller time step does not improve the numerical result significantly). The accuracy of theHOTRGmethod is
controlled by the virtual bond dimensionD. By systematically increasingD, the quantum entanglement between
neighboring sites is better taken into account, yielding amore accurate ground state. For example, figure 8 shows
that the order parameterO2 vanishes whenD is increased to 8 in the region q¢ < 94 , suggesting a SL ground
state. One notices that the variations of the ground state energy with q¢within the SL phase is larger than those in
the long-range ordered phase, especially for smallerD values. This is due to the strong quantumfluctuations
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intrinsic to the SL. Cross-checking theHOTRG calculations here to those using SecondRenormalizationGroup
[52]which takes into account the entanglement between the system and the environment deserves a future
study.

Figure 7. Finite PEPS results for a six-site cluster showing the errors of ground state energy (relative to that from the exact
diagonalization) and the order parameterO for three different values of q¢.

Figure 8.The ground state energy E and the order parameterO2 computed fromHOTRGat virtual bond dimension =D 4, 6, 8 and
truncation dimension c = 8.
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Appendix B. Spinwave theory

For the two long-range ordered phases, the S1 corrections to the energy are obtained by diagonalizing the
matrix equation (14)with different form factors b b,1 2, and b3. For theNéel ordered phase, they are given by
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And for the dimer phase
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Here, aj and bj are related to the parameter q j, , andα defined in themain text through
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