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Abstract

Quantum spin models with spatially dependent interactions, known as compass models, play an
important role in the study of frustrated quantum magnetism. One example is the Kitaev model on the
honeycomb lattice with spin-liquid (SL) ground states and anyonic excitations. Another example is
the geometrically frustrated quantum 120° model on the same lattice whose ground state has not been
unambiguously established. To generalize the Kitaev model beyond the exactly solvable limit and
connect it with other compass models, we propose a new model, dubbed ‘the tripod model’, which
contains a continuum of compass-type models. It smoothly interpolates the Ising model, the Kitaev
model, and the quantum 120° model by tuning a single parameter &', the angle between the three legs
of atripod in the spin space. Hence it not only unifies three paradigmatic spin models, but also enables
the study of their quantum phase transitions. We obtain the phase diagram of the tripod model
numerically by tensor networks in the thermodynamic limit. We show that the ground state of the
quantum 120° model has long-range dimer order. Moreover, we find an extended spin-disordered
(SL) phase between the dimer phase and an antiferromagnetic phase. The unification and solution of a
continuum of frustrated spin models as outline here may be useful to exploring new domains of other
quantum spin or orbital models.

1. Introduction

Model Hamiltonians describing interacting spins localized on lattice sites are at the central stage in the field of
quantum magnetism. A class of spin models, collectively known as the compass models [ 1], stand out owing to a
unique feature they share in common: the spin exchange interactions differ for different lattice bond
orientations. This is in contrast to the familiar Heisenberg model or the Ising model, where the exchange has the
same form for all bonds connecting the nearest neighboring sites. The compass models arise naturally as low
energy effective Hamiltonians in Mott insulators with orbital degrees of freedom [2—7] as well as interacting
systems with spin—orbit coupling. These highly nontrivial models are also very appealing from a pure theoretical
point of view because they offer a natural arena to study frustrated quantum magnetism [8, 9]. Exactly solvable
compass models, the Kitaev model in particular, have played a pivotal role in stimulating the field of topological
quantum computing [10, 11]. The rich physics contained in compass models has been reviewed recently in [1].
Our work is directly motivated by two well known compass models defined on the honeycomb lattice. The
first example is the Kitaev model [11], where the exchange interactions between two neighboring sites are given
byoiaj, of O’;-’ ,and o7 o] respectively. As shown by Kitaev, this model is exactly solvable and has anyonic
excitations obeying fractional statistics [ 11]. The spatially dependent exchange interactions suppress long-range
spin order and support a quantum spin liquid (SL) ground state, one of the most sought after exotic many-body
states in condensed matter physics [12]. The Kitaev model, despite its theoretical appeal, is neither readily
realized in materials nor easily simulated with synthetical quantum matter such as cold atoms on optical lattices.
Recently, the hybrid Kitaev—Heisenberg model, a linear superposition of a Kitaev term and a Heisenberg term,
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was proposed for iridium oxides and solved numerically [13]. Besides the SL phase, the hybrid model contains
other interesting phases such as the stripe and the zigzag phase due to the competition between the two terms
[13]. The phase diagram becomes even richer when off-diagonal spin exchange interactions are added [14—16].

The second example of compass models is the quantum 120° model [6, 7]. Itis very analogous to the Kitaev
model but the spin operators oy, 0,,and o, for the three bond directions are replaced by three (pseudo)spin 1/2
operators T, T2, and T° respectively. They form an angle of 120° with each other on the xz plane in spin space,
hence the name ‘the 120° model’. It was introduced to described the low energy physics of transition metal
oxides [17] with doubly degenerate orbitals, e.g. orbital-only models of e, orbitals on cubic lattice [3]. Later, two
of us, and Wu independently, found that the 120° model can be naturally realized in strongly interacting spinless
p-orbital fermions on the honeycomb optical lattice [6, 7]. Although it is geometrically frustrated, spin wave
analysis indicates that long-range order is stabilized by quantum fluctuations through the order by disorder
mechanism [6, 7]. While the semiclassical spin-wave analysis is suggestive, the ground state of the 120° model on
honeycomb lattice remains to be identified unambiguously.

Given the apparent similarities between the Kitaev model and the 120° model, it is natural to seek the
conceptual and quantitative link between them. Indeed, these two models can be viewed as two instances of a
more general class of compass models [18]. In this paper, we provide a concrete construction and propose a
‘super model’ which contains three paradigm models, the Ising, the Kitaev and the 120° model, as special limits.
It only has a single tuning parameter 6’ and a simple, intuitive picture for the three (pseudo)spin operators: they
form a tripod in spin space as shown in figure 1. Analogous to tuning the tripod to raise or low a mounted camera
in photography, dialing the angle 6’ between the three legs takes the Ising model (tripod fully closed) smoothly to
the Kitaev model (tripod open with three legs orthogonal to each other) and then to the 120° model (tripod fully
open with three legs in the same plane). Immediately, one conjectures that the phase diagram of this continuum
compass model is highly nontrivial containing drastically different long-range ordered states as well as SLs.

We obtain the phase diagram of this ‘super model’ using tensor network states which have gained
considerable success recently in the study of frustrated magnetism [19-22]. The results are summarized in
figures 1 and 2. The order parameters are calculated using the tensor renormalization group (TRG) method
formulated in thermodynamic limit [23, 24]. We show that the ground state of the quantum 120° modelis a
long-range ordered dimer phase, and a SL phase exists in an extended region in our phase diagram’. The
numerical results of TRG are further confirmed and crosschecked with projected entangled pair states (PEPS)
calculations [25, 26] for finite systems, exact diagonalization (ED), and spin wave analysis. We discuss the
qualitative features of the quantum phase transitions between the SL phase and the dimer phase by introducing a
topological charge (spin vortex) for the dimer configuration. We further show that the proposed tripod model
can in principle be simulated with Hubbard model in the Mott insulating regime, e.g., using cold atoms on
optical lattice with artificial gauge fields.

2. The tripod model

We generalize the Kitaev and the 120° model to the following continuum compass model defined on the two-
dimensional honeycomb lattice

H®) =JY T} (O)T]. (9 M

1y
where J > 0, and for each lattice site r the spin 1/2 operators are defined as

T (0) = %(TZ cos b, + 7 sin ) cos 6 + %Ty sin® @)

with the Pauli matrices 7%, 7, 77. Eachsite r is coupled to its neighbors r + e., where e, v = 1, 2, 3, denotes
the three bond vectors of the honeycomb lattice. Geometrically, the three T7 form a tripod in the spin space as
shown in figure 1: they are tilted from the xz plane by angle 6 and, when projected onto the xz plane, are
orientated along the corresponding bond direction e., i.e. atazimuthal angle ¢, = 0, 27 /3, 47 /3 respectively.
While T is most naturally defined through the tilting angle 6, it is much more convenient to introduce another
angle, ', to discuss the various limits of H (6). &’ is the angle between T'and T2, i.e., the two adjacent legs of the
tripod. And it is related to 6 by trigonometry

> In this paper, we use the term ‘spin liquid’ to denote a phase that shows no long-range spin order according to our tensor network
algorithms. At the special point, 8’ = 90° the tripod model reduces to the Kitaev model and its ground state is well established to be a gapless
spin liquid. Our numerical results offer evidence that the same spin-liquid state will survive away from the Kitaev point. The nature of the
excitations (e.g. their fractional statistics) remains to be checked in order to firmly establish that it is a quantum spin liquid.
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Figure 1. The tripod model on the honeycomb lattice, equation (1). (a) The nearest neighbor spin exchange along bond direction

e,, ¥ = 1, 2, 3,is defined through the spin 1/2 operator T7, represented by an arrow in spin space spanned by 7%, 77, 7. The three
T7 can be thought as the three legs of a tripod, being tilted out of the xz plane by angle §, and forming an angle ¢’ with each other.
When projected onto the xzplane, T is along the e, direction. (b) The schematic phase diagram of the tripod model. As the tripod is
opened by increasing 6, the model starts as the Ising model at §’ = 0, becomes the Kitaev model at §' = 90°, and then the quantum
120° model at @' = 120°. Three phases are identified: a Néel ordered antiferromagnet, a spin liquid (SL), and a long-range ordered
dimer phase.

Figure 2. Identifying the phases of the tripod model. The plot shows the order parameters O; (filled squares) and O, (empty circles) as
afunction of #’ calculated from the infinite tensor network algorithms with bond dimension D = 8 and 6-sites unit cell. The insets
illustrate the schematic spin configurations in the Néel ordered phase (left) and the dimer phase (right) for a hexagon. For

0’ € [87°, 94°], the spin averages are zero, and the ground state is identified as a spin liquid.
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cosf =1 — %cos2 0. 3)

We will take 6’ as the only tuning parameter in the tripod model.
Three special limits of this model can now be identified. First of all, when 0’ =0, T7all collapse to 7. The
tripod is closed, and H (6) is nothing but the Ising model

J
Hi==3 M. 4)
4

Note that we choose 7, as the vertical axis in spin space instead of the usual convention of 7, so that H (¢)
reduces exactly to the 120° model defined in our earlier work [6]. Secondly, when 6" = 90°, H () reduces to the
Kitaev model since the operators T are now perpendicular to each other in the spin space. We can simply
identify them as 0%, ¢ and o (apart from a factor 1/2) in a rotated coordinate system as illustrated in
figure 1(b). Thirdly, for ' = 120°, H (§) becomes the quantum 120° with T', T2, T3 all confined within the xz
plane. It can be visualized as a fully open tripod.

As well known, the Ising model has antiferromangetic (AF) order with the order parameter

01 = (I71)/2. (5)

On the other hand side, the quantum 120° model is conjectured to be long-range ordered despite the geometric
frustration. We introduce the following ‘order parameter’ to measure the in-plane magnetization

0, = (%) + (r3)2 /2. (6)

By solving H () using tensor network algorithms, we compute the average spin (77”°%) in the ground state.
The main results are summarized in the schematic phase diagram in figure 1(b). Figure 2 shows the variation of
the two order parameters introduced above as #’ is changed. The region at small #’ corresponds to the familiar
Néel order which is characteristic of the classical Ising model and illustrated in the left inset of figure 2. Despite
the increased quantum fluctuations as 6’ is increased, the Néel ordered phase persists up to 6" ~ 87°. At the
opposite end of large 6’, we find that the long-range spin order consists of a set of ‘dimers,’ i.e. opposite spins on
neighboring sites, arranged into a periodic pattern of triangular lattice (figure 5(a)). The triangular lattice and its
enlarged unit cell becomes transparent if we introduce a topological charge (red dot in figure 5(a)) for each
hexagon with spins all pointing outwards. If we focus on one individual hexagon, e.g. the one shown in the right
inset of figure 2, the orientations of the dimers happen to be also 60° (or equivalently 120°) apart. We will refer to
this phase simply as the ‘dimer phase.” In particular, it is the ground state of the quantum 120° model on
honeycomb lattice. This point will be further discussed in section 5.

Sandwiched between the Néel ordered phase and the dimer phase, a quantum SL phase is stabilized for
¢’ € [87°, 94°]. The conclusion is mainly based on the observation from figure 2 that the order parameters O ,
in this region are nearly zero compared to those in other two phases. This conclusion is also consistent with the
exactly solution of Kitaev model for " = 90°. The order parameters as functions of #’ in figure 2 also suggest
that the two quantum phase transitions in the tripod model may be qualitatively different. The gradual drop of
O, at 0" > 90° indicates a continuous phase transition between the dimer phase and the SL phase. In contrast,
the drop of the order parameter O, at §’ < 90° is rather sharp, pointing to a likely first-order phase transition.
The details of the calculations leading to these results will be discussed below in section 3.

3. Tensor network algorithms

Recent developments of entanglement-based tensor network algorithms provide a novel, accurate approach to
strongly correlated electron systems [25-29]. Particularly, they have been successfully applied to frustrated
quantum magnets [19—-22] and the t — Jmodel [30, 31] to yield insights previously unattainable from
conventional methods. To find the phase diagram of the proposed tripod model, we employ two
complementary tensor networks algorithms, one for finite-size systems and the other for infinite systems in the
thermodynamic limit, to find the ground state and the order parameters. In both algorithms, the ground state
wave function is constructed as a network of local tensors defined on lattice sites. Each tensor has one physical
index representing the spin degree of freedom and three virtual indices, each with bond dimension D, describing
the quantum entanglement with its three neighboring sites.

We first apply the finite PEPS algorithm [25-27] to solve H (0) for a six-site system with periodic boundary
conditions. The ground state energies obtained coincide with those from ED. This suggests that PEPS is
intrinsically superior compared to mean field theories when applied to frustrated spin Hamiltonians such as
H (0). The order parameters decay to zero as the ground state is approached for a finite system. Nonetheless,
their decay behaviors are quite disparate for 6’ values in the Ising, Kitaev, and 120° regions, suggesting three
different phases. The details of the calculation are presented in appendix A.

4
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Figure 3. The HOTRG procedure used to calculate the expectation value (O) after the convergence of the ground state. (a) The unit
cell (the center hexagon) consists of six sites. Associated with each site is alocal tensor T7 at the ith RG step. (b) The coarse graining
procedure to construct the new tensor T} ! from the old tensors T} and its neighbors T}, Ti, T;. The other five tensors are updated in
the similar way. (¢) The new tensors T; *1again form a honeycomb lattice.

To study the tripod model in the thermodynamic limit, we first find the converged ground state using
imaginary time evolution and following the simple update scheme as described in [32] which generalizes the
time-evolving block decimation (TEBD) [33] technique to two-dimensions. For a n-site unit cell, e.g. a six-site
unit cell shown in figure 3(a), we need 3 /2 different bond vectors that represent, roughly speaking, a mean-
field approximation of the environment. Using these bond vectors, the simple update starts with # random
tensors and iterates until convergence is achieved. At the end of the calculation, the ground state |¥) is
characterize by ntensors T;, j € [1, n]. We then evaluate the expectation value of operator
O, (O) = (Y|O|¥) /(¥|¥) which involves the (infinite) product of tensors T}, using a real space coarse graining
procedure known as higher-order TRG (HOTRG) [24] schematically shown in figure 3. We outline the main
steps here. At the ith step of HOTRG, alocal tensor, say T}, is regrouped with its three nearest neighbor tensors
(T, Ty, Tg) to form a new tensor Tﬁ ' More generally, for odd or even sites

I, = YN T, @)

0 =
sl

T =S TiTiTiT (8)
s.L.
where the summation is over the shared legs (abbreviated as s.1., the solid lines in figure 3(b)) of the neighboring
tensors, i.e. tensor contractions. The new tensors, each of which contains four old tensors, are of higher
dimensions and truncated to have the same dimension as T via
i ~it1
Tlfel = ZTO/e U0, U, )
s.L.

[
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where the three projection tensors U ,,,, shown in figure 3(b), are obtained as follows. Take U, as an example.

First, T; is reshaped into matrix 7 with the row corresponding to the leg along the x-direction. Then, a matrix &/
is obtained by singular value decomposition

6
STT = U (10)
j=1

Finally, U, is obtained by truncating U to a given truncation dimension x and reshaping it back to the tensor
form. The new tensors T'*! now form exactly the same honeycomb lattice structure as the old tensors T’ but
represent a larger system, see figure 3(c). This constitutes a single RG step. By iterating the RG steps many times,
the converged result of (O) well approximates the expectation value in the thermodynamic limit.

By following these procedures, we have calculated the ground state energy and the ground state expectation
values of the order parameters O;, O, for different unit cell sizes, n = 2, 4, 6, 8. We found that the six-site unit
cell gives the lowest energy. The two-site unit cell yields results in agreement with the six-site unit cell within the
parameter region 6’ < 90°. The four-site and eight-site unit cells, however, lead to excited states with
significantly higher energy. Thus, we conclude that the six-site unit cell is the most reasonable choices for all the
¢’ values in the ground state calculation. In practice, one can safely use the two-site unit cell for ' < 90° since it
is significantly cheaper. The phase diagram and the spin configurations in the ordered phases shown in figure 2
are obtained by using the two-site unit cell for §' < 90° and the six-site unit cell for §’ > 90°.

4. Spin wave analysis

To cross-check the TRG results, we perform the standard spin wave analysis of the tripod model. It is important
to keep in mind that the validity of the spin wave theory, which can be viewed as expansion in series of 1/,
becomes questionable in the limit of S = 1/2. Yet the analysis offers a rough picture of the role played by
geometric frustration and how the Néel order and dimer order get destroyed by the increased quantum
fluctuations. As we will show below, the estimations of the two quantum critical points from the spin wave
theory turn out to be in broad agreement with the phase digram predicted by the tensor network algorithms.
The analysis starts by partitioning the honeycomb lattice into the A and B sublattice and introducing
S; = £T, forall sites on the A (B) sublattice. Then the tripod Hamiltonian acquires a suggestive form

H©O) =L SO I87(0) — S)e, (O)F + const. (11)

reAy

Here we have promoted the spin 1/2 operator 7 /2 to general spin operator S with spin quantum number S. It
follows that classical ground states are massively degenerate (except for the Ising limit). Any spin configurations
with 57 (0) = S/, (0),i.e., the projection of § along the bond direction being the same for any two neighboring
sites, will minimize the classical energy. This is a well known feature of compass models, see the review [1]. The
special case of the classical 120° model on honeycomb lattice was previously discussed in [7, 34]. We will confine
our spin wave analysis to the simple case of spatially homogeneous spin configurations S, = Sq as done in [34].
The direction of S is characterized by its polar angle ¢ measured from 7, and its azimuthal angle o of S
measured from 7, in 7,—7, plane. The corresponding classical ground state energy per unit cell is

% = —%(2 sin? 0 cos?  + cos? 0 sin? ). (12)
Itis interesting to note that, coincidently, at the Kitaev point, §’ = 90° which corresponds to
6 = cos™! \/% , Ey is completely flat and does not depend on (. For 8’ < 90°, E, is minimized when ¢ = 0 or
m, corresponding to the two degenerate states with spin up or down in the Néel ordered phase. In contrast, for
0 > 90°, E,is minimized when ¢ = 7/2,i.e., Sy lies within the 7,—7, plane. Therefore, the mean field theory
above predicts that the tripod model has a phase transition exactly at the Kitaev point.

Applying the Holstein—Primakoff transformation [35] to H () and expanding the resulting Hamiltonian of
bosons to order 1/S, we compute the quantum fluctuation correction to the ground state energy for the two
long-ranged ordered states respectively and find

E 1
— ==Y la®| - A, (13)
SIS Nia

where A = —E,/S?J, N is the number of sites within the A sublattice, the k summation is over the first

Brillouin zone of the A sublattice, and w, (k) describe the spin wave dispersion for branch A = 1, 2 and theyare
given by the eigenvalues of the matrix
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Figure 4. The energy per unit cell from leading order spin wave theory for the tripod model. Upper panel: E (¢) for the Néel ordered
phase. At 6’ ~ 75.0°, thelocation and number of minima of E change, indicating the transition to a different phase. Lower panel:
E(¢ = 7/2, a) for the dimer phase with minima occurringat o, = n/3. Atthe critical point 6’ ~ 94.6°, E () changes
qualitatively, signals another phase transition.

2A B0 B
1l 8 28 53 0
4 0 —fp —2A —p
-6 0 =3 —2A

(14)

The expressions for 3}, 3, and [3; are lengthy and tabulated in appendix B. In what follows, we will discuss the
energy E (o, ) = Ey + E separately for the two distinct cases: ' < 90°and 6’ > 90°.

The results for E () from the spin wave analysis are plotted in the upper panel of figure 4 for several values
of ' corresponding to the Néel ordered phase. One notices that the fluctuations do not change qualitatively the
mean field ground state. E () reaches minimastill at ¢ = 0 or 7 for small 0'. However, as ' is increased, the
energy E () becomes flatter. Eventually, as 8’ = 6. ~ 75.0° (the top curve of figure 4), the energies for
@ = m/4, 37 /4 with proper choice of e become degenerate with those for ¢ = 0, . This signals the
destabilization of the Néel order by quantum fluctuations. This occurs around ., before the Kitaev point is
approached. Note that in figure 4, only the region ¢ € [0, 7/4] U [37/4, 7]is shown. Outside this region (and
also for 8" > 0.), the lowest order spin wave theory based on the Ising-like antiferromagnetic order becomes ill
defined.

For 6 > 90°, the classical ground state is continuously degenerate with ¢ = 7/2 but arbitrary o € [0, 27].
Quantum fluctuations lift the degeneracy and select along-range ordered ground state via the ‘order by disorder
mechanism’. Such mechanism for the special case of 8 = 120°, i.e. the quantum 120° model, has been
discussed before in [6, 7, 34]. As shown in the lower panel of figure 4, the same physical picture continues to hold
for the tripod model for &’ < 120°: the energy E is minimized at av,, = n/3 with integer n. However, E ()
becomes increasingly flat as 6’ is decreased. At the critical point " = 0} ~ 94.6°, additional minima of E appear

7
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at o = «, + /6. Thisindicates that the long-range order gets destroyed and replaced by a new phase
for @’ < 93.

We emphasize that the simple version of spin wave theory outlined above is only intended to estimate the
lower and upper critical points for the SL phase, §. and ;. It can be further improved to properly treat general
classical spin configurations. We will not do it here because the large S expansion by itself cannot unambiguously
determine the order for our model of S = 1/2 in the region 6’ > 90°.

5. The dimer phase

Previous theoretical studies of the quantum 120° model on the honeycomb lattice gave conflicted results. The
spin wave analysis of [6] assumed a homogenous ground state S, = Sy and found quantum fluctuations prefer
o, = nm/3. This led the authors to suggest that the ground state may be a simple ferromagnet of S with any
choice of o, (i.e. antiferromagnetic order in terms of the original spin T or 7). Reference [7] considered more
general (inhomogeneous) classical ground states and discovered that, within spin wave theory, the
ferromagnetic state is energetically less competitive than a ‘fully packed unoriented loop configuration’ with the
same «, values. The reason is quite subtle but argued to be physically robust: the loop configuration hosts
maximum number of zero modes. This result obtained from semiclassical large-S expansion was conjectured to
survive in the limitof S = 1/2,i.e. the quantum 120° model has a ground state with the six-site plaquette order
[7]. However, no evidence of long-range order was found in ED studies where the spin correlation functions
were computed for finite size clusters with periodic boundary conditions [34]. Instead, the ED results supported
a trial wave function similar in spirit to the short-range resonating valence bond state, i.e., aliquid state with
linear superposition of dimer covering of the lattice. Therefore, the true ground state of the quantum 120° model
was not settled.

Compared to these previous works, the numerical tensor network algorithm used here takes into account
quantum fluctuations beyond the lowest order spin wave theory, works directly in the thermodynamic limit, and
starts with unbiased (random) choice of tensors as variational parameters. It is capable of describing both the
long-range ordered and the spin-disordered ground states. We find the ground state of the quantum 120° model
is the dimer phase illustrated in figure 5(a) where the arrows denote the direction 7 of spin average (7) on each
site, and the numbers indicate the bond energies in unit of J. The long-range spin order we observed agrees with
the conjecture based on physical insights in [7].

We prefer the shorter, more descriptive name of ‘dimer phase’ adopted here because it indicates a solid
(crystal) order of ‘dimers’, i.e. antiferromagnetically aligned spins along the bond direction, on a subset of the
bonds. We propose to describe the long-range order using the vorticity or the winding number of the spin
configuration around each hexagon

1S,
v= 22 A A, (15)
35

where jlabels the six sites of the hexagon. For example, hexagons marked by a dot in the center in figure 5(a)
correspond to v = 1 where all spins on the vertices point radially outwards (corresponding to the ‘loop’ in [7]).
The rest of the hexagons, each marked by a cross at the center, have v = —1/2. It then becomes apparent that
the hexagons marked by dots form a triangular lattice of spin vortices. And within one unit cell of the triangular
lattice, the total vorticity is zero. Note that the state shown in figure 5(a) is energetically degenerate with a state
where all the spins are flipped.

By embedding the quantum 120° model into the more general tripod model, we are able to monitor the
suppression of the dimer order and its eventual transition into the gapless SL phase (phase B) of the Kitaev
model. The results are summarized in figure 6. We observe that the in-plane magnetization O, decreases
continuously to zero as #' is reduced. Meanwhile, the ground state energy E steadily rises, indicating an increased
degree of frustration as the Kitaev point is approached. One can measure the dimer order by introducing the
energy difference SE between the averages of two types of bonds: the ‘happy’ bonds (dimers) with antiparallel
spins and the frustrated bonds where the two spins form an angle of 60°. Therefore, the dimensionless parameter

n = 8E/E (16)

can also serve as the order parameter for the dimer phase. As plotted in figure 6, 1) continuously drops to zero as
0" is reduced from 120° to 95°. Once inside the SL phase, both O, and 1y vanish, and the bond energies become
approximately the same (see figure 5(b)). One can view the transition from the SL to the dimer phase as
condensation of spin vortices. Equivalently, when ' is reduced, one can view the demise of the dimer order as
the melting of the spin vortex lattice. Note the bond energy shown in figure 5 features small fluctuations and does
not strictly obey Cg rotation symmetry. In our tensor network calculations, no spatially symmetry is enforced on
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Figure 5. Configurations for (a) the dimer phase (¢’ = 120°) and (b) the spin liquid phase (¢’ = 90°) of the tripod model. The
number associated with each bond is (T, T, +€w> ,1.e. the bond energy in unit of J, from HOTRG calculation. The arrows in (a) depict
the spin direction on eachsite.

the tensors, and the expectation values of operators are computed approximately. The fluctuations are expected
to decrease as the bond dimension is increased.

6. Potential realization

The tripod model can be realized from the following Hubbard model at half filling in the Mott limit
Hpp = — Z t(’rya’fz(rﬁ+ew/ + UZn,-,Tn,',l, (17)
! i

i,7,00
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Figure 6. The order parameters of the dimer phase, O, and 7) (defined in the main text), and the ground state energy E as functions of
0. The vanishing of O, and 7y marks the transition from the dimer phase to the spin liquid phase.

where f; ~annihilates a fermion with spin o at site i. The direction and spin dependent hopping matrix is related
to T7 defined in equation (2) simply by

t;/a/ = t[1/2 + TA/(Q)]UO'/' (18)
Explicitly, they are given by

t t
== —-ae) tn==-0+aqe),
2 2
t . t .
t) = 5(6152 —is1), {1 = E(Clsz + is1),

where we have suppressed the superscript y for brevity, and
51 = sin6, ¢ = cosf, s, = sin qﬁ,,,, G = cos ¢v'

In thelimitof U >> t, using second-order perturbation theory, we obtain the following effective Hamiltonian
for Hhub

He = ISV O T ) - 2, (19)
I,y
which is nothing but the tripod model H (), up to a constant term, with the superexchange J = 2¢2/U. Note
that the derivation of the effective compass Hamiltonian above does not depend on the details of the
parameterization of 77 in terms of f and ¢, . It follows thata large class of compass models, not limited to the
tripod model proposed here, can be engineered on honeycomb lattice following the recipe above.

Duan et al previously showed that the Kitaev model can be realized using cold atoms on a hexagonal optical
lattice with extra laser beams [36]. Generalization of their idea to the case of the tripod model (and other
compass models) requires spin-dependent hopping ¢, controlled by a non-Abelian gauge field or generalized
spin—orbit coupling. Schemes to realize spin—orbit coupling was proposed in various approaches [37—40]. The
realization of many have been demonstrated successfully in cold atoms experiments [41-44]. For example, spin-
dependent optical lattices have been engineered using magnetic gradient modulation [44—46]. It seems possible,
but challenging, to make #,,, spatially dependent. Alternatively, the tripod model proposed here may be
emulated using other artificial quantum systems such as superconducting quantum circuits [47].

7.Outlook

The tripod model introduced in this paper encompasses three well known models of quantum magnetism: the
Ising model, the Kitaev model and the 120° model. We established its (zero temperature) phase diagram using
tensor network algorithms. This amounts to solving a continuum of frustrated spin models with spatially
dependent exchange interactions. In particular, we found an extended SL phase around the Kitaev point, and a
dimer phase for large values of angle #’ including the quantum 120° model. The two quantum critical points
obtained from tensor network states agree roughly with estimations from spin wave theory.

Our work only scratches the surface of the rich physics contained in the tripod model. Here we mention just
a few open questions to be addressed in future work. First of all, it is desirable to develop a fieldtheoretical
description of the continuous phase transition between the SL phase and the long-range ordered dimer phase,
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based on the intuitive picture of spin vortices introduced in section 5. Secondly, the tripod model, like other
compass models, has very interesting emergent symmetry properties including intermediate symmetries
midway between the global and local symmetries [1]. Consequently, the excitation spectrum is expected to
contain zero modes and/or flat bands. It is therefore valuable to understand the excitation spectra of the long-
range order phases by going beyond the ground state analysis here. Thirdly, the finite temperature properties of
the tripod model deserve a separate study. The classical limit of the tripod model is known to be highly
nontrivial. The effects of thermal fluctuations and the ‘order by disorder’ mechanism have been investigated in
[34] for the classical 120° model. Finally, we have only focused on the case of J, = J here. From the Kitaev
model, we know that a gapped SL phase (phase A) takes over when the asymmetry in J, grows large. Thus one
expects that further generalization of the tripod model to general values of |, may uncover new interesting
phases.

To conclude, we hope our results can stimulate further application of tensor network algorithms to
frustrated spin models as well as spin—orbital models describing transition metal oxides. We also hope our
introduction of the tripod model can inspire alternative proposals to extend the Kitaev model or realize compass
models in artificial quantum systems such as cold atoms on optical lattices or superconducting circuits.
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Appendix A. Tensor network algorithms

The finite PEPS algorithm is a powerful numerical approach for two-dimensional quantum spin systems [25—
27]. For the tripod model, we construct the usual PEPS wave function starting from six random rank-four
tensors with virtual bond dimension D = 3. The tensors are then optimized through recursive imaginary-time
evolution with time step 7 = 0.01 on all the links. Once the wave function is converged, we calculate the ground
state energy and the expectation value of the combined order parameter O = /O + O}. The results are
shown in figure 7 for three typical values of 6’ (corresponding to the three different phases found in the
thermodynamic limit). For the small system size considered here (six sites with periodic boundary conditions),
O vanishes as the wave function converges to the ground state. Nonetheless, a noticeable peak of O during the
time evolution can serve as the indication for spin order. For all the three cases, the energies converge to the ED
result up to a relative error of 10 (the upper panel of figure 7). The peaks of O in the lower panel of figure 7 for
the cases @' = 70°and #’ = 120° point to the Néel order phase and the dimer phase respectively, while the
monotonic decay of O for the case §’ = 90° suggests a SL state.

Within the many variants of tensor network algorithms, a typical way to find the phase diagram of quantum
spin models is the infinite PEPS (iPEPS) method [28, 29]. The iPEPS ansatz on the honeycomb lattice usually
proceeds by mapping the lattice to a square lattice and evaluating the effective environment by contraction
schemes such as infinite matrix product states [28] or corner transfer matrices [48, 49]. For instance, the phases
of Kitaev—Heisenberg model [50] and the SU(4) symmetric Kugel-Khomskii model [51] have been studied via
the iPEPS ansatzwitha2 x 2or4 x 4 unit cell. However, the contraction scheme for a six-site (hexagonal) unit
cell on the honeycomb lattice is tedious and expensive, especially for the corner transfer matrices scheme.

For this reason, we adopt the simple tensor update scheme and evaluate the contraction using the HOTRG
method as explained in the main text. The simple update [32] generalizes the TEBD [33] technique to two-
dimensional quantum systems by introducing the bond vectors to represent the mean-field environment for
local tensors. We set the imaginary time step 7 = 0.01 and the number of iterations is generally around 10°
(smaller time step does not improve the numerical result significantly). The accuracy of the HOTRG method is
controlled by the virtual bond dimension D. By systematically increasing D, the quantum entanglement between
neighboring sites is better taken into account, yielding a more accurate ground state. For example, figure 8 shows
that the order parameter O, vanishes when D is increased to 8 in the region §’ < 94°, suggesting a SL ground
state. One notices that the variations of the ground state energy with 6’ within the SL phase is larger than those in
the long-range ordered phase, especially for smaller D values. This is due to the strong quantum fluctuations
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Figure 8. The ground state energy E and the order parameter O, computed from HOTRG at virtual bond dimension D = 4, 6, 8 and
truncation dimension y = 8.

intrinsic to the SL. Cross-checking the HOTRG calculations here to those using Second Renormalization Group
[52] which takes into account the entanglement between the system and the environment deserves a future
study.
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Appendix B. Spin wave theory

For the two long-range ordered phases, the 1 /S corrections to the energy are obtained by diagonalizing the
matrix equation (14) with different form factors 3;, 3,,and ;. For the Néel ordered phase, they are given by

3
Br=> (b + iaj)*e?,
=1
3 B A
By = (bj + iaj)?e k%,

=1
3
Bs=—> (b} + aj)el?.
=1
And for the dimer phase

3
Bi="(a; + b,

=1
3 . ~
Ba=> (aj + ibj)*e k4,
=1
3 . ~
O3 =— Z(a]Z + ij)e]k.ef,
=1

Here, a;and b;are related to the parameter 0, o, and « defined in the main text through

a = cos B cos p cos v — sin @ sin @,

2 . .
a; = cos B cos @ cos| v — ? — sin 6 sin ¢,

4T . .
as = cos B cos @ cos| o — ? — sind sin ¢,

b; = — cosfsin «,
2
by=— cosHsin(a — —W),
3
by =— cos€sin(a - 4%)
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