
CLASSES OF HIGH-PERFORMANCE QUANTUM LDPC CODES

FROi'vI FINITE PROJECTIVE GEOMETRIES

by

Jacob M. Farinholt

A Thesis

Submitted to the

Graduate Faculty

of

George Mason University

In Partial fulfillment of

The Requirements for the Degree

of

Master of Science

Mathematics

.,,,
/-Dr. Geir Agnarsson, Thesis Director

Dr. vValt<:>r :\lorris. Committee Member

Di·. ?vlarco Lammgorta. Committee Member

Dr. Stephen Saperstone, Chairman,
Department of Mathematical Sciences

Dr. Timothy L. Born, Associate Dean for
Student and Academic Affairs, College
of Science

Dr. Vikas Chandhoke, Dean, College of
Science

Date: ~_{--2'_~~,:-- '_:- ~ _	 Summer Semester 2012
George Mason University
Fairfc.x, VA

Classes of High-Performance Quantum LDPC Codes From Finte Projective Geometries

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Jacob M. Farinholt
Bachelor of Science

University of Mary Washington, 2009

Director: Geir Agnarsson, Associate Professor
Department of Mathematical Sciences

Summer Semester 2012
George Mason University

Fairfax, VA

This research was funded by Naval Surface Warfare Center, Dahlgren Division
(NSWCDD) In-house Laboratory Independent Research (ILIR) program, and NSWCDD’s

Academic Fellowship Program. All intellectual property contained herein cannot be
subject to domestic copyright laws. This thesis is also available as an NSWCDD Technical

Report, NSWCDD-TR-12-00132.

ii

Dedication

I dedicate this thesis to my wife, Sarah.

iii

Acknowledgments

I would like to thank all the members of my thesis committee for their thoughtful re-
views; Geir Agnarsson for his patience, support, and willingness to jump into a new subject
area; Keith Mellinger and Keye Martin for their thoughtful reviews and suggestions; James
Troupe for teaching me almost everything I know about quantum information theory, and
for spending countless hours listening to me talk about my research, while providing helpful
insights and direction. Finally, I would like to thank my wife for her unending patience and
support, without which I could have never completed this.

The author acknowledges funding support from Naval Surface Warfare Center (NSWCDD)
Academic Fellowship Program (AFP) and In-house Laboratory Independent Research (ILIR)
program.

iv

Table of Contents

Page

List of Tables . vii

List of Figures . viii

Abstract . 1

1 Classical Error Correction . 2

1.1 The Encoding Process . 2

1.2 Checking for Errors: Syndrome Decoding 4

1.3 Example: Hamming [7, 4, 3] Code . 4

1.4 Classical Low-Density Parity Check Codes 5

2 Review of Quantum Information Theory . 8

2.1 Quantum Measurements . 10

2.2 Quantum Noise and the Pauli Operators . 12

2.3 Pauli Operators and the Pauli Group . 14

3 Quantum Stabilizer Codes . 16

3.1 The Stabilizer Group . 16

3.2 Errors and Stabilizers . 17

3.3 Error Correction Conditions for Stabilizer Codes 17

3.4 Minimum Weight of a Stabilizer Code . 18

4 Classical Representation of Stabilizers . 20

4.1 The Pauli Vector . 20

4.2 Classical Representation of Error Correction 22

4.3 CSS Constructions . 23

4.4 Example: Seven Qubit Steane Code . 25

5 Finite Projective Planes . 27

5.1 Projective Planes and Quantum LDPC Codes 29

5.2 Coordinate Construction of PG(2, q) . 32

6 Subsets of Projective Planes and LDPC Codes 34

6.1 Skew Lines and Non-Hyperoval Points, Csk and H(Csk) 36

6.2 Secant Lines and All Points, CseA and H(CseA) 38

v

6.3 Secant Lines and Non-Hyperoval Points, Cse and H(Cse) 40

7 Quantum LDPC Codes from Point-Line Subsets 43

7.1 Asymmetric QLDPC Codes . 43

7.2 Symmetric QLDPC Codes from Skew Lines 44

7.3 Symmetric QLDPC Codes from Secant Lines 45

8 Conclusion . 47

Bibliography . 49

vi

List of Tables

Table Page

1.1 The syndrome cosets of the Hamming [7,4,3] code. The first coset is the actual

code. Each row contains all of the elements of V7 that will be corrected to

the first entry of the row. 5

6.1 Number of points and lines with respect to the hyperoval HC and non-

hyperoval points in PG(2, q). 36

6.2 Classical codes and their corresponding parameters n, k, and d. Recall that

the dimension k of a classical code C with parity check matrix H(C) is given

by k = n− dim(H(C)). 42

8.1 QLDPC Code Parameters for Parity Checks Constructed from PG(2, 2s) . . 47

vii

List of Figures

Figure Page

1.1 A Tanner graph of an LDPC code . 6

5.1 The Fano Plane, PG(2, 2) . 27

viii

Abstract

CLASSES OF HIGH-PERFORMANCE QUANTUM LDPC CODES FROM FINTE PRO-
JECTIVE GEOMETRIES

Jacob M. Farinholt, M.S.

George Mason University, 2012

Thesis Director: Dr. Geir Agnarsson

Due to their fast decoding algorithms, quantum generalizations of low-density parity

check, or LDPC, codes have been invesitgated as a solution to the problem of decoherence

in fragile quantum states [1,2]. However, the additional twisted inner product requirements

of quantum stabilizer codes force four-cycles and eliminate the possibility of randomly

generated quantum LDPC codes. Moreover, the classes of quantum LDPC codes discovered

thus far generally have unknown or small minimum distance, or a fixed rate (see [3, 4]

and references therin). This paper presents several new classes of quantum LDPC codes

constructed from finite projective planes. These codes have rates that increase with the

block length n and minimum weights proportional to n1/2. For the sake of completeness, we

include an introduction to classical error correction and LDPC codes, and provide a review

of quantum communication, quantum stabilizer codes, and finite projective geometry.

Chapter 1: Classical Error Correction

We begin with a brief overview of classical error correcting codes. If a more detailed in-

troduction is desired, we refer the reader to [5]. In classical error correction, information

is made up of sequences of bits. We generally assume that noise (i.e. bit flips) acts inde-

pendently on each bit, and the probability of a bit flipping is given by p ∈ [0, 1]. It follows

that the probability of a set of k bits flipping in a transmission is given by pk. While not

every error can be corrected, as k increases, the probability that k bits get flipped decreases

rapidly. For large enough k, we can assume that the probability that more than k bits

flipping is so small that we are willing to take that chance.

One may naively try to correct errors on bits by simply using the repetition code, i.e.

repeating each bit a fixed number of times,

1 7→ 11 . . . 1, 0 7→ 00 . . . 0,

and then doing majority vote to determine which bit was actually sent. While this generally

works, it is in fact extremely inefficient.

1.1 The Encoding Process

Instead, assume we have a k-dimensional binary vector space Vk that corresponds to our

dictionary, that is, a k-dimensional vector space with binary inputs, and addition defined

point-wise modulo 2. We then define an injective linear map ϕ : Vk ↪→ Vn into a larger

binary vector space of dimension n > k. We do this in the hopes that the extra vectors in

Vn that are not in the image of Vk correspond to identifiable errors. The image ϕ(Vk) is

called the code space of Vn.

2

We define the Hamming distance between two vectors (or distance for short) to be the

number of bits in which they differ, i.e. the weight of the sum of the two vectors. For

example, consider the two vectors v1 = 0010 and v2 = 1011. Then d(v1, v2) = wt(v1 +v2) =

wt(1001) = 2. The minimum distance, d, of a code is defined to be the smallest distance

between any two distinct codewords. A code C = ϕ(Vk) ⊆ Vn having minimum distance d is

called an [n, k, d] code. Observe that, since the code is closed under addition, the minimum

distance is the same as the weight of the smallest weight nonzero codeword. Thus the terms

“minimum weight” and “minimum distance” can be used interchangeably.

In general, we assume that in a given transmission the fewest number of errors always

occurred. In other words, if an error vector is received, we assume the correct codeword is

the one “closest” to it. Given this, how many bit-flip errors can be detected and corrected

in an [n, k, d] code C? Clearly, up to d − 1 bit flip errors can always be detected. Suppose

v1 and v2 are two codewords which are distance d apart from each other. The largest non-

intersecting spheres around v1 and v2 have radius t = bd−12 c. Hence, if an error vector inside

the sphere around v1 is received, we assume the correct codeword is v1. We conclude, then,

that if the code has minimum distance d, it can always correct up to t = bd−12 c and fewer

errors.

The general goal of coding theory is to try to make n− k as small as possible (i.e. add

as few non-information bits as possible), while making d as large as possible; however, we

are limited by the following bound, known as the Singleton bound :

n− k ≥ d− 1.

This bound is well-known, and the proof is straightforward [5]. Codes that saturate this

bound are known as MDS (maximum distance separable) codes.

3

1.2 Checking for Errors: Syndrome Decoding

A parity check matrix H for an [n, k, d] code C ⊆ Vn is a matrix whose rows form a

collection of vectors in Vn that span the orthogonal space (or dual space) of C, denoted C⊥.

E.g. v ∈ C if and only if vHT = 0. It follows from elementary linear algebra, then, that if

C has dimension k, then dim(C⊥) = n− k. By this construction, C = ker(H), the kernel of

H, as H acts on Vn. If an error vector e 6∈ C is received, then at least one row of H will not

be orthogonal to e, so that eHT 6= 0.

The vector m = vHT is called the syndrome of the vector v ∈ Vn. The syndromes

separate all of Vn into distinct cosets, which correspond to the locations of the errors.

1.3 Example: Hamming [7, 4, 3] Code

The Hamming [7, 4, 3] code has a parity check matrix given by:

H =


0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 . (1.1)

This matrix separates the binary vector space V7 into 8 distinct cosets. We explicitly

list the cosets, with corresponding syndrome values, in Table 1.1. The first element of each

row in Table 1.1 is a codeword, while the remaining elements in the row correspond to the

particular errors that are corrected to that codeword. By inspection, we see that every

coset corresponds to the location of a particular single bit-flip. As one should expect, if

more than one bit-flip error occurs, then this code cannot correct it.

4

Table 1.1: The syndrome cosets of the Hamming [7,4,3] code. The first coset is the actual
code. Each row contains all of the elements of V7 that will be corrected to the first entry of
the row.

000 011 101 110 111 100 010 001

0000000 1000000 0100000 0010000 0001000 0000100 0000010 0000001
1000011 0000011 1100011 1010011 1001011 1000111 1000001 1000010
0100101 1100101 0000101 0110101 0101101 0100001 0100111 0100100
0010110 1010110 0110110 0000110 0011110 0010010 0010100 0010111
0001111 1001111 0101111 0011111 0000111 0001011 0001101 0001110
1100110 0100110 1000110 1110110 1101110 1100010 1100100 1100111
1010101 0010101 0110101 1000101 1011101 1010001 1010111 1010100
1001100 0001100 1101100 1011100 1000100 1001000 1001110 1001101
0110011 1110011 0010011 0100011 0111011 0110111 0110001 0110010
0101010 1101010 0001010 0111010 0100010 0101110 0101000 0101011
0011001 1011001 0111001 0001001 0010001 0011101 0011011 0011000
1110000 0110000 1010000 1100000 1111000 1110100 1110010 1110001
1101001 0101001 1001001 1111001 1100001 1101101 1101011 1101000
1011010 0011010 1111010 1001010 1010010 1011110 1011000 1011011
0111100 1111100 0011100 0101100 0110100 0111000 0111110 0111101
1111111 0111111 1011111 1101111 1110111 1111011 1111101 1111110

1.4 Classical Low-Density Parity Check Codes

Classical low-density parity check (LDPC) codes were first discovered by Gallager [6] in

1960. Later, it was shown that describing these codes with bipartite graphs (called Tanner

graphs in the literature) made it easier to understand how well the codes work under their

iterative belief propagation decoding algorithm. These classical error correcting codes are

currently some of the best known, having rates asymptotically approaching the Shannon

limit [7]. We say that a code is a low-density parity check code, or LDPC code, if its parity

check matrix, H, is sparse1, and any two rows of H have very few (preferably no more than

one) “ones” in common positions.

An LDPC code can be analyzed by constructing a bipartite graph in which the left

1While there is no strict definition, a binary matrix is generally considered to be sparse when the ratio
of “ones” to “zeros” is relatively small, at least less than 1/2.

5

vertices (called “bit nodes”) correspond to columns of the parity check matrix and the right

vertices (called “check nodes”) correspond to the rows of the parity check matrix. A line

connecting check node i with bit node j in the Tanner graph, corresponds to a 1 in position

i, j of the parity check matrix. It follows that if the codewords of an LDPC code have

length n, then there will be n bit nodes in the graph, and each check node corresponds to

a particular row of the parity check matrix.

While Tanner graphs are helpful in analyzing decoding algorithms for LDPC codes, they

can also be used to define codewords. Suppose each entry xi of a length n binary vector

v = (x1, x2, . . . , xn) is placed in the corresponding bit node i in a Tanner graph with n

bit nodes. For each check node, consider the binary sum of the entries in each bit node

connected to it. If these sums are zero at each check node, then the vector v is a codeword

for the corresponding LDPC code. For example, if 011110 is put into the bit nodes in

Figure 1.1, we can see that the sums at each check node are zero, and hence this vector is

a codeword.

Figure 1.1: A Tanner graph of an LDPC code

Given the Tanner graph of Figure 1.1, we can construct the corresponding parity check

6

using the method described above:



1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1


. (1.2)

Note that the check node sums provide a syndrome, and the sums at each check node are

all zero precisely when the vector is in the kernel of the parity check matrix.

If two rows of the parity check matrix have multiple “ones” in common position, then the

corresponding Tanner graph will have a four-cycle. Four-cycles in Tanner graphs generally

cause poor performance in the iterative decoding algorithms used with LDPC codes. For

this reason, one of the primary goals when constructing LDPC codes is to minimize or

eliminate four-cycles in the Tanner graph.

7

Chapter 2: Review of Quantum Information Theory

We now want to consider codes in the quantum realm. Although an effort is made to be

clear and concise here, we refer the reader to [8] if a slightly more detailed overview is

desired. In quantum communication, as we will see, errors are much more arbitrary than

those that can occur in a classical information channel. In order to understand errors in a

quantum information channel, we will first characterize states of a quantum system.

A quantum system is a quantum particle or collection of particles that have some mea-

surable property, which we call the state of the system, represented by |ψ〉. A single particle

pure two-state system is called a qubit. Its state is represented as a convex linear combina-

tion of basis elements |bi〉 in the complex Hilbert space H2, so |ψ〉 = α0|b0〉+ α1|b1〉, where

|b0〉 and |b1〉 form a basis for H2, α0 and α1 are in C, and |α0|2 + |α1|2 = 1. One important

fact about quantum states is that there is absolutely no distinction made between |ψ〉 and

eiθ|ψ〉 for any real θ. The term eiθ is called a global phase.

We can generalize the definition of a single qubit state to an n-qubit state by defining

|ψ〉 to be a linear combination of basis elements |bi〉 in Hn2 (where Hn2 = H⊗n2 = H2 ⊗

H2 ⊗ · · · ⊗ H2, a tensor product over C), |ψ〉 = α0|b0〉 + α1|b1〉 + · · · + αn−1|bn−1〉 where

|α0|2 + · · · + |αn−1|2 = 1. The basis elements are then simply tensor products of basis

elements in H2. In other words, if we denote a pair of basis elements in H2 by |0〉 and |1〉

so that a qubit looks like α0|0〉+ α1|1〉, then a 2-qubit system can be represented in terms

of the basis elements |0〉 ⊗ |0〉 = |00〉, |0〉 ⊗ |1〉 = |01〉, |1〉 ⊗ |0〉 = |10〉, and |1〉 ⊗ |1〉 = |11〉,

and similarly for larger systems.

It is also important to note that, although any single qubit can be written in terms of a

particular basis, it is sometimes convenient to interpret a state in terms of a different basis.

8

Two bases of particular importance in quantum information theory are given by

basis 1: |0〉1 =

1

0

 , |1〉1 =

0

1



and

basis 2: |0〉2 =
1√
2

1

1

 =
|0〉1 + |1〉1√

2
,

|1〉2 =
1√
2

 1

−1

 =
|0〉1 − |1〉1√

2
.

The 1√
2

term in basis 2 is the normalization constant. Suppose a state |ψ〉 is prepared in

basis 2, |ψ〉 = α|0〉2 + β|1〉2. Then in basis 1 the state becomes

|ψ〉 =
α+ β√

2
|0〉1 +

α− β√
2
|1〉1.

These bases have a very physical meaning. In a certain aspect, the state of a sys-

tem represents one’s knowledge of the system. For example, two measurable properties

of a particular quantum system may be position and momentum. Each of these measur-

able properties has a representation in a particular basis. We know from the Heisenberg

uncertainty principle, that the more precisely we determine a particle’s position, the less

preciscely we can determine any information about its momentum, and conversely. If basis

1 corresponds to a particle’s position and basis 2 corresponds to the particle’s momentum,

then suppose that the particle was prepared in the state |0〉2. Suppose that no errors oc-

curred to the state before it was measured. If it was measured with respect to basis 2,

then we would obtain exactly the state |0〉2, implying that we know everything about the

9

particle’s momentum. What would have happened if we had instead measured the state

with respect to basis 1? We would obtain the state |0〉1 with probability |1/
√

2|2 = 1/2

and state |1〉1 with probability |1/
√

2|2 = 1/2. In other words, we would know absolutely

nothing about the position of the particle!

As a matter of convenience, unless otherwise specified, if basis elements do not have

subscripts, we will assume that they refer to basis 1.

2.1 Quantum Measurements

A quantum state sent from Alice to Bob is completely useless to Bob, informationally speak-

ing, unless he can do something which allows him to determine its value. This “something”

is a process called quantum measurement, which we briefly describe here. A more complete

introduction can be found in Chapter 2 of [8].

Quantum measurement is performed by a collection {Mm} of measurement operators

that satisfy the completeness equation, that is,

∑
m

M †mMm = I.

The subscript m represents the outcome that may occur. When a measurement operator

Mm is applied to a state |ψ〉, one of two things will happen: either outcome m will occur,

or it will not. The probability that outcome m will occur is given by

p(m) = 〈ψ|M †mMm|ψ〉,

where we use the notation 〈ψ| to indicate |ψ〉†. Satisfaction of the completeness equation

assures that all of the probabilities sum to 1. Now when a particular Mm is applied to |ψ〉,

10

it maps the state of the system from |ψ〉 to

|ψ′〉 =
Mm|ψ〉√

〈ψ|M †mMm|ψ〉
.

The square root in the denominator is a normalization factor, as all qubits have norm

1, i.e. 〈ψ|ψ〉 = 〈ψ′|ψ′〉 = 1. As can be clearly seen, when a state is measured to obtain

information, it is rarely left undisturbed. In fact, the only instance in which a measurement

operator does not disturb the state of a system is when |ψ〉 is an eigenstate of the operator

Mm. If Bob has no prior information about the state of |ψ〉, then he could not choose

operators in such a way as to guarantee that the state remain undisturbed. On the contrary,

in order to determine the maximum amount of information from |ψ〉, Bob typically chooses

operators which leave no other choice but to map |ψ〉 to some seemingly obscure state.

As an example, consider a state |ψ〉 prepared in basis 1, i.e. |ψ〉 = α0|0〉1 + α1|1〉1. We

can use the two measurement operators

M0 = |0〉1〈0| =

1 0

0 0

 , and M1 = |1〉1〈1| =

0 0

0 1

 .

Notice that these two operators together satisfy the completeness equation. Moreover, the

probability of obtaining a 0 is given by

p(0) = 〈ψ|M †0M0|ψ〉 = |α0|2,

while the probability of obtaining outcome 1 is given by

p(1) = 〈ψ|M †1M1|ψ〉 = |α1|2.

11

If Alice sent many copies of the state |ψ〉 to Bob and no errors occurred before he measured

each state using the above operators, then Bob could eventually estimate the state with

high confidance.

Suppose, instead, that Alice encoded the same information into a new state that was

encoded with respect to basis 2, that is, |φ〉 = α0|0〉2 + α1|1〉2. Then again assume the

state was not changed during transmission, and suppose Bob used the same two operators

to measure this state. In this case, the probability of obtaining a 0 is given by

p(0) = 〈φ|M †0M0|φ〉 =
1

2
|α0 + α1|2,

while the probability of obtaining a 1 is given by

p(1) = 〈φ|M †1M1|φ〉 =
1

2
|α0 − α1|2.

This example shows why it is important for Bob to know in which basis a state was

prepared. M0 and M1 were chosen to obtain the information encoded in basis 1 of a state.

If Bob has no idea in which basis Alice prepared a state, then he has no way of knowing

what those probabilities indicate.

2.2 Quantum Noise and the Pauli Operators

Quantum information has many more properties than classical information. These proper-

ties open the doorway to new and amazing results (take Shor’s algorithm [9], for example);

however, these properties also lead to additional difficulties which need not be considered

when working with strictly classical information.

In effect, any 2n × 2n complex matrix can describe a noise operation on an n-qubit

state. As previously mentioned, measurements generally disturb a state, so any attempt at

determining the effects of an error on a corrupted state will not be very useful. Because of

12

this, we are also unable to clone the corrupted state [10,11] and analyze the cloned state to

determine the effects on the original state.

Before discussing methods to correct errors, we will first study some properties of quan-

tum noise. Note that as a matter of convention, we will assume that noise always acts

independently on each qubit. There is a special set of operator matrices over H2 called the

Pauli operators:

I =

1 0

0 1

 X =

0 1

1 0

 Y =

0 −i

i 0

 Z =

1 0

0 −1

 .

Notice that X2 = Y2 = Z2 = I, and that ZX = iY. Another important characteristic is that

these operators form a basis over M2(C), the complex vector space of 2× 2 matrices.

In particular, notice that X|0〉1 = |1〉1 and X|1〉1 = |0〉1. X is called the “bit-flip”

operator on basis 1. Z acts similarly on basis 2. Notice that Z|0〉1 = |0〉1 but Z|1〉1 = −|1〉1.

We say that Z is the “phase-flip” operator on basis 1. X acts similarly on basis 2. Given

this example, and that ZX = iY, it is easy to see how Y acts on a state.

Now suppose we want to protect a single qubit against an error. Recall that a qubit

can be written as an element of H2. An error in this space is simply some 2 × 2 matrix

operating on the qubit. Although there are an infinite number of error operators, we have

the convenience of interpreting each one as a linear combination of Pauli matrices. Moreover,

since the quantum states are always normalized, and global phases are indistinguishable,

we can reduce ourselves to looking at error elements E in the convex closure of the Pauli

operators. In other words, if E is some arbitrary error on a single qubit, then we can always

rewrite E as α0I + α1X + α2Y + α3Z, where |α0|2 + |α1|2 + |α2|2 + |α3|2 = 1.

Using methods similar to those described in the previous section, measuring the operator

E will always collapse it out of a superposition of Pauli operators down to I, X, Y, or Z. In

other words, if E = α0I + α1X + α2Y + α3Z, then measuring the corrupted state E|ψ〉 with

some measurement operator Mm will collapse the state to I|ψ〉, X|ψ〉, Y|ψ〉, or Z|ψ〉 with

13

probabilities |α0|2, |α1|2, |α2|2, and |α3|2, respectively. Because of this, when considering

errors on a single qubit, it suffices to consider only those errors E ∈ {I,X,Y,Z}. Thus, in

order to correct a completely arbitrary error on a single qubit, we need only to be able to

correct this finite set of errors.

2.3 Pauli Operators and the Pauli Group

If we include the scalars ±1 and ±i with the set of Pauli operators, then we get a mul-

tiplicative group, called the Pauli group on a single qubit, denoted G1; that is, G1 =

{±I, ±iI, ±X, ±iX, ±Y, ±iY, ±Z, ±iZ}. As just explained, any arbitrary error on a

single qubit state can be viewed as an element of G1. Note that ±1 and ±i act as global

phases, and so are physically indistinguishable; however, we include them here so that we

can use the group-theoretic properties to assist us. Note that every element of this group

is unitary (i.e. E† = E−1), and either Hermitian or skew-Hermitian (i.e. E† = ±E).

This group can be generalized naturally to act on n-qubit states by considering n-fold

tensor products of the elements of G1. For example, the Pauli group on two qubits is given

by

G2 ={±II,±iII,±IX,±iIX,±IY,±iIY,±IZ,±iIZ,

± XI,±iXI,±XX,±iXX,±XY,±iXY,±XZ,±iXZ,

± YI,±iYI,±YX,±iYX,±YY,±iYY,±YZ,±iYZ,

± ZI,±iZI,±ZX,±iZX,±ZY,±iZY,±ZZ,±iZZ},

where we use the notation AB in the sanserif typface to indicate A⊗B.

Note that if A1A2 . . .An ∈ Gn, then A1A2 . . .An acting on an n-qubit state |a1a2 . . . an〉 =

14

|a1〉 ⊗ |a2〉 ⊗ · · · ⊗ |an〉 gives us

A1A2 . . .An|a1a2 . . . an〉 = A1|a1〉 ⊗ A2|a2〉 ⊗ · · · ⊗ An|an〉.

In other words, using this notation allows us to easily identify which operator is acting on

which qubit.

There are a few observations and key properties about this group that will be of great

importance later. The first is that any two elements of Gn will always either commute

or anticommute; that is, given Ei, Ej ∈ Gn, then EiEj = ±EjEi (this is easily seen to

be true by inspection in the case of G1, and is proved by induction for arbitrary n). By

induction, we can also show that all elements in Gn are unitary, and either Hermitian or

skew-Hermitian.

15

Chapter 3: Quantum Stabilizer Codes

The stabilizer codes are a class of quantum error correcting codes that have beautiful

algebraic properties. They were first discovered by Gottesman [12], and grew in popularity

very rapidly once it was shown that they could be described classically [13].

3.1 The Stabilizer Group

As we previously explained, if the action of elements of Gn on n-qubit states can be cor-

rected, then arbitrary errors on n-qubit states can be corrected. Let S ≤ Gn be a non-

trivial abelian subgroup of Gn such that −In 6∈ S, and suppose S has generating set

G = {g1, g2, . . . , gn−k}. We call S the stabilizer group for a stabilizer code C(S), where the

stabilizer code C(S) is the +1 eigenspace of S, i.e. collection of states |ψ〉 in Hn2 satisfying

S|ψ〉 = |ψ〉, ∀ S ∈ S.

We say these states are stabilized by every element of S. For example, suppose S =

〈ZZI, IZZ〉 ≤ G3,the subgroup generated by the states ZZI, and IZZ. Then the +1 eigenspace

C(S) is spanned by the states |000〉 and |111〉.

Note that we could just as easily start with a subspace in Hn2 , calling this the stabilizer

code C. The stabilizer group S(C) would then be defined as the unique subgroup S of Gn

not containing −In for which C is the +1 eigenspace. Note that it is straightforward to show

that this is in fact an abelian subgroup of Gn. However, starting with a stabilizer group S,

we find the code C(S) as the unique +1 eigenspace of S. In other words, S(C(S)) = S. As

it turns out, constructing a code from its stabilizer group is generally more preferable, as

many of the properties of the code are directly determined by the stabilizer group.

16

3.2 Errors and Stabilizers

Suppose S ≤ Gn is a stabilizer group with generating set G = {g1, g2, . . . , gn−k} and corre-

sponding stabilizer code C(S). Now suppose |ψ〉 ∈ C(S) is transmitted, and gets acted on

by some error E ∈ Gn.

What happens when E ∈ S? In this case, E does nothing to |ψ〉. What about when

E ∈ Gn − Z(S) (where Z(S) is the centralizer of S, the set of all elements in Gn that

commute with every element in S)? In this case, there exists at least one element of

S (and hence some element of the generating set) that does not commute with E, say

giE|ψ〉 = −Egi|ψ〉 = −E|ψ〉. The ±1 value that we obtain from this operation is in fact a

measurable value (the details of why we can obtain this lie outside the scope of this paper,

and we refer the reader to [8] for more details). When we get a −1, we detect that an error

did, in fact, occur. Operating on E|ψ〉 sequentially by each of the elements of G gives us a

sequence of ±1’s that in effect act as a syndrome to allow us to determine the exact error

that occurred.

The real problem occurs when E ∈ Z(S) − S. In this case, E will commute with each

element of S, and will thus give the same syndrome as would an element of S operating on

the state. Hence, the elements in Z(S)− S are all undetectable errors.

3.3 Error Correction Conditions for Stabilizer Codes

In this section, we give the formal theorem stating the types of errors that can be corrected

by a stabilizer code. Rather than proving the theorem here (this is from Theorem 10.8 in

[8], which contains a proof), we motivate it with an example.

Suppose Ej is some error acting on the code space of a stabilizer code. Then the error

syndrome is given by βl such that EjglE
†
j = βlgl, where gl ∈ G is a generating element of

S. If Ej is the unique operator with this syndrome, then we can correct for it simply by

applying E†j .

17

If there exists an Ek 6= Ej having the same syndrome, it follows that EjglE
†
j = EkglE

†
k,

and hence E†jEkglE
†
kEj = gl. Since gl ∈ S, then E†jEk is in Z(S). If, in fact, E†jEk is in

S, then applying E†j after the error Ek occurs will still result in a successful recovery. This

brings us to the theorem, from [8].

Theorem 3.1 (Error correcting conditions for stabilizer codes). Let S be a stabilizer for a

stabilizer code C(S). Suppose {Ej} is a set of operators in Gn such that E†jEk 6∈ N(S)−S

for all j, k. Then {Ej} is a correctable set of errors for the code C(S).

Here, N(S) := {E ∈ Gn : ESiE
† ∈ S ∀ Si ∈ S} is called the normalizer of S. Under the

assumption that −In 6∈ S, it can be shown that N(S) = Z(S), and so the theorem makes

sense with our example.

3.4 Minimum Weight of a Stabilizer Code

We now know which types of errors go undetected when acting on a stabilizer code. In order

to obtain some quantifiable notion of “how well” a given stabilizer code works, it would be

preferable to know how many independent, arbitrary qubit errors on a single state can be

corrected. This motivates our definition of the minimum weight of a quantum stabilizer

code.

Define the weight of an element of Gn to be the number of non-identity terms in the

tensor product. E.g., if E = IIXYZZI ∈ G7, then the weight of E, denoted wt(E), is 4.

Define the minimum weight of a stabilizer code C(S) to be min{wt(E) | E ∈ Z(S) − S},

the smallest weight of any element of Z(S)− S.

This notion of minimum weight is, by construction, very similar to the notion of min-

imum distance of a classical code. If a given stabilizer code C(S) has minimum weight d,

then all elements of Gn having weight less than d are either in S or in Gn−Z(S). In other

words, all operators in Gn of weight less than d are identifiable errors. Similarly to classical

codes, a stabilizer code with minimum weight d can detect and correct up to t = bd−12 c and

18

fewer arbitrary errors.

19

Chapter 4: Classical Representation of Stabilizers

We will now discuss a method to classically represent a quantum stabilizer code in a manner

similar to classical codes. In fact, as it turns out, there is a large class of stabilizer codes,

called CSS codes (named after their discoverers, Calderbank, Shor [14], and Steane [15]),

which can be constructed from classical error correcting codes. This class of codes is well

studied, and a nice introduction can be found in Section 10.5 of [8]. We will discuss the

general classical stabilizer constructions, and then end this section with some observations

about CSS constructions.

4.1 The Pauli Vector

In order to understand the classical representation, which was discovered by Calderbank,

Rains, Shor, and Sloane [13], we first make some observations about the group Gn, and

their implications. Note that the center of Gn is given by CGn = {ikI : k ∈ Z4}, where I

is the identity matrix in Gn. We want to consider the group Gn = Gn/CGn . Note that its

elements are equivalence classes of the form E = {ikE : k ∈ Z4}, where E ∈ Gn. Now every

element in Gn has order 2, making this an elementary abelian group, and hence a vector

space over Z2. In fact, we can describe any E ∈ Gn as a concatenation of two length n

binary vectors called the X and Z vectors of E in the following way.

Let E ∈ Gn be represented by the element in its equivalence class having a +1 coefficient,

which we will call the scalar free element. We place a 1 in position i of the X vector whenever

there is an X or Y in position i of E. Similarly, we place a 1 in position j of the Z vector

whenever there is a Z or Y in position j of E. The Y values are listed in both vectors since

Y is a product of X and Z.

20

If E ∈ Gn has X vector EX and Z vector EZ , then the concatenated vector (EX |EZ)

is called the Pauli vector for E, or simply the Pauli E-vector. For example, IXXYZIZ has

the corresponding Pauli vector (0111000|0001101). If we instead concatenate as (EZ |EX),

we call this the reversed Pauli vector for E, or simply the reversed E-vector.

It can be shown [13] that two elements S, T ∈ Gn commute if and only if the corre-

sponding Pauli vectors (SX |SZ) and (TX |TZ) of their images S and T in Gn (respectively),

satisfy the twisted inner product requirement, namely

ST = TS ⇐⇒ 〈SX , TZ〉+ 〈SZ , TX〉 = 0, (4.1)

where 〈·, ·〉 indicates the standard inner (dot) product over the n-dimensional binary vector

space Vn, and addition is performed modulo 2. Notice that this is equivalent to saying that

S and T commute if and only if the reversed S-vector is orthogonal to the T -vector under

the standard inner product over the 2n-dimensional binary vector space V2n, i.e.

ST = TS ⇐⇒ 〈(SZ |SX), (TX |TZ)〉 = 0. (4.2)

Note that previously, we had defined the stabilizer group S as an abelian subgroup of

Gn that did not contain the element −In. It can further be shown that if −In 6∈ S, then

neither is ±iIn. But then each element of S will be in a different equivalence class in Gn.

It follows that we can view each element of S as a label for its corresponding equivalence

class in Gn. Recalling from earlier that the scalars ±1 and ±i act as global phases, and are

hence undetectable, it actually makes sense to view errors as elements of Gn rather than

the larger group Gn. In other words, there is no loss of generality by viewing all errors as

elements of Gn rather than Gn as we had done previously. Note that CGn is not a subgroup

of S, so S 6= S/CGn (in fact, S = SCGn/CGn). However, while the map Gn → Gn/CGn is

a surjective homomorphism, the restriction of this map to S is in fact injective. Because

of this we will use both S and S interchangeably, calling both the stabilizer group. By

21

convention, the elements of S are represented by the scalar free elements of each of the

equivalence classes in S.

4.2 Classical Representation of Error Correction

Let S ≤ Gn be a stabilizer group, with generating set G = {g1, g2, . . . , gn−k}. We construct

the stabilizer parity check matrix H = [HX |HZ] by letting the rows of H correspond to

the Pauli vectors of the elements of S. Because the elements of S commute by definition,

it follows that the rows of H will satisfy the twisted inner product requirement (4.1).

Conversely, if A and B are binary n × (n − k) matrices such that any two rows in the

concatenated matrix [A|B] satisfy the twisted inner product, then [A|B] corresponds to a

quantum stabilizer code; the rows of the concatenated matrix correspond to elements of

Gn, and their span corresponds to a subspace S of Gn, as an elementary abelian group, in

which any two elements are orthogonal with respect to the twisted inner product; that is,

S is a stabilizer group.

The requirement that any two rows of a concatenated binary matrix [A|B] satisfy the

twisted inner product is equivalent to saying that ABT + BAT = 0, the all zero matrix.

In other words, if two binary n × (n − k) matrices A and B satisfy ABT + BAT = 0,

then [A|B] is a parity check matrix for a quantum stabilizer code. Moreover, an element E

with image E in Gn commutes with each stabilizer for this stabilizer code precisely when

the reversed E-vector is orthogonal to each row of the parity check. In other words, E

commutes precisely when [A|B](EZ |EX)T = 0, the zero vector.

Suppose E is a correctable error acting on the state |ψ〉 ∈ C(S). To determine the error,

we operate on it with each element of the generating set G of S to obtain a syndrome. We

simulate this classically by letting H be the parity check matrix for the stabilizer code, and

representing E with its error vector (EZ |EX). We then perform the operation H(EZ |EX)T

to obtain the classical syndrome. We obtain the all zero syndrome whenever E commutes

with each element of G, and so we assume in this case that no error occurs.

22

In other words, if {(SZ |SX)j} is a collection of error vectors corresponding to the sta-

bilizers for a stabilizer code, then {(SZ |SX)j} ⊆ ker(H); that is, they are a subset of the

kernel of H as an action on the binary vector space V2n. In fact, given a quantum stabi-

lizer parity check matrix H, its kernel precisely corresponds to the centralizer Z(S) of the

corresponding stabilizer code.

Suppose H = [A|B] is a length 2n (i.e. A and B each have n columns) stabilizer parity

check matrix (i.e. ABT + BAT = 0) having dimension n − k. Then ker(H) will have

dimension n + k. Moreover, H will correspond to a stabilizer code that encodes k qubits

into n qubits. If this code has minimum weight d, we call such a code a quantum [[n, k, d]]

code.1

While this classical representation greatly aids our ability to understand and analyze

stabilizer codes, finding parity check matrices that correspond to quantum stabilizer codes

having good performance parameters (i.e. n−k is small and d is large) is no trivial matter.

The CSS construction of quantum stabilizer codes has offered great promise, however, by

allowing us to use classical codes with known parameters to quickly determine the perfor-

mances of their quantum counterparts.

4.3 CSS Constructions

CSS codes are a class of quantum stabilizer codes constructed from classical error correcting

codes. These codes are particularly nice in that many of the parameters of a classical error

correcting code carries over to the corresponding CSS code. More formally, suppose C1

is a classical binary linear [n, k1, d1] code, and that C2 ⊂ C1 such that C⊥2 is a classical

binary linear [n, k2, d2] code. Let H(C1) and H(C⊥2) be parity check matrices for C1 and C⊥2
1It is a relatively standard practice to place the parameters of a quantum code in double brackets in

order to distinguish them from the classical parameters.

23

respectively. Then the matrix of the form

H(C) =

H(C⊥2) 0

0 H(C1)



is a parity check matrix for a CSS code. Note that, since C2 ⊂ C1, it follows that

H(C⊥2)H(C1)T = 0, and hence, the twisted inner product requirement will be satisfied.

Moreover, the corresponding CSS code C with parity check matrix H(C) above will be an

[[n,K,D]] quantum stabilizer code, where K = k1 +k2−n and D ≥ min(d1, d2), i.e., C will

encode K qubits into n qubits, and will correct arbitrary errors on up to t = bD−12 c and

fewer qubits. In fact, if A and B are two n× (n− k) binary matrices, then

A 0

0 B



is a CSS code if and only if ABT = 0.

Suppose S is the stabilizer group for the code with parity check matrix given by H(C),

and with corresponding centralizer Z(S). Note that the space orthogonal to H(C) (with

respect to the twisted inner product) corresponds to Z(S). But then the distance D =

min(d1, d2) actually corresponds to the minimum weight of Z(S). Recall that the minimum

distance of a stabilizer code is given by the minimum weight of Z(S) − S, and so D is

actually a lower bound on the minimum distance of the code.2

A particularly appealing CSS construction is one in which the dual C⊥ of a classical

code C is a subset of the code, i.e., C⊥ ⊂ C. In this case, if C is an [n, k, d] code with parity

2Only knowing the lower bound is generally not a problem, as this is typically the case for many classical
error correcting codes. In particular, BCH codes are an example of a very large class of classical codes
constructed to have a fixed lower bound on their minimum distance.

24

check matrix H(C), then

H(C) =

H(C) 0

0 H(C)


is a parity check for a quantum [[n, 2k − n,D]] stabilizer code C, where D ≥ d. The

twisted inner product requirement is again satisfied by the fact that C⊥ ⊂ C, and hence

H(C)H(C)T = 0. CSS codes having this particular construction are called symmetric codes;

otherwise they are called asymmetric CSS codes.

4.4 Example: Seven Qubit Steane Code

In order to better understand the CSS construction, we will use the example of a well-known

CSS code discovered by Steane [16], one of the members after whom CSS codes are named.

Generators for the stabilizer group for the seven qubit Steane code S7 are given by

IXXXXII

XIXXIXI

XXIXIIX

IZZZZII

ZIZZIZI

ZZIZIIZ.

25

One can quickly observe that all of these generators commute with one another. Now, the

classical representation gives the following parity check matrix:



0 1 1 1 1 0 0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 0 0 0 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 1 0 1 1 0 1 0

0 0 0 0 0 0 0 1 1 0 1 0 0 1


.

This parity check matrix takes the form

H(C) 0

0 H(C)

 ,

where H(C) is self-orthogonal, showing that this is, in fact, a symmetric CSS code. More-

over, observing that H(C) is the parity check matrix from (1.1) for the classical Hamming

[7, 4, 3] code, we can conclude that S7 is a [[7, 1, 3]] quantum stabilizer code, encoding 1

qubit into 7 qubits, and protecting against arbitrary single-qubit errors.

Using the CSS constructions, we can find quantum stabilizer codes with relatively high

performance. In particular, low-density parity check (LDPC) codes are some of the best

known classical codes. They, like quantum stabilizer codes, are constructed from their parity

check matrices. However, as we will show later, constructing LDPC codes that satisfy the

quantum stabilizer conditions is nontrivial. We will take a slight detour here to discuss

finite projective planes, and how they are used to construct exceptionally high performing

classical LDPC codes. We then show how they can be modified to construct some of the

best-known quantum LDPC codes in the current literature.

26

Chapter 5: Finite Projective Planes

A finite projective plane π is a finite collection of points, along with subsets of points (lines),

which satisfy the following three axioms:

• Any two distinct points determine a unique line.

• Any two distinct lines determine a unique point.

• There exist four points, no three of which are colinear.

The third axiom exists simply to eliminate trivial examples. Notice that the second

axiom implies that there are no parallel lines. The simplest example of a finite projective

plane is called the Fano plane, a construction of which is depicted in Figure 5.1.

Figure 5.1: The Fano Plane, PG(2, 2)

Notice that the Fano plane has 7 points and 7 lines. Each line is made up of 3 points,

and each point has 3 incident lines. This symmetry is no coincidence. Suppose there is

a line in a given projective plane that has exactly q + 1 distinct points. It can be shown

that every line will then contain exactly q + 1 points, and we call q the order of the given

27

projective plane π. The following useful properties of a projective plane of order q can be

determined using basic counting techniques:

• Every line contains q + 1 distinct points.

• Every point is incident with q + 1 distinct lines.

• π has q2 + q + 1 distinct points and q2 + q + 1 distinct lines.

The Fano plane from Figure 5.1 is a projective plane of order q = 2. In this paper, we

will be focusing on projective planes that are 2-dimensional projective geometries of order

q = ps for some prime p, often using the notation PG(2, q) to refer to such geometries.1 The

projective plane π = PG(2, q) has nice algebraic properties and coordinate constructions

that we will rely on later.

We can construct an incidence matrix Mπ for π by letting the lines in π correspond to

the rows in Mπ, and the points correspond to columns. There is a 1 in position i, j of Mπ

precisely when line i contains point j, and a 0 otherwise. Notice that, because of the first two

properties given above, the incidence matrix for π is sparse by construction. Additionally,

we can let the rows denote bit nodes and columns denote check nodes in a Tanner graph.

It follows from the first two requirements of a finite projective plane that there will be

no four-cycles in the graph. Because of this, projective planes make great candidates for

constructions of LDPC codes. Moreover, it was shown by Singer [17] that when π = PG(2, q)

where q is a power of a prime, then Mπ can be cyclically generated (i.e., each of its rows

are cyclic shifts of the same vector), and hence the corresponding code is cyclic, allowing

it to be easily encoded from its generator polynomial in a linear feedback shift register.2

This method of constructing classical LDPC codes from the incidence structures of finite

geometries was first shown in 2001 [18]. We will now show how Mπ can be adapted to

construct our first example of a parity check for a quantum LDPC code.

1In fact, the existance of projective planes of non-prime power order is still an open question.
2Explaining what all of this means lies outside the scope of this paper. The point to take from this is that

codes constructed in this manner can be easily generated and require virtually no memory on a computer.

28

5.1 Projective Planes and Quantum LDPC Codes

The very aspect of projective planes that makes them so nice in classical codes now poses

a problem for quantum codes. Notice that any two rows of the incidence matrix Mπ of a

projective plane π = PG(2, q) have exactly one 1 in common (or, equivalently, we say that

any two rows overlap exactly once). This result eliminates any chance of four cycles in the

corresponding Tanner graph. Suppose we want to use Mπ to construct a CSS code. We

cannot do the simple method of constructing the CSS code having the form

Mπ 0

0 Mπ



since Mπ is never self-orthogonal. As can be seen, the twisted inner product requirement

of quantum stabilizer codes forces four-cycles on the Tanner graph. We can adapt Mπ,

however, to satisfy this requirement by making it self-orthogonal. This is done by adding

a column of all ones at the end of the matrix, calling the new matrix M ′π. Since any two

rows of M ′π overlap exactly twice, any two rows are orthogonal, and hence the twisted inner

product requirement is satsified.

Now consider π = PG(2, 2s) for some positive integer s. In this case, every row of Mπ

has an odd number of “ones.” But then adding (modulo 2) all of the columns in Mπ gives the

all ones vector. Thus, the column of all ones is linearly dependent on the other columns, and

hence adding it to Mπ will not affect the rank of the matrix, i.e. rank(Mπ) = rank(M ′π).

This result becomes rather important to us, so we will state it here, in the form of a lemma,

for ease of reference.

Lemma 5.1. Suppose M is a matrix generating a subspace of a binary vector space, and

suppose further that each row of M has an odd number of “ones.” Let M ′ be the matrix

formed by adding a column of all ones to M . Then rank(M) = rank(M ′).

Now, in the case of π = PG(2, 2s), we have the following result.

29

Theorem 5.2. Let π = PG(2, 2s), and let M ′π be the incidence matrix of π with a column

of all ones attached to the end. Then the matrix

H(Cπ) =

M ′π 0

0 M ′π



is a parity check matrix for a quantum [[n, 2k−n,D]] stabilizer code Cπ, where n = 4s+2s+2,

k = 4s − 3s + 2s + 1, and D = 2s + 2.

Proof. Clearly, n = 4s + 2s + 2. It was shown [19] that when q = 2s, we have that

rank(Mπ) = 3s+1, and thus by Lemma 5.1, rank(M ′π) = 3s+1. It follows that the classical

code with parity check matrix M ′π has dimension k = n − rank(M ′π) = 4s − 3s + 2s + 1,

and as discussed in Section 4.3, the CSS code will have dimension 2k − n. In order to

determine the minimum weight, first observe that the minimum weight of Cπ is the same as

the minimum weight of the classical code having parity check matrix given by M ′π. We now

separate the problem into two cases, namely, the case in which a minimum weight vector v

has a 0 at the end and the case when it has a 1. If v has a 0 at the end, then it will be a

copy of a codeword of the classical code with parity check matrix Mπ, with an additional

zero at the end. The minimum weight of this code is known to be 2s + 2 [18].

Now suppose vn = 1, that is, the last bit of v is a 1. If vn were the only 1 bit in v,

then v would not be orthogonal to any row in M ′π. Suppose vi = 1 where i < n. Then v

is orthogonal to exactly 2s + 1 of the 4s + 2s + 1 rows. Adding another 1 to v will cause v

to be orthogonal to another 2s + 1 rows of M ′π. Now some of the rows that were previously

orthogonal may no longer be orthogonal to v, but let us assume the best case that each time

we add a 1 to v we do not destroy the orthogonality of the previously orthogonal rows. This

will provide us with a lower bound. Then if vn = 1, we must have at least m additional 1’s,

where m is the smallest integer such that m(2s + 1) ≥ 4s + 2s + 1. Thus m = 2s + 1, giving

us the lower bound of 2s + 2 on the weight of v if vn = 1.

30

Note that H(Cπ) is sparse by construction, giving us our first example of a type of

quantum low-density parity check (QLDPC) code constructed from the projective plane

π = PG(2, q). This code has a rate3 that increases rapidly with n, and a minimum weight

greater than
√
n. Adding the column of all ones does, however, have the negative effect of

creating four-cycles in the corresponding Tanner graph, since any two distinct rows of M ′π

will overlap in exactly two points (i.e. have two “ones” in common position). Unfortunately,

in the construction of symmetric CSS codes, any two distinct rows of the parity check must

overlap in an even number of places in order to satisfy the twisted inner product requirement.

Thus, each pair of rows overlapping exactly twice is actually a best-case scenario in the case

of symmetric CSS codes. Another potentially negative fact is the rather large number

of check nodes in this Tanner graph. While extra check nodes may benefit the iterative

decoding algorithm, it does force more operations on the quantum state than absolutely

necessary.

In an effort to reduce the number of check nodes in the Tanner graph of a QLDPC code,

while maintaining no more than a single four-cycle between any two rows of the parity

check, we can instead turn to asymmetric CSS code constructions based on the projective

plane. We will show that this can be done by first separating the rows of M ′π into two

distinct sets, say M ′π1 and M ′π2 . The matrix

M ′π1 0

0 M ′π2



is constructed, forming the parity check for an asymmetric QLDPC code. This method

reduces the total number of check nodes in the Tanner graph in half, while maintaining no

more than a single four-cycle between any two check nodes. Moreover, every four-cycle will

contain the bit node corresponding to the column of all ones.

3The rate of a code is a notion of how much information is contained in the codewords. If the code has
length n and dimension k, then the rate is given by k

n
.

31

The column of all ones, or unit column, that was added to the original incidence matrix

Mπ will be brought up quite frequently in this paper, so for simplicity, we will call it the

u-column. When discussing the bit node corresponding to the u-column in the Tanner

graph, we call it the u-bit node. The projective plane used to construct Mπ will also be

discussed. We can interpret the u-column graphically as being a point, which we will call

the u-point, added to the projective plane having the property that every line intersects it.

Note that this graphical interpretation is technically no longer a projective plane. Since we

are adding a point, we will call it the extended projective plane, denoted PG(2, q)′ or π′.

Choosing how to separate M ′π into M ′π1 and M ′π2 can be done randomly, but it would

then be difficult to determine how well the QLDPC code will perform. The next few sections

will describe an alternative method of describing the projective plane, and how this can be

used to characterize certain subsets of the plane.

5.2 Coordinate Construction of PG(2, q)

While the graphical representation of π = PG(2, q) is useful, and will be heavily relied upon

to determine later results, it is occassionally necessary to rely on the underlying algebraic

structure. In order to do this, we must continue the assumption that q = ps for some prime

p, and then more formally describe points and lines in the general projective geometry

PG(m, q) as 1-dimensional and 2-dimensional subspaces (respectively) of V (m + 1, q), the

(m+1)-dimensional vector space over the unique finite field Fq containing q elements. Since

we are focusing specifically on the projective plane, points and lines can be described over

V (3, q), the 3-dimensional affine vector space over Fq. An effort is made to be complete

here, but further details can be found in Chapter 9 of [20].

Since the points in PG(2, q) are 1-dimensional subspaces of V (3, q), each point is given

by the equivalence class {(cx, cy, cz) | c ∈ Fq} for fixed x, y, and z, not all zero. We label

this point (equivalence class) by [x, y, z], and x, y, and z are called homogeneous coordinates

for the point. Because of this, we can always uniquely describe each point in PG(2, q) as

32

an element in V (3, q) of the form [0, 0, 1], [0, 1,m], or [1,m, n], for m,n ∈ Fq.

Any line in PG(2, q) can be represented by a linear equation ax+by+cz = 0, where a, b,

and c are not all zero. Because constant multiples of this equation will not change the set of

points on the line, we can also represent lines as equivalence classes {(ma,mb,mc) |m ∈ Fq}

for fixed a, b, and c. We will label the equivalence classes corresponding to lines in parenthe-

sis instead of brackets to distinguish lines from points (i.e. represent {(ma,mb,mc) | m ∈

Fq} by (a, b, c)). Like points, each line can be described uniquely as an element of the form

(0, 0, 1), (0, 1,m), or (1,m, n), for m,n ∈ Fq.

Using this coordinate construction of PG(2, q) provides a clearer method of constructing

these planes. It also allows us to more clearly characterize subsets of the planes.

33

Chapter 6: Subsets of Projective Planes and LDPC Codes

As mentioned previously, the incidence matrix Mπ for a projective plane π = PG(2, q) can

act as a parity check matrix for a classical LDPC code. The parity check need not be

square, nor do each of its rows need to be completely linearly independent. Thus we can

just as easily look at LDPC parity checks constructed from subsets of points and lines in a

finite projective plane. Such work has recently been done, with particular focus on classical

LDPC codes constructed from subsets of points and lines in a projective plane relative to

nondegenerate conics and regular hyperovals [21, 22]. The results, specifically those from

Castleberry et al [22], will be heavily relied upon when constructing QLDPC codes. For

the sake of completeness, we give an overview of the methods implemented in the above

sources. In particular, we maintain the assumption that q = 2s.

An arc in PG(2, q) is a collection of points, no three of which are collinear. It can be

shown that there always exists an arc of size q+ 1 in PG(2, q), and we call this arc an oval.

There is a particular subset of ovals in PG(2, q) called conics. A conic C is formally defined

as a set of points whose coordinates satisfy a non-degenerate quadratic equation, that is,

C := {[x, y, z] : ax2 + by2 + cz2 + fyz + gzx+ hxy = 0}

for some a, b, c, f, g, h ∈ Fq, where the equation cannot be reduced to an equation of less

than 3 variables via linear substitution. Given a conic, we can classify all of the lines in the

plane relative to the conic by defining lines to be either skew (those that intersect the conic

in no points), secant (those that intersect the conic in exactly two points), and tangent

(those that intersect the conic at exactly one point). Every line in the plane falls under one

of these classes.

34

A well-known result in finite projective geometry is that when q = 2s, all of the tangent

lines are concurrent at a point outside of the conic, called the nucleus. More precisely, if C is

a nondegenerate conic satsifying the quadratic form ax2 + by2 + cz2 + fyz+ gzx+hxy = 0,

then the nucleus will be the point with homogeneous coordinates [f, g, h]. Adding the

nucleus to the conic gives an arc of size q + 2, called a regular hyperoval (which will simply

be referred to as a hyperoval throughout the rest of this report). Since the lines tangent

to the conic intersect the hyperoval in exactly two points, it follows that any line in the

plane can be distinctly labeled as either skew to the hyperoval or secant to it. It can be

shown that, given a hyperoval H, there will always be (q2 +3q+2)/2 secant lines to H, and

(q2−q)/2 skew lines to H. It can also be shown that any non-hyperoval point is intersected

by (q + 2)/2 secant lines and q/2 skew lines [22]. Unless otherwise specified, we will let C

refer to the conic defined by the quadratic form y2 = xz, and HC refer to the extension of

this conic to a regular hyperoval.

Because the properties of quantum CSS codes can be obtained from the classical codes

from which they are constructed, we will spend the next few sections describing classi-

cal codes whose parity check matrices are constructed from subsets of points and lines in

PG(2, q)′ relative to a regular hyperoval in PG(2, q). The results are summarized at the end

of the chapter in Table 6.2. Although the results generally apply to subsets of points and

lines with respect to an arbitrary regular hyperoval, for the sake of construction, we can al-

ways choose the hyperoval to be the HC just defined. When analyzing the codes constructed

from these subsets, we will often rely on the graphical interpretations. In particular, since

a codeword in a classical code must be orthogonal to every row of a parity check matrix,

we can graphically interpret a codeword to be a collection of points, S, in the plane having

the property that each line corresponding to a row in the parity check matrix contains an

even number of points in S.

35

Table 6.1: Number of points and lines with respect to the hyperoval HC and non-hyperoval
points in PG(2, q).

of secant lines # of skew lines
of points # of lines # of lines intersecting a non- intersecting a non-

in HC secant to HC skew to HC hyperoval point hyperoval point

q + 2 q2+3q+2
2

q2−q
2

q+2
2

q
2

6.1 Skew Lines and Non-Hyperoval Points, Csk and H(Csk)

Notice that by definition, skew lines never intersect the hyperoval. Suppose we construct a

classical parity check matrix whose rows are the subset of rows in M ′π corresponding to skew

lines. Then graphically, a codeword for this code is a collection of points S such that each

skew line intersects S in an even number of places. Notice that such an example is found by

letting S simply be a hyperoval point. Then every skew line intersects S nowhere. Since S

contains only one point, it corresponds to a codeword of weight one, and hence this code has

minimum weight one. Thus, in general, the parity check matrices constructed from skew

lines do not define good codes. However, the removal of hyperoval points may resolve this

problem. We will now consider the classical codes whose parity check matrices are created

from skew lines in PG(2, q)′ with the hyperoval points removed, denoting the code by Csk,

and the corresponding parity check by H(Csk). Note that H(Csk) is simply the incidence

matrix M ′π with columns corresponding to hyperoval points and rows corresponding to

secant lines removed.

As mentioned earlier, the projective plane π = PG(2, q) contains q2 + q + 1 points, and

the extended projective plane π′ contains one more additional point. Since we remove the

q + 2 columns of M ′π corresponding to the hyperoval points, it follows that the length of

the rows in H(Csk), and thus the length of the codewords, is q2. Additionally, it is easy to

see that, since each skew line contains the u-point, along with q + 1 other non-hyperoval

points, the weight of each row in H(Csk) is exactly q+ 2. The number of rows in H(Csk) is

36

(q2 − q)/2, being the number of skew lines in the plane. We would like to put a bound on

the minimum distance.

Proposition 6.1. Suppose S is a collection of points in π′ that make up a codeword in Csk.

If S does not contain the u-point, then the codeword has a weight of at least q
2 + 1.

Proof. S can be viewed as a non-empty collection of non-hyperoval points in PG(2, q). Any

skew line that intersects S must do so in an even number of points. Let p be a point in S.

We know that it is intersected by q
2 skew lines. Then for each of these skew lines, S must

contain at least one other point through which the line intersects. The result follows.

Notice that when the u-point is not in S, we can solve our problem by simply considering

points and lines in the standard projective plane. Many of the results in this report are

obtained by making an assumption on the the u-point, and then studying how the codewords

act in relation to the standard projective plane, as opposed to the extended projective plane.

The next result is another such example.

Proposition 6.2. Suppose S is a collection of points in π′ that make up a codeword in Csk.

If S contains the u-point, then the codeword has a weight of at least q.

Proof. Each skew line must intersect S in an even number of points. We assume that h is

in S. We can reduce this problem to finding a minimal set of points in PG(2, q) through

which each skew line intersects an odd number of times, namely, at least once. But since

any two lines in PG(2, q) intersect at exactly one point, we obtain a minimum when we

choose S to be a line. Since hyperoval points are removed from the plane, secant lines have

the smallest number of points (namely, q points), and they intersect every skew line exactly

once in points other than hyperoval points. Thus, when S is a secant line, it will have

weight q, and will be a minimum weight among codewords containing the u-point.

This leads us to the following result about the minimum weight of the code Csk.

Corollary 6.3. The minimum weight, dsk, of Csk is bounded by q
2 + 1 ≤ dsk ≤ q.

37

Proof. This follows immediately from Propositions 6.1 and 6.2. Since we know codewords

of weight q exist, this value acts as an upper bound.

In order to fully characterize the classical code constructed from H(Csk), we need to

determine its dimension. Let H(Csk)\u be the matrix formed by removing the u-column

from H(Csk). Bounds on dim(H(Csk)\u) were found in [22], and we include their results

as a proposition here.

Proposition 6.4. Let H(Csk)\u be defined as above. Then 3s − 2s ≤ dim(H(Csk)\u) ≤

3s + 1.

Proof. We know that dim(Mπ) = 3s + 1 from [19]. In [22] it was shown that removing all

the rows in Mπ corresponding to lines secant to the conic C will not affect the dimension.

Since skew lines never intersect hyperoval points, removing the columns corresponding to

hyperoval points does not affect the dimension. Removing lines tangent to C may possibly

decrease the dimension, giving us the resulting bounds.

Corollary 6.5. The dimension of H(Csk) is bounded by 3s − 2s ≤ dim(H(Csk)) ≤ 3s + 1.

Proof. This follows immediately from Lemma 5.1 and Proposition 6.4.

6.2 Secant Lines and All Points, CseA and H(CseA)

We showed that, in order to obtain good minimum distance codes whose parity checks

are created from skew lines, we needed to remove hyperoval points. Since every secant

line intersects the hyperoval, this requirement is not necessary. We will now describe the

classical codes whose parity checks are the incidence matrices constructed from all points

on the extended projective plane π′ and lines secant to the hyperoval, denoting the classical

code by CseA and the corresonding parity check matrix by H(CseA).

Observe that the codewords here will have length q2+q+2 = 4s+2s+2, while the weight

of each parity check row is q + 1. H(CseA) will have (q2 + 3q + 2)/2 rows, corresponding

38

to the number of secant lines in the projective plane. We will now discuss bounds of the

minimum weight of CseA.

Proposition 6.6. Suppose S is a collection of points in π′ that make up a codeword in

CseA. If S does not contain the u-point, then the codeword has a weight of at least q
2 + 2.

Proof. We can view S as a nonempty collection of points in PG(2, q). Any secant line that

intersects S must do so in an even number of points. Let p be a point in S. We know that

it is intersected by (q+ 2)/2 secant lines. Thus S must contain at least one more additional

point for each of those lines.

Proposition 6.7. Suppose S is a collection of points in π′ that make up a codeword in

CseA. If S contains the u-point, then the codeword has a weight of at least q + 2.

Proof. Since each secant line must intersect S in an even number of points, and one of those

points is the u-point, then the remaining points in S must be points in PG(2, q) intersected

by each secant line in PG(2, q) an odd number of times, in particular at least once. Since

each line in PG(2, q) intersects all other lines exactly once, we obtain a minimum when

we choose the remaining points to be a collection of q + 1 points that make up a line in

PG(2, q).

Thus, we obtain the following result about the overall minimum weight of CseA.

Corollary 6.8. The minimum weight dseA of the classical code CseA is bounded by 2s−1+2 ≤

dseA ≤ 2s + 2.

The following result allows us to completely characterize the code.

Proposition 6.9. The dimension of the parity check matrix H(CseA) for the classical code

CseA is given by dim(H(CseA)) = 3s + 1.

Proof. Let Mπ be the incidence matrix for the projective plane π = PG(2, q), again having

known rank of 3s + 1 from [19]. It was shown in [22] that the rows corresponding to skew

39

lines can be removed without affecting the dimension of this matrix. Denote by H(CseA)\u

the resulting incidence matrix. Since each row of H(CseA)\u has odd weight, it follows from

Lemma 5.1 that we can concatenate the u-column without changing the dimension (rank).

The resulting matrix is precisely H(CseA), and hence dim(H(CseA)) = 3s + 1.

6.3 Secant Lines and Non-Hyperoval Points, Cse and H(Cse)

As discussed in the previous section, it is not necessary to remove hyperoval points from

incidence matrices constructed from secant lines in order to construct classical codes with

good minimum distance. In this section, we will remove the hyperoval points nonetheless,

as this will be necessary when constructing the parity check matrix for an asymmetric

quantum CSS code constructed from both subsets of lines. Namely, since the length of the

parity check matrix created from secant lines must be the same as that created from the

skew lines, we must eliminate q+ 2 columns from the incidence matrix created from secant

lines and points in π′. In order to make sure we maintain orthogonality between the two

matrices, we choose to eliminate the columns corresponding to hyperoval points from this

incidence structure as well. We denote the corresponding parity check matrix by H(Cse)

and the code space by Cse. Notice, however, that by removing hyperoval points, secant lines

will not always overlap twice. What this means in terms of the Tanner graph is a reduction

of four-cycles, potentially giving this code a slight advantage over Csk and CseA.

Notice that by removing the columns corresponding to hyperoval points from the inci-

dence matrix, the length of the rows of H(Cse), and therefore the length of the codewords

in Cse, is q2. Moreover, the weight of each row in the parity check is q since each secant

line in the extended projective plane intersects q non-hyperoval points. H(Cse) will have

(q2 + 3q + 2)/2 rows, corresponding to the number of secant lines in the projective plane.

We will now discuss bounds on the minimum weight of Cse.

Proposition 6.10. Suppose S is a collection of points in π′ that make up a codeword in

Cse. If S does not contain the u-point, then the codeword has a weight of at least q
2 + 2.

40

Proof. We can view S as a non-empty collection of non-hyperoval points in PG(2, q). Any

secant line that intersects S must do so in an even number of points. Let p be a point in

S. We know that it is intersected by (q + 2)/2 secant lines. Then for each of these secant

lines, S must contain at least one other point through which the line intersects. The result

follows.

Proposition 6.11. Suppose S is a collection of points in π′ that make up a codeword in

Cse. If S contains the u-point, then the codeword has a weight of at least q + 2.

Proof. The proof is similar to that of Proposition 6.2. We can reduce this problem to finding

a minimal set of points in PG(2, q) through which each secant line intersects an odd number

of times, namely, at least once. But since any two lines in PG(2, q) intersect at exactly one

point, we obtain a minimum when we choose S to be a line. Since hyperoval points are

removed from the plane, there exist pairs of secant lines that do not have points in common.

The only lines in PG(2, q) that intersect every secant line exactly once at non-hyperoval

points are skew lines, having weight q + 2 in the extended projective plane. Thus, when S

corresponds to a skew line, it will have weight q + 2, and the codeword will have minimum

weight among codewords containing the u-point.

This leads us to the following result about the minimum weight of the code Cse.

Corollary 6.12. The minimum weight, dse, of Cse is bounded by q
2 + 2 ≤ dse ≤ q + 2.

Proof. The proof follows immediately from Propositions 6.10 and 6.11. Again, since we

know codewords of weight q + 2 exist, this value acts as an upper bound.

We now want to determine the dimension of H(Cse).

Proposition 6.13. dim(H(Cse)) = 3s + 1.

Proof. We already know dim(Mπ) = 3s + 1 for π = PG(2, 2s). It was shown in [22] that

columns corresponding to hyperoval points and rows corresponding to skew lines can be

removed from Mπ without affecting the dimension. This new matrix is simply H(Cse)

41

Table 6.2: Classical codes and their corresponding parameters n, k, and d. Recall that
the dimension k of a classical code C with parity check matrix H(C) is given by k =
n− dim(H(C)).

Codeword Length n Code Dimension k Code Minimum Distance d

Csk 4s 4s − 3s − 1 ≤ k ≤ 4s − 3s + 2s 2s−1 + 1 ≤ d ≤ 2s

CseA 4s + 2s + 2 4s − 3s + 2s + 1 2s−1 + 2 ≤ d ≤ 2s + 2

Cse 4s 4s − 3s + 2s + 1 2s−1 + 2 ≤ d ≤ 2s + 2

with the u-column removed, denoted H(Cse)\u. Note that each row of H(Cse)\u has odd

weight, and so by Lemma 5.1, we can add the u-column without affecting the rank. Hence,

dim(H(Cse)) = dim(H(Cse)\u) = 3s + 1.

42

Chapter 7: Quantum LDPC Codes from Point-Line Subsets

We are now ready to discuss the results as they pertain to quantum low-density parity

check (QLDPC) codes. We use the incidence matrices of subsets of points and lines in the

extended projective plane, and results about the corresponding classical codes, to construct

both symmetric and asymmetric QLDPC codes.

7.1 Asymmetric QLDPC Codes

We first analyze the asymmetric QLDPC code Casym with parity check matrix H(Casym)

of the following form.

H(Casym) =

H(Csk) 0

0 H(Cse)

 (7.1)

Recall that H(Csk) and H(Cse) are orthogonal by construction, and both have the same

block length. Thus H(Casym) is a parity check matrix for a quantum CSS code. Since

H(Csk) and H(Cse) are both parity check matrices for classical LDPC codes (i.e. they are

sparse and have few four-cycles), it follows that H(Casym) is in fact a parity check matrix

for a QLDPC code. H(Casym) has q2 + q + 1 rows and 2q2 columns. The Tanner graph of

this code will in turn have q2 + q + 1 check nodes, and q2 bit nodes. In terms of stabilizer

codes, this means that there will be q2 + q + 1 stabilizers of length q2. We conclude this

section with the following theorem.

Theorem 7.1. Given a finite projective plane PG(2, 2s), for some positive integer s, the

matrix H(Casym) in (7.1) is a parity check matrix for a [[4s,K,D]] QLDPC code Casym,

43

where the dimension K is bounded by 4s−2 ·3s+2 ≤ K ≤ 4s−2 ·3s+2s−1, and the overall

minimum distance D is bounded by 2s−1 + 1 ≤ D. Casym will have 4s + 2s + 1 stabilizers.

Proof. We already showed that H(Casym) is a parity check matrix for a QLDPC code

Casym. The number of stabilizers corresponds to the number of lines in PG(2, 2s). The

length is determined by observing that H(Csk) and H(Cse) are parity checks for classical

codes of length 4s. Since dim(Csk) = ksk is bounded by 4s − 3s − 1 ≤ ksk ≤ 4s − 3s + 2s

and dim(Cse) = kse = 4s − 3s + 2s + 1 (see Table 6.2), then we obtain the dimension by

noting that dim(Casym) = ksk + kse − n. The minimum distance D is bounded below by

min(dsk, dse), where dsk and dse are the minimum distances of the classical codes Csk and

Cse, respectively. Using Corollaries 6.3 and 6.12, the result follows.

While the bound on the dimension may be coarse, it is important to observe that the

rate of these codes nevertheless increases rapidly with the code length n. The code will

have only n+
√
n+ 1 parity checks, and very few four-cycles.

7.2 Symmetric QLDPC Codes from Skew Lines

Here we will analyze QLDPC codes CsymSK whose parity check matrices H(CsymSK) have

the following form.

H(CsymSK) =

H(Csk) 0

0 H(Csk)

 (7.2)

Since H(Csk) is a self-dual parity check (and hence satisfies the twisted inner product

requirement) for a classical LDPC code, it follows that H(CsymSK) is, in fact, a parity

check for a QLDPC code. This parity check matrix has 2
(
q2−q
2

)
rows and 2q2 columns,

and hence the Tanner graph of this code will have q2 − q check nodes and q2 bit nodes. In

terms of stabilizer codes, this means that there will be q2 − q stabilizers of length q2. We

conclude this section with the following theorem.

44

Theorem 7.2. Given a finite projective plane PG(2, 2s), for some positive integer s, the

matrix H(CsymSK) in (7.2) is a parity check for a [[4s,K,D]] QLDPC code CsymSK , where

the dimension K is bounded by 4s − 2 · 3s − 2 ≤ K ≤ 4s − 2 · 3s + 2s+1, and the minimum

distance D is bounded by 2s−1 + 1 ≤ D.

Proof. We already showed that H(CsymSK) is in fact a well-defined QLDPC code. Clearly,

n = q2 = 4s. The dimension is obtained by observing that K = 2ksk − n, where ksk =

dim(Csk). The minimum distance D is bounded below by the minimum distance of the

classical code Csk, which we obtain from Corollary 6.3.

Although the bound on the dimension of these codes is not as tight as that of the

asymmetric codes described in Section 7.1, these codes nevertheless have a fast rate that

increases with the length n. The bound on the minimum distance is the same as for the

codes in Section 7.1, showing that these, too, describe fast-rate QLDPC codes with good

minimum distance. The codes will have n−
√
n parity checks and few four-cycles.

7.3 Symmetric QLDPC Codes from Secant Lines

Here we will analyze QLDPC codes CsymSE whose parity check matrices H(CsymSE) have

the following form.

H(CsymSE) =

H(CseA) 0

0 H(CseA)

 (7.3)

Again, we observe that the twisted inner product is statisfied by the fact that H(CseA) is

self-orthogonal by construction. Since H(CseA) is a parity check for a classical LDPC code,

it follows that H(CsymSE) truly is a parity check matrix for a QLDPC code. This matrix

has 2
(
q2+3q+2

2

)
rows and 2(q2 + q + 2) columns, and hence the Tanner graph of this code

will have q2 + 3q + 2 check nodes and q2 + q + 2 bit nodes. In terms of stabilizer codes,

45

this means that there will be q2 + 3q + 2 stabilizers of length q2 + q + 2. We conclude this

section with the following theorem.

Theorem 7.3. Given a finite projective plane PG(2, 2s), for some positive integer s, the

matrix H(CsymSE) in (7.3) is a parity check matrix for a [[4s + 2s + 2, 4s − 2 · 3s + 2s, D]]

QLDPC code CsymSE , where the minimum distance D is bounded by 2s−1 + 2 ≤ D.

Proof. The proof is similar to that of Theorems 7.1 and 7.2, and relies on the results found

in Section 6.2.

While n is slightly larger here than for Casym and CsymSK , its exact dimension may

make this a slightly more preferable code, especially given that the bound on the minimum

distance is roughly the same as those of the other two classes.

Note that we did not build the parity check matrix for the above QLDPC code from

secant lines and non-hyperoval points H(Cse). This is because the removal of hyperoval

points destroys the self-orthogonality of H(Cse), and so the matrix

H(Cse) 0

0 H(Cse)



does not correspond to a CSS code.

46

Chapter 8: Conclusion

Table 8.1 gives a summary of the results for each of the QLDPC codes discussed in this

report.

Table 8.1: QLDPC Code Parameters for Parity Checks Constructed from PG(2, 2s)

Code Length Dimension Minimum Number of
Distance Stabilizers

(Lower Bound)

Cπ 4s + 2s + 2 4s − 2 · 3s + 2s 2s + 2 22s+1 + 2s+1 + 2

Casym 4s 4s − 2 · 3s + 2 ≤ K 2s−1 + 1 4s + 2s + 1
≤ 4s − 2 · 3s + 2s − 1

CsymSK 4s 4s − 2 · 3s − 2 ≤ K 2s−1 + 1 4s − 2s

≤ 4s − 2 · 3s + 2s+1

CsymSE 4s + 2s + 2 4s − 2 · 3s + 2s 2s−1 + 2 4s + 3 · 2s + 2

While many of the parameters are not exact for these codes, the bounds nevertheless

indicate that each of these codes are at least comparable to most quantum LDPC codes in

the literature. In fact, as previously mentioned, many of these parameters are completely

unknown for the other quantum LDPC codes. Moreover, although many of the bounds

given here are relatively weak, simulations of the classical codes seem to indicate that the

actual values for most of these parameters are in fact their upper bounds [22].

Note that the code Cπ has a minimum distance that increases faster than
√
n, and

both CsymSE and Casym have the potential to do the same. This is particularly notable,

given that this appears to be faster than the increase of any known minimum distances of

47

any other quantum LDPC codes. Cπ and CsymSE have the same rate, and potentially the

same minimum distance. The distinct difference between these two codes is in the number

of stabilizers in their parity checks, with CsymSE having significantly fewer (in particular,

4s− 2s fewer). This indicates that CsymSE requires far fewer check nodes for decoding, and

could potentially have the same error correction performance as that of Cπ. Simulations

will be needed to verify this.

The distinct advantage that CsymSK has over the other codes is the small number of

stabilizers (or equivalently, the small number of check nodes in the corresponding Tanner

graph), indicating that this code may potentially be easier to physically implement. Another

potential advantage is that if the dimension of this code is in fact its upper bound, then

CsymSK will have a rate faster than all the others. Additionally, if the minimum weight of

the classical code Csk is in fact the upper bound of 2s from Corollary 6.3, then the minimum

distance would also be bounded below by exactly
√
n.

While further research is necessary to determine exact values of minimum distance and

dimension of most of these codes, it is nevertheless established that the projective plane is

a very useful tool in the construction of quantum low-density parity check codes. Similar

techniques can also be used to construct QLDPC codes from PG(m, ps) for m > 2 and/or

p an odd prime. Note that in the case of PG(2, ps) where p is an odd prime, the u-column

is not necessarily linearly dependent on the columns of the corresponding incidence matrix,

making it much more difficult to determine dimensions of corresponding QLDPC codes.

However, this is resolved if in addition to concatenating the u-column to the incidence

matrix of the projective plane, you also concatenate an identity matrix to it. This would

change the parameters in a known manner. Moreover, when p is an odd prime, we cannot

in general extend a conic to a regular hyperoval, and thus a different method of splitting

the incidence matrix of PG(2, ps) must be used.

48

Bibliography

49

Bibliography

[1] MacKay, Mitchison, and McFadden, “Sparse-graph codes for quantum error correc-
tion,” IEEE Transactions on Information Theory, vol. 50, no. 10, 2004.

[2] Postol, “A proposed quantum low density parity check code,” arXiv:quant-ph/0108131,
2001.

[3] J.-P. Tillich and G. Zémor, “Quantum ldpc codes with positive rate and
minimum distance proportional to n 1/2,” in Proceedings of the 2009 IEEE
international conference on Symposium on Information Theory - Volume 2, ser.
ISIT’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 799–803. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1701275.1701299

[4] S. Aly, “A class of quantum ldpc codes constructed from finite geometries,” in Proc.
2008 IEEE Global Communication, ser. Globecom ’08, New Orleans, LA, USA, 2008.

[5] V. Pless, Introduction to the Theory of Error-Correcting Codes, 3rd ed. Wiley-
Interscience Series in Discrete Mathematics, 1998.

[6] R. G. Gallager, “Low density parity check codes,” Transactions of the IRE Professional
Group on Information Theory, vol. IT-8, pp. 21–28, January 1962.

[7] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, pp. 379 – 423, 623 – 656, 1948.

[8] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information.
Cambridge, England: Cambridge University Press, 2000.

[9] P. W. Shor, “Polynomial-time algorithm for prime factorization and discrete logarithms
on a quantum computer,” 1996.

[10] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,”
Nature, vol. 299, no. 5886, pp. 802–803, Oct. 1982. [Online]. Available:
http://dx.doi.org/10.1038/299802a0

[11] D. Dieks, “Communication by EPR devices,” Physics Letters A, vol. 92, no. 6, pp. 271–
272, Nov. 1982. [Online]. Available: http://dx.doi.org/10.1016/0375-9601(82)90084-6

[12] D. Gottesman, “Class of quantum error-correcting codes saturating the quantum ham-
ming bound,” Phys. Rev. A, vol. 54, pp. 1862–1868, 1996.

[13] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum error
correction and orthogonal geometry,” Phys. Rev. Lett., vol. 78, no. 3, 1997.

50

[14] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,”
arXiv:quant-ph/9512032, 1996.

[15] A. M. Steane, “Multiple particle interference and quantum error correction,” Proc. R.
Soc. Lond. A, vol. 452, no. 2551, 1996.

[16] ——, “Error correcting codes in quantum theory,” Phys. Rev. Lett., vol. 77, pp. 793 –
797, 1996.

[17] J. Singer, “A theorem in finite projective geometry and some applications to number
theory,” Trans. Am. Math. Soc., vol. 43, pp. 377 – 385, 1938.

[18] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low density parity check codes based on finite
geometries: A rediscovery and new results,” IEEE Trans. Inform. Theory, vol. 47, pp.
2711–2736, 2001.

[19] K. J. C. Smith, “On the p-rank if the incidence matrix of points and hyperplanes in a
finite projective geometry,” J. Comb. Theory, vol. 7, pp. 122 – 129, 1969.

[20] P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms. Cambridge University
Press, 1994.

[21] Droms, Meyer, and K. E. Mellinger, “Ldpc codes generated by conics in the classical
projective plane,” Designs, Codes, and Cryptography, vol. 40, no. 3, 2006.

[22] Castleberry, K. Hunsberger, and K. E. Mellinger, “Ldpc codes arising from hyperovals,”
Bull. Inst. Combin. Appl., vol. 58, pp. 59 – 72, 2010.

51

Curriculum Vitae

Jacob M. Farinholt received his Bachelor of Science in Mathematics from the University of
Mary Washington in 2009. He currently works for the U.S. Navy as a Scientist. He received
his Master of Science in Mathematics from George Mason University in 2012.

52

